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Abstract

Despite the great potential of nuclear reactors, the reputation of nuclear energy in society is damaged. To
make a new generation of nuclear reactors successful, improvements on safety and sustainability are of great
importance. Accidents in the past have led to a new safety requirement. In the future, nuclear reactors must
incorporate a passive protection system. In the Molten Salt Reactor, the passive protection is provided by
the freeze plug. The freeze plug is an actively cooled blockage consisting of solidified salt in pipes leading
to drainage tanks located underground. In case of a station black out, the plug will melt, enabling the core
to flow into underground tanks. To prevent damage to the reactor, this process must be completed within 8
minutes at most.

The aim of this thesis is to investigate whether the current design of the freeze plug can be improved by
addition of cooling fins. The cooling fins ensure an efficient heat transfer from the reactor core to the freeze
plug and should result in a decrease of the melting time. Research is conducted on the heat transfer prop-
erties of various configurations of cooling fins. The heat transfer of the cooling fins is modeled by using an
average heat transfer coefficient. Various geometries including an arrangement of cooling fins and a grid of
freeze plugs have been tested in COMSOL Multiphysics to discover the most optimal configurations. The re-
sults showed a closely packed in-line arrangement of cooling fins resulted in a decrease in melting time of
around 40 seconds, reducing the total melting time by approximately 25%. Based on the research, it can be
concluded that adding cooling fins to the current design of the freeze plug is useful.
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1
Introduction

The energy transition is imminent, a structural change in energy systems is required to tackle climate change
which involves a reduction in the dependency on fossil energy sources. Alternative energy sources consist
of renewables and nuclear energy. Extensive research on the optimisation of these energy sources has led to
great technological improvements. Amongst others, nuclear energy proved to be a promising energy source.
However, in the fields of safety, nuclear waste and sustainability improvements are essential. Nuclear waste
is dangerous for most forms of life and the environment and remains dangerous for a long time. Not only
great amounts of nuclear waste have to be stored for this period, but also the enormous time span makes it
difficult to communicate the storage locations to generations thousands of years ahead. Besides, due to major
accidents in the past with nuclear power plants, the reputation of nuclear energy in society is damaged. To
make a new generation of power plants successful, improvements on safety and sustainability are of great
importance. An organisation dealing with the development of these generation IV reactors is named GIF
(Generation IV International Forum). GIF selected six technologies for further research and development [3].
These include:

• Gas-cooled Fast Reactor (GFR)

• Lead-cooled Fast Reactor (LFR)

• Molten Salt Reactor (MSR)

• Supercritical Water-cooled Reactor (SCWR)

• Sodium-cooled Fast Reactor (SFR)

• Very High Temperature Reactor (VHTR)

Delft University of Technology contributes to the research and development of the Molten Salt Fast Reactor
by participating in the SAMOFAR project. A project consortium that consists of eleven partners including
Delft University and has its focus on innovative safety systems and optimal waste management of the Molten
Salt Fast Reactor. One of the innovative safety systems in the MSFR is the freeze plug, which will be the focus
of this thesis.

1.1. Molten Salt Fast Reactor
Molten Salt Reactors (MSR) is a class of nuclear fission reactors. One specific reactor in this class is the Molten
Salt Fast Reactor (MSFR). In these reactors the primary coolant is a molten salt mixture in which the fissile
material is dissolved. As coolant, fluoride salts are often used. The liquid fuelled MSFRs can operate using
any fissile material, but the MSFR is often associated with the 233U – 232Th fuel cycle which results in signifi-
cantly less generation of highly radiotoxic elements and a higher fuel burn-up compared to the conventional
uranium reactors. The physical properties of the salt enable a MSFR to operate at high temperatures (up to
750°C) and at nearly atmospheric pressure. In the core, fission occurs within the fuel salt. The heated mixture
flows to a heat exchanger where a part of the heat is transferred to a secondary salt coolant used to generate
electricity. Hereafter, the fuel salt flows back to the core. In the reactor, another fluid circuit continuously

1



2 1. Introduction

extracts the fission products and introduces new fertile material into the fuel salt. There is a closed flow of
molten salt through the reactor along heat and fissile products are extracted and fertile material is introduced.
A schematic overview of the Molten Salt Fast reactor is shown in figure 1.1.

The fluid-fuel system has beneficial safety characteristics. The liquid substance has a high coefficient of
thermal expansion which ensures that in the case of overheating, the molten salt expands and reduces the
rate of nuclear reactions and thus making the reactor self-regulating [11]. In case of failure, the chain reaction
of the fissions can be interrupted but the fissile products continue to produce heat by radioactive decay. The
produced heat must be extracted actively otherwise it may cause the reactor to overheat. To illustrate the
possible consequences of overheating, a sidestep to the Fukushima disaster in 2011 is made.

Figure 1.1: Schematic overview of a Molten Salt Fast Reactor [11].

1.2. The Fukushima accident
In March 2011, an earthquake occurred with its epicentre 160 kilometers away from Fukushima. In Fukushima
six operating Boiling Water Reactors were located. As a consequence of the earthquake, the reactors were sep-
arated from external power sources and operations were terminated. The reactor cores continued to produce
heat due to the radioactive decay of fission products. To remove the residual heat, back-up generators were
started to take over the cooling of the cores. The earthquake initiated a tsunami, 5 meter higher than the
plants were designed for, arriving at the coast 50 minutes later [8]. The tsunami flooded the back-up gener-
ators leading to the shutdown of the generators and ultimately of the cooling systems. At this moment, the
stations were completely isolated and due to the lack of cooling the station suffered a nuclear meltdown.

The accident has led to an important safety requirement for future reactors. The fourth generation of
reactors must incorporate a safety system that makes the reactor inherently safe. The safety systems may no
longer be dependent on for example external power sources and back-up generators but should be able to
bring the reactor passively in a stable state. The system providing the passive protection in the MSFR is called
the freeze plug.

1.3. The freeze plug
The freeze plug is a blockage consisting of solidified salt in pipes leading to drainage tanks located under-
ground. The plug is cooled actively by a cooling system. In case of a black out of the cooling mechanisms
responsible for cooling during normal operation of the reactor, the reactor core will start to heat up. Since
the cooling of the freeze plug will black out as well, the freeze plug starts to melt under influence of the tem-
perature of the reactor core. Eventually, the freeze plug will melt, opening the pipe to the drainage tanks. The
liquid fuel salt flows into the drainage tanks where it can be held under safe conditions during the time of
emergency and thus bringing the reactor passively into a stable state.

To ensure a proper operation of the freeze plug, the reactor must be drained before the reactor core
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is damaged by the increasing temperature. In normal conditions the reactor operates at a temperature of
around 700°C. The maximum temperature the reactor core can sustain is 1200°C which is reached in 8 min-
utes after terminating the operations of the reactor [1]. The melting process of the freeze plug and the
drainage process must be completed within this time interval. In order to do so, the freeze plug must be
optimised in terms of a minimal combination of melting time and draining time.

1.4. Previous research
The original design of the freeze plug was a single plug blocking the whole pipe which was studied by Swaroop
[12]. A simplified 1D analytical model was constructed to research the melting behaviour of the plug when
heating only occurs at the top of the plug. Swaroop reported a melting time of 12 minutes for a plug with a
depth of 2 cm. To enhance the melting behaviour, a new design was studied by van Tuyll [14] and hereafter
by Makkinje [9]. The new design consists of multiple plugs in one pipe. The intermediate space is filled with
a metal enabling the heat to approach the plugs from the sides which should lead to a shorter melting time.
It can be concluded that the melting time can be decreased to around 45 seconds using freeze plugs with a
depth of 3 cm , the draining time is strongly dependent on the plug radius and the pipe radius . In the model
used to investigate the performance of the new design of the freeze plug, the heat transfer due to convection
that results from the flow in the reactor has not been considered. Instead a perfect heat transfer is assumed
between the molten salt and the freeze plug. In this thesis, the heat transfer due to convection is added to
the model. Furthermore, cooling fins are added to the design. Expected is that the cooling fins will have a
beneficial effect on the heat transfer due to convection.

1.5. Goals and thesis outline
The goal of this thesis is to discover how cooling fins can be integrated in the design of the freeze plug in
order to achieve a decrease in the time it takes to melt the freeze plug. It is expected that the heat transfer
from the salt to the cooling fins is more efficient than heat transfer from the salt to the top of the freeze plug
module. By including cooling fins the surface area and the heat transfer per surface area are increased which
could have a beneficial influence on the melting behaviour of the freeze plug. To gain an understanding of
the consequences of using cooling fins, the following research questions must be answered:

• Which parameters influence the total heat transfer from the salt in the reactor to the cooling fins?

• How must the values of these parameters be chosen in order to obtain the largest total heat transfer?

• Which parameters have influence on the performance of a configuration of a grid of freeze plugs in
combination with a grid of cooling fins?

• How must the values of these parameters be chosen in order to achieve the most optimal configuration
in terms of the lowest melting time?

• Which decrease in melting time can be achieved?

• Is the freeze plug design with cooling fins useful?

The structure of this thesis is as follows. First the characteristics of cylindrical cooling fins for different
orientations are discussed and a model is proposed to account for the heat transfer due to convection across
the cooling fins. Based on these findings in chapter 3 and chapter 4 the melting behaviour is studied using
numerical methods in COMSOL Multiphysics for multiple orientations of cooling fins in 2D and 3D. In chap-
ter 5 the results are discussed. Based on the results, the utility of the application of cooling fins in the freeze
plug design is discussed in chapter 6.





2
Theory

2.1. Design of the freeze plug module
In this research, the design of the freeze plug module with cooling fins will be studied. To be able to compare
the results to a similar design without cooling fins, the design without cooling fins will be studied as well by
using the methods of Makkinje [9]. By changing the dimensions of the plugs and the fins, different versions
of the designs are obtained. The variables of interest are:

• Dpl ug diameter of the freeze plugs

• D f i n diameter of the fins.

• P distance between two adjacent freeze plugs

• S distance between two adjacent cooling fins

• hpl ug height of the freeze plugs

• h f i n height of the fins

• The orientation of the freeze plugs and the fins.

The radius of the freeze plug module is taken to be arbitrary. The amount of freeze plugs that fit in this radius
are a result of the values of the parameters above. The shape of the cooling fins is cylindrical and will not
be varied in this research. The space between the freeze plug consists of an alloy called Hastelloy N [10]. An
overview of the previously described designs and the new design is given in figure 2.1.

5
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Design consisting of one freeze plug. Top view of design consisting of one freeze plug.

Design consisting of a freeze plug grate. Top view of design consisting of a freeze plug grate.

Design including cooling fins. Top view of design including cooling fins.

Figure 2.1: Schematic overview of the previous designs and the new design.

2.2. Heat transfer
The transfer of heat throughout the freeze plug module can be divided into three subclasses.

• Convection

• Conduction

• Radiation

The directions and magnitudes of the heat fluxes in the freeze plug module determine the melting behaviour
of the freeze plugs. The melting process of the freeze plugs is based on convection and conduction. Heat
transfer due to radiation is negligible and hence neglected.

In case the cooling of the freeze plugs is terminated, a situation arises in which the “hot” molten salt flows
over the top of the “cold” uncooled freeze plug module and along the cooling fins. As a result of convection,
heat will be transferred from the molten salt to the cooling fins and the top of the freeze plug module. At
the top of the freeze plugs a phase change occurs, the frozen salt becomes liquid. Due to convection, the
alloy around the freeze plugs and in the cooling fins will be heated. The bottom of the module still has the
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“cold” starting temperature and consequently a temperature gradient arises within the alloy. The temperature
gradient results in the transport of heat by conduction from the top of the module to the bottom. As the alloy
is heating up, it will melt the freeze plugs from the sides (so radially inwards). By the time the sides of the
freeze plug at the bottom are melted, the plug will drop under influence of gravity. To be able to describe
the heat fluxes, the theory of conduction and convection will be discussed. A schematic overview of the heat
fluxes is displayed in figure 2.2.

Figure 2.2: Schematic overview of transportation of heat in the freeze plug module. The process is only showed for a part of the module.
A heat flux is represented by a black arrow.

2.2.1. Conduction
Conduction stands for the ability of molecules to transport a net amount of heat without transporting mass.
Heat transfer by conduction is the dominant factor in the heat transfer within the metal around the freeze
plug and in the freeze plug itself. The heat flux that occurs due to a temperature gradient is described by the
law of Fourier [13], equation 2.1.

~φ"
q =−λ∇T (2.1)

According to Fourier’s law, a temperature gradient in a particular direction results in a heat flux in this direc-
tion in such a way heat is always transferred from a relatively hot area to a cold area. λ represents the thermal
conductivity and is a property of a material. It is a measure of the ability of a material to conduct heat. Heat
transfer occurs at a higher rate for materials with a high thermal conductivity in comparison to materials with
a low thermal conductivity.

2.2.2. Convection
The heat flux caused by convection can be described by Newton’s law of cooling [13], equation 2.2.

φ"
q = k(T∞−Ts ) (2.2)

This equation states that the heat flux φ"
q depends on the difference in temperature of a surface Ts and the

temperature of the surroundings T∞. The parameter k is called the heat transfer coefficient.
When calculating the heat flux through an interface of two media, say A and B, a combination of two

heat transfer coefficients is needed. The heat transfer coefficient kA is a measure of the heat transfer from
medium A to the interface. The heat transfer coefficient kB is a measure of the heat transfer from the surface
to medium B. These heat transfer coefficients can be combined in the overall heat transfer coefficient U .
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1

U
= 1

kA
+ 1

kB
(2.3)

When medium A is considered to be the molten salt and medium B the alloy, it can be derived that kB >> kA

thus the overall heat transfer coefficient can be approximated by U = kA . This is equivalent to assuming
the temperature of the interface is equal to Ts . To gain a better understanding of where the heat transfer
coefficients are related to, the boundary layer theory is discussed.

