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Abstract

The flow field in a molten salt reactor core was modeled using simplified equa-
tions. From these equations a computationally inexpensive computer code has
been developed which is able to, amongst others, estimate the axial velocity dis-
tribution in the core and can be implemented in future or existing more elaborate
codes to gain further insight into the behavior of the molten salt reactor, in par-
ticular the effects that a non-uniform axial velocity distribution might have on
the heat exchange properties and flux profile in the reactor core. Several bench-
mark checks were performed to verify the validity of the model and code and
calculations of the flow field in the ’Molten Salt reactor experiment’ [10] setup
were done at different flow rates of the fuel salt. A transient was also simulated.
Calculations pointed out that axial velocities in the reactor core may vary as
much as 30% and that during the start up of the MSRE setup the shape of the
axial velocity profile changes with time.
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Chapter 1

The Molten Salt Reactor

1.1 Introduction

Worldwide energy consumption has been the subject of intense discussion over
the last few decades. It has become ever more apparent that fulfilling world-
wide energy requirements using only traditional production methods will soon
become impossible. Fossil fuels like coal and oil are fast running out and up-
coming economies are putting an ever greater strain on the already decreasing
resources.
Nuclear energy has always been a major contender in the quest for finding an
alternative energy resource for the near future. Recent developments like the
growing concern about global warming and the slow progress of solar and wind
energy technology and production have sparked renewed interest in nuclear en-
ergy as a viable alternative to traditional production methods. China, India and
Finland to name a few are already in the process of building new nuclear sites
and other nations also show increased interest.
Safety issues however have always been a major concern in the nuclear power
industry. Especially after the Czernobyl incident it became clear that if nuclear
energy is going to play a major role in fulfilling our requirements, it has to be
done in an inherently safe and environmentally friendly way.

One can distinguish between four generations of nuclear reactors, displayed in
Fig. 1.1. The generation IV reactors are a set of theoretical reactor designs cur-
rently being studied around the world. Most of these designs are generally not
expected to be available for commercial construction before 2030. The primary
goals of generation IV reactors, with respect to the generation II and III type
reactors currently in operation, are to improve nuclear safety, improve prolifer-
ation resistance, minimize waste and maximize natural resource utilization, and
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2 CHAPTER 1. THE MOLTEN SALT REACTOR

Figure 1.1: Overview of the different generations of nuclear reactors. Most nuclear
reactors in operation today are part of generation II and III. The theoretical designs of
generation IV are currently undergoing intense research.

to decrease the cost to build and run such plants.
A Molten Salt Reactor is a type of nuclear reactor in which the primary coolant

is a molten salt. In many designs the fissile material is dissolved in the coolant
salt and therefore moves through the reactor core during operation. Other MSR
designs may rely on ceramic fuel dispersed in a graphite matrix with the molten
salt providing high temperature low pressure cooling.
Generally speaking, molten salt reactors are an immature technology. So far only
one, non-commercial, MSR has been built: the Molten Salt Reactor Experiment∗

(MSRE) of the Oak Ridge National Laboratory. It operated at full power for 1.5
years in the 1960’s. The research done in the MSRE has led to almost all available
experimental data, a summary of which can be found in [10]. The remainder of
this thesis will therefore focus on the setup of the MSRE and the data associated
with that setup. In the case of the MSRE the fissile material UF4 (Uranium
Tetra Fluoride) is dissolved in the coolant salt as LiF −BeF2−ZrF4−UF4. In
operating any nuclear power plant, the so called delayed neutron concentration is
of crucial importance [6]†. After a fission event the resulting fission products may
in some situations decay after some time, thereby possibly releasing a neutron
which in turn will be able to induce fission in a fissile isotope. Since the fuel

∗There have been other experiments which were focused on making a small MSR for airplane
propulsion, but none of the scale of the MSRE

†Although the delayed neutrons make up only about 0.7% of the total amount of neutrons
in a reactor core, it is by the grace of these delayed neutrons that one is able to run a nuclear
power plant.
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is not stationary, in many MSR designs one has to account for loss of delayed
neutrons from the reactor core by convective transport, making the MSR rather
exotic and hard to model correctly. Fig. 1.2 shows the reactor core of the MRSE
setup in some detail. A full description of the geometry, fuel composition and
other relevant parameters can be found in [10].

The Molten Salt Reactor (MSR), subject of this thesis, is included in the gener-
ation four set because it potentially has some advantages over other reactors:
The MSR closes the fuel cycle and potentially eliminates the need for both fuel
enrichment and fuel fabrication.
Molten salt reactors can potentially be run at extremely high temperatures, such
as those proposed for hydrogen production facilities. Higher temperatures also
give better efficiency in electricity generation.
Molten Salts are good at trapping fission products and are mostly non-reactive
in air. Even in the unlikely case of an accident, most radioactive fission products
would stay in the salt in stead of being dispersed into the atmosphere. An already
molten core is of course meltdown-proof.
The MSR has far better neutron economy and, depending on the design, a harder
neutron spectrum. This makes it far less demanding on the quality of the fuel,
allowing all three major nuclear fuels to be used: Uranium-235, Plutonium-239
and Uranium-233 (obtained by breeding from Thorium-232). It also allows for
burning of transuranic wastes.

1.2 Aims and overview of this report

1.2.1 Aims of the report

This report deals with finding a simplified model describing the flow of coolant
salt through the reactor core of a Molten Salt Reactor. Most studies done so far,
like [4] and [1], use a single axial velocity for the fuel salt in the reactor core.
In this research, the emphasis lies on finding an axial velocity distribution which
may give new insights into the behavior of the MSR. A non-uniform distribution
will, for example, have an effect on the heat exchange in the core which in turn
will influence the neutron flux profile. A non-uniform distribution will also di-
rectly influence the neutron flux because precursors will have different residence
times depending on the fuel channel in which they are created.
Due to the non-linear nature of the equations describing fluid flow and the fact
that the reactor vessel has a complicated geometry calculations will quickly be-
come involved. Simplified equations describing the flow are therefore presented,
resulting in a computationally inexpensive computer code. The numerical results
of this code may be used as input for future neutronics and thermo-hydraulics
calculations.
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Figure 1.2: Overview of the core structure of the MSRE. The coolant salt enters from the
sides of the lower dividing plenum and flows radially inward. Upon flowing inward, salt is
discharged into vertical passages machined into the graphite matrix. The salt combines
in the upper combining plenum and exits through the central fuel outlet header.

1.2.2 Overview

In chapter 2 some more attention will be given to the geometry of the MSRE.
Starting from general fluid flow equations the simplified equations describing
the flow field will be derived. Chapter 3 will deal with the discretization of
the equations and the solution procedures will be outlined. In chapter 4 some
benchmark checks will be performed to test the validity of the model and code.
In chapter 5 the computational results obtained by the code are presented and
some thought will be given to the validity of the code. Chapter 6 will provide
conclusions and some further recommendations.



Chapter 2

Simplified model equations

2.1 Introduction

In this chapter simplified equations describing the flow field will be derived. First
the geometry of the core structure of the MSRE will be treated in some more
detail and three zones of interest will be identified. Starting from general fluid
flow equations and using some simplifications and assumptions, the equations for
the remainder of this thesis will be presented and applied to the zones of special
interest.

