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Abstract

Proton therapy is a relatively new method of treating cancer, with this
method more accurate treatment plans have to be made. Phantom-DG
is a program designed to make treatment plans more quickly than with
traditional methods with the use of the discontinuous Galerkin finite element
method. This thesis explores the possibility of increasing the currently
existing linear basis set to quadratic basis sets for angular diffusion. This
would increase the order of convergence for the solver and is potentially
favorable in terms of computing time or accuracy. The basis sets are defined
on the sphere and on the octahedron, where the functions on the sphere are
spherical harmonics and the functions on the octahedron are 2d polynomials
on the surface of the octahedron, and are projected to the unit sphere. The
basis set quadratic on the sphere encounters significant numerical errors.
The direct cause of these errors is unknown. The most likely cause are
errors introduced when solving linear systems of equations to calculate
the coefficient matrix C. The set quadratic on the octahedron does not
encounter these errors and does converge, however its rate of convergence
is low enough to deem it unsuitable for practical use. A resolution for this
problem is unknown. If all these problems were fixed one could expect
a order of convergence for both quadratic basis sets of 3. If the rate of
convergence cannot be increased using extended basis sets is not advantageous.
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1 Introduction

1.1 Background

In the treatment of cancer, radiotherapy is an often used method. With this
method a beam is used to deposit energy in the body, the deposited energy
per kilogram body mass is called dose. This dose can be made sufficiently
strong to damage and kill cells. By focusing the beam on a specific spot
treatment planners can choose where to deposit the most dose. Traditionally
this kind of therapy is done with gamma radiation. The disadvantage of
using gamma radiation is a relatively high entrance and exit dose, as shown
in the figure below.

Figure 1: Dose deposition of gamma therapy and proton therapy

In recent years it has become more feasible to use protons to treat
cancers. Protons have a much lower entrance dose and the exit dose is
almost non-existent. The enhanced precision of proton therapy requires
enhanced accuracy of the treatment plan.

The primary method to calculate the treatment plan is by Monte Carlo
simulation. This type of simulation is reliable but slow. In this type
of simulation every variable is discretized and the computer calculates all
possible outcomes with random inputs to give a final dose distribution. The
section of Reactor Physics and Nuclear Materials (RPNM) of the department
of Radiation Science and Technology (RST) is working on a deterministic
particle transport code to calculate treatment plans more quickly and with
sufficient accuracy. In a deterministic code the solution is not calculated
with random inputs or random processes, it works by numerically integrating
integrals and numerically approximation the solution. Deterministic code
will always generate the same output for a certain input.
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1.2 Setup of this thesis

The next sections briefly explains some important concepts and gives an
introduction to the particle transport equations and the method used to
solve these equations numerically. This is followed a chapter explaining
the mathematics behind two different types of basis functions. Chapter
4 presents the mathematics required to calculate the shape of the basis
functions, and chapter 5 explains how the errors are quantified. The results
of this thesis are presented in chapter 6, this is followed by a discussion and
conclusions in chapters 7 and 8. Appendix A lists different configuration of
nodal point and corresponding coefficient matrices, and appendix B contains
visual representations of the basis functions.
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2 Introduction to proton transport

2.1 Important quantities

Macroscopic absorption cross section

To introduce the concept of macroscopic absorption cross section, the microscopic
cross section has to be introduced first.
Assume a beam of indecent protons to a thin slice of material as shown
below

Figure 2: Schematic representation of a proton beam indecent to a thin
sheet of target nuclei [3]

The microscopic cross section (σ) can be visualized as the area of a cross
section of a sphere around the nucleus where a proton passing by will interact
with it. The sphere of influence is often much larger than geometrical cross
section of the nucleus itself. To find the microscopic absorption cross section
the cross section is multiplied with a factor that is defined as follows: What
is the probability the proton is absorbed on entry of the sphere of influence?
In other words what is the probability the interaction is an absorption.
With this procedure all partial microscopic cross sections can be defined,
for example transport cross section1 and scattering cross section.

