

Implementing the combing method in
the dynamic Monte Carlo

Fedde Kuilman
PNR_131_2012_008

Faculteit Technische Natuurwetenschappen

Implementing the combing method in the

dynamic Monte Carlo.
Bachelor End Thesis
PNR_131_2012_008

Naam:

Studentnummer:

Opleiding:

Begeleider: Sectie:

2de beoordelaar:

Start datum: Einddatum:

Is vertrouwelijkheid van toepassing?

Fedde Kuilman

1384643

B. L. Sjenitzer

05-11-2011

PNR

25-07-2012

Technische Natuurkunde

Nee

J.E. Hoogenboom

Abstract

The aim of this report is to increase the stability of a dynamic Monte Carlo
simulation of a nuclear reactor. This is done by implementing a population
control method called the combing method. The combing method forces the
neutron population to remain constant, while redistributing the weight equally
among the particles. This method was implemented on a sample problem and
compared to the Russian roulette method already in use. The difference in re-
sults of the dynamic Monte Carlo code using the combing method and the same
dynamic Monte Carlo using Russian roulette lie within the standard deviation,
indicating the proper functioning of the combing method.

The combing method was unsuccessful in increasing the stability or Figure
of Merit of the dynamic Monte Carlo when compared to Russian roulette. How-
ever, it does offer some extra flexibility and shows some promise in it’s ability
to achieve better performance.

1

Contents

1 Introduction 4
1.1 Layout of report . 4

2 The dynamic behaviour of reactors 5
2.1 Nuclear reactions . 5

2.1.1 Nuclear cross section . 5
2.1.2 Criticality . 6
2.1.3 Prompt and delayed neutrons 6
2.1.4 Point kinetics . 7

2.2 Delayed lifetime . 8
2.3 Difference in time scales . 9

3 The Monte Carlo method 11
3.1 The general principles . 11
3.2 Change in weight due forced decay of neutrons 12
3.3 Precursors at start-up . 12
3.4 Prompt neutron fraction . 13
3.5 Variance reduction . 14

3.5.1 Figure of merit . 14
3.5.2 Implicit capture . 15
3.5.3 Russian roulette . 15
3.5.4 Particle splitting . 15
3.5.5 Branchless collision . 16
3.5.6 The combing method . 16

4 The variance reducing combing method 17
4.1 The simple comb . 17
4.2 The double comb . 19
4.3 Weight thresholds . 20
4.4 Combing different populations . 21

4.4.1 Combing prompt neutrons 21
4.4.2 Combing precursors . 21

4.5 A decay-weighted comb for precursors 22
4.6 Using a single comb for the total population 23

2

5 Calculations on a sample problem 25
5.1 The sample problem . 25
5.2 Calculations done one using multiple precursor families 27

5.2.1 Power behaviour . 27
5.2.2 Figure of Merit . 27
5.2.3 Difference in CPU load 29

5.3 Calculations done using one precursors group 31
5.3.1 Power behaviour . 31
5.3.2 Figure of Merit . 31
5.3.3 Population . 33
5.3.4 Particle splitting . 34

6 Conclusions and recommendations 36
6.1 Figure of Merit . 36
6.2 Stability of the population . 37
6.3 Interaction with particle splitting 37
6.4 Order of particles . 37
6.5 Future work . 38

Bibliography 38

3

Chapter 1

Introduction

For nuclear safety reasons it is very important to calculate the power behaviour
of a nuclear reactor when a transient is introduced. This transient behaviour
happens for instance while moving a control rod or during an accident. Usually
these calculations are done by deterministic or hybrid methods; although fast,
these methods have the drawback of necessary approximations. Approximations
made, make it difficult to precisely estimate the uncertainty calculation result.

Sjenitzer and Hoogenboom of Delft University of Technology introduced
a method of calculating this power behaviour using Monte Carlo simulation
[1]. Although computationally expensive, this method requires no assumptions.
Hence, the uncertainty only relies on the statistical nature of Monte Carlo, this
allows for a precise estimation of the uncertainty in power behaviour.

In this report the feasibility of using the combing method, as introduced
by Booth [2], for increasing stability and efficiency of a dynamic Monte Carlo
reactor simulation has been investigated.

1.1 Layout of report

This report the following structure. Chapter 2 discusses the general (dynamic)
behaviour of reactors. It explains how and why prompt neutrons and precursors
are important for this behaviour and it introduces the mathematics needed to
calculate the power behaviour of reactors. Chapter 3 discusses the Monte Carlo
technique. It explains how Monte Carlo simulations can be made to run more
efficient. It also introduces the mathematics needed to effectively simulate the
particles introduced in the previous chapter.

Chapter 4 explains the combing method and its advantages. It explains
several different ways the method can be applied and what their respective
advantages and disadvantages are. Chapter 5 introduces the sample problem
on which the calculations are done, it introduces the findings and results of
this research. Chapter 6 discusses the findings in greater detail and draws
conclusions regarding the use of the combing technique in dynamic Monte Carlo
simulations for reactor simulation.

4

Chapter 2

The dynamic behaviour of
reactors

2.1 Nuclear reactions

There are essentially two types of nuclear reactions of importance in the study
of nuclear reactors:

1. Spontaneous disintegrations of nuclei

2. Reactions resulting from the collision between nuclei and/or nu-
clear particles

An example of the first would be radioactive decay of unstable fission products.
The rate at which naturally occurring nuclei decay is very slow. A neutron
colliding with a 235U nucleus is an example of the second type:

Neutron + 235U → fission products + more neutrons + energy (2.1)

The products of such a reaction emerge with very large kinetic energy, which is
turned into heat as they are slowed down by neighbouring atoms. This heat is
used by nuclear reactors to create steam which powers turbines and thus create
electricity. The neutrons released by this fission reaction may go on to induce
more fission reactions and hence start a chain of fission reactions [3].

2.1.1 Nuclear cross section

The probability of a neutron-nuclear reaction for the nucleus is characterized
by the nuclear cross section, this is given by:

σ =
(R/Na)

I
(2.2)

Where R is the rate of neutron-nuclear reactions in #
cm2s , Na is the number of

target atoms per unit area in #
cm2 and I is the incident neutron beam intensity

in #
cm2s A neutron can on collision scatter or get absorbed and when absorbed

can either get captured or cause a fission, all these events have their own cross
section. The total probability of interaction is σt.

5

For simulations the macroscopic cross section is a more useful quantity; this
is the microscopic cross section multiplied by the atomic number density:

Σ = Nσ (2.3)

Here the term ”macroscopic” arises from the recognition that Σ characterizes
the probability of neutron interaction in a macroscopic chunk of material (the
target); whereas the microscopic cross section characterizes the probability of
interaction with only a single nucleus. It should be noted that Σ is not actually a
cross section, since its units are inverse in length. A better interpretation would
be the probability that the neutron will undergo a reaction with a nucleus in
the sample per unit path length travelled [4].