When a fluid flows past a surface, in the immediate vicinity of the boundary surface, a small layer of fluid
is build up where the velocity profile gradually decreases from the velocity of the fluid to zero. Because of the
reduced velocity of the fluid, the heat must be transported by conduction through the boundary layer. Since
heat transport by convection is more efficient than conduction through the layer, the boundary layer acts as
a resistance for heat transport. Therefore, the thermal conductivity and the width of the thermal boundary
layer have a major influence on the heat transfer coefficient and is considered to be a direct measure for the
resistance of heat transfer across a surface.

The heat transfer coefficient can be transformed into a dimensionless form called the Nusselt number
using the following equation.

Nu = kD

λ
(2.4)

Here D is the characteristic length scale and λ is the thermal conductivity. The last step in quantifying the
heat flux in the stated melting problem is to derive Nusselt relations for the conditions described before. First,
two approximations can be made:

1. The interface at the top of the freeze plug can be described as a flat plate in a parallel flow.

2. The cooling fins can be described by an arrangement of cylinders in crossflow.

These assumptions are the starting point of the derivations of appropriate Nusselt relations. The flat plate
Nusselt relation is applied to the green boundaries and the Nusselt relation for an arrangement of cylinders
is applied to the red boundaries in figure 2.3.

Figure 2.3: Overview of the applied Nusselt relations at the top of the freeze plug module
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2.3. Convective heat transfer for a flat plate
Along a flat plate parallel to a fluid flow in say the x-direction, a thermal boundary layer is build up. The width
of the thermal layer increases in the x-direction [13]. Therefore, the Nusselt number is dependent on x and is
given by equation 2.6.

Nux = kx

λ
= 0.332 ·

(
ρv x

µ

) 1
2 ·

(ν
a

) 1
3

(2.5)

Nux = kx

λ
= 0.332 · (Rex )

1
2 · (Pr )

1
3 (2.6)

Equation 2.6 holds for Rex < 3 ·105. Here ρ is the density of the fluid, v the velocity of the fluid, x the distance
from the starting point of the plate,µ the dynamic viscosity, ν the kinematic viscosity, a the thermal diffusivity,
Re the Reynolds number and Pr the Prandtl number. When this relation is integrated over a plate of length L
and divided by L, the average Nusselt number is obtained.

〈Nu〉 = 1

L

∫ L

0
Nux d x = 0.221 ·

(
ρvL

µ

) 1
2 ·

(ν
a

) 1
3

(2.7)

Equation 2.7 can be used for determining the average Nusselt number at the top of the freeze plug module.

〈Nu〉top = 1

L

∫ L

0
Nux d x = 0.221 ·

(
ρvD

µ

) 1
2 ·

(ν
a

) 1
3

(2.8)

Where D is the lateral characteristic length in the freeze plug module. The average heat transfer coefficient
〈k〉top can be calculated using equation 2.9

〈k〉top = 〈Nu〉top
λ

D
(2.9)

2.4. Single cylinder in crossflow
To describe the heat transfer across an arrangement of cylinders, a model of the heat transfer is needed. In
this section, first the flow around a single cylinder is discussed qualitatively after which the transition to an
arrangement of cylinders is made in the next section.

2.4.1. Flow around single cylinder
The flow of a fluid around a cylinder experiences resistance causing a disturbance of the flow. The character-
istics of the flow around and behind the cylinder are dependent on the Reynolds number. Reynolds number
is a dimensionless number and is defined by equation 2.10.

Re = ρvD

µ
(2.10)

Here D f i n is the diameter of the cylinder. Seven flow regimes bounded by Reynolds numbers are distin-
guished [2]. The exact boundaries may vary from study to study. Since the qualitative behaviour is studied,
the stated boundaries suffice here.

(a) Creeping flow Re < 5

(b) Attached recirculation zone 5 < Re < 40

(c) Transitional 40 < Re < 350

(d) Subcritical 350 < Re < 2 ·105

(e) Critical 2 ·105 < Re < 7 ·105

(f) Supercritical 7 ·105 < Re < 3.5 ·106

(g) Transcritical Re > 3.5 ·106
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A schematic drawing of the flow around a cylinder for these regimes is displayed in figure 2.4.

Figure 2.4: The evolution of the flow around a circular cylinder in crossflow for increasing Reynolds number [2].

As can be seen in the figure, the development of the flow around the cylinder can be summarized in the
following way.

1. The flow around the cylinder is laminar and no boundary layer separation occurs.

2. The flow starts to separate from the surface and consequently a recirculation zone is formed. As Reynolds
increases, the separation point moves downstream. The separation point is the point where the bound-
ary layer separates from the surface of the cylinder.

3. The separation point moves further upstream. Vortex formation and vortex shedding occur in the cylin-
der wake and the length of the recirculation zone is reduced as Reynolds is increased.

4. The entire flow field of the cylinder may be considered turbulent, except for the boundary layers on
its surface. Further changes to the flow field are now influenced by changes in the cylinder boundary
layer.

5. The boundary layer undergoes laminar separation followed by turbulent reattachment. The final sepa-
ration of the boundary layer is now delayed and the cylinder wake becomes increasingly narrow.

The two phenomena that are of particular interest for the heat transfer in an arrangement of cylinders are the
character of the wake and the boundary layer separation.

2.4.2. Heat transfer characteristics of a single cylinder
As is observed in the previous section, the surface can be divided into two areas. At various Reynolds numbers
the boundary layer on the front area of the tube is laminar. The rear area is in a region of vortex formation.
Therefore, one can expect the local heat transfer to be inhomogeneous over the surface of the cylinder. At low
Reynolds numbers (up to the transitional regime), the heat transfer in the front area is higher than in the rear
area. This can be explained by the existence of the recirculation zone at relatively low values of Reynolds. The
fluid in this region is isolated from the bulk fluid and therefore the temperature gradient will decrease at the
rear of the cylinder.

As Reynolds increases a shift of the maximum heat transfer coefficient from the front area to the rear area
is observed. In the subcritical-critical regime the maximum heat transfer is located at the rear area. This can
be explained by the vortex shedding. A vortex shed favours the access of a new hot mass of fluid to the surface
and consequently the heat transfer increases suddenly.

In the situation of an arrangement of cylinders, the first array of cylinders will behave similarly as the
single cylinder described above. However, the wake of the cylinder extents to multiple times the diameter of
the cylinder. For this reason, the flow around the subsequent cylinders placed in this range will be affected
by these wakes and thus the heat transfer will be affected as well. The consequences of placing cylinders in a
certain arrangement will be studied in the next section.
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2.5. Arrangement of cylinders in crossflow
Arrangements of cylinders in crossflow are in scientific research also known as tube banks. Flow conditions
in tube banks are dominated by boundary layer separation effects and by wake interactions, which in turn
influence the convection heat transfer. These flow conditions are dependent on:

• The orientation of the arrangement.

• The geometrical parameters of the cylinder arrangement.

• The applied fluid flow.

The main interest of this thesis is to understand the effects of the orientation of the arrangement and the
geometrical parameters on the heat transfer in a tube bank for a constant applied fluid flow, which is imposed
by the operation of the reactor. According to Newton’s law of cooling there are three ways to enhance the heat
transfer of a tube bank, namely:

• Increasing the heat transfer coefficient.

• Increasing the surface where heat transfer takes place.

• Increasing the temperature difference.

First the average heat transfer coefficient of tube banks will be discussed.

2.5.1. Molten salt flow in the reactor
The flow of the molten salt in the reactor is studied by Frima [4]. In this study the flow path, the flow velocity
and the temperature of the molten salt are modeled. The results of the model are displayed in figure 2.5.

(a) Temperature distribution of the fluid. (b) Flow velocity and flow path in the reactor.

Figure 2.5: Flow conditions in the core of the reactor. In the left figure the temperature distribution of the molten salt inside the reactor
is displayed. In the right figure the flow velocity and the flow direction are showed as a function of position in the reactor [4].

It is assumed the tube bank will be placed at the bottom of the tank (at z = 1m in the figure). Furthermore, it
can be derived that the flow will have approximately a velocity of 3.5 meters per second and a temperature
of approximately 950 Kelvin. However, in case of a station blackout, the pumps will be shut down and con-
sequently the flow in the reactor will no longer be pumped around. Therefore, the velocity of the flow will
gradually decrease over time. An estimation has to be made of the average velocity of the flow entering the
tube bank. The average velocity of the flow entering the tube bank is somewhere between 0 and 3.5 meters
per second. To ensure a realistic view, a value in the middle of this interval is chosen. The average velocity of
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the flow is estimated at 2 meters per second. The applied flow is assumed to be uniform and fully developed
at the entry of the tube bank.

In order to further characterize the flow in the reactor the properties of the molten salt must be known.
These will be discussed later in this thesis. The applied flow in combination with the geometry of the tube
banks will result in Reynolds numbers in the subcritical regime. Therefore, the resulting part of the theory on
tube banks will be focused on tube banks in similar conditions.

2.5.2. Geometry of the tube bank
Extensive research has been done on the heat transfer properties of tube banks. A significant amount of the
findings is bundled in the books of Zukauskas [15] and Incropera and DeWitt [6]. The findings are mainly
based on experiments. To gain a better understanding of the influence of the geometry of a tube bank on the
heat transfer capacities in terms of the heat transfer coefficient, the most important findings in the research
are discussed. The research was focused on two different orientations, namely the staggered arrangement
and the in-line arrangement. An overview of these arrangements is displayed in figures 2.6a and 2.6b.

(a) Schematic of in-line arrangement (b) Schematic of staggered arrangement

Figure 2.6: Schematic overview of the in-line and staggered arrangement. The parameters used to describe the geometry of these types
of tube banks are included in the figure. The direction of the applied flow is indicated with the arrows on the left side of the

arrangements [7].

The arrangements can be parametrized by defining D f i n as the diameter of the cylinders, SL as the longitu-
dinal pitch, ST as the transverse pitch and SD as the diagonal pitch, all measured between the tube’s centers.
Three dimensionless parameters that are of interest are the dimensionless longitudinal pitch ζL , the dimen-
sionless transversal pitch ζT and the dimensionless diagonal pitch ζD which are given by:

ζL = SL

D f i n
, ζT = ST

D f i n
, ζD = SD

D f i n
(2.11)

The geometry of the grid affects the flow within the bank and, in general, increases the turbulence in com-
parison to the undisturbed flow. The turbulence in the tube bank is described by the Reynolds number. The
Reynolds number in a tube bank can be calculated using equation 2.12.

ReD = Umax D f i n

ν
(2.12)

Here Umax is the mean velocity in the minimum free cross section between the vertical rows of cylinders and
can be calculated using equation 2.13 [7].

Umax =
(

ζT

ζT −1
Uapp ,

ζT

ζD −1
Uapp

)
(2.13)

Here Uapp is the velocity of the applied flow. In banks of both arrangements, flow around a cylinder in the
first row is similar to flow around a single cylinder, but the flow pattern in subsequent rows is different due to
the disturbance by the previous rows of cylinders. In fact, the tubes of the first few rows act as a turbulence



2.5. Arrangement of cylinders in crossflow 13

generating grid after which it is observed that flow conditions stabilize such that little change occurs in the
convection coefficient for a tube beyond the fourth or fifth row.

The characteristics of the flow and the amount of turbulence in the tube bank are highly dependent on the
dimensionless pitch parameters defined in equation 2.11. By reducing the dimensionless transversal pitch, a
nozzle effect is created and the velocity of the flow between the cylinders is increased and consequently the
turbulence in the tube bank. When the dimensionless transversal pitch is increased the velocity of the flow
between the cylinders will approach the velocity of the applied flow. Furthermore, for relatively large values
of ζT the cylinders in a vertical row are not influencing each other anymore. As a consequence of this, the
staggered arrangement becomes closely similar to the in-line arrangement.

By changing the dimensionless longitudinal pitch, the distance between two cylinders in a horizontal row
can be adjusted. By discussing two extreme cases of the dimensionless longitudinal pitch, insight is gained
in how this affects the flow in the tube bank. For a tiny dimensionless longitudinal pitch, the flow is closely
similar to a flow in a channel. For an infinite dimensionless longitudinal pitch, it results in a flow through a
single transverse row, with the velocity profile of the flow behind the preceding row being straightened. In the
intermediate cases, the cylinders are located in the wake of the inner rows and the flow preceding one of the
inner rows is vortical with a nonuniform velocity distribution.

At last, a comparison between flow through an in-line bank and a staggered bank is made. Flow in an
in-line bank is often comparable with that in a straight channel. In staggered banks the flow is comparable
with flow in a curved channel of periodically converging and diverging cross section. So, the path of the main
flow is more tortuous and a greater portion of the surface area of downstream tubes remains in this path. In
general, heat transfer enhancement is favoured by the more tortuous flow of a staggered arrangement.
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2.5.3. Heat transfer efficiency for various tube banks
The heat transfer coefficient from the surface of a tube bank to its surroundings is defined by a Nusselt num-
ber and the diameter of the tubes. Due to the flow conditions around a cylinder in a tube bank, the heat
transfer across the surface is not uniform. To describe the heat transfer from the fluid to the cylinder in an
efficient way, an average of the heat transfer coefficient of the surface can be used. This can be achieved by
using an average Nusselt number. The Nusselt number is averaged over the surface of the cylinder, excluding
the tip, and over all the cylinders in the tube bank. This implies that a cylinder in the first row is considered to
have the same heat transfer coefficient as a cylinder in downstream rows. Zukauskas proposes the following
form of the Nusselt relation for a cylinder in a tube bank:

〈NuD〉 =C ·Rem
D · f (Pr ) (2.14)

This Nusselt relation can be used to calculate the heat transfer coefficient using equation 2.4. It can be derived
that the average Nusselt number depends on a correction factor C , compensating for the overall geometry of
the tube bank. Furthermore, the Nusselt number depends on ReD to the power m. Here m depends on the
geometry of the tube bank as well. Finally, it depends on the Prandtl number. The Prandtl number is assumed
to be constant and is a property of the molten salt. The Prandtl number can be computed using equation 2.15.