To define the macroscopic cross section, assume a block of arbitrary
thickness. At a depth x there is a certain intensity I(x), this is lower than
the original intensity because some protons have already scattered or have
been absorbed. As shown above the chance a proton will interact with a
single nucleus when traveling through a unit area is given by the microscopic
cross section. The amount of protons scattering in a slice with thickness dx

1The transport cross section is a combination of scattering and absorption and
quantifies how difficult it is for a proton to pass through.
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is
R = I(x)σNdx = −[I(x)− I(x+ dx)] = −dI(x) (1)

Where R is the amount of protons interacting in the slice with thickness dx
every second and N the amount of nuclei per unit area. Rearranging the
equation gives

dI(x)

dx
= −σNI(x) = −ΣI(x) (2)

Σ is the macroscopic cross section. If one is only interested in one type
of interaction, the macroscopic absorption cross section is defined with the
microscopic absorption cross section Σa = σaN . This procedure is equivalent
for all partial macroscopic cross sections

Angular flux

Assume a small cube of material with sides dr around r, in this cube there
are a certain number of protons, this number can be expressed in the terms of
the proton density, Ndr3. These protons can have different energies or travel
in any direction. The protons can also be separated into proton densities by
their energy and direction of motion, this gives rise to a different density, n.
Where n dr3dEdΩ̂ is the amount of protons in a small cube with sides dr
around r, with a energy dE around E and traveling in direction dΩ̂ around
Ω̂. The Angular flux ϕ is defined as the proton density multiplied by the
velocity of the protons.

ϕ = vn(r, E, Ω̂) (3)

The physical interpretation of this quantity can be thought of as the amount
of protons traveling through a plane.

2.2 Transport equations

Proton transport is governed by the transport equation, as shown in [3]

Ω
∂

∂r
ϕ+ Σaϕ−Qϕ = S (4)

ϕ is the angular flux, S is the source term, Ω ∂
∂rϕ is the spatial streaming

part of the equation, Σa the macroscopic absorption cross section and Q is
a collection of all the scattering terms. The terms in the equation represent
the three possible outcomes for a proton traveling in a medium. The spatial
streaming term represents the proton moving though without interaction
and allows for spatial translation of the proton. The second term represents
the absorption of a proton in the medium. The third term represents
scattering and allows for translation in angular space.
Charged particles, for example protons, have a very short mean free path
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(mfp). Because of this short mfp the scattering term Qϕ in the transport
equation can be approximated with the Fokker Planck approximation [6].

Qϕ→ α

2
∆sϕ ≡ LFPϕ (5)

In this equation α is the macroscopic transport cross section and ∆s is
the spherical Laplacian on the unit sphere2. The macroscopic transport
cross section and the spherical Laplacian define the Fokker-Planck operator.
The Fokker Planck approximation takes the limit where the amount of
interactions go to infinity, and the scatter angle goes to zero. The particles
will behave like a diffusing gas as described by Fick’s law, ṅ = D∆n. The
Fokker-Planck approximation is essentially Fick’s second law in angular
space.

The Laplacian used in the Fokker-Planck equation has to take into
account the two dimensional geometry of the space it is embedded, namely
the surface of the unit sphere. To make sure the Laplacian is calculated
correctly the gradient vector of any function on the unit sphere has to be
parallel to the surface. This is achieved by removing the radial component
from the euclidean gradient.

∇s = (I3×3 −ΩΩT )∇ (6)

with ∆s = ∇s ·∇s. ∇ is the standard gradient with respect to the Cartesian
coordinates Ω.

To solve the particle transport equation, the problem is split in two parts,
a spatial and angular problem. The domain is meshed in to voxels, each voxel
containing an angular mesh. The angular problem is solved for each angular
mesh. In this thesis, the spatial problem will not be discussed. Therefore
a test case is made with only one voxel, because there are no neighboring
voxels for a particle to move to the spatial streaming term vanishes from the
equation and (4) reduces to

Σaϕ− LFPϕ = S (7)

This equation is called the angular diffusion equation in the Fokker-Planck
limit.

2.3 Galerkin method

Equation (7) is solved using the discontinuous Galerkin finite element method
(DGFEM) on a unit sphere which is meshed into angular elements. The
Galerkin method is based on a discretization of the solution space V into
Vn, with Vn ⊂ V . The Galerkin method aims to find un ∈ Vn where un is
the projection of the analytical solution u on the discrete solution space Vn

2Not to be confused with a Laplacian in spherical coordinates
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[4]. The discrete solution space Vn is spanned by a set of basis functions. By
increasing the set of basis function to a higher order, the discrete solution
space Vn is increased and solutions can be found more accurate.
For DGFEM the problem has to be stated as a weak formulation

B(u, v) = F (v) ∀v ∈ V (8)

The solution u ∈ V , for all test functions v ∈ V with bilinear operator B,
where V is the solution space.
Writing equation (4) with Fokker-Planck in bilinear form gives

B(u, v) =

∫
S2

α

2
∇su · ∇sv −

∑
F∈Fh

∫
F

(
[v]{α

2
∇su} · nF + [u]{α

2
∇sv} · nF

)
+
∑
F∈Fh

∫
F

α

2

η

hF
[u][v] +

∫
S2

Σauv (9)

The terms of this equation are explained in [5]. The specific meaning of the
terms in this equation are not important for this thesis.
In equation (9) the terms in the integrals are all constants, the value of u or
v or the spherical gradient of u or v. un and vn are a projections of u and
v on the discrete solution space, therefore they can be written as a linear
combinations of the basis functions. If the constants are known, only the
function values and gradients of the basis functions have to be calculated to
evaluate equation (9).

