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Nomenclature

Roman characters

A Amplitude [V ]

B Bulk modulus [Pa]

c Wave velocity [m · s−1]

d Depth fluid [m]

E Young’s modulus [Pa]

f frequency [H z]

k Wavenumber [r ad ·m−1]

p Pressure [Pa]

S Surface [m2]

~u Particle displacement vector [m]

~v Particle velocity vector [m · s−1]

v̂ Normal velocity of particle [m · s−1]

V Volume [m3]

Z Impedance [Pa · s ·m−1]

Greek characters

α Angle of incidence [deg ]

αF Attenuation coefficient of fluid [dB ·m−1]

β Angle of reflection [deg ]

γ Angle of refraction [deg ]

∂Ω Boundary [m2]

λ Wavelength [m]

λl 1st Lamé parameter [Pa]

µF Viscosity of fluid [Pa · s]

µl 2nd Lamé parameter [Pa]

ρ Density [kg ·m−3]

σ̄ Stress tensor [Pa]

χ Compressibility [Pa−1]

ω Angular frequency [r ad · s−1]

Φ Dilation [m · s−1]

Ψ Rotation vector [m · s−1]

Ω Domain [m3]
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Subscripts

c Critical angle

F Fluid properties

l Lamé parameter

L Longitudinal wave

S Shear wave

Dimensionless numbers

C F L Courant–Friedrichs–Lewy number

~n Normal vector

R Reflection coefficient

RR Ratio of the radius of the transducer to the rod

ε̄ Strain tensor

T Transmission coefficient



Abstract

An important issue for the assessment of the MSR’s is the selection of the molten salt compositions, where
many aspects should be taken in consideration. One section of the SAMOFAR project investigates the behav-
ior of the molten salts. Due to the radioactivity and corrosiveness, only a small amount of the salt is usable
and therefore traditional techniques cannot be used for the determination of the thermodynamic properties.
Concerning these conditions a valid way to measure this properties is by using ultrasound.

Ultrasonic measuring relies on measuring the fraction of reflected waves, which are affected by the fluid.
Since the temperature of the liquid is above 500◦C it is not possible to use a transducer in contact with the
liquid and a buffer rod has to be used to dissipate the heat. The disadvantage of using a buffer rod is that the
reflected waves are not only affected by the properties of the fluid, but also by the properties of the rod. The
combination of the additional signals and the desired signals are called spurious echoes.

In this research all reflection and transmission coefficient are derived in order to understand the behavior
of the waves at the boundaries. Next, simulations affirm the existence of spurious echoes and assigned to
different types of waves. Head waves are created by mode conversion of the emitted signal at the boundaries
of the rod. Subsequently, longitudinal waves are created by mode conversion of head waves and have large
contribution to the spurious echoes. At last, there is shown that the production of head waves can be reduced
by changing the material properties.
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1

Introduction

The present energy demand is gigantic and still increasing. Traditional energy sources, such as coal, does
affect the global warming and sustainable energy sources are generally not efficient enough. Therefore, nu-
clear energy can be a key player in the current energy problem. Unfortunately, the nuclear energy became
unpopular after the historic nuclear disasters in Three Mile Island (1979) and Chernobyl (1986). Moreover, the
traditional energy sources are still cheaper to use. To compete with these sorts of energy, a constant improve-
ment of nuclear energy is needed in order to support the future role of nuclear power plants and confront the
public debate about nuclear energy. In 2000 several countries joined together to propose, seven new type of
Generation IV nuclear energy systems were proposed. Safety, sustainability, reliability, economic competi-
tiveness and proliferation resistance are the main goals of the Generation IV Nuclear Reactors [1], which are
expected to start entering commercial operation from 2030.[2]

1.1. Molten Salt Fast Reactor

The Molten Salt Fast Reactor (MSFR) is one type of the Molten Salt Reactors that are part of the six Gener-
ation IV reactors. This reactor was actually already invented by the end of the 50s, by Oak Ridge National
Laboratory. Despite all positive research revealing, there was decided to cancel further development in order
to attempt another revival of the Liquid-Metal-cooled Fast Breeder Reactor program, which was compatible
with the Uranium/Plutonium-cycle. This choice was made by the fact that the MSFR was not only a new
reactor, but also a whole new fuel cycle [3]. In the beginning of this century the concept of the Molten Salt
Fast Reactor was rediscovered and proposed to be one of the Generation IV reactors. In essence, a MSFR is a
vessel that contains a hot liquid salt in which a nuclear reaction takes place. The peculiarity and innovation of
this nuclear reactor is the use of this liquid fuel, which serves both as nuclear fuel as a heat transfer medium
resulting in several advantages [1, 3], especially for the reactor safety.