Pr = µCp

λ
(2.15)

Research has been done on the behaviour of 〈NuD〉 for tube banks by varying the dimensionless pitches for
both the in-line arrangement and the staggered arrangement. First, the in-line arrangement is discussed. The
results of this research are shown in figure 2.7. It must be noted that the research is conducted for flows in the
subcritical and critical regime.

Figure 2.7: Plot of the Reynolds number in the tube bank versus the heat transfer for in-line tube banks with various geometries. The
heat transfer is expressed in terms of K f , where K f =C Rem

D . For every tested geometry a line is added in the graph and labeled
with ζT x ζL [15].

The figure shows a comparison for 11 various banks of in-line arrangements. The slope of the plots is varying
for the compared banks. It can be concluded that an increase of m is observed for constant longitudinal
and decreasing transversal pitch. For the stated range of Reynolds numbers, tube banks with relatively low
longitudinal pitch perform better than tube banks with relatively large longitudinal pitch. Besides, for flows in
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the subcritical regime and closely spaced tube banks a decrease in the transversal pitch leads to an increase
of the heat transfer, this dependence is not observed for more widely spaced tube banks. For flows in the
critical regime, a small increase in the heat transfer is observed for increasing transverse pitch.

The results of the research on staggered banks are displayed in figure 2.8.

Figure 2.8: Plot of the Reynolds number in the tube bank versus the heat transfer for staggered tube banks with various geometries. The
heat transfer is expressed in terms of K f , where K f =C Rem

D . For every tested geometry a line is added in the graph and labeled with
ζT x ζL [15].

The figure shows a comparison for 12 various banks of staggered arrangements. Here the effect of the pitch
is clear. The power index is the same for all tube banks. However, the heat transfer coefficient increases with
a decrease in the longitudinal pitch and, to a lesser extent, with an increase of the transversal pitch. This
may be a result of the fact that the flow path becomes more tortuous by increasing the transversal pitch and
decreasing the longitudinal pitch. As stated before, this has a beneficial effect on the heat transfer coefficient.

Based on the research, the following can be concluded:

• The heat transfer coefficient of a cylinder in a tube bank is positively influenced by a decreasing longi-
tudinal pitch for both arrangements.

• Increase of the Reynolds number leads to a significant increase in the average heat transfer coefficient
of a tube bank and is the dominant parameter for enhancing the heat transfer.

• Increasing the transverse pitch is beneficial for staggered arrangements. However, it should be noted
that decreasing of the transverse pitch leads to an increase in the Reynolds number when a constant
applied flow is assumed. Since the Reynolds number is the dominant parameter it is likely that this
effect will dominate the influence of the transversal pitch.

• Particularly for closely spaced tube banks, staggered arrangements perform better than in-line arrange-
ments.

2.5.4. Modeling the heat transfer coefficient in tube banks: analytical approach
An analytical approach of modeing the convection heat transfer coefficient of tube banks in crossflow has
been done by Khan [7]. The resulting analytical model is used in this thesis to predict the average Nusselt
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number for a cylinder in a tube bank. Khan came up with the following form of the Nusselt relation:

〈NuD〉 =C ·Re
1
2
D ·Pr

1
3 (2.16)

The determination of the correction factor is done by setting up a model for the hydrodynamic boundary
layer that is build up on the surface of a cylinder in the tube bank. For a specific geometry of a tube bank, the
correction factor C can be calculated using equation 2.17.

C =
[0.25+e−0.55ζL ]ζ0.212

L ζ0.285
T , for in-line arrangement

0.61ζ0.091
L ζ0.285

T

[1−2e−1.09ζL ]
, for staggered arrangement

(2.17)

This equation is valid for 1.05 ≤ ζL ≤ 3, 1.05 ≤ ζT ≤ 3. The average heat transfer coefficient for a cylinder in
the bank can be calculated using equation 2.18.

〈k〉 = 〈NuD〉λ
D f i n

(2.18)

The influence of the dimensionless longitudinal and dimensionless transverse pitch values on the correction
coefficient, implied by the model, for both arrangements are shown in figure 2.9a and figure 2.9b.

(a) Variation of correction factor for an in-line arrangement. (b) Variation of correction factor for a staggered
arrangement.

Figure 2.9: Variation of correction factor for various ζL and ζT . On the y-axis the correction factor is displayed and on the x-axis the
value of ζT . Three plots have been made for three different values of ζL [7].

It can be observed that the correction factor increases for a decreasing dimensionless longitudinal pitch and
is larger for staggered arrangements than for in-line arrangements. Since the heat transfer coefficient is pro-
portional to the correction factor, a larger correction factor results in a better heat transfer. These results
were also found in section 2.5.3. Next, a comparison is made between the heat transfer coefficient for widely
spaced staggered and in-line arrangements and for closely spaced staggered and in-line arrangements. The
results are shown in figure 2.10a and figure 2.10b.
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(a) Variation of the average Nusselt number for closely
spaced arrangements.

(b) Variation of the average Nusselt number for
widely spaced arrangements.

Figure 2.10: Variation of the average Nusselt number for a staggered arrangement and in-line arrangement for ζT x ζL = 1.25 x 1.25 and
a staggered and in-line arrangement for ζT x ζL = 3 x 3. [7].

Again it can be seen that the plot matches the result from section 2.5.3. For widely spaced arrangements the
heat transfer characteristics of a staggered arrangement are similar to those of an in-line arrangement. For
closely spaced arrangements the heat transfer coefficient of a staggered arrangement is larger compared to
an in-line arrangement.

At last, the values of the model are compared to experimental results obtained by Zukauskas.

(a) Average Nusselt numbers for a ζT x ζL = 1.25 x 1.25
in-line arrangement.

(b) Average Nusselt numbers for a ζT x ζL = 2 x 2
staggered arrangement.

Figure 2.11: Comparison of the average Nusselt number implied by the model to experimentally found numbers. Both an in-line
arrangement and a staggered arrangement are compared [7].

The results of the comparison prove that the values following from the model are in good comparison with
experimental values for Reynolds numbers in the subcritical regime. However, the model is tested for air
flows. In this thesis there must be dealt with a molten salt flow. Zukauskas [15] proved that the heat transfer
intensities along the surface of the cylinders are not strongly dependent on the physical properties of the
fluid. Fluids with a broad range of Prandtl numbers show similar behaviour along a broad interval of Reynolds
numbers. Therefore, the assumption is made that the model is also suited for a flow of molten salt.

2.5.5. Influence of the surface of a tube bank on the heat transfer
The heat transfer rate to the tube bank can be calculated by equation 2.19.

Q = kNπD f i nh f i n∆T (2.19)

Where Q is the heat transfer rate transferred to the tube bank, N is the amount of tubes in the tube bank, h f i n

is the height of the tubes in the bank and ∆T is the temperature difference between the fins and the bulk of



18 2. Theory

the flow at a particular moment. For compact tube banks, the amount of cylinders on a surface will increase
compared to widely spaced tube banks. As a consequence, the total heat transferred from the environment
to the tube bank will increase. As was derived in the previous sections, compact tube banks have in general a
higher heat transfer coefficient.

2.5.6. Influence of the temperature gradient in a tube bank on the heat transfer
The previous sections showed that in general compact tube banks are more efficient. However, for very com-
pact banks the assumption that the temperature of the flow in the tube bank is uniform in the flow direction
is not valid anymore. When the channels become very small, the temperature of the flow at downstream
cylinders is likely to approach the starting temperature of the cylinders. For closely spaced arrangements, the
volume of molten salt flowing through the bank is smaller compared to widely spaced arrangements. The to-
tal amount of heat in the salt is proportional to the volume of the salt. Therefore, the amount of heat entering
the bank is smaller for closely spaced arrangements. For closely spaced arrangements, it is likely that a larger
proportion of the amount of heat in the salt is transferred to upstream cylinders. This leads to a stronger de-
crease of the temperature of the molten salt compared to the decrease that will be observed for widely spaced
arrangements. A reduction in the temperature difference between the salt and the surface of the tube bank
results in a decrease of the heat transfer rate as can be seen in equation 2.19. On the contrary, in case of a
station black-out, the reactor core starts to heat up which may compensate to some extent. In conclusion, to
design an efficient tube bank, an optimisation has to be done on a combination of the average heat transfer
coefficient, the total surface of the cylinders and the average temperature gradient in the tube bank. In this
thesis the assumption is made that the flow has a uniform temperature throughout the tube bank. Therefore,
tube banks with dimensionless pitches lower than 1.5 are avoided in the models to ensure a more realistic
view. So, in formula:

T∞(x, y, z) = T∞ = constant (2.20)
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Geometries

In the previous chapter the influence of the geometry of tube banks on the heat transfer is examined. In this
chapter the knowledge of the tube banks is used to determine how a tube bank can be used to decrease the
melting time of the freeze plug in the most efficient way. To achieve this goal, the melting time of various
geometries is tested using COMSOL Multiphysics. In this chapter the tested geometries are discussed, the
numerical model itself will be discussed in the next chapter.

3.1. Overview of the tested 2-dimensional (2D) geometries
The parameters that may influence the melting time of the freeze plug are:

• 〈k〉 f i n average heat transfer coefficient of the tube bank.

• ∆ distance between the edge of the tube with respect to the edge of the freeze plug.

• h f i n height of the fins.

• D f i n diameter of the fins, equal to two times R f i n .

• Dpl ug width of the freeze plug, equal to two times Rpl ug .

• hpl ug height of the freeze plug.

• P distance between the center of two adjacent freeze plugs.

• PDR ratio of P and Dpl ug .

The models are constructed in such a way the influence of the parameters above on the melting time can be
tested. hpl ug has a major influence on the melting time [9]. When it is increased, the heat has to penetrate
deeper into the material. The influence of hpl ug is beyond the scope of this thesis and is therefore held
constant. In order to be able to compare the results with freeze plug modules without cooling fins, first two
models without cooling fins are tested. The parametrization of the models is shown in figure 3.1 and 3.2. The
freeze plug is displayed in blue and the Hastelloy N in gray.
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Figure 3.1: Parametrization of the geometries without cooling fins. Due to symmetry reasons, testing the part between the red lines
represents the behaviour of an arbitrary amount of freeze plugs in this geometry.

Figure 3.2: Parametrization of the geometries with cooling fins. Due to symmetry reasons, testing the part between the red lines
represents the behaviour of an arbitrary amount of freeze plugs in this geometry.

3.1.1. Model 1: Variation of PDR by changing Dpl ug
First a new dimensionless variable is introduced, the PD-Ratio. The PDR can be computed using equation
3.1.

PDR = P

Dpl ug
(3.1)

The influence of Dpl ug on the melting time is examined using the geometry in figure 3.3, where:

• P is held constant.

• Dpl ug ranges from 1
5 P to close to P .

Figure 3.3: Geometry tested in model 1.
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3.1.2. Model 2: Variation of PDR by changing P
The influence of P on the melting time is examined using the geometry in figure 3.4, where:

• Dpl ug is held constant.

• P ranges from close to Dpl ug to 5Dpl ug .

Figure 3.4: Geometry tested in model 2.

3.1.3. Model 3: Variation of∆
The influence of∆ on the melting time is examined using the geometry in figure 3.5. ∆ is the distance between
the edge of the cooling fin and the edge of the freeze plug, where:

• ζL and D f i n are held constant.

• SL equals P

• Dpl ug ranges from 1
10 P to P −D f i n .

Figure 3.5: Geometry tested in model 3.

3.1.4. Model 4: Variation of h f i n
The influence of h f i n on the melting time is examined using the geometry in figure 3.6, where:

• SL and D f i n are held constant.

• P and Dpl ug are held constant.

• h f i n ranges from D f i n to 3D f i n .
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Figure 3.6: Geometry tested in model 4.

3.1.5. Model 5: Variation of D f i n
The influence of D f i n on the melting time is examined using the geometry in figure 3.7, where:

• SL and P are held constant and are equal.

• D f i n ranges from 1
3 SL to 1

1.3 SL .

• Dpl ug is taken equal to P −D f i n −2∆, where ∆ is taken to be the ideal distance between the edge of a
fin and the edge of the plug. This value follows from the result of section 3.1.3.

Figure 3.7: Geometry tested in model 5.



3.2. Overview of the tested 3-dimensional (3D) geometries 23

3.2. Overview of the tested 3-dimensional (3D) geometries
By combining the obtained theoretical knowledge of tube banks and the results of the models described in
section 3.1, 3D geometries are constructed to test the behaviour of the cooling fins in three dimensions. A
new parameter that is introduced in 3D are the arrangements of the cylinders and the freeze plugs. Two
arrangements are distinguished, the staggered and the in-line arrangement. The integration of the freeze
plugs with the cooling fins is done by combining respectively a staggered array and in-line array of cylinders
and a staggered array and in-line array of freeze plugs. In this thesis only geometries that satisfy ζL = ζT are
tested. The resulting geometries are displayed in figure 3.8a and 3.8b.

(a) Schematic overview of an in-line arrangement. (b) Schematic overview of a staggered arrangement.

Figure 3.8: Overview of the integration of cooling fins and freeze plugs in 3D.

In order to make simple computations in COMSOL possible, symmetry is used. The arrangements are con-
structed in such a way that a high degree of symmetry is obtained. The unit cells of the arrangements are
illustrated with a red rectangular. The results obtained for a computation of the geometry in the unit cell are
a representation of the behaviour of the whole geometry. Next, the tested models will be discussed.

