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Abstract

The goal of this paper is to determine quadratic finite elements are more accurate compared to 
linear finite elements when used for solving the Boltzmann transport equation. The problem 
of calculating the neutron flux in several simple reactor geometries by use of the finite 
element method is treated and in particular we investigate the use of second-order finite 
elements and compare their accuracy, based on the root mean square error, to first-order 
elements.
The elements are tested on several simple reactor geometries, using different element types 
and varying scattering –and absorbing cross-sections. A simple non-neutron transport case 
was first considered with Matlab and the main neutron transport problems were solved using 
an existing solver called Phantom, which was already in use and will now be expanded to use 
second-order elements. 
Results show that second-order finite elements are much more accurate than first-order 
elements, showing a factor of magnitude increase in the order of 102 all the way up to 106.
We conclude that second-order elements are much more accurate and should be used to solve 
complex systems that would be otherwise harder or more time consuming to solve using only 
first-order elements. Future research should point out if and when it is more efficient and less 
time consuming to use second-order elements.
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1 Introduction

In the field of neutron transport there is a need for efficient and accurate computational 
methods. One of these methods is the finite element method or FEM. Using the FEM it is 
possible to solve complex partial differential equations that appear in the this field. The goal 
of this report is to improve the accuracy of an already existing program, Phantom, that solves 
the first-order Boltzmann equation. Phantom currently uses first-order finite elements to solve 
the spatial part of the Boltzmann equation and in this report we hope to achieve an increase of 
accuracy and a reduction of required computation time by implementing second-order finite 
elements into Phantom. This will be calculated by using the root mean square error as a 
measure of the accuracy.
A large part of this project was spent becoming familiar with the theory behind the finite 
element method; as such we include a section explaining the basics of FEM. In addition a 
program was created in Matlab to test the finite elements in a simple test case before moving 
on to more complex cases that solve for the neutron flux. The Boltzmann equation that 
describes the transport of neutrons will also be briefly explained and we will show how to 
transform this into a suitable minimization problem for use with FEM using a least squares 
method.
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2 The Neutron Transport Equation

The equation describing neutron transport in a single energy group is the first-order 
Boltzmann equation:

         ' ' ', , , ,s d S               r r r r , (2.1)

where  is the direction,  the neutron flux,  the cross-section, r the space coordinate 
and S the source(We will assume the reader is familiar with the terms used here, for a 
background on nuclear reactor physics we refer to Duderstadt et al.(1976)1).
With the following boundary conditions:

  , 0,              , 0V     r r n .

Equation (2.1) is a balance equation, where the left-hand side represents the outflow and the 
right-hand side the inflow. The first term on the LHS represents the net outflow, while the 
second term takes into account a decrease by interaction. On the RHS we have an increase by 
interaction in the first term and the second term represents a source. Equation (2.1) can be 
written simply as:

L = S , (2.2)

where    sL = + - . Rewriting this further into a more preferred form we reach:

     L (2.3)
Where M includes total removal and scattering, and is written as:

  aM I       .

The scattering cross-section is then expanded in Legendre polynomials

   '
0

0

2 1

4s sl l
l

l
P  








   , (2.4)

and equation(2.3) is rewritten as

   ' '
0

0

2 1
,

4 l l
l

l
d P    








   L r    . (2.5)

Where l sl    and  0lP  are the Legendre polynomials defined as

 

   
0

2
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1
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2 !
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d
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n d



 




 
. (2.6)

We will have control over the order of Legendre polynomials used when solving for the 
neutron flux, this will determine how much of the angular dependency will be included in the 
final result.

Next we want to solve equation (2.1), to do this we rewrite this equation into a minimization 
problem. From D. Lathouwers(2007)2 we find that this can be done by using a least squares 
approach, resulting in the following functional:

 
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1 1 1
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 



     

    


     

   
n

n
, (2.7)
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where T is the scaling operator. This functional is unwieldy and we will rework it in a reduced 
form. We will only give a brief description of the steps involve and will explain the result, for 
a more in depth view of this derivation we again refer to D. Lathouwers(2007)2. 
To start reworking the functional we separate the flux into its angular and spatial parts. 
Starting with expanding the angular part into a series of real spherical harmonic polynomials 
we have:

         
1

,
M

T
i i

i

Q 


   r r Q r , (2.8)

where the vector Q contains the sets of all spherical harmonic polynomials. This includes the 
Legendre polynomials used to describe the angular dependency of the cross-section in 
equation(2.5).

The spatial part is solved by using finite elements, subdividing the volume V into Ne elements 
such that:

1 1

,           
e eN N

e e
e e

V V V V 
 

   , (2.9)

allowing us to rewrite  r as:

 
1

N

n n
n

 


r . (2.10)

Here n are the nodal moment vectors and n are the basis functions, in the next section we 

will describe the finite element method in more detail. 
We can now rewrite the functional into a reduced form as following:

  '
1 ' 1 1

2
N N N

T T T
n nn' n n n

n n n

F    
  

  L F , (2.11)

where T
nn'L is:

       

       

' ' ' '
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T gg g
nn' ii i n i n i i n n

ii V V

g
n n n n

V V

dV R R dV R

dV d V


   

     

  

 gg

L A r r G H r r

H r r E r r
. (2.12)

Taking equation (2.11) and requiring the functional to be stationary gives us the following set 
of linear equations:

 g
nn' nA F , (2.13)

where the matrix g
nn'A is represented by the equation

   

   
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
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(2.14)
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and nF as

       1 '
' ' '

'

g g
n i n i n n n n n

n i iV V

F dV R dV        G S r r H S r r . (2.15)

These equations still correspond to our original least squares functional from equation(2.7). 
Equation (2.14) and (2.15) now contain the angular parts of the Boltzmann equation in the 
abbreviations '

gg
iiA , iG , gH and E . The  gg in equation(2.14) tells us which cross-section we 

should use and is defined as

'

,    if '

, if '

g
l
g g
sl

g g

g g




 


 


gg . (2.16)

The spatial part of is solved using the test functions n as mentioned before and in the next 

section we will describe what these basis functions look like and how we use them to solve an 
equation of the form as equation(2.13).



