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Abstract

A Survey of a Jacobian-free Newton Krylov method using GMR&Bresented in this report.
The goal of the project is to see whether JFNK has applicatiomuclear reactor physics. JFNK
methods are methods that solve sets of non-linear equafidressets of non-linear equations arise
from coupled physics problems, as found in nuclear readtgsips. JFNK is especially good at
solving coupled sets of equations, since it does not needdbebian matrix to solve the problem.
It uses an approximation to the Jacobian matrix, this isiptesbecause the Jacobian matrix is only
needed as a matrix vector product.

In this report two test problems are used to test the JFNK ogethrirst the heating of a one
dimensional rod, while the rod cools by emiting radiatiomdaled as a black body. The second test
problem is a model of a molten salt reactor.

Since there are many coupled problems in the area of nuaeatar physics it can be used in
many problems. All problems that were encountered in thigegot have been solved. The harder
problems where JFNK could break down were, however, notwameoed. Preconditioning is not
considered in this project.
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1 INTRODUCTION

1 Introduction

Since the last century simulations run on computers areaéasing importance in science and engi-
neering. In almost all areas simulations are used as a waydgrstanding physical problems. There is
of course not one algorithm to simulate problems, theresis abt one best algorithm. Each new physical
model needs a new examination of what algorithm to use. Ngarithms are being developed all the
time, which results in more and more physical models thatbeasimulated and with greater resolution.

The calculations in a simulation are usually to solve an gouaf motion. For example the Navier-
Stokes equation in simulation of flowing fluids or gases, @rlileat equation for diffusion problems.
The different forms of these equations demand for diffeadgrithms. Equations of the same form can
in general be solved by using the same algorithm. Some exangblproblems where one equation of
motion describes the whole problem are the flow of air aroubdilging in the wind. Or the heat in a
computer chip, which is being cooled by an airflow of the fathiea computer. There are also problems
where not one but two or more equations of motion are needdddairbe the problem. This results in
more difficult calculations.

These problems are called “coupled” problems, because iffepaht areas of physics and different
equations of motion are “coupled” to each other in the pnobl&Examples of these kind of problems
are found in nuclear reactors and weather systems. In wesybtems different equations are used to
describe the motion of the air, the formation of clouds, titeriaction with the oceans, et cetera. In the
physics of nuclear reactors different equations are uselégoribe the neutronics and thermodynamics
in a reactor core. Not just with a different physical meanimgt also a different mathematical form of
the equation. This makes the problems hard to solve in etelend fast manner.

The Jacobian-Free Newton Krylov methods have been arouraddouple of decades, but only since
the year 2000 it is more used as a solver for physics probl®afore that it was mostly in the domain
of the mathematicians, not yet used as an algorithm. Mogt@fphapers about applications of JFNK
are from after 2000. There are some books and papers thatbdedENK from before 2000, several
different names are in use for the JFNK method.

Two test problems were used in this research. Both are writtéMatlab code. The first was the
simulation of the heating of a one dimensional rod with ikt boundary conditions. The rod loses
energy due to radiation modeled as a black body. The sec@nahie dimensional simulation of a molten
salt reactor.

The first test problem was at first used to find out how to write@decthat solves an equation of
motion with the JFNK method. The speed of calculation of tRBliI method is compared to other
existing solvers. Once the model of the rod worked with thidKInethod, it was used to test how the
JFNK method handles coupling problems. This was done bitiaglithe rod in half and computing the
solutions of each half seperately. This model is very easyhf® JFNK method, with easy meaning it
does not need many Newton and GMRES iterations to solve titdgmm to the desired tolerance. This
gave rise to the second test problem, which is harder to solve

The second test problem, the molten salt reactor, is a méfeutti problem to solve, because the
coupling is between different mathematical formulas. Apaged to the coupling in test problem 1,
where the coupling was between the same mathematical fasmuh molten salt reactor is a reactor
where the fuel is not stationary, like in other reactors. Tt (often uranium) is dissolved in a salt,
which is melted in order to let the fuel move. The fuel-salktmie is being pumped around a circuit,
which consists of a reactor core, a heat exchanger, a pumfhandbing to transport the mixture from
and to all the components. The goal of using a molten saltoeas test problem is not to examine the
workings of a molten salt reactor, but to see how the JFNK ptethehaves when faced with a more
difficult problem.



1 INTRODUCTION

This project was done as a bachelor thesis project for thieaigphysics bachelor of the University
of Technology Delft. The goal of this project was to inveatiy whether and how the Jacobian-Free
Newton Krylov methods can be used in the Physics of Nucleact®es group for simulation purposes.

A quick overview of the report is provided here. First the nembatical background of the JFNK
method will be explained. In this chapter there are also stips and tricks” on how to use JFNK,
which were used in the models of the test problems. Thesaatidstricks are solutions to problems
encountered in the test problems. The second part is abedirsh of the two test problems, the one
dimensional rod. The physical and mathematical model ofrigeting of a one dimensional rod are
explained. Then the outcomes of several tests are presantediscussed, the problems ecountered
during the making of the models are also mentioned. The thartlis about the second of the two test
problems, the molten salt reactor. Here again, the phyaimélmathematical model of the molten salt
reactor are explained first. After that the outcomes of sgvests are presented and discussed, as well as
the problems that arose in the making of this model. The lzegpter discusses the conclusions, whether
and how JFNK can be used in simulation of nuclear reactorsdt contains information about further
research or testing that can be done on the JFNK method.
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2 Mathematicsand theory of JFNK

2.1 Newton’'s method

Newton’s method is a method that solves non-linear equaiienatively. First there is a description of
Newton’s method for an scalar function, second there is Nelwtmethod for vector functions.

2.1.1 Scalar functions

Newton’s method approximates roots of functions. Theerefbrone wants to solve an equation, the
equation will have to be rewritten into a form that solving #quation means solving(z) = 0. The
function in the graph of Figure 1 if(x) = % + %x in red. In blue the tangent at= 3 of that function

is plotted. We start with a gues§ = 3, one can see that tracing the tangent to its intesectiontidth
r-axis leads to a better guess of the nearest zeyfd:of thanz® was. This point closer to the root will
be designated’, in this caser! = % The next iteration, which consists of following the tangeh at

x = !, will give z2.

—4 L

Figure 1:lllustration of Newton’s method. Following back the detiva of the functions leads to a new
better guess fox: in f(z) = 0 (f(x) is in red). Here we start with a guess of= 3, since the tangent
(in blue) is atx = 3. The better guess here%s the intersection of the tangent and thexis.

A general expression for the next guess is

k1 _ ok f(=h)
f/(aF)
Of course one will in general not acquire the exact solutibthe equationf(xz) = 0, a stop criterion
has to be used to determine when the solution is precise Bnditgp criteria will be discussed in the
context of Newton’s method for vector functions.
The strength of Newton’s method can be made visible in a viemple example. Let us determine
the square root of 739, which is (exact to the first nine decpteres): 27.184554438. We will have to

(1)

3



2 MATHEMATICS AND THEORY OF JFNK

use an equation that has as solution the square root of 7868xdmplexz? — 739 = 0. So we will be
finding the root of the function
f(z)=2*—-1739 (2)

Below are the solutions of the first couple of iterations veitfirst guess of° = 30, since\/900 = 30,
this seems to be a good first guess.

a’ =30
el= 303219 — 27316666667
2t = 27.31 - 23139 — 97184873907
2= 27.18 - ZLIE-T39 — 97.184554440

As one can see the convergence of Newton’s method (if thialigiiess is close enough to the root is
guadratic[5]). This means the number of correct digits hdyigloubles every iteration, as is the case in
this example: from zero to two to five to nine correct digits.