3.2.1. Model 6: Variation of PDR by changing P for an in-line arrangement

For the stated scope of this thesis and the geometry of the in-line arrangement, variation of PDR by changing
P is similar to variation of ζ by changing S. There is defined:

ζ= ζL = ζT = S

D f i n
, S = SL = ST (3.2)

The influence of the spacing of the arrangement can be tested by varying S, where:

• Dpl ug is held constant and equal to D f i n .

• h f i n and hpl ug are held constant.

• ζ ranges from 1.4 to 3.

• PDR ranges from 1.4 to 3.

The tested geometry is displayed in figure 3.9a and 3.9b.
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(a) Side view

(b) Top view

Figure 3.9: Geometry tested in model 6.

This geometry will be compared to the same geometry excluding the cooling fins. The resulting geometry is
displayed in figure 3.10a and 3.10b.

(a) Side view (b) Top view

Figure 3.10: Geometry tested in model 6 without cooling fins.
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3.2.2. Model 7: Variation of ζ by changing S for a staggered arrangement
For a staggered arrangement, ζL = ζT results in a geometry with rectangular unit cells. This implies that re-
spectively the horizontal spacing and the vertical spacing between freeze plugs and cylinders in the same row
or column are not equal and thus single values of P and PDR in these directions are not defined. However,
it can be seen that distances between freeze plugs can be described in exactly the same way as the distances
between cylinders. So, for the sake of simplicity this notation will be used for staggered arrangements. This
implies that the PDR is here equal to ζD . The influence of the spacing of the arrangement for a staggered
arrangement is tested in model 7, where:

• Dpl ug is held constant and equal to D f i n .

• h f i n and hpl ug are held constant.

• ζL and ζT range simultaneously from 2 to 3.

The tested geometry is displayed in figure 3.11a and 3.11b.

(a) Side view

(b) Top view

Figure 3.11: Geometry tested in model 7.

This geometry will be compared to the same geometry excluding the cooling fins. The resulting geometry is
displayed in figure 3.12a and 3.12b.

(a) Side view (b) Top view

Figure 3.12: Geometry tested in model 7 without cooling fins.
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3.2.3. Model 8: Variation of ζ by changing D f i n for an in-line arrangement
This is tested in 3D using model 8. The influence of the diameter of the fin in 3D is investigated in model 8. An
in-line arrangement is used because it can be tested for a broader range of ζ values and only a small difference
in melting time was observed between staggered arrangements and in-line arrangements. The geometry is
tested as follows.

• D f i n ranges from 1
3 S to 1

1.4 S.

• ζ ranges from 1.4 to 3.

• h f i n is held constant.

• Dpl ug is held constant.

• PDR is held constant.

• S is held constant.
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Numerical Methods

The melting process of the freeze plug is modeled in COMSOL Multiphysics. This software can be used to
solve physical problems numerically. COMSOL uses finite element methods for the computations. The infor-
mation needed to simulate the processes in COMSOL are discussed in this chapter.

4.1. COMSOL model for the 2D models
In addition to the geometry, the following information must be specified.

• Materials

• Physics

• Boundary Conditions and Initial Conditions

• Mesh

4.1.1. Materials
Two materials are used for building the geometries, a salt and an alloy. The molten salt flow consists of molten
LiF-ThF4 and the freeze plug consists of solid LiF-ThF4. Little is known about the physicochemical properties
of LiF-ThF4. Ignatiev [5] investigated the properties of molten LiF-ThF4 (78 – 22 mol%) for specific tempera-
ture ranges. The found properties are displayed in table 4.1. The properties of solid LiF-ThF4 are unknown.
For this reason, for the solid salt the properties of LiCl are used. LiCl is listed in the materials database of
COMSOL and is chosen because its melting point is close to that of solid LiF-ThF4. (610°C for LiCl and 570°C
for LiF-ThF4). Due to this assumption, the computed melting times may be slightly different compared to
when the properties of solid LiF-ThF4 are used. However, it can be expected that the effect of the cooling fins
is the same.

Table 4.1: Properties of the molten salt LiF-ThF4, the temperature T is in K. The value of Cp for 700 ◦C is extrapolated, since the highest
temperature of the validity range is below 700 ◦C [9].

Formula Value at 700 ◦C Validity range (◦C)

ρ (gcm−3) 4.094−8.82 ·10−4(T −1008) 4.1249 [620−850]

ν (m2 s−1) 5.54 ·10−8 ·exp(3689/T ) 2.46 ·10−6 [625−846]

µ (Pas) ρ (gcm−3) ·5.54 ·10−5 ·exp(3689/T ) 10.1 ·10−3 [625−846]

λ (Wm−1 K−1) 0.928+8.397 ·10−5 ·T 1.0097 [618−747]

Cp (Jg−1 K−1) −1.111+0.00278 ·T 1.594 [594−634]

The material between the freeze plugs and the cooling fins is Hastelloy N. The choice for Hastelloy N has been
made because of its compatibility with Molten Salt Reactors [10]. The physical properties of Hastelloy N are
listed in the materials database of COMSOL as well.
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4.1.2. Physics, Boundary Conditions and Initial Conditions
The physics package "Heat Transfer in Solids" is used. The heat transfer due to forced convection is modeled
by introducing a heat flux across the boundaries in direct contact with the flow. The boundaries are numbered
for a geometry with cooling fins and are shown in figure 4.1. The following boundary and initial conditions
are taken.

1. Initial Value, T0=500°C. This value is well below the melting temperature of 570 °C.

2. Thermal Insulation, used for the symmetry axes where the temperature gradient equals zero.

3. Thermal Insulation, it is assumed that heat transfer to the air at the bottom of the freeze plug is negli-
gible. The air at the bottom will be heated when the heat reaches the bottom of the plug. However, a
situation arises where hot air is on top of cold air and consequently no natural convection occurs.

4. Heat Flux 1, the magnitude of the heat flux across a flat plate is described by equations 2.1 and 2.9.

5. Heat Flux 2, the magnitude of the heat flux due to forced convection across a tube bank is described by
equations 2.1 and 2.18. This condition is only used for the models with cooling fins.

Figure 4.1: Overview of the applied boundary and initial conditions for 2D models. The indicated numbers are matched to the numbers
of the enumeration above.

4.1.3. Mesh
Taking care of the mesh is important for obtaining accurate results. An appropriate mesh ensures the results
are close to independent on the mesh. Research is done on both the mesh refinement and the mesh type.
A more detailed mesh results in more accurate results but has a larger computation time. By using mesh
types, distributions can be implemented in the refinement of the mesh. By using an appropriate mesh type,
accurate results are obtained for a smaller amount of mesh elements. The two classes of mesh types that are
tested are user controlled meshes and a so-called physics controlled mesh. The physics controlled mesh is an
option of COMSOL. When this option is selected, COMSOL automatically creates a mesh. A user-controlled
mesh enables the user to select the shape of the mesh elements and the distributions of the mesh refinement.
Of interest is the melting behaviour at the interface between the frozen salt and the Hastelloy N. Therefore,
several distributions in the refinement are introduced near this interface. There will be experimented with
the meshes displayed in the figures 4.2a to 4.2d.
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(a) Physics controlled (b) User controlled, horizontally refined

(c) User controlled, vertically refined
(d) User controlled, vertically refined and a horizontal

non-uniform distribution

Figure 4.2: Overview of the different types of meshes that will be tested.

The meshes in figure 4.2a to 4.2d will be tested for various amounts of mesh elements. The mesh type scoring
the best on accuracy in combination with the computation time will be used for the models.

4.1.4. Computation of tmel t
In COMSOL the function "Line Integration" is used to determine tmel t . The interface between the freeze plug
and the Hastelloy N is the line over which is integrated. COMSOL stores for every spatial coordinate in the
geometry the phase indicator θ1. θ1 is defined as:

θ1(x, y) =
{

1, for solid phase

0, for liquid phase
(4.1)

This variable is integrated over the interface between the frozen salt and the alloy. The plug has melted over
the full length of the edge and consequently drops if the following holds:∫ hpl ug

0
θ1(Rpl ug , y)d y = 0 (4.2)

The output of COMSOL is a table with values of the integration for every computed time instance. The melting
time is defined as the first time instance at which equation 4.2 holds. To extract the melting time from the
table a Matlab script is used. The used script can be found in Appendix A.

4.2. COMSOL model for the 3D models
In general, the 3D models can be processed in COMSOL similar to the 2D models. Only the needed adjust-
ments compared to the 2D models will be discussed. Adjustments are needed in the inputs of:

• Boundary and Initial Conditions

• Mesh

• Computation of tmel t
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4.2.1. Boundary Conditions and Initial Conditions
The applied boundary conditions and initial conditions for the 3D geometries are:

1. Initial Value 1, T0=500°C for model 6, model 7 and model 8.1.

2. Initial Value 2, T0=700°C for model 8.2. This value is used to investigate the effect of the starting tem-
perature of the cooling fins on the melting time of the freeze plug.

3. Thermal Insulation, used for the symmetry axes where the temperature gradient equals zero.

4. Thermal Insulation, it is assumed heat transfer to the air at the bottom of the freeze plug is negligible.
The air at the bottom will be heated when the heat reaches the bottom of the plug. However, a situation
arises where hot air is on top of cold air and consequently no natural convection occurs.

5. Heat Flux 1, the magnitude of the heat flux across a flat plate is described by equations 2.1 and 2.9.

6. Heat Flux 2, the magnitude of the heat flux due to forced convection across a tube bank is described by
equations 2.1 and 2.18. This condition is only used for the geometries with cooling fins.

The boundary conditions are visualised in figure 4.3.

Figure 4.3: Overview of the applied boundary conditions for 3D models. The indicated numbers are matched to the numbers of the
enumeration above.

4.2.2. Mesh
The mesh used for the 2D models is not used for the 3D models. The time effort of building a mesh with a
similar mesh type in 3D does not compensate for the gain in accuracy for lower amount of mesh elements.
Therefore, the more user friendly physics controlled mesh is used. In 2D, a physics controlled mesh consisting
of around 1000 elements proved to give a decent balance between computation time and accuracy. This mesh
was constructed by making use of the predefined mesh element size settings of a physics controlled mesh and
selecting the "normal"/"fine" mesh. To obtain a suitable mesh for the 3D models, a physics controlled mesh is
used with the same settings. This will not result in the same amount of mesh elements. However, it is expected
that by choosing these settings a decent balance between accuracy and computation time is obtained as well.
Besides, it is shown that increasing the amount of mesh elements near the interface of the freeze plug and the
Hastelloy N resulted in more accurate results for a shorter computation time. For this reason a "fine" mesh is
used in the freeze plug domain and a "coarse" mesh is used in the Hastelloy N domain.
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4.2.3. Computation of tmel t
tmel t is computed in the same way as in the 2D models except the line integration is replaced by a surface
integration over the interface between the freeze plug and the Hastelloy N. The phase indicator θ1 is in 3D
defined as in equation 4.3. For the sake of simplicity, cylindrical coordinates are used to describe the surface
that is integrated.

θ1(r,φ, z) =
{

1, for solid phase

0, for liquid phase
(4.3)

So, the freeze plug has melted when the following relation holds.∫ hpl ug

0

∫ π
2

0
θ1(Rpl ug ,φ, z)Rpl ug dφd z = 0 (4.4)

The output of COMSOL is processed with the same MATLAB scripts as was the case for the 2D models.
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Results

5.1. Mesh refinement
The meshes displayed in section 4.1.3 are tested on model 1. The model is meshed by every type of mesh
using in succession approximately 230, 630, 930 and 1300 mesh elements. To observe the influence of the
mesh on the melting process, the unmelted length of the freeze plug is plotted against the time. As soon
as the unmelted length equals zero, the freeze plug will drop. It can be observed that when the amount of
elements increase, the line becomes smoother. Furthermore, a variation in the melting time can be observed
when the melting time of a particular geometry is computed for an increasing amount of mesh elements.
This effect is clearest for the purple lines. The melting times for meshes with 270 elements and 630 elements
are approximately 280 seconds. When the amount of elements is increased to 930, it can be observed that
the melting time increases to just over 300 seconds. When the amount of elements is even more increased,
the melting time remains at just over 300 seconds. This effect can also observed for the other lines, but to a
lesser extent. For a mesh consisting of at least 930 elements, the mesh dependency in the results is strongly
decreased. All tested mesh types reach a stable melting time for 930 mesh elements. However, the user
controlled mesh with vertical refinement results in the smoothest line for this amount of mesh elements.
Therefore, this mesh is considered to be the most optimal mesh from the tested selection and is used for the
remaining models. The graphs constructed with this mesh are shown in figure 5.1. An overview of all the
graphs can be found in appendix C.

270 mesh elements 610 mesh elements

930 elements 1300 mesh elements

Figure 5.1: Melting time for model 1 using a vertically refined user controlled mesh. P=70 mm.
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5.2. Results of the 2D models
Below the results of the 2D models are discussed.

5.2.1. Model 1: Variation of the PDR by varying Dpl ug
In model 1 the diameter of the freeze plug is varied and P is held constant. The minimum height of the plug
needed to hold the plug in place is unknown. So, an assumption is needed. The value for hpl ug is taken to be
40 mm. This height will be held constant for all 2D models. The value of P is taken to be 70 mm. This value is
held constant as well for all models except model 2 since in model 2 the influence of P on the melting time is
researched. The model is tested for Dpl ug ranging from 14 to 66 mm. These values are chosen since it results
in PDR values that are comparable to the work of Makkinje and are in the same order of magnitude as the
dimensionless pitch parameters obliged by the model of cooling fins. An overview of the parameter values is
shown in table 5.1.

Table 5.1: Overview of the parameter values in model 1.