8

3 The Finite Element Method

To solve the spatial part of the first-order Boltzmann equation we use finite elements. This 
section will briefly explain the theory behind the finite element method, both for first-order 
and second-order finite elements.
To introduce the finite element method we will use Figure 3-1 and Figure 3-2. In Figure 3-1
we see a certain function in blue being approximated by a red function consisting of several 
lines, what we want to do with the finite element method is solve this approximate solution 
for a difficult partial differential equation numerically. In Figure 3-1 we also notice that the 
X-axis has been divided in multiple sections, labeled x0 through x5. These sections are what 
we call elements and the values x0 through x5 are called nodes. For example, in Figure 3-1 the 
first element would reach from x0 to x1 and contains 2 nodes. 
In Figure 3-2 we see again the approximate red solution and this time we also see a number of 
blue functions, known as basis functions or “tent” functions. These “tent” functions are 
known and will be used to construct to approximate solution.

Figure 3-1A function(blue) with it’s approximate 
solution(red) on a interval between x=0 and x=5 
divided in 5 elements using 6 nodes.

Figure 3-2The same approximate function(red) 
as in Figure 3-1 this time showing the “tent” 
functions(blue) used to construct this solutions 
on the some interval.3

To apply the finite element method to a partial differential equation we first need to rewrite it 
in the weak form, then find the appropriate basis functions to use and finally solve it 
numerically. In the following section we will use the Poisson equation 2u f  as an 
example to clarify the theory of finite elements.

3.1 Solving the 1D Poisson equation with the finite element method
We will start with the 1D Poisson equation with homogeneous boundary conditions,

 2  with 0 on the boundary,u f x u   (3.1)

where f(x) is given.
To rewrite the Poisson equation in the weak form we start by introducing  U x as an 

approximation for u as:

     
1

n

j j
j

u x U x U x


  (3.2)
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Where n is the number of nodes, Uj are unknown coefficients and  j x are the “tent” 

functions defined by the following rules:
1.  j x is linear in each element.

2.  j ix = δij, meaning zero at all nodes except their own.

To give a little more insight in the basis functions, one has been sketched in Figure 3-3. The 
function  j x has been plotted over two elements and three nodes. It is easy to see that 

 j x is linear in both elements, and  j x is equal to one when above the nodal point xj and 

zero for the two other nodes.

Figure 3-3”Tent” function consisting of 2 basis functions over two elements containing three nodes.1

The approximation in (3.2) will not be able to satisfy the partial differential equation in (3.1). 
Instead we determine the n different coefficients Uj and insist that the approximation satisfies 
the n conditions known as the weak form of the partial differential equation. To do this we 
insist that the left –and right-hand sides of the partial differential equation when multiplied by 
the basis function  i x are equal:

2       i=1...ni iu dx f dx    . (3.3)

We can simplify this equation by integrating by parts using  2
i i iu u u        to 

arrive at:

 i i iu u dx f dx          . (3.4)

Simplifying this further by applying the divergence theorem(      x dx P b P a   P ) and 

knowing that the function is zero at the boundaries we find:

i iudx f dx      . (3.5)

Equation (3.5) is called the weak form(Galerkin) of the partial differential equation. All 
solutions u(x) satisfy the weak form equation (3.5) and our approximation in equation (3.2)
should also satisfy the weak form:

1

n

j j i i
j

U dx f dx  


      . (3.6)

Now we introduce a new matrix Sij:

ij i jS dx    , (3.7)

where Sij=Sji. Sij is a square n x n matrix which is mostly empty because of the properties of 
the basis functions. Next we introduce a vector Fi:

i iF f dx  , (3.8)

which allows us to further rewrite equation (3.6) to:



10

1

n

ij j i
j

S U F


 . (3.9)

In equation (3.9) it is clear that we have n equations with n unknowns(the Uj). This equation 
can also be written in matrix form:

U FS . (3.10)
And finally our solution is:

1U F S . (3.11)

3.1.1 The 2D case
Solving the two dimensional Poisson equation using finite elements is much the same as the 
one dimensional case. We slightly adjust our partial differential equation (3.1) as follows:

   2 ,  with , 0 on the boundaryu f x y u x y   . (3.12)

The approximation in equation (3.2) holds except for a change in dimension:

     
1

, , ,
n

j j
j

u x y U x y U x y


  (3.13)

only this time our elements no longer consist of just lines, but are usually triangles or squares.
Again we use the weak form by integrating and multiplying both sides of equation (3.12) by 
the basis function to arrive at:

2
j ju dA f dA      . (3.14)

Again using integration by parts, the divergence theorem( dA ds    n� P P ) and the 

knowledge that the boundary conditions are zero to reduce equation (3.14) to:

1

n

j i j i
j

U dA f dA  


        (3.15)

Defining our Sij matrix and vector Fi again allows us to arrive again at equation (3.10) in 
matrix form, with solution equal to equation(3.11). 
Although the resulting equations are again the same as for the one dimensional case, the 
solutions of these two are of course nothing alike. 