One risk of nuclear reactors is the meltdown of the reactor’s solid core, whereby radioactive materials are
able to breach all containment and escape into the environment, resulting in radioactive contamination and
potentially leading to radiation poisoning of population. For the Molten Salt Fast Reactor the nuclear fuel is
the molten salt itself, which is molten already and therefore a nuclear meltdown is excluded. In addition, the
reactor operates only at atmospheric pressure, so the risk o fan explosion is excluded. The liquid property
of the salt allows a draining system to dump the core into passively cooled critically-safe tanks to respond to
emergencies, which includes freeze-plugs that would melt as soon as electric power is lost or the salt seriously
overheats. This confirms once again that the MSFR is an extremely safe reactor.

Next to all safety advantages, the MSFR has great advantages in the field of efficiency and sustainability. The
reactor can run at higher temperatures than water-cooled reactors for a higher thermodynamic efficiency,
while staying at low vapor pressure. The excellent heat transfer capacity of the molten salts allows a quickly
transfer of energy out of relatively small reactor core. In addition, the continuous fuel recirculation in the
reactor provide also low radioactivity inventory. The produced waste reaches natural levels of radiotoxicity
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2 1. Introduction

after just a couple of centuries, which is low compared to the current nuclear waste which has a radiotoxicity
of hundreds of years.

However, yet the MSFR concept is still in development phase. The investment costs are enourmous and there
is no licensing framework where it can be built on, because all research data of Oak Ridge National Laboratory
is in the meantime outdated. In the Safety Assessment of the Molten Salt Fast Reactor (SAMOFAR) project,
eleven European universities and research institutes cooperate to demonstrate the safety of the MSFR, to
deliver a breakthrough in nuclear safety and optimal waste management.

1.2. Ultrasonic Wave Measuring

An important issue for the assessment of the MSR’s is the selection of the molten salt compositions, where
many aspects should be taken in consideration. One section of the SAMOFAR project investigates of the
behavior of the molten salts. Therefore, it is essential to know the thermodynamic properties these liquid
in order to predict the behavior in all circumstances. The thermal conductivity, heat capacity, density and
viscosity are essential characteristics to understand the behavior of the salt. While facilities for the measure-
ment of heat capacity and thermal conductivity exist, there are not yet accurate techniques for measuring the
density and viscosity of the salts. Traditional techniques cannot be used because of the small amount of salt
usable due to its radioactivity and corrosiveness. Concerning these conditions a valid way to measure this
properties is by using ultrasonic sound waves. Additional advantages of using ultrasound for measuring the
fluid properties is that it is possible to measure the density and viscosity with the same device.[1]

A transducer consisting of a piezoelectric element generates ultrasonic waves which are transmitted through
the fluid. Due to the viscous properties of the fluid the waves are attenuated. This technique relies on mea-
suring the fraction of reflected waves, which are affected by the fluid. Since the salt is melted above 500◦C, the
temperature range for the viscosity measurement is 500◦C and 1000◦C. At this temperature it is not possible
to use a transducer in contact with the liquid and a buffer rod has to be used to dissipate the heat. The dis-
advantage of using a buffer rod technique is that the reflected waves are not only affected by the properties
of the fluid, but also by the properties of the rod. Several physical phenomena create additional signals in the
reflected data and often interfere with the desired signals. The combination of the additional signals and
the desired signals are called trailing- or spurious echoes. Some studies say that tapering or cladding of the
rod lead to a reducing of these spurious echoes [4, 5]. This is desirable because, the spurious echoes reduce
the measurement’s accuracy.

1.2.1. Aim of this Research

In this research will seek for the causes of these spurious echoes. Several studies have shown that the origin
of the spurious echoes could be the cause of interaction of the waves with the boundaries [6, 7]. In order to
verify those causes, ultrasonic waves will be simulated with the simulation software COMSOL Multiphysics.
Hereby, it is important that the simulations represent the physical behavior of the waves accurately and in
order to prevent poorly configured models, there will be looked carefully for the size of the mesh elements.
The above results in the following specific research questions:

• What are the useful physical explanations for the wave behavior in the rod and at the boundaries?

• What are essential numerical considerations for accurate simulations?

• What are the causes of spurious echoes on the basis of the simulation outcomes?



I
Physics of Ultrasound
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2

Theory of Acoustics

Humans can hear sound waves with frequencies between about 20 Hz and 20 kHz. Sound above 20 kHz are
called ultrasound and below 20 Hz infrasound. Sound is the audible vibration of particles that propagates as
a mechanical wave of pressure through a transmission medium [1].