2.4 Goal of this thesis

This thesis investigates the possibility of extending the linear basis functions
currently in the program to quadratic basis functions, as identified by Aldo
Hennink in his Master Thesis [5], and subsequent paper [6].
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3 Basis functions

If a set of functions spans a solution space, a linear combination of these
functions will span the same space, given the linear combination does not
project to a lower dimension. This means in general the basis functions can
be written as a linear combination of a certain set of spanning functions.

φ = Cb (10)

Where φ contains the basis functions φi, b contains the spanning functions
which span the solution space Vn and C is a coefficient matrix. The columns
of C have to be independent to guarantee C : Rn → Rn.
The next sections will describe two different sets of spanning functions b.
The calculation of C is discussed in the next chapter.

3.1 Spherical harmonic functions

The basis functions have to be defined on the unit sphere. Therefore logical
choice for these functions are spherical harmonics. To avoid the use of
trigonometric functions, Ω is expressed in Cartesian coordinates with the
constraint ||Ω||2 = 1.

Figure 3: One octant of a level 2 uniform refined sphere

Spherical harmonics in Cartesian representation up to order 3 are listed in
[2].
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This thesis only works with sets of spherical harmonics up to order 2 but
could theoretically be extended to arbitrary order.

b =



1
Ωx

Ωy

Ωz

ΩxΩy

ΩxΩz

ΩyΩz

2Ω2
z − Ω2

x − Ω2
y

Ω2
x − Ω2

y


Basis functions linear in Omega only use the first 4 functions from the above
array as spanning functions, the full set is referred to as quadratic in Omega.
The spanning functions themselves cannot be used as basis functions (i.e.
C = In×n). If the patches become very small these functions will become
nearly linear dependent making them very susceptible to numerical error as
shown in [8].
The spherical gradient can easily be calculated because the basis functions
are direct functions of omega.

∇sφ = (I3×3 −ΩΩT )
∂b

∂Ω
CT (11)

with gradient ∂b
∂Ω =

∑
i
∂b
∂Ωi

ei

3.2 Octahedron functions

The basis functions can also be defined on the octahedron (L1-sphere). The
basis functions are defined on the flat triangles, and projected to the unit
sphere along straight lines intersecting the origin.
A flat triangle is defined by three vertices, V1, V2, V3. A triangle can be
spanned by two vectors and one support.
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Figure 4: A flat triangle spanned by ξ1 and ξ2 supported on V 1

Any point z in the triangle can be found as a function of ξ = [ξ1, ξ2]T

z = V1 + (V2 − V1)ξ1 + (V3 − V1)ξ2

= V1 +Dξ
(12)

Where D = [(V2 − V1), (V3 − V1)], and ξ = {ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1}.
To find ξ given V1, V2, V3 one could think to invert D and multiply with one
of the vertices to find its corresponding set ξ. This is not regularly possible
because D is not a square matrix, it is however possible to find a matrix E
such that ED = I, this is called a left inverse3.

E = (DTD)−1DT (13)

Combining equation (12) with (13)

ξ = E(z − V1) (14)

3.3 Octahedron basis functions

The set of functions b linear on the octahedron is defined as follows:

b =

 1− ξ1 − ξ2

ξ1

ξ2

 = C0

 1
ξ1

ξ2


And the set of functions b quadratic on the octahedron is given by [7].

3Note: the left inverse cannot be seen as an inverse matrix because, ED 6= DE
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b =



(2ξ1 − 1)ξ1

(2ξ2 − 1)ξ2

(2(1− ξ1 − ξ2)− 1)(1− ξ1 − ξ2)
4ξ1ξ2

4ξ2(1− ξ1 − ξ2)
4ξ1(1− ξ1 − ξ2)

 = C0



1
ξ1

ξ2

ξ2
1

ξ2
2

ξ1ξ2


The seemingly arbitrary choice to set the structure functions b to a linear
combination of a simple set of structure functions will be explained in section
4.

The spherical gradient is more difficult to calculate for functions on the
octahedron with respect to spherical harmonic functions. This is because
the basis set is not defined in terms of Ω, therefore a Jacobian matrix has
to be developed.