3.1.2 Implementing Boundary Conditions
In the previous sections we have assumed homogeneous boundary conditions equal to zero, 
this is not usually the case however and we would like to include other boundary conditions. 
Because we will solve equation (3.10) numerically there is an easy way to include the 
boundary conditions. As an example we will use a 1-D region of length 10 with the following 
Dirichlet boundary conditions:

 
 
0

10

u a

u b




For a simple system containing only 3 elements the Sij matrix will be 4x4. For this example 
we will choose a simple matrix and use it to rewrite equation (3.10) as following:
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From this we can insert our boundary conditions. We know that U1 in this equation gives the 
solution at u=0, so if we replace the first row by:

And doing the matrix multiplication we find U1=a, solving the first boundary condition. The 
second boundary condition can be solved in much the same way. This time replacing the 
bottom row of the system matrix by zeros except for the last column and replacing the last 
value of the vector F by b.

3.2 First-Order Basis Functions
The driving force behind the finite element method is the use of basis functions; these 
functions allow us to solve many partial differential equations in the same way. We would 
like to show some of these basis functions for both one and two dimensional problems. The 
functions given in this section are all first-order functions, meaning that they are linear in both 
the x –and y-direction.
The simplest basis function is the one for the 1-D line element, shown below with its basis 
functions:2

1-D Line Element

   
   

1

2

0.5 1

0.5 1

  

  

 

 

There are a few things to note about this element. First of all we see that a new coordinate has 
been introduced: ξ. From now on we will use ξ as the local coordinate in each element, this is 
not the actual location of the element in the region of interest but a special coordinate system 
that will be mapped to the actual coordinate. All elements will range from -1 to +1 in the ξ 
coordinate; this is convenient for numerical integration which we will discuss more in depth 
later on in section 3.4. Finally we note the 2 basis functions φ1 and φ2, one for each node 
inside the element. Checking the rules given in the previous section, we see that these 
functions are indeed linear and zero at all nodes except for their own.
In 2-D there are other elements to consider, we will give the basis functions for the triangular 
and quadrilateral elements. We’ll also give the node and face numbering as used in this report. 
The faces are numbered on the inside of the element and are used to determine which side is 
facing which direction.
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2-D Triangular Element

1
1

2
2

3
1 21

 

 

  





  

2-D Quadrilateral Element

  
  
  
  

1
1 2

2
1 2

3
1 2

4
1 2

0.25 1 1

0.25 1 1

0.25 1 1

0.25 1 1

  

  

  

  

  

  

  

  

3.3 Second-order Basis Functions
In the previous section we showed an example of linear basis functions, it’s also possible to 
use quadratic elements that include second-order polynomials in their basis function. These 
elements will be referred to as second-order elements. The second-order elements used in this 
report are the 3-node line element, the 6-node triangular element, the 8-node quadrilateral 
element and the 9-node quadrilateral element. These elements are given below with their basis 
functions.

3-Node Line Element

 
 

  

1

2

3

0.50 1

0.5 1

1 1

  

  

  

  

 

  
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6-Node Triangular Element
 
 
   

 
 

1
1 1

2
2 2

3
1 2 1 2

4
1 2

5
2 1 2

6
1 1 2

2 1

2 1

2 1 1 1

4

4 1

4 1

  

  

    

  

   

   

 

 

     



  

  

8-Node Quadrilateral Element
     
   
    
    
   
  
   
   

1
1 2 1 2

2
1 2 1 2

3
1 2 1 2

4
1 2 1 2

5 2
1 2

6 2
1 2

7 2
1 2

8 2
1 2

0.25 1 1 1

0.25 1 1 1

0.25 1 1 1

0.25 1 1 1

0.50 1 1

0.50 1 1

0.50 1 1

0.50 1 1

    

    

    

    

  

  

  

  

     

    

    

     

  

  

  

  

9-Node Quadrilateral Element
  
  

  
  

  
  
  
  

  

1
1 2 1 2

2
1 2 1 2

3
1 2 1 2

4
1 2 1 2

5 2
2 2 1

6 2
1 1 2

7 2
2 2 1

8 2
1 1 2

9 2 2
1 2

0.25* * 1 1

0.25* * 1 1

0.25* * 1 1

0.25* * 1 1

0.50* 1 1

0.50* 1 1

0.50* 1 1

0.50* 1 1

1 1

    

    

    

    

   

   

   

   

  

  

   

  

   

   

  

  

   

  
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3.4 Numerical integration
We now have all the tools required to solve our partial differential equation (3.1), however we 
still need a method to solve this system numerically. To create our matrix Sij and vector Fi we 
need to evaluate their respective integrals. To this end we apply a numerical approximation of 
the integrals using Gaussian quadrature.
When using Gaussian quadrature we use the following approximation to evaluate an integral 
numerically:

   
1

11

n

i i
i

f x dx w f x


  , (3.16)

where f(x) is some function, f(xi) is the function f(x) evaluated at some specific sampling 
point xi and  wi is the weight ascribed to that point. These points xi and their weights wi are 
unknown, but have been tabulated in various books and those used in this paper have been 
presented in *use only for quadrilateral elements

Table 3-1.