Historically, there is a distinction between transmission media based on their qualitative differences in prop-
erties and divided into three different states of matter: solid, liquid and gas. In solids, the particles are closely
packed together and the forces between particles are strong, so that the particles cannot move freely but can
only vibrate. For a liquid the molecules have enough energy to move relative to each other and the structure
is mobile, but the inter-molecular forces are still important. Gas acts as a fluid where the molecules have very
weak and the molecules can move freely and fast. Although, fluids and gases have different properties, they
have in common that they both have weak particle bonding and therefore have no rigidity, a lack of the ability
to resist deformation. This is essential for the waves inside the transmission medium, because the behavior
of waves is mainly based on the properties of the medium where the wave is propagating in.

Acoustic ultrasonic waves are made by disturbing a medium with a source, resulting in a local pressure differ-
ence. This change of pressure is associated with a flow of energy propagating through the medium. This flow
of energy can be described by an mechanical wave where, the wave crests are the pressure maxima, while
the troughs represent the pressure minima [8]. Partial differential equations describe these motions of these
waves. The differential wave equation for solids is different than the equation for fluids and gases, due to the
presence of rigidity owing to the strong particle bonding. The reasons for setting up these differential wave
equation will be clear in the subsequent sections, where the behavior of the waves at the boundaries will be
treated.

There are different types of waves. The waves in fluids are called compression, pressure or longitudinal waves.
Since fluids do not have the ability to resist deformation the waves only propagate under the direct action of
the force and are always directed in the motion of the particles. Another type of wave is the shear wave of
transverse wave. For shear waves the particles move perpendicularly to their direction of propagation and
need therefore a medium rigid enough to propagate. They can only propagate through solids, since these
have strong particle bonding. Liquids do not have the same shear strength, hence, shear waves do not propa-
gate through liquids [9? , 10]. Waves propagating in the direction parallel to the motion of the particles are
termed longitudinal waves and the waves directed perpendicular to the movement of particles are called
shear waves.

For the elaborations of the wave equations, some important mathematical operations are used. Firstly, d
d t

and ∂
∂t are the time derivative and the partial derivative to time, respectively. ∇ is the gradient, that is the

partial derivative with respect to the coordinates of the associated coordinate system. Together they are the
most important mathematical operations.

5



6 2. Theory of Acoustics

2.1. Bulk Waves in Fluids

Characteristic of liquids is that they all have a specific viscosity. The viscosity of fluids is the measure of its
resistance to flows and can be denoted as the ratio of the shearing stress to the velocity gradient. Fluids can
be divided in two main groups: inviscid and viscous fluids, where for inviscid fluids the viscosity approaches
zero. The wave equation for inviscid fluids will be derived first. The fundamental equations are based on
Reynold Transport Theorem, resulting in three equations for the convervation of mass, momentum and en-
ergy. The derivation of these conservation equation are found in Appendix A. In this section we will use the
final form of each.

2.1.1. Acoustic Wave Equation

We assume that the wave motions in the models are small perturbations. Hence, the velocity, density and
deformation have only comparatively small changes, that is, small oscillations around the equilibrium state
characterized by the steady-state value and the change in geometry can be neglected. For fluids, the rela-
tion of pressure to the change in velocity is defined in Newton’s second law of motion, found by solving the
equation of momentum. Newton’s law can be expressed as [11]

~∇p =−ρ ∂~v
∂t

. (2.1)

For small variations in pressure the relation of the applied pressure to the compression of the fluid can by
expressed in Hooke’s law, the equation of deformation. The deformation of a fluid can be expressed by the
compressibility or its inverse, the bulk modulus. Here, the minus sign denotes that the pressure is inversely
proportional to the change in displacement [11]

∂p

∂t
=− 1

χ
∇·~v . (2.2)

Combining the equation of deformation (2.2) and equation of motion (2.1), we can obtain a wave equation
for the pressure field [1]. We multiply the the equation of deformation (2.2) for ρχ ∂

∂t and taking the gradient
of the equation of motion (2.1)

∂

∂t
(

1

ρc2
F

∂p

∂t
) = ∂

∂t
(−∇·~v), (2.3)

~∇· (~∇p) =~∇· (−ρ ∂~v
∂t

). (2.4)

Combining expressions (2.3) and (2.4) we obtain the acoustic wave equation for an inviscid fluid

1

c2
F

∂2p

∂t 2 −∇2p = 0. (2.5)