∇sφ = (I − ΩΩT )
∂φ

∂Ω

= (I − ΩΩT )
∂z

∂Ω

∂ξ

∂z

∂b

∂ξ
CT

=
∂z

∂Ω

∂ξ

∂z

∂b

∂ξ
CT

(15)

The last equation in (15) is derived in (20). The above set of equations
states: if a basis function is defined in terms of z, and z can be expressed
in terms of Ω, its spherical gradient is equal to the Euclidean gradient with
respect to Ω.
The differentials have to be calculated separately.

The calculation of ∂z
∂Ω starts with the relations between Ω and z

Ω =
1

||z||2
z z =

1

||Ω||1
Ω (16)

from these relations can be derived ||Ω||−1
1 = ||z||2. ∂z

∂Ω can be calculated
from the second equality in (16)

∂z

∂Ω
=

∂

∂Ω

(
1

||Ω||1

)
ΩT +

1

||Ω||1
∂Ω

∂Ω

=
∂||Ω||1
∂Ω

∂||Ω||−1
1

∂||Ω||1
ΩT +

1

||Ω||1
I3×3

= sign(Ω)
−1

||Ω||21
ΩT +

1

||Ω||1
I3×3

= ||z||2(I3×3 − sign(z)zT )

(17)

The function sign(z), works component-wise and defined as follows

sign(v) =
∑
i

sign(vi)ei (18)
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Where sign(n) for a real number n is defined as

sign(n)

{
−1 n < 0

1 n ≥ 0
(19)

the equality sign(Ω) = sign(z) follows from the fact that an angular element
is made from refining the octahedron, therefore every element is fully contained
in one octant of the octahedron.
The last equation in (15) is because

ΩT ∂z

∂Ω
= ΩT ||z||2(I3×3 − sign(z)zT )

= zT ||z||22(I3×3 − sign(z)zT )

= ||z||22(zT − zT sign(z)zT )

= 0

(20)

with zT sign(z) = ||z||1 = 1.
∂ξ
∂z can be found by taking the partial derivative with respect to z from
equation (14)

∂ξ

∂z
= ET (21)

∂b
∂ξ can easily be found by taking the gradient of b with respect to ξ1 and ξ2

11



4 Calculating the coefficient matrix

The specific choice of C does theoretically not matter, however the problem
is solved numerically therefore there are some additional conditions. To
check if the basis functions behave well in numerical processes, the mass
matrix is introduced, after which two methods to calculate C are explained.

4.1 Mass matrix

If u is the analytical solution, un is the projection of u on the span of the
basis functions {φ}. un can be expressed as a linear combination of the basis
functions.

un =
∑
i

αiφi (22)

applying Fourier’s trick gives

〈u, φj〉 = 〈un, φj〉 =
∑
i

αi〈φi, φj〉 (23)

The inner product is the integral over the local spherical triangle. The
quantity of interest are the coefficients of α as they can directly be used
to calculate un with (22). Equation (23) can be written as a matrix vector
product ~uφ = M~α with the coefficients of M given by

Mij = 〈φi, φj〉 (24)

M is called the Mass matrix. To accurately calculate α, the mass matrix
has to be well conditioned. If κ(M) is the condition number of the mass
matrix, and e( ~uφ) the relative error introduced in ~uφ, than the relative error
in α is given as [1]

e(α) ≤ κ(M)e( ~uφ) (25)

If the condition number of M is very large, a small error in ~uφ can lead to
a large error in ~α. When there is a large error in α the calculation of un is
inaccurate.

4.2 Nodal points

With the nodal point method, C can be calculated such that a reasonably
conditioned mass matrix M is expected. The idea is to pick as many points
Pi as there are spanning functions and label the points accordingly. The
basis functions are defined as a linear combination of the spanning functions
and have to be zero in all point except one. On the octahedron the location
of the nodal points are known.

12



Figure 5: Nodal points for functions on the octahedron

For the functions defined in Omega the nodal points are not known. One
of the sets used in this thesis is shown below, other sets of nodal points are
listed in appendix A.

Figure 6: Nodal points for functions quadratic in Omega

φi(Pj) = δij (26)

13



Writing equation (26) gives the following matrix-matrix product

C[P1, P2, ..., Pn] = In×n (27)

The vectors Pi are defined on the basis b.
The positions of the points P define the matrix C according to

C = [P1, P2, ..., Pn]−1 (28)

The resulting functions are shown in appendix B.

4.3 Orthogonalization

The orthogonalization method is specifically designed to construct a matrix
C such that the corresponding mass matrix has a low condition number, in
contrast to the nodal points where a low condition number is expected but
not guaranteed. The orthogonalization is computationally more expensive
to calculate and may not be required for sufficient accuracy.

