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NOMENCLATURE 
Roman characters 

A m2 flow area  
Dh m hydraulic diameter 
f  friction factor 
g m s-2 gravity acceleration 
H J kg-1 specific enthalpy 
h J kg-1 specific enthalpy 
K  pressure loss coefficient 
L m length (without subscript: length of core) 
p Pa pressure 
Q J s-1 heating power of the core 
q J s-1 heat loss 
S m perimeter pipe 
t s time 
u m s-1 streamwise velocity 
V m3 volume 
W kg s-1 mass flow rate 
 

Greek characters 

µ Pa s dynamic viscosity 
θ rad angle 
λ  eigenvalue 
ρ kg m-3 density 
τ Pa shear stress 
υ m3 kg-1 specific volume 
 

Subscripts 

0  value lower part of the core 
1  value at upper part of the core 
B  value at buffer vessel 
D  value at downcomer 
IN  value at inlet at the core 
out  value at core outlet 
pc  value at the pseudo-critical point 
R  value at riser 
 

Dimensionless numbers 

NFr  Froude number 
Nsub  Subcooling-Number 
NΔh  Pseudo-Phase-Change-Number 
Re  Reynolds number 
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Other 
x   dimensionless variable 

X  
 steady state variable  

x  
 perturbation if lowercase is not available 

 

Abbreviations 

BWR  Boiling Water Reactor 
ESBWR  Economic Simplified Boiling Water Reactor 
HPLWR  High Performance Light Water Reactor 
NSB  Neutral Stability Boundary 
RPV  Reactor Pressure Vessel 
SCWR  Supercritical Water Reactor 
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ABSTRACT 
This thesis focuses on the stability of the European High Performance Light Water Reactor (HPLWR). The 

HPLWR design is based on the Supercritical Water Reactor concept (SCWR), which is one of the six 

Generation IV reactor concepts. This reactor is designed to facilitate safer operation, operate more 

efficient and environmentally friendly. The efficiency of a HPLWR is estimated to be 44% and this 

becomes among other things possible due to the high temperatures of the supercritical water. One way 

to enhance the safety of this reactor is to eliminate the need for pumps to drive the circulation of the 

water, an idea based on the Economic Simplified Boiling Water Reactor (ESBWR). Such a feature may 

introduce additional stability issues, which need to be investigated first. 

The stability of the whole system in this water loop driven by natural convection is investigated with a 

linear analysis. Two simplified water loop models have been developed and the conservation balances 

have been set up accordingly and linearized. The stability problem is solved by investigating the response 

of the system to introduced perturbations. Stability maps were derived for a range of operating 

conditions and investigated. A parametric study was performed to study the influence of various design 

parameters. The length of the riser turns out to be an important design parameter, because increasing 

the length destabilizes the system and on the other hand increases the mass flow rate. Consideration 

must go into the trade-off between a stable system and a sufficient mass flow rate. Also frequency maps 

were derived that give more insight into the type of instabilities occurring in the system. Finally, a 

method is proposed to find Ledinegg unstable regions in the stability maps for natural circulation driven 

systems. Ledinegg unstable regions were found in this research, but their position within the stability 

map could not be exactly predicted. 
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1 INTRODUCTION 

1.1 BACKGROUND OF RESEARCH 
With an ever increasing consumption of energy by the average world citizen reliable energy sources are 

becoming more important than ever. Due to the well-known effects of fossil fuel burning, emission of 

huge amounts of CO2 in the atmosphere, clean energy sources are key for a sustainable future. 

Therefore, research is more focusing on enhancing the nuclear reactors of this time. The nuclear reactors 

that are planned for construction or those which are currently under construction are mostly Generation 

III reactor types. However, a lot of scientists are nowadays researching the concept of a Generation IV 

reactor, which should be substantially more environmentally friendly, economical, efficient and support 

safer operation than the Generation III reactor type (Ortega Gómez, 2009). 

One of the Generation IV reactor concepts is the supercritical water reactor (SCWR), on which the aim of 

this thesis lies. The working fluid is water which serves as the coolant and as the moderator. This reactor 

operates under a high pressure with high temperatures. The pressure and outlet temperature lie above 

the critical point of water. This topic is further explained in section 1.2. A reactor based on the SCWR 

concept is also referred to as a High Performance Light Water Reactor (HPLWR). Research into this 

reactor, called the HPLWR Phase 2 project, is done by a consortium of 10 partners from 8 European 

countries funded by the European Commission. One of the unique design features of this reactor is its 

core configuration, see Figure 1.1. Water flows into the core in the upwards direction and heats up in 

three stages. Between these three stages mixing chambers are placed for a homogenous temperature 

distribution of the coolant. This three-pass core design provides uniform heating and prevents hotspots 

in the core (Ortega Gómez, 2009).  

 
Figure 1.1: A three-pass core design that provides uniform heating and prevents hotspots. The intermediate mixing chambers 

provide a homogenous temperature distribution. Source: (Fischer, Schulenberger, & Laurien, 2009). 
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The HPLWR operates under a pressure of 25 MPa and has a projected electrical power output of 1000 

MW (Schulenberg, et al., 2011). The main reason why supercritical water is used is the increased 

efficiency that becomes theoretically possible due to the higher outlet temperatures that can be 

reached. The outlet temperature of the water lies around 500°C (Ortega Gómez, 2009). Also as the water 

reaches a certain temperature, called the pseudo-critical temperature, the specific heat capacity 

increases significantly and the coolant can carry more heat from the core to the turbines without a large 

increase of temperature (see Figure 1.4). With a HPLWR an efficiency of approximately 44% can be 

achieved, in contrast with an efficiency of 33% with a Boiling Water Reactor (BWR) (Ambrosini & Sharabi, 

2008). Besides a higher efficiency more focus lies on the safety of a reactor. Power outages, for example 

caused by natural disasters or technical failure, could lead to failure of circulation pumps. Failure of such 

active systems, together with other circumstances, could result in a core meltdown. Therefore part of 

the research is done into nuclear reactors which rely less on pumps to drive the circulation of the 

coolant. The HPLWR has the potential to overcome this problem by the use of natural convection by 

placing a riser on top of the core. When the circulation is driven by natural convection pumps are not 

required to control the circulation and the natural convection provides an extra safety feature during 

emergencies. Pumps are still in place in case of other control issues, but do not necessarily have to be 

used to drive the circulation during operation.  

The natural convection in the water loop arises as follows. The relatively cold water (280°C) flows from 

the downcomer into the core where the water is heated up. When the temperature increases from 

368°C to 410°C it passes the pseudo-critical temperature (see section 1.2) and the density decreases 

from around 552 kg/m3 to around 145 kg/m3 (see Figure 1.2). So after the fluid has passed the pseudo-

critical temperature the density has significantly dropped and the fluid flows from the core into a riser. A 

riser is placed on top of the core to enhance the process of natural convection. Typically for natural 

convection driven reactors, such as the existing Economic Simplified Boiling Water Reactor (ESBWR), a 

riser is set on top of the core. In boiling water reactors natural convection becomes possible due to the 

phase transition of water from fluid to steam. The density difference between these two phases is used 

to create a gravitational pressure drop in the system to drive the circulation. A riser is placed on top of 

the core and a downcomer next to the core to let relative cold water flow downwards. Before the water 

flows in the downcomer heat is extracted and the water has a higher density. The riser enhances the 

gravitational pressure drop so that it can support the circulation of the coolant. A comparable density 

drop is also present in the HPLWR only without a phase transition. In the riser the supercritical water is 

significantly lighter than the fluid in the downcomer due to the density drop and the resulting pressure 

drop supports the circulation. 

This mechanism also provides a negative feedback loop. Whenever the mass flow rate decreases for 

some reason the water in the core heats up and reaches the pseudo-critical point earlier in the loop. The 

density decreases at a lower part of the core and the net force between the downcomer and the 

core/riser becomes greater, resulting in an increase of the mass flow rate. The exact opposite happens 

when an increase of the mass flow rate is introduced and the system returns to its steady state 

eventually.  
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1.2 SUPERCRITICAL WATER 
Water can exist in four states as shown in Figure 1.3. There exist one state in which the water has gas 

and fluid like properties, this is called the supercritical state. Water exists in this state when the pressure 

and the temperature both lie above the critical point of water. This point is located at Tc=373.946°C and 

pc=22.0640 MPa. The HPLWR operates under a constant pressure of 25 MPa and therefore the state, 

liquid or supercritical, of the water depends only on the temperature. As stated earlier, water flows in 

the core at a temperature of 280°C with the water being in its liquid state. However, as the water heats 

up in the core it exceeds the critical temperature and becomes supercritical, indicated by the dashed line 

in Figure 1.3. The HPLWR is considered as an one-phase system, because the lack of a phase transition. A 

phase transition occurs in a BWR and therefore the BWR is a good example of a two-phase system, 

because the water is turned into steam in the core.  

As the water heats up even more the water passes the pseudo-critical point, which lies at Tpc=384.9°C. 

This pseudo-critical point is defined as the point where the specific heat capacity has its maximum, see 

Figure 1.4. Water has a highly non-linear behavior around this point. Although there exists no phase 

change at this point, the density makes a significant drop comparable to the density drop in a BWR due 

to the phase change. This point is taken as a reference point in this thesis as will be clear in section 2.4. 

The next table shows a list of properties of water at the pseudo-critical point, which will be used later on.  

 

 

Figure 1.2: Density of water versus temperature at a pressure of 25 MPa. The density drop occurs around the pseudo-critical 

temperature (384.9°C). Data taken from (NIST, 2011).  
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Table 1.1: Properties of water at the pseudo-critical point. Data taken from (NIST, 2011). 

Property Value 

Tpc 384.9°C 

hpc 2.1529·106 J/kg 

ρpc 316.82 kg/m3 

υpc 3.1564·10-3 m3/kg 

µpc 4.2797·10-5 Pa·s 

 

 

 
Figure 1.3: Phase diagram of water. As the water heats up in the core the water undergoes a phase change from a liquid state 

to a supercritical state. Modified image taken from (Ortega Gómez, 2009). 

 
Figure 1.4: Specific heat capacity versus temperature at a pressure of 25 MPa. The pseudo-critical point lies at the maximum 

of the specific heat capacity. Data taken from (NIST, 2011). 

  



5 

 

1.3 THE STABILITY PROBLEM 
In the last few decades a lot of research has gone into the stability of the water loop in BWRs. In a two-

phase flow system, such as the BWR, different type of instabilities were classified by Boure et al. (1973). 

Density wave oscillations were found to be one the most contributing instabilities present in two-phase 

flow systems (Papini, Cammin, Colombo, & Ricott, 2012) and are therefore excessively investigated by 

many through experimental and analytical studies. For instance, Van Bragt (1998) did a research into 

stability problems associated with natural convection core cooling in BWRs and performed a parametric 

study to investigate the influence of different parameters on the stability of the water loop. Because in a 

supercritical water loop a comparable density drop occurs as in a two-phase flow system the 

presumption arose that density wave oscillation instabilities are also present in these supercritical 

systems in which only one phase exists. This research investigates the response of a natural circulation 

driven supercritical water loop to introduced perturbations and checks if similar instabilities as in a BWR 

are found. 