2.1.2 Vector functions

Now for vector functions, suppose one has a vector funéti@r) and one wants to approximate its roots.
This can be achieved by expanding this function by means af/boi series, which is

F(uFth) = F(ub) + F/(ub) Ukt — uF) + HOT (3)

Hereu is the state vector of the system aRl) is the function obtained by means of the governing
equations of the system. The general idea is the same, do@dahe tangent to the function at the spot
of the guess to the plane perpendicular toRkexis. u can be compared toandF(u) can be compared
to f(z) in the scalar version. To obtain a general expression oféxeguess there is a short derivation
from the Taylor series.

Taking the Taylor series and neglecting the higher ordensgHOT) and setting(u**!) equal to
the zero matrix, one obtaines a linear set of equations dbtine Ax = b. From the equation

J(UF)our = —F(UuF) ;ouk = Ukt —uk (4)

one can calculate the state veaiér!, which is the next guess. In this equatibis the Jacobian matrix
of funtion F, defined as

k
o (u) = T5 ©)
By J,j) the element on théh row and thejth column is meantJ is the first derivative of a vector
function. One now has a linear equation which can be solvedimerous ways.

For each step in time one has to solve this system until thieediegrecision is achieved. Various
ways of determining the desired precision exist. One of tbstrnommonly used stop critiria is a drop
in the norm of the nonlinear residual, which is

IFUM)| < 7 lIFuO)]] + 74 (6)

4



2 MATHEMATICS AND THEORY OF JFNK

In this equationr, is the relative tolerance angl is the absolute tolerance. The absolute tolerance is
used as to satisfy this criterion wheu®) is very small [5].
Another stop criterion that is widely used is

[[6u™]]

[|u*]]
This is the criterion used in all simulations presented ia thport. This criterion uses just a relative
tolerancer.

In most situations both criteria result in the same solytlmwever, there are situations in which a
stop criterion can “break down”, a situation in which anatén loop will for example never stop. In all
simulations in this report such situations do not occur. eD#iop criteria exist, but are not included in
this report.

The Newton loop can be sped up by using an extrapolation basélde solution of previous time
steps. Before one starts the Newton loop at a certain tinpenste 1, a simple linear extrapolation, like

<7 (7)

u” — un—l

A (8)

helps the Newton loop converge faster, since the initiabgue (probably) closer to root of the function
F than without the extrapolation. This extrapolation sirfigdi to

urtt = u” 4+ At -

urtt = oum —yn! 9)

This extrapolation is actually a first guess of the answeina t» + 1. Since this guess is a linear
extrapolation all higher order effects are neglected. ifties guess the Newton loop will correct for all
higher order effects, thus finding the answer at time 1.

2.2 Generalized Minimal RESidual method (GMREYS)

The GMRES method is used to solve the linear equation olatdioen the Newton iteration (eq. 4). In
solving this equation the method uses the Krylov subspake.KFylov subspace is defined as .

K = span(ro,Jro,3%rg,...,37trg) ;1o = —F(u) — Jéug (10)

whereinj is the size of the square matrix The algorithm minimalizes the residual in the Krylov
subspace. GMRES is not examined in this research, it is &zt as a linear solver, because GMRES can
be used with JFNK. More information on GMRES can be found Jraf/d [1]. More on implementation

of GMRES can be found in [9].

The method described so far is known as a Newton Krylov metfuwdt uses a Newton iteration to
approximate the non-linear equation and a Krylov subspaleeis(GMRES) to solve the linear equation
generated by the Newton iteration step.

The stop criterion used in GMRES is basedon |b — Ax|?, in the case of a known matrix (this
is the standard norm when solvidgk = b). The termAx is changed into an expression that means the
same (the left hand side of a linear equation) but makes useafacobian free approximation, instead
of a known matrixA.
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2.3 Jacobian free approximation

To make it a Jacobian-free Newton Krylov method one has tahsepproximation presented in this
section. Within the GMRES solver the Jacobian matrix is ordgded in a matrix vector product. There-
fore one can approximate the Jacobian vector product wittaaputing all of the Jacobian matrix. The
product of the Jacobain with a vectois

oy + vy aFl
Jv=| '5n o (11)
[ U1 Bui +U28ug ]
which is an example for a system with vectors of length twoteNbat in the GMRES loop the state
vectoru is the same, as there is no Newton step taken.
To explain the approximation used in JFNK a trivial manipiola of the last equation is used:

Fi(uy,u2)+evr aul +602 —F1(u1,u2)

V= (12)

Fo(u1,u2)+evr auQ +602 —Fo(u1,u2)

€

In this equatiore is a small number, here it is - in most cases - chosen to be th@esgoot of,,,uchine-
In Matlab the square root of the machine epsilon on the coenght programs were run on is about
1.5 - 10~8. The machine epsilon is the smallest distinguishable rdiffee between two numbers on the
machine (computer) one is using. This choice ofill not always work! A good value foe is a matter
for debate in a lot of problems, however the machine epsildiwerk in a lot of cases, more on this can
be found in [6].

Part of equation 12 can be seen as the Taylor expansion difitisidnF aroundu, when neglecting
the higher order terms. In the first elemeft,(u;, us) + ev; aFl + evy ‘9F1 , can be seen as the Taylor
series of F (u1 + evy, ug + €vy), likewise for the second eIement. Equatlon 12 then becomes:

F1(uy+evyugteve)—Fy (u1,u2)

JV ~ FQ(U1+€U17U2+E€U2)7F2(U17U2) (13)
Which results in a general equations, for any dimension@f/#ttors involved:
F ~F
Jv~ FUE V) ZF) (14)

€
By using this approximation a lot of computing time can beeskvfor only a function value has to be
evaluated, instead of a matrix vector product. Supposeytter is of sizeV, then the Jacobian matrix
would be sizeN x N, thereforeN?2 values would be evaluated in each Newton iteration. With the
JFNK approximationN values will have to be evaluated in each GMRES iteration. y®iju + ev)
changes between GMRES iterations, becausbanges.F(u) stays the same and has to be evaluated
just once, sincel does not change during GMRES iterations. For larger val@ie§ this will save a
lot of computation timeV should roughly be larger than the average amount of GMRE&iibas for
JFNK to be quicker.

2.3.1 Exampleof using JFNK

Now it will become clear why JFNK handles coupled problemd.whe functionF is constructed of
the governing equations of the problem. For the sake oftgldet us use a non-physical example. Take
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dzx
— 15
dt zT+y (15)
dy
— 16
dt Ty (16)

as governing equations of this exampleandy are arbitrary variables and their equations are found in
different areas of physics; it is a coupled problem. Mostgitgl problems have derivatives with respect
to time in the governing equations. This means the equasbosid be discretized in the time (and
possibly in the location). In our example the discretizedadipns are

xn—i—l —

At — anrl _|_ yn+1 (17)
n+l _ . n
) = Yy — xn—i—lyn-i—l‘ (18)

in which n denotes theuth step in time. The solution will have to be obtained by tejtthe Newton
iteration converge at every step in time. The vector valuedtionF that belongs to this example is

+1 n+1 g tl_gn
+1y " 4y At
R = [ gntlyntl y"z*y” (19)
t
with the state vector of the system defined as
n+1
gt — { :Zj"H } (20)

This is the set of equations the Newton iteration will deavénear set of equations from. The linear set
of equations will then be solved by GMRES, whereafter the tdaviteration will take one step closer
to one of the roots oF. GMRES uses just evaluations of the functienin which the two governing
equations can be found. The Jacobian matrix of the two gowgeguations is not needed.

In general, if one has a physical problem which is made ufy @oupled problems, the functida
will be

Fl(uk)

k
ST e (21)

FN(Uk)
with F; the functions of one of the coupled problems. The couplirtavéen the problems is not needed,

while that would be needed to construct the Jacobian mafis is what makes JFNK well suited for
coupled problems.