The matrix will be well conditioned if the basis functions are orthogonal.

〈φi, φj〉 = Aijδij (29)

applying equation (10)

Cil〈bl, bm〉CTmj = Aijδij (30)

This equation can be rewritten as a matrix multiplication

CM0CT = I · diag(A) (31)

Where M0 is a mass matrix with the coefficients M0
lm = 〈bl, bm〉, and diag(A)

a vector containing the coefficients on the main diagonal of A

diag(A) =
∑
i

Aiiei (32)

M0 is symmetric positive definite (SPD) as shown below, ∀w 6= 0

wTM0w =
∑
i

∑
j

wi〈bi, bj〉wj

=
∑
i

∑
j

〈wibi, wjbj〉

= 〈
∑
i

wibi,
∑
j

wjbj〉 > 0

BecauseM0 is SPD, it can be written as a Cholesky decomposition, A−1M0 =
LLT . Substituting in equation (31) gives

CL LTCT = I (33)

14



This equation is satisfied if the coefficient matrix equals C = L−1.

If the matrix M0 is not well conditioned, the calculation of φ is not very

accurate. The process can be repeated by recalculating M (n) = 〈φ(n)
l , φ

(n)
m 〉,

where the superscript denotes φ(n) is the result from the nth iteration. By
calculating M (n) with a set of functions that is not the set of spanning
functions b, the calculated matrix will be a correction on matrix used to get
the set of functions {φ(n)}

Figure 7: schematic representation of iterative orthogonalization

The new matrix M (n) is now better conditioned providing a more accurate
calculation of φ. The coefficient matrix is as defined in equation (10) can be
found by multiplying

C = Cn · · ·C3 · C2 · C1 (34)

The resulting basis functions are shown in appendix B.
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5 Benchmarking

5.1 Benchmarking the solution

To test the accuracy of the code, the program is run with a source term such
that the analytical solution is known. The simplest case of such a solution
is when the solution ϕ is a (linear combinations of) spherical harmonic(s).
This is because the spherical harmonics are eigenfunctions of the spherical
Laplacian

∆sYlm = −l(l + 1)Ylm (35)

If ϕ is a spherical harmonic Ylm, equation (7) reduces to(
Σa +

α

2
l(l + 1)

)
Ylm = S (36)

To determine the accuracy of the solution, the flux error is defined as

ef ≡

√
〈ϕh − ϕ,ϕh − ϕ〉

〈ϕ,ϕ〉
(37)

where ϕ is the true solution, and ϕh the numerical solution.
When the solution is not a spherical harmonic, the Laplacian has to

be calculated explicitly by hand. For octahedron functions this is not
very difficult. According to equation (15) the spherical gradient of an
octahedron function is identical to the Euclidean gradient, therefore the
spherical Laplacian is identical to the Euclidean Laplacian with respect to
Ω.

5.2 Benchmarking intermediate solutions

In the code there are a lot of tests built in to spot a mistake during the
execution of the code. Some of them will be discussed here.

5.2.1 Test function values and derivatives

The basis functions are very important in the code. To test if the values are
correctly calculated the following tests are implemented:

In the code there is a section which calculates the function values and
derivatives of the basis functions for certain values of Ω. The test generates
a semi random vector Ω1 on the sphere and a small deviation δΩ, with δΩ
such that Ω2 = Ω1 + δΩ is on the sphere.
The vector Ω1 is not truly random4 because Ω1 has to be on the angular
element. To calculate a random Ω1 on the angular element, a random linear
combination of the vector v1, v2, v3 is normalized to the unit sphere, where

4ignoring computer pseudo-randomness
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the vectors v1, v2, v3 are the vertices of the angular element. The value for
Ω2 is also restricted to the angular element
To test if the function values and gradients are correctly calculated the
gradient in direction of ˆδΩ is approximated with finite difference and compared
against the analytical value.

f |Ω2 − f |Ω1 ≈ δΩ · ∇f |Ω1 (38)

The right hand side of the equation is the slope in direction of δ̂Ω with step
size ||δΩ||2. The approximate error of this equation can be determined by
Taylor expansion

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +O(h3) (39)

When O(h3) is assumed negligible, the approximate error is define as

error =
f ′′(x)

2
h2 ≈ f ′(x+ h)− f ′(x)

2
h (40)

translating the error in terms of gradients gives

error =
δΩ · ∇f |Ω2 − δΩ · ∇f |Ω1

2
∝ ||δΩ||22 (41)

This process is iterated over 100 times for each angular element. To make
sure the edges and corners behave well, the vector Ω1 is sometimes not
placed randomly. On every angular element the vector Ω1 is placed in every
corner ones and placed on each edge randomly 10 times.
If an error in equation (38) is too large an error message is displayed.