2.2 Geometry description

The core structure of the MSRE consists of a cylindrical reactor vessel containing
a graphite interior. The fuel salt flows from bottom to top through channels
machined out in the graphite matrix, Fig. 2.1. Fuel salt entering the lower
dividing plenum will distribute itself over the vertical channels, recombines in
the upper combining plenum and exits through the outlet header. Three zones
of interest are specified in Fig. 2.2:
Zone 1 represents the lower dividing plenum. The salt flows radially inward
from the outside, losing radial momentum due to wall friction and turning at
the channel heads while distributing over the vertical channels. The plenums are
treated as straight cylinders, thereby neglecting the dome shape or curvature at
the top and bottom of the cylinder in the actual assembly. This sacrifice is made
in order to keep the geometry simple.
Zone 2 represents the graphite matrix which houses most of the fuel salt. In zone
2 the actual fission takes place and it is the zone where most heat is generated.
The channel entrances, Fig. 2.3, are regularly spaced and distributed over the

5
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Figure 2.1: Schematic of the MSR reactor vessel. The fuel salt enters from the sides at
1, is guided down along the outer wall to 2 where it enters the lower dividing plenum.
The salt makes its way up through channels machined out in the graphite matrix and
combines in the upper combining plenum to exit at 3.

Figure 2.2: Schematic of the core structure as proposed by the author. Three zones
are marked by the numbers one to three. Zone 1 represents the lower dividing plenum,
zone 2 the reactor core and zone 3 the upper combining plenum. The arrows indicate
the direction of the flow.
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Figure 2.3: Schematic of the channel heads machined out in the graphite matrix of the
MSRE.

top of the entire lower plenum. Because there are so many channel heads and
they are regularly spaced it is more convenient to represent the graphite matrix
as a uniformly porous medium. Making this assumption results in a rather big
simplification of reality. Details of the flow field around channel entrances are
completely discarded in favor of computational and analytical simplicity. In [2]
and [9] it is shown that treating a manifold with a large number of uniformly
spaced branch points as a uniformly porous medium gives an accurate description
and is favorable above a discrete branch point description. The dimensionless
porosity is defined as:

α =
total entrance area of channel heads

total area of top of lower plenum
(2.1)

Alternatively, from Fig. 2.3: the yellow area divided by the black and yellow
area.
Zone 3 represents the upper combining plenum which is in essence similar to the
lower dividing plenum 1, except that the salt enters from zone 2 and exits through
the outlet header. Note that the entire system is axisymmetric.
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2.3 Governing Equations

The most general mathematical basis for any flow calculation is formed by the
Navier-Stokes equations [13]:
Conservation of momentum

D~v

Dt
=
∂~v

∂t
+ ~v · O~v = −1

ρ
Op+

1
ρ
~f +

1
ρ
O · ¯̄τ (2.2)

Conservation of mass
∂ρ

∂t
+ O · (ρ~v) = 0 (2.3)

in which ~v is the velocity vector, ~f is an external force (gravity for example), ¯̄τ
is the stress tensor, p is the pressure and ρ the density of the fuel salt.
This research focuses on finding a description of the core flow field assuming a
constant density∗ with pumps driving the flow. Most reactor designs undergoing
research today still rely on pumps and the effects of a non-uniform density on
the flow field will be small because of the small pressure drops.
Using the assumption of a constant density, Eq. 2.3 can be written as:

O · ~v = 0 (2.4)

In the lower dividing plenum the flow is directed radially inward by skirts, Fig.
1.2, preventing azimuthal flow. For the upper combining plenum the same holds.
It is therefore assumed that the field is axisymmetric, that the velocity only has
components in the radial (r) and the axial (z) directions and that the effects of
flow in the azimuthal (φ) direction will be negligible.
The continuity equation may be used to rewrite the advective term ~v ·O~v in Eq.
2.2 in a conservative way:

~v · O~v + ~vO · ~v = O · ~v~v (2.5)

Since there are no external forces present one may rewrite Eq. 2.2, using the
above assumptions:

∂~v

∂t
+ O · ~v~v = −1

ρ
Op+

1
ρ
O · ¯̄τ (2.6)

The governing equations for the remainder of this thesis, written in terms of their
spatial components, [12] [3], therefore become:
Radial momentum:

ρ
∂u

∂t
+ ρ

1
r

∂ruu

∂r
+ ρ

∂uw

∂z
= −∂p

∂r
+ [O · ¯̄τ ]r (2.7)

∗One might argue that having detailed knowledge about local densities in the reactor core
is highly important since cross sections, heat transfer properties and moderation all depend on
density. These effects may be calculated with existing coupled thermo-hydraulics and neutronics
codes and the effect of convective precursor transport may be superimposed.
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Axial momentum:

ρ
∂w

∂t
+ ρ

1
r

∂rwu

∂r
+ ρ

∂ww

∂z
= −∂p

∂z
+ [O · ¯̄τ ]z (2.8)

Conservation of mass:
1
r

∂ru

∂r
+
∂w

∂z
= 0 (2.9)

in which u represents the velocity in the radial direction and w the velocity in
the vertical direction.
The stress terms are intentionally not written out explicitly because they will be
treated in more detail later on.

2.4 Application of the governing equations

Let us revisit the equations derived in section 2.3 and apply them to the zones
identified in Fig. 2.2.
Due to the complicated geometry of manifold systems such as the one investigated
in this thesis it is common practice in the field to resort to empirical relations
describing losses due to stresses. These relations will be derived for each zone in
Fig. 2.2 individually in the following.

2.4.1 The lower dividing plenum (zone 1)

Since the aim of this report is to model the flow through the reactor core, details
of the flow field in the plenums, where no fission takes place, are of secondary
importance. As a further simplification it is therefore assumed that the radial
velocity component can be averaged over the height of the plenum in the following
way:

〈u〉 = 〈u(r)〉z =
1
4z

∫
4z
u(r, z)dz (2.10)

The radial velocity component in the plenums is for the remainder of this report
therefore only a function of the radial position r.

Treatment of the stresses

At the entrance of a fuel channel the concept of a single averaged radial velocity
component becomes a little shaky due to turning of the flow at the branch point.
The fluid will lose some of its radial momentum upon entering the fuel channel; we
expect u(branchpoint) ≤ 〈u〉. A static pressure regain coefficient γl is therefore
introduced to account for an uncertainty of radial momentum transported across
the interface between lower plenum and reactor core. The cross term in the axial
momentum equation is modified in the following way:

ργl
∂〈u〉w
∂z

(2.11)
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Figure 2.4: Some experimental values of the pressure regain coefficient as a function of
flow ratio; the ratio between the flow into the channel and the flow through the manifold.
D3/D1 represents the ratio between the diameter of the channel and the diameter of the
manifold. The spacing indicates how far the respective channels are placed apart.

Some experimental values for γl are shown in Fig. 2.4. These results were
obtained using a tube manifold instead of a dividing plenum [9]. The pressure
regain coefficient however, appears to be insensitive to the diameter ratio of
channel and manifold (or channel and plenum). It is therefore safe to use the
experimental data of Fig. 2.4 for the current situation. The results indicate that
γl increases by about 20% as the spacing between adjacent channels is decreased.
The flow ratio between channels and dividing manifold also hardly influence the
pressure regain coefficient. A value of γl = 0.95 was chosen, corresponding to the
fluid leaving the plenum loosing little radial momentum.
There will of course be pressure losses due to wall shear stress. The differential
pressure drop due to wall shear stress can be written as [15]:

∂p

∂r
= −4f(Re)ρ〈u〉 | 〈u〉 |

2Dh
(2.12)

In which f(Re) is the Fanning friction factor which is a function of the Reynolds
number and Dh the hydraulic diameter.