When the system is exposed to a perturbation it can respond in two ways. One possibility is that the 

perturbation decays over time and the mass flow rate returns to its original state; the steady state mass 

flow. The second possibility is that the perturbation can grow in time and can make the mass flow to 

oscillate with increasing amplitude, which is unfavorable. An unstable mass flow can have unwanted 

consequences. For instance, the water is also used as the moderator and an unstable mass flow could 

lead to power instability. Also mass flow oscillations could lead to fatigue (or even damage) of reactor 

components and compromise the safety (Jain & Rizwan-Uddin, 2008). Furthermore, it is possible that the 

flow rate becomes low enough and that the mass flow becomes unable to cool the core down and 

reactor components may overheat. It has been shown that the stability of the system depends on 

various design parameters and operating conditions (Van Bragt, 1998), such as the power, flow rate, inlet 

temperature and geometry (e.g. the core layout, the axial friction profile and fuel characteristics).  

There are different type of instabilities that can occur in a natural circulation driven supercritical water 

loop. Van Bragt (1998) showed that different type of instabilities were present in a BWR. There are 

dynamic instabilities which can be solved with a time dependent approach and there are static 

instabilities which can be solved with the steady state equations. Van Bragt (1998) made a distinction 

between two types of dynamic instabilities. Type-I instabilities occur with a low frequency and are 

caused by the gravitational pressure drop. Whereas the Type-II instabilities are of a higher frequency and 

are caused by frictional pressure drops in the natural circulation loop (Van Bragt, 1998).  

Boure et al. (1973) divided the static instabilities into three classes, of which fundamental static 

instabilities is one of them. Ledinegg instabilities belong to this class of instabilities. A Ledinegg instability 

is a sudden change of the mass flow to a higher or lower value (Ortega Gómez, 2009). In a water loop 

driven by a pump these flow changes occur when the pressure versus mass flow rate characteristic of the 

pump intersects at multiple points with the pressure characteristic of the water loop. An unstable mass 

flow can then change its mass flow rate abruptly to another mass flow rate, which can be stable. (Ortega 

Gómez, 2009). However, in this research there is no pump, because the circulation is driven by natural 

convection. Therefore, another method must be found to search for Ledinegg instabilities. 
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1.4 LITERATURE SURVEY 
Up to now the stability of a supercritical water loop driven by natural convection is not studied as 

abundantly as flow instabilities in two-phase systems. Also, the HPLWR Phase 2 project focusses its 

attention mainly on the development of a HPLWR with forced circulation. However, a number of 

researchers investigated this subject with various approaches. Chatoorgoon (2001) began with 

investigating the stability of a supercritical water loop driven by natural convection with a non-linear 

code, called SPORTS, and an analytical model. His analytical model was based on a simplified 

configuration of a single channel, natural circulation loop with a heat source and sink modeled as a point 

source. He postulated that the instability boundary for such a system can be approximated with the 

criterion 
( )

( )
0

d flow

d power
 , instability boundary occurs in the near peak region of the flow versus power 

characteristic, and found an analytical formulation for the stability boundary. The numerical results from 

the non-linear code showed good agreement with these analytical results. Chatoorgoon et al. (2005) 

continued investigating flow instabilities, i.e. parameter study, with the non-linear code SPORTS for 

different supercritical fluids; H2O, CO2 and H2. Found was that the stability characteristic of supercritical 

CO2 was similar to supercritical H2O, which makes experiments easier to perform due to the fact that CO2 

reaches the supercritical state at a lower pressure and temperature (Chatoorgoon 2005b). 

Subsequently, a numerical analysis for flow instabilities of a supercritical loop with CO2 was performed 

by Jain and Rizwan-uddin (2008). Non-linear one dimensional equations were set up for a single channel 

and solved using an implicit finite difference scheme, whereby the water loop was divided into a number 

of grid points. Neutronic-thermo-hydraulic coupling was not taken into account. The main conclusion of 

this research was that the instability region is not confined to the peak region of the mass flow rate-

power curve (Jain & Rizwan-Uddin, 2008) as opposed to findings by Chatoorgoon et al. (2005b). Results 

obtained by Sharma et al. (2010) confirmed this conclusion. They performed a steady state and linear 

stability analysis of a supercritical natural circulation water loop and studied the effect of various design 

parameters.  

Furthermore, Ortega Gómez (2009) investigated the stability of a HPLWR core (forced circulation loop) 

and did not find Ledinegg instabilities for the operating conditions of a HPLWR. Though, Ambrosini 

(2011) did an assessment of flow stability boundaries in a heated channel (forced circulation) for 

different supercritical fluids and found two adjoining regions in the instability domain where Ledinegg 

instabilities and density wave oscillations occur. Both Ortega Gómez (2009) and Jain (2008) indicated 

that little to no experimental data was available about the instabilities of a supercritical (forced or 

natural circulation) water loop at that time. Lomperski et al. (2004) investigated the stability of a 

supercritical CO2 natural circulation loop experimentally, but found no flow instabilities and therefore no 

agreement was found with numerical results obtained by Jain (2008). After their research an 

experimental setup was built at the Reactor Institute of the TU Delft to investigate the stability of a 

natural circulation driven supercritical loop experimentally. This setup, named the DeLight ('Delft light 

water reactor facility'), used Freon R23 as the working fluid for the same reasons CO2 is used in the 

research of Jain (2008). Freon R23 has similar properties around the pseudo-critical point as water, only 

this point is reached at a temperature of 33°C and a pressure of 5.7 MPa (T'Joen & Rohde, 2012). 
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Neutronic-thermo-hydraulic coupling was taken into account during the experiment and resulted in an 

instability region for certain operating conditions. Subsequently, Kam (2011) and Spoelstra (2012) 

worked on numerical modeling of the experimental setup with a computer code. Their results were 

compared with the experimentally found instability domain, but have matched only partially (Spoelstra, 

2012). 

1.5 OUTLINE 
The impetus for this research was the research done by Guido et al. (1991), which investigated density 

wave oscillations in parallel boiling water channels with a simplified treatment of the stability problem. 

They were able to derive explicit expressions for the stability limits of the system by simplifying the 

model and approaching the stability problem with a linear analysis. A similar approach is applied in this 

thesis for the stability problem of a natural circulation driven HPLWR. In reality the problem is much 

more difficult and, therefore, this research deals with the stability problem in a qualitative way. The 

HPLWR is simplified as much as possible and a linear analysis is done. By simplifying the problem 

calculations can be done quicker, making parameter studies accessible for instance. Stability maps can 

be derived rather quick and the stability maps can be investigated extensively for their characteristics. 

This research performed a parameter study for a natural circulation driven supercritical water loop and a 

method to find Ledinegg instabilities is proposed. This research is a continuation of the initial work of 

Rohde, who proposed the simplified water loop model and derived a part of the mathematical 

foundation presented in this thesis. The next chapter will present the simplification of the HPLWR, will 

lay down the mathematical foundation for the simplified water loop and prepare the model for a linear 

analysis. Chapter 3 will continue with the solving of the stability problem followed by chapter 4, which 

will elaborate on the computational implementation of the stability problem. Matlab has been used for 

the scripting and coding. Chapter 5 will present a parameter study and investigate the type of 

instabilities occurring in the system. Finally, a conclusion is drawn and thought for discussion and future 

research is given.  
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2 MATHEMATICAL FOUNDATION 

2.1 THE HIGH PERFORMANCE LIGHT WATER REACTOR  
The HPLWR is based on the SCWR concept, see Figure 2.1. The complete design of the HPLWR is 

presented in the public final report of the HPLWR Phase 2 project (Starflinger, 2010). The aim of this 

thesis lies on a HPLWR driven by natural convection, but because this concept has not yet been 

investigated abundantly there are not any schematics of a HPLWR driven by natural convection yet. For 

that reason the simplified schematic of the SCWR shown in Figure 2.1 does not include a riser and a 

pump is needed to drive the circulation. Therefore the reader must keep in mind that a riser has to be 

placed on top of the core to enhance the natural convection.  

 
Figure 2.1: A simplified schematic of the SCWR concept. The water heats up in the core and as the volume increases the mass 

flow rate does as well. The water drives the turbines and the heat is removed with a condenser. Notice that there is no riser 

present on top of the core and the circulation is not driven by natural convection, but with a pump. Source: (Ortega Gómez, 

2009). 

The water flows at the bottom of the Reactor Pressure Vessel (RPV) into the core where it undergoes a 

three stage heating process as shown in Figure 1.1. The inner layout of the RPV is displayed in Figure 2.2a 

in which the flow of the water is indicated with arrows. The water flows in the upward direction into the 

evaporator and heats up to a temperature of 390°C and is mixed in the after coming mixing chamber. 

Then the water flows in the downwards direction through the superheater 1 stage in which it heats up to 

433°C. The water is mixed again and then flows upwards into the superheater 2 stage where it finally 
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leaves the core at a temperature of 500°C. A cross section of the core is displayed in Figure 2.2b. The 

three stages consist of 52 fuel assembly clusters, which each consists of nine fuel assemblies in which the 

water flows along the fuel rods. The water passes the pseudo-critical point in the core and has expanded 

significantly. The water is then led through the riser to create a gravitational pressure drop to drive the 

natural convection and eventually the water drives the turbines which generate electrical power. After 

the turbines heat is extracted with a condenser until the water has the desired inlet temperature and 

then it is led back to the inlet of the core through a annular downcomer surrounding the core. During 

one cycle the water flows through various channels, bends, mixing chambers and valves. It therefore 

becomes a complex system when one wants to model the flow of the water. 

 
Figure 2.2: (a) Inner layout of the reactor pressure vessel with the direction of the mass flow indicated with arrows. The 

coolant is led into the core and flows in the upward direction into the evaporator, then downwards in the superheater 1 and 

finally upwards in the superheater 2 where it leaves the core through one of the hot pipes. Source: (Ortega Gómez, 2009). (b) 

Cross section of the three-pass core design. Every fuel assembly cluster contains nine fuel assemblies in which the water 

flows along the fuel rods. Source: (Starflinger, 2010). 

Besides the transport of heat from the core the water is also used for the moderation of the neutrons. 

Fast neutrons collide with the hydrogen atoms of water and lose a part of their kinetic energy. The 

moderation of the core is therefore dependent on the density in the core. As the water heats up and the 

density decreases the moderation of the neutrons decreases as well. The power of the core is therefore 

coupled with the thermo-hydraulic properties of the coolant (Spoelstra, 2012).  

Furthermore, as the water heats up in the core it becomes supercritical and as the pseudo-critical 

temperature is reached various properties of water behave non-linearly, see Figure 2.3. As discussed 

earlier the density undergoes a sudden drop and the heat capacity has a large peak around the pseudo-
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critical temperature. The viscosity also makes a sudden drop in the vicinity of the pseudo-critical 

temperature and then slowly rises as the temperature increases. This non-linear behavior of the 

properties play an important role in the heat transfer phenomena in the HPLWR.  

