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Abstract

Nuclear reactors might be a solution for the climate problems, since they are low-
carbon and relatively cheap. Unfortunately, the public opinion on nuclear energy
is not good. This might change with the new generation of reactors, since there is
even more attention to keep reactors safe. A main risk for any type of reactor is
that the temperature becomes too high as that will damage safety barriers. Some
new generation reactors do not need an external source to cool itself. An example of
these reactors is the SLIMR. The SLIMR can cool passively due to the water pool
that surrounds the SLIMR.

When an emergency shutdown occurs, the goal is to lose as much decay heat as
fast as possible. However, these energy losses are unwanted in the nominal situa-
tion. For this purpose, a tank is invented around the reactor. This tank is a cylinder
with an opening at the bottom and a pipe at the top connecting it to the atmo-
sphere. A pump has to actively keep air inside the tank under the nominal situation
under a high pressure, so that the reactor vessel is surrounded by air instead of
water. The nominal heat losses decrease. When there is a shutdown, the pump no
longer keeps air inside. Due to pressure differences, air will flow out of the tank to
the atmosphere and water will flow in the tank at the bottom.

The time it takes to fill the tank under the assumption that the pressure in the
tank became atmospheric instantly is already calculated. This assumption is only
true in specific conditions. The goal of this research is to simulate this pressure as
well and look at the influence of the exit geometry on those filling times.
The numerical model from this report can solve the height of the water, the veloc-
ities, pressure and densities in the tank for any time for different dimensions. The
model however cannot solve the temperature. The assumption that the pressure
drops to atmospheric pressure proves to be nearly right only under certain condi-
tions. The influence of the exit geometry on the filling times is found as well. The
conclusion is that a smaller exit pipe and more friction cause significant filling time
extensions.

Further research might model temperatures along the tank and the reactor, to verify
what conditions are needed to make sure this tank provides a safe solution.
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Chapter 1

Introduction

1.1 Fukushima

The demand for energy is rising [3]. On the other hand, a 6.3% decarbonization
rate is needed to fulfill the Paris Agreement [10]. Nuclear power could solve this
problem since nuclear energy is low-carbon and relatively cheap. The main reason
that nuclear energy isn’t used more, is the public opinion on nuclear power. Civil-
ians fear reactors since problems in a reactor can have disastrous consequences. Yet,
the public opinion was improving until 2011 [7]. In 2011, the Fukushima disaster
happened[2]. 130 kilometer of the coast of Japan, an earthquake with a strength of
9.0 occurred. The reactor went to a shutdown. The safety mechanism could with-
stand the seismic fluctuations, but the mechanism could not withstand the tsunami
that was initiated by the earthquake. The tsunami destroyed the Residual Heat
Removal system so that the residual heat could not be removed to the sea. A couple
of reactors became so hot that the fuel melted through the core. There were also
hydrogen explosions. These accidents caused radioactive materials to come in the
atmosphere. The public opinion on nuclear energy has never been restored to the
level it had in 2011[7].

1.2 Reactor Safety

Every reactor has a residual heat system containing an external energy drain. A
reactor namely still produces decay energy after a shutdown. This decay heat in
combination with the energy in the reactor on the moment of the shutdown might
not get removed via the turbine. To still get rid of this energy, it has to be deposited
in a storage or in water. In Fukushima, the system to deposit this residual heat was
damaged causing leaks.
Already in 2004, a forum was found to look into a new generation of nuclear reac-
tors[9]. Many reactors are aging and they need replacement or strong improvements
to cope with the nuclear energy needs. This forum highlighted four research ar-
eas: sustainability, economics, safety and reliability, and proliferation resistance and
physical protection[5]. One of the ideas to make reactors safe is to let them remove
their energy passively to the environment and not via an external source. This is
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one of the ideas behind the smaller reactors, such as the Small Modular Reactors.[5]

1.2.1 SMR

The SMRs are partly scaled down versions of Large Reactors (LR) and partly en-
tirely newly invented Generation IV reactors [12]. These SMRs lose more energy to
the environment since their surface is relatively larger than their volume in compar-
ison to LRs. The high energy loss can be used to remove the residual heat in case
the reactor is shut down. The SMRs are surrounded by water to lose energy fast
since this is a good coolant: water has a high heat transfer coefficient and a high
specific energy capacity. Water surrounding the tank is therefore safe, but the heat
losses during nominal operation are therefore relatively high in comparison to LRs.
A smaller reactor has some economical advantages; since it is small, it can be pro-
duced off-location and transported to the site. Next to this, it can help with desali-
nation of water and production of hydrogen. However, it also produces much less
power than an LR. Besides, licensing of a reactor is hard, especially for new and
smaller reactors like SMRs [13].

1.2.2 SLIMR

To optimize the reactor, whilst keeping it safe, Rohde proposed the Small-scale,
Large efficiency, Inherently safe, Modular Reactor (SLIMR) [11]. It is an SMR,
producing 350MW , with the unique combination of the use of supercritical water,
the use of Thorium and passive decay heat removal. For the scope of this project,
the use of thorium and the supercritical water is not important, so the focus will
be on the passive decay heat removal. The reactor has to be inherently safe; it
does not need an active source to lose its decay heat. Veling already proved that
under the design he proposed, it is possible to lose all decay heat if the reactor is
submerged in a water pool [15]. To make the SLIMR supercritical, the pressure in
the reactor has to be 25MPa, but more importantly, the water has to surpass the
temperature of 375◦C. Krijger proposed a different core design with a three-pass
core. In his design, the core outlet temperature indeed exceeded this temperature,
as it was 396◦C. The design of Veling is shown in figure 1.1. It still contains only
one core pass.
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Figure 1.1: The design of the SLIMR as proposed by Veling [15]. It is not to
scale.

1.3 Emergency Cooling

The reactor has to cool itself after a shutdown. It has to lose heat quickly for this
purpose. However, the heat losses are unwanted when the reactor is operating nom-
inally. Krijger [8] proposed to design a second cylinder around the reactor, which
will be called the tank in the rest of the report. The goal of this tank is to keep
the reactor surrounded by air in the nominal situation to minimize losses and sur-
rounded by water at a shutdown to get the decay heat properly removed. The filling
of the tank with water has to happen without any power source.
To keep the reactor surrounded by air, a pump has to push all water out of this tank
and this pump in combination with valves keep the air under pressure so that the
tank is fully filled by air under nominal conditions. However, if there is a shutdown,
all electricity will be cut off. The tank will stop working and the air will flow out of
the tank due to pressure differences. Since air flows out, the tank will be filled with
water from the pool. Dimensions and a clarifying figure will be shown in section 2.1.