Re =
ρ〈u〉D
µ

(2.13)
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Dh =
4A
S

=
8πr4z

4πr
= 24z (2.14)

Using the empirical relations for the friction factor f(Re) [15]:
Laminar regime

4f =
64
Re

for Re < 2000 (2.15)

Turbulent regime

4f = 0.316Re−0.25 for 2000 < Re < 105 (2.16)

The final radial momentum equation for the lower dividing plenum becomes:

∂〈u〉
∂t

+
1
r

∂r〈u〉〈u〉
∂r

+ γl
∂〈u〉w
∂z

= −1
ρ

∂p

∂r
− 4f〈u〉 | 〈u〉 |

24z
(2.17)

2.4.2 The reactor core (zone 2)

The fuel channels in the reactor core are very long in comparison with the width
of the channels. It is therefore safe to assume that the flow is essentially vertical
in zone 2 and any cross flow can be neglected. Furthermore, since the flow is
incompressible, the velocity of the salt at the entrance of a fuel channel will
equal the velocity at the outflow and therefore the convective term ρ∂ww∂z can be
discarded. Using the above assumptions one can write Eq. 2.8 as:
Axial momentum in zone 2:

ρ
∂w

∂t
= −∂p

∂z
+ [O · ¯̄τ ]z (2.18)

Stress term treatment

Inside the channels the stresses are characterized by wall the shear stress: Eq.
2.12. The area perpendicular to the flow is just the porosity times the differential
area of the top of the lower plenum, or recalling Fig. 2.3, the yellow area.
Keeping Fig. 2.3 in mind, one can define a parameter describing the ratio between
the wetted perimeter of all the channels divided by the total area of the top of
the lower plenum (the inside edges of the yellow areas divided by the yellow and
black area):

β =
total wetted perimeter of channels
total are of top of lower plenum

(2.19)

The hydraulic diameter then becomes†:

Dh =
4α
β

(2.20)

The final axial momentum equation for the reactor core now reads:

ρ
∂w

∂t
= −∂p

∂z
− 4fρw

β | w |
8α

(2.21)

†For the case of the MSRE setup the hydraulic diameter is Dh = 1.67cm
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Figure 2.5: Some experimental values of the pressure decrease coefficient γu as a function
of the flow ratio between channel and combining flow manifold.

2.4.3 The upper combining plenum (zone 3)

Stress term treatment

For the upper combining plenum, zone 3, it is also assumed that a single radial
velocity 〈u〉 describes the radial flow.
A pressure decrease coefficient γu is introduced to account for the uncertainty of
radial momentum transported across the boundary of zone 2 and 3.

γu
∂〈u〉w
∂z

(2.22)

One might expect, from symmetry considerations, the pressure regain coefficient
to be equal to the pressure decrease coefficient. In the combining plenum how-
ever, the interaction of the fluid streams at the branch point is different from the
dividing case.
In the dividing plenum, fluid is accelerated into the channel while leaving the
remainder of the flow field unaffected, except for the expansion downstream [2].
In the combining case however, the outflow from the channels pierces the whole
flow field and causes increased turbulence downstream. This makes for an en-
tirely different behavior of the pressure decrease coefficient and even allows for
γu to become negative. A negative value of γu can be interpreted as the fuel
salt having a radial velocity in the upstream direction upon entering the upper
combining plenum.



2.4. APPLICATION OF THE GOVERNING EQUATIONS 13

Fig. 2.5 shows some experimental values for the pressure decrease coefficient.
Again, the pressure decrease coefficient appears to be insensitive to the flow ra-
tio. The diameter ratio for the MSRE is around 0.1 making it hard to give an
accurate estimate for γu. A value of γu = −0.9 was chosen, a little below the
value of Zeisser [9] at a ratio of 0.19.
Wall shear stress is treated as in the lower dividing plenum leading to the mo-
mentum equation for the upper combining plenum:

∂〈u〉
∂t

+
1
r

∂r〈u〉〈u〉
∂r

+ γu
∂〈u〉w
∂z

= −1
ρ

∂p

∂r
− 4f〈u〉 | 〈u〉 |

24z
(2.23)





Chapter 3

Numerical Model

3.1 Introduction

In this chapter the equations derived in chapter 2 will be discretized and applied to
a specified grid. The method of discretization will be discussed and the procedure
used for solving the discretized system will be outlined. Also, boundary conditions
are discussed.

3.2 Method of discretization

All methods of discretization have their merits but the finite volume method was
chosen because it has some specific advantages over other schemes. In the finite
volume scheme the spatial domain is divided into volume cells [5] [8] in which the
equations are subsequently integrated. Of all discretization methods the finite
volume scheme is the most physically intuitive and it keeps the programming ef-
forts tolerable. Also, when integrating the equations over a volume, the Jacobian
takes care of some of the difficulties of the apparent singularity near r = 0 that
arises because of the use of a cylindrical coordinate system.
The grid is fully specified by:

r(i) i = 1, 2, ..., ni
z(j) j = 1, 2, 3

(3.1)

The scalars, like pressure, are stored at these locations. Velocity is staggered
half a cell with respect to the scalars and therefore lies on the scalar cell face.
Fig. 3.1 and Fig. 3.2 show how the grid is generated in some detail. In finite
volume integration, flux uniformity is assumed over the cell face so the velocities
for example, are a constant at the scalar cell face. It is worth recalling that 〈u〉
represents the average radial velocity in the plenum. One can therefore divide

15
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Figure 3.1: Schematic of the location of some staggered grid cells. The location of the
velocity is at the edge of the scalar or continuity cell, colored grey. The momentum cell
is colored light red.

the entire reactor vessel into three zones over the vertical direction (j = 1, 2, 3).
Staggered grid arrangements, Fig. 3.1, naturally avoid odd-even pressure decou-
pling, [11] [8]. Also, mass conservation can be calculated more readily because no
interpolation of the velocities has to be done. Whenever interpolation of velocities
is necessary, the first order upwind scheme is adopted [5].

3.3 Radial momentum

The grid cell volume∗ shown in Fig. 3.2 is used to integrate the radial momentum
equation. This equation represents the radial momentum equation for the lower
dividing plenum. The treatment of the equation for the upper combining plenum
is completely analogous, the only differences that need to be kept in mind are
that the coefficient γl becomes γu, the porosity parameter α needs to be used for
the south face of the cell area instead of the north face and the axial index j is
j = 3 in stead of j = 1. Recall:

∂〈u〉
∂t

+
1
r

∂r〈u〉〈u〉
∂r

+ γl
∂〈u〉w
∂z

= −1
ρ

∂p

∂r
− 4f〈u〉 | 〈u〉 |

24z
(3.2)

∗Both cell volume and cell face area change in the domain because of the use of cylindrical
coordinates
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Figure 3.2: Schematic of the location of a possible radial momentum grid cell in the
lower dividing plenum. The velocity is located at the momentum cell center while the
pressure is located at the continuity, or scalar cell center. The integration is done over
the light red area.