We will not give a complete overview of how to find these sampling points and weights, but 
will give an example of how to use them and refer to Griffiths et al.(2006)4 for those who 
want to learn more about numerical integration methods.
The accuracy of the numerical integration increases as we use more sampling points, however 
the computation time required also increases when we add more sampling points. As a rule 
the Gaussian quadrature is accurate for polynomials of order 2n-1 where n is the number of 
sampling points used. Numerical integration using Gaussian quadrature can also be used in 
2D. *use only for quadrilateral elements

Table 3-1 already shows the appropriate sampling points in that case.
Important to note is that the weights and sampling points in *use only for quadrilateral elements

Table 3-1 can only be used for integrals with boundaries from -1 to 1. Obviously this is not 
usually the case for the integrals that we would like to solve. Therefore we will introduce a 
way to transform the limits of any integral to the ones needed. If we would like to transform 
the following integral:

   
1

1

b

a

F t dt f x dx


  (3.17)

We would use
   

2

b a x b a
t

  
 (3.18)

and
 

2

b a
dt dx


 . (3.19)

This allows us to use the Gaussian quadrature on any integral after transforming it to the 
correct boundaries.

As an example we consider the following integral:
2

2

0

t dt ,

first of all we’ll need to transform this integral to have the correct limits. Using equations 
(3.17) and (3.18) we arrive at:



15

 
2 1

2 2

0 1

2 1t dt x x dx


    ,

now we can use equation (3.16). Because we are integrating a quadratic function we shall use 
2 sampling points:

     
1

2
1 1 2 2

1

2 1x x dx w f x w f x


    .

If we fill in the correct sampling points and weights we can calculate the following:

   1 1 2 2

8
2.666666666666667

3
w f x w f x   ,

in this case 
8

3
is also the exact solution of the integral. Apparently for this simple example 

integral the numerical integration is exact. 
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n xi yi wi

2 -0,577350269189626 - 1,000000000000000
0,577350269189626 - 1,000000000000000

3 -0,774596669241484 - 0,555555555555556
0,000000000000000 - 0,888888888888889
0,774596669241484 - 0,555555555555555

4 -0,891136311594053 - 0,347854845137454
-0,339981043584856 - 0,652145154862546
0,339981043584856 - 0,652145154862546
0,891136311594053 - 0,347854845137454

4* -0,577350269189625 -0,577350269189625 1,000000000000000
0,577350269189625 -0,577350269189625 1,000000000000000

-0,577350269189625 0,577350269189625 1,000000000000000
0,577350269189625 0,577350269189625 1,000000000000000

6 0,445948490915965 0,445948490915965 0,111690794839005
0,445948490915965 0,108103018168070 0,111690794839005
0,108103018168070 0,445948490915965 0,111690794839005
0,091576213509771 0,091576213509771 0,054975871827661
0,091576213509771 0,816847572980458 0,054975871827661
0,816847572980458 0,091576213509771 0,054975871827661

7 0,101286507323456 0,101286507323456 0,062969590272414
0,797426985353087 0,101286507323456 0,062969590272414
0,101286507323456 0,797426985353087 0,062969590272414
0,470142064105115 0,059715871789770 0,066197076394253
0,470142064105115 0,470142064105115 0,066197076394253
0,059715871789770 0,470142064105115 0,066197076394253
0,333333333333333 0,333333333333333 0,112500000000000

9* -0,774596669241483 -0,774596669241483 0,296296296296296
-0,774596669241483 0,774596669241483 0,296296296296296
0,774596669241483 -0,774596669241483 0,296296296296296
0,774596669241483 0,774596669241483 0,296296296296296
0,000000000000000 -0,774596669241483 0,493827160493827

-0,774596669241483 0,000000000000000 0,493827160493827
0,000000000000000 0,774596669241483 0,493827160493827
0,774596669241483 0,000000000000000 0,493827160493827

0,000000000000000 0,000000000000000 0,790123456790123
*use only for quadrilateral elements

Table 3-1Sampling points and weights for normalized Gaussian quadrature. Data from: 
n=2,3,4: Griffiths et al(2006), Page2605;n=6, 7: Guermond et al(2004), page3606;4*,9*:already present in 
Phantom code.
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4 Testing the finite element method in Matlab

To get a better grip on the finite element method a Matlab program was written to solve 
differential equations using finite elements. This program solves equations of the form:

 
2

2 a

d u
D u f x

dx
   , (4.1)

in one dimension given a function f(x) and using Neumann boundary conditions. This 
equation resembles a neutron transport equation where a can be interpreted as a cross-
section and D as a diffusion constant.

The program includes both first –and second order finite elements and automatically 
calculates the root mean square error between the (known) analytical solution and the 
numerical solution of the chosen differential equation. 

4.1. Error calculation for determining the precision of the finite 
element method

One of the main reasons to develop this program was to test the accuracy of second order 
elements compared to first order elements. To determine the accuracy of a given method the 
root mean square error(RMSE) was used, given by formula(4.2):

    2

 n

1
* num n an n

all

RMSE u x u x
n

    (4.2)

Where n is the total number of nodes used in calculating the numerical solution, unum(xn) and 
uan(xn) are the numerical and analytical solution at node n respectively. 

What formula(4.2) calculates is amount by which the analytical and numerical solutions differ 
to give a measure of the precision of the numerical method. This error calculation is repeated 
multiple times, each time using more elements, and thus more nodes, to create a finer mesh. 
We expect to see a more accurate numerical solution and a lower RMSE as the mesh is 
increasingly finer. The amount of elements in this test case ranges from 25 to 400, starting 
from a coarse 25 element mesh and doubling until a much finer 400 element mesh is reached. 
In total 10 measurements of the RMSE are found, 5 for both the first –and second order 
elements.