Veling already proved that his design will succeed in losing its decay heat to the pool
without damaging the core [15]. The design is changed since the design includes an
emergency cooling tank. This change causes multiple differences. Under nominal
conditions, the tank loses heat in stationary conditions to air instead of to water.
Secondly, there is a period in which the tank is filling with water from the pool.
The reactor does not lose heat via the turbine any more. It loses heat partly via
water and partly via air. Since this heat transfer will be lower than the production
of energy in the reactor, the temperature of the reactor will rise. The time to fill
the tank completely with water is called the filling time. At last, there is the period
in which the tank is fully submerged in water. However, due to the tank, water flow
will be influenced by the tank and the heat transfer will differ from Velings report.
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1.4 Thesis Objective

The most important difference concerning heat losses compared to Veling is the
filling part. This filling cannot become too long since the reactor becomes too hot
then. This report focuses on the time to fill the tank: the filling time. It is follow-up
research after Ettema [4]. Ettema already calculated the filling time of this tank
under a couple of conditions. His conclusion of the filling time can be seen in figure
1.2.

Figure 1.2: The height of the water in the tank plotted against the time,
according to Ettema [4]. The filling time is the time when the whole reactor is

submerged in water. It is the time when the height is 17.4 meter.

Ettema found a filling time of 12.04 seconds under his standard conditions. He
assumed the air in the tank to be at atmospheric pressure instantaneously. This
report does solve this pressure over time.
The objectives of this thesis are as follows:

Is it a reasonable assumption that the pressure immediately drops and if not, how
big is its effect on the filling times of the tank?

What is the effect of the geometry of the outlet pipe on the filling times of the
tank?

In chapter 2 the theory behind this thesis will be explained. The numerical methods
behind the important equations will be elaborated in chapter 3. The results will be
discussed in chapter 4. At last, the conclusions and recommendations will be given
in chapter 5.
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Chapter 2

Theory

This chapter covers the theory for the emergency filling of the tank with water. This
starts with a recap of the SLIMR design as proposed in earlier research in section
2.1. This is followed by explaining the mechanical energy balance over the water
as it is used in Ettema’s report [4] in section 2.2. In comparison to his report, an
extra variable appears: the pressure of the air in the tank. To solve this, the air in
the tank is reviewed. First, it is important to look into properties of air in section
2.3. Second, the mechanical energy balance over the air in the tank will be reviewed
in section 2.4. The temperature of the air is important for the mechanical energy
balance. However, it is beyond the scope of this research to solve all heat transfer
functions. It will be used that the temperature of the whole system is constant.
Although it will not be used in the simulation, there is a small elaboration on the
internal energy balance of the air 2.5. An overview of the gathered equations is
shown in section 2.6.

2.1 SLIMR

2.1.1 Design of the SLIMR

The SLIMR with its tank can be seen in figure 2.1. Point 0 is the air just above the
pool. The pressure there is atmospheric pressure. Point 1 is at the entrance (en) of
the tank. Point 2 is the boundary between the water and the air in the tank in the
annulus (an). The location of this point is therefore varying over time. Point 3 is
just before the exit (ex) pipe, still in the annulus. Point 4 at the end is at the end
of the exit pipe, the pressure there is again atmospheric pressure. The denotation
of a variable is as follows: an example variable ξn means this variable ξ at point n.
p2 for instance is the pressure at point 2.
In the normal operating case, an active valve at point 4 keeps the pressure in the
tank equal to the pressure of the water at h = 0. Therefore, the reactor will be
surrounded by air and point 1 will be at the bottom of the tank.

Dimensions

Veling and Ettema already proposed a couple of dimensions for the reactor tank[15][4].
These are shown in table 2.1.

5



Figure 2.1: A schematic overview of the SLIMR with the emergency cooling
tank. Not to scale.

Table 2.1: Table with the standard geometry.

Name Abbreviation Value
Length tank H 17.4m

Length exit pipe Lex 1m
Diameter reactor Dreactor 3.2m
Diameter tank Dtank 4.2m

Diameter entrance Den

√
4/πm

Diameter exit pipe Dex Variable

Surface cross section tank Atank
πD2

tank

4

Surface cross section annulus tank Aan
π(D2

tank−D
2
reactor)

4

Surface cross section exit pipe Aex
πD2

ex

4

Hydraulic diameter Dh Dtank −Dreactor

2.1.2 Simplifications of the SLIMR design

There are connections between the reactor and external components like the turbine.
These connections go through the tank. The connections are omitted, because it is
difficult to include them in the model and their effect on the filling times is negligible.
The reactor has a spherical top and bottom. This is difficult to model as well. It is
therefore assumed in the model that the top and bottom are cylindrical as well, so

6



that the reactor is a cylinder extended along the height H of the tank.

2.2 Mechanical Energy Balance Water

This section is mainly an explanation of the theory in Ettema’s report [4]. Some
theory is new. This new theory is about the use of pressure and the use of the
friction factor K.

2.2.1 Mechanical Energy Balance

The mechanical energy balance describes the mechanical energy in a predetermined
volume, called the control volume (CV). It looks like an energy balance with at
one side the changes in energy in the system and at the other side the sources that
caused these changes.

dEmech
dt

=
dρV

(
1
2
v2 + gz

)
dt

= φm,in (em)in − φm,out (em)out + φw − φmefr (2.1)

In this equation, is dEmech

dt
the change of mechanical energy over time. ρ is the

density of the fluid in the CV. V is the volume of the control volume. The velocity
in the CV is represented by v. g is the gravitational constant and z the height of
the volume. φm,in is the mass flow going in the CV, φm,out is the mass flow going out
of the CV. em is mechanical energy, consisting of kinetic energy and gravitational
energy. φw is the work done on the system. −φmefr are the friction losses.
Especially the velocity v should be handled with care since normally there is not a
uniform velocity v in the CV.
The reactor should be inherently safe. This means that no external power sources
can provide mechanical energy. The φw term therefore cannot consist of external
sources. It can only come from internal actions in the reactor tank.

Mass balance water

In the first CV which is the volume between point 1 and 2, the fluid is only water.
Water is considered to be an incompressible fluid since its density varies very little
over the pressures and temperatures considered in this report. The mass balance
without chemical reactions is

dm

dt
= ṁin − ṁout. (2.2)

dm
dt

is the derivative of the total mass in the CV over the time. ṁin is the inlet flow
of mass and ṁout is the outlet flow of mass. Since the CV between point 1 and 2
does not have an outlet flow, ṁout = 0. Therefore, dm

dt
= ṁin. Since the density is

constant,
dm

dt
= ρw

dV

dt
= ρwAanv2. (2.3)

Aan is the surface of the annulus with as inner circle the reactor and as outer surface
the tank. ρw is the density of water. This surface is the surface through which water
passes. v2 is the velocity of the water at point 2. The inlet flow is
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ṁin = ρwv1Aen. (2.4)

Aen is the surface of the entrance. v1 is the average speed across this entrance
surface. Therefore

ρwAenv1 = ρwAanv2 (2.5)

The density of water ρw is constant. This is useful to get

v1Aen = v2Aan. (2.6)

Inside the tank, there is no mass accumulation. All mass flowing in also has to flow
out: ρAv = constant. Since ρw and Aan are constant over the whole tank, v has
to be constant over the whole tank as well. The velocity of the water in the whole
tank is therefore v2.