Parameter Value Unit

P 70 mm

hpl ug 40 mm

Dpl ug 14-66 mm

PDR 1.06-5 -

〈k〉top 1465 W
m2K

The results of model 1 are displayed in figure 5.2. The melting time is plotted as a function of the diameter
of the freeze plug, which is in 2D the same as the width of the cooling fin, and as a function of the PDR. The
PDR was defined as follows:

PDR = P

D f i n
(5.1)

(a) Melting time versus Dpl ug (b) Plot of the melting time versus the PDR.

Figure 5.2: Plot of the the melting time as a function of the freeze plug diameter and the PDR.

In the figures, it can be seen that for a PDR ranging from 2.5 to 5, the melting time almost remains con-
stant. A fast increase is observed for PDR smaller than 2.5. Since P is held constant, a decrease of PDR
is similar to an increase of Dpl ug . Hence a decrease of heat conducting Hastelloy N between the plugs. A
conclusion can be made after discussing the results of model 2.

5.2.2. Model 2: Variation of PDR by changing P
In model 2, Dpl ug is held constant at 30 mm. The model is tested for P ranging from 36 to 150 mm. This range
for P is taken since it results in the same range of values of the PDR as in model 1. This makes a comparison
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possible. An overview of the parameter values is shown in table 5.2 and the results of the model are displayed
in figure 5.3.

Table 5.2: Overview of the parameter values in model 2.

Parameter Value Unit

P 36-150 mm

hpl ug 40 mm

Dpl ug 30 mm

PDR 1.2-5 -

〈k〉top 1465 W
m2K

(a) Melting time versus P . (b) Melting time versus the PDR.

Figure 5.3: Plot of the melting time as a function of the distance between two adjacent plugs.

As can be seen in figure 5.3, the same behaviour is observed as in figure 5.2. An increase of P results in an
increase of the PDR. For a PDR larger than 2.5, the melting time remains roughly constant. For a PDR
smaller than 2.5 an exponential increase in the melting time is observed. For small values of P , the amount
of Hastelloy N between two adjacent freeze plugs will be limited. The total amount of heat flowing into the
alloy depends on the width of the interface between the molten salt and the alloy. For a small width of the
alloy, the salt-alloy interface is small as well. This results in a reduction of the total amount of heat that can
flow into the alloy and therefore, the plug melts slower. If the width of the alloy is increased, the amount of
heat flowing into the alloy increases and consequently the freeze plug melts faster. However, when the width
of the alloy between the plugs reaches a certain width, the influence vanishes. When the width is increased
beyond this certain width, the heat flowing into the alloy at large distances from the edges of the freeze plug
will not reach the edges of the freeze plug and therefore, this heat does not contribute to the melting of the
freeze plug. Based on conditions and results of model 1 and 2, it can be concluded that there is a minimum
amount of alloy equal to 40 mm needed between two freeze plugs to achieve an efficient melting process. The
slow decrease of the melting time for a PDR larger than 2.5, as was observed in figure 5.2, is not visible in the
results of model 2 and can therefore be addressed to the variation in the diameter of the freeze plug.

It can be concluded that the diameter of the freeze plug has a limited influence on the melting time for values
of the PDR larger than 2.5 and P equal to 70 mm. An explanation for this is the following. If the diameter of
the freeze plug is increased, the length that has to be melted remains constant and consequently the amount
of heat needed to melt the edges. In model 1, the diameter of the freeze plug was varied but P was held con-
stant. Therefore, a decrease in Dpl ug resulted in an increase of the width of the alloy. So, the exponential
behaviour observed in figure 5.2 is a consequence of the change in the width of alloy instead of the change of
Dpl ug .
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5.2.3. Model 3: Variation of∆

In model 3, cooling fins are included in the geometry. P is fixed at 70 mm. Due to symmetry SL equals 70
mm as well. As was discovered in chapter 2, a large heat transfer coefficient across the surface of the tubes
is achieved by using a closely spaced arrangement of cylinders. This is done by choosing ζL=2 and ζT =2.
These parameters are also taken because the ζT x ζL=2 x 2 bank is tested on experimental results and the
model proved to be in good agreement for these pitches (see figure 2.11b). Since SL and ζL are constant, D f i n

follows directly from the definition of ζL :

ζL = SL

D f i n
(5.2)

〈k〉top and 〈k〉 f i n are computed using the Matlab script displayed in Appendix A. The value of 〈k〉top is equal

to 1465
[ W

m2K

]
. The value of 〈k〉 f i n is equal to 14275

[ W
m2K

]
.

∆ is defined as follows:

∆= P −Dpl ug −D f i n (5.3)

P and D f i n are held constant. So, ∆ can be varied by varying Dpl ug . Dpl ug ranges from 14 mm to 35 mm and
consequently ∆ ranges from 0 to 10.5 mm. The stated range for Dpl ug is chosen because it results in PDR
values between 2 and 5. This makes a comparison with model 1 possible.

To summarize, 〈k〉 f i n is constant because ζL , ζT and D f i n are constant. The only two parameters that
vary are Dpl ug and consequently ∆. The effect of Dpl ug is known from model 1 and 2. Thus, by choosing
the parameters in the way described, the effect of ∆ can be found. The goal of finding the effect of ∆ is to
investigate whether the position of the cooling fins with respect to the freeze plugs has effect on the melting
behaviour.
An overview of the values of the parameters is shown in table 5.3 and the results are displayed in figure 5.4.

Table 5.3: Overview of the parameter values in model 3.

Parameter Value Unit

P 70 mm

hpl ug 40 mm

Dpl ug 14-34 mm

PDR 2-5 -

SL 70 mm

h f i n 60 mm

D f i n 35 mm

ζL 2 -

ζT 2 -

∆ 0-10.5 mm

〈k〉 f i n 14275 W
m2K

〈k〉top 1465 W
m2K
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(a) Melting time versus ∆. (b) Melting time versus the PDR.

Figure 5.4: Plot of the melting time as a function of the distance between the melting edge of the freeze plug and the edge of the cooling
fin.

Figure 5.4a and figure 5.4b show that when the cooling fin is placed further away from the freeze plug, the
melting time decreases. A possible explanation for this behaviour can be derived by studying a comparison
of the results of model 1 and 3. This comparison is made by plotting the lines of figure 5.2b and figure 5.4b
in the same figure. In model 3 cooling fins are present, in model 1 cooling fins are absent. ∆ is the distance
between the edge of a cooling fin and the edge of a freeze plug. However, model 1 has no cooling fins and
therefore ∆ is not defined. By combining the definitions of ∆ and PDR, the following relation between these
two parameters is obtained:

∆= P − P

PDR
−D f i n = P (1− 1

PDR
)−D f i n (5.4)

Since P and D f i n are constant, a variation of PDR also implies a variation of ∆. The PDR is defined in model
1 and therefore, a comparison can be made by plotting the melting time versus PDR.

Figure 5.5: Comparison of the results of model 1 and model 3.

In figure 5.5 the following is observed:

1. The blue line and the red line show the same qualitative behaviour.
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2. The blue line has a vertical offset with respect to the red line.

This behaviour could be caused by the following variations:

1. The variation of Dpl ug which is equivalent to a variation of the PDR.

2. The variation of the position of the cooling fins with respect to the freeze plug which is represented by
∆.

3. The addition of cooling fins.

In model 1 (red line), it was concluded that the decrease in melting time for a PDR increasing from 2 to 5
is caused by a decrease of Dpl ug . It is likely that in model 3 (blue line) the decrease in melting time is also
caused by the decrease of Dpl ug . This explains the similar qualitative behaviour.

Furthermore, it can be concluded that the vertical offset is caused by the addition of cooling fins. The
cooling fins result in a better heat transfer from the salt to the alloy. Therefore, more heat is transferred to the
freeze plug module and consequently the freeze plug melts faster.

So, the effect of a variation of ∆ is not visible for the tested range of PDR values. It can be concluded that
the position of the cooling fins with respect to the freeze plugs for the tested range of ∆ has no influence on
the melting time. However, when ∆ is increased beyond the upper limit of 10 mm tested in this model, it
can be expected the vertical offset observed in figure 5.5 disappears since heat flowing into the cooling fins at
large distances from the edges of the freeze plug will not reach the edges of the freeze plug and therefore, this
heat does not contribute to the melting of the freeze plug.

5.2.4. Model 4: Variation of h f i n

In this model the influence of h f i n is tested. P is fixed at 70 mm, SL is fixed at 70 mm as, ζL=2 and ζT =2. D f i n

is fixed at 35 mm and Dpl ug is fixed at 20 mm. For the model for forced convection across tubes in a tube
bank to be valid, h f i n À D f i n must hold. Therefore, h f i n ranges from 35 mm to 100 mm. Since the values of
ζL , ζT and D f i n are similar to the values taken in model 3, the heat transfer coefficient has not changed. An
overview of the parameter values is shown in table 5.4 and the results are displayed in figure 5.6.

Table 5.4: Overview of the parameter values in model 4.

Parameter Value Unit

P 70 mm

hpl ug 40 mm

Dpl ug 20 mm

PDR 3.5 -

SL 70 mm

h f i n 35-100 mm

D f i n 35 mm

ζL 2 -

ζT 2 -

〈k〉 f i n 14275 W
m2K

〈k〉top 1465 W
m2K
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Figure 5.6: Plot of the melting time as a function of the height of the cooling fins.

It can be seen that the variation of h f i n has no effect on the melting time. It was expected that for h f i n larger
than a certain value the effect on the melting time would vanish because heat flowing into the cooling fin near
the tip of a large cooling fin will not reach the edge of the freeze plug and therefore, does not contribute to the
melting of it. This expectation is not confirmed by the results. However, there is a possibility that when h f i n

is taken smaller than 35 mm, a change in tmel t becomes visible. In model 1, it is derived that for the specified
parameter inputs but with h f i n=0, the melting time is approximately 200 seconds. It can be expected that for
values of h f i n lower than 35 mm, tmel t approaches 200 seconds.

5.2.5. Model 5: Variation of D f i n

In model 5, the effect of the width of the cooling fin on the melting time is investigated. P and SL are fixed at
70 mm. ∆ is fixed at 5 mm. Since the model for the cooling fins is only valid for 1.05 ≤ ζL ≤ 3, 1.05 ≤ ζT ≤ 3.
D f i n is computed using the following relation:

SL

3
≤ D f i n ≤ SL

1.3
(5.5)

So, D f i n is varied from 23.33 mm to 53.5 mm 1. Dpl ug is determined by using the following relation:

Dpl ug = P −D f i n −2∆ (5.6)

Consequently, Dpl ug is varied from 14 mm to 35 mm.

〈k〉 f i n is dependent on ζL , ζT and D f i n . Since these parameters are varying in this model, 〈k〉 f i n varies as
well. An overview of the parameter values is shown in table 5.5 and the results are displayed in figure 5.7.

1The values for D f i n that result in the ζ≤ 1.3 are omitted because these are not realistic when the assumption of a uniform temperature
of the applied flow is made.
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Table 5.5: Overview of the parameter values in model 5.

Parameter Value Unit

P 70 mm

hpl ug 40 mm

Dpl ug 6.5-35 mm

PDR 2-10 -

SL 70 mm

h f i n 60 mm

D f i n 23.33-53.5 mm

∆ 5 mm

ζL 1.3-3 -

ζT 1.3-3 -

〈k〉 f i n 13324-14450 W
m2K

〈k〉top 1465 W
m2K

(a) Melting time versus D f i n . (b) Melting time versus the PDR.

Figure 5.7: Plot of the melting time as a function of the width of the cooling fins.

It can be derived that for an increasing width of the cooling fins, the melting time increases. D f i n and Dpl ug

are related according to equation 5.6. PDR and Dpl ug are related in the following way:

PDR = P

Dpl ug
(5.7)

By combining equation 5.6 and equation 5.7, the following relation is obtained:

P

PDR
= P −D f i n −2∆ (5.8)

PDR = P

P −D f i n −2∆
(5.9)

Since P and ∆ are constant, this equation can be used to transform figure 5.7a into figure 5.7b. Note that for
increasing D f i n , PDR increases as well. By combining figure 5.7b and figure 5.2b, a comparison of model 1
and model 5 can be made. The resulting figure looks as follows.
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Figure 5.8: Plot of the melting time as a function of the PDR.

The width of the cooling fins seems to have a significant influence on the melting time. An explanation can
be found by analysing the temperature distribution within the cooling fins and the freeze plug over time. This
temperature distribution is displayed for both a relatively small cooling fin and a relatively large cooling fin in
figure 5.9 and 5.10. As was stated in chapter 4, the initial temperature of the freeze plugs and the Hastelloy N
including the cooling fins is taken at 773K. The influence of the width of the cooling fins on the melting time
can be explained as follows.

1. At t=0, the cooling of the freeze plug module is terminated. The freeze plug, the Hastelloy N around the
freeze plugs and the cooling fins have a temperature of 773K.

2. Due to termination of the cooling, heat is transferred from the molten salt to the cooling fins.

3. The temperature of the cooling fins increases and approaches the temperature of the molten salt.

4. The small cooling fin heats up faster than the large cooling fin. The amount of heat flowing into the
cooling fins is close to equal. However, the smaller cooling fin has smaller surface that is heated com-
pared to the large fin and therefore, less heat is required to increase the temperature of the fin.

5. The total amount of heat that is conducted from the cooling fin to the alloy around the freeze plug is
dependent on the length of the interface between the cooling fin and the alloy around the freeze plug.
The length of this interface is equal to D f i n . Furthermore, the total amount of heat that is conducted is
dependent on the temperature difference across this interface.

6. For a large cooling fin, the stated interface is larger compared to a small cooling fin.

7. The small cooling fin heats up faster than the large cooling fin. For equal times, this results in a larger
temperature difference across the stated interface compared to the large cooling fin.

8. Based on the results it can be concluded that the increased temperature difference is dominant in de-
creasing the melting time in contrast to the increased interface for a large cooling fin.