As the number of elements increases the size of each individual element decreases. From J. 
van Kan et al.5 we expect a relation between the size of the elements used and the order of 
element used. Using first-order elements we expect the error to decrease with 2ch where h is 
the element size and c is some constant, while using second-order elements we expect the 
error to decrease with 3ch . To confirm our expectations all error data will be plotted in a log 
scale to easily determine the slope of the curve, in this case we expect a slope of ~2 for first 
order elements and a slope of ~3 for second order elements. The slope will be approximated 
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from the numerical data by using
y

slope
x





, which we will calculate using our last two data 

points.

4.2. Results for solving the Poisson equation

We modify equation (4.1) by choosing D=1 and 0a  , thus reducing it to the Poisson 

equation. The Poisson equation is relatively simple to solve and was solved for many different 
functions f(x), below the results for two of these functions will be given. Namely: 

 
   

3

2 cos

f x x

f x x x




,

with the following boundary conditions:

   0 0;  10 0u u  .

For   3f x x the analytical and numerical solution are plotted below in Figure 4-1 for a 

solution with 400 second-order elements. The analytical solution for 
2

3
2

d u
x

dx
 is: 

51
- x +501x

20analyticalu  .

Figure 4-1 both analytical solution u, for f(x) = x3, and numerical solution using 400 second-order elements

From Figure 4-1 it is clear that the numerical and analytical solutions are very close together, 
they are indiscernible in the graph. What we do learn from this is that the error between the 
two solutions should be very small when using 400 elements.

The second result that will be discussed is the solution of  
2

2
2

cos
d u

x x
dx

 . The analytical 

solution in this case is:

       2
analytical

4-94cos 10 +40sin 10
u =-4x*sin x +(x -6)*cos x + x+6

10
.
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Figure 4-2 shows the solution for second-order finite elements. As before we are unable to 
distinguish the analytical and numerical solution, the error between the solutions is too small 
to see.

Figure 4-2  both analytical solution u, for f(x) = x2cos(x), and numerical solution using 400 second-order 
elements

The RMSE was calculated for both these cases and was in the range of 10-12-10-13, indicating 
that the finite element method is, for all intents and purposes, exact in these cases and the 
error here is almost entirely represented by rounding errors. 

4.3. Solving a neutron transport like differential equation
Again we take equation(4.1), but this time we use:

 
2

sin
10 10

1

1

a

a

x
f x

D

                


 
.

This introduces a new u dependant term into our equation, which now looks like this:
22

2
1 sin

10 10

d u x
u

dx

                
, (4.3)

And has the following boundary conditions:

   0 10 0u u  .

The analytical solution for this equation is:

  sin
10

x
u x

   
 

.

To apply the finite element method to this equation we again use the procedure described in 
section3. Doing this we arrive at the following expression for the system matrix S:

ij i j j iS dx          . (4.4)

The other expressions remain the same and we will still solve equation(3.11) as before only 
substituting the new matrix from equation(4.4).

In Figure 4-3 we see both the analytical and the numerical solution of equation(4.3). Again 
the difference is impossible to see in the figure, however the error analysis will show that the 
error is much larger in this slightly more complex case compared to the Poisson case.
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Figure 4-3both analytical solution u and numerical solution using 400 second-order elements

In Figure 4-4 we see the RMSE for both first –and second-order elements plotted against an 
increasing number of elements. The results show a slope of ~2 for the first-order elements and 
a slope that is almost 4 for the second-order elements. From this we learn that the second-
order elements perform even better than initially expected. The overall increase in accuracy 
for the second-order elements over the first-order elements for the same number of elements 
used is also significant. Second-order elements increase the accuracy by as much as a factor 
of 106.
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Figure 4-4Root mean square for linear and quadratic line element. Including two additional lines to 
illustrate the slope of the RMSE.

4.4. Conclusions from Matlab case

By solving a simplified equation in one dimension we were able to test the method of finite 
elements. From the results obtained in this case it is clear that an increase in the number of 
elements leads to a much more accurate result. 
The most important conclusion from this case is that the second-order elements are far 
superior in accuracy to the first-order elements. Comparing the slopes of the curves in these 
cases shows that the accuracy of second order elements exceeds expectations.
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5 The one dimensional Reed problem

In this section we will solve the Boltzmann transport equation for a very specific geometry 
known as the Reed geometry. According to A.G. Buchan et al.8 the Reed problem is known as 
“a demanding test case for transport codes” and “has regions in which the angular flux 
distribution takes isotropic, highly peaked and intermediate forms”. Because of these factors 
the Reed problem is an excellent benchmark for testing the accuracy of the solver.

In this case the Phantom code mentioned previously will be used to solve the Boltzmann 
equation in the Reed geometry. Points of interest are again the accuracy of second order 
elements compared to, the known to be correct, first order elements.

5.1 Description of the Reed geometry

The Reed geometry consists of 5 regions of varying materials and cross-sections. The regions 
lie within a reactor lattice cell at the edge of a bare core. In a diagram of the Reed region has 
been given. Every region occurs twice in the figure, as the Reed geometry is symmetric.

Figure 5-1 Diagram of the Reed geometry, consisting of 5 regions with the left edge on a reflective 
boundary and the right edge on a vacuum boundary. Cross-sections and sources are given in the diagram. 

The first region lies in the middle of the geometry and contains an optically thick material. It 
also contains an isotropic neutron source. The second region is a 1cm fuel can, region 3 is a 
2cm void region. Regions 4 and 5 are moderators of 1cm and 2cm respectively, while    
region 5 is without a source and lies next to a vacuum boundary.