The total macroscopic cross section Σt, indicating the chance of interaction,
can simply be divided into other macroscopic cross sections, indicating the prob-
ability the neutron will undergo a specific type of interaction with a nucleus in
the sample per unit path length. Thus we can define other macroscopic cross
sections such as Σs, the scattering cross section and Σf , the fission cross sec-
tion. These cross sections indicate the probability the neutron will respectively
undergo scattering and fission in the sample per unit path length travelled.

2.1.2 Criticality

For nuclear reactions a multiplication factor can be defined; this is the average
number of neutrons of one fission event that cause another, or

k ≡ #neutrons in generation n+1

#neutrons in generation n
(2.4)

A somewhat more practical definition of the multiplication factor k can be given
in terms of a neutron balance relation:

k ≡ Rate of neutron production in reactor

Rate of neutron loss (absorption plus capture) in reactor
≡ P (t)

L(t)
(2.5)

Here the production and loss rates may change with time (e.g., due to fuel
consumption).

Notice that if k = 1 the reaction is critical, the number of neutrons in any
two consecutive generations will be the same, hence the reaction will be time-
independent, the is the stationary or stable situation. If k > 1 the population
will now grow over each time step and hence be unstable, this is called a su-
percritical reaction. If k < 1 the reaction is subcritical for every generation has
less neutrons then the previous one and the reaction will die out.

2.1.3 Prompt and delayed neutrons

In this work two types of neutrons are distinguished: delayed neutrons and
prompt neutrons. It should be noted that although these two types of neutrons
have a different origin, they are however otherwise completely identical.

Prompt neutrons are released within 10−13 s from a fission event. A delayed
neutron is emitted after the beta-decay of an unstable nuclei. These nuclei are

6

called precursors. Precursors are formed by fission reactions and decay stochas-
tic. The decay probability of a precursor can be described by an exponential
distribution:

p(t) = λe−λt (2.6)

The average lifetime of a precursor is simply the mean of this distribution; this
is 1

λ . The precursors are often divided into different groups, categorised by
average lifetime.

A small fraction of all fission reactions produce a precursor; the net produc-
tion of precursors is [5]:

∂Ci
∂t

= βiνΣfφ(r, t)− λiCi(r, t) (2.7)

Where Ci is the concentration of precursors of group i, βi is the fraction of total
fission reactions which produce a precursor in group i, ν is the average number
of neutrons released per fission event and φ is the neutron flux. All βi can be
summed to form the total delayed fraction β likewise all Ci can be summed to
form the total precursor concentration C.

2.1.4 Point kinetics

Suppose N(t) is the total neutron population at time t, a neutron lifetime can
now be defined as:

l ≡ N(t)

L(t)
(2.8)

This lifetime is useful for studying the dynamic behaviour of reactors. Also a
rate of change of N(t) can be given by:

dN

dt
= P (t)− L(t) (2.9)

substituting with Eq. (2.5) gives:

dN

dt
= (k − 1)L(t) (2.10)

and using Eq. (2.8) this becomes:

dN

dt
=

(k − 1)

l
N(t) (2.11)

Under the assumption that both k and l are time-independent (which does not
hold in general), this becomes an ordinary differential equation which becomes:

N(t) = N0exp

[
(k − 1)

l
t

]
(2.12)

where N0 is the number of neutrons at t = 0. This simple expression allows us
to evaluate the dynamic behaviour of the neutron population to some extent
[3].

This description is too simple for the dynamic case. To described this other
important quantities are needed and the delayed neutrons need to be inserted
more explicitly. One of which, the reactivity is given by:

ρ(t) ≡ k(t)− 1

k(t)
(2.13)

7

This essentially measures the deviation of core multiplication from its critical
value k = 1. Note that k and ρ are explicitly indicated as possible functions of
time. The mean generation time is given by:

Λ ≡ l

k
≡ mean generation time between birth of neutron

and subsequent absorption inducing fission
(2.14)

These make it possible to write the system of equations describing the neutron
flux in a reactor including delayed neutrons in their most conventional form [4]:

dN

dt
=

[
p(t)− β

Λ

]
N(t) +

∑
i

λiCi(t) (2.15)

dCi
dt

=
βi
Λ
N(t)−

∑
i

λiCi(t) (2.16)

2.2 Delayed lifetime

Although the total delayed fraction β is very small (≈ 0.70% for thermal re-
actors), it is very important for reactor control. Nuclear reactors are operated
in prompt sub-critical, delayed critical condition: the prompt neutrons alone
cannot sustain a chain reaction, the delayed neutrons are required to keep the
reaction going. Hence the average lifetime of a neutron used in the chain reac-
tion is lowered by the existence of delayed neutrons.

For the lifetime of a neutron, from birth to collision is in the the order of
10−4s whereas the longest lifetime of a precursor is in the order of 102s hence
the difference in lifetime can be many orders of magnitude.

The average lifetime of a neutron is typically in the order of magnitude of
0.1s, considerably longer than that the lifetime of a prompt neutron.

Suppose the reaction would be sustained by prompt neutrons alone. Using
the simple point kinetics model introduced in Section 2.1.4 a neutron lifetime
l of 10−4s and a supercritical reaction with k=1.001, it is possible to calculate
the time it takes for the population to increase by a factor of 10. Rewriting
Eq. (2.12) to

t =
l

(k − 1)
log

N(t)

N0
(2.17)

and inserting N(t) = 10N0 gives t ≈ 0.23s. Hence for a reactor operating in
prompt critical condition with a multiplication factor k slightly over 1 it only
takes 0.23s to increase the number of neutrons by a factor of 10. The importance
of which can be seen using Eq. (2.12), which shows that the number of neutrons
increase by a factor e10 ≈ 22.026 in only one second.

Now examine the same reaction only this time with delayed neutrons needed
to sustain the reaction. Now the neutron lifetime would become:

l = (1− β)lp + β(td + lp) ≈ βtd (2.18)

where lp is the neutron lifetime of prompt neutrons and td is the average lifetime
of delayed neutrons of a certain nucleus. The approximation made is very close
for td � lp. Using 235U for which β = 0.70% and td = 13s this gives a
neutron lifetime l of 0.091s. Inserting this in Eq. (2.12) yields a time of almost

8

210s, almost a factor 1000 larger then prompt critical reaction. The number of
neutrons now increase by a factor of e

.001

.091 ≈ 1.011.
Hence, delayed neutrons substantially slows down the behaviour of a reac-

tor. If only prompt neutrons would exist, the rapid power changes would make
reactor control using mechanical methods near impossible. Hence, the delayed
neutrons allow for effective control of nuclear reactions making operable nuclear
reactors possible [3].