In the following all the terms of Eq. 3.2 are treated separately and integration is
done over the radial momentum grid cell volume, which is defined as:

Ω1
i+ 1

2

= π(r2i+1 − r2i )(z 3
2
− z 1

2
) (3.3)

The respective momentum cell areas are defined as:

a1
i+1 = 2πri+1(z 3

2
− z 1

2
) (3.4)

a1
i = 2πri(z 3

2
− z 1

2
) (3.5)

a
3
2

i+ 1
2

= απ(r2i+1 − r2i ) (3.6)

a
1
2

i+ 1
2

= π(r2i+1 − r2i ) (3.7)

3.3.1 Transient term

Integrating ρ∂〈u〉∂t over the momentum cell volume results in:

2π
∫ i+1

i

∫ 3
2

1
2

ρ
∂〈u〉
∂t

rdzdr = Ω1
i+ 1

2

ρ
∂〈u〉1i+ 1

2

∂t
(3.8)

3.3.2 Advective term

Defining the mass flow as†:
ψji = ρ~vji (3.9)

†Note that ~vj
i does not represent the true velocity vector, the notation is merely used to

point out that ~vj
i can represent either the radial velocity component u at some location i, j or

the axial velocity component w at some location i, j
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The advective terms 1
r
∂r〈u〉〈u〉

∂r + γl
∂〈u〉w
∂z are integrated over the control volume,

resulting in:

2π
∫ i+1
i

∫ 3
2
1
2

(1
r
∂r〈u〉〈u〉

∂r + γl
∂〈u〉w
∂z )rdzdr =

a1
i+1ψ

1
i+1〈u〉

1
i+1 − a1

iψ
1
i 〈u〉

1
i+

a
3
2

i+ 1
2

ψ
3
2

i+ 1
2

〈u〉1i+ 1
2
− a

1
2

i+ 1
2

ψ
1
2

i+ 1
2

〈u〉1i+ 1
2

(3.10)

The south face contributions are retained despite them being zero everywhere
in the lower plenum because these contributions will not be zero in the upper
plenum. Since the velocities at the (i + 1, 1), (i, 1) locations are unknown they
are placed at the upwind positions :

−a1
i+1〈u〉

1
i+ 3

2
‖ −ψ1

i+1, 0 ‖ −a1
i 〈u〉

1
i− 1

2
‖ ψ1

i , 0 ‖
+a1

i+1〈u〉
1
i+ 1

2
‖ ψ1

i+1, 0 ‖ +a1
i 〈u〉

1
i+ 1

2
‖ −ψ1

i , 0 ‖

a
3
2

i+ 1
2

〈u〉1i+ 1
2
γl
ψ

3
2
i+1+ψ

3
2
i

2 − a
1
2

i+ 1
2

〈u〉1i+ 1
2

ψ
1
2
i+1+ψ

1
2
i

2

(3.11)

in which

‖ a, b ‖=
{ a if a > b

b if a ≤ b
(3.12)

3.3.3 Pressure gradient

Integration of the pressure gradient can be approximated as:

2π
∫ i+1

i

∫ 3
2

1
2

∂p

∂r
rdzdr =

a1
i+1 + a1

i

2
(p1
i+1 − p1

i ) (3.13)

This approximation requires some further explanation. Because of the Jacobian
for cylindrical coordinates, the pressure gradient ∂p

∂r picks up an extra r under
the integral. One has to be careful when placing the pressure point midway
between the cell boundary surfaces when p would be of higher then first order in
r. Suppose the pressure would be quadratic in r and the pressure point is located
at ri in a volume spanned by ri − 4r2 ≤ r ≤ ri + 4r

2 , ri should be located at the
center of mass:

rCM =
∫ ri+

4r
2

ri−4r
2

r2dr = ri +
4r
12

(3.14)

Putting the grid point at the midpoint between the boundaries (the easiest choice)
amounts to a relative error [12] of:

ε =
4r3
12

(ri + 4r2
12ri

)ri4r
=

1
12i(i− 1) + 4

(3.15)

What becomes clear from Eq. 3.15 is that the error dies out really fast with
increasing i, but causes unacceptable errors close to r = 0.
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When using the finite volume scheme the pressure will however not be more then
linear in r and so the gradient of the pressure will be a constant. Therefore one
doesn’t have to account for the problems sketched above.

3.3.4 Stress term

The stress term −4f〈u〉 |〈u〉|24z is integrated over the cell volume, yielding:

2π
∫ i+1

i

∫ 3
2

1
2

−4f〈u〉 | 〈u〉 |
24z

rdzdr = −4fΩ1
i+ 1

2

〈u〉1i+ 1
2

| 〈u〉1i+ 1
2
|

2(z 3
2
− z 1

2
)

(3.16)

3.3.5 Summary

Gathering all terms gives the discretized radial momentum equation:

Ω1
i+ 1

2

ρ
∂〈u〉1

i+1
2

∂t − a1
i+1〈u〉

1
i+ 3

2
‖ −ψ1

i+1, 0 ‖ −a1
i 〈u〉

1
i− 1

2
‖ ψji , 0 ‖

+a1
i+1〈u〉

1
i+ 1

2
‖ ψ1

i+1, 0 ‖ +a1
i 〈u〉

1
i+ 1

2
‖ −ψ1

i , 0 ‖

a
3
2

i+ 1
2

〈u〉1i+ 1
2
γl
ψ

3
2
i+1+ψ

3
2
i

2 − a
1
2

i+ 1
2

〈u〉1i+ 1
2

ψ
1
2
i+1+ψ

1
2
i

2

= −a1
i+1+a1

i

2 (p1
i+1 − p1

i )− 4fΩ1
i+ 1

2

〈u〉1i+ 1
2

|〈u〉1
i+1

2
|

2(z 3
2
−z 1

2
)

(3.17)

3.4 Axial momentum in the reactor core

The grid cell volume shown in Fig. 3.3 represents a portion of the ’porous’ core
center, zone 2, and is used to integrate the vertical momentum equation. Recall:

ρ
∂w

∂t
= −∂p

∂z
− 4fρw

β | w |
8α

(3.18)

In the following all the terms of Eq. 3.18 are treated separately and are integrated
over the axial momentum cell volume which is defined as:

Ω2
i = π(r2

i+ 1
2

− r2
i− 1

2

)(z 5
2
− z 3

2
)α (3.19)

The respective momentum cell faces are defined as:

a
5
2
i = π(r2

i+ 1
2

− r2
i− 1

2

)α (3.20)

a
3
2
i = π(r2

i+ 1
2

− r2
i− 1

2

)α (3.21)

3.4.1 Transient term

Integrating ρ∂w∂t over the grid cell volume yields:

2π
∫ i+ 1

2

i− 1
2

∫ 5
2

3
2

ρ
∂w

∂t
rdzdr = ρΩ2

i

∂w

∂t
(3.22)
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Figure 3.3: Schematic of the location of the axial momentum grid cell in the reactor core
(zone 2). The velocity is located at the momentum cell center, colored light red. The
pressures are located at the scalar cell centers in the upper and lower plenum, coloured
grey. Integration is done over the light red area in the center of the picture. Half a radial
momentum cell in the lower plenum is also drawn light red to illustrate the staggered
grid arrangement. The pressure p̄1

i is located at the channel entrance, while the pressure
p1

i is located at the actual ’known’ pressure point.

3.4.2 Pressure gradient

Integrating the pressure gradient over the grid cell volume yields:

2π
∫ i+ 1

2

i− 1
2

∫ 5
2

3
2

r
∂p

∂z
dzdr =

a
5
2
i + a

3
2
i

2
(p̄

5
2
i − p̄

5
2
i ) (3.23)

There is however no pressure located at positions (i, 5
2) and (i, 3

2). The pressure is
therefore extrapolated to the known positions (i, 3) and (i, 1). In doing so, some
pressure losses due to turning effects will be neglected. These losses are therefore
incorporated in the following way. Assume that the flow into the channel is
governed by a Bernoulli equation of the following form:

p1
i − p1

i = ρ(1 + Tl)
w2
iw

2
i

2
(3.24)

in which Tl > 0 represents a coefficient describing the turning pressure loss, [2]
[9]
For the boundary between core and upper combining plenum one can assume a
similar relation:

p3
i − p3

i = ρ(1 + Tl)
w2
iw

2
i

2
(3.25)
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Figure 3.4: Some experimental values of the turning loss coefficient Tl as a function of
the flow ratio between channel and manifold.