9. In conclusion, a small cooling fin heats up faster, this results in a larger temperature difference across
the interface, a larger total amount of heat is conducted to the edges of the freeze plug and consequently
the freeze plug melts faster.
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D f i n =23.5 mm, t=12.5 D f i n =23.5 mm, t=25 D f i n =23.5 mm, t=37.5

D f i n =23.5 mm, t=50 D f i n =23.5 mm, t=62.5 D f i n =23.5 mm, t=75

Figure 5.9: Distribution of the temperature in a specific geometry of model 5 for various times, D f i n =23.5 mm and the temperature is
measured in Kelvin.

D f i n =43 mm, t=12.5 D f i n =43 mm, t=25 D f i n =43 mm, t=37.5

D f i n =43 mm, t=50 D f i n =43 mm, t=62.5 D f i n =43 mm, t=75

Figure 5.10: Distribution of the temperature in a specific geometry of model 5 for various times, D f i n =43 mm and the temperature is
measured in Kelvin.

It can thus be concluded that the width of the cooling fin significantly affects the melting time. For the mea-
sured conditions the smallest value for D f i n proved to be the most efficient. However, in reality it may be
impossible to maintain the temperature of the cooling fin at 773K. To obtain a more realistic view, research
has to be done on a realistic initial value of the temperature of the cooling fin and the effect of the width of
the fin for these values of the initial temperature.

5.3. Results of the 3D models
Below the results of the 3D models are discussed.

5.3.1. Model 6: Variation of PDR by changing P for an in-line arrangement
In model 6, the effect of the spacing of the cooling fins with respect to the freeze plugs on the melting time
is investigated. P and S are fixed at 70 mm Dpl ug and D f i n are held constant at 30 mm. hpl ug and h f i n are
held constant respectively at 40 mm and 100 mm. ζ ranges from 1.4 to 3. Since P=S due to symmetry and
D f i n=Dpl ug , PDR ranges from 1.4 to 3 as well. The results are displayed in figure 5.11. The behaviour of
〈k〉 f i n is also plotted versus the PDR. This figure is displayed in figure 5.12. An overview of the parameter
values is displayed in table 5.6.
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Table 5.6: Overview of the parameter values in model 6.

Parameter Value Unit

P 42-90 mm

hpl ug 40 mm

Dpl ug 30 mm

PDR 1.4-3 -

S 42-90 mm

h f i n 100 mm

D f i n 30 mm

ζ 1.4-3 -

〈k〉 f i n 12356-20597 W
m2K

〈k〉top 1465 W
m2K

Figure 5.11: Plot of the PDR versus the melting time for model 6. Figure 5.12: Behaviour of 〈k〉 f i n for PDR in model 6.

The blue line represents the geometry without cooling fins. The melting time as a function of the PDR be-
haves similarly as was observed in 2D in figure 5.3b. A possible explanation for this behaviour is that for small
values of the PDR, the amount of Hastelloy N between adjacent freeze plug will be limited. This results in a
reduction of the amount of heat that can flow into the alloy and therefore, the plug melts slower at the edges.
However, when the amount of metal between the plugs reaches a certain width, the influence levels off. By
using cooling fins, a significant reduction in the melting time is observed for small values of the PDR. By
using cooling fins, an increase of the surface where heat transfer by convection takes place is achieved and
consequently more heat is transferred to the freeze plug system. This results in a decrease of the melting time
compared to a freeze plug system without cooling fins.

In figure 5.11 it can be observed that for decreasing PDR, the melting time decreases. In figure 5.12 it can
be observed that for low values of the PDR, the heat transfer coefficient is larger. Therefore, for low values of
the PDR more heat is transferred to the cooling fins and consequently tmel t decreases.

5.3.2. Model 7: Variation of ζ by changing S for a staggered arrangement
In model 7, the effect of the spacing of the cooling fins with respect to the freeze plugs on the melting time
is investigated for a staggered arrangement. Dpl ug and D f i n are held constant at 30 mm. hpl ug and h f i n are
held constant respectively at 40 mm and 100 mm. ζ ranges from 2 to 3. The reason for letting ζ start at 2 is
because for ζ smaller than 2, the freeze plug and the cooling fins overlap. The results are displayed in figure
5.13. The behaviour of 〈k〉 f i n is also plotted versus ζ. This figure is displayed in figure 5.14. An overview of
the parameter values is displayed in table 5.7.
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Table 5.7: Overview of the parameter values in model 7.

Parameter Value Unit

ζ 2-3 -

hpl ug 40 mm

Dpl ug 30 mm

S 60-90 mm

h f i n 100 mm

D f i n 30 mm

〈k〉 f i n 12554-16325 W
m2K

〈k〉top 1465 W
m2K

Figure 5.13: Plot of the ζ versus the melting time for model 7. Figure 5.14: Behaviour of 〈k〉 f i n for ζ in model 7.

In figure 5.13 it can be seen that the results are almost similar to figure 5.11 for PDR larger than 2. This can
explained by comparing figure 5.12 and figure 5.14, it can be derived that the average heat transfer coefficient
is slightly bigger for the staggered arrangement in comparison to the in-line arrangement. This was already
predicted by the model in chapter 2 for relative widely spaced tube arrangements. Because the amount of
heat that is transferred to the cooling fins is almost similar for both arrangements, it is expected that the
melting times for the freeze plugs in both arrangements are similar as well.

5.3.3. Model 8: Variation of ζ by changing D f i n for an in-line arrangement

In model 8, the effect of the diameter of the cooling fins on the melting time is investigated for an in-line
arrangement. In model 5 it was observed that the diameter of the cooling fins has a significant effect on the
melting time. The effect was caused by the initial temperature of the cooling fins. The initial temperature of
the plug system including the cooling fins was equal to 773K in all previous tested models. In reality, it may
be impossible to maintain the temperature of the cooling fins at this temperature. The surface of the cooling
fins is in contact with the molten salt of 973K. It can be expected that the initial temperature of the cooling
fins has a value somewhere between 773K and 973K. Therefore, model 8 is performed two times. One time for
T0=773K and one time for T0=973K. S and P are both equal to 70 mm, Dpl ug is equal to 30 mm, D f i n ranges
from 23.33 mm to 50 mm. The melting time for the geometry without cooling fins is taken from figure 5.11
and is plotted for comparison. The results are displayed in figure 5.15 and 5.16. An overview of the parameter
values is displayed in table 5.8.
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Table 5.8: Overview of the parameter values in model 8.

Parameter Value Unit

P 70 mm

hpl ug 40 mm

Dpl ug 30 mm

PDR 1.4-3 -

S 70 mm

h f i n 100 mm

D f i n 23.33-50 mm

ζ 1.4-3 -

〈k〉 f i n 14047-16188 W
m2K

〈k〉top 1465 W
m2K

Figure 5.15: Plot of D f i n versus the melting time for model 8. Figure 5.16: Behaviour of 〈k〉 f i n for D f i n in model 8.

In figure 5.15, it can be derived that an increase in D f i n results in a decrease of tmel t for both values of T0.
In 2D the effect was adversely. This can be explained by the fact that heating of a 3D cylindrical cooling fin is
more efficient than heating the rectangular shape in 2D. In 3D the fin is heated radially inwards. The surface
of a rectangular in 2D where convective heat transfer occurs is relatively small compared to the area that is
heated. A cylinder in 3D has a larger surface compared to the volume of the cylinder. Therefore, relatively
more heat is transferred to the cylinder in contrast to a 2D rectangular and consequently the temperature of
a cylinder increases faster.

Furthermore, it can be observed that the difference between the red line and blue line in figure 5.15 in-
creases for increasing values of D f i n . An explanation for this is the following.

1. Consider the cooling fins with T0=773K. At t=0, heat penetrates into the cooling fins and consequently
the temperature of the cooling fins is increased.

2. A larger D f i n means a larger volume of alloy that has to be heated and consequently a larger amount of
heat is required.

3. To transfer a larger amount of heat from the molten salt to the cooling fins, a larger amount of time
is needed. So, the time it takes to increase the cooling fins from 773K to 973K increases for increasing
D f i n .

4. For this reason, the heat conducted to the freeze plug by cooling fins with T0=973K is larger for a longer
amount of time compared to the the heat conducted to the freeze plug by cooling fins with T0=773K.
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5. It can be expected that the difference between the red line and blue line in figure 5.15 increases for
increasing values of D f i n .



6
Conclusions & Recommendations

6.1. Conclusions
The goal of this thesis is to discover how cooling fins can be integrated in the design of the freeze plug in
order to achieve a decrease in the time it takes to melt the freeze plug. First of all, research is done on the
effects of the arrangement and the geometrical parameters of tube banks on the heat transfer in tube banks.
It was found that the heat transfer depends on the average heat transfer coefficient, the total surface area of
the tube bank and the average temperature gradient. For the conditions obliged by the reactor, the following
conclusions can be drawn.

• The heat transfer coefficient of a cylinder in a tube bank is positively influenced by a decreasing longi-
tudinal pitch for both a staggered arrangement and a in-line arrangement.

• Increase of the Reynolds number leads to a significant increase in the average heat transfer coefficient
of a tube bank and is the dominant parameter for enhancing the heat transfer.

• Increasing the transversal pitch is beneficial for staggered arrangements. However, there should be
noted that decreasing of the transverse pitch leads to an increase in the Reynolds number when a con-
stant applied flow is assumed. Since the Reynolds number is the dominant parameter it is likely that
this effect will dominate the influence of the transversal pitch.

• Particularly for closely spaced tube banks, staggered arrangements perform better than in-line arrange-
ments.

The influence of the diameter of the freeze plug and the width of the Hastelloy N on the melting time for
a geometry without cooling fins were examined. It was found that the width of the Hastelloy N between
the freeze plugs has a major influence on the melting time. For a width smaller than 40 mm the melting
time increases exponentially. For a width larger than 40 mm, the melting time remains close to constant.
Therefore, to obtain an efficient melting process the width of the Hastelloy N must be taken larger than 40
mm. The diameter of the freeze plug only had a minor influence on the melting time.

When cooling fins were added to the geometry, it was shown that the melting time could be decreased sig-
nificantly. The exponential increase of the melting time for values of the width of the Hastelloy N between the
freeze plugs smaller than 40 mm was not observed anymore. Instead, a linear decrease in melting time was
observed for decreasing values of this width. It can be concluded that using cooling fins for closely packed ar-
rangements of freeze plugs is highly useful. For the closest packed arrangements that were tested, a decrease
in melting time of 25% could be achieved by using cooling fins.

What concerns the height of the cooling fins, no variation in melting time was observed for various values
of the height. However, the height must be chosen sufficiently large in order to justify the use of the theory on
tube banks.

At last, it was shown that the melting time of the freeze plugs depends on the initial temperature of the
cooling fins and the diameter of the cooling fins. In reality the value of the initial value of the cooling fins
is somewhere between the temperature of the freeze plug module and the temperature of the molten salt.
These temperatures are considered to be respectively the minimum and the maximum value of the initial
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temperature in reality. For 3D models, it was shown that the melting time decreases for increasing diameter
of the cooling fins. This effect was strengthened when the initial temperature of the cooling fins was increased
from the minimum value to the maximum value. It can be concluded that the influence of the diameter of
the cooling fins on the melting time is strongly dependent on the initial temperature of the cooling fins.

On the whole, in 3D, the most optimal configuration of a tube bank in combination with an arrangement
of freeze plugs, consists of a closely spaced arrangement of cylinders with a large diameter.

6.2. Recommendations
In this thesis assumptions had to be made. To gain a better understanding of the agreement of the results
with reality, these assumptions should be tested. Besides, there is still opportunity for further optimisation of
design including coolings fins. Therefore, the following recommendations are made.

• Finding the minimum hpl ug to prevent the plug from collapsing.
The melting time is strongly dependent on the height of the plug. The smaller the height of the freeze
plug, the smaller the melting time. Therefore, it is valuable for the melting time to minimize this prop-
erty as much as possible.

• Adding the drainage time to the tested geometries.
The speed of the drainage of the reactor core is a combination of the speed of the melting process
and the drainage process. The drainage time for the tested configurations has not been taken into
account. For an efficient draining process, the freeze plugs must be placed as close to each other as
possible. However, this conflicts with the requirements for an efficient melting process. Therefore,
further research has to be done on the influence of cooling fins on the drainage time.

• Finding the properties of the solid salt.
A substitute salt has been used for the calculations and computations. However, it is unknown whether
this is a valid substitution. The actual properties of the solid salt have to be determined. It will either
prove that LiCl is a valid substitution or it makes further research possible with a higher accuracy.

• Using an additional layer of a material with a higher thermal conductivity.
In a previous research [14] an additional layer of material was used to fill the intermediate space be-
tween the freeze plugs. This material had a higher thermal conductivity than Hastelloy N. This design
may prove to be even more valuable for a design with cooling fins since it reduces it enhances the heat
transfer from the cooling fin into the freeze plug module.

• Research on a realistic initial temperature of the cooling fins.
This research showed that the initial temperature of the cooling fins have a significant result on the
melting time, particularly for cooling fins with a large radius. A better understanding of the temperature
the cooling fins can be maintained on results in more accurate results.

• Research on the development of the temperature gradient as a function of position and time for various
tube banks.
When a fluid flows through a tube bank, heat is transferred and consequently the temperature de-
creases. Therefore, at downstream cylinder rows the temperature gradient will be smaller. By taking an
average of the temperature gradient in the tube bank, more accurate results can be obtained. The tem-
perature also variates over time due to the heating of the core in case of a black-out. This compensates
to some extent for the temperature decrease in the tube bank. However, the ratio between these two is
unknown.

• Further optimisation of tube bank parameters.
In this thesis not all possible 3D configurations and only cylindrical cooling fins are tested. By changing
the shape of the cooling fins an even better heat transfer may be obtained. By testing other combina-
tions of a freeze plug grid and a cooling fin grid, faster combinations may be discovered.
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A
Matlab Scripts

A.1. Calculating tmel t
The following script is used to calculate tmel t using tables generated by COMSOL. The script shown is used
for model 3. However, similar scripts were used for the remaining models.