The geometry has a total length of 16cm and contains vacuum boundaries on both edges. The 
geometry used in the solver is scaled to a unit length. Because the entire cell has a length of 
16cm, all the sources and cross-sections have been scaled with a factor of 16 in the solver and 
the region now starts at x=-0.5 and ends at x=0.5. 

5.2 Results and error calculation for the Reed problem

The Boltzmann transport equation was solved for the Reed geometry using the Phantom code. 
The scalar part was solved using both first –and second order finite elements to compare the 
accuracy between the two, additionally the equation was solved using first, fifth and ninth 
order Legendre polynomials as described in equation(2.6).
The number of elements starts from 128 and doubles until 4096 equidistant elements are 
reached. The choice for the final amount of elements was made by looking at the convergence 
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of the solutions. It was computed that the difference between the solutions for 2048 and 4096 
was smaller than 10-7; further increase in the number of elements hardly decreased this 
difference while sharply increasing the computation time.

First we’ll look at the solutions found using first order elements, these solutions are known to 
be correct from previous tests with the Phantom code. In Figure 5-2 the scalar neutron flux is 
plotted, we can clearly see the 5 regions present in the Reed geometry. Starting from the 
middle at x=0.000cm where region 1 is, we notice that the neutron flux is almost constant 
only dropping at the edges of region 1. The cause for this is region 1 being optically thick, 
with the mean free path being much smaller than the diameter of the region and the balance 
between absorption and source resulting in a flat profile. Moving to the right we move into 
region 2, here we see a steep decline in the scalar flux because of the absorbing cross-section 
present in this region. Region 3 again shows a constant flux as it is a vacuum region. In region 
4 we see an increase in the flux due to the source present and finally a sharp decrease in the 
flux as we enter region 5 as the source term is gone and we come closer to the vacuum 
boundary.

Figure 5-2Neutron flux in the Reed region, results for 4096 first order elements. Solutions plotted for 
1(P1), 5(P5) and 9(P9) polynomials.

Looking at the difference in the solutions with respect to the order of angular polynomials 
used in solving them, we can see from that the solution for the first-order polynomial(P1) is 
lower than the solutions for the higher order polynomials P5 and P9. The cause for this is that 
some regions of the Reed geometry require a higher angular resolution to be able to correctly 
determine the neutron flux. In the constant flux regions the different solutions are much closer 
together than in the regions were the flux is rapidly increasing or decreasing. From this we 
note that for problems were the flux is expected to have a large angular dependency we 
should use an appropriate order of polynomials to ensure an accurate solution.

Next we’ll look at the solutions found for second order elements. The results for this case are 
indistinguishable from the results with first-order elements, and we refer to Figure 5-2 for the 
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results. What we can conclude is that the results for the second-order case are correct, the 
shape and value of the scalar flux are incredibly close to those of the first-order elements 
which were already known to be correct.

Finally we want to determine the accuracy of the two methods, for this we use the root mean 
square error as described in section 4.1 with the solution for 4096 second-order elements as 
the “true” solution. This solution will be treated as if it were the exact analytical solution. 
In Figure 5-3 the RMSE is plotted for first order elements and 3 different orders of angular
polynomials. The slope of the three curves has been approximated by using the last two points 
of the RMSE. By comparing the results with the slope 2 line plotted in blue it is clear that the 
slope of the RMSE is increasing for more elements. The difference in slope between the 
different polynomials is small, noting that the lowest order polynomial has the largest increase 
in accuracy when the number of elements increases. 
Before drawing conclusions we will first consider Figure 5-4 where the RMSE for second-
order elements has been plotted for the same angular polynomials and elements as in Figure 
5-3. Again we note the slope of the 3 curves, which is considerably higher than in the first-
order case. The RMSE when compared to the first-order elements is also much lower, 
dropping as low as 10-6 whereas the first-order elements don’t go below 
10-4. This is especially significant, considering that the amount of  first-order elements used to 
obtain the most accurate value for the RMSE was twice as big as the number of second-order 
elements used to obtain a better accuracy.

Figure 5-3 RMSE for first, fifth and ninth order polynomials and increasing numbers of first order 
elements. 
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Figure 5-4 RMSE for first, fifth and ninth order polynomials and increasing numbers of second order 
elements. 

5.3 Conclusions from Reed problem
The Reed problem gave us a benchmark to test our implemented second-order finite element 
method in one dimension. From the results it first became clear that the second-order elements 
were indeed correctly implemented when compared to the, known to be correct, solutions 
found with first-order elements. From the scalar flux in Figure 5-2 it is clear that the higher 
order angular polynomials contain larger discontinuities, which make it harder to accurately 
calculate the scalar flux in those regions. Because of the flux being less smooth in these 
regions, the expected accuracy is not reached when determining the slope of the RMSE.
The most important conclusion found from testing in the Reed problem was that the 
improvement in accuracy was indeed significant for second-order elements. The accuracy for 
only half as many elements was found to be much higher for second-order elements than for 
first-order elements in the Reed problem. Thus making the implementation of second-order 
elements useful in calculations that require higher accuracy.
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6 Testing on absorbing and scattering cross-section

To further test the implemented second order elements we determine the neutron flux on a 
simple geometry with given homogeneous source and known cross-sections. This was done 
with both first -and second-order elements in order to compare results and determine the 
increase of accuracy, if any, when using second-order elements. We hope to conclude that the 
second-order elements are much more accurate and therefore help reduce computation time 
by using fewer elements to receive the same result. The flux in these cases was only 
calculated for first-order polynomials in the angle(P1). 
First we’ll discuss the results found in one dimension for a pure absorbing cross-section and 
then move on to the results in 2D for both absorbing and scattering cross-sections. In 1D we 
use both the linear 2-node line element and the quadratic 3-node line element, while in 2D we 
use 3 –and 6-node triangles and 4, 8 –and 9-node quadrilaterals.