2.3 Difference in time scales

At the end of a prompt neutron’s lifetime it can create a new prompt neutron;
the probability this happens is given by:

Pf = keff(1− β) (2.19)

If a new prompt neutron is created it also has a chance of Pf to create a new
prompt neutron at the end of it’s lifetime. Now the average chain length can
be found to be:

1

1− Pf
(2.20)

This value lies typically around 150. Hence, the average lifetime of a prompt
neutron chain is in the order of 10−2s, several orders of magnitude smaller
than the lifetime of a precursor. The variance in length of these chains is very
important, for it is one of the main contributions to the variance in this work.

In a critical system a prompt neutron chain will on average create one pre-
cursor. After the chain has ended there is no more power production from this
event until the precursor decays and starts a new prompt neutron chain. This is
shown in Fig. 2.1. In the simulation this causes long periods without precursor
decay and hence no prompt neutrons. This is addressed in Section 3.2.

9

Figure 2.1: A somewhat crude representation of the difference in lifetime be-
tween precursors and prompt neutrons chain. Note that the time scale is not
exact and that prompt neutron chains tend to diverge.[1]

10

Chapter 3

The Monte Carlo method

The Monte Carlo method is a stochastic simulation method able to simulate a
wide variety of problems, spanning many research areas including finance, reac-
tor physics, oil exploration and complex mathematical problems. The method
works by generating a large number of (pseudo-)random numbers to calculate
the behaviour of the desired set-up for a large number of possible states. Using
statistics, specifically the Central Limit theorem [6], the expectation value and
standard deviation can then be calculated for the used set-up.

Monte Carlo has the advantage that for nuclear application, no approxima-
tions need to be made. The uncertainty is thus only dependent on the statistics
and can hence be precisely estimated. The drawback of using this method is
the high computational cost due to the large number of simulations being done
to achieve a low variance.

3.1 The general principles

The Monte Carlo method is a stochastic method used to solve deterministic
problems. In neutron transport problems such as discussed in this work, it is
used to solve the Boltzmann Eq. (3.1), which determines the dynamic behaviour
of neutrons.

Ω ·∆ψ(x,Ω) + σtψ(x,Ω) =
Σs
4π

∫
4π

ψ(x,Ω′)dΩ′ +
Q(x)

4π
(3.1)

Monte Carlo solves this equation by tracking individual particles and simulating
them throughout their existence. This is analogous to particles interacting with
the real world counterpart of the simulated set up and is bottoms up approach
of solving this equation.

The simulation method is stochastic for it relies on random variables to
create the particles.

11

3.2 Change in weight due forced decay of neu-
trons

Particles in Monte Carlo simulation are often given a statistical weight. This
weight is not a physical quantity, but is a measure of many relative real world
particles they represent; note that this weight does not have to be an integer.

In this simulation the difference in time-scales causes large periods without
precursor decay and hence no prompt neutrons. To solve this problem all pre-
cursors are forced to decay in each time interval. The weights are then adjusted
to compensate. This is described by Legrady and Hoogenboom [7].

The probability that a precursor has a forced decay at time t inside a time
interval between t1 and t1 + ∆t is chosen to be uniformly distributed:

p̄(t) =
1

∆t
(3.2)

The probability of a precursor having natural decay is given by

pi(t) = λie
−λi(t−t0) (3.3)

When using multiple precursor groups this becomes:

p(t) =
∑ βi

β
λie
−λi(t−t0) (3.4)

Note that all precursor groups are now combined into one precursor particle.
This particle combines all decay times, hence it does not have a true exponential
decay, although all the individual precursor groups which make up this particle
do. The weights must be adjusted to make the probability of forced decay
multiplied by its weight equal the probability of natural decay. The weight of
the delayed neutron particle becomes:

wn(t) =
p(t)

p̄
= ∆t

∑ βi
β
λie
−λi(t−t0) (3.5)

The average weight resulting from forced precursor decay can be determined by:

wn,av =< wn >=
1

∆t

∫ t1+∆t

t1

∆t
∑ βi

β
λie
−λi(t−t0)dt (3.6)

Which is equal to:

wn,av =
∑ βi

β
e−λi(−t0)(e−λit1 − e−λi(t1+∆t)) (3.7)

The precursor weight accounting for the change in weight due to the decay over
time is:

w(t) = w
∑

λiβi exp−λi(t−t0) (3.8)

3.3 Precursors at start-up

When starting the simulation, a criticality calculation is done until the source
has reached a stable equilibrium. This equilibrium is the steady state neutron

12

distribution. Using this distribution and Eq. (3.5), the precursor and prompt
neutron distributions can be calculated.

When a particle decays exponentially, the age of the particle does not influ-
ence it’s chance of decay. For the particle has the same probability for decaying
on each time step due to the exponential nature of this decay. However, for
combined precursor family’s, the decay is no longer truly exponential and hence
the age of the group does matter for it’s chance of decay, see Section 3.2. Differ-
ent precursors from different groups decay with different constants therefore the
ratio between precursor groups change over time. Therefore the make up of a
combined precursor particles also changes over time until it has reached steady
state. The difference between the precursor family distribution at the creation
of a precursor and the family distribution in steady state is shown in Fig. 3.1.

To compensate for this change in precursors, the combined precursor par-
ticles should be started with an age between −∞ and 0. This way the ratio
between the different precursor groups is correct. Another method is to start
precursors that are present at t = 0 with the steady state family distribution.
This is done in the case of this work.

Figure 3.1: The difference in distribution of precursor family at creation an at
steady state.[1]

In this work two types of precursors are distinguished, those created at the
start and those created at t > 0. The precursors created for the start using a
steady state calculation will be called Type II precursors in this work. Precursors
created during the simulation will be called Type I precursors.

3.4 Prompt neutron fraction

Both prompt and delayed neutrons have a chance to start a neutron chain. The
fraction of prompt neutrons is given by

n0

n0 + d0
(3.9)

Here n0 is the number of prompt neutrons at the start of the time interval and
d0 is the number of delayed neutrons that is created during this time interval.

13

Using Eq. (3.7) the number of delayed neutrons can be calculated

d0 =
∑
i

C0,i
1

∆t

∫ t+∆t

t

pi(t)

p̄i(t)
dt (3.10)

which becomes

d0 =
∑
i

C0,i

∫ t+∆t

t

λie
−λitdt (3.11)

and then

d0 =
∑
i

βi
λi
νΣfφ(r)(1− λie−λi∆t) (3.12)

Which can be substituted in Eq. (3.9) to get

n0

n0 + d0
=

1

1 +
∑
i
βi

λi
νυΣf (1− λie−λi∆t)

(3.13)

When using the same system properties described in Section 5.1 and a time
interval of 100 ms, around 10% of the neutron chains is started by prompt
neutrons of the last interval and 90% is started by delayed neutrons.