Derivative of the mechanical energy water

With the knowledge of water being an incompressible medium,the
dρV ( 1

2
v2+gz)
dt

from
equation 2.1 term can be rewritten.

dρwV
(
1
2
v2 +

∫
gdz
)

dt
= ρw

dV
(
1
2
v2 +

∫
gdz
)

dt

= ρwV
d
(
1
2
v2 +

∫
gdz
)

dt
+ ρw

(
1

2
v2 +

∫
gdz

)
dV

dt

= ρwAanh
d1
2
v22 +

∫ h
0
gdz

dt
+ ρw

(
1

2
v22 +

∫ h

0

gdz

)
Aan

dh

dt

= ρwAan

(
hv2a2 + 0 +

v32
2

+ hgv2

)
= ρwAan

(
hv2a2 +

v32
2

+ hgv2

)
(2.7)

ρw is the density of water, h is the height of the water in the tank, a is the derivative

of v over the time. ρwAanh
d
∫ h
0 gdz

dt
is zero since the potential energy does not change

under a constant volume. The ρwAanhgv2 term represents the changing potential
energy over a changing volume.

Inlet and outlet flow water

The inlet flow and outlet flow of a volume change the derivative of the mechanical
energy by φm,in (em)in − φm,out (em)out. For the CV of the water, there is no outlet
flow, so φm,out = 0. The inlet flow is equal to

φm,in = ρwAenv1 = ρwAanv2. (2.8)

The mechanical energy of a flow is

em =
1

2
v2 + gz (2.9)
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The mechanical energy of the inlet flow is

(em)in = (
1

2
v21). (2.10)

The gravitational part is zero, since the inlet height is z = 0.

Work water

The work done by the pressure in a system is given by [1]

φw = φm

∫ 1

2

1

ρ
dp (2.11)

with p being the pressure. The mass flow φm is equal to ρwAanv2. The density ρ is
constant along the tank so the work is

φm

∫ 1

2

1

ρ
dp = ρwAanv2

(
p1
ρw
− p2
ρw

)
= Aanv2(p1 − p2) (2.12)

Friction water

Two factors contribute to the friction. First, there is dissipation at the walls. Second,
there is dissipation due to the enlargement of the water way.

φmefr = φm(f
h

Dh

1

2
v2 +K

1

2
v2) (2.13)

In this equation, f represents the friction factor, Dh,an the hydraulic diameter of the
annulus and Ken the resistance coefficient.

Friction factor

The factor factor depends on the Reynolds number.

Re =
ρvL

µ
(2.14)

The Reynolds number is a dimensionless number indicating the ratio of inertial forces
to viscous forces. A flow with a high Reynolds number is turbulent. A turbulent
flow is barely bounded by its viscosity. The Reynolds number is highly relevant for
the friction.
The characteristic length L is expressed for flow through tubes as the hydraulic
diameter Dh. This hydraulic diameter is defined as

Dh =
4A

S
. (2.15)

In equation (2.15), A is the surface of the cross section and S is the wetted perimeter.
For a circular tube, Dh = D, for an annulus Dh = Doutercircle − Dinnercircle. The
hydraulic diameter in the tank is therefore

Dh,an = Dtank −Dreactor (2.16)
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The fluid is water at normal temperatures and the velocity will be in the order of
1 m

s
[4]. The Reynolds number is in the order of 106. For this reason, the Haaland

friction factor can be used, since it is accurate for 4 · 103 < Re < 108.

f =

(
−1.8log10

(
6.9

Re
+

(
ε

3.7Dh

)10/9
))−2

(2.17)

The wall roughness ε is assumed to be near zero, leaving the friction factor to be

f =

(
−1.8log10

(
6.9

Re

))−2
(2.18)

Resistance coefficient

The resistance coefficient K is a coefficient that quantifies the resistance when the
geometry of the flow changes. For an enlargement of the water way, is K dependent
on the ratio of the areas before and after the enlargement[6]. Ettema proposed
K = 2. This is another adjustment to his report.

Ken,1 = (
Atank
Aen

− 1)2. (2.19)

The resistance coefficient has to be multiplied by a velocity. Depending on the
velocity before of after the enlargement, this value is different. The Ken,1 is seen
from the inlet. The resistance coefficient seen from the tank is

Ken = (
Atank
Aen

− 1)2
A2
an

A2
tank

. (2.20)

This is a different number since it is multiplied by a different velocity.

Total Mechanical Energy Balance Water

The theory is implemented in (2.1). The mechanical energy balance of the water
then becomes

ρwAan

(
hv2a2 +

v32
2

+ hgv2

)
=

ρwAanv2

(
p1 − p2
ρw

+
1

2
v21 − f

h

Dh,an

1

2
v22 −Ken

1

2
v22

)
.

(2.21)

The variables p1 and v1 can be excluded by the use of Bernoulli. The equation of
Bernoulli is a special variant of the mechanical energy balance.
In case there is no friction, the fluid is incompressible, there is no external source
and energy accumulation, equation (2.1) becomes

1

2
v2 + gz +

p

ρ
= cst. (2.22)
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This is used between points 0 en 1: v0 = 0, z1 = 0 and z0 = H + Lex. This leads to

1

2
v21 +

p1
ρw

= g(H + Lex) +
p0
ρw
. (2.23)

With this knowledge, the mechanical energy balance over the water between points
1 and 2 is complete.

ρwAan

(
hv2a2 +

v32
2

+ hgv2

)
= ρwAanv2

(
p0 − p2
ρw

+ g(H + Lex)− f
h

Dh,an

1

2
v22 −Ken

1

2
v22

) (2.24)

If g(H − h+Lex)ρw + p0 is bigger than or equal to p2, there will a driving pressure,
pushing the water up. However, the pressure p2 and the velocity v2 are unknown
yet. For this reason, the air in the tank between points 2 and 4 has to reviewed.