 
Figure 2.3: Properties of water in the temperature range of the HPLWR. Note that the properties are normalized. Source: 

(Spoelstra, 2012).  

2.2 SIMPLIFICATION OF THE HPLWR 
In order to investigate the stability a mathematical foundation for the supercritical water loop must be 

constructed. The idea is to solve the stability problem with a very simplified approach just as Guido et al. 

(1991) did for a single boiling water channel. Therefore the HPLWR is simplified as much as possible with 

a water loop while maintaining the physical properties of the system. The resulting water loop is 

displayed in section 2.3. 

2.2.1 THE EQUATION OF STATE 
An important simplification involves the equation of state. The density of water can be written as a 

function of enthalpy if the pressure is constant, the equation of state. The system should operate under 

a constant pressure of 25 MPa, but due to gravitational and frictional pressure drops the pressure is not 

constant throughout the system. Though, the changes of the equation of state due to pressure changes 

can be neglected and the pressure is assumed to be constant in this thesis. With the use of the equation 

of state the density and specific volume variables in the upcoming balances can be substituted by the 

enthalpy. In Figure 2.4 the density and specific volume of water are plotted in red for the specific 

enthalpy.  

In this thesis a two-region approximation for the equation of state is used, indicated by the blue line in 

Figure 2.4. The density is approximated with a linear function before the pseudo-critical point and the 

specific volume is approximated with a linear function after the pseudo-critical point. The gradients of 

the linear functions are C1=-4.7877·10-4
 and C2=0.80·10-8 respectively. This gives the following 

approximation of the equation of state in which υ denotes the specific volume and H the enthalpy.  
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At the transition between the two different approximations a discontinuity occurs in the slope of the 

approximation of the equation of state, because the two approximations are set up independently for 

the two regions. The two approximations of the equation of state intersect at the pseudo-critical point. 

 
Figure 2.4: The equation of state describes the density as a function of enthalpy. In red the data for water from NIST (2011) 

and in blue the approximation made in this thesis are plotted. Note the linear behavior of the density before hpc and the 

linear behavior of the specific volume after hpc.  

2.2.2 GEOMETRY 
Besides the equation of state further simplifications are made considering the geometry of the HPLWR. 

The HPLWR is simplified to a 1 dimensional water loop and these simplifications are discussed here. 

2.2.2.1 Channel geometry 

The core of the HPLWR has many channels through which the water flows along the fuel rods. In this 

thesis the core is simplified to one single straight channel in which the water flows in the upwards 

direction and is heated by the inner wall of the channel. A single channel riser is placed directly on top of 

the core with the same flow area A and hydraulic diameter Dh. These two design parameters are 

assumed to be constant throughout the whole system. The mixing chambers between the three heating 

stages in the core are left out of the model.  
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2.2.2.2 Turbines and heat exchanger 

The water in the HPLWR goes through a whole system of turbines and heat exchangers. To simplify this 

part of the water loop a buffer vessel is introduced after the riser. The buffer vessel allows isobaric 

expansion of the water and functions as a heat exchanger. In the buffer vessel the water is cooled down 

to the desired inlet temperature and led to the downcomer. The downcomer in the HPLWR is annular 

and surrounds the core, but the downcomer is also simplified to a single channel with the same design 

parameters as the riser and the core. 

2.2.2.3 Frictions 

The water flow in the HPLWR is subjected to friction of the inner walls of the channels and various 

restrictions caused by bents, valves and other deformations of the channels. The frictional profile of the 

entire water loop is therefore highly complex and is simplified in this thesis. The various local restrictions 

in the channels are modeled with one inlet restriction for each part of the system and the accompanying 

pressure loss coefficient is denoted with K.  

Furthermore, the friction due to wall shear is rather complex when the system is composed of many 

different components and various channels. The system is simplified to a single channel system and 

therefore the friction caused by the wall shear can be modeled with the Darcy friction factor f. Many 

approximations exist for the Darcy friction factor such as the Haaland equation, Swamee–Jain equation 

etc. The approximation used in this thesis is the Blasius relation for turbulent flow, discussed further in 

section 4.2.3. The Reynolds number is present in the Blasius relation and depends inter alia on the 

dynamic viscosity. As seen in Figure 2.3 the viscosity also displays non-linear behavior, though the 

dynamic viscosity is set to a constant in this thesis for simplicity. This simplification of the Darcy friction 

factor results in the same friction factor for each channel.  

2.2.2.4 Other simplifications 

Besides the basic geometry simplifications a few other aspects of the HPLWR have been simplified. 

Thermal inertia of the walls is neglected and instant heating of the water by the core is assumed. Also 

the riser and downcomer are assumed to be isolated and prevent heat losses. The only heat loss present 

in the system occurs in the buffer vessel where the heat of the water is extracted to simulate the 

turbines and the heat exchanger in an actual HPLWR.  

Moreover, the water acts as the moderator and hence has an influence on the power of the core, 

especially when the density varies significantly along the height of the core. This neutronic-thermo-

hydraulic coupling is not taken into account in this research and the core is assumed to provide a time 

constant homogeneous heat distribution over the entire length of the core.  
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2.3 THE WATER LOOP MODEL 
The simplifications discussed in the previous section lead to the use of the following simplified water 

loop models for the HPLWR. There are in fact two different loops that must be considered. As became 

clear during the research the initial water loop model was insufficient for certain operating conditions. 

Therefore, two different models had to be set up in order to cover all operating conditions. The first one 

is based on the fact that the water does not reach the pseudo-critical temperature and the second one 

applies to the case in which the water reaches the pseudo-critical temperature in the core. The idea 

behind these models is to qualitatively investigate the instability and to keep the system as simple as 

possible by dividing it into a few nodes in order to analytically solve for the instability of the system. 

 
Figure 2.5: (a) The low heating model with four nodes. The enthalpy in the core is assumed to increase linearly and the riser is 

considered as a perfectly mixed volume. (b) The high heating model with five nodes. The split up of the core is necessary due 

to the two-region approximation of the equation of state. The riser and node 1 are considered as perfectly mixed volumes. 

For the first model the water loop is divided into four nodes, see Figure 2.5a. In this case the power is 

not large enough to heat the water up till the pseudo-critical point, this can be caused by a low power 

input or a high mass flow rate. From now on this model will be referred to as the low heating model. The 

enthalpy of the water in the core is assumed to increase linearly from HIN to Hout. An uniform power 

distribution is applied along the height of the core. The outlet enthalpy Hout stays below the pseudo-

critical enthalpy and only one approximation is needed for the equation of state. Hout is time dependent, 

because if for instance a perturbation is introduced to the mass flow the outlet enthalpy changes. After 

the core the water flows into the riser where no heat loss occurs. The riser is considered to be a perfectly 

mixed volume where the enthalpy is equal to H1. Besides the core and the riser, there are also the buffer 

vessel and the downcomer. Because the system should operate under a constant pressure of 25 MPa the 
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buffer vessel is needed for the isobaric expansion of the heated water. The buffer vessel also acts as the 

heat exchanger to carry off the heat and to cool the water in the downcomer down to the desired inlet 

enthalpy HIN. For every node the flow area and the hydraulic diameter is the same and denoted with A 

and Dh respectively. 

For the second model the water loop is divided into five nodes, see Figure 2.5b. This model is based on 

the situation in which the operating conditions, power and inlet temperature, let the water reach the 

pseudo-critical point in the core. This model will be referred to as the high heating model. The core is 

divided into two nodes; indicated with indices 0 and 1. The boundary between these two nodes is 

defined as the point where the water reaches the pseudo-critical temperature and thus has an enthalpy 

hpc=2.15·106 J/kg. The reason for the split up of the core in this model is the approximation of the 

equation of state. As explained in section 2.2.1 the density and specific volume are approximated with 

two different linear functions, where the transition from one approximation to the other occurs at the 

pseudo-critical point. The linearization of these approximations are different for the two approximations 

and therefore the split up is necessary. The boundary between these two nodes is dynamic, because 

when for instance the mass flow is increased by a perturbation the pseudo-critical point will be reached 

later in the core. In node 0 the enthalpy is considered to behave linearly and therefore the enthalpy rises 

linearly from HIN to hpc. Node 1 of the core as well as the riser are considered as perfectly mixed volumes, 

where the enthalpy is equal to H1 and HR respectively.  

2.4 THE LOW HEATING MODEL 
This research investigates the stability of the water loop with a linear analysis. Perturbations are 

introduced to the system and their influence is examined. First the conservation balances are set up for 

each node of the loop and the number of equations and variables is then reduced. Secondly, the 

equations are made dimensionless so dimensionless parameters can be derived that are characteristic 

for the system and stability plots for different setups can be compared. The equations are finally 

linearized to solve the stability problem with a linear analysis. 

2.4.1 CONSERVATION BALANCES 
The three different conservation balances are stated here, beginning with the mass balances followed by 

the energy balances. Finally, the momentum balance is derived and integrated along the entire loop. The 

subscripts below each variable represent the different nodes in the water loop model. In the equations 

the time dependent variables are written without the addition of “(t)”.  

2.4.1.1 Mass balances 

The low heating model handles the core as one node and, therefore, the length of this node is constant. 

The enthalpy of the core is assumed to increase linearly from HIN to Hout(t). The time dependent outlet 

enthalpy Hout(t) depends on the inlet enthalpy and the power of the core. This makes the density 0 (t) 

of node 0 time dependent as well in contrast with the high heating model, see section 2.5.  
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 0 0 0: out

d
M AL W W

dt
    (2.2) 

 :R R R out R

d
M AL W W

dt
    (2.3) 

 0:B IN B R

d
M V W W

dt
    (2.4) 

 0 0: 0 0DM W W    (2.5) 

W(t) represents the mass flow rate (in kg/s) and VB(t) is the volume of the buffer vessel. The latter 

equation equals zero because in the downcomer nothing happens. The density, flow area and length are 

constant and the flow passes through adiabatically. This equation can therefore be omitted, because it 

does not contribute to the solution. Mi indicates that the equation follows from the mass balance at 

node i.  

Equation (2.6) represents the relation between the density of node 0 and the inlet and outlet density, ρIN 

and ρout(t) respectively. This relation holds, because the density ρ0(t) is approximated with a linear 

function of the specific enthalpy before the pseudo-critical point (equation (2.1)) and the enthalpy H0(t) 

is assumed to increase linearly. This relation will be substituted in the dimensionless balances. 

  1
0 2 IN out     (2.6) 

So far there are 3 equations and 6 variables. 