The second test is to test if the spherical gradient is perpendicular to
the vector Ω1.

Ω1 · ∇f |Ω1 = 0 (42)

If an error in equation (42) is too large an error message is displayed.

5.2.2 Test angular quadrature set

To calculate integrals with the computer, the program uses a special type of
gauss quadrature. This quadrature is specifically designed to solve polynomials
on spherical surfaces. The quadrature sets cannot easily be extended. To
test if the quadrature set is sufficient to calculate the integrals the following
test is implemented.

The mass matrix is calculated with two different quadrature sets. The
difference of the two matrices should be zero if both quadrature sets are
sufficient. The code actually calculating the solution uses the best quadrature
set available, and is in this test compared against an inferior one. Therefore
if this test fails, it is only an indication of a possible error. if the test fails
a warning message is displayed.
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5.2.3 Test solution of a linear system of equations

In the program there are a lot systems of equations in the form of Ax = b.
To test the accuracy of these solutions, tests calculating Ax − b = 0 are
scattered throughout the code. If the error in one of these tests is out of
bounds an error messages and location is displayed.

5.2.4 Test to check variable restrictions

Some quantities have restrictions on them dictated by underlying mathematics.
For example ξ = [ξ1, ξ2]T carries the restriction {ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1}.
If such a restriction is violated an error message is displayed.

5.2.5 Test to check subroutine errors

Some subroutines in Fortran have error detection built in. For example:
the Cholesky decomposition returns an error if the matrix is not symmetric
positive definite. If an error is found an error message is displayed.
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6 Results

6.1 Extended solution space

The first property to check is the extension of the solution space as explained
in section 2.3.

The program is configured to solve equation (7) with only the macroscopic
absorption cross section term on the left hand side.

Σaϕ = S

The solution is a constant factor difference from the source, therefore it can
always be found by the program in a single step.
Figure 8 shows the calculated flux error for different orders of angular
solutions. In this graph all angular solutions are defined on the unit sphere,
therefore only basis sets defined in Omega are shown.

Figure 8: Flux error of different angular sets defined on the unit sphere
against the order of the solution

The angular solutions used are shown below and labeled by their highest
order:

0: ϕ = 1
4π

1: ϕ = 5 + Ωx + 2Ωy

2: ϕ = 5 + Ωx + 2Ωy + (3Ω2
x − 1)

3: ϕ = 5 + Ωx + 2Ωy + (3Ω2
x − 1) + ΩxΩyΩz

4: ϕ = 5 + Ωx + 2Ωy + (3Ω2
x − 1) + ΩxΩyΩz + ΩxΩy(Ω

2
x − Ω2

y)
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Figure 8 shows the constant basis set can only exactly represent solutions
of order 0. The set linear in Ω can exactly represent solution up to order 1,
and the set quadratic in Ω can represent solutions up to order 2 exactly.

The procedure above can be repeated for octahedron functions by first
projecting all the omega in the set of angular solutions above, to the octahedron
with equation (16) and recalculate the flux errors with the basis sets defined
on the octahedron.

Figure 9: Flux error of different angular sets defined on the octahedron
against the order of the solution

In the graph, the same pattern shows as with the functions on the sphere.

6.2 Convergence due to mesh refinement

The following test shows how the basis sets behave under mesh refinement.
This test still uses equation (7) without the Fokker-Planck operator. The
angular solution used is of order 3 and defined on the unit sphere. This
solutions chosen on the unit sphere because calculating the Laplacian is
mathematically easier, and the order is chosen to make sure even the set
quadratic in Omega cannot represent this solution exactly.
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Figure 10: Convergence of angular sets under refinement without angular
diffusion

Figure 10 shows nice convergence. This is no surprise because the
program only has to project the analytical solution to the solution space
provided by the basis set. This figure also shows the increased order of
convergence for the bigger basis sets.
The order of convergence is defined as ε v hn, where ε represents the flux
error, and h a characteristic length and n the order of convergence. In
one refinement step, every triangle is cut into 4, therefore the characteristic
length is divided in half. When the triangle is refined the number of degrees
of freedom is increased by a factor of 4. The number of degrees of freedom
is related to the characteristic length by h v (DoF )−

1
2 . The order of

convergence can be expressed in terms of DoF as follows

ε v (DoF )−
1
2
n (43)