2.3 Properties of air

The second control volume is between points 2 and 4. The fluid in the CV is air. This
control volume consists of two parts: the air inside the tank between points 2 and 3
and the air in the outlet pipe. The pressure in the tank is assumed to be constant
throughout the tank. It is not constant over time. The temperature of the air is
assumed to be constant throughout the tank and the outlet pipe. The temperature
is not constant, however in the research the dependence of temperature is not taken
into account and the temperature is assumed to be constant over time. The air can
be considered as an ideal gas [14]. This property can be used for calculating some
state variables.
First of all, the ideal gas law is applicable for this situation.

pV = nRT (2.25)

In equation (2.25), n is the amount of moles in the specified volume. R is the ideal
gas constant. T is the temperature. Furthermore, the specific internal energy can
be described by

u =
f

2

RT

M
(2.26)

with M being the molar mass of air. f being the total degrees of freedom. Air
consists mainly of diatomic gases: N2 and O2, so the total degrees of freedom is
approximately f of a diatomic gas: 5.

2.3.1 Pressure of air

The ideal gas law in equation (2.25) can be rewritten so that the pressure of the air
is dependent of the density.

p =
RTρa
M

(2.27)
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The pressure p2 is a variable in 2.24 and it has to be solved. However, it depends
on the density of the air ρa and on the temperature of air. ρa is also constant
throughout the tank as p is constant throughout the tank. For this reason, the
whole density in the tank is ρa,2 = ρa,3. The derivative of the pressure is

dp2
dt

=
R

M

dT2ρa,2
dt

=
Rρa,2
M

dT

dt
+
RT

M

dρa,2
dt

=
p

T

dT

dt
+
RT

M

dρa
dt

(2.28)

Note that the temperature is assumed to be constant. Therefore,

dp2
dt

=
RT

M

dρa,2
dt

(2.29)

The variable ρa,2 has to be solved now.

2.3.2 Density of air

ρa,2 is the density of the air in the CV. It can be determined by ρ = M
V

, with M
the mass of air in the tank and V the volume consisting of air in the tank. This
equality can be used to determine the changes in the density of the air in the CV.

dρa,2
dt

=
dM

V dt
− MdV

V 2dt
=
−φm,out
V

+ ρa,2
φV
V

=
−ρa,4v4Aex + ρa,2Aanv2

Aan(H − h)
(2.30)

All terms in equation (2.30) are known, except for ρa,2, v4 and v2. Together with
equation (2.24) there are now two equations and three unknown variables.
The density of the outflowing air is

ρa,4 =
Mp4
RT

. (2.31)

Since p4 is atmospheric pressure and T is assumed constant, this density is constant.

2.4 Mechanical Energy Balance Air

Another equation has to be found to solve v4. For this purpose, the mechanical
energy balance over the air between point 2 and 4 is taken.

dρV
(
1
2
v2 + gz

)
dt

= φm,in (em)in − φm,out (em)out + φw − φmefr (2.32)

Air is not an incompressible fluid. This means that if the density changes in any
predefined volume of air in the reactor, dm

dt
6= 0. Considering

dm

dt
= ṁin − ṁout, (2.33)

the mass flow in this volume is not equal to the mass flow out of the volume. The
velocity in the tank will therefore not be constant throughout the tank. For this
reason, point 3 will have to be taken into account as well. The velocity of the air at
point 2 is equal to the velocity of the water at point 2, v2.
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The density of the air in the exit tube is assumed to be ρ4 and this density is
constant. Since the density of the air in the exit pipe is constant, there is no mass
accumulation dm

dt
in the exit tube. Therefore, according to equation (2.33),

ρa,3v3Aan = ρa,4v4Aex. (2.34)

For the sake of clarity, β = ρa,4Aex

ρa,3Aan
.

Derivative of the mechanical energy air between 2 and 3

The mechanical energy is located in the volume between point 2 and 3 and point
3 and 4. This subsection derives the mechanical energy of the air between points 2
and 3. It is assumed that the potential energy is negligible compared to the kinetic
energy of the air. The velocity rises linearly from v2 at h to v3 at H if the density
changes are constant over the volume. The velocity becomes v(z) = (z−h)v3−v2

H−h +v2.
Then, emech can be calculated.

emech =
< v2 >

2

1
2

∫ H
h

((z − h)v3−v2
H−h + v2)

2dz

H − h

=

H−h
2(v3−v2)

1
3
((z − h)v3−v2

H−h + v2)
3

H − h

∣∣∣H
h

=
1

6

v33 − v32
v3 − v2

=
1

6
(v23 + v3v2 + v22)

(2.35)

The derivative of the mechanical energy then becomes

dρa,2V emech
dt

= ρa,2V
demech
dt

+ ρa,2emech
dV

dt
+ V emech

dρa,2
dt

= ρa,2Aan(H − h)
1

6
(2v2a2 + v3a2 + v2a3 + 2v3a3)

− ρa,2emechAanv2 + emech(−ρa,4v4Aex + ρa,2Aanv2)

= ρa,2Aan(H − h)
1

6
(2v2a2 + v3a2 + v2a3 + 2v3a3)− emechρa,4v4Aex

(2.36)

For the dρa,2
dt

term, equation (2.30) is used.

Derivative of the mechanical energy air between 3 and 4

For the volume between points 3 and 4, it is assumed that the density ρa and velocity
v in the pipe are almost the same as the density ρa,4 and the velocity v4 at the exit
point 4.

dρV emech
dt

= ρV
d1
2
v24
dt

+ V
1

2
v24
dρ

dt

= ρa,4LAexv4a4 − LAex
1

2
v24
ρa,4dT

Tdt
= ρa,4LAexv4a4

(2.37)

The total change in the derivative of the mechanical energy is the sum of (2.36) and
(2.37).
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Inlet and outlet flow air

The inlet flow and outlet flow of a volume change the derivative of the mechanical
energy by φm,in (em)in − φm,out (em)out. For the CV of the air, there is no inlet flow,
so φm,in = 0. The outlet mass flow is equal to

φm,out = ρa,4Aexv4. (2.38)

The mechanical energy of the outlet flow is

(em)in = (
1

2
v24). (2.39)

Work air

Between point 2 and 3, there are no work terms causing mechanical energy, since
the pressure does not change between points 2 and 3. The compression of the air by
the water does influence the mechanical balance, but indirectly. The water pushing
the air influences the density of the air in the tank and therefore the pressure of the
air in the tank. There is a work term between points 3 and 4[1].

φw = φm

∫ 3

4

1

ρ
dp (2.40)

Since air is an ideal gas,

φm

∫ 3

4

1

ρ
dp = ρa,4Aexv4

∫ 3

4

RT

Mp
dp = ρa,4Aexv4

RT

M
log

(
p3
p4

)
(2.41)

applies.

Friction air

For the friction, the same logic applies as for the water.