2.3.2 Scaling

Scaling can also be explained with this example. Scalingwaaing relative variables, as to make sure
every element of the functioR has roughly the same order of magnitude. Scaling can be smges
when variables with large differences in their order of miaghe are involved, since the approximation
in equation 14 will not work. In this example the variableandy will be scaled as
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X

5 = (22)
Lref

y =2 (23)
Yref

wherex* andy™* are the scaled variables of order 1 [10]. The discretizectapns (eq. 17 and eq. 18)
of our example can be written as

x*,n—i—l _ g

— kntl *,n+1 Yref 24
At o Tty Tref (24)

*,n+1

*,10
) —Y _ CC*’TH—l *,n+41

At Y
Using these equations to make the functigrall elements of are of orderAit, since the derivative term
is of that order.

Scaling is important because round off errors may occur whismot used. The round off errors
will occur in the difference of the two evaluations of the eppmation of the Jacobian matrix vector
product (equation 14). Whanmis much larger thamv, the sum of the two will be just. This happens
for example when (for some elementwéandv) v = 2.345 - 1032 andev = 5.678 - 10%°. Because these
two numbers are floating point numbers their sum wilkbe ev = 2.345 - 1032 = . To avoid this,
scaling is used in this report, this makes suis of the right order of magnitude. Becausis calculated
using evaluations df and these evaluations are always of order unity.

In this project the reference value of a variable is alwaysseh to be the initial value of the variable.
Thereforel/* with V' any variable is alway¥ ™ = 1 as initial value.

“Tref- (25)
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24 Overview of thealgorithm

In this section an overview of the whole algorithm is prodde

program
run once
Time loop
for all time
Extrapolation
from solution
at timen
andn — 1
Newton
ila Loull
while Tl > T
GMRES
while p > 7, s
Calculatedu
using approx. fodv
Stepdu
Solution
attimen + 1
Total
solution

Figure 2:Overview of the JFNK algorithm used in this report.

2.5 Advantages and disadvantages of JFNK

In this section a discussion of the advantages and disaalyesiof the JFNK method is provided. First
the advantages are explained, then the disadvantages.

The JFNK method needs less calculations for large problenis,other words, problems with many
degrees of freedom. It can solve these problems faster ttolmaoy algorithms. In this project it was
about twice as fast as ordinary algorithms, but it is knowidaden or even more times as fast as ordinary
algorithms [7].

Not only simple uncoupled problems are solved quicker,ntalao solve problems without construct-
ing the Jacobian matrix. This means it can solve coupledignobthat cannot be solved by algorithms
that need the Jacobian matrix. Many problems in nucleateeabysics problems and problems with
flow of fluids involved can now be solved by JFNK.

A great advantage of JFNK to ordinary methods is the measuteé error of the solution. Ordinary
methods involve converging the same part of the problem mhareonce, after other parts are converged.

9
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The measure for the error is lost in this process and mustibgaguced to have such a measure using
ordinary techniques. JFNK always has a measure for the. €ffos is where the stop criterion of the
loop is based upon.

The disadvantages of JFNK will be summarized next. Thereakyrjust one disadvantage of JFNK,
but this can disrupt the calculations in more than one waycesonly an approximation of the Jacobian
matrix is used errors in these calculations can occur. kphbject two situations where JFNK breaks
down were encountered.

First the approximation can break down when large diffeesraccur in the variables. This problem
is described in the mathematical theory section. It can bel{) solved by using scaled variables. This
can still go wrong when variables increase or decrease tainuthe solution of the problem.

Even with scaling the approximation can still give wrongwess. This was encountered when a
large change occured in one of the input variables. JFNKdauroot of the functior, but it was not
a root that produces a physical realizable solution of tleblem. So with a sudden change in input one
has to check whether the solution is plausible.

10
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3 Test problem 1. Heatinga 1-D rod

3.1 Mathematical and computational model

The first test problem used to explore the JFNK method canefsd one dimensional rod with Dirichlet
boundary value conditions. The initial condition is zerdu{® in the whole rod. The rod loses thermal
energy because of radiation, modeled as a black body. FRjgiees an overview of the situation. The
two temperatures at the ends are given andenotes the flux of radiation energy from the rod. This is
chosen as a test problem because the solutions are intithear and the mathematics of the problem
is not difficult.

3

Tleft h W Tright

Figure 3: Schematic overview of the test problem, a one dimensiowkl Ttne rod is heated from the
sides, which are Dirichlet boundary conditions. It alsodeseat through radiation, modeled as a black
body. The initial condition is zero Kelvin in the whole rod.

The governing equation is the heat equation,

ou 0u 4

in which u is the temperaturé; is the thermal conductivity (in this cage= 102%) and
o =5.67- 10*8% is the Stefan-Boltzmann constant. The length of the rod ésroater.

In order to use this equation in iterative methods, it hasetdibcretized. The discretization in space
is done by a finite difference approximation, the discréitirain time is done by a backward Euler
discretization. The discretized heat equation then besome
P 2 ]

At Ax?
wheren + 1 is the current moment in timejs the space discretization indeXt is the time step andx
is the spatial step. The rod is divided imé = ﬁ segments. This equation has to be solved at every
instance in time for every point in the rod.

“ — o(unth) @27)

)

3.2 Three methods

In order to compare different methods of solving the probkaveral different approaches were used
in the first test problem. Most of the comparison is centenedhe difference between the Jacobian
vector product approximation and building the Jacobiarlieidy. Here the three different versions of
the algorithm are presented.

11



3 TESTPROBLEM 1: HEATING A 1-D ROD

321 Method |

The first method solves the problem only by means of a Newswatibn. The linear system that needs to
be solved in each Newton iteration is solved using a dirdeesowhich needs the full Jacobian matrix.

This program is not so much used to compare other programs i so it was used as practice to write
the programs for the other two methods.

3.22 Method Il

The second method uses the Newton method but does not uschdtilver to solve the linear system,
instead it uses a GMRES code obtained from C.T. Kelley [5hrtter to use GMRES, the program still
needs to calculate the full Jacobian matrix, like in method |

3.23 Method |11

The third method is essentially the same as the second pnogray in the GMRES code the Jacobian
vector product is appromixated by equation 14, this is tHéKIfethod. This method is of interest in
this report.

3.3 Performance of the methods |l and I 11

Method 1 is left out of this comparison because it is morergdéing to see the performance of GMRES
with the whole Jacobian versus GMRES with the Jacobian appadion, that is, method Il versus

method Ill. Method | uses far more time to compute the ansvirerr this comparison the boundary
conditions

A

Tieft(n) = Tsin(lOTtn +1)+T (28)
. At

Tright(n) = Tsm(STn +3)+T (29)

are used, wher@ = 1000K is some constant temperature. The maximum temperat@fg is 2000K.
The initial condition is zero Kelvin throughout the rod. Témlution to this problem is found in
Figure 4.

Figure 5 shows the computation time of the two methods as @i@umof the relative tolerance of
GMRES and of the Newton iteration. Matlab does not provideg @f counting floating point operations
(flops), therefore real computation time was used to showffleetiveness of the methods. On thaxis
the relative computation time of the methods is shown, time tof method 11 is divided by the time of
method Ill. So a value above 1 means method Il was quickesl@evbelow 1 means method Il was
quicker. In practice tolerances of betweriT? and10~% are used, in this region method Ill is clearly
quicker than method Il. This means the JFNK method is quittkan building the Jacobian matrix.

For comparison of methods Il and Il the number of Newtonaitens and the average number of
GMRES iterations per Newton iteration are plotted. Thetsaius plotted above the iteration count plot
to show at what instance in time more iterations are needadHigve the desired precision. Figure 6(a)
shows the iterations of the GMRES method with the full Jaaokimethod II), Figure 6(b) shows the
iterations of the GMRES method with the Jacobian approxonaimethod IIl). Both were made using
a relative tolerance in the Newton iterationlof—* and a tolerance in the GMRES iterations16f>.