3.5 Variance reduction

To increase the computational efficiency of Monte Carlo simulations, variance
reduction techniques can be applied. These can be divided into two general
classes:

1. Population control techniques

2. Event bias techniques

Not all particles have the same contribution to the result. In population con-
trol techniques the particle distribution and particle weights are adjusted so the
particles populate more interesting areas of phase space. In event bias tech-
niques, physical events (such as scattering) and particle weights are adjusted to
populate more interesting areas of phase space. [8]

3.5.1 Figure of merit

The Figure of Merit (FoM) is a quantity used to define the computational ef-
fectiveness of a simulation. It is defined in (3.14);

FoM =
1

RE2T
(3.14)

with RE the relative error en T the time the computer needs for the simulation.
N.B. this factor T results in a more subjective value for the Figure of Merit;
the value for the Figure of Merit differs between computers and even slightly
between different runs on the same computer.

14

3.5.2 Implicit capture

Implicit capture forces all particles to survive the collision and must hence reduce
the weight of the surviving particle by the probability it will not get captured.
The new weight becomes [9]:

Wnew = Wold(1− Σa/Σt) (3.15)

where Σ is the macroscopic cross section which characterizes the probability
of a neutron-nuclear reaction for the nucleus. Σa characterizes the probability
for absorption while Σt characterizes the total probability for interaction.

Implicit capture must also use some form of low-weight cut-off such as Rus-
sian roulette introduced in Section 3.5.3 to eliminate particles with a very low
weight.

For instance, statistics may require on average 60 particle out of a 100 par-
ticles to survive a certain event. Using implicit capture as explained in Sec-
tion 3.5.2 every particle can be forced to survive however each particle should
now have its weight reduced to 60% of its former weight.

3.5.3 Russian roulette

The computational cost of a Monte Carlo simulation using implicit capture can
be reduced using Russian roulette. The Russian roulette variance reduction
method causes particles with low expected contributions to the final response
from being simulated. When the weight of a particle w goes below wRR the
particle undergoes Russian roulette. This value of wRR may require some op-
timising. Due to the dynamic nature of this work it is set as a predefined
percentage of the average weight. This value is selected to be 12.5%.

Then a survival weight must be defined, this is usually ws = 2wRR as in
the case of this work. Now the particle is killed with a probability of 1 − w

ws
.

The probability a particle survives thus is w
ws

. Surviving particles are given the
ws. Russian roulette always reduces computational cost but increases variance.
Note that on average the total weight is conserved [9].

3.5.4 Particle splitting

Particle splitting can be used with weighted particles. It splits the existing parti-
cle into two if the particle weight exceeds a predefined amount, this prevents the
particle weight from becoming too large. If the particle weight w exceeds a users
defined limit whigh, the particle is split into N particles, each with weight w/N.
Due to the dynamic nature of this work, whigh is defined as a set percentage of
the average weight. This value is selected to be whigh = 2wavg. When split, two
particles are created of weight w

2 both retaining information(position,velocity,
etc.) of the original particle.

The method has a lot of similarities with Russian roulette both conserves
the total weight and adjust the number of particles depending on probability.
Particle splitting however creates extra particles while Russian roulette kills
particles. Splitting always decreases variance but increases computational cost
[9].

15

3.5.5 Branchless collision

Prompt chains branch. Branching causes variance in the power production
because of the variance in chain length. The branchless collision method is
a novel variance reducing method to reduce the variance introduced by this
branching, introduced by Sjenitzer and Hoogenboom [10].

The technique sets the number of neutrons to survive a collision to exactly 1
and changes the particle’s weight accordingly. This can be a scattering neutron
or a fission neutron. The particle retains its probability Ps to have a scatter-
ing interaction with an unchanged simulation weight. If the particle does not
scatter, it terminates producing a new fission neutron with weight:

Wnew = Wold
νΣf
Σa

(3.16)

with Σa the absorption cross section given by

Σa = Σt − Σs (3.17)

This technique has the disadvantage that the weight of the neutron can increase
significantly hence particle splitting is used in combination with this method.

Particles with high weight are split, this reintroduces branching into the
simulation. And thus variance due to the variance in chain length is reintroduced
[10]. Efficient population control and other techniques might be able to reduce
this variance.

3.5.6 The combing method

In this work the combing method is applied to reduce the computational cost
for the simulation of reactor behaviour using a dynamic Monte Carlo technique.
The combing method is a population control method, which can be used in
codes using weighted particles. It distributes the total weight of the old number
of particles over the new number of particles while maintaining the physics of
the problem.

In the dynamic Monte Carlo simulation the population of neutrons vary over
each time step, this causes a difference in computational cost for each time step.
For an increased computational stability, i.e. distributing the computational
cost roughly equal over each time step, the combing method could be used.

The combing method can be combined with other variance reduction tech-
niques and has the potential for added flexibility when replacing other standard
population control methods, such as Russian roulette. It is explained in greater
detail in chapter 4.

16

Chapter 4

The variance reducing
combing method

It is the aim of this work to research the feasibility of the combing method
for achieving better population control. In the code used in this report Russian
roulette is already used for population control over each time step. The combing
method can be used to replace the existing Russian roulette method, however,
a combination of both Russian roulette and the combing method can also be
used.

The combing method is a population control technique which can be used to
exactly control the particle populations throughout a problem. The technique
distributes (part of the) existing particles into the user defined new number of
particles while preserving the expected weight of the original particles. This
allows the user to determine the number of particles and distribute the particle
weight evenly throughout the problem. This could reduce the variance. It also
enables the user to spread the computational cost more evenly over each time
step thus allowing the computational cost to be more stable and a more even
spread of variance throughout the problem.

4.1 The simple comb

For K particles being combed into M particles, the length of the comb can be
defined. The length of the comb is the total area on which the comb is applied.
Since the comb is applied over the total weight of all particles, the length of the
comb here simply means the total weight of all particles:

length of comb = W =

K∑
i=1

wi (4.1)

The new particles are chosen from the existing particles using an equally spaced
weight interval on the total weight. To prevent a bias a random number is
needed to select the first particle. Every time a new particle is selected this is
called a tooth. This is shown in Fig. 4.1.