In the case of a viscous fluid, the pressure force is not the only force acting on the fluid but there will be
shear force. The relation is described by the Navier-Stokes equation, where will be assumed that the fluid is
a Newtonian fluid and therefore the viscous stresses arising from its flow are lineary. For the scope of this
research we will not solve the Navier-Stokes equation in this report. A clear derivation of the solution of the
Navier-Stokes equation can be found in [1]. The solution of the Navier-Stokes equation will give a additional
factor, proportional to the viscosity and the acceleration of the particles. The new equation of motion can
now be defined as

~∇p +ρ ∂~v
∂t

= 4µF

3

∂2~v

∂t 2 . (2.6)
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Combining this new equation of motion (2.6) and the equation of deformation (2.2) is resulting in

∇2p = 1

c2
F

(
∂2p

∂t 2 + 4µF

3

∂∇2p

∂t

)
. (2.7)

The last equation is the final form of the acoustic wave equation for viscous fluids. As a conclusion, it can be

confirmed that longitudinal pressure waves travel with a speed of cF ===
√

B
ρ through fluids where ρ is the

density and B the bulk modulus, for isentropic fluids.

2.2. Bulk Waves in Solids

In general, liquids are compressible compared to solids. This is why the acoustic pressure and the compress-
ibility are commonly used as parameters for liquid. In solids, the displacement, stress and elastic constants
are more appropriate parameters [12]. In this chapter we will see how the mutually perpendicular longitu-
dinal and transverse waves which are able to propagate in solids can be defined in one displacement vector
~u = uL +uS .

The derivation of the differential wave equation in solids shows similarities with the derivation of the wave
equation for fluids. Such as for the wave equation for fluids we assume that the solid medium is isotropic, so
the properties are the same regardless of different orientations. Newton’s law and Hooke’s law can be used
for the derivation of the elastic wave equation. A brief explanation of concepts such as deformation, strain
tensor, stress tensor and the moduli of elasticity will be presented. The derivation of all these parameters is
complex and out of scope of this research.

2.2.1. Elasticity

Solids are elastic materials due to the strong particle bonding. They respond to an applied force by deforming
and return to the original shape upon the removal of the applied force. Rigidity is the property of a solid body
to resist deformation [12]. For elastic materials, the relative deformation of the solid is called strain and the
forces that occur in the solid are described as stresses. This produces small oscillation of particles in the solid,
which are called vibrations. If the strains are sufficiently small, they are related to the displacement by the
linearized strain tensor ε, which is defined by [11, 13]

ε̄= 1

2

(
(~∇~u)+ (~∇~u)c) , (2.8)

where ~u is the displacement vector of the particles and states that there are two different strains possible in
solids: tensile strain and shear strain. These are mutually perpendicular and can be seen in figure 2.7.

(a) Tensile strain (b) Shear strain

Figure 2.1: Tensile and shear strain for a unit cube [12]

Neglecting body forces such as gravity, solely the forces acting on the faces of the cube will lead to deformation
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of the cube, which can be described by the strain tensor, treated previously. The components of the applied
forces, seen in figure 2.2 can be classified into two major classes: normal component, which will give rise to
the compressive or tensile stresses and tangential component, giving rise to shear stresses [12].

Figure 2.2: Forces acting on unit cube: normal component (σn ) and tangential component (σt )

Fluids experience only shear strain for a shear stress, where solids are able to experience strain for both tensile
and shear stress. The interaction between the strain and stress in solids can be defined by Hooke’s law[11,
13]

σ̄=λ(∇·~u)Ī +2µε̄(~u). (2.9)

Hooke’s law applies for small displacements, with ~σ is the stress and λ and µ are Lamé constants, defining
the elastic properties. These Lamé constants are the constants historically chosen to describe the elastic
properties of an isotropic solid. There are four parameters related to the Lamé constants, which have found
practical use as they are directly related to measurements [12]:

• Young’s modulus E is defined as the ratio of tensile stress to the tensile strain,

• Poisson’s ratio ν is given by the ratio of shear strain to the tensile strain,

• Bulk modulus B is the elasticity corresponding to compression ,

• The Lamé parameter µ is equivalent to the shear modulus and is defined as the ratio of shear stress to
the shear strain.