12



3 TEST PROBLEM 1: HEATING A 1-D ROD

Solution

Temperature

I
S
S o

Time ste|
P 0 0 Grid point

Figure 4:Solution of the heating of a 1-D rod, with sine functions asrstary conditions. This solution
(these boundary conditions) are used in the comparisongafrahm speed between methods Il and lIl.

Relative time of methods Il and IlI

25

Relative time (method Il/method I11)
~

Newton tolerance (in 10°°)

GMRES tolerance (in 10°)

Figure 5:Comparison of speed of methods Il and IIl. Horizontal axesstihe parametep in 7 = 1077,
wherer is the relative tolerance of either the Newton loop or the G%Roop. Vertical axis shows the
relative time, time of method Il is divided by time of methibd |

13
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Solution
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Figure 6: Comparison of the performance of the methods Il and Il whth problem of heating a 1-D
rod with sine functions as boundary conditions.
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First of all it should be noted that the number of Newton ifierss is the same in methods Il and
lll. This is what one expects, because GMRES should converglee same solution of the step that
needs to be taken in the Newton iteration. However GMRES dotbave the same amount of average
iterations per Newton iteration in the two methods. Thisug tb the difference of the exact Jacobian
matrix (method Il) versus the approximation of the Jacobmatrix (method IIl). As expected the average
amount of GMRES iterations per Newton iteration is highemathod Il than in method II, because
method 11l works with the approximation. Also the averageniver of GMRES iterations per Newton
iteration is roughly constant in method lll, but not in madhid. The differences in method Il arise
because the problem is not always of the same difficulty. Theber of average GMRES iterations per
Newton iteration is constant in method Ill, because this bendoes not depend on the difficulty of the
problem, but on the precision of the approximation of theoB&m matrix.

3.4 Code coupling using method 111

Three different ways of coupling are tested and comparel edich other in this report, which are
presented below. The coupled problem in this test is someartiaial. The same rod is taken, but it is
sliced in half. These two halves can only be calculated s¢epd&rom each other. The Jacobian matrix of
this problem is known, for it is the same matrix as used in iwdtH and Il of the previous section, but it

is not used in this test. For clarity: these three methodsar¢he same as the three methods described
before. Each of the coupling methods ((i), (ii) and (ii))pgsnethod Il (JFNK), but the way the coupling
happens differs. More on different ways of coupling proldesan be found in [8].

3.4.1 Coupling method (i)

First of all the straight forward coupling method of solviegch part seperately. Each part is solved
independent of the other, using only the temperatures dbdhadary of the other half. This program
first calculates the left side of the rod (startingrat 0) using the boundary condition on the left and
the tempeture of the previous moment in time on the other. Sdlece the approximation of this half
has converged to the desired error, the other half will beamated. This half uses the boundary
condition on the right and the temperature (of the currertnentt in time) of the other half on the left.
This coupling is not always accurate, since there is no regsure of the error of the solution. Figure
7 shows a scheme of this coupling method, the dashed lineg shlveay of improving this method. If
the second half is converged, one can go back to the first hdltanverge it again, using the value at
the boundary with the right side (of the current moment ireinThis "spiral” of converging the halves
can be continued untill some measure for the total error basedsed to the desired precision, then the
program can continue to the next time step.

3.4.2 Coupling method (ii)

Coupling method (i) exchanges values at the boundary (haf wp the rod) whenever a Newton loop
has converged. The second coupling method differs in thetxdhanges the values at the boundary
whenever a GMRES loop has converged. Figure 8 shows a sdbhevhabupling method (ii). Left and
Right should be interpreted as the GMRES loop of that reseside. There are no dashed lines in this
schematic, since they were not used in the program of thésarek.
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Left

Right

Tim(;tep 1 Tim:step 2 Tim_e step 3

Figure 7:Schematic of the simplest coupling method (coupling meiipdolving each half of the rod
seperately, before going to the next time step. The dashed #re optional (one gets better accuracy
following these).

Left

Right

NeW[on Ne_wton Newton
iter. 1 iter. 2 iter. 3

Figure 8:Schematic of coupling method (ii). Now not the Newton logp@halves is converged before
continuing, but the GMRES loop is converged before goinggamext Newton iteration.

3.4.3 Coupling method (iii)

Coupling method (iii) uses the real strength of JFNK. Siree lacobian matrix is not needed, just the
function evaluations of the heat equation at all points enrtid are needed. The functiéncan be made
by concatenating the evaluations of the heat equationseotvtbh parts. Exactly like the example that
is used in section 2.3.1. This means the exchange of valygseha when the functioh is evaluated,
therefore the Jacobian matrix can be approximated. Caypliethods (i) and (ii) do not use an approx-
imated Jacobian matrix or the real Jacobian matrix, whilgpting method (iii) does. Coupling method
(iii) has a real measure of the error in the solution, whilapting methods (i) and (ii) do not.

3.4.4 Comparison of the coupling methods

Since the rod is sliced in half, the temperature in the migtleuld vary to test this program. As this is
not seen in the solution of the problem as in Figure 4, othentary conditions are used, the solution
of this problem can be seen in Figure 9. The initial condii®still zero Kelvin in the whole rod. The
boundary conditions are
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At
Tiepe(n) = Tsin(257n +3)+T (30)

At
Tright(n) = Tsin(lOTn +1)+T (31)

Solution

emperature

N
N T
S o

Time step 0 0 Grid point

Figure 9:Solution of the problem used for the tests of the code cayipliograms. Another solutions is
chosen because in this solution the temperature in the miofdhe rod (where it is coupled) changes.

Three comparisons are made in this section. First the Neigmation counts and average GMRES
iterations per Newton iteration counts of all three couplinethods are compared. Second the difference
in time between the standard coupling method (i) and the JEdling method (iii) is looked at. Third
is a comparison of the accuracy of all three coupling methduisn a large time step is used.

For the first test three iteration count plots (one for eaalptiog method) are presented and dis-
cussed. A plot of the solution with iteration count plots ofipling method (i) can be found in Figure
10. In this figure each half of the rod is converged only onlcat means that the dashed lines in Figure
7 are not used. The plot in the middle is the iteration courithefright half (fromx = 51 to x = 100),
the plot on the bottom is the iteration count of the left h&dbifh z = 1 to 2 = 50). It is easy to see the
times at which the problem is easier or more diffucult. Thevdda iteration tells us about this difficulty.
When the temperature does not change in one time step, thioN@eration does not have to take many
steps and therefore finishes quicker. This is exactly whapdias at the minima of the temperature at the
boundaries. The minima of the boundary coincide with lesstie iterations in the half of that bound-
ary. So because the left boundary has four minima, thereoardifnes where less Newton iterations are
used, these times coincide. This hold for the right half al wely with two minima.

Figure 11 shows a plot of the solution and iteration countafpting method (ii). In this plot the
information of where the problem is hard or easy to solve $. 13 his is because one does not know
how fast the two GMRES loops combined converge, in other savith what error the program goes
to the next Newton iteration (see Figure 8). The program enlyverges both GMRES loops once, it
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Figure 10: Solution and number of iterations of coupling method (i (8tandard method). Newton
iterations in blue and average GMRES iterations per Newterations in red. Tolerances ar&) 3.
Upper plot is solution, middle plot is right half, lower plistleft half.

is not known whether this is always good enough to stop thetbleiteration, therefore the number of
Newton iterations is also affected by this. The number of téewiterations will not provide a measure
for how hard or easy the problems is either. Overall this ieghould not be used, since it provides less
information about the difficulty of the problem at hand. Alsdoes not solve the problem faster than
coupling methods (i) and (iii).