17

Figure 4.1: A single comb. The included instructions determine the particles
which are to be included in the postcombed system. Note that the spacing
before the first selected particle is determined by the random number ρ. This
(random) spacing is also used for the selection of the other particles throughout
the combing process, for the spacing determines the exact location of the teeth.
[2]

With each tooth equally spaced and the position selected as:

tm = ρ
W

M
+ (m− 1)

W

M
m = 1, ...,M (4.2)

Where ρ is the random number needed for selecting the starting position of the
comb. Now each new particle is assigned a weight:

w′i =
W

M
(4.3)

Notice that the total weight is conserved because:

W ′total = w′iM =
W

M
M = W (4.4)

To find the exact locations of the teeth the integer j is defined as

j <
wi

W/M
≤ j + 1 (4.5)

now depending on random number ρ, either j or j + 1 teeth of the comb, will
hit an interval of length wi. This can be used to define the probabilities of teeth
hitting an interval, as:

pi,j = j + 1− wi
W/M

is the probability of j teeth in interval i

pi,j+1 =
wi

W/M
− j is the probability of j + 1 teeth in interval i

(4.6)

18

If Ci is the total weight from the ith particle after the combing process is done,
the expected weight after combing is given by:

E[Ci] = pi,jj
W

M
+ pi,j+1(j + 1)

W

M
=

wi
W/M

W

M
= wi (4.7)

4.2 The double comb

For verification purposes, added flexibility and more advanced variance reduc-
tion, multiple parts of the same population can be combed in several steps. This
can be used to investigate or enhance parts of the population of specific interest.
This can be used for variance reduction.

The ”double comb” uses two combs to comb two different populations, pre-
cursors and prompt neutrons in this case, separately into two different new
populations while preserving their individual summed weights and the com-
bined summed weights.This method also gives some insight in the flexibility of
the combing method, being almost analogous to the single comb.

Suppose there are K precursors and L prompt neutrons, which are to be
”combed” into M and N particles respectively. The total weight is now given
by:

Wtotal = Wprecursor +Wprompt (4.8)

or

Wtotal =

K∑
i=1

wprecursor +

L∑
i=1

wprompt (4.9)

Now each delayed neutrons is given a weight

w′precursor =
Wprecursor

M
(4.10)

and each prompt neutron is given a weight

w′prompt =
Wprompt

N
(4.11)

this gives a total weight of:

W ′total = w′precursorM +w′promptN =
Wprecursor

M
M +

Wprompt

N
N = Wtotal (4.12)

hence all weights are conserved. Note this process can be repeated for more
types of particles. Also to select the position of the first teeth, a new random
variable should be used for every comb to prevent possible bias. The double
comb allows the precursor and prompt neutron populations to be kept constant.
This can be done in absolute numbers or as a percentage. These numbers can
be be calculated at the end of each time step or they can be kept constant since
the start of the dynamic part of the simulation. Also a bias can be introduced
preferring one type of particle to the other, which can be useful for populating
more interesting parts of phase space and thus increasing the Figure of Merit
in this part of phase space.

19

4.3 Weight thresholds

The resulting number of particles from this combing is M, hence for K > M ,
K-M particles are removed from or ’combed out of’ the simulation. Note that
particles with a lower weight are much more likely to be ’combed out’ of the
simulation than particles with a higher weight.

The combing method has no minimum weight boundary for particles to be
included in the postcombed system. Particles with a very low weight could be
included in the postcombed system. This depends on the random variable ρ.
However, the combing technique does have a weight boundary for particles to
be excluded from the postcombed system. For a particle with a weight greater
than the distance between two consecutive teeth will always be included in the
postcombed system. This can be rephrased as: ”Particles with wi >

W
M have

zero chance of elimination.” Hence, the threshold weight for the combing method
is W

M . Below this value particles are eligible for elimination from the simulation.
Hence, this threshold depends on the total weight in the system.

Like the combing method, Russian roulette has no minimum weight for a
particle to survive, it also has a weight threshold for particles to undergo this
elimination technique. However, Russian roulette has several key differences in
comparison.

1. Russian roulette is implemented on individual particles, while the combing
method is implemented on the entire population at once.

2. Russian roulette relies heavier on statistics for a random value is needed
for every single particle to undergo Russian roulette, where the combing
method only uses one for the entire population.

3. Russian roulette conserves weight on average. Surviving particles are given
a survival weight and the weight of eliminated particles is removed from
the system.

4. Russian roulette allows the user to directly adjust the weight thresholds.
The combing technique does not directly offer this flexibility.

In the case of this work, Russian roulette uses a percentage of the average
weight as its weight thresholds. The maximum weight for a particle to undergo
Russian roulette is chosen to be wt-high = 2wavg, surviving particles are also
given this weight. It is useful to use a percentage of the average weight, for
the average weight is not conserved (i.e. the system is not normalized). This
means that naively using a constant would raise or lower the relative threshold
per usage/time step. Optimisation of these chosen threshold parameters can be
quite some work, for either extensive knowledge of the given system is required
or an optimum has to be found using trial and error.

The combing technique does not, as stated previously, directly offer the
flexibility of adjusting the weight thresholds. This can only be achieved by
adjusting the wanted new number of particles. However the threshold setting
appear to be quite optimal, for the total weight is exactly preserved and the
weight is spread perfectly even throughout the postcombed system.

20

4.4 Combing different populations

In this problem the population is divided into the prompt neutrons and pre-
cursor particles. These populations require a difference in approach because
of their different nature. The combing method is applied to both populations
separately. To do this the population is first split into the prompt neutron
population and into the precursor population. All the information (e.g. posi-
tions) of the particles are stored in vectors containing the information for one of
these split populations. Because two variance reducing combs are used (one for
each population) a new number of particles must be defined for each population
separately.

4.4.1 Combing prompt neutrons

For the combing of prompt neutrons a simple comb can directly be applied.
The newly created vector, contains the weight the prompt neutrons have. The
new number of prompt neutrons can be selected in several ways. The most
logical choice is to determine the percentage of prompt neutrons of the old total
particle population and multiply this percentage with the wanted new total
number of particles. The desired new total number of particles can be chosen
to be constant throughout the problem in attempt to divide computational cost
equally throughout the problem. However, other options are available such as
returning to the original number of prompt neutrons calculated in the steady
state (time independent) solution.

4.4.2 Combing precursors

In the simulation discussed in this report three different types of weight impor-
tant in combing the precursor population can be distinguished.

1. The precursor weight, this is the weight contained in the weight bank
for precursors. Determining the weight the precursor particle had on it’s
moment of creation. This weight, however, does not take into account the
decay over time of the precursor.

2. The precursor timed weight, this weight takes into account the change
in weight due to the decay over time of the precursor groups. The precur-
sor timed weight can be calculated using Eq. (3.8).

3. The expected delayed neutron weight, this is the expected weight the
neutron resulting from decay of the precursor has. Since this particle is
the same as any other neutron the value should optimally be the same
as any other (prompt) neutron. This weight is calculated by integrat-
ing/averaging over the next time step and hence is not an exact value.
The expected delayed neutron weight can be calculated using Eq. (3.7).

To correctly comb the population without introducing any biases, the precursor
timed weight should always be conserved. This is the weight the system interacts
with. Preserving the expected delayed neutron weight instead of the timed
precursor weight would introduce extra variance because of the averaging done
over the next time step to calculate this weight.