Fig. 3.4 shows some experimental values for the turning loss coefficient Tl ob-
tained by using a dividing tube manifold rather than a dividing plenum. The
turning loss coefficient appears to be fairly insensitive to flow ratio or tube diam-
eter ratio but increases by some 80% as the spacing between adjacent channels is
reduced. The average spacing between adjacent channels in the MSRE is about
two times the channel diameter. A value of Tl = 0.9 for the turning loss coeffi-
cient was chosen.
Summing the contributions for inflow and outflow:

p3
i − p1

i = p3
i − p1

i + ρ(1 + Tl)w2
iw

2
i (3.26)

The pressure gradient thus becomes:

a
5
2
i + a

3
2
i

2
(p3
i − p1

i + ρ(1 + Tl)w2
iw

2
i ) (3.27)

3.4.3 Stress term

Integrating −4fρw β|w|
8λ over the cell volume yields:

2π
∫ i+ 1

2

i− 1
2

∫ 5
2

3
2

4fρ
βw2

8λ
rdzdr = 4fΩ2

i ρw
2
i

β | w2
i |

8α
(3.28)
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Figure 3.5: Schematic of the location of a possible continuity or scalar cell in the lower
dividing plenum, coloured grey. Due to the staggered arrangement all velocities lie on
the scalar cell faces.

3.4.4 Summary

Gathering terms givse the discretized axial momentum equation in the reactor
core:

ρΩ2
i
∂w2

i
∂t

= −a
5
2
i +a

3
2
i

2 (p3
i − p1

i + ρ(1 + Tl)w2
iw

2
i )

−Ω2
i

4fρβ
8α w2

i | w2
i |

(3.29)

3.5 Continuity equation

Integration of the continuity equation, Eq. 2.9, is equivalent in every zone. No
interpolation has to be done because all velocities are located at the continuity
cell face as can be seen in Fig. 3.5. It is useful to write the continuity equation in
terms of mass flow ψ by multiplying the velocities with the density ρ. Integrating
results in:

2π
∫ i+ 1

2

i− 1
2

∫ 3
2

1
2

ρ(
1
r

∂ru

∂r
+ r

∂w

∂z
)rdzdr = a1

i+ 1
2

ψ1
i+ 1

2

− a1
i− 1

2

ψ1
i− 1

2

+ a
3
2
i ψ

3
2
i − a

1
2
i ψ

1
2
i

(3.30)

3.6 Solution algorithm

3.6.1 Introduction

This section provides the solution algorithm used to solve the set of discretized
equations derived in the previous sections. Some thoughts will be given to the
time stepping procedure and an iterative solution method will be presented for
the system making use of so called pressure correction equations (see [11], [8] and
[12] for a detailed description of the procedure).
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3.6.2 Time stepping

The time dependency of the equations derived in the previous sections still re-
mains and needs to be handled in some way.
A time step can be defined as:

4t = tn+1 − tn (3.31)

Now consider the following first order differential equation in time, equivalent to
the discretized equations derived earlier:

dy

dt
= f(y) (3.32)

Since the time derivative of y is simply lim4t→0
y(t+4t)−y(t)

4t , the left hand side
of Eq. 3.32 is easily discretized. This however leaves a choice for the right hand
side. The implicit scheme [5] used in this thesis places the solution variable at
the new time level t+4t, (or n+ 1):

dy

dt
=
yn+1 − yn

4t
= f(yn+1) (3.33)

The non-linearities in the discretized equations (like w2
iw

2
i ) pose a problem which

can be overcome by making clever use of the different steps in time. One can
linearize the non-linear terms by placing one of the velocities at the old time level
n. For example: w2

i (n+ 1)w2
i (n+ 1) = w2

i (n)w2
i (n+ 1). All the non-linear terms

in Eq. 3.47 and Eq. 3.17 can be linearized in this way.
For example, the axial momentum equation in the reactor core becomes:

ρ
4tΩ

2
i (w(n+ 1)2i − w(n)2i )

= −a
5
2
i +a

3
2
i

2 (p(n+ 1)3i − p(n+ 1)1i + ρ(1 + Tl)w(n+ 1)2iw(n)2i )
−Ω2

i
4fρβ
8α | w(n+ 1)2i | w(n+ 1)2i

(3.34)

The equations now represent a linear set. To ease notation, all variables are
gathered into algebraic vectors ~p, ~v = (u,w), and all coefficients are gathered in
operators D (convection and friction), L (divergence) and Q (gradient) acting on
these vectors. In doing so, the system to be solved becomes:
Momentum

ρ

4t
(~vn+1 − ~vn) = D~vn+1 −Q~pn+1 (3.35)

Mass conservation

L~vn+1 = 0 (3.36)
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3.6.3 Pressure correction

What becomes clear from Eq. 3.35 and Eq. 3.36 is that unless some pressure
field is specified, it is impossible to solve the set of equations. The pressure field
has to be estimated, and unless the correct field is applied, the resulting velocity
field will not fulfill mass conservation.
The so called pressure correction scheme is adopted, [11] [12] [8]. The goal is
to improve the guessed pressure such that the resulting velocity field will get
progressively closer to satisfying the continuity equation.
First a guessed velocity field ~v∗ is calculated using the old time level pressure ~pn.

ρ

4t
(~v∗ − ~vn) = D~v∗ −Q~pn (3.37)

In general, this velocity field will not satisfy mass conservation.

L~v∗ = ~ε 6= 0 (3.38)

Now suppose that the ’true’ pressure can be written as the pressure at the old
time level n plus a pressure correction δ~p:

~pn+1 = ~pn + δ~p (3.39)

Subtracting Eq. 3.37 from Eq. 3.35 then results in a momentum equation for the
pressure corrections,

ρ

4t
~δv = −Q~δp (3.40)

in which D ~δv is neglected. In making this assumption it is assumed that the
velocity correction is fully caused‡ by the correction in the pressure.
Enforcing continuity (L~δv = −~ε) results in a Poisson-like system (linear and
symmetric) with boundary conditions fully determined by the discretization of
the momentum equations:

LQ~δp =
ρ

4t
L~v∗ (3.41)

Finally the pressure and velocity are updated using:

~pn+1 = ~pn + δ~p (3.42)

~vn+1 = ~v∗ +
4t
ρ
Q~δp (3.43)

The new velocity field will fulfill mass conservation if the pressure correction is
performed accurately enough.

‡It can be shown that in doing so, the order of accuracy isn’t affected.
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3.6.4 Summary

The whole procedure can be summarized by the following steps:

1: Solve the momentum equations Eq. 3.37 to obtain the guessed velocity field ~v∗.

2: Solve the pressure correction equation Eq. 3.41 to obtain ~δp.

3: Update the pressure and velocity fields with Eq. 3.42 and Eq. 3.43.

4: Return to step 1, taking the updated pressure as the old level and repeat
until the pressure and velocity fields are converged to obtain the steady state
solution, or save at every time step to track the solution in real time (transient
simulation) and return to step 1 until some specified time is reached.

To check for convergence, the pressure corrections for all cells are added. If this
sum of pressure corrections is sufficiently close to zero, the loop is terminated. As
an extra precaution the velocity of one cell is tracked during the procedure to see
whether it is converging or not. Furthermore, the mass error of each cell should
be zero after correction and the flow rate at the intake should equal the flow rate
at the outlet and the integral of the flow over the channels in the reactor core.