Coupling method (iii) uses the strength of JFNK, as expldiaarlier. An iteration count plot of
coupling method (iii) is found in Figure 12. The amount ofrdtilons, both Newton and GMRES, is
roughly constant. This is not surprising because the JFNkadewithout coupling (method IIl) also
had roughly constant iteration counts. This should be ainfiecause only the evaluation of the function
F is used to solve the problem, which is in both cases the sandidn (although different boundary
conditions were used).

The reason why coupling method (iii) is better than couplimgthod (i) is seen in the second com-
parison of the methods. A plot of the relative speed of thehoas is given in Figure 13. A value above
1 means the JFNK coupling was quicker, a value below 1 mearitie level coupling was quicker. As
can be seen in the plot, JFNK was quicker with all tested aoieis. For example if the tolerance for
both the Newton iteration and the GMRES iteratiori(Gs 3, coupling method (iii) is almost three times
faster. This means the true JFNK method (coupling methdjl ¢fi solving coupled problems is at least
three times faster than standard coupling methods (caupliethod (i), not with method Il, but method
.

The last test of how the coupling methods perform, was taiestore difficult circumstances. This
was done by increasing the time stey;,. This makes the problem more diffucult because the Newton
loop has to adjust more to find the solution. Figures 14, 15l&show the results of this test. All three
coupling methods were tested here.

In Figures 14 and 15 it is clearly seen the solution is not itet 1solution. These are the plots of

18



3 TEST PROBLEM 1: HEATING A 1-D ROD

Solution

Grid point

Time step
Iteration count
"é 300 2?0 4?0 690 8?0 10‘00 12050
*§ —— GMRES right Newton
2 RES |eft -14 a
B oo | i il |
1o =
5 I m“-lu 110 1t 1 23
o k]
‘t; i -1 %=
5
2z ot I I I I I
0 200 400 600 800 1000 1200
Time step

Figure 11:Solution and iteration count plot of coupling method (iipl@ances arel0—3. Upper plot
is the solution, lower plot has Newton iterations (in bluayerage number of GMRES iterations per
Newton iteration of the left half (in green) and of the riglaifi(in red).

coupling methods (i) and (ii). Atthe boundary between the ¢aupled halves of the rod the temperature
is in a local maximum or not smooth. Clearly these methodsodalways work, since one does not know
what the error is and where the error is. The location(s) efdhror are the variables which contribute
most to a norm used to define the error. For now the differeeb@den solution of the coupling method
and the real solution is used as error. Here all the errornisaxtrated along the boundary between the
two halves.

However, the JFNK coupling method (coupling method (iiiprks fine under these circumstances,
as can be seen in Figure 16. There is no strange local maximuheimiddle of the rod, nor any
irregularities. What does catch attention is the diffeeentiterations between methods (i) and (ii) on
the one hand and method (iii) on the other hand. In the caseafRNK coupling method (method (iii))
more iterations were needed. This is probably becausedtaian count plots in methods (i) and (ii)
contain only the count of the first time a loop converged. Theans the first time the Newton loop
converged in method (i) (Figure 14) and the first time both@®MRES loops converged in method (ii)
(Figure 15). However method (iii) (Figure 16) convergesyomhce, because then the final answer is
obtained. Therefore the methods (i) and (ii) need moretitera than can be seen in these plots.
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Figure 12: Solution and number of iterations of coupling method (iifolerances arel0—3. Upper
plot shows the solution, lower plot shows the iteration ¢qalat. Number of Newton iterations in blue,
average number of GMRES iterations per Newton iteratioreth r
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Figure 13:Comparison of the standard coupling method (coupling nm(i) with the JFNK coupling
method (coupling method (iii)). Relative time is the timgBNK divided by the time of the standard
method. The horizontal axes show the paramgterr = 10~?, wherer is the tolerance.
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Figure 14: Time level coupling. Solution of the problem with large. This results in errors in the
coupling area (in the middle of the rod) in ordinary couplif@pupling methods (i) and (ii)), not in the
JFNK coupling method (coupling method (iii)). Upper plos@ution, middle plot is the iteration count
plot of the right half, the lower plot is that of the left haNumber of Newton iterations is in blue, number
of average GMRES iterations per Newton iteration isin red.
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Figure 15:Newton level coupling. Solution of the problem with ladye This results in errors in the
coupling area (in the middle of the rod) in ordinary couplif@pupling methods (i) and (ii)), not in the
JFNK coupling method (coupling method (iii)). Upper plosi@ution, lower plot is the iteration count
plot. The number of Newton iterations is in blue, the numlbeverage GMRES iterations per Newton
iteration of the left half is in green, that of the right hatf ied.
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Figure 16:JFNK coupling. Solution of the problem with large. This results in errors in the coupling
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4 Test problem 2: Molten salt reactor

A molten salt reactor (MSR) is a reactor in which the fuel isatution with a molten salt. This allows
for the fuel to be pumped around in a system of pipes and ottraponents. The basic scheme of an
MSR is found in Figure 17. In the first section a descriptiorboth the continuous time model and a
discretization of that model will be given. The discretizeddel is used to do all computations of the
JFNK method with. This test problem was used because theematiics and especially the coupling
is more difficult than in the first test problem. More difficutteans that more Newton and GMRES
iterations are needed to reach the desired tolerance. Rils@sta problem in the area of nuclear reactor
physics, which is of our interest.

z
——-
Reactor Core Heat
Exchangef
Pump

Figure 17: Schematic view of a molten salt reactor, used in this prdiedest the JFNK method. An
MSR consists of three elements with pipes in between to fhergalt around through the elements. The
elements are the reactor core, where fission takes place. h&htexchanger, where the heat used to
generate electricity is taken out of the reactor. The thgdhe pump, to circulate the fuel-salt mixture
through the reactor.

4.1 Mathematical and computational model
411 Geometry of the MSR

There are three essential components of an MSR: the reartarthe heat exchanger and the pump. The
reactor core is - in this model - a large cilindrical shapeskse¢ This is where fission of the uranium fuel
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4 TEST PROBLEM 2: MOLTEN SALT REACTOR

takes place and thus precursors are produced. In a reactwe e fuel is not moving the precursors
decay on the same spot as where they were produced. Howeteis model the fuel is being pumped
around and therefore the decay of the precursors takes else@here, even outside the reactor core.
The core is not just a hollow vessel, the fuel in the molteh fbalvs past bars of graphite, in order to
control the fission process.

The heat exchanger is used to extract heat from the fuel galtira and can be used to generate
electricity or for other purposes. The pump is used to trarigpe fuel salt mixture around the system,
without a pump the mixture in the core cannot cool down andubkelsewhere in the system is not used
in the fission process.

The model takes only one spatial dimension into accounferdifices in the radial direction are
neglected. The parameterin Figure 17 denotes the direction of this spatial paraméelée positive
z-direction is also the direction of the flow in this model, ft@v can however be easily reversed. The
parameter: is discretized in an integer number of elements, with difércross sectional areas in the
different components of the MSR.