21

In this work, the combing method is applied at the end of each time step.
However, the postcombed particles will interact with the system in the next
time step. Hence, it would be incorrect to use the current time step for the
calculation of the precursor timed weight and expected delayed neutron weight.
This is solved by calculating these weights for the next time step.

It should be noted that the weight resulting from combing needs to be cal-
culated back to precursor weight when stored. This should be done because the
weight banks used in this problem contain the precursor weight.

4.5 A decay-weighted comb for precursors

Let the inclusion factor be a user defined quantity indicating the importance of
inclusion of a weighted particle in the postcombed system. The comb discussed
in this section uses both the weight and inclusion factor of a particle for its
inclusion in the postcombed system while preserving the total weight. It is
otherwise similar to the simple comb. Hence this comb allows the user to comb
the system over another quantity than the particle weight while preserving the
total weight.

In the system discussed in this report, the timed precursor weight should be
preserved, while combing the system over the expected delayed neutron weight.
This is done to create a more even spread of weights as the particles interact with
the system, as is discussed in Section 4.4.2. Hence the inclusion factor here is the
summed decay factor from Eq. (3.7) needed to calculate the expected delayed
neutron weight from the precursor timed weight.

If once again the starting number of particles is taken to be K which are
combed into M particles, ui is the expected delayed neutron weight and wi is
the timed precursor weight (which should be preserved), the inclusion factor
can be defined as

Ii =
ui
wi

(4.13)

this is taken to simply be the factor between the the expected delayed neutron
weight and the timed precursor weight.

The total expected delayed neutron weight is

U =

K∑
i=1

ui (4.14)

this quantity is used to determine the new location of the tooth, which now
should take into account both inclusion factor and weight.

tm = ρ
U

M
+ (m− 1)

U

M
m = 1, ...,M (4.15)

To find the exact locations of the tooth the integer j is defined as

j <
ui

U/M
≤ j + 1 (4.16)

depending on random number ρ, either j or j + 1 teeth of the comb, will hit
an interval of length ui. This can be used to define the probabilities of teeth

22

hitting an interval, as

pi,j = j + 1− ui
U/M

is the probability of j teeth in interval i

pi,j+1 =
ui

U/M
− j is the probability of j + 1 teeth in interval i

(4.17)

The new weights are obtained by noting that the average number of particles
of type i after combing is M(ui/U). Thus to conserve the expected total timed
precursor weight requires:

precomb weight = wi = wimiM(ui/U) = expected postcomb weight (4.18)

where mi is the weight multiplication for combed particles derived from particle
i. Solving Eq. (4.18) for mi gives:

mi = U/(Mui) (4.19)

The postcombed weight of all particles derived from the ith precombed particle
becomes:

w′i = miwi = wiU/(Mui) = U/(MIi) (4.20)

This comb is constructed to conserve the total weight. This can also be seen
by:

ni = number of ’hits’ of the ith interval (4.21)

then using Eq. (4.20)

W ′ =

K∑
i=1

ni
U

MIi
(4.22)

Taking the expectation of Eq. (4.21) and using Eq. (4.17) yields

E[W ′] = E

[
K∑
i=1

ni
U

MIi

]
=

K∑
i=1

U

MIi
(jpi,j + (j + 1)pi,j+1)

=

K∑
i=1

U

MIi

(
j(j + 1− ui

U/M
) + (j + 1)(

ui
U/M

− j)
)

=

K∑
i=1

U

MIi

ui
U/M

=

K∑
i=1

wi = W

(4.23)

This selection of particles is shown in Fig. 4.2.
Note that unlike the simple comb the total weight is not exactly conserved.

Only the expected value of the weight is conserved. Also note that since ui and
wi are known quantities, it is not necessary to calculate Ii explicitly.

4.6 Using a single comb for the total population

Another way to comb the population would be to comb the prompt neutron and
delayed neutron population at the same time. This method recognizes the fact
that both the delayed neutron as the prompt neutron have no real differences
hence the same weight could be given to these particles. This method is simpler
in application but has several drawbacks.

23

Figure 4.2: An inclusion factor weighted comb. The instructions included once
again determine which particles are included in the postcombed system. [2]

1. The system has less flexibility; by using two combs it is possible to adjust
the two different populations in respect of each other.

2. The expected delayed neutron weight is conserved instead of the timed
precursor weight. Due to the method of calculation this introduces extra
variance.

The second drawback could be solved by using inclusion factor combing for this
comb, defining the inclusion factor for prompt neutrons as 1 (for the normalized
case), defining the inclusion factor as the factor between timed precursor weight
and expected delayed neutron weight (see Eq. (4.13)). This however increases
complexity of the system again and once again requires inclusion factor combing
to be used.

Using a single comb has the additional advantage that it does not (drasti-
cally) change the order of particles, whereas using two combs split the popula-
tion into two separate parts; one part prompt neutrons and one part precursors.
This could increase the computational cost.

24

Chapter 5

Calculations on a sample
problem

5.1 The sample problem

To investigate the functioning of the simulation techniques, a sample problem
has been set up. In this sample problem a small rectangular box is simulated.
The box is 10 by 12 by 24 centimetre and is surrounded by a vacuum. The
system properties are given in Table 5.1. The system has one energy group but
there are six families. These are given in Table 5.2.

The size of a time step used in this set-up is 100 ms and the standard number
of particles is 106. A reactivity is inserted in the system at t = 10. This is done
by decreasing the Σa of the system from 0.5882 cm−1 to 0.5870 cm−1.

To verify the results produced by the Dynamic Monte Carlo code, the same
problem has been calculated using a point kinetics code. This is shown in
Fig. 5.1. Note that the point-kinetics model is an accurate model for such a
simple geometry.

The code used in this work already implemented the Russian roulette method
for population control, as explained in Section 3.5.3. It is not necessarily the
goal to replace this Russian roulette however it is a logical benchmark for in-
vestigating the effectiveness of the combing method. Note that some form of
population control is required due to the use of other variance technique’s, e.g.

Table 5.1: The material properties used in the sample problem. The box is
made out of a homogeneous material.

Material Properties
Σt = 1 cm−1

Σf = 0.25 cm−1

Σs = 0.4118 cm−1

ν = 2.5
β = 0.00685
υ = 2.2× 104 cm

25

Table 5.2: The precursors are divided in six families. Here the fractions and
decay constants per precursor family i are given. Also the total delayed fraction
and average decay constant are shown.

Group λ(s−1) β
1 0.0127 0.00026
2 0.0317 0.001459
3 0.1156 0.001288
4 0.311 0.002788
5 1.4 0.000877
6 3.87 0.000178

av/tot 0.0784 0.00685

Figure 5.1: A critical system with a reactivity insertion at t = 10, the reactivity
is set back to 0 at t = 40. Now the system returns to a new stable state. The
dynamic Monte Carlo simulation agrees with the point-kinetics analysis of the
system.[1]

26

Figure 5.2: The power produced per started neutron for both the combing
method and Russian roulette.

branchless collision, hence a simulation without any population control cannot
be chosen as a benchmark.