Equations: M0 MR MB    
Variables: ρout(t) ρR(t) VB(t) Wout(t) W0(t) WR(t) 
 

2.4.1.2 Energy balances 

Up next are the four energy balances given for each node. The energy balances introduce four extra time 

dependent variables; HR(t), H0(t), Hout(t) and q(t). As stated earlier, the enthalpy in node 0 is considered 

to increase linearly and is time dependent. The inlet enthalpy HIN and the power input Q are considered 

to be the operating conditions and are therefore constant. The energy balances are: 

 0 0 0 0: IN out out

d
E AL H W H W H Q

dt
     (2.7) 

 :R R R R out out R R

d
E AL H W H W H

dt
    (2.8) 

 0:B IN IN B R R IN

d
E H V W H W H q

dt
     (2.9) 

 0: 0 0D o IN INE W H W H    (2.10) 
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Equation (2.9) can be omitted, because this equation does not determine the solution of the other 

variables (VB(t) is not used anywhere). The variable q is then also disregarded. And just as with the mass 

balance for the downcomer the latter equation ED can be omitted as well. The enthalpy of node 0 is 

considered to increase linearly and therefore the enthalpy of node 0 can be written as follows:  

  1
0 2 IN outH H H   (2.11) 

This relation will also be substituted into the dimensionless balances and leaving in total 5 equations and 

8 variables. 

Equations: M0 MR MB E0 ER    
Variables: ρout(t) ρR(t) VB(t) Wout(t) W0(t) WR(t) Hout(t) HR(t) 
 

2.4.1.3 Momentum balance 

The momentum balance is integrated along the entire loop. Due to the long derivation only the end 

result is presented here. The entire derivation for the momentum balance of the high heating model is 

given in Appendix A. The derivation for the low heating model is analogous.  
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 (2.12) 

In this equation f is used for the Darcy friction factor and K represents the pressure loss coefficient due 

to local changes in the geometry of the system. The line in the middle of equation (2.36) represents the 

frictional pressure drop due to wall shear and inlet and outlet restrictions and the last line represents the 

gravitational pressure drop. I denotes the momentum conservation balance. 

From the steady state momentum balance the steady state mass flow rate W can be calculated and is 

given below. This quantity will be of use later on when the Froude Number is introduced. In steady state 

the gravitational pressure drop is equal to the frictional pressure drop, because the gravity drives the 

circulation and the friction puts a limit on the flow. In the steady state the steady state mass flow rate for 

each node is equal and can therefore be taken out of the friction term.  
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 (2.13) 

So in total there are 6 equations and 8 variables.  

Equations: M0 MR MB E0 ER I   
Variables: ρout(t) ρR(t) VB(t) Wout(t) W0(t) WR(t) Hout(t) HR(t) 
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2.4.2 REDUCTION OF VARIABLES AND EQUATIONS  
The conservation balances for the low heating model are now known. With the use of the mass balance 

MR the variable Wout(t) can be substituted, because Wout(t) has no time derivative. The expression for 

Wout(t) can be written explicitly from equation (2.3):  

 out R R R

d
W AL W

dt
   (2.14) 

With this substitution one equation and one variable are omitted. Also the mass balance for the buffer 

vessel can be substituted into the momentum balance, omitting equation MB and variable VB(t). Last but 

not least, the densities can be substituted with the equation of state and therefore omitting ρout(t)and 

ρR(t). Only 4 equations with 4 variables remain. 

Equations: M0 E0 ER I     
Variables: W0(t) WR(t) Hout(t) HR(t)     
 

2.4.3 DIMENSIONLESS BALANCES 
So far the balances are set up and the following variables and constants are made dimensionless and 

inserted into the equations, see Table 2.1. The tildes indicate the dimensionless variables, dimensionless 

constants and dimensionless equations. The lower characters represent the perturbed variables, which 

will be present in the linearized equations. Furthermore, X denotes the steady state variable.  

Table 2.1: These variables and constants are made dimensionless and substituted into the conservation balances. 
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The dimensionless balances are given next. Note that the variables H0(t), VB(t) and the densities ρout(t), 

ρR(t) ρ0(t) and ρIN(t) are still present in the dimensionless balances. Substituting these already would 

reduce the readability and clarity of the equations.  

Mass conservation balance 

 0 0 0: R R R

d d
M W L W

dt dt
     (2.15) 
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Energy conservation balances 

 0 0 0 0: 1IN out R R R

d d
E H W H H L W

dt dt
 

 
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 
 (2.16) 
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 (2.17) 

Momentum conservation balance 
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 (2.18) 

The momentum balance has been made dimensionless and the Froude number is substituted for the last 

three terms, see equation (2.18). The Froude number is a dimensionless quantity that represents the 

influence of the gravity with respect to convection. The steady state mass flow rate W can be calculated 

with equation (2.13), because it needs to be substituted in the Froude number.  
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  (2.19) 

2.4.4 LINEARIZED CONSERVATION BALANCES 
In this research the problem is solved with a linear approach and will be explained in chapter 3. In order 

to investigate the stability with linear analysis the dimensionless balances have to be linearized. The 

variables are substituted with the steady state solution and a perturbation, indicated with a lowercase 

character: X X x  . The assumption is made that the perturbations are very small and 

multiplications of perturbations are even smaller and are therefore neglected. For example: 

   i j i i j i i j i j i j i iX X X x X x X X X x x X x x         

Also during the linearization the terms i j

d
x x

dt
are assumed to be very small and neglected. When the 

equations are linearized, the steady state balances are subtracted from the linearized equations in order 

to investigate the solution of the stability problem around the steady state.  
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To eliminate the specific volumes υ0=1/ρ0 and υR=1/ρR in the linearized momentum balance the 

approximation of the equation of state has to be linearized as well. In the low heating model the water 

stays below the pseudo-critical point and therefore υ0(t) and υR(t) always lie below the specific volume 

υpc at the pseudo-critical point. Therefore only the first part of equation (2.1) has to be linearized for 

now. This can be done with a Taylor expansion (see Appendix A) where the higher order terms can be 

neglected, because these are multiplications of perturbations and therefore very small. 
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 (2.20) 

The linearization of the perturbed variable follows from this Taylor expansion (indicated with red in 

equation (2.20)) and is stated in equation (2.21) in its dimensionless form. Due to the limited symbols, 

the notation 
i is used here for the indication of the perturbed variable for the specific volume. 

Furthermore, the linearization of i is simpler and its dimensionless perturbed variable is given in 

equation (2.22).  
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 1i h pc pc iC N h h   (2.22) 

NΔh is a dimensionless parameter that is a measure for the operating conditions of the setup. This 

parameter is explained further in chapter 3. For now the definition will suffice. 
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Wh
   (2.23) 

2.4.4.1 Linearized mass balances 

First, the mass balance is linearized. The density of node 0 is taken as the mean of the inlet density and 

the outlet density, see equation (2.6). The inlet density is constant and the outlet density can vary, which 

means that the perturbation of the density at node 0 can be written as follows: 
1

0 2 out  . The 

expression is used in the mass and energy balances to substitute the variable 0 . At the same time the 

perturbed variable for the density is substituted with equation (2.22). 

 1
0 1 02
: h pc pc out R R R

d d
M C N h v h L h w w

dt dt


 
   

 
 (2.24) 
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2.4.4.2 Linearized energy balances 

The energy balances are linearized next. Remember that the steady state solutions, where the time 

derivatives are set to zero, are subtracted from the linearized equations. The perturbed variable of the 

enthalpy can be written down in the same manner as the density 0 ; 1
0 2 outh h . The perturbed 

variable for the density is again substituted, see equation (2.22). 

  1 1
0 0 1 0 1 02 2
: h pc pc out h pc pc out R R out R out IN

d d
E C N h v H h C N h v H L h h w H w H

dt dt
         (2.25) 

   1:R R R R h pc pc R out R out out R R R R

d
E L L C N h v H H h h H w h w H

dt
        (2.26) 

2.4.4.3 Linearized momentum balance  

The momentum balance is linearized and substituted with equations (2.21) and (2.22). The steady state 

variable BV is still present, but is independent of time and determined from outside the model. 
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In total there are now 4 dimensionless equations with 4 dimensionless perturbed variables to 

investigate.  

Equations: 
0M  0E  RE  I      

Variables:  0w t   Rw t   outh t   Rh t      
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2.5 THE HIGH HEATING MODEL 
In the high heating model the water reaches the pseudo-critical point in the core and therefore the core 

is split up into two nodes. The construction of the mathematical foundation for this water loop is 

analogous to the low heating model and, therefore, this section handles the derivation of the 

conservation balances a bit more concise.  

2.5.1 CONSERVATION BALANCES 
Again, the mass, energy and momentum balances are set up for each node first. Balances that do not 

contribute to the stability problem will be omitted in advance. 

2.5.1.1 Mass balances 

The following four mass balances can be set for four nodes of the loop, mass balance DM is omitted. 

Remember that the length L0(t) and L1(t) are variable due to the dynamic boundary in the core where the 

water reaches hpc, and therefore they are inside the time derivative. L is used for the total length of the 

core.  

Furthermore, the enthalpy H0 is constant in contrast with the low heating model. The enthalpy is 

assumed to increase linearly from HIN to hpc in node 0 and therefore H0 can be written with equation 

(2.28). The density ρ0 is therefore also constant and can be calculated with equation (2.1). 

  1
0 2 IN pcH H h   (2.28) 
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d
M V W W

dt
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There are now 4 equations and 9 variables. 

Equations: M0 M1 MR MB      
Variables: ρ1(t) ρR(t) VB(t) W1(t) Wpc(t) W0(t) WR(t) L0(t)  L1(t) 
 

2.5.1.2 Energy balances 

Up next are the three energy balances given for the nodes, energy balances ED and EB are omitted for the 

same reasoning as with the low heating model. The energy balances introduce two more variables; H1(t) 

and HR(t). As stated earlier, the enthalpy in node 0 is considered to increase linearly and is constant. The 

energy balances are: 
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 1 1:R R R R R R

d
E AL H W H W H

dt
    (2.35) 

The power is uniformly distributed over the entire length of the core and therefore the power is 

distributed with the same ratio as for the heated lengths of each node. So far there are 7 equations and 

11 variables. 

Equations: M0 M1 MR MB E0 E1 ER     
Variables: ρ1(t) ρR(t) VB(t) W1(t) Wpc(t) W0(t) WR(t) L0(t)  L1(t) H1(t) HR(t) 
 

2.5.1.3 Momentum balance 

The momentum balance is again integrated along the entire loop. For the entire derivation, see 

Appendix A.  
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The steady state mass flow rate for the high heating model is stated below. 
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The momentum balance adds one equation to the number of equations. 

Equations: M0 M1 MR MB E0 E1 ER I    
Variables: ρ1(t) ρR(t) VB(t) W1(t) Wpc(t) W0(t) WR(t) L0(t)  L1(t) H1(t) HR(t) 
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2.5.2 REDUCTION OF VARIABLES AND EQUATIONS 
With the use of the following equations the number of variables and equations can be reduced. 

 0 1L L L   (2.38) 

 0 0
0 0 0

IN
pc

pc pc pc

H L HQ d
W W A L

h h L h dt
    (2.39) 

The first equation also implies that 0 1

d d
L L

dt dt
  . The latter equation is a result of equation (2.33). We 

may express Wpc in the other variables, because Wpc has no time derivative in any of the balances. This 

eliminates one equation and one variable. Furthermore, the densities are substituted with the 

approximation of the equation of state (equation (2.1)). The mass balance MB is also substituted in the 

momentum balance just as with the low heating model, omitting VB(t) and MB. Then 6 equations and 6 

variables remain.  