φmefr = φm(f
Lex
Dex

1

2
v24 +Kex

1

2
v24) (2.42)

The Reynolds number will again be in the Haaland-region, so the friction factor f
is calculated via the same friction equation (2.18) as for the water. There is also
some friction is the annulus. However, this is negligible since the velocity of the air
in the exit pipe is much higher than the velocity of the air in the tank.
The resistance coefficient consists of two parts now. First, there is some kind of
system making sure that the air stays in the tank under nominal conditions. When
there is a shutdown, this will still have some effect on the geometry. The resistance
caused by these components is Krest and is unknown. Second, there is resistance
since the surface through which the water passed narrows. This coefficient is depen-
dent on the areas before and after the narrowing[6].

Kex = 0.45(1− Aex
Atank

) +Krest (2.43)
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Total mechanical energy balance air

The mechanical energy balance is known.

ρa,2Aan(H − h)
1

6
(2v2a2 + v3a2 + v2a3 + 2v3a3)−

(
1

6
v22 +

1

6
v2v3 +

1

6
v23

)
ρa,4v4Aex

+ ρa,4LAexv4a4− = ρa,4v4Aex(−
1

2
v24 − f

Lex
Dex

1

2
v24 −Kex

1

2
v24 +

RT

M
log

(
p3
p4

)
)

(2.44)

It is important to note that a3 and a4, as well as v3 and v4 are coupled via β = ρa,4Aex

ρa,3Aan
,

as explained in equation 2.34. v4 can be solved now as well.

2.5 Internal Energy Balance

The temperature of the control volumes influences the equations gathered in the
previous sections. In this report, T will be assumed to be constant. For possible
follow-up research, the founding will be discussed briefly. Only the internal energy
balance for the air will be discussed.

2.5.1 Internal Energy Balance Air

The internal energy balance is shown in equation (2.45).

dρV u

dt
= φm,inuin − φm,outuout + φq + φmefr − φm

∫
pd

(
1

ρ

)
(2.45)

u is the specific internal energy and φq is the heat transfer in equation 2.45. At first,
the derivative of the internal energy is reviewed. The specific internal energy for the
air is equal to 5

2
RT
M

as can be seen in equation (2.26).

dρaV u

dt
= ρa,2

5

2

RT

M

dV

dt
+

5

2

RT

M
V
dρa
dt

+ ρaV
d5
2
RT
M

dt

= ρa,2
5

2

RT

M
(−v2Aan) +

5

2

RT

M
(−Aexv4ρa,4 + Aanv2ρa,2) + Aan(H − h)ρa,2

5R

2M

dT

dt

= −Aexv4ρa,4
5

2

RT

M
+ Aan(H − h)ρa,2

5R

2M

dT

dt

(2.46)

For the dρa,2
dt

term, equation (2.30) is used.
Once again, there is no inlet flow of air. Therefore, φm,inuin−φm,outuout = −φm,outuout.
φq includes the heat transfer from the reactor and heat losses to the tank and its
surroundings. These are however not included in this report. The friction subtracts

15



mechanical energy in the mechanical energy balance (2.1) and adds internal energy
to the internal energy balance. The last term is

− φm
∫ 4

2

pd

(
1

ρ

)
= Aexρa,4v4

∫ 4

2

RTp

Mp2
dp = Aexρa,4v4

RT

M
ln
p4
p2
. (2.47)

dρV u

dt
= φm,inuin − φm,outuout + φq + φmefr −

∫
pd

(
1

ρ

)
= −Aexv4ρa,4

5

2

RT

M
+ Aexv4ρa,4

(
fex

L

2Dh,ex

v22 +Ktot,ex
1

2
v22 +

RT

M
ln
p4
p2

)
+ φq

(2.48)

Equation (2.46) and (2.48) combined leads to equation (2.49)

Aan(H − h)ρa,2
5R

2M

dT

dt
= Aexv4ρa,4

(
fex

L

2Dh,ex

v22 +Ktot,ex
1

2
v22 +

RT

M
ln
p4
p2

)
+ φq

(2.49)

2.6 Overview

This sections gives an overview of the important equations. These equations will be
used in chapter 3.
The mechanical energy over the water between point 1 and 2 leads to equation
(2.24):

ρwAan

(
hv2a2 +

v32
2

+ hgv2

)
= ρwAanv2

(
p0 − p2
ρw

+ g(H + Lex)− f
h

Dh,an

1

2
v22 −Ken

1

2
v22

) (2.50)

In equation (2.50), there are two variables: the velocity of the water in the tank
v2 and the pressure of the air in the tank p2. This pressure p2 is dependent on the
density of the air in the tank via equation (2.29).

dp2
dt

=
RT

M

dρa,2
dt

. (2.51)

There are now three variables, v2, p2 and ρa,2 and two equations. The density ρa,2
can be expressed as in equation (2.30):

dρa,2
dt

=
−ρa,4v4Aex + ρa,2Aanv2

Aan(H − h)
(2.52)
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In this equation, another new variable appeared: v4. This variable is solved via the
mechanical energy balance over the air in the tank as described in equation (2.44).

ρa,2Aan(H − h)
1

6

(
2v2a2 + βv4a2 + βv2a4 + 2β2v4a4

)
−
(

1

6
v22 +

1

6
βv2v4 +

1

6
β2v24

)
ρa,4v4Aex + ρa,4LAexv4a4

= ρa,4v4Aex(−
1

2
v24 − f

Lex
Dex

1

2
v24 −Kex

1

2
v24 +

RT

M
log

(
p2
p4

)
)

(2.53)

Finally, there are four equations and four variables: v2, p2, ρa,2 and v4.
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Chapter 3

Numerical Methods

This chapter will cover the bridge between the theory and the experiment as it is
been programmed. The system is not solvable analytically and it has to be solved
numerically. Therefore, the system has to be discretized. First, some background
knowledge on numerical methods is discussed in section 3.1. Then, the method to
make the equations solvable is discussed in section 3.2. Finally, some boundary
conditions are discussed in section 3.3.

3.1 Numerical Approach

A continuous line is discretized by taking points every ∆t seconds. Function y(t) is
numerically yn where a number n corresponds to a time t. The time t and n are
coupled via t = n∆t.
A continuous derivative is

y′(x) = lim
h→0

y(x+ h)− y(x)

h
. (3.1)

In numerical form, this becomes

y′n =
yn+1 − yn

∆t
. (3.2)

for ∆t→ 0.