The order of convergence is of a basis set is -2 times the angle in figure 10

Basis set angle in figure 10 order of convergence

Constant -0.5 1
Linear in Omega -1 2
Linear on the octahedron -1 2
Quadratic in Omega -1.5 3
Quadratic on the octahedron -1.5 3

6.3 Convergence due to mesh refinement with Fokker-Planck

When using all terms in equation (7) the constant basis set is known to not
work and is therefore left out.
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Figure 11: Convergence of angular sets under refinement with angular
diffusion

The basis sets quadratic in Omega and quadratic on the octahedron
could not be plotted for refinement levels higher than 1 and 2 respectively
because the solver did not converge and therefore could not calculate the
solution.
The basis set quadratic in Omega shows a predictable pattern for the two
data points collected, however the basis set quadratic on the octahedron
does not show a convergence pattern. The cause of this is unknown
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7 Discussion

The main problem is the absence of convergence for the basis sets quadratic
in Omega and quadratic on the octahedron. The direct cause for this absence
is not known, but there is strong evidence for one possible cause for the basis
set quadratic in Omega.
One of the most important calculations for calculating the basis set quadratic
in Omega, is the calculation of the coefficient matrix C. When comparing a
typical matrix C calculated with the basis set linear in Omega to a matrix
C as calculated with the basis set quadratic in Omega, a pattern emerges.

Table 1: Typical coefficient matrix C for basis set linear in Omega, for
refinement level 5

-622.16271 -619.16512 -621.16271 1862.49054
-15.31629 -35.54905 5.08836 45.77698
-25.46425 -66.10160 -45.81971 137.38556
622.66276 622.66276 622.66276 -1866.98828

Table 2: Typical coefficient matrix C for basis set quadratic in Omega, for
refinement level 5

1772509 -828800 2521392 160364 -786096 -50034
1873372 -849016 2671544 199006 -807153 -60165
6271125 -2997634 8888304 728156 -2832977 -231493
-22434343 10659865 -31825413 -2541259 10084169 798154
-13451123 6328397 -19110043 -1407214 5994003 441577
-13652244 6368616 -19409546 -1484387 6037861 461977
24653222 -11897207 34916034 2755170 -11236281 -878648
-10491515 5274460 -14768003 -1473798 4954782 478597
25458998 -12058682 36115731. 3063961 -11408309 -959964.

The coefficient matrix for the basis set quadratic in Omega, only shows 5
columns to prevent it from running of the page. The matrix for the basis
set quadratic in Omega contains much higher values, combining these high
values with the finite precision of the computer cause errors build up. This
could cause the solver not to converge. The nodal point method has no way
to make the coefficients of the matrix smaller, except for finding a different
configuration of points to use to generate the matrix. Orthogonalization does
not lead to a matrix with much lower values in the C matrix. Coefficient
matrices for different nodal point configurations are listed in appendix A.

Appendix A also lists two coefficient matrices for the basis set linear in
Omega. The coefficients for a matrix with the basis set linear in Omega is
expected to contain lower values because there are less points in the same
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area. To accommodate this effect the coefficient matrix of the set linear in
Omega, for two refinement level higher is also shown. In this set the average
distance between nodes is comparable to the basis set quadratic in Omega.
The set linear in Omega still has lower coefficients than the set quadratic in
Omega.
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8 Conclusions

From the results, it can be seen the discretization is executed correctly and
the solution space has been extended accordingly. Problems start to arise
when the angular diffusion is added to the equation. The basis set linear in
Omega and linear on the octahedron behave well with the angular diffusion
enabled, but the extended quadratic basis functions do not work well with
angular diffusion. For the basis set quadratic in Omega, the most likely
cause are big values in the coefficient matrix C. These big values combined
with the finite precision of the computer gives rise to a build up of errors
in the function values and the gradients of the basis functions. These errors
probably cause the solver not to converge. The basis set quadratic on the
octahedron does not have this problem since the coefficient matrix C is
defined as the identity matrix as calculated with the nodal point method.
This basis set does seem to converge, but the rate of convergence is slow
enough to deem it practically unusable. If the quadratic basis sets can be
made to work, an order of convergence of 3 can be expected.

8.1 Future Work

In the future someone could try to find a method of creating the coefficient
matrix C with lower coefficients if that is possible. To properly implement
these basis sets the rate of convergence needs to increase. Solving this
probably requires more knowledge of the sweep and in depth knowledge
of the Galerkin method. This seems a lot of work for limited results, as the
sets linear in Omega and linear on the octahedron work well. If the speed
of convergence cannot be increased it is not worth to investigate further as
it is too slow.
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Appendix A: Nodal points and coefficient matrices

This Appendix contains several sets of nodal points and a coefficient matrix
C that has been generated with these nodal points. The coefficient matrices
have been made with refinement level 3, unless otherwise specified. All set of
nodal points contain the same three points, on Ω = [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T .
These node will be referred to as cardinal nodes.