5.2 Calculations done one using multiple pre-
cursor families

For this simulation precursor families of Table 5.2 was used. The rest of the
problem on which the calculations are done, is the same as discussed in Sec-
tion 5.1. The starting number of particles used is 106. The calculations for
these simulations were done using six CPU’s for each run.

5.2.1 Power behaviour

First of all the proper functioning of the combing method needs to be demon-
strated. This can be done by inspecting the power behaviour resulting from
both methods. This is shown in Fig. 5.2.

The power behaviour for all methods appear to agree, which implies the
proper function of the combing method. To ensure the combing method does
not introduce a bias the errorbars are included in Fig. 5.3.

Unfortunately, Fig. 5.3 still doesn’t clearly show if the result is unbiased.
Therefore a close up is made, this is shown in Fig. 5.4. As can be seen in this
picture, the errorbars (standard deviation) of the different combing methods
are within the range of the errorbars of the Russian roulette method, hence the
result can be deemed to be unbiased.

5.2.2 Figure of Merit

The Figure of Merit of the different techniques is shown in Fig. 5.5.
It is important to know what causes this decrease in the Figure of Merit.

Using the definition given by Eq. (3.14), this can be caused by a increase in
relative error or by a increase in calculation time, i.e. higher computational
expenses.

27

Figure 5.3: The power produced per started neutron for both the combing
method and Russian roulette, here the errorbars are included at every 20 time
steps.

Figure 5.4: A close up of the power produced per started neutron for both the
combing method and Russian roulette, here the errorbars are included at every
20 time steps.

Figure 5.5: The total Figure of Merit.

28

Figure 5.6: The computer cost per time step in seconds.

Figure 5.7: The computer cost per time step in seconds.

The computer cost per time step is shown in Fig. 5.6 and the standard
deviation is given in Fig. 5.8. These figures clearly show that the decrease
in Figure of Merit can be contributed to the increase in computational cost,
since the standard deviation roughly stays constant while the computational
cost increases and becomes erratic. The erratic behaviour of the computer cost
could be due to the fact that computer cost is a subjective measurement, where
the specific computer and conditions measure. To check this influence another
simulation was done. The computer cost of that run is shown in Fig. 5.7.
As can been seen from this graph, the behaviour is less erratic. Hence, this
erratic behaviour is likely due to unpredictable behaviour of the computer the
simulation was run on.

5.2.3 Difference in CPU load

To understand what causes this increase in computational cost it is important
to inspect the make-up of this computational cost.

For an arbitrary time step, taken to be 401 the difference in distribution for
the non-master CPU’s is shown in Tables 5.3, 5.4 and 5.5. Here the weight, is
the weight as contained in the weight banks.

29

Figure 5.8: The standard deviation on power produced per started neutron for
each time step for both the combing method and Russian roulette.

Table 5.3: Distribution in CPU load for the decay weighted combing method
for time step 401.

CPU number # particles in weight in # particles out
1 170334 383090505.672068 184393
2 170334 298691339.822376 184089
3 170334 207295190.654775 183992
4 170334 120766689.512432 184378
5 170334 32540994.4865478 108438

Table 5.4: Distribution in CPU load for the simple combing method for time
step 401.

CPU number # particles in weight in # particles out
1 170334 322518612.493628 183014
2 170334 286814284.785877 182885
3 170334 229463719.042564 184090
4 170334 173475609.210797 185874
5 170334 66879549.7075076 113132

Table 5.5: Distribution in CPU load for the Russian roulette for time step 401.
CPU number # particles in weight in # particles out

1 89967 233382515.583194 90660
2 89967 235646368.740038 91169
3 89967 231291946.041189 90570
4 89967 233745258.155254 90200
5 89967 236883249.928050 90468

30

Figure 5.9: The power produced per started neutron for both the combing
method and Russian roulette, here the errorbars are included at every 20 time
steps.

5.3 Calculations done using one precursors group

The combining of different type of precursors in this rapport complicate the
simulation, for it requires some mathematical techniques to efficiently simulate.
This is explained in Chapter 2. However this may compromise the efficiency
of the combing method. To see how the combing method functions without
these technique, simulations were done using only one precursor group. For this
simulation the average of Table 5.2 was used. The starting number of particles
used is 106. The rest of the problem on which the calculations are done, is the
same as discussed in section 5.1. These simulations were done using two CPU’s
for each run.

5.3.1 Power behaviour

The power behaviour of this simulation is shown in Fig. 5.9.
To see if this result is unbiased the errorbars are added in Fig. 5.10. A close

up inspection gives Fig. 5.11. Here it can clearly be seen that the errorbars
of both combing methods overlap and hence the results can be assumed to be
unbiased.

5.3.2 Figure of Merit

The effectiveness of both population control methods, Russian roulette and the
combing technique can best be demonstrated by calculating their respective
Figure of Merit’s for each time step. This is shown in Fig. 5.12.

The Figure of Merit can once again be decomposed into both the compu-
tational cost and the relative error. The computer cost per time step is shown
in Fig. 5.13 and the standard deviation is given in Fig. 5.14. These graphs

31

Figure 5.10: The power produced per started neutron for both the combing
method and Russian roulette, here the errorbars are included at every 20 time
steps.

Figure 5.11: A close up of the power produced per started neutron for both the
combing method and Russian roulette, here the errorbars are included at every
20 time steps.

Figure 5.12: The total Figure of Merit.

32

Figure 5.13: The computer cost per time step in seconds.

Figure 5.14: The standard deviation on power produced per started neutron
per time step.

show that the decrease in the Figure of Merit for the combing method can be
contributed to the increase in computational cost, as the standard deviation
decreases slightly while the computational cost increases.

5.3.3 Population

An important part of the functioning of both techniques is their impact on
the composition of the population. There are several aspects of the population
on which can be focused. Most obvious is the total number of particles in the
system, this is shown in Fig. 5.15. The measurements were done at the beginning
of each time step.

It can be seen that the system using the combing method has a constant
total number of particles while the system using Russian roulette sees a sharp
decrease in number of particles throughout the system. To find the cause of
these differences, the population is split in it’s respective composition. This is

33

Figure 5.15: The total number of particles at the beginning of each time step.

Figure 5.16: The total number of precursors at the beginning of each time step.

shown in Fig. 5.16 and Fig. 5.17 which show the precursor and prompt neutron
population over time.

5.3.4 Particle splitting

Another aspect of both methods worth investigating is the number of times
particle splitting occurs during the simulation. This is a defining feature of both
methods, and can be interesting for further variance reduction. The results are
shown in Fig. 5.18.

34

Figure 5.17: The total number of prompt neutrons at the beginning of each
time step.