3.7 Boundary Conditions

3.7.1 Introduction

Four different boundaries can be identified which are of particular interest for the
numerical treatment of the equations. These boundaries are specified in Fig. 3.6
and will be treated below.

3.7.2 Boundaries with specified velocity

The inflow boundary is marked by 1 in Fig. 3.6 and is located at (i = ni+ 1
2 , j =

1). The flow rate at that location is given and therefore the velocity is specified
at that location: u1

ni+ 1
2

= uin. The system to be solved can, for example, be

written as§.

A~vn+1 = ~Sn (3.44)

To meet the condition that the inflow velocity remains the same throughout the
whole procedure, one simply makes the coefficient in A corresponding to the

§A is not specified at all in this case because it is only used to demonstrate how one can
meet the boundary conditions
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Figure 3.6: Overview of the different boundaries which are of particular interest for
the discretization of the equations. The inflow boundary is marked by the number 1,
the center of symmetry boundary by 2, the no in- or outflow boundary by 3 and the
outflow boundary by 4. Boundaries 1,2 and 3 can all be treated alike since the velocity
is specified at these locations, see section 3.7.2 for details.

inflow velocity equal to 1 and all others in that row 0.

 1 0 . . .

a21 a22 . . .
...

...
. . .



〈u(n+ 1)〉1ni+ 1

2
...
...

 =


uin

...

...

 (3.45)

All boundaries in which the velocity is specified, also wall boundaries since the
velocity there is zero, are treated analogously.

3.7.3 Outflow boundary

To be able to solve the equations, either the pressure or the velocity in the out-
flow has to be specified. Specifying the velocity will lead to a similar boundary
treatment as was done in section 3.7.2. Specifying the pressure is however a more
natural way of handling the boundary condition and is therefore common prac-
tice [11].
The whole flow field only depends on the gradient of the pressure; adding or sub-
tracting an arbitrarily large number to the pressure wouldn’t make a difference.
At some point, an absolute pressure has to be specified somewhere in the sys-
tem otherwise the pressure correction system Eq. 3.41 would become singular.
Defining the pressure in the outflow automatically prevents this problem from
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Figure 3.7: Schematic of a possible outflow grid cell in the upper combining plenum,
boundary 4, in a little more detail.

occurring.
Recall the axial momentum equation:

ρ
∂w

∂t
+ ρ

1
r

∂rwu

∂r
+ ρ

∂ww

∂z
= −∂p

∂z
+ [O · ¯̄tau]z; (3.46)

Integrating over the control volume specified in Fig. 3.7 and neglecting the asso-
ciated stresses yields:

ρ
4tΩ
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, 0 ‖
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7
2
i +a3

i
2 (p(n+ 1)out − p(n+ 1)3i

(3.47)
Note that the outflow equation exhibits several differences in comparison with
Eq. 3.47. First of all, both convective terms are retained which wasn’t the case
in the description of the flow in the channels. Furthermore the cell volume is half
the regular volume, the pressure at the outlet is specified and the stresses are
neglected.





Chapter 4

Benchmark checks

4.1 Introduction

In this chapter some checks will be performed to verify the validity of the pro-
posed physical and numerical models. First a version of the model in Cartesian
coordinates is presented and used to simulate the flow field in a parallel flow
manifold. Second, an infinite resistance check is performed to validate if a uni-
form distribution of salt amongst the channels in the reactor core is predicted by
the code. And third, a check is performed whether the code produces equivalent
results when altering mesh size.

4.2 Benchmark: Parallel flow manifold

4.2.1 Introduction

In [9], experiments were performed using a tube parallel flow manifold of which a
schematic is presented in Fig. 4.1. Other than the MSRE, in which the plenums
are curved cylinders, the parallel tube manifold consists of two tubes separated
by twenty channels. Each channel houses a resistance orifice which can be opened
or closed to decrease or increase axial flow resistance. The obtained experimental
values can be used to verify the validity of the procedure presented in this thesis.
In the following, slightly modified working equations will be presented and the
results will be compared with the results obtained in [9].

4.2.2 Governing equations

The starting point as before are the conservative Navier Stokes equations; Eq.
2.4 and Eq. 2.6. This time, however, the equations are written out in their
Cartesian components [3], rather then the cylindrical components used to describe

29
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Figure 4.1: Schematic of the experimental apparatus used by Bajura to obtain mea-
surements of a parallel flow manifold. In the benchmark performed here, the apparatus
houses 20 channels of 3.18cm diameter and 1.56m height, separated by a distance of
25.91cm. Both combining and dividing tube manifolds have a length of 5.18m and a
diameter of 10.16cm. All channels contain a resistance orifice the control axial flow
resistance.

the MSRE. Along the same lines of chapter 2, the working equations for this
benchmark can be derived:
Conservation of momentum in the manifolds

∂〈u〉
∂t

+
∂〈u〉〈u〉
∂x

+ γl
∂〈u〉w
∂z

= −∂p
∂x
− 4f〈u〉〈| u〉 |

24z
(4.1)

Conservation of momentum in the channels

ρ
∂w

∂t
+ ρ

∂ww

∂z
= −∂p

∂z
− 4fρw

β | w |
8λ

(4.2)

Conservation of mass
∂u

∂x
+
∂w

∂z
= 0 (4.3)

Flow into and from the channels

p− p = ρ(1 + Tl)w
2

2

p− p = ρ(1 + Tl)w
2

2

(4.4)

Note the similarity between the Cartesian equations presented here and the cylin-
drical equations derived in chapter two. The main difference between the two sets
of equations lies in the non-constant geometrical coefficients and the apparent sin-
gularity at r = 0. The parameters λ and β are defined as before; Eq. 2.19 and
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Eq. 2.1. The discretization of the equations is completely analogous and requires
no further elaboration here.
Some relevant parameters for the experimental setup are listed below.

Manifold lenghth L = 5.18m
Porosity α = 0.02757
Perimeter ratio β = 2.87
No. of channels 20
Turning loss Tl = 12

4.2.3 Results and discussion

Below, the results of an experiment performed in [9] and the results obtained by
the Cartesian code are compared. A grid size of 50 points in the radial direction
was used and 20 measurement points were obtained in [9].
From Fig. 4.2 it becomes clear that the code provides results (black line) that
are in rather good agreement with the experimental data (red dots) close to the
beginning of the manifold system, but the code exaggerates the pressure difference
between dividing and combining manifold near the end of the system. Since the
square root of the pressure difference between combining and dividing manifold is
a measure of the discharge of liquid, the code will also overestimate the discharge
at branch points closer to the end of the manifold, although to a lesser extent
than Fig. 4.2 suggests.
The difference might come from the fact that the code seems to underestimate
the pressure regain due to the discharge in the lateral channels of the dividing
manifold, a result which was obtained from another calculation. One possible
explanation for this behavior might be that it was very hard in this situation to
make an estimate of the pressure regain and pressure loss coefficients from the
available data.

4.3 Infinite resistance

4.3.1 Introduction

In this section a computation is performed to verify whether the code will pro-
vide the correct result corresponding to the outcome of a known situation. If
the resistance in the reactor core is infinite, all other loss mechanisms become
negligible and continuity will guarantee that the velocity of the salt will be equal
for every channel. Also, because the discharge will be constant, the gradient in
the velocity of the lower plenum will be constant. The parameters used for the
calculations are listed in table 5.1.
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Figure 4.2: Both the results of [9], depicted as red dots, and the results of the code,
depicted as a black line, are plotted. The dimensionless pressure is defined as the pressure
difference between combining and dividing flow manifold divided by the total pressure
drop over the system. The dimensionless distance is defined as the distance from the exit
of the combining manifold divided by the total length of the manifold.