4.1.2 Neutronics model

The neutronics model used is an adaptation of the standartiqrwetics model. The model will consider
only the total amount of neutrons present in the reactor itoeach time step. The model differs from
the standard point kinetics model for the amount of pregsrssince the precursors are being pumped
around. Therefore the model describes the density of eraiin each element. The equations used in
the model are derived from the “standard” point kinetics eipaihich are

dN(@)  plt) = 3

o =N +ACW) (32)
dc(t) 8
-~ =Nt =) (33)

WhereinN is the total amount of neutrons in the reactor caérés the total amount of precursors present
in the core. The equations are differential equations isgheo quantitiesp(t) is the reactivity of the
core attime, 3 is the delayed neutron fraction.is the precursor decay timsa,is the neutron generation
time. In this model only one precursor group is taken intcoaot, if one wants to look at the effect of
several precursors the tethd’(¢) changes into a sum over all different precursors and foryediéferent
precursor group a seperate equation like equation 33 hasuedd. The derived equations become

ON(t) _ p(T) + peat(t) — B Jo' AR)C(z, 1) ( )dz
5 = X N(t) + A=2 T (34)
oC(z,t)  Bf(2) N(#) = AC(, 1) — 0 g(z,t)C(z,1) (35)

TN VIERAL oz A2)

wherein NV still denotes the total amount of neutror3(z) however denotes the precursor density at
position z. This means some changes in the form of the equations, glhtiwey still mean the same.
The changes involve the cross sectional atéa) at = and the fission shapg(z). The fission shape, in
brief, determines where fission in the geometry of the redelkes place. In this moddl is taken as
flz) = % in the reactor core, witli/ the height of the reactor core, which is in this case the lenfthe
reactor core along the-axis. Outside the reactor coffeis taken asf(z) = 0. ¢(z) is the adjoint-flux,
which is to describe the relative probability that a neuttogated at a certain location will contribute to
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the fission process. It is taken to bénside the core and outside the core. In the differential equation
of C the flow of the fuel salt mixture and therefore the precurgoedso taken into account, wii(z, ¢)
being the flow rate at positionat timet. Also a difference is made between the temperature feedirack
the reactivity and the external reactivity. Temperatuedfmck will be discussed later on, the external
reactivity is a parameter that simulates external souréeadiation or extra graphite near the reactor
core.

Because the total number of precursors is changed into dylehgrecursors, one has to integrate
equation 35 over the whole reactor to get equation 33 bacndfthen multiplies the equation with a
factor of A(z), the original point kinetics equation is obtained. This methe terms in equation 35 have
a different dimension than equation 33.

Equations 34 and 35 are discretized before they can be ugédNiK and become

n n n n+1 . n+1 .
Nt N _ p 1 + peajﬁ — ﬁNn-i-l + )\Z] AJAZCJ (b] (36)
At A > fidi
n+1 n n n+1,m+1 n+1,m+1
G G BN onn 9T 0O (37)
At AA Az j A;Az A;Az

In these equations some extra notation is introducdeddenotes the size of an element in thdirection,
At is the time discretization. The subscripbn any variable means it is the value of elemgiof that
variable and the superscriptor n + 1 denotes the value of that variable on the current or the nejamt

in time. Hereg is taken to be constant throughout the reactor and in times flthw rate has to be a
constant throughout the reactor, or fuel-salt mixture adtumulate at one point in the reactor. It is
also taken to be constant in time as to simplify the outconfiekeomodel. An important aspect of the
discretized equations is that this set of equations onlgswalheng(z,¢) > 0 (upwind model), because
of the way the derivative with respect tds discretized. If it is discretized otherwise, the flow ragm
be negative and zero (downwind model).

4.1.3 Thermo hydraulic model

The thermo hydraulic model used for this simulation takesdteffects into account. The production of
heat by fission of the fuel in the fuel-salt micture, heats$gaont by the forced convection of the pump in
the reactor cycle and the cooling of the fuel-salt mixturthimheat exchanger. Each of the three modeled
effects are discussed seperately below.

The equation

N7 o pfissf(z)

q"(z,t) = WN@) (38)
is used to describe production of heat in the model, it issderfrom the expression of the total generated
heat in the reactor core, which is given By= NvXppy;.s. In this expressiorP stands for the total heat
generated in Wattsy is the number of neutrons inside the carés the average velocity of the neutrons
in the core (in cm/s).Xr is the macroscopic fission cross section, which is the piitityah neutron
collides and induces fission per centimetre traveled inside&ore p ;. is the average amount of heat a
nucleus generates when a neutron induces a fission of theusudtquation 38 is derived by multiplying
the expression for the total amount of generated heat(by/A(z), which gives an expression of the
heat generated per unit volume, which is denotedjBy With the definition of A = (vvXr)~! the
derivation is completey being the average number of neutrons produced per fission.
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The change in energy at a certain pointlue to the forced convection of the pump is given by
—0(uhfyer)/0z. In this expressionu(z,t) is the speed of the fuel-salt mixture ang,.(z) is the
thermal energy of the fuel-salt mixture. This results in

0 g(z,t
g(/mvection = _(Pcp)fuel& zfl(z))

T(z,t) (39)

when these two relations are usedz,t) = g(z,t)/A(z) andhsyue(2) = (pcp) fuaT (2,t). In these
relationsp is the density of the fuel-salt mixture anglis the heat capacity of the fuel-salt mixture.

The heat flow out of (or into in rare cases) the fuel-salt mixtin the heat exchanger is modeled
according to Newton’s Law of Cooling, which tﬁq = hAAT. g{bq is the heat flow out of the fuel-
salt mixture into the coolant, is the heat exchange coefficient, which is a heat exchangkfl@m-rate
dependent parameter aldd" is the temperature difference between the fuel-salt maxdund the coolant.
The temperature of the coolant is chosen to be constantrfgglisity. The expression for the heat flow
per volumic unit”, is

(é///(z) — h(i)g)(z)

in which Ty, is the temperature of the coolant in the heat exchangedndis the circumference of the
heat exchanger, which defines the area the heat can flow throug

The three described effects provide terms for the right lsde of the equation, the left hand side
consists of the change in heat in the fuel, that wouldle;,.;)/0t. For simplicity the temperature of
the graphite in the reactor core is taken to be equal to thpaeature of the fuel-salt mixture. This means
that when the temperature of the fuel-salt mixture chandpestemperature of the graphite changes and
therefored(h s, )/0t does not cover the total change in energy. Instegd; (2) = A fuel + hgraphite(2)
is introduced, which is the total thermal energy, of both filnel-salt mixture and the graphite in the
reactor corehyy,; can be written adoa = (p¢p)total (2)1'(2, 1), With (pcp)totar @S

(T(zv t) - The) (40)

(pcp)fuel + Cp,graphiteMgraphite/Vfuelincore Inside core

41
(PCp) fuel Outside core (41)

(pcp)total(z) = {
WhereM g, .pnite is the total mass of graphite in the core dnd; is the total volume of fuel in the core.
The values for(pc, ) ruel are 4 outside the core and 8 inside (in J/xnn all models in this report. The
total energy balance equation then becomes

(el (2 33T oo t) = LN ()~ () - 22070 - M2 2.1 (02)

which takes the three effects into account and uses theotiomefor the changes in temperature of the
graphite. The discretized equation is then

g7t g1
AA: T A A

+1
jjjn - 71jn . pfissf(z)

h;0;
(pep)totar j=—x7—— = AvA(2) -

A

N~ (pCp) fuer (TP —The) (43)
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4.1.4 Temperature feedback

The only feedback onto the reactivity taken into accounhia model is that of the temperature. The
core is modelled as critical at a certain equilibrium terapaeT;, with a temperature differential as

op
o<T> °
where< T > is an average of the temperature in the reactor core [3].eSime« is a constant, the
reactivity is proportional to the average temperature. el@v proportionality leaves room for a constant
between the average temperature and the external reactihiis constant introduces the equilibrium
temperature at which the reactor is critical. Which meamsréactivity as a result of the temperature
feedback (not the external reactivity) can be written as

(44)

P =a(d ] [T - T) (45)
J

The sum in this expression can be seen as a weighted averdage tdmperature, it is the average
temperature of the reactor core. This equation is directbsstuted in equation 36 in the model.

4.2 Threeversionsof the MSR

There are three versions of the model of the Molten Salt RedMSR), in each version more effects
are taken into account. This was done in order to build up tbgram in steps, as to find out where the
JFNK method might not work. In the following three paragrapiie model of each version is described,
as well as the results of the three versions. Also the eneocethtproblems are mentioned and, when
solved, their solution.