Equations: M0 M1 MR E1 ER I 
Variables: L1(t)  H1(t) HR(t) W1(t) W0(t) WR(t) 
 

2.5.3 DIMENSIONLESS BALANCES 
Subsequently, the equations are made dimensionless with the dimensionless variables and constants 

defined in Table 2.1. The densities and the volume of the buffer vessel are not substituted yet in the 

dimensionless balances for the sake of clarity. 

Mass conservation balances 
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Energy conservation balances 
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Momentum conservation balance 
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2.5.4 LINEARIZED CONSERVATION BALANCES 
In the high heating model the water in node 1 of the core has passed the pseudo-critical point and 

therefore the second approximation of the equation of state applies. This one has to be linearized as well 

for the perturbed variables 
i and i . This is done in the same manner as in section 2.4.4 with a Taylor 

expansion for 
i . The perturbed variables are presented below in their dimensionless form. 
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2.5.4.1 Linearized mass balances 

The three dimensionless mass balances have been linearized and equation (2.46) is substituted in the 

equations when necessary. Remember that the steady state solutions are subtracted from the equations 

in order to investigate the stability problem around steady state conditions. 
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2.5.4.2 Linearized energy balances 

The energy balances are linearized next. Once again, the perturbed variables for the densities and the 

specific volumes have been substituted.  
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2.5.4.3 Linearized momentum balance  

Finally, the momentum balance is linearized.  
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For the high heating model there are in total 6 equations with 6 dimensionless perturbed variables to 

investigate.  

Equations: 
0M  1M  RM  1E  RE  I    

Variables:  1l t   1h t   Rh t   0w t   1w t   Rw t    

 

The next chapter will continue with the solving of these two systems of linear ordinary differential 

equations. 

 

 



 

27 

 

3 INVESTIGATING THE STABILITY  
In chapter 2 the conservation balances were linearized for both two operational modi, which results in 

two sets of linear differential equations. For the high heating model there are six equations with six 

variables and for the low heating model there are four equations with four variables. Solving these sets 

of linear ordinary differential equations is the subject of this chapter.  

3.1 THE MATRIX EQUATION 
The sets of linear differential equations can be presented in the following form. 

 
d

A x Bx
dt

 , (3.1) 

where A stands for the matrix of coefficients for the time derivative of the variables and B the matrix of 

coefficients for the variables. x  represents a column vector containing the perturbed variables. The 

sizes of both the matrices are 6x6 and 4x4 for the high heating model and the low heating model 

respectively. The resulting matrices are not displayed here due to their size, but can be found in 

Appendix B. The rows represent the various conservation balances and the columns represent the 

perturbed variables.  

The solution of equation (3.1) is of the form tx ve , where the vector v  contains the amplitude and 

phase shift of the initial perturbation. The perturbations can grow or decay exponentially in time 

depending on λ. When a perturbation decays exponentially in time it only has a short influence on the 

system and after some time the perturbation fades out. However, when the perturbations grow 

exponentially in time they could lead to large amplitudes in the system. The mass flow could for instance 

reverse or oscillate between different mass flow rates. This is considered as an instability. 

Looking at the solution, stability thus depends on the value of λ. λ can have a real part as well as an 

imaginary part. Regarding the stability Re(λ) is very important, because whenever Re(λ)>0 the 

perturbation grows exponentially over time resulting in an instability. Then again, when Re(λ)<0 the 

perturbation decays exponentially and the system remains stable. The imaginary part of λ is a measure 

for the frequency of the oscillation of the perturbations. For an example of possible developments of the 

mass flow rate over time, see Figure 3.1. 
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Figure 3.1: (a) Example of an exponential decay of a perturbation. (b) Example of an exponential growth of a perturbation. 

3.2 SOLVING FOR LAMBDA 
The main reason the stability problem is approached with a linear analysis is the simplicity of solving it. 

The problem can be converted to an generalized eigenvalue problem and easily be implemented into a 

computer code to solve for the eigenvalues. Furthermore, because the HPLWR is simplified to a water 

loop model with only a few nodes, very little computer power is needed to calculate the stability. These 

calculations can be done with a modern desktop in matter of seconds or minutes depending on the 

resolution of the stability maps. Another advantage of this approach is that the simplicity and 

computational speed enables rather quick investigation of qualitative relationships between the stability 

maps and various operational conditions and design parameters.  

To solve for λ the solution can be substituted into equation (3.1). It is possible to rewrite this matrix 

equation to A v Bv  , by differentiation and dividing by te . It is not possible to solve this by 

multiplying with the inverse of A, because A is singular. This now becomes a generalized eigenvalue 

problem which can be solved by solving det( ) 0B A  . Section 4.2.4 will elaborate on the 

computational part of solving this equality.  

3.3 DIMENSIONLESS NUMBERS 
As mentioned earlier the stability maps will be derived for two operating conditions, being the inlet 

temperature and the power of the core. Because the HPLWR is driven by natural convection in this case 

the power determines the mass flow rate and is not controlled by a pump. In order to compare the 

stability maps of different setups two dimensionless numbers are introduced which are a measure of 

three operating conditions; inlet temperature, power and mass flow rate. Throughout literature there 
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are numerous dimensionless numbers taken as reference and a choice had to be made. In this thesis the 

dimensionless numbers used in T’Joen & Rohde (2012) are adopted, written in a slightly different form. 

 pc IN

sub

pc

h H
N

h


  (3.2) 

 
h

pc

Q
N

Wh
   (3.3) 

The subcooling number Nsub is as measure for the inlet temperature (specific enthalpy). Note that as the 

inlet temperature increases, so does the inlet enthalpy and the subcooling number decreases. The power 

of the core is made dimensionless in the pseudo phase change number by dividing it with the mass flow 

rate times the specific enthalpy at the pseudo-critical point. Although different dimensionless numbers 

are adopted in literature, most of them represent the same thing only differing by a factor. For instance, 

the pseudo phase change number is always taken as the ratio of the power of the core to the mass flow 

rate.  

There exists a limit on the dimensionless numbers. For instance, the pseudo phase change number can 

not be negative, because the power is always positive resulting in a positive steady state mass flow rate. 

The subcooling number can only take values between 0 and 1 for this model. The inlet enthalpy can not 

(obviously) be negative and therefore the upper limit of Nsub is 1. Also the inlet enthalpy is assumed to be 

lower than the pseudo-critical enthalpy and this implies that the lower limit is 0 for Nsub. The inlet 

enthalpy can in fact be larger than the pseudo-critical enthalpy, but then this model has to be adapted to 

investigate the stability in that case. 
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4 COMPUTATIONAL IMPLEMENTATION 
The previous two chapters have presented a mathematical model and a method to solve for the stability. 

Next, the implementation of the mathematical model in Matlab is discussed. The built up of the code is 

elaborated and choices that had to be made during the coding are explained. Furthermore, the methods 

to investigate frequencies and Ledinegg instabilities are stated as well. 

4.1 OVERALL CONSIDERATIONS 
The goal was to write a code which represents robustness and structure. A code has to be flexible for 

different input parameters and resolutions (regarding stability maps). During the coding the 

computational speed was always kept in mind, but because the water loop is divided into only a few 

nodes the problem does not require a large amount of calculations. Hence, the emphasis is not on the 

computational speed but more on readability. Stability maps with a high resolution can be made within 

minutes. Furthermore, Matlab is designed for matrix operations and, therefore, vectorization of code 

can be quite useful for the computational speed as FOR loops can be avoided.  

4.2 THE CODE  
This section will cover all the elements of the code that were implemented in order to plot a stability 

map. For every combination of inlet enthalpy and power of the core the stability is calculated.  

4.2.1 THE GENERAL ALGORITHM 
First of all, the goal was to derive a stability map that can vary in resolution (in Nsub and NΔh). Instead of 

assigning a range for the power, which would result in unequal steps for NΔh, the range and resolution for 

NΔh (and Nsub) are determined beforehand. If for both the dimensionless numbers the same number of 

steps is assigned, the stability map will have NxN grid points. This is the case in most of the stability maps 

in chapter 5. Both the dimensionless numbers are set to begin at a value close to zero (for instance 

0.001). Because according to the model, the pseudo-critical point should be inside the core section. From 

the subcooling number the inlet enthalpy can be easily calculated. The calculation for the steady state 

mass flow rate and the power is less straight forward, which will be discussed later on.  

The general structure to calculate the stability is as follows, see Figure 4.1. Two FOR loops are 

implemented in order to calculate the stability for every combination of Nsub and NΔh. The first FOR loop 

varies the subcooling number and the second FOR loop varies the pseudo phase change number. Within 

the second FOR loop an IF statement is used to distinguish between the high heating and the low heating 

model. From the steady state solutions, see section 4.2.2, it becomes clear that for NΔh<Nsub the length L0 

becomes larger than the length of the core, which is impossible. The low heating model is therefore used 

for NΔh≤Nsub and the high heating model for NΔh>Nsub.  

For each combination of Nsub and NΔh the stability is calculated and a matrix is built with ones and zeros. 

The number 1 represents a stable point and the number 0 represents an unstable point. The stability 
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matrix is then plotted against Nsub and NΔh using the function IMAGESC, which plots an image of a matrix 

using colors. In this case the color red indicates an unstable point and blue a stable one. 

 
Figure 4.1: Flowchart of the Matlab script. The calculation of the eigenvalues is done for every combination of Nsub and NΔh 

with two FOR loops. An IF statement is used to make the distinction between the low heating and high heating model.  

4.2.2 THE STEADY STATE SOLUTIONS OF THE ENTHALPY AND LENGTH OF NODE 1 
The coefficient matrices A and B have to be set up and therefore a number of constants and steady state 

solutions have to be determined first. The Matlab script begins with assigning all the constants 

independent of the operating conditions, i.e. geometry, pressure loss coefficients, pseudo-critical data of 

water etc. Then there are also the steady state solutions in the coefficient matrices which are dependent 

on the operating conditions. These solutions are assigned in the second FOR loop, because these depend 

on the dimensionless numbers.  

The following steady state solutions are derived from the equations given in chapter 2 by setting the 

derivatives to zero and substituting Nsub and NΔh into the equations. For the high heating model the 

steady state solutions for L1 and H1 are given in equation (4.1) and (4.2) and are derived from the 

conservation balances (2.33) and (2.34).  
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There is no energy added or lost in the riser and, therefore, the steady state enthalpy HR is the same as 

H1, which also follows from the steady state solutions. Note that the time dependent enthalpies are not 

the same, because the riser comes after the core and there is a delay between the riser and the core due 

to the finite mass flow rate. The steady state solution for the outlet enthalpy Hout is derived from 

conservation balance (2.7) and applies to the low heating model. 