4.3.2 Results and discussion

For each cell in the reactor core, zone 2, the resistance was multiplied by a factor
of 108. A calculation of the steady state velocity profiles resulted in Fig. 4.3.
Some relevant parameters for the calculations done in the following benchmarks
are listed in 5.1. The results in Fig. 4.3 clearly show that the code provides the
expected outcome. From further calculations it followed that the discharge be-
comes gradually more uniformly distributed over the reactor core when increasing
the resistance, but increasing the resistance multiplication above a factor of 108

leads to an unacceptable decrease in convergence time.

4.4 Grid size comparison

4.4.1 Introduction

A good way of validating if a code works correctly is to check whether the code
produces similar results using a different number of grid points for the same
geometry. Of course there will be some differences because a coarser grid will
generally yield a less accurate result, but the overall shape of the velocity and
pressure field should be similar.
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Figure 4.3: The axial velocity in the reactor core as a function of the radial distance
from the center of the core. The resistance is multiplied by a factor of 108.

4.4.2 Results and discussion

In Fig. 4.4 the results of calculations with a mesh size of respectively 50, 100
and 150 grid points in the radial direction at a nominal flow rate of gnom =
0.80247m3/s are shown. Fig. 4.4 shows that the code produces results that
are almost mesh size independent. The variations between the different graphs
stem mostly from the definition of the outflow boundary. The upper boundary
is discretized resulting in two possibilities; either the boundary is wall or the
boundary is outflow. The cells closest to the transition between wall or outflow
determine how much of the outflow is seen by the code. This problem is illustrated
in Fig. 4.5. For further calculations a grid size of 180 is chosen because this covers
the outflow completely and gives an acceptable convergence time.
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Figure 4.4: The axial velocity in the reactor core as a function of the radial distance
form the center of the core plotted for three different grid sizes. The red line represents
a grid size of 180, the blue line 100 and the black line 50. Calculations are performed at
the nominal flow rate for the MSRE.

Figure 4.5: Schematic of the transition between wall and outflow in the upper combining
plenum. The red lines represent the finest mesh size, blue the coarder, and black the
coarsest. Choosing a grid size of 180 cells in the radial direction will ensure that the
outflow is fully filled.



Chapter 5

Results and discussion

5.1 Introduction

In this chapter the computational results obtained by the code will be presented.
First a computation is made for the nominal flow rate of the MSRE setup and
detailed results of the pressure profiles and flow rates in the plenums are discussed.
Second, calculations at different flow rates are performed to see how the discharge
profile changes with various intake velocities and third, a start up transient is
simulated. In the final sections of this chapter some thought will be given to the
sensitivity of the code to the various model parameters and problems concerning
the validity of the code will be discussed. The relevant parameters used for the
calculations of this chapter are listed below in below in table5.1.

Maximum radius from core center L = 0.717m
Plenum height Hp = 0.3302m
Channel height Hc = 1.677
Edge of outlet header, from core center D = 0.143m
Turning loss Tl = 0.9
Porosity λ = 0.25814
Perimeter ratio β = 61.82m−1

Pressure regain γl = 0.95
Pressure loss γu = −0.9
Inflow gnom = 0.80247m3/s

Density ρ = 2283.8kg/m3

Viscosity µ = 7.738mPas
Outlet pressure pout = 0Pa
Number of cells in radial direction ni = 180

(5.1)
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Figure 5.1: Axial velocity field in the center, zone 2, of the MSR core at nominal flow
rate. Calculation are performed with the parameters specified in 5.1.

5.2 Computations at nominal flow rate

The flow rate at which the MSRE setup operated most of the time is gnom =
0.80247m3/s. The results obtained by the code are made visible in Fig. 5.1
(axial velocity distribution in the reactor core zone 2), Fig. 5.2 (pressure profiles
in lower and upper plenum), Fig. 5.3 (pressure difference between the plenums
and pressure difference between upper plenum and outflow) and Fig. 5.4 (radial
velocity profiles in the plenums). Although the axial velocity distribution is the
main interest of this research some interesting insights may be inferred from
the other figures as well. From Fig. 5.1 it can be seen that the deviation
from a constant velocity profile can become substantial at nominal flow. The
highest velocity is some 30% greater than the lowest velocity calculated at steady
state. The axial velocity in the channels gradually increases when going from the
outside, r = rmax, of zone 2 to the inside at r = 0. A maximum is reached just
before the point at which the outlet header at r = 0.143m starts, after which
the velocity decreases due to the influence of the header. The pressure difference
between the plenums, Fig. 5.3 (1st figure), can be interpreted as a measure for the
axial velocity in zone 2 because it acts as a driving term in the axial momentum
equation and the shape is therefore comparable. It is interesting to note here that
the axial velocity distribution, Fig. 5.1, follows the same line as the discharge in
the parallel flow manifold Fig. 4.2 up until the point where the outflow comes
into play. Although an entirely different apparatus, the same physical phenomena
are responsible.
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Figure 5.2: Pressure field in the plenums of the MSRE setup at nominal flow rate. The
pressure is normalized with respect to the pressure point closest to the center of the core,
r = 0, in the respective plenum.

Figure 5.3: Pressure difference between the plenums and pressure difference between
upper combining plenum and outflow at nominal flow rate. Pressures are normalized
with respect to the pressure difference between points closest to the center, r = 0, of the
reactor core.
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Figure 5.4: Radial velocity profiles in the lower and upper plenum at nominal flow rate.

Figure 5.5: Steady state axial velocity profiles for six different flow rates, tabulated in
5.2.
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The effect of the pressure regain (γl) in the lower plenum due to the discharge of
salt can be seen in Fig. 5.3 (1st figure). The pressure gradually builds up when
going from the outside, r = rmax, of zone 1 to the inside at r = 0, although the
differences are quite small. The pressure differences are somewhat bigger in the
upper plenum, Fig. 5.3 (2nd figure). Pressure losses (γu) due to the intake of salt
from channels are clearly visible up until the point where the outlet header starts.
From that point on, salt is removed from the upper plenum and both pressure
regain and loss start playing a part.
The average radial velocities 〈u〉 in the upper and lower plenums are depicted in
Fig. 5.4. Since the gradient in the pressure of the lower plenum is fairly constant,
the velocity follows suit. The velocity in the upper plenum has to increase because
of the intake of salt, up until the point where the outlet header starts.

5.3 Calculations at different flow rates

Computations are performed at different flow rates to see whether and how the
steady state axial velocity distribution in the reactor core (zone 2) changes with
different intake velocities. The axial velocity profiles are shown in Fig. 5.5. Intake
flow rates for which calculations are performed are listed in 5.2.

g(t) =

g1 = 1/3gnom
g2 = 2/3gnom
g3 = gnom
g4 = 4/3gnom
g5 = 5/3gnom
g6 = 2gnom

(5.2)

Fig. 5.5 shows that the overall shape of the velocity profiles remains the same
for different intake flow rates. The highest velocity is still some 30% greater
than the lowest velocity for all profiles and as a result, the profiles with higher
intake velocities are more pronounced. These results show that increasing the
flow rate of the MSR leads to a less uniform velocity distribution which may
have an impact on heat exchange properties and the neutron flux profile.