6.1 1D Calculations

In the 1D case we consider a one dimensional slab of 1 cm and a slab of 10 cm both with the 
same homogeneous source and cross-section. 
The mesh for this geometry was generated automatically in Phantom using same-sized 
equidistant elements.
Figure 6-1 shows a diagram of the geometry for the 1cm slab.

Figure 6-1Diagram of the one dimensional region with constant isotropic source 1cm-2s-1 and vacuum 
boundaries on both sides.

The geometry of the 10cm slab is exactly the same, except for the boundaries being at      -
5cm and +5cm. The neutron flux was calculated several times for these cases, starting at the 
coarsest mesh using only 8 line elements and doubling the amount of elements until a more 
accurate result was reached with 4096 elements. 
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6.1.1 Pure absorbing cross-section on 1D slab geometry

The neutron flux will be given for a mesh of 4096 elements using the following cross-sections:
1

1

0

1

s

t

cm

cm












,

where  s is the scattering cross-section and t is the total cross-section.
The flux for the 1cm slab geometry is shown below in Figure 6-2 and the flux for the 10cm 
slab geometry in Figure 6-3, both for second-order elements. We expect the neutron flux to be 
at its peak in the middle of the region, while slowly dropping to its lowest point on the 
boundaries to create a parabolic curve.

Figure 6-2Neutron Flux found with the second-order FEM using 4096 elements on the 1cm slab 
geometry.

Figure 6-3 Neutron Flux found with the second-order FEM using 4096 elements on the 10cm slab 
geometry.

The results from Figure 6-2 confirm our expectations and show a parabolic decay from the 
centre. The result for first-order elements will not be explicitly plotted since both first-order 
and second-order finite elements reach nearly the same result for a mesh of 4096 elements. 
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Figure 6-4Root mean square error on 1cm slab geometry for first(red) –and second-order(blue) elements 
of decreasing size h. Including two additional lines to illustrate the slope of the RMSE.

Figure 6-5Root mean square error on 10cm slab geometry for first(red) -and second-order(blue) elements 
of decreasing size h. Including two additional lines to illustrate the slope of the RMSE.
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To calculate the accuracy of the solutions we will use the second order result with 4096 
elements as the exact solution and calculate the RMSE using equation(4.2). In Figure 6-4 and 
Figure 6-5 the RMSE on the 1cm and 10cm slab has been plotted respectively. In both figures 
the first-order RMSE has 9 data points, while the second-order RMSE has been limited to a 
lowest error of 10-10. This was done because we were unable to accurately determine the 
RMSE below this point.

The results from Figure 6-4 and Figure 6-5 show that the second-order elements are much 
more accurate than the first-order elements. In the 1cm geometry the second-order elements 
reach an error of ~10-10 at 64 elements while the first-order elements never reach an error 
below ~10-8 even when using 2048 elements. 

6.2 2D Calculations

Testing the code for second-order elements in 1D show promising results. We now want to 
test the code for second-order elements in two dimensions to determine if these are also 
correctly implemented and of course to find out if they are more accurate than the first-order 
elements. The geometry in the 2D case is very similar to the 1D geometry. The geometry 
shown in Figure 6-1 is expanded in two dimensions, creating a 1cm by 1cm square with 
vacuum boundary conditions on each side and a constant source of 1cm-2s-1. The same is done 
to create a 10cm by 10cm square region. The number of elements is again doubled from a 
coarse 2x2 grid until a much finer 64x64 element grid is reached. The elements used in 2D are 
the quadrilateral and triangular elements, as described in sections 2.2 and 2.3. The 3-node 
triangle and 4-node quadrilateral elements will be referred to as the first-order elements, while 
the 6-node triangle and the 8 –and 9-node quads are the second-order elements.

6.2.1 Pure absorbing cross-section on 2D square geometry

The neutron flux will be shown for a mesh of 64x64 elements using the same cross-sections 
used in section 5.1.1 for the 1D case. In Figure 6-6 we see the neutron flux for the 1cm2

square geometry found using 9-node quadrilateral elements. The flux is highest in the center 
and declines towards the edges of the square. This is as expected since the mean free path and 
diameter are the same order of magnitude, which causes the boundaries of the region to have 
much more influence on the neutron flux. Figure 6-7 shows the neutron flux for the 100cm2

square region using 6-node triangular elements. In this case the flux remains nearly constant 
along the whole geometry. This was also expected since in this case the mean free path is 
much smaller than the diameter of the geometry, which means that the boundaries have little 
influence on the neutron flux and thus maintaining a much more constant result. 

Our other results using quadrilateral elements instead of triangular or vice-versa will not be 
shown since these are very similar to the other cases. The same is true for the 4 –and 8-node 
quadrilaterals and 3-node triangles. 
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Figure 6-6 Neutron Flux using 4096 9-node quadrilateral elements on the 1cm2 square geometry.

Figure 6-7 Neutron Flux using 4096 6-node triangular elements on the 100cm2 square geometry.
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Next we will move on to the error calculation in the 2D absorption case, where we again 
compare our most accurate solution of 4096 elements with the other solutions. We give both 
the RMSE for the triangular and the quadrilateral elements, for both the 1cm2 and 100cm2

square geometries. In Figure 6-8 we see the RMSE for the 4, 8 –and 9-nodes quadrilateral 
elements and for the 3 –and 6-node triangular element in Figure 6-9, both for the 1cm2 square 
geometry. For the 100cm2 square geometry we see the results in Figure 6-10 and Figure 6-11
for quadrilateral and triangular elements respectively. 