                                         
out IN pc hH H h N                     h subN N   (4.3) 

Again, the riser does not change the enthalpy and, therefore, 
R outH H . With these steady state 

solutions the remaining steady state variables 0L , 1 , R , 0H , 0  and out  can be calculated using the 

equations given in chapter 2 and the equation of state, i.e. equation (2.1). Because the steady state 

outlet enthalpy of the core is the same as the steady state enthalpy of the riser the steady state specific 

volumes are also the same. Thus R out  and 1R  for the low- and high heating model respectively. 

The equation of state is implemented with the use of a function named SPECVOL. This function has as 

input the steady state enthalpy and as output the steady state specific volume. The two linear 

approximations are distinguished with the use of an IF statement. The boundary between these two 

approximations lies at the pseudo-critical point. 

4.2.3 THE STEADY STATE MASS FLOW RATE 

The only steady state variable that remains then is the steady state mass flow rate. In chapter 2 W  is 

given for both the high- and low heating model. All the steady state variables that are needed for this 

expression are calculated before and can be substituted. The friction factor, f, is called the Darcy friction 

factor and can be approximated with the formula of Blasius, which depends on the Reynolds number 

(Janssen & Warmoeskerken, 1997). It can also be set as a constant, but using Blasius leads to a more 

accurate approximation of the Darcy friction factor. The Reynolds number turns out to be in the range 

applicable to the Blasius relation. 

 
1
4 50.316Re (4000 Re 10 )f


    (4.4) 

 Re hWD

A
  (4.5) 

The Reynolds number is a function of the mass flow rate itself, so Re can not be written down in an 

explicit form. Hence, an iteration process is needed to calculate W and a WHILE loop is introduced, see 

Figure 4.1. The iteration process stops when the new calculated value of the mass flow rate differs 1·10-9 

% from the previous calculated value. The value of the dynamic viscosity present in the Reynolds number 
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is a function of enthalpy. However, there was chosen to approximate the dynamic viscosity with a 

constant value of µpc=4.27975·10-5 for simplicity. This implies that the resulting friction factors are the 

same for each node. For working temperatures of 280°C to 500°C this approximation of the dynamic 

viscosity leads to a maximum possible deviation of 20% in the calculated Darcy friction factors. After W  

is known, the Froude number can be calculated. 

4.2.4 THE EIGENVALUE PROBLEM 
Now that the steady state solution and (thus) the constants are known, the solving of the generalized 

eigenvalue problem can begin. The coefficient matrices A and B are set up for each of the two models. 

The matrices can be looked up in Appendix B. To solve a generalized eigenvalue problem QZ factorization 

is needed if A is singular, which is the case here. The EIG function in Matlab uses the QZ factorization to 

solve det( ) 0B A   (Matlab, 2013). The size of the square matrices determines the number of 

eigenvalues. In the high heating model six eigenvalues are found and in the low heating model four. 

However, in most cases there are eigenvalues which are infinite because A is singular. The degree of the 

determinant is then smaller than the size of the matrices. So in general there are r finite eigenvalues and 

n-r infinite eigenvalues, where r is the degree of the determinant (Wolfram, 2013). Koren (2010) had the 

same problem with these infinite eigenvalues and found out that Matlab returns these infinite 

eigenvalues if there are equivalent eigenvalues in the solution of the characteristic polynomial of the 

determinant. So an infinite eigenvalue means that that eigenvalue corresponds to another eigenvalue 

with the same value. Koren (2010) gave a simple test case in his appendix demonstrating this problem. If 

we know that these eigenvalues are equivalent to other eigenvalues these eigenvalues can be 

disregarded, because for the stability problem we only want to know if one of the eigenvalues is positive. 

And because the infinite eigenvalues are copies of other eigenvalues they do not provide additional 

information about the stability. For this reason all eigenvalues larger than 1012 are neglected. After that, 

the real part of the remaining eigenvalues are analyzed for their sign. If one of the real parts of the 

eigenvalues is positive, a zero is set for that cell in the stability matrix indicating an unstable point. If all 

the eigenvalues are negative that combination of Nsub and NΔh is considered stable and an 1 is assigned to 

the matrix cell. 

4.3 RESONANCE FREQUENCIES 
To investigate the frequencies of the response to perturbations the imaginary parts of the eigenvalues 

become important. Hence, it is worth to have a closer look to the form of the solution. The solution is of 

the form tx ve  and can be decomposed as following, done by Koren (2010). 

 ki

k kv e
                                where k kv   and k kv   (4.6) 

      a ib                                    where  Rea   and  Imb   (4.7) 

k and k represent the amplitude and phase shift of the initial introduced perturbation respectively. a 

represents the growth (or decay) rate of the development of the perturbation and b represents its 

frequency. The solution can be written as: 
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Single imaginary eigenvalues in the solution of the generalized eigenvalue problem would result in an 

imaginary development of the perturbation, which is impossible in a physical system. Therefore, in the 

solution of the characteristic polynomial another eigenvalue is present with the same real part and 

opposite sign of the imaginary part. These two eigenvalues will result in the formation of a sinusoid, 

written as follows: 

    ( ) ( )
2 cosk ki bt i btat at

k k ke e e e bt
     
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The initial phase shift is not important in this research, but the imaginary part of λ gives the frequency of 

the development of the perturbation. The imaginary part of the eigenvalue is found by first filtering all 

the positive eigenvalues, because when the real part of an eigenvalue is negative the perturbation fades 

out. Frequencies of negative eigenvalues are not investigated in this research. Subsequently, the 

frequency of the eigenvalue with the largest positive real part, representing the most dominant 

perturbation, is taken as reference for the frequencies. The time t is made dimensionless during the 

derivation of the mathematical model and therefore the frequencies are dimensionless too. The 

frequency with dimension is assigned to the matrix cell corresponding with Nsub and NΔh. The frequency 

spectrum of the stability domain can be plotted in two ways. A 3-dimensional plot can be made with the 

SURF function which gives a good impression of the absolute value of the frequencies and the relative 

size throughout the stability domain. And a 2 dimensional plot can be made with the IMAGESC function, 

which can be overlaid with the regular stability map to see where frequencies are relatively high and 

where instability without frequencies occurs. 

4.4 LEDINEGG INSTABILITIES 
As explained in section 1.3, Ledinegg instabilities occur when the mass flow rate changes abruptly to 

another mass flow rate. The mass flow rate versus power characteristics were investigated for different 

subcooling numbers and it turned out that for some subcooling numbers three different mass flow rates 

could exist for one and the same power. A Ledinegg instability could occur at those power inputs, 

because the mass flow rate can shift to one of the other two mass flow rates. In Figure 4.2 three 

characteristics are plotted for three different subcooling numbers and between the two red lines three 

mass flow rates exist for one power input at Nsub=0.95. The kink present in the characteristics, most 

clearly visible in the Nsub=0.95 characteristic, is caused by the transition from the low heating model to 

the high heating model. At the kink the pseudo-phase-change number equals the subcooling number. 

The calculation for the mass flow rate switches then from equation (2.13) to equation (2.37).  
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Figure 4.2: Mass flow rate versus power for three different subcooling numbers. The red lines indicate the region where more 

than one mass flow rate could exist for the same power input. Sign swaps are indicated with circles. For higher subcooling 

numbers multiple mass flow rates exist for a certain power range. 

One method to find the boundaries indicated with the red lines is by calculating the slope of the 

characteristic. The slope changes sign three times in the characteristic with Nsub=0.95, encircled points on 

the characteristic, and by finding the sign swaps the boundaries can be found for NΔh. Only the last two 

sign swaps are important, because the first one occurs at the maximum of the characteristic. Because 

Matlab uses a discrete representation of a continuous variable a finite difference method must be used 

to calculate the slope. There was chosen to approximate the slope with a central difference 

approximation, see equation (4.10). 

 1 1

1 1

n n n

n n n

dW W W

dQ Q Q

 

 





 (4.10) 

A vector with the slopes at each point, except for the first and last point, is then obtained and checked if 

the sign of the slopes swaps more than one time. Because for lower subcooling numbers there are not 

any powers with multiple mass flow rates and only one sign swap occurs at the maximum of the 

characteristic. The appearance of multiple mass flow rates starts from Nsub=0.79. When multiple mass 

flow rates exist the index numbers of the power vector at the last two points (see Figure 4.2) are used to 

indicate the two limits for the range of NΔh where this occurs, see Figure 4.3. This can then be plotted in a 

new stability map where the occurrence of Ledinegg instabilities is indicated, see chapter 5.  
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Figure 4.3: The slope plotted against NΔh for Nsub=0.95. At three different points the sign of the slope swaps from negative to 

positive or vice versa. The last two sign swaps are used to indicate the range of NΔh where Ledinegg instabilities occur. 
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5 RESULTS 
The mathematical model has been computationally implemented and the results are presented and 

investigated in this chapter. First, a parametric study will be done to investigate what kind of influence 

the design parameters have on the stability maps. A comparison will be made with the parametric 

studies from Van Bragt (1998) for a natural circulation driven BWR and from Ortega Gomez (2009) for a 

single pass HPLWR driven by pumps. Subsequently, Ledinegg instabilities are investigated with the use of 

the steady state solutions of the mass flow rate and frequency maps. The results are compared to results 

obtained by Guido et al. (1991) for a single boiling water channel. 

5.1 PARAMETRIC STUDY 
The design parameters have an influence on the stability map of a natural circulation driven supercritical 

water loop. In Table 5.1 an overview is given of the influences of various design parameters on the 

stability of the system. This table has the same format as the table presented in Ortega Gómez (2009) for 

easy comparison. A stabilizing effect is denoted with a “+” and a destabilizing effect with a “-”. The 

arrows indicate an increase or decrease of the design parameter. The next subsections will elaborate on 

each design parameter. The different instable regimes in the stability plots are identified if possible.  

Table 5.1: Influence of different design parameters on the stability map of the supercritical water loop. A stabilizing effect is 

denoted with a “+” and a destabilizing effect with a “-“. 

Design parameter Variation   Variation   
Volume buffer vessel + - 

Length riser - + 

Length core - + 

Hydraulic diameter + - 

Inlet core pressure loss coefficient  + - 

Downcomer pressure loss coefficient + - 

Riser pressure loss coefficient - + 
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5.1.1 REFERENCE CASE 
First, the stability map that was obtained with the Matlab script is displayed for design parameters that 

will be taken as reference in this chapter, see Figure 5.1 and Table 5.2. In the caption of the upcoming 

figures the design parameters that deviate from the standard design parameters are given for that 

specific stability map. 

Table 5.2: Design parameters taken as standard in this research. 

Design parameter Value 

Volume buffer vessel 10 dm3 

Length of riser 4.2 m 

Length of core 4.2 m 

Hydraulic diameter channel 5.6 mm 

Flow area 35.5 mm2 

Inlet core pressure loss coefficient  1 

Downcomer pressure loss coefficient 1 

Riser pressure loss coefficient 20 

 

The Nsub=NΔh line is the boundary where the mathematical model makes the switch between the low 

heating model and the high heating model. Above this boundary the stability is calculated with the low 

heating model and below this boundary the high heating model is used. The sharp transition from stable 

to unstable at Nsub=NΔh can be explained with the equation of state. The approximation for the equation 

of state used in this thesis is a rather crude approximation, because the equation of state is split up into 

two different approximations, separated by the pseudo-critical point. The approximation is not 

continuous at the pseudo-critical point and could explain the sharp transition from stable to unstable at 

the Nsub=NΔh line.  