3.2 Numerical Solving

The equations from section 2.6 have to be discretized. This can be done in multiple
ways. If a derivative of a variable depends on the variable, it can be solved explicitly
or implicitly. If the derivative is solved explicitly, the equation looks like

y′n+1 =
yn+1 − yn

∆t
= f(xn+1, yn) or y′n+1 =

yn+1 − yn
∆t

= f(xn, yn). (3.3)

When the derivative and thus yn+1 is solved, it depends on yn.
If the derivative is solved implicitly, the equation looks like

y′n+1 = f(xn+1, yn+1) or y′n+1 = f(xn, yn+1) (3.4)
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When this derivative and thus yn+1 is solved, it depends on yn+1. As long as the
time step ∆t is small enough, both the explicit and the implicit method suffice.
Ettema found that both methods are good for ∆t ≤ 10−4. If ∆t are made smaller,
the calculating times raise. For this reason, is ∆t = 10−4 in the report. In the rest
of the report, the explicit model is used.
The derivatives depend on other variables as well. These can also be solved in
multiple ways. The height of the water in the tank, for instance, is dependent on
the velocity of the water in the tank by

dh

dt
= v2 (3.5)

This can be solved by

hn+1 = hn + v2,n∆t or hn+1 = hn + v2,n+1∆t (3.6)

One by one, each variable will be solved for n + 1. When all variables are known
for an n, a variable, for instance vn+1, is solved with all variables on time step n.
The next variable that is solved, for instance hn+1, depends on all variables on time
step n except for v. This next variable hn+1 depends on vn+1. This is done until all
variables are known for an n + 1. The flowchart can be seen in figure 3.1. At first,
some constants are given. The geometry has to be set beforehand, as well as the
initial conditions. These affect some state variables. Then, the time loop can start.
The order in which all variables is solved does not effect the solution for a small ∆t.
The order is selected for as little numerical problems around t = 0.
The variables µ for water and air and ρ for water vary over time because of their
dependence on the temperature and the pressure. However, there are assumed to
be constant since the differences are negligible for the conditions in the study.
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Figure 3.1: The flowchart containing the order in which all variables are solved.

3.2.1 Equations discretized

The equations of section 2.6 first have to be rewritten so that the derivative is on
one side of the equation and the others terms on the other side. Then, the equations
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have to be discretized. Equation (2.50) becomes

a2 =
dv2
dt

=
p0 − p2
hρw

+ g
H + Lex − h

h
− v22

2

(1 +Ken
A2

an

A2
en

)

h
+

f

Dh,an

 . (3.7)

Its discretized version then becomes

v2,n+1 = v2,n+∆t

p0 − p2,n
hnρw

+ g
H + Lex − hn

hn
−
v22,n
2

(1 +Ken
A2

an

A2
en

)

hn
+
fn,an
Dh,an

 .

(3.8)
The height is then calculated by

hn+1 = hn + v2,n+1∆t (3.9)

and the acceleration becomes

an+1 =
v2,n+1 − v2,n

∆t
(3.10)

Equation (2.53) becomes equation (3.11)

a4 =
−ρa,2Aan(H − h)(2a2v2 + βa2v4)

ρa,2Aan(H − h)(2β2v4 + βv2) + 6AexLρa,4v4

+
6Aexv4ρa,4

(
−1

2
v24(1 + f Lex

Dex
+Kex) +

v22+βv4v2+β
2v24

6
+ RT

M
log
(
p2
p4

))
ρa,2Aan(H − h)(2β2v4 + βv2) + 6AexLρa,4v4

(3.11)

Numerically, βn = Aexρ4,n
Aanρ2,n

. Then,

v4,n+1 = v4,n+

∆t
−ρ2,nAan(H − hn)(2a2,n+1v2,n+1 + βna2,n+1v4,n)

ρ2,nAan(H − hn)(2β2
nv4,n + βnv2,n+1) + 6AexLρ4,nv4,n

+

∆t
6Aexv4,nρ4,n

(
−1

2
v24,n(1 + fn

Lex

Dex
+Kex) +

v22,n+βnv4,nv2,n+1+β2
nv

2
4,n

6
+ RTn

M
log
(
p2,n
p4

))
ρ2,nAan(H − hn)(2β2

nv4,n + βnv2,n+1) + 6AexL(ρ4,nv4,n)
.

(3.12)

The density of the air in the tank as in equation (2.52) is

dρ2
dt

=
−ρa,4v4Aen + ρa,2Aanv2

Aan(H − h)
(3.13)

The discretized version of this density is

ρ2,n+1 = ρ2,n + ∆t
−ρ4,nv4,n+1Aen + ρ2,nAanv2,n+1

Aan(H − hn)
. (3.14)
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Finally, the pressure is
dp2
dt

=
RTdρa,2
Mdt

. (3.15)

The discretized version of the pressure is

pn+1 = pn +
RTn+1

M
(ρ2,n+1 − ρ2,n). (3.16)

All variables v2, v4, ρa,2 and p2 are now discretized and solvable.

3.3 Initial conditions

When the reactor shuts down, the valve opens. This is at is t = 0. The height of
the water in the tank is h(t = 0) = 0, the water does not have an initial velocity
and the air does not have an initial velocity, v2(t = 0) = 0 and v3(t = 0) = 0.
The pressure in the tank is equal to p2(t = 0) = p0 + (H + Lex)gρw. The density

is therefore ρa,2 = Mp2(t=0)
RT

. For t = 0, equations (3.8) and (3.12) will divide zero
by zero. Therefore, h and v3 get a small value assigned. This can not be infinitely
small, due to the time steps not being infinitely small.
When the height h approaches H, equation (3.14) will be divided by a number
approaching zero. Therefore, the loop cannot be continued until h > H. A small
number δ under H, the loop will stop (h > H − δ). This is also shown in figure 3.1.
The filling time ft will then be calculated by

ft = tend +
δ

v2,end
. (3.17)

tend is the time when the condition h > H − δ becomes true. v2,end is the velocity of
the water on that moment.

3.4 Different geometries

To be able to compare different geometries, the loop as shown in figure 3.1 will
be executed for multiple values of the concerning geometry. This will be done by
changing one variable each time with respect to a default geometry. Two geometrical
factors will be differed: Dex and Krest. Dex is the diameter of the exit pipe. When
this diameter is small, the mass flow of air out of the tank is small. This mass flow
is namely equal to ρa,4Aexv4. The density of the air in the tank drops less then with
a bigger diameter and so does the the pressure. A geometry with a small diameter
is for this reason expected to have higher filling times. The resistance coefficient
Krest is a coefficient explaining how many energy is dissipated due to valves and
other components at the exit. Ideally, this is zero. A higher resistance coefficient
is expected to resist the air to flow out of the tank. Then again, the density of
the air in the tank stays higher and thus the pressure. A geometry with a higher
resistance coefficient is expected to have higher filling times. The exit diameter Dex

will be varied from logarithmically from Dex = 0.05m to Dex = 1m in 10 steps. The
resistance coefficient Krest will be varied from Krest = 0 to Krest = 5 linearly in 10
steps.
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Chapter 4

Results

In this chapter, the results will be discussed. At first, the default settings are shown
in section 4.1. The process of filling the tank will in reviewed in section 4.2. In
section 4.3, the effects of the outlet on the pressure and the filling times will be
discussed.