Figure 12: Nodal points for functions quadratic in Omega

This set of nodal points is constructed by starting with the three cardinal
nodes. The next three nodes bisect the great circle segments connecting the
cardinal nodes. The last three bisect the great circle segments connecting
the previous nodes.

Table 3: Coefficient matrix corresponding to the above set of nodal points

18123 2866 13283 -23622 1391 -2501 -11569 2862 -1551
6528 383 4514 -8694 179 -339 -4016 1113 -513
7949 1034 5063 -10763 441 -936 -4570 1435 -522
-47817 -6269 -32568 63790 -2915 5542 29090 -8190 3505
-67662 -9861 -48656 88907 -4445 8796 42793 -10989 5583
-45094 -4995. -31535 59803 -2357 4429 27876 -7582 3660
76750 13833 54402 -101038 6280 -12298 -48017 12538 -5953
65616 8716 50102 -84799 4124 -7700 -43360 10034 -6221
-14391 -5708 -14605 16415 -2699 5006 11773 -1221 2012
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Figure 13: Nodal points for functions quadratic in Omega

This set is constructed by making the previous set and moving the nodes
as shown in the figure to the position where they bisect the great circle
segment connecting a cardinal node to its nearest neighbor.

Table 4: Coefficient matrix corresponding to the above set of nodal points

11181 6535 6535 -14346 2129 -5780 -5780 1643 0
5725 1401 2619 -8122 500 -1373 -2424 1205 -226
5725 2619 1401 -8122 500 -2424 -1373 1205 226
-58891 -35398 -35398 75225 -11013 31504 31504 -8462 -0
-26585 -4856 -12117 38263 -2182 5124 11097 -5858 1584
-26585 -12117 -4856 38263 -2182 11097 5124 -5858 -1584
15583 -2776 6885 -24089 374 1544 -6192 4226 -2260
15583 6885 -2776 -24089 374 -6192 1544 4226 2260
58264 37707 37707. -72983 11498 -33502 -33502 7675 0
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Figure 14: Nodal points for functions quadratic in Omega

This set is constructed by adding nodes at location where they trisect
the great circle segment connecting cardinal nodes.
For this set of nodal points the coefficient matrix could not be calculated as
some coefficients became infinitely large.
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Figure 15: Nodal points for functions quadratic in Omega

This set is constructed by adding nodes at locations where they trisect
the great circle segment connecting cardinal nodes to a virtual node in the
middle. This virtual node is the same distance from all the cardinal nodes.

Table 5: Coefficient matrix corresponding to the above set of nodal points

8256 11065 1236 -5696 1005 -5224 -748 -494 2369
16881 25415 73 -5028 476 -5372 867 -1987 6455
8602 11922 3564 -3901 3320 -3496 -1219 -718 2658
-20884 -27659 -3150 15379 -2383 14114 2258 1189 -5739
9669 11537 1526 -10509 674 -9449 -2071 -188 1833
-46670 -70650 322 13414 -1056 14638 -3080 5601 -18065
35367 54493 -1949 -8533 -400 -10035 3771 -4537 14237
-21913 -30222 -10100 10022 -9385 8783 3633 1725 -6761
10692 14098 8476 -5150 7749 -3959 -3412 -591 3013
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Figure 16: Nodal points for functions linear in Omega

This set is constructed by making a node with equal distance to each
cardinal node.

Table 6: Coefficient matrix corresponding to the above set of nodal points

0.92009 15.16263 35.62795 38.04747
9.29174 18.72381 32.04576 38.04747
3.67784 23.44498 30.09387 38.04747
-13.88967 -57.33141 -97.76758 -113.14240

Table 7: Coefficient matrix corresponding to the above set of nodal points,
made with refinement level 5

-257.94597 -556.24610 -69.64681 616.88085
-277.22339 -549.33876 -47.45611 616.88085
-241.07101 -567.52872 -35.25173 616.88085
776.24037 1673.11358 152.35464 -1849.64255
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Appendix B: Basis functions

Nodal point method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17: Basis functions in Omega
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(a) (b) (c)

(d) (e) (f)

Figure 18: Basis functions on the octahedron
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Orthogonalization

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19: Orthogonalized basis functions in Omega
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(a) (b) (c)

(d) (e) (f)

Figure 20: Orthogonalized basis functions on the octahedron
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