1 %% Berekening t_melt model 3
2 clear a l l ;
3 close a l l ;
4 cl c ;
5

6 %% Data+Variabelen
7 COMSOL = readtable ( ’P=70 ,PDR= ( 2 , 0 . 1 , 5 ) , Rfin =17.5 , zetaL =2 , zetaT =2 , tstep =0.25 ,Model3 . csv ’ ) ;
8 Data=COMSOL( : , 2 : end) ;
9 Data= table2array ( Data ) ;

10 %COMSOL ran for varying r_FP
11 P=70; %Distance between two adjacent freeze plugs
12 %r_FP = 7 : 0 . 5 : 1 7 . 5 ; %Radius Freeze Plug
13 %PDR=P . / ( 2 . * r_FP ) ; %PDR r a t i o
14

15 %COMSOL ran for varying PDR
16 PDR= 2 : 0 . 1 : 5 ; %PDR r a t i o
17 r_FP =(P . /PDR) . * 0 . 5 ;
18 t s = 0 . 2 5 ; %Time step used in your data
19 Dfin =35;
20 delta = 0 . 5 . * ( P−2.*r_FP−Dfin ) ;
21

22 %% Berekening tmelt voor verschil lende R_plug
23 [ sel , z ] = min( Data~=0 , [ ] , 1 ) ;
24 z = z * t s ; %time needed to f u l l y melt the freeze plug in seconds
25 tmz = zeros ( s i z e ( Data , 2 ) / length ( r_FP ) , length ( r_FP ) ) ;
26 for i = 1 : s i z e ( Data , 2 ) / length ( r_FP )
27 tmz( i , 1 : length ( r_FP ) ) =z (1+ length ( r_FP ) * ( i −1) : length ( r_FP ) * i ) ;
28 end
29

30 %% Export CSV Table
31 Final_Solution =[ r_FP ’ delta ’ PDR’ tmz ’ ] ;
32 headers = { ’ Radius_plug ’ , ’ delta ’ ’ P_over_D_Ratio ’ , ’ Melting_time ’ , } ;
33 table=array2table ( Final_Solution , ’ VariableNames ’ , headers ) ;
34 writetable ( table , ’ Model3_tabel . csv ’ )
35

36 %% P l o t t i ng P vs Tmelt
37 width = 6 ; %Width in inches
38 height = 4 ; %Height in inches
39 alw = 0 . 7 5 ; %Axes Line Width

51
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40 f s z = 10; %Fontsize
41 lw = 0 . 8 ; %Line Width
42 msz = 12; %Marker Size
43

44 pos =get ( gcf , ’ Position ’ ) ;
45 set ( gcf , ’ Position ’ , [ pos ( 1 ) pos ( 2 ) width *100 , height *100]) ; %<−Se ts i ze
46 set ( gca , ’ FontSize ’ , fsz , ’ LineWidth ’ , alw ) ;%<?−Setproperties
47 plot ( delta , tmz , ’ .− ’ , ’ LineWidth ’ , lw , ’ MarkerSize ’ ,msz) ;%<−Specifyplotproperites
48 axis ( [ 0 10.5 170 205]) ;
49 xlabel ( ’ Distance between edge of the plug and edge of the cooling f i n [mm] ’ ) ;
50 ylabel ( ’ Melting time [ s ] ’ ) ;
51 t i t l e ( ’ Melting time for various values of delta ’ ) ;
52 grid on
53

54 set ( gcf , ’ InvertHardcopy ’ , ’on ’ ) ;
55 set ( gcf , ’ PaperUnits ’ , ’ inches ’ ) ;
56 papersize =get ( gcf , ’ PaperSize ’ ) ;
57 l e f t = ( papersize ( 1 )−width ) / 2 ;
58 bottom = ( papersize ( 2 )−height ) / 2 ;
59 myfiguresize = [ l e f t , bottom , width , height ] ;
60 set ( gcf , ’ PaperPosition ’ , myfiguresize ) ;
61

62 %Save the f i l e as PNG
63 print ( ’ Tmelt_vs_delta_Model3 ’ , ’−dpng ’ , ’−r300 ’ ) ;
64

65 f i g u r e
66 %% P l o t t i ng PDR vs Tmelt
67

68 pos =get ( gcf , ’ Position ’ ) ;
69 set ( gcf , ’ Position ’ , [ pos ( 1 ) pos ( 2 ) width *100 , height *100]) ; %<−Se ts i ze
70 set ( gca , ’ FontSize ’ , fsz , ’ LineWidth ’ , alw ) ;%<?−Setproperties
71 plot (PDR, tmz , ’ .− ’ , ’ LineWidth ’ , lw , ’ MarkerSize ’ ,msz) ;%<−Specifyplotproperites
72 axis ( [ 2 5 170 205]) ;
73 xlabel ( ’PDR [−] ’ ) ;
74 ylabel ( ’ Melting time [ s ] ’ ) ;
75 t i t l e ( ’ Melting time for various values of delta ’ ) ;
76 grid on
77

78 set ( gcf , ’ InvertHardcopy ’ , ’on ’ ) ;
79 set ( gcf , ’ PaperUnits ’ , ’ inches ’ ) ;
80 papersize =get ( gcf , ’ PaperSize ’ ) ;
81 l e f t = ( papersize ( 1 )−width ) / 2 ;
82 bottom = ( papersize ( 2 )−height ) / 2 ;
83 myfiguresize = [ l e f t , bottom , width , height ] ;
84 set ( gcf , ’ PaperPosition ’ , myfiguresize ) ;
85

86 %Save the f i l e as PNG
87 print ( ’ Tmelt_vs_PDR_Model3 ’ , ’−dpng ’ , ’−r300 ’ ) ;

A.2. Calculating 〈k〉top

1 %%computing average Nusselt number for forced convection across a f l a t plate .
2 clear a l l
3 close a l l
4 cl c
5

6 T=973;
7 Rpipe =0.06;
8 rho=(4.094−8.82*10^−4*(T−1008) ) *10^3;
9 v =2;
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10 nu=5.54*10^−8*exp(3689/T) ;
11 L=2*Rpipe ;
12 mu=rho*5.54*10^−8*exp(3689/T) ;
13 Cp=(−1.111+0.00278*T) *10^3;
14 lambda=0.928+8.397*10^−5*T ;
15

16 Re=( rho * v *L ) /mu;
17 Pr =(Cp*mu) /lambda ;
18

19 Nu=0.221*((Re) ^(1/2) ) * ( ( Pr ) ^(1/3) ) ;
20 h=Nu* ( lambda/L ) ;

A.3. Calculating 〈k〉 f i n

1

2 %% Computing average Nusselt number for forced convection across a cooling f i n for a varying
SL due to a varying Dfin .

3 cl c
4 close a l l
5 clear a l l
6

7 T=973;
8 rho=(4.094−8.82*10^−4*(T−1008) ) *10^3;
9 vapplied =2;

10 nu=5.54*10^−8*exp(3689/T) ;
11 mu=rho*5.54*10^−8*exp(3689/T) ;
12 Cp=(−1.111+0.00278*T) *10^3;
13 lambda=0.928+8.397*10^−5*T ;
14 delta =0.005;
15

16 SL =0.07; %Longitudinal distance between
two consecutive tubes . %and the
simulation w i l l take too long .

17 P=0.07;
18 Dfin =0.0235:0.0005:0 .0535;
19 ZL=SL . / Dfin ;
20 ZT=2;
21

22 Dplug=P−Dfin −(2.* delta ) ;
23 PDR=SL . / Dplug ;
24

25 C=(0.25+exp ( −0.55.*ZL) ) . * ZT. ^ ( 0 . 2 8 5 ) . * ZL . ^ ( 0 . 2 1 2 ) ; %correction c o e f f i c i e n t in−l i n e array
26

27 v=(ZT/(ZT−1) ) * vapplied ;
28

29 Re=( rho . * v . * Dfin ) . /mu;
30 Pr =(Cp. *mu) . / lambda ;
31 Nu=C . * ( ( Re) . ^ ( 1 / 2 ) ) . * ( ( Pr ) . ^ ( 1 / 3 ) ) ;
32

33 h=Nu. * ( lambda . / Dfin ) ;
34

35 %% Constructing a table
36 f i n a l v a l u e s =[PDR’ ZL ’ Nu’ Dfin ’ h ’ ] ;
37 headers = { ’ P_over_D_Ratio ’ , ’ ZetaL ’ , ’ Average_Nusselt_Number ’ , ’ Diameter_fin ’ , ’

Heat_Transfer_Coefficient ’ } ;
38 tablevalues=array2table ( f inalvalues , ’ VariableNames ’ , headers ) ;
39 writetable ( tablevalues , ’ Dfin = ( 2 3 . 5 , 0 . 5 , 5 3 . 5 ) _Nusselt_values , Model5 . csv ’ )
40

41 c e l l a r r a y 1 ={ ’ h_conv ’ } ;
42 for i =1: length (h)
43 c e l l a r r a y 1 {1 ,1+ i }=h( i ) ;
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44 end
45 c e l l 2 c s v ( ’ {COMSOL} _Dfin = ( 2 3 . 5 , 0 . 5 , 5 3 . 5 ) _h_conv , Model5 . csv ’ , cel larray1 , ’ , ’ ,1997 , ’ . ’ )
46

47 c e l l a r r a y 2 ={ ’ D_fin ’ } ;
48 for i =1: length ( Dfin )
49 c e l l a r r a y 2 {1 ,1+ i }= Dfin ( i ) ;
50 end
51 c e l l 2 c s v ( ’ {COMSOL} _Dfin = ( 2 3 . 5 , 0 . 5 , 5 3 . 5 ) _D_fin_values , Model5 . csv ’ , cel larray2 , ’ , ’ ,1997 , ’ . ’ )

A.4. Exporting variables to COMSOL
The following script is used to configure the results of a variable to make them importable in COMSOL.

1 function c e l l 2 c s v ( fileName , cel lArray , separator , excelYear , decimal )
2 % Writes c e l l array content into a * . csv f i l e .
3 %
4 % CELL2CSV( fileName , cel lArray , separator , excelYear , decimal )
5 %
6 % fileName = Name of the f i l e to save . [ i . e . ’ t e x t . csv ’ ]
7 % c e l l A r r a y = Name of the Cel l Array where the data i s in
8 % separator = sign separating the values ( default = ’ ; ’ )
9 % excelYear = depending on the Excel version , the c e l l s are put into

10 % quotes before they are written to the f i l e . The separator
11 % i s set to semicolon ( ; )
12 % decimal = defines the decimal separator ( default = ’ . ’ )
13

14

15 %% Checking for optional var iables
16 i f ~ e x i s t ( ’ separator ’ , ’ var ’ )
17 separator = ’ , ’ ;
18 end
19

20 i f ~ e x i s t ( ’ excelYear ’ , ’ var ’ )
21 excelYear = 1997;
22 end
23

24 i f ~ e x i s t ( ’ decimal ’ , ’ var ’ )
25 decimal = ’ . ’ ;
26 end
27

28 %% Sett ing separator for newer excelYears
29 i f excelYear > 2000
30 separator = ’ ; ’ ;
31 end
32

33 %% Write f i l e
34 datei = fopen ( fileName , ’w’ ) ;
35

36 for z =1: s i z e ( cel lArray , 1)
37 for s =1: s i z e ( cel lArray , 2)
38

39 var = eval ( [ ’ c e l l A r r a y { z , s } ’ ] ) ;
40 % I f zero , then empty c e l l
41 i f s i z e ( var , 1) == 0
42 var = ’ ’ ;
43 end
44 % I f numeric −> String
45 i f isnumeric ( var )
46 var = num2str ( var ) ;
47 i f decimal ~= ’ . ’
48 var = strrep ( var , ’ . ’ , decimal ) ;
49 end



A.4. Exporting variables to COMSOL 55

50 end
51 % I f l o g i c a l −> ’ true ’ or ’ f a l s e ’
52 i f i s l o g i c a l ( var )
53 i f var == 1
54 var = ’TRUE’ ;
55 else
56 var = ’FALSE ’ ;
57 end
58 end
59 % I f newer version of Excel −> Quotes 4 Str ings
60 i f excelYear > 2000
61 var = [ ’ " ’ var ’ " ’ ] ;
62 end
63

64 % OUTPUT value
65 f p r i n t f ( datei , ’%s ’ , var ) ;
66

67 % OUTPUT separator
68 i f s ~= s i z e ( cel lArray , 2)
69 f p r i n t f ( datei , separator ) ;
70 end
71 end
72 i f z ~= s i z e ( cel lArray , 1) % prevent a empty l i n e at EOF
73 % OUTPUT newline
74 f p r i n t f ( datei , ’\n ’ ) ;
75 end
76 end
77 % Closing f i l e
78 f c l o s e ( datei ) ;
79 end





B
Tables

B.1. Results model 1

Table B.1: Values of the parameters in model 1.

R_plug [mm] PDR tmelt [s]
7 5 183
9 3.9 185
11 3.2 189
13 2.7 193
15 2.3 194
17 2.1 195
19 1.8 199
21 1.7 204
23 1.5 210
25 1.4 220
27 1.3 239
29 1.2 275
31 1.1 349
33 1.1 619

B.2. Results model 2

Table B.2: Values of the parameters in model 2.