4.1 Default Geometry

At first, the change of all the variables over time will be discussed for a default
geometry. The dimensions are extracted from the report of Ettema and Veling
[4][15]. There are two new variables: Dex and Krest. The resistance coefficient Ken

in equation (3.8) is also different because another method is used to define it. In
Ettema’s report, Ken = 67. For the default geometry, however, is Ken = 29. The
default settings are seen in table 4.1.
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Table 4.1: Table with the default settings

Name Abbreviation Value
Length tank H 17.4m

Length exit pipe Lex 1m
Diameter reactor Dreactor 3.2m
Diameter tank Dtank 4.2m

Diameter entrance Den

√
4/πm

Diameter exit pipe Dex 0.1m

Surface cross section tank Atank
πD2

tank

4

Surface cross section annulus tank Aan
π(D2

tank−D
2
reactor)

4

Surface cross section exit pipe Aex
πD2

ex

4

Hydraulic diameter Dh Dtank −Dreactor

Water temperature Twater 25◦C
Air temperature Tair 40◦C

Resistance coefficient entrance Ken (Atank

Aen
− 1)2 A2

an

A2
tank

Resistance coefficient exit pipe Knar 0.45(1− Aex

Atank
)

Friction valve and pump Krest 0
Total resistance coefficient exit Kex Knar +Krest

Velocity water in the tank at t = 0 v2(t = 0) 0 m
s

Velocity air in the exit pipe at t = 0 v4(t = 0) 0.001 m
s

Height water in the tank at t = 0 h(t = 0) 0.001 m
Step size time in program ∆t 0.0001 s
Step size time in program δ 0.05 m

4.2 Filling the tank

The filling time is 134 seconds, as can be seen in figure 4.1. Even if Ken is set to 67,
the Ken value Ettema proposed, the filling time is 134 seconds. The assumption that
the pressure becomes atmospheric pressure instantaneously after the shutdown in
Ettema [4] was wrong since the filling time was only 12.4 seconds under the default
settings under this assumption and under Ken = 67. His model calculated a filling
time of 7.8 seconds when Ken = 29. In the default geometry, Dex = 0.1m. For
larger exit pipe diameters, the assumption of Ettema might be correct. This will be
discussed in the section 4.3.
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Figure 4.1: The height h of the water in the tank against the time. The filling
time can be calculated by extrapolating the height to h = 17.4.

25



4.2.1 Pressure in the tank

Figure 4.2: The pressure of the air in the tank against the time.

The pressure does not drop to atmospheric pressure instantaneously, it drops slowly
and becomes only atmospheric pressure when the tank is totally filled with water.
It is interesting to see how large the force is on the water due to pressure differences.
This force depends on the difference in pressure between p0+ρwg(H+Lex−h) and p2.
It can be seen in equation (3.8) that this difference is the driving force for the water
to fill the tank. This difference can be seen in figure 4.3. The difference between
p0+ρwg(H+Lex−h) and p2 never reaches 400 Pa. If the pressure in the tank p2 would
drop to atmospheric pressure, this difference would start at 2.84bar−1bar = 1.84bar.
Since the pressure difference is much smaller, the acceleration of the water is much
smaller, the velocity of the water is much smaller and thus is the filling time larger.
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Figure 4.3: The driving pressure, (p0 + ρwg(H + Lex − h)-p2) against the time.

The density is linearly dependent on the pressure since there are no temperature
changes as can be seen in equation (2.51). The density is shown in figure 4.4.
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Figure 4.4: The density of the air in the tank against the time.

4.2.2 Velocity

Velocity water

The velocity seems to be almost constant over time, considering figure 4.1. This is
not quite true, as can be seen in figure 4.5 and 4.6.
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Figure 4.5: The velocity of the water against the time.
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Figure 4.6: The first second of the velocity of the water against the time, on a
logarithmic scale.

In the first second, the velocity of the water rises very quickly. The quick increase
of the velocity stops after a second. The velocity increases still, but on a much
smaller scale. The velocity of course peaks; when the height of the water increases,
the driving pressure (p0 + ρwg(H +Lex− h)− p2) decreases as can be seen in figure
4.3. The friction brakes the velocity than more than the driving pressure pushes it
up. The quick increase of the velocity and then the stagnation can be explained by
figure 4.7. The acceleration is equal to

a2 =
p0 − p2
hρw

+ g
H + Lex − h

h
− v22

2

(1 +Ken
A2

an

A2
en

)

h
+

f

Dh,an

 . (4.1)

This contains a driving force

p0 − p2
hρw

+ g
H + Lex − h

h
(4.2)
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and a friction part

− v22
2

(1 +Ken
A2

an

A2
en

)

h
+

f

Dh,an

 . (4.3)

Figure 4.7: The first second of the acceleration of the water against the time, on
a logarithmic scale. The blue line expresses the acceleration due to the driven

force. The red line expresses the friction. The black line is the sum of the blue and
the red line and expresses the net acceleration.

The friction decreases later than the driven forces increases. The velocity rises in
this time increasing the friction. At the end, both accelerations become smaller
since h increases. If the friction due to the broadening of the water channel is put to
zero, so Ken = 0 in the water control volume, the velocity would behave even more
unexpected, as seen in figure 4.8.
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Figure 4.8: The first second of the velocity of the water in the tank against the
time, on a logarithmic scale. The resistance coefficient Ken is put to zero in the

mechanical energy balance of the water.

As can be seen in figure 4.8, is the velocity oscillating. The acceleration figure 4.9
also shows this oscillation.
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Figure 4.9: The first second of the acceleration of the water in the tank against
the time, on a logarithmic scale. The resistance coefficient Ken is put to zero in the

mechanical energy balance of the water.The blue line expresses the acceleration
due to the driven force. The red line expresses the friction. The black line is the

sum of the blue and the red line and expresses the net acceleration.

The driving pressure even becomes smaller than zero. An explanation for this be-
havior is that due to the pressure difference, the velocity increases according to
equation (3.8). This effects the pressure in the tank via equations (3.16) and (3.14).
The pressure in the tank becomes higher than the pushing pressure of the water.
Because of the higher pressure in the tank, does the velocity decreases. The density
decreases via equation (3.16) and thus decreases the pressure via equation (3.14).
This creates an effect like a spring.

Velocity air

The velocity of the outflowing air in the exit pipe is shown in figure 4.10.
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Figure 4.10: The velocity of the outflow of the air against the time.