 
Figure 5.1: Stability map for the standard design parameters as listed in Table 5.2. Red indicates the unstable domain and 

blue the stable domain. The black line indicates the Nsub=NΔh line. 
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5.1.2 VOLUME OF THE BUFFER VESSEL 
It became soon quite clear that the instability domain is highly dependent on the volume of the buffer 

vessel. As the volume increases the instability domain becomes smaller and the system becomes more 

stable. In Figure 5.2 three neutral stability boundaries are plotted for three different volumes of the 

buffer vessel. The neutral stability boundary (NSB) is the boundary where the transition from stable to 

unstable takes place, above and right of the NSB the system is unstable and below and left of the NSB 

the system is stable. The system becomes more stable for a higher volume of the buffer vessel, because 

any growing perturbations in the core or riser will fade out in the relatively large bulk of water in the 

buffer vessel. This can be related back to the linearized momentum balance, see equations (2.27) and 

(2.53). The volume of the buffer volume is present before the 
0

d
dt

w  term and is proportional to the 

average time that the water flows through the buffer vessel. If the volume increases, the mass flow rate 

w0  is strongly delayed with respect to the inlet mass flow rate and any oscillating perturbations fade out. 

The buffer vessel therefore acts like an attenuator in the water loop, large amplitudes of perturbations 

are damped out and are not present in the downcomer afterwards.  

 
Figure 5.2: Neutral stability boundaries for different volumes of the buffer vessel. As the volume increases the instability 

domain becomes smaller. The unstable region lies to the right of the NSB. The black line indicates the Nsub=NΔh line. 

Something else was also noticed when investigating the influence of the buffer vessel on the stability. As 

the volume increases, the instable region around Nsub=0.9 and NΔh=1.1 remains the same, even for 

relatively high volumes. This region is also present in the stability maps for small volumes of the buffer 

vessel, but is surrounded by other type of instabilities. Figure 5.3 shows the stability map for a system 

with a volume of 1 m3 for the buffer vessel, a thousand times higher than in the case with the red NSB in 

Figure 5.2. These instabilities are not dynamic, but they turn out to be Ledinegg instabilities (see section 

5.2) and remain constant when the volume of the buffer vessel is further increased. Ledinegg instabilities 

can be found with the steady state equations as mentioned in section 4.4. Equation (2.37) and (2.13) 
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show no dependence on the volume of the buffer vessel and therefore this instability domain remains, 

even when the volume is increased to high values. 

 
Figure 5.3: Stability map for a system with a buffer vessel volume of 1 m

3
. One instability domain (indicated with red) remains 

regardless the volume of the buffer vessel. The black line indicates the Nsub=NΔh line. 

5.1.3 RISER LENGTH 
Van Bragt (1998) investigated the influence of the length of the riser on the stability of a natural 

circulation driven water loop in a BWR. In Figure 5.4 his plot of three neutral stability boundaries for 

three different lengths of the riser is presented. 

  
Figure 5.4: Three different NSB’s plotted for a BWR with different risers lengths. Dimensionless numbers are comparable with 

the ones used in this study. S indicates the stable domain and the I and II indicate the different types of dynamic instabilities. 

As the riser length increases the system destabilizes. Source: (Van Bragt, 1998). 

The dimensionless numbers used in his research are quite similar and differ only by a factor: 
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The subscripts g stands for vapor and f for saturated liquid. NZu is comparable with NΔh, because it is also 

proportional with power over mass flow (indicated with red) and the subcooling number increases when 

the inlet enthalpy (indicated with red) decreases, which is the same as in this research. Although the 

BWR is different from the HPLWR the influence of the riser can be compared, because in both systems 

the density decreases rapidly as the enthalpy increases. As can be seen in Figure 5.4, when a riser is 

introduced to the system, another type of instability emerges, a Type-I instability. These instabilities are 

caused by the gravitational pressure drop in the riser (Van Bragt, 1998) and as the length of the riser 

increases the NSB is pushed downwards in the stability plot. 

Figure 5.5 shows the NSB’s for different riser lengths for the model used in this research. Compared with 

the plot of Van Bragt (1998) the increase of the riser length has a similar influence on the stability. As the 

length of the riser increases the NSB lowers in the stability map. When no riser is implemented the NSB 

draws away to the right, similar to the results found in Van Bragt (1998). Only a small instability domain 

remains, same as in Figure 5.3, these are however caused by Ledinegg instabilities which will be 

discussed further in section 5.2. When the riser length increases, Type-I instabilities become more 

dominant and force the NSB downwards. Type-I instabilities can be explained as follows. A perturbation 

is introduced in the mass flow at the core inlet, for instance a small increase. This will result in less 

heating of the mass flow and a lower core outlet enthalpy, assuming constant power input of the core. 

The resulting higher density at the outlet of the core and in the riser will decrease the gravitational 

pressure drop between the riser and the downcomer and therefore the mass flow rate decreases. 

Subsequently, the core will heat up the mass flow more and the outlet enthalpy increases. The exact 

opposite process continues and will result in an increase of the mass flow rate, starting again at the 

beginning of the cycle. These oscillations are amplified when the length of the riser becomes greater, 

because the gravitational pressure drop increases. This results in an instability when the amplitude of the 

oscillations grow in time instead of decaying. So the lowering of the NSB for an increasing riser length is 

an indication that Type-I instabilities play an important role in the stability of the natural circulation 

driven supercritical water loop. 

 
Figure 5.5: Five different NSB’s are plotted for different lengths of the riser. VB=5 dm

3
. As the length of the riser decreases the 

instability domain shifts more to the upper right part of the stability map. The unstable region lies to the right of the NSB. The 

black line indicates the Nsub=NΔh line. The gray area indicates the Ledinegg unstable region for the stability map with LR=0 m. 
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Furthermore, investigating the frequencies of the stability map can give more insight about the nature of 

the instabilities that occur. Figure 5.6 presents the frequency map for the stability map of a system with 

riser length LR=4.2 m. As can be seen the lower right part of the instability domain has higher frequencies 

than the upper left instability domain. One part of the instability domain does not have a frequency, 

which is partly caused by Ledinegg instabilities (further investigated in section 5.2). Type-II instabilities 

are known to have higher frequencies than Type-I instabilities (Van Bragt, 1998). So the presumption 

that the upper left part of the instability region are Type-I instabilities is supported by the frequency 

map. 

 
Figure 5.6: Frequency (Hz) stability map. LR=4.2 m and VB=5 dm

3
. The lower right part of the instability domain has higher 

frequencies than the upper left part which could denote the distinction between Type-I instabilities and Type-II instabilities. 

The part without frequencies are non-dynamic instabilities and are partly caused by Ledinegg instabilities. The white line 

indicates the Nsub=NΔh line.  

5.1.4 LENGTH CORE AND HYDRAULIC DIAMETER 
The length of the core and the hydraulic diameter have opposite influences compared with the results 

presented by Ortega Gómez (2009), who investigated the influences of the design parameters for a 

HPLWR driven by a pump. An increase of the heated length and a decrease of the hydraulic diameter 

stabilizes a HPLWR driven by a pump, but the opposite was found in this study for a natural circulation 

driven HPLWR. The influences of both design parameters have the same physical explanation and are 

therefore explained together in this section. 

The Type-I instabilities stabilize when the length of the core increases and the hydraulic diameter 

decreases, but the lower right area of the instability domain destabilizes (region around Nsub=0.4 and 

NΔh=1.2), see Figure 5.7. The lower right part probably consists of Type-II instabilities, because Type-II 

instabilities are caused by the frictional pressure drops (Van Bragt, 1998). And as can be seen in the 

momentum equations (2.36) and (2.12) the friction terms become larger for a higher length of the core 

and a lower hydraulic diameter. However, the stability of the system depends on which friction term 

increases the most. An inlet restriction of a boiling channel results in a damping effect of increasing flow 
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and therefore has a stabilizing effect. An outlet restriction on the other hand has a destabilizing effect, 

because it slows the flow down and may become out of phase with the change of inlet flow (Boure, 

Bergles, & Tong, 1973). Decreasing the hydraulic diameter results in an increase of all friction terms due 

to wall shear, but because of the lower density in the riser the outlet friction increases more than the 

inlet friction and the system destabilizes, see equation (2.36). The same holds for the length of the core, 

because an increase also implies an increase of the friction in node 1. The friction in node 1 can be 

considered as an outlet restriction, because the flow has surpassed the pseudo-critical point in that 

node. And because the specific volume of node 1 is greater than in node 0, the friction in node 1 

increases more than the friction in node 0 and, therefore, the system destabilizes. The frequency maps 

confirm this result. They indicate that the higher frequencies lie in the indicated Type-II instability region 

and the lower frequencies in the Type-I instability region. 

 
Figure 5.7: (a) NSB’s for different core lengths. (b) NSB’s for different hydraulic diameters. As the length of the core increases 

and the hydraulic diameter decreases the Type-II instability region increases. The black line indicates the Nsub=NΔh line. 

5.1.5 OUTLET AND INLET RESTRICTIONS 
The pressure loss coefficients have the same influence as found by Ortega Gómez (2009). The inlet 

pressure loss coefficient KR has a destabilizing effect and the inlet pressure loss coefficients KD and K0 

have a stabilizing effect. The pressure loss coefficient K1 in the high heating model is set to zero, because 

assigning a value would result in a discontinuous mass flow rate at the Nsub=NΔh boundary. The low 

heating model does not include this pressure loss coefficient and therefore the mass flow rate for the 

high heating model would be lower than the mass flow rate of the low heating model if K1 is not zero. 

Pressure losses in the heavy liquid region have a stabilizing effect and pressure losses in the light liquid 

region have a destabilizing effect (Ortega Gómez, 2009). K0 and KD are both present in the heavy liquid 

regions of the supercritical water loop and therefore have a destabilizing effect, see Figure 5.8. The inlet 

pressure loss coefficient of the riser can be considered as an outlet pressure loss coefficient of the core 

and is present in the low density region. This pressure loss coefficient therefore destabilizes the system, 

see Figure 5.9. 
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Figure 5.8: (a) Inlet core pressure loss coefficient. (b) Downcomer pressure loss coefficient. When both of the inlet pressure 

loss coefficients are increased the system stabilizes. The black line indicates the Nsub=NΔh line. 

 

Figure 5.9: Inlet riser pressure loss coefficient. This pressure loss coefficient lies in the low density region and therefore 

destabilizes the system. The unstable region lies to the right of the NSB. The black line indicates the Nsub=NΔh line. 