P [mm] PDR tmelt [s]
36 1.2 422
38 1.3 342
40 1.3 290
42 1.4 272
44 1.5 249
46 1.5 239
48 1.6 228
50 1.7 219
52 1.7 213
54 1.8 211
56 1.9 205
58 1.9 202
60 2 200

57
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P [mm] PDR tmelt [s]
62 2.1 197
64 2.1 197
66 2.2 194
68 2.3 193
70 2.3 191
72 2.4 190
74 2.5 191
76 2.5 188
78 2.6 190
80 2.7 188
82 2.7 187
84 2.8 186
86 2.9 188
88 2.9 189
90 3 185
92 3.1 186
94 3.1 186
96 3.2 185
98 3.3 184
100 3.3 185
102 3.4 189
104 3.5 185
106 3.5 185
108 3.6 184
110 3.7 184
112 3.7 185
114 3.8 188
116 3.9 184
118 3.9 184
120 4 188
122 4.1 188
124 4.1 185
126 4.2 184
128 4.3 186
130 4.3 184
132 4.4 184
134 4.5 185
136 4.5 183
138 4.6 184
140 4.7 185
142 4.7 185
144 4.8 187
146 4.9 187
148 4.9 185
150 5 187

B.3. Results model 3

Table B.3: Values of the parameters in model 3.

Rplug [mm] Delta [mm] PDR tmelt [s] delta_t_model1 [s]
17.5 0 2 195 0
16.7 0.8 2.1 192 -1
15.9 1.6 2.2 189 -4
15.2 2.3 2.3 189 -3
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Rplug [mm] Delta [mm] PDR tmelt [s] delta_t_model1 [s]
14.6 2.9 2.4 190 -1
14 3.5 2.5 188 -3
13.5 4 2.6 188 -2
13 4.5 2.7 186 -5
12.5 5 2.8 185 -4
12.1 5.4 2.9 185 -4
11.7 5.8 3 188 -1
11.3 6.2 3.1 182 -6
10.9 6.6 3.2 184 -4
10.6 6.9 3.3 183 -5
10.3 7.2 3.4 184 -4
10 7.5 3.5 182 -6
9.7 7.8 3.6 184 -1
9.5 8 3.7 183 -4
9.2 8.3 3.8 180 -5
9 8.5 3.9 184 -1
8.8 8.8 4 182 -3
8.5 9 4.1 182 -4
8.3 9.2 4.2 183 -3
8.1 9.4 4.3 182 -3
8 9.5 4.4 182 -2
7.8 9.7 4.5 181 -6
7.6 9.9 4.6 182 -2
7.4 10.1 4.7 181 -3
7.3 10.2 4.8 181 -3
7.1 10.4 4.9 180 -3
7 10.5 5 182 -1

B.4. Results model 4

Table B.4: Values of the parameters in model 4.

hfin [mm] tmelt [s]
35 183
36 181
37 183
38 183
39 182
40 184
41 183
42 183
43 184
44 184
45 184
46 182
47 183
48 185
49 182
50 183
51 183
52 183
53 186
54 184
55 188
56 184
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hfin [mm] tmelt [s]
57 184
58 183
59 184
60 182
61 186
62 184
63 184
64 184
65 184
66 185
67 184
68 186
69 189
70 184
71 185
72 186
73 187
74 186
75 186
76 184
77 185
78 183
79 185
80 186
81 185
82 186
83 184
84 186
85 186
86 185
87 185
88 185
89 184
90 185
91 184
92 187
93 184
94 184
95 185
96 183
97 185
98 184
99 184
100 186

B.5. Results model 5

Table B.5: Values of the parameters in model 5.

Dfin [mm] Rplug [mm] PDR tmelt [s] k_conv [W/m^2K] delta_t_model1 [s]
23.5 18.25 1.9 173 14450 -24
24.5 17.75 2 170 14452 -25
25.5 17.25 2 178 14452 -17
26.5 16.75 2.1 176 14448 -18
27.5 16.25 2.2 176 14441 -16
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Dfin [mm] Rplug [mm] PDR tmelt [s] k_conv [W/m^2K] delta_t_model1 [s]
28.5 15.75 2.2 178 14430 -13
29.5 15.25 2.3 181 14416 -10
30.5 14.75 2.4 180 14398 -11
31.5 14.25 2.5 189 14377 -4
32.5 13.75 2.5 183 14352 -7
33.5 13.25 2.6 184 14323 -6
34.5 12.75 2.7 185 14292 -4
35.5 12.25 2.9 187 14258 -1
36.5 11.75 3 187 14221 -4
37.5 11.25 3.1 191 14182 5
38.5 10.75 3.3 192 14140 6
39.5 10.25 3.4 198 14096 11
40.5 9.75 3.6 198 14050 11
41.5 9.25 3.8 197 14003 10
42.5 8.75 4 194 13953 8
43.5 8.25 4.2 198 13903 14
44.5 7.75 4.5 202 13851 18
45.5 7.25 4.8 199 13797 17
46.5 6.75 5.2 200 13743 18
47.5 6.25 5.6 201 13688 20
48.5 5.75 6.1 201 13632 22
49.5 5.25 6.7 204 13575 26
50.5 4.75 7.4 203 13518 26
51.5 4.25 8.2 206 13460 30
52.5 3.75 9.3 205 13401 32
53.5 3.25 10.8 202 13342 26

B.6. Results model 6

Table B.6: Values of the parameters in model 6.

S [mm] zeta tmelt [s] k_conv [W/m^2K] P [mm] PDR tmelt_nofins [s] delta_t_melt [s]
42.5 1.42 160 20597 42.5 1.42 205.5 -45.5
43.5 1.45 157.5 20046 43.5 1.45 201.5 -44
44.5 1.48 158 19554 44.5 1.48 198 -40
45.5 1.52 157 19112 45.5 1.52 195.5 -38.5
46.5 1.55 156.5 18712 46.5 1.55 193 -36.5
47.5 1.58 156 18346 47.5 1.58 190.5 -34.5
48.5 1.62 156.5 18011 48.5 1.62 189 -32.5
49.5 1.65 157.5 17701 49.5 1.65 187 -29.5
50.5 1.68 157 17414 50.5 1.68 185.5 -28.5
51.5 1.72 157.5 17147 51.5 1.72 184.5 -27
52.5 1.75 157.5 16897 52.5 1.75 183 -25.5
53.5 1.78 158 16663 53.5 1.78 182 -24
54.5 1.82 158 16442 54.5 1.82 181 -23
55.5 1.85 157.5 16234 55.5 1.85 180.5 -23
56.5 1.88 158 16037 56.5 1.88 179.5 -21.5
57.5 1.92 158.5 15849 57.5 1.92 179 -20.5
58.5 1.95 159.5 15671 58.5 1.95 178 -18.5
59.5 1.98 159.5 15501 59.5 1.98 177.5 -18
60.5 2.02 159.5 15339 60.5 2.02 177 -17.5
61.5 2.05 159.5 15184 61.5 2.05 176.5 -17
62.5 2.08 160 15035 62.5 2.08 176 -16
63.5 2.12 160 14892 63.5 2.12 175.5 -15.5
64.5 2.15 161 14755 64.5 2.15 175 -14
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S [mm] zeta tmelt [s] k_conv [W/m^2K] P [mm] PDR tmelt_nofins [s] delta_t_melt [s]
65.5 2.18 161 14622 65.5 2.18 175 -14
66.5 2.22 161 14495 66.5 2.22 174.5 -13.5
67.5 2.25 161 14372 67.5 2.25 174 -13
68.5 2.28 161.5 14253 68.5 2.28 174 -12.5
69.5 2.32 163 14138 69.5 2.32 173.5 -10.5
70.5 2.35 162 14027 70.5 2.35 173.5 -11.5
71.5 2.38 163 13919 71.5 2.38 173.5 -10.5
72.5 2.42 162 13815 72.5 2.42 173 -11
73.5 2.45 163.5 13714 73.5 2.45 173 -9.5
74.5 2.48 161.5 13615 74.5 2.48 173 -11.5
75.5 2.52 163 13520 75.5 2.52 172.5 -9.5
76.5 2.55 164 13427 76.5 2.55 172.5 -8.5
77.5 2.58 163 13337 77.5 2.58 172.5 -9.5
78.5 2.62 163.5 13249 78.5 2.62 172 -8.5
79.5 2.65 163.5 13164 79.5 2.65 172 -8.5
80.5 2.68 164 13081 80.5 2.68 172 -8
81.5 2.72 164 13000 81.5 2.72 172 -8
82.5 2.75 164.5 12921 82.5 2.75 171.5 -7
83.5 2.78 164.5 12844 83.5 2.78 171.5 -7
84.5 2.82 165 12769 84.5 2.82 171.5 -6.5
85.5 2.85 165 12696 85.5 2.85 171.5 -6.5
86.5 2.88 165 12625 86.5 2.88 171.5 -6.5
87.5 2.92 165.5 12555 87.5 2.92 171 -5.5
88.5 2.95 165.5 12487 88.5 2.95 171 -5.5
89.5 2.98 166 12421 89.5 2.98 171 -5
90.5 3.02 165.5 12356 90.5 3.02 171 -5.5

B.7. Results model 7

Table B.7: Values of the parameters in model 7.

S [mm] zeta tmelt [s] k_conv [W/m^2K] P [mm] PDR tmelt_nofins [s] delta_tmelt [s]
60 2 160 16325 60 2 176.5 -16.5
61 2.03 161.5 16064 61 2.03 176 -14.5
62 2.07 160 15820 62 2.07 175.5 -15.5
63 2.1 160 15592 63 2.1 175.5 -15.5
64 2.13 160.5 15378 64 2.13 174.5 -14
65 2.17 160.5 15177 65 2.17 174.5 -14
66 2.2 160.5 14989 66 2.2 174 -13.5
67 2.23 161 14811 67 2.23 173.5 -12.5
68 2.27 161 14644 68 2.27 173.5 -12.5
69 2.3 161.5 14486 69 2.3 173 -11.5
70 2.33 161.5 14338 70 2.33 172.5 -11
71 2.37 161.5 14197 71 2.37 172.5 -11
72 2.4 162 14065 72 2.4 172.5 -10.5
73 2.43 162 13939 73 2.43 172.5 -10.5
74 2.47 162.5 13820 74 2.47 172 -9.5
75 2.5 162.5 13707 75 2.5 172 -9.5
76 2.53 162.5 13600 76 2.53 172 -9.5
77 2.57 162.5 13499 77 2.57 171.5 -9
78 2.6 163.5 13403 78 2.6 171 -7.5
79 2.63 163.5 13311 79 2.63 171 -7.5
80 2.67 163.5 13224 80 2.67 170.5 -7
81 2.7 163.5 13142 81 2.7 171 -7.5
82 2.73 164 13063 82 2.73 171.5 -7.5
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S [mm] zeta tmelt [s] k_conv [W/m^2K] P [mm] PDR tmelt_nofins [s] delta_tmelt [s]
83 2.77 164 12988 83 2.77 170.5 -6.5
84 2.8 164 12917 84 2.8 170.5 -6.5
85 2.83 164.5 12849 85 2.83 170.5 -6
86 2.87 164 12784 86 2.87 170.5 -6.5
87 2.9 164.5 12722 87 2.9 170 -5.5
88 2.93 164.5 12664 88 2.93 170.5 -6
89 2.97 164.5 12607 89 2.97 170.5 -6
90 3 165 12554 90 3 170 -5

B.8. Results model 8

Table B.8: Values of the parameters in model 8.

Dfin [mm] zeta k_conv [W/m^2K} tmelt_T0=773 [s] tmelt_T0=973 [s] delta_tmelt [s]
50.0 1.4 16188 159 149 -10
48.3 1.45 15802 158.5 150 -8.5
46.7 1.5 15497 159 151.5 -7.5
45.2 1.55 15251 159.5 152 -7.5
43.8 1.6 15050 160.5 152.5 -8
42.4 1.65 14885 160 153.5 -6.5
41.2 1.7 14748 160 154 -6
40.0 1.75 14633 160 155 -5
38.9 1.8 14537 159.5 155 -4.5
37.8 1.85 14455 160 155.5 -4.5
36.8 1.9 14385 160 156 -4
35.9 1.95 14326 160 157 -3
35.0 2 14275 160.5 157 -3.5
34.1 2.05 14232 160.5 158 -2.5
33.3 2.1 14195 160.5 158.5 -2
32.6 2.15 14163 161 158.5 -2.5
31.8 2.2 14136 161.5 158.5 -3
31.1 2.25 14113 161 159 -2
30.4 2.3 14093 161.5 159.5 -2
29.8 2.35 14077 161.5 160 -1.5
29.2 2.4 14063 162 160 -2
28.6 2.45 14052 162 160.5 -1.5
28.0 2.5 14044 162.5 161.5 -1
27.5 2.55 14037 163 161 -2
26.9 2.6 14032 163 161 -2
26.4 2.65 14029 163 161.5 -1.5
25.9 2.7 14027 162.5 161.5 -1
25.5 2.75 14027 163 161.5 -1.5
25.0 2.8 14028 163 162 -1
24.6 2.85 14031 163 162.5 -0.5
24.1 2.9 14035 163.5 162.5 -1
23.7 2.95 14040 163.5 162.5 -1
23.3 3 14047 163.5 162.5 -1





C
Graphs

C.1. Mesh refinement

270 mesh elements 610 mesh elements

930 mesh elements 1730 mesh elements

Figure C.1: Melting time for geometry with constant P and varying D using a physics controlled meshes. P is taken to be 70 mm.
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270 mesh elements 610 mesh elements

950 mesh elements

Figure C.2: Melting time for geometry with constant P and varying D using a horizontally refined user controlled mesh. P is taken to be
70 mm.

270 mesh elements 610 mesh elements

930 elements 1300 mesh elements

Figure C.3: Melting time for geometry with constant P and varying D using a vertically refined user controlled mesh. P is taken to be 70
mm.
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270 mesh elements 630 mesh elements

930 mesh elements 1300 mesh elements

Figure C.4: Melting time for geometry with constant P and varying D using a vertically refined user controlled mesh where a horizontal
distribution is included. P is taken to be 70 mm.
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