Note that the air flow reaches velocities higher than the sound speed.
The velocity of the air in the exit pipe can be converted to the velocity of the air in
the tank just before the exit pipe v3. Figure 2.1 explained point 3. The difference
between v3 and v2 expresses to what extended the density of the air in the tank
drops. In figure 4.11, v2 and v3 are reviewed.
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Figure 4.11: The velocity of the outflow of the air in the tank and the velocity of
the water against the time, on a logarithmic scale.

It can be seen that the velocity at the top of the tank is higher than the velocity
of the water in the tank. This velocity v2 is also equal to the velocity of the air
just above the water level in the tank. Therefore, the density drops and thus the
pressure as can be seen in figures 4.2 and 4.4. Near the end, they become equal,
since the density in the tank approaches the atmospheric pressure.

4.3 Changing the outlet

There are two factors in the outlet influencing the filling times. The most important
one is the diameter of the exit pipe Dex. If this diameter gets smaller, fewer mass
flows out of the system, therefore stays the density of the air in the tank higher
via equation (3.16) and thus the pressure via equation (3.14). This effects the
acceleration of the water via (3.8), therefore increasing the filling time. Next to
this, there is a valve and a pump somewhere attached to the pipe. These cannot
be implemented in the system, but they can be resembled by a Krest-factor. The
default Dex = 0.1m and Krest = 0.
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4.3.1 Exit diameter

The exit diameter against the filling times is plotted in figure 4.12.

Figure 4.12: The exit diameter and its belonging filling time.

The filling time appears to inversely related to the exit diameter with an asymptote
at a filling time of 7.8s, the filling time found by the model of Ettema [4]. If the
exit diameter is taken large enough, the filling time approaches the filling times
calculated in Ettema’s report. The filling times ft are fit to the exit diameter Dex,
according to

ft = a(Dex)
b + c. (4.4)

This fit has an R-square of 1.0000. The fit is therefore very good.
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Variable Fit 95 % confidence interval
a 0.9929 (0.9102, 1.076)
b -2.11 (-2.138, -2.082)
c 5.259 (3.798, 6.72)

ft = 0.9929(Dex)
−2.11 + 5.259 (4.5)

The code blows up if the exit diameter is set too small or too large due to numeri-
cal problems. However, figure 4.12 shows that the filling time gets extremely large
when the exit diameter gets smaller. It is also reviewed how fast the pressure drops.
If the pressure drops fast, Ettema’s theory [4] might be valid. The 1.2 bar time
shows the moment the pressure in the tank crossed the 1.2 bar. The pressure never
reached atmospheric pressure, but it might not even reach 1.1 bar since the highest
point of the tank is still 1 meter under the water level. Therefore, the 1.2 bar time
is reviewed. This time is useful to verify if the pressure drops much fast than the
height rises.

Table 4.2: Table with the 1.2 bar time and the filling time for different exit pipe
diameters

Dex (m) 1.2 bar time (s) Filling time (s)
0.05 524.9 557.2
0.07 263.9 279.6
0.10 133.3 141.4
0.14 67.7 72.1
0.19 34.4 37.3
0.26 17.3 20.2
0.37 8.4 12.3
0.51 3.8 9.4
0.72 1.7 8.4
1.00 0.8 8.1

The 1.2 bar time is close to the filling time until Dex = 0.37. For Dex ≤ 0.37 does
the pressure drop very fast and does the filling time enter its asymptote. For this
moment, the exit pipe is no longer the main resistor, but other components such as
the entrance pipe are.

4.3.2 Friction factor pumps and valves

It is also insightful to get an idea of the effect of Krest for the exact geometry
including pumps and valves at the top. This is shown in figure 4.13.
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Figure 4.13: The Krest against its filling time.

Figure 4.13 shows that Krest has a strong effect on the filling times. If Krest would
be 1 for instance, the filling time would already be 20 seconds longer. The codes
blows up for Krest too high, but it can already be seen in figure 4.13 that the filling
times are increasing when Krest is higher. This relation should continue until Krest

is infinitely high, since the filling time should be infinitely then as well since the air
will never get out. It is therefore important that the geometry of valves and pumps
has a small resistance coefficient.
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Chapter 5

Conclusions and
Recommendations

The SLIMR is a new type of reactor. Its opportunities look promising. It is kept
under water so that the water will cool the reactor passively in case of a shutdown.
However, this heath transfer is unwanted in a normal situation. Therefore, a tank
has been proposed to keep the reactor surrounded by air. In case of an emergency
shutdown, the pump stops working and water will enter the reactor. Ettema calcu-
lated the filling time assuming that the pressure in the air dropped immediately to
atmospheric pressure. In this follow-up research, the pressure is taken into account,
as well as the addition of an exit pipe.

5.1 Conclusions

The model that has been made to solve the height of the water in the emergency
tank works as it should. It gives a clear overview on the processes in the tank during
a shutdown.
The assumption that the pressure drops to atmospheric pressure instantaneously is
obviously not a realistic one. This assumption suffices if the exit diameter is large.
The assumption is wrong for exit pipe diameters smaller than half a meter. The
filling times can become more than 50 times higher with a model that takes the
pressure into account compared to the model that assumed that the pressure is at-
mospheric instantaneously. The filling time is inversely dependent on the exit pipe
diameter via ft = 0.9929(Dex)

−2.11 + 5.259.
The effect of the resistance coefficient Krest on the filling time has been taken into
reviewed. This coefficient has a strong negative influence on the filling times, as
expected.
The assumption that the gravitational energy would be negligible is true, since it is
much smaller than 1

2
v24. The Reynolds numbers as they were estimated in section 2

turn out to be right.
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5.2 Recommendations

The reactor should be able to lose its decay heat properly. If the reactors internals
gets too hot, safety barriers will be damaged. It is important to know if the reac-
tor can still lose its decay heat in case of an emergency tank. Therefore, further
research has to be done to investigate all heat transfers in the reactor vessel and the
emergency tank. The water and the air will heat up due to the decay heat of the
reactor. This temperature increase has effect on the mechanical energy balances as
well. The pressure and the densities are directly related to the temperature. These
temperatures can be implemented in the model of this report to calculate the state
variables each time step.
The implementation of the temperature has to be made for the steady state situa-
tion, for the filling situation and for the filled situation. This last situation has a
strong similarity with Velings report [15]. However, his research did not take a tank
into account. This tank changes the flow of the water and thus the heat removal.
The velocities and the pressure in the tank are oscillating when the friction due to
Ken is assumed to be zero. The reason for the oscillation might be investigation.
The effect might cause resonance or another effect. This can be reviewed as well.
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