5.2 LEDINEGG INSTABILITY 
Some stability maps for different design parameters looked very similar to earlier found stability maps by 

Guido et al. (1991). This resemblance created the presumption that Ledinegg instabilities are also 

present in the stability maps of a SCWR in this research. Guido et al. (1991) approached the stability 

problem analytically for parallel boiling water channels as well as for a single heated channel. In Figure 

5.10 two stability maps are presented, one calculated by Guido et al. (1991) for a single boiling water 

channel and the resembling stability map found in this research for a supercritical water loop without a 

riser. Again the dimensionless number are comparable and differ by a factor. The straight dashed line 

indicates the boundary of the Ledinegg unstable region in Figure 5.10a.  
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Figure 5.10: (a) Stability map derived for a single heated channel. τ is a friction parameter and the Xe=0 line represents the 

boundary between single-phase and two phase flow. Source: (Guido, Converti, & Clausse, 1991). (b) Stability map showing a 

comparable straight line in the NSB. VB=2 dm
3
, LR=0 m. The black line indicates the Nsub=NΔh line. 

To investigate if Ledinegg instabilities are present in the stability maps the flow rate versus power 

characteristics are investigated as explained in section 4.4. Certain combinations of mass flow rate and 

power turn out to be unstable and lie in the region indicated with the black line, which corresponds to a 

range of NΔh and is indicated in Figure 5.11 with a black line. This range corresponds to the points where 

more than one steady state solution is found for one power (indicating that a system may swap from one 

solution to the other when perturbed). The other two blue lines between the red boundaries are stable 

regions. A more in-depth physical explanation why that specific range of mass flows is unstable is still 

missing. Different characteristics were investigated in order to find an explanation of these unstable 

mass flows, for instance gravitational pressure drop versus power characteristics, but none turned out to 

provide any insight unfortunately.  

 
Figure 5.11: Flow rate versus power. The black line indicates the unstable flow rate for which Ledinegg instabilities can occur. 

The red lines indicate the region where more than one mass flow rate can exist for the same power input. Nsub=0.95, LR=0 m 

and VB=2 dm
3
.  



48 

 

The range of unstable mass flows is calculated for every subcooling number and a stability map is 

derived in Figure 5.12a. At a first look the region overlaps quite well with the expected region and looks 

very similar to the Ledinegg unstable region found by Guido et al. (1991) for a single boiling water 

channel. However, the overlap is not perfect. Further investigation by overlapping the two stability maps 

showed that the Ledinegg unstable region also overlaps a part of the stable region and therefore there 

are also some mass flow rates indicated by the black line in Figure 5.11 which are apparently stable. A 

clear example of such a deviation is given in Figure 5.12b. This figure shows the overlap of the Ledinegg 

unstable region with the stability map shown in Figure 5.3. To make sure that mass flow rate versus 

power characteristics calculated by Matlab are correct they were also calculated with Maple, which 

solves the problem analytically. These characteristics were the same and therefore it can be concluded 

that this approach can not give a decisive answer about the Ledinegg instabilities. It can give a good 

approximation of where the Ledinegg unstable region must lie, but not the exact position of its 

boundaries.  

 
Figure 5.12: (a) Stability map plotted with the Ledinegg instabilities in gray, the unstable and stable region is indicated with 

red and blue respectively. VB=2 dm
3
, LR=0 m. (b) Overlay of the stability map in Figure 5.3 with the Ledinegg unstable region. 

The Ledinegg unstable region also overlaps a part of the stable region. The black line indicates the Nsub=NΔh line. 

Furthermore, the frequency maps of the stability maps can give additional information about the 

Ledinegg instabilities. As mentioned in section 4.4, at some operating conditions more than one mass 

flow rate can exist. For some combinations of Nsub and NΔh the mass flow is unstable and can then shift to 

a more stable one without any oscillations occurring. These instabilities are non-dynamic. Figure 5.13 

shows the frequency map of the stability plot in Figure 5.12a and as can be seen, the presumed Ledinegg 

unstable region has zero frequency. Therefore, the frequency map supports the presumption that 

Ledinegg instabilities are present. 
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Figure 5.13: Frequency (Hz) map of stability map in Figure 5.10b. The Ledinegg unstable region in the stability map of Figure 

5.12a has zero frequency. 

Finally, the frequency maps of some stability maps indicate that there is a large region of non-dynamic 

instabilities in the unstable region, see Figure 5.14b. The system is destabilized with a smaller buffer 

vessel and a higher outlet pressure loss coefficient. The instability domain without frequencies is 

significantly large, however not all the instabilities are caused by Ledinegg instabilities. The relatively 

large unstable domain without frequencies is not entirely composed of Ledinegg instabilities as can be 

seen in Figure 5.14a, but are caused by another type of non-dynamic instabilities. What kind of 

instabilities these are remains unclear in this research. Furthermore, an instability domain arises above 

the Nsub=NΔh line where the low heating model applies. This domain has low frequencies and could 

possibly be Type-I instabilities.  

 
Figure 5.14: (a) Ledinegg instabilities indicated with gray, unstable region and stable region indicated with red and blue 

respectively. VB=1 dm
3
, KR=40. (b) Frequency (Hz) stability map. A large instability domain without frequency arises, which 

does not entirely consists of Ledinegg instabilities. The black line and white line indicate the Nsub=NΔh line in both plots. 
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6 CONCLUSIONS 

6.1 CONCLUSIONS 
A linear stability analysis of a supercritical water loop driven by natural convection was performed with 

the use of a simplified mathematical model in which basic conservation balances apply. From this 

analysis qualitative results were obtained rather than quantitative ones. A parametric study was 

performed to investigate the influence of various design parameters of the loop. It is found that the 

volume of the buffer vessel has a significant stabilizing effect on the mass flow, because it acts like an 

attenuator that reduces the amplitudes of oscillations from introduced perturbations. However, the 

buffer vessel is unable to prevent the occurrence of Ledinegg instabilities. Even for a large volume of the 

buffer vessel the Ledinegg unstable region remains. Another result which is worth notifying is the 

influence of the length of the riser. Reactors driven by natural convection depend on a riser which is long 

enough to drive the circulation by natural convection. At the same time adding a riser does have 

consequences for the stability of the system. The parametric study showed that increasing the length of 

the riser destabilizes the system by introducing Type-I instabilities which are driven by a gravitational 

pressure drop. A long riser does increase the mass flow rate though and it is therefore important during 

the design of a HPLWR driven by natural convection that the trade-off between a sufficient mass flow 

rate and a stable system must be considered carefully.  

Furthermore, by investigating the frequency domain of the stability map more insight into the nature of 

the instabilities can be acquired. Various domains exist in the stability map with different frequencies. A 

distinction has been made between two domains of different frequency. The relative low frequency 

region can be an indication of Type-I instabilities, which are driven by the gravitational pressure drop. 

And the higher frequency domain in the lower right part of the stability map (region around Nsub=0.6 and 

NΔh=1.8 for the reference case) can be an indication of instabilities driven by the frictional pressure drop, 

Type-II instabilities. Also instabilities with zero frequency (i.e. non-dynamic instabilities) could give an 

indication of where Ledinegg instabilities occur. The important thing to remember is that the frequency 

maps can give insight into the type of instabilities and are a tool to further investigate the stability maps, 

but do not necessarily determine stand-alone the type of instabilities occurring in the system. Further 

investigation of the behavior of the NSB to changing design parameters and study of the conservation 

balances must be done in order to give conclusive results. 

Finally, a method is proposed to investigate the occurrence of Ledinegg instabilities. Ledinegg 

instabilities can not be found by investigating the pressure versus mass flow rate characteristics of the 

water loop against the characteristic of the pump as is done by Ortega Gómez (2009). The water loop in 

this study is driven by natural convection and another method to find Ledinegg instabilities is required. 

Therefore the mass flow rate versus power characteristics are investigated to see if there are power 

inputs for which more than one mass flow rate can exist. An unstable mass flow rate could then change 

to another mass flow rate when the system is perturbed. This method does give a good indication of 

where the Ledinegg instabilities occur, but unfortunately it can not predict the Ledinegg instabilities 
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perfectly. More research should be done to refine this method and to offer a more in-depth physical 

explanation of the unstable mass flows in the mass flow rate versus power characteristics. 

6.2 DISCUSSION 
During the project assumptions and simplifications were applied to solve the stability problem and 

choices had to be made for the computational implementation. A part of these decisions are discussed 

here for their validity and solutions are proposed for further research if possible. 

First of all, in this research a crude two-region approximation was used for the equation of state. This 

required that the core had to split up in two different nodes for one model. This approximation was 

visible in the stability map with a sharp transition at the Nsub=NΔh line. At this line the transition from one 

model to the other model occurs and the linearization of the equation of state has a discontinuous jump 

at this point. A better approximation can be done by introducing an approximation which is divided into 

more segments and follows the equation of state more closely. This would require a split up of the core 

into more nodes. A discontinuous jump would still be present, but the jump should be less rigorous.  

Secondly, during the linearization the term i j

d
x x

dt
was present in the conservation balances and was 

chosen to be neglected. However, large perturbations can make these terms having a significant 

contribution in the balances. Not neglecting these would require a non-linear solving method, which lies 

out of the scope of this thesis, but might be worth looking at.  

Thirdly, there is some room for improvement in the calculation of the Darcy friction factor. Currently 

these friction factors are calculated with a rather crude approximation without taken into account the 

differences between the properties of the different nodes in the water loop. For instance, the hydraulic 

diameter of each channel is the same and the roughness of the inner wall of the channels is not taken 

into account. Furthermore, the dynamic viscosity present in the Reynolds number is considered 

constant. The dynamic viscosity is actually a property of water and depends on the temperature. 

Refinement of the friction factor could lead to more correct stability maps.  

Finally, this research can be extended by introducing neutronic-thermo-hydraulic coupling to the model. 

In this research the power is taken constant, but in an actual HPLWR the water would act as a coolant as 

well as a moderator. The mass flow rate would then have an influence on the power of the core and vice 

versa. The stability map could therefore look a lot different. 
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APPENDIX A 
Derivation of the momentum balance for the high heating model 

With the use of the drawing in Figure A.1 the momentum balance is derived for the entire loop. The 

diameter of the pipe is constant as well as the area. The angle   is defined as the angle of the cylinder 

axis in the flow direction with the positive z-axis, the positive z-axis is directed in the opposite direction 

of the gravity. The integration is taken along the whole loop and therefore the terms representing the 

transportation of momentum and the pressure difference can be taken as zero. Furthermore, because 

the loop is not continuous but divided into five nodes the integrations becomes a sum over every node. 
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Summation over each node leads to the following end result: 
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Figure A.1: Drawing of pipe flow used to derive the momentum balance. 

 

 

Taylor expansion 

The following Taylor expansion is used in chapter 2 to linearize the specific volume and density. 

 
(3)

2 3( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ...

1! 2! 3!a

f a f a f a
f x f a x a x a x a

 
         (A.1) 

  



58 

 

APPENDIX B 
High heating model: Coefficient matrices 

Coefficient Matrix A   Coefficient Matrix B   
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Low heating model: Coefficient matrices 

Coefficient Matrix A   Coefficient Matrix B   
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