Interesting to note is that the 8 –and 9-node quadrilateral elements are much more accurate 
than the 6-node triangular element. On the other hand the 4-node quad reaches a comparable 
accuracy to the 3-node triangle, even being a bit less accurate. The slope of the RMSE for the 
different elements is as expected however, reaching values of ~2 for the first-order elements 
and ~4 for the second-order elements. Oddly the second-order triangle elements are less 
accurate for the 100cm2 case than for the 1cm2 case, while the quads are nearly the same. 
Before adding more conclusions we will look at another 2D case which includes a scattering 
cross-section.
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Figure 6-8Root mean square error on 1cm2 square geometry for three types of quadrilateral elements and 
decreasing element size h. Including two additional lines to illustrate the slope of the RMSE.

Figure 6-9Root mean square error on 1cm2 square geometry for two types of triangular elements and 
decreasing element size h. Including two additional lines to illustrate the slope of the RMSE.
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Figure 6-10Root mean square error on 100cm2 square geometry for three types of quadrilateral elements 
and decreasing element size h. Including two additional lines to illustrate the slope of the RMSE.

Figure 6-11Root mean square error on 100cm2 square geometry for two types of triangular elements and 
decreasing element size h. Including two additional lines to illustrate the slope of the RMSE.
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6.2.2 Scattering cross-section on 2D square geometry

We want to test our implemented second-order elements on different types of cross-section, 
so for this case we will look at a geometry containing a scattering cross-section. We use the 
same constant source and square 1cm2 geometry as in section 6.2.1 but with the following 
cross-section:
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making this an almost purely scattering case with only a very small absorbing cross-section. 
We’ll only treat the 1cm2 case this time, because testing our elements on a scattering cross-
section is the main goal.
The neutron flux has been plotted below in Figure 6-12 using 4096 9-node quadrilateral 
elements. Comparing this to Figure 6-6 we note that shape of the flux is less smooth at the 
edges of each colored region. The flux still drops of from its highest value in the middle to the 
lowest value at the vacuum boundaries as expected from the mean free path being in the same 
order of magnitude as the diameter of the geometry.
The neutron flux was also calculated using triangular elements, but again is very similar and 
will be omitted.

Figure 6-12 Neutron Flux using 4096 9-node quadrilateral elements on the 1cm2 square geometry with 
scattering cross-section.

In Figure 6-15 and Figure 6-16 the RMSE error has been plotted. Immediately we notice that 
the slope of the second-order elements is much lower than in the previous case, this time 
being around 3 instead of 4. The scattering cross-section is harder to accurately calculate, 
resulting in lower slopes than in the absorbing case. The main reason for this is the 
smoothness of the neutron flux in Figure 6-13, the flux in the area between two differently 
colored regions is less smooth than in Figure 6-14. This means that there is a big difference in 
the flux between two, spatially close, points.  
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Figure 6-15Root mean square error on 1cm2 square geometry for three types of quadrilateral elements 
and decreasing element size h. Including two additional lines to illustrate the slope of the RMSE.

Figure 6-16Root mean square error on 1cm2 square geometry for two types of triangular elements and 
decreasing element size h. Including two additional lines to illustrate the slope of the RMSE.
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6.3 Conclusions from testing on different cross-sections 

First of all the second-order elements have been shown to be correctly implemented and reach 
the same results for the neutron flux as their first-order counterparts. Knowing this, the main 
interest is to determine the increase in accuracy when using second-order elements. From our 
results it is clear that the second-order elements are far superior in terms of accuracy
compared to the first-order elements. Both in the 1D and 2D case the second-order elements 
reach the same accuracy at only a fraction of the elements necessary when using first-order 
elements. The different types of elements used in 2D have shown that the 9-node quad is the 
most accurate second-order element, providing better results than the triangular or 8-node 
quadrilateral element in each of our cases.
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7 Conclusion

In this report we tested the accuracy of second-order elements when solving the Boltzmann 
transport equation. We hoped to establish that the quadratic elements were more accurate, and 
by using several test cases we were able to determine that this was indeed the case.

Our first test cases using Matlab showed that the quadratic finite element was accurate, but
since these cases were very simple compared to the actual Boltzmann equation we could not 
conclude if this was true for actual neutron transport problems. 
The Reed problem showed that the quadratic elements were indeed much more accurate than 
second order, increasing the decrease in order from order 2 to almost order 4. Some 
interesting results were seen when using different orders of polynomials to solve for the 
angular part of the Boltzmann equation. It became clear that a change in angular distribution
and the way this is handled by the solver can have a large effect on the results.
While the Matlab and Reed cases were all done in one dimension, we also tested several 
square geometries. Here we tested both several different types of elements and different cross-
sections. From these two dimensional cases we conclude that again the quadratic elements are 
much more accurate, this being especially true for the quadrilateral 9-node element which was 
shown to be the most accurate. 

With these results we see a definitive increase in accuracy when using the quadratic elements. 
However there are still more improvements to be made. As a recommendation we would like 
to explore the possibility to decrease the computation time needed. One way to do this is by 
starting with a very rough mesh and determining from there what areas are most difficult to 
calculate. It would then be possible to increase the number of elements only in the areas that 
are harder to compute and thus save time and money on wasting computation time on less 
interesting regions.
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