421 Version 1: Point kinetics

The standard point kinetics equations are solved using FEhiKJmethod, in this version. The point

kinetics equations are found in equations 34 and 35. In thision the fuel is stationary and there is
no thermal feedback. The thermohydraulics part of the mizdebt considered either in this version.
This version is used to compare the JFNK method to a diregegdio see whether the JFNK method
produces the right answers.

Three situations are used to compare the two methods withdooall and large time stepg.in the
point kinetics equations is the external reactivity, whizkans a positive value fprmeans a supercritical
reactor, a negative value fprmeans the reactor is subcritical. The tests that are pexbéere are with
p = +[/2, a supercritical reactor. This is considered on two timéesca large scale with¢ = 1s and
a small scale wittA¢t = 1ms.

In the situation of a supercritical reactor cope€ +(3/2) the number of neutrons and number of
precursors should grow exponentially. There should alsarbmitial jump in the number of neutrons
[4]. This jump should be of heighit/ (/5 — p) times the initial value of the number of neutrons. The other
two situations where = 0 andp < 0 have also been tested, but are not presented here. In thefaase
critical reactor p = 0) the number of neutrons and precursors should remain gandtathe case of a
subcritical reactor{ < 0) the number of neutrons and precursors should decreaseyilsthe initial
jump but in the opposite direction (downward). The modefqrened well in these situations.

Figures 18 and 19 are the plots of the direct solver and of ENKImethod. As can be seen the
two models produce the same solution. The initial condtiareN' = 100 andC' = 50, 000. Also it is
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not a difficult problem, since not many Newton and GMRES tters are needed to solve the problem.
However the JFNK algorithm needed two Newton steps in the odat¢ = 1 (Figure 18). This can be
brought down to one iteration by making the tolerance for G&&Rsmaller.

4.2.2 Version 2: Feedback and spatial model

Version 2 uses the point kinetics equations with the spdisitibution of the precursors, as in equations
34 and 35. The temperature is accounted for in this versiovelishowever the reactor core cannot cool
down, since the fuel-salt mixture is not being pumped aro@mly the part of the fuel-salt mixture that
happens to be in the heat exchanger can be cooled, the fuatigaure that is in the reactor core will
never lose its heat to the heat exchanger. This version absothe temperature feedback.

A slight adjustment to the model is made, in order to testvhision. Since the fuel-salt mixture in
the reactor core cannot cool down, the reactor will alwayg gkelf down, because of the temperature
feedback. Therefore the heat exchanger is enlarged so thke wdactor system is cooled down, the
reactor core included. When the core is cooled, the reac®s dot shut itself down and tests with the
external reactivity f..;) can be done.

Figure 20 shows a plot of the number of neutrons, the numbereaxfursors, the temperature and
iteration counts in the shut down situation, the reactoe é®mnot cooled in this plot. The plot in Figure
21 shows the same variables, but now the reactor core isd;osteit reaches its equilibrium. This
equilibrium is verified by substituting all values of the difmium state in the governing equations,
equations 34 , 35 and 42. In both plots the initial conditiarsN = 10!!, C = 10% andT" = 600. This
problem is again an easy problem to solve for the JFNK metsiade only one Newton iteration is used
most of the time, only in the first few steps more than onetitemas used.

One of the inputs in the model is the external reactivity,alihéan be varied over time. To test how
the model handles changes in the external reactivity, sather odd functions were used as input for
the external reactivity. The input functions are sine fiomg, jumps and ramps. Some input functions
that the model handles well can be seen in Figures 22 and 23.

However, not all jumps are handled correctly by the modeledver a jump of about 5 is made
in the input function of the external reactivity, the JFNKtined does mostly not find the right solution.
It does, in fact, find a solution of the equation, this is hogrewot always a relevant solution. The set
of governing equations does not have only physical redkzablutions, some are not realizable. The
non-relevant solution is, in all cases investigated in thi&earch, easily spottable. In such a case some
guantities become negative at some point in the simulatfoplot of this situation is shown in Figure
24.

This peculiar behaviour can be corrected by changing the step whenever such a step in the
external reactivity occurs. The JFNK method will provide ttorrect solution when the time steps of the
order of one milisecond are used, however, to simulate time sanning time of the reactor the number
of total steps will be several orders of magnitude largenc8&ithis is not practical, it is best to locally
change the time step magnitude when the times at which thpguwacur are known or introducing
variable timestepping in the algorithm. A Figure of the systwith a jump in the external reactivity and
small time step is shown in Figure 25.

Also notice that in all problems with a non-zero externatt&éy more Newton iterations are needed
to solve the problem. In general the number of iterationgledés between one and six. This means a
problem with external reactivity is a harder problem thaa phoblem in test problem 1.

Another problem occurs when the model is used with largewdifices in the numbers of neutrons,
precursors and the temperature. This problem can be evagdesiry relative variables, as discussed in
the section mathematical theory. However, this does natagiee a correct solution, even these relative
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(a) Solution with a direct solver. N is the number of neutronss @e number of precur-

SOors.
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(b) Solution with JFNK. N is the number of neutrons, C5 is the remub precursors.
Iteration count plot is on the right, number of Newton itéoas in blue, number of average
GMRES iterations per Newton iteration in red.

Figure 18:Comparison of solutions produced by a Matlab solver and #K method. In this example

the reactivity isp = g, the time step ig\t = 1.
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(a) Solution with a Matlab solver. N is the number of neutronss €e number of precur-

Sors.
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(b) Solution with JFNK. N is the number of neutrons, C5 is the remub precursors.
Iteration count plot is on the right, number of Newton itéoas in blue, number of average
GMRES iterations per Newton iteration in red.

Figure 19:Comparison of solutions produced by a Matlab solver and #dK method. In this example
the reactivity isp = g, the time step it = 1073,
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Figure 20:Plot shows the number of neutrons in the reactor, numberedysors in cell 4 (which is in
the core), the temperature of cell 4, the external reagtigitd the number of iterations. The reactor core
is not cooled, therefore the reactor shuts itself down.
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Figure 21:Plot shows the number of neutrons in the reactor, numberedysors in cell 4 (which is in
the core), the temperature of cell 4, the external reagtigitd the number of iterations. The reactor core
is cooled, therefore it reaches an equilibrium state.
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Figure 22:As function forp.,; some jumps and two ramps are used to test the model. Thisdiungt

handled with succes.
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Figure 23:As function forp..; some jumps and a sine function are used to test the modelfuFfuson
is handled with succes.
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Figure 24:Jump in the external reactivity &f 3, this causes the method to find a non-relevant solution
of the equations (a solution that is not realizable). The benof neutrons in the core becomes negative
in this solution. The maximum number of Newton iterations get to 100, since the algorithm never
used more that 20, the Newton loop did converge.
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Figure 25:Solution of the JFNK method of a jump-gf} in the external reactivity, with a small time step
(At = 1073s). This produces the right solution, as opposed to a solutiih a larger time step.

variables can be too far apart. Relative variables weredidsnissed in the mathematical theory of JFNK
section.

423 Version 3: Complete model

Version three is the same as version except for the pumpisiveinsion the pump is "switched on”. This
means the governing equations were adapted for use withutimg,pall terms with the flow-rate in it
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(g(=,t)) were previously neglected. The test of this version céssiSpumping around precursors. An
additional test is performed by measuring the total numibgrecursors when they are being pumped
around, when the decay is set to zeko£ 0), this will be a constant. The model is also tested by letting
the reactor reach an equilibrium state starting with a rauilbrium state.

Figure 26 shows a spatial and temporal plot of the test whereupsors are being pumped around.
The reactor starts with a high concentration of precursorsells 75 through 100. While the fuel-salt
mixture is being pumped around the precursors move througlsystem and dissipate throughout the
reactor. Figure 27 shows the same solution, with a plot ofdted amount of precursors, which should
be a constant. This plot also shows the precursor densityesmperature of the fourth cell. In this test
not many Newton iterations are needed to solve the problaimome or two. Apparently this is easier to
solve than a problem with a non-zero external reactivityer€hwere also few GMRES iterations needed
to solve the problem.