Figure 5.18: The number of times a particle undergoes particle splitting for each
time step.

35

Chapter 6

Conclusions and
recommendations

6.1 Figure of Merit

As seen in Fig. 5.5, the Figure of Merit is higher for Russian roulette then for
the combing method. This is caused by the increase in computational cost.
This increase in computational cost is higher during the transient (between
t = 10s and t = 40s). This implies a higher impact on computational cost
during transient behaviour for the combing method than Russian roulette.

The CPU behaviour of the combing method also shows large peaks at times
with no important event attached. This means that the combing method is less
reliable in terms of constant behaviour.

Note that the decay weighted combing method does an overall better job,
both in Figure of Merit as computational cost, than the simple combing method.
Also the peaks in computational cost are lower on average for the decay weighted
combing method than for simple method, implying the extra cost and erratic
behaviour are dependant on the decay weight of the precursors.

For the simulation using only one precursor family, Russian roulette still
performs better then the combing method when inspecting the Figure of Merit.
These computations had a lower overall computational cost and are less rep-
resentative of the system on which the the variance technique is used. The
relative error is slightly lower, which compensates for the increase in computa-
tional cost. Also the computational behaviour of the combing method seems
more stable than the simulation using multiple precursor families, however this
is likely due to the specific computer run. Both the decay weighted combing
method and the simple combing method seem to perform equal in these simu-
lations. Note that, since the difference between the two combing methods has
disappeared, the dependence on decay weight is increased by using multiple
precursor families.

36

6.2 Stability of the population

As can be seen from Fig. 5.15 the total number of particles for the combing
method is more stable than when using Russian roulette. This is due to the
number of precursors remaining constant throughout the problem as seen in
Fig. 5.16. This is an inherent advantage of using the combing method. Also the
combing method can be implemented in several ways adding to the flexibility
of the technique. For instance it can keep the percentage of precursor constant
or the total number of particles, whereas Russian roulette does not offer this
flexibility and relies heavier on statistics. The combing method used in this
rapport is currently unable to handle starting populations much larger then 106

particles. This is a serious disadvantage, this could however be solved using
some smart coding.

6.3 Interaction with particle splitting

The combing method sets all timed precursor weight and prompt neutron weight
to the average of their population. This fact should lead to a lower Figure of
Merit and better system stability. This is especially true for a system where
particle splitting is used. For in a system with higher variance in weight dis-
tribution, particles reach the threshold weight for particle splitting more often
than the system with the lower variance in weight distribution. This leads to
lower branching in the system.

This particle splitting or (slight) branching of a prompt chain should lead
to a lower Figure of Merit and stability of the system. More computer time is
required as more particles need to be traced while the size of the population
varies more over each time step.

It can be seen from Fig. 5.18 that particle splitting occurs less often when
the combing method is used in stead of Russian roulette.

The decrease in particle splitting has the more complex advantage that
GPU’s cannot handle branching [11]. The possibility of further optimisation
by implementing GPU’s instead of CPU’s require little to no branching. How-
ever the decrease in the amount of branching is in the order of several per cent
and does not allow for drastic changes in the architecture of programming.

6.4 Order of particles

Because of the way the combing method functions, the order of particles is
drastically changed. The banks containing the information of particles are now
ordered by type. First the information of one type of particle is stored (precursor
in this case) then the second type of particles is stored (prompt neutrons). This
could explain some of the increase in computational cost, for a more even (some
could say random) distribution of the different particles throughout the system
would cause for a more even spread of computational cost. This also could cause
a severe difference in computational load per used processor, which would cause
the combing method to perform severely poorer, due to the fact that processors
assigned with a relative light task have to wait until the processors relative
heavy task are finished.

37

It can be seen in Tables 5.3, 5.4 and 5.5 that the spread of weight and
simulated particles is indeed uneven for the combing methods whereas this is
more or less even for the Russian roulette method.

This difference in computational load per processor increases for a higher
difference between computational cost between the two types of particles, as
is the case between using multiple precursor families, which increase the com-
putational cost of calculating a precursor relative to that of a prompt neutron.
This would explain the combing method performing worse than Russian roulette
during regular simulation while during the simulation using only one precursor
family it performs slightly better.

The difference in computational load also causes the system (total time) to
react in an non-linear fashion between the number of CPU’s used in the set-up.
This also could be an explanation for the comparatively better results of the
system using only one precursor family since this system used less CPU.

6.5 Future work

Usage of the combing method leads to a worse and less predictable performance
of the system. Hence a direct implementation of the combing method would
not make sense. However significant gain could be achieved by more efficient
coding. For instance a subroutine could be added to return the particles in the
post combed system to the order of the pre combed system, this could lead to the
combing method achieving an overall better and more predictable performance,
this could be the aim of future work. Also some specific research requiring added
flexibility in terms of specific population control could make advantage of the
combing technique for population more interesting parts of phase space could
make advantage of the combing method.

38

Bibliography

[1] Bart L Sjenitzer and J Eduard Hoogenboom. Possibilities and efficiency of
long-time kinetic and dynamic Monte Carlo calculations. 2011.

[2] Thomas E Booth. A Weight (Charge) Conserving Importance-Weighted
Comb For Monte Carlo. 1996.

[3] Weston M Stacey. Nuclear Reactor Physics. WILEY-VCH Verlag GmbH
& Co. KGaA, 2004, 2004.

[4] James J Duderstad and Louis J Hamilton. Nuclear Reactor Analysis. John
Wiley and Sons, Inc., 1976.

[5] THJJ van der Hagen H van Dam and JE Hoogen-
boom. Nuclear reactor physics, lecture notes ap3341.
http://www.janleenkloosterman.nl/reports/ap3341.pdf.

[6] H P Lopuhaä L E Meester F M Dekking, C Kraaikamp. A Modern Introduc-
tion to Probability and Statistics: Understanding Why and How. Springer,
2010.

[7] David Legrady and J Eduard Hoogenboom. Scouting the feasibility of
monte carlo reactor dynamics simulations. 2008,.

[8] Thomas J T Kwan Mark G Gray, Thomas E Booth and Charles M Snell.
A Multicombd Variance Reduction Scheme for Monte Carlo Semiconductor
Simulators. 1998.

[9] Forrest B Brown. Fundamentals of Monte Carlo Particle Trans-
port, lecture slides on Variance Reduction, Los Alamos Na-
tional. http://mcnp-green.lanl.gov/publication/pdf/LA-UR-05-
4983 Monte Carlo Lectures.pdf.

[10] Bart L Sjenitzer and J Eduard Hoogenboom. Variance reduction for fixed-
source Monte Carlo calculations in multiplying systems by improving chain-
length statistics. 2011.

[11] Mark Harris and Ian Buck. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation. Addison Wesley
Professional, 2005.

39