5.4 Start up transient

Since there is no data describing the precise flow rate of salt as a function of time
during a start up transient in the MSRE, an estimation about the exact behavior
has to be done. For the start up transient an estimation of the flow rate as a
function of time was done in [1] by comparing the flow rate of the coolant during
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Figure 5.6: Axial velocity field during a start up transient. Velocities are normalized
with respect to the intake velocity at that instant in time.

start up with the flow rate of the salt. The following results were obtained:

g(t) =
gnom(et·0.5993 − 1) t ≤ 0.5625
gnom(1− e−(t−0.15625)/0.794) 0.5625 < t ≤ 10
gnom t > 10

(5.3)

From these equations, the velocity at the intake can be used as input as a function
of time. The resulting axial velocity distribution in the reactor core (zone 2),
normalized with respect to the intake velocity at that instant in time, is plotted
in figure Fig. 5.6. Table 5.4 shows the inflow of salt at the six different times for
which the axial velocity distribution is plotted.

g(t) =

g1(t = 0.01) = 0.006012gnom
g2(t = 0.02) = 0.01206gnom
g3(t = 0.05) = 0.03042gnom
g4(t = 0.3) = 0.1969gnom
g5(t = 2) = 0.9022gnom
g6(t = 10) = gnom

(5.4)

Fig. 5.6 shows that it takes at least more than 0.3s before the velocity profile
resembles the steady state axial velocity profiles calculated in previous sections.
Depending on the convergence criterium, it may take as much as 5s before ’true’
steady state is reached. Since the velocities are normalized with respect to the
intake velocity one has to take into account that right after start up, the axial
velocities are almost zero and therefore variations will not have a dramatic effect.
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Figure 5.7: Axial velocity field in core of the MSRE at nominal flow with changed
parameters. The changes made are summarized in 5.5, thereby neglecting some model
assumptions. The scale of the changed axial velocity profile is somewhat different because
the porosity no longer has any influence, making the area over which the axial discharge
occurs larger and therefore the average axial velocity lower. The original steady state
axial velocity profile at nominal flow is plotted red for easy reference. The changed profile
is plotted black.

Still, differing profiles during start up will have to be taken into account in further
calculations to enhance accuracy.

5.5 Sensitivity of the code to the different model pa-

rameters

The development of the model and code involved a lot of modeling and simpli-
fications and it is important to note that these simplification and assumptions
about the relevant physical processes go not without consequence. The different
parameters like α, β and γl, to name a few, all leave their mark on the final
solution as provided by the code. Setting these parameters to 1 and thereby
neglecting some of the model assumptions results in somewhat different pressure
and velocity fields, an example of which is presented in Fig. 5.7, plotted in black,
along with the ’original’ axial velocity distribution at nominal flow, plotted red.
The scale is different because the porosity no longer has any influence, making
the area over which the axial discharge occurs larger and therefore the average
axial velocity lower. An overview of the changed parameter with respect to table
5.1 is presented in 5.5. Although the effects may be quite severe, the overall
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Figure 5.8: Steady state axial velocity field in the outflow header of the MSRE at
nominal flow. The gradient in the axial velocity should theoretically tend to zero near
r = 0, a result which the code is not able to produce.

shape of the solution is clearly retained.

Turning loss Tl = 0.0
Porosity λ = 1.0
Perimeter ratio β = 1.0m−1

Pressure regain γl = 1.0
Pressure loss γu = 1.0

(5.5)

Omitting the quasi-convective term, in the form of (1 + Tl)w2
i , in the reactor

core leads however to an entirely different solution. It also greatly increases
convergence time and the time step needs to be reduced significantly. This result
was not expected since the true convective term in the axial momentum equation
could be easily omitted because of mass conservation, which led to the belief that
the quasi-convective term would not be of much influence and that the pressure
difference between the two plenums would play the dominant role in establishing
the steady state axial velocity field. Apparently, turning losses do have a major
influence in the model and code.

5.6 Further problems and general remarks on the va-

lidity of the code

Since the outflow is modeled as a simple cylindrical pipe and the salt acts as
a viscous fluid one would expect some form of Poiseuille flow [13]. The code is
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however not able to produce the expected result but rather generates the axial
velocity distribution in the outflow depicted in Fig. 5.8. A lot of effort went into
finding a solution to this problem; unfortunately without result. Apparently the
code and/or model are not able to produce the expected result, since the gradient
in the axial velocity should tend to zero when approaching r = 0. Although
the model assumptions made with regard to the stresses involved in the MSRE
system seem to be valid over a wide range of Reynolds numbers according to
[2] on who’s work a large part of the model presented here is based, it remains
hard to verify if the code truly gives an accurate representation of reality. Other
than the benchmark checks performed in 4 and critical review of the results
the code produces there is little possibility of further validation of the model
and code because no experimental data is available. However, studies done on
theoretical MSR designs other then the MSRE setup investigated here, like [14]
[7] give reason for optimism. In these studies, a different approach to model the
axial velocity distribution is presented and the geometry of the reactor vessel is
somewhat different so it is hard to do a direct comparison but at least in shape
the axial velocity distributions look similar. Both approaches predict an increase
in velocity when going from the outside r = rmax to the inside r = 0 of the
reactor core (zone 2).





Chapter 6

Conclusions and

recommendations

The model and code developed in this thesis serve to provide pressure and ve-
locity distributions in the reactor vessel of a molten salt reactor. At a given flow
rate computations may be done, the results of which can be used as input for
further studies into the behavior of a molten salt reactor. The axial velocity
distribution in the reactor core is of special interest since most studies on the
molten salt reactor done so far only take into account a single axial velocity for
the entire core structure and therefore do not provide insight into how convective
transport of precursors as a function of the radius might influence the flux profile
of a molten salt reactor or how a non-uniform distribution might influence heat
exchange properties.
Computations performed in this study show that the axial velocities in the chan-
nels of the reactor core of the MSRE setup may vary as much as 30% at nominal
flow, a result which shows that using a single axial velocity for the entire core
is a rather crude estimate. Also, during start up, the shape of the axial velocity
profile may vary with time and increasing the flow rate at the intake leads to a
higher variation of velocities in the profile. These results will need to be taken
into account in future neutronics or thermal-hydraulics calculations.
Because of the complex geometry of the MSRE, a lot of assumptions had to be
made about the physical transport phenomena taking place in the reactor core.
Although the benchmark checks from 4 give reason for optimism, there still re-
main issues for which there is no direct and simple answer. Studies on a different,
and theoretical type of MSR like [14] produce axial velocity distributions of a sim-
ilar shape as the distributions presented here. These designs however contain no
outflow like the MSRE. Modeling of the outflow seems to cause problems because
of the non-zero outflow velocity gradient and may require further attention in fu-
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ture studies.
In order to gain further detailed insight into velocity and pressure fields, and
maybe simulate the blockage of a single channel (which this code isn’t able to
do), a more elaborate model in three dimensions would have to be developed. This
would however soon become very involved and the computational cost would be-
come tremendous.
All in all, the code and model presented in this thesis seem capable of producing
detailed and viable results which may be used to gain further insight into the
behavior of molten salt reactors. Apart from the MSRE, a benchmark for most
calculations, other theoretical designs may be studied using the code presented
here by simply altering geometrical values and other relevant parameters. The
code is able to simulate transients by supplying the intake flow rate as a function
of time. Convergence time is short and computational effort is low which were
key requirements for the code to be integrated in future, more elaborate coupled
thermal-hydraulics and neutronics calculations that will deepen the understand-
ing of the fascinating Molten Salt Reactor.
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