Spatial precursor density

Precursor density
N

l/o

i

° %fwlz

i "
/,%I/é// i

40

120

Cell index

Time step

Figure 26:Spatial plot of the test where precursors are pumped arohedeactor, decay of the precur-
sors is not accounted for in this test £ 0), as to test whether the model takes into account the diffusi
of the precursors. The fuel-salt mixture flows from celldatver index to cells with higher index.

The final test consists of letting the MSR reach an equilibratate starting with a non-equilibrium
state. This shows the model works when using a non-zero fltav fEhe plot of this simulation can
be found in Figure 28. Notice that very few Newton iterati@me needed. Mostly just one Newton
iteration, that is much less than the problems where tharadteeactivity is non-zero. Also the test
where precursors are just being pumped around is easypitiaés mostly one Newton iteration. As to
put JFNK to the test, one can best use a problem where thanakterctivity is non-zero.
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Figure 27: Same solution as in Figure 26, with a plot of the total numbigprecursors in the reactor.

This should be a constant, as precursor decay is “switch8d(of = 0). In this test hot fuel-salt mixture
was pumped around as well, as can be deduced from the ploe aéthperature of cell 4. There is an
initial jump in the plot because Matlab cannot plot a strdigiorizontal line from data points, and has
nothing to do with the solution.
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Figure 28:Test of the final model of the MSR, the reactor reaches anilbduih state, starting from a
non-equilibrium state. This solution is with no externaativity. The GMRES plot is average number
of GMRES iterations per Newton iteration.
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5 Conclusions and discussion

We have studied JFNK methods, or more precise the applicafidFNK methods in nuclear reactor
physics. In this project is may be concluded JFNK has manyicgtipns in nuclear reactor physics.
Because many reactors have governing equations of ditfareas of physics. This is exactly the strength
of JFNK, it can solve coupled problems quickly. The full patal of JFNK has not been discovered in
this project, since not everything about JFNK has been figated. Also the test problems were not too
difficult for the JFNK method, the harder problems where JFdKId break down have not been found.

In this research two test problems were used, the first wab aatk which was heated on both ends
and radiated heat away in the radial direction. In this tesblem the differences between “ordinary”
methods and the JFNK method were investigated. The secendrtgblem is a simulation of a Molten
Salt Reactor (MSR), this problem is harder to solve than tRertd, since different “kinds” of physics
are involved in the same problem. This is an aspect the JFN#Kadds supposed to handle well, this
test problem is used to find that out.

Three different methods of the same model of the 1-D rod weeel.uJust a Newton iteration with a
solver for the matrix equation (method 1), a Newton itenatioith GMRES to solve the matrix equation
without the JFNK approximation of the Jacobian (methoddi)d last a Newton iteration with GMRES
and with the JFNK approximation (method Il1). The time itkdo run the simulation of methods Il and
[l was compared. In general method Ill was faster than netthaexcept for some cases in which the
tolerance of the error was extremely small.

Also the coupling of two systems was tested using the firspreblem. In this test the rod is divided
into two parts, which can only “see” each other through thghi®uring value of the temperature. In
effect this means solving both halves as if it is one rod. Tiffecdlty is that by changing the solution of
one part, affects the temperature at the divide, and theréfie solution of the other part. This coupling
was done in three ways, two where values on the divide areaeged (after each Newton loop or after
each GMRES loop) and the JFNK method.

All three method produce the same solution when the tolesaace tight enough. The JFNK method
finished the calculation more than twice as fast as the ottethads, because in total less iterations
are used. Also there is not a measure of the error in the splitithe ordinary coupling methods. A
situation where this causes problems is found in the ordicanpling methods. The JFNK method does
have a measure for the error in the solution, and therefaa lietter stop criterion. The JFNK method
does calculate the right solution in the case where the argicoupling methods fail.

The second test problem, the MSR, is constructed step by steaning there are three different
versions. The firstis made using just point kinetics equatid he second has the spatial configuration of
an MSR but the fuel-salt mixture is not being pumped aroundhé third method the pump is “switched
on”, this is the complete model. All three methods work welhen used with scaled variables. The
method produces wrong solutions when the numbers it useddolate are “too far apart”. All numbers
are stored as a floating point number, therefore if the exptoofea number is much smaller than that of
the other, addition of the two numbers might result in netjdgcthe smaller of the numbers. This will in
turn give rise to errors like a negative number of neutrors egative temperature.

The point kinetics model is tested by comparing the solutda model which does not make use
of JFNK. The second model, with temperature feedback andheaspatial configuration, is tested in
different situations. This model is tested qualitativdile a test where the heat produced in the reactor
core cannot flow out of the core. In this case the reactor ghstulit down, which it does in this model.
The third model uses a pump to pump around the fuel-salt m@xtWrhis model is tested by pumping
around precursors, without letting them decay. This shoesdilt in a high concentration of precursors
flowing around the system, while dissipation spreads thewutih the reactor. The total number of
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precursors is also tracked, since the total number shouldhamge when decay is not taken account of
in the model. The full model is also tested with a situatiomwhich the pump is started, which would be
the start up of the reactor.

In conclusion, Jacobian-Free Newton Krylov methods arelgoethods to find a solution of systems
with different parts of physics involved. It solves the gdevh quicker than the “standard” methods. It
solves the problem without a concentration of the erroriding incorrect solutions. And it is applicable
to all problems of which the governing equations are knovan recessarily the Jacobian matrix of the
system. Which allows solving many more problems.

5.1 Futurework

The most promising aspect that is left out of this resear@htdwa lack of time is preconditioning. With
using preconditioning without JFNK one simplifies the magquation (the set of governing equations)
by multiplying both sides of the equation by the same matix his matrixP is constructed in such a
way that the equation will be easier to solve, in practice theans transforming the equatidm = b
into PAx = Pb. In this equation the matriRA looks more like the identity matrix than the matAxand
therefore the equation is easier to solve.

However, when using JFNK, there is no matixsince the matrix vector product is approximated in
JFENK. Therefore the exact workings of preconditioning Ww#! different when used with JFNK. There
are many different ways of using preconditioning. One ofrtiest popular methods is “physics based”
preconditioning, where in essence each part of physicsiprbblem is solved independent of the others.
Before solving the whole coupled set of equations.

The exact workings of preconditioning are not part of thjzore.
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A NOMENCLATURE

A Nomenclature

<3N =3I o MSC

Tleft andTright

Q= aq whkg

e
)
8
&

NS S N )

State vector of model

Step of Newton iteration

Vector function, JFNK finds its roots
Parameter for Jacobian approximation

Index for Newton loop

Index for time

Index for position

Jacobian matrix

Tolerance for stop criteria

Vector in GMRES, in matrix vector product with

Boundary conditions in first test problem K
Spatial step cm
Temporal step S

Length of rod in first test problem cm
Thermal conductivity in first test problem W/mK
Stefan-Boltzmann constant 5.67 - 1078 W/cnm?K*
Number of neutrons in the reactor #
Precursor density in the reactor # fchn

Reactivity of the reactor core
External reactivity
Delayed neutron fraction

Neutron generation time s
precursor decay constant 1/s
Cross sectional area cn?
Adjoint flux

Fission shape 1l/cm

Flow rate of fuel-salt mixture cis
Average energy per fission 310~ Jffission
Average generation of neutrons per fission 2.5 # [fission
Heat per volume of fuel or fuel-graphite JEm
Temperature of fuel-salt mixture in test problem 2 K
Heat exchange coefficient W/
Circumference of heat exchanger cm
Temperature of heat exchanger coolant K
Temperature feedback coefficient 1/K
Equilibrium temperature of reactor K
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