2.2.2. Elastic Wave Equation

Newton’s second law of motion in solids can be expressed as

~∇· σ̄= ∂2~u

∂t 2 , (2.10)

which relates the stress ~σ to the particle displacement ~u . Combining Newtons law (2.10) with Hooke’s law
(2.9), we obtain the vector-valued Navier-Cauchy equation for the media [13]

(λ+µ)~∇(~∇·~u)+µλ2~u = ρ ∂
2~u

∂t 2 , (2.11)

with ~u = ~uL + ~uS . This equation comprises the whole mechanical equilibrium of an elastic solid. For conve-
nience we define the dilation of a material by ~∇ ·~u = ∆ and the rotation vector ~ω by ~ω = 1

2
~∇×~u, so we may

express Navier-Cauchy equation as

(λ+2µ)~∇∆−2µ~∇×ω= ρ ∂
2~u

∂t 2 , (2.12)
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that contributes to the clarity of the derivation of the longitudinal and especially the transverse wave equa-
tion, in the end. For the longitudinal waves the particles of the medium move in the direction of propagation
and so has no curl, ∇× ~uL = 0. The displacement vector for the shear waves has no divergence, ∇ · ~uS = 0.
So for the longitudinal wave we perform the operation of divergence on the Navier-Cauchy equation, which
yields

(λ+µ)~∇·~∇(~∇·~u)+µ~∇·λ2~u +ρ f = ρ~∇· ∂
2~u

∂t 2 , (2.13)

with ∇2 =~∇·~∇, ~∇· (∇2 ·~u) =∇2(~∇·~u) and~∇·~u =∆, the dilation reduces to

∇2∆= ρ

(λ+2µ)

∂2∆

∂t 2 . (2.14)

We thus can conclude that the speed of sound for longitudinal waves, i.e. a change in volume, is

cL =
√
λ+2µ

ρ
. (2.15)

If the vector operation of curl is performed for the transverse waves, we obtain

(λ+2µ)~∇×~∇∆−2µ~∇× (~∇×ω) = ρ~∇× ∂2~u

∂t 2 . (2.16)

Recalling ~ω= 1

2
~∇×~u and~∇· (~∇×~u) = 0 we get

∇2~ω= ρ

µ

∂2~ω

∂t 2 . (2.17)

This is the elastic wave equation for transverse waves in an elastic medium, with wave speed cS =
√

µ
ρ . Sum-

marizing, two waves can propagate in an unbounded elastic medium. Longitudinal waves with a velocity

of cL ===
√

λ+2µ
ρ and shear waves with a velocity of cS ===

√
µ
ρ .[13]

2.3. Plane Wave Solution and Acoustic Impedance

—– The previous derived wave equations show many similarities. Both equation In this section we are going
to look at the solution of the acoustic wave equation, but since the wave equation shows a lot of similarities
with the elastic wave equation, the solutions are also valid for solids. —–

One-dimensional wave equation can be solved exactly via separation of variables, where the displacement
of the particles u(x, t ) can be split up into space-dependent and time-dependent part resulting in p(x, t ) =
X (x)T (t ). The solution, the so called plane wave equation, has the general form

p(x, t ) = p0e±i (kx−ωt ), (2.18)

where ω is the angular frequency, k is the wave number, that is equal to ω
c in case of a wave propagating in

a inviscid fluid, ± determines the direction the wave travels, where the minus sign represents propagation in
the ’positive’ direction [14]. The particle velocity must also be considered, because this tells us how fast the
molecules in the medium are moving. Acoustic impedance is the ratio of acoustic pressure to flow and allows
us the simplify the complex behavior of the waves at the boundaries. We are going to use the plane wave



10 2. Theory of Acoustics

solution of a pressure wave in fluids to derive the expression for the acoustic impedance, which derivation
is also valid for solids. In order to simplify the solutions the Fourier transforms are used, using F [ d

d t x(t )] =
iωX (iω):

p̂(x,ω) = F (ω)exp−i kx , (2.19)

− ∂p̂(x,ω)

∂x
= iωρv̂(x,ω), (2.20)

and combining them, the particle velocity is

v̂(x,ω) = 1

ρc
F (ω)exp−i kx . (2.21)

Determine the acoustic impedance, the ratio between the pressure and the particle velocity, for plane waves
yield

Z ≡ p̂

v̂
= F (ω)exp−i kx

v̂(x,ω) = 1

ρc
F (ω)exp−i kx

= ρc. (2.22)

So the acoustic impedance relates the characteristics of a sound wave to the properties of the medium in
which it is propagating. [14] This is the reason why the previous determined velocities are so important and
the reason for the measuring the density in the experiments. Note that the impedance for solids and fluids
are not equal, due to difference in density and the velocity of the sound determined by the differential wave
equations. Lastly, the unit of acoustic impedance is Rayl, what equals Pa s/m.

The speed of wave for fluids is
√

B
ρ . In solids, the longitudinal sound waves have a velocity of

√
λ+2µ
ρ , in terms

of the bulk modulus being
√

B+4µ/3

ρ . Longitudinal waves propagate faster in solids than fluids.
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2.4. Wave Characteristics at the Boundaries

Figure 2.3: Definitions of angles

Till now we have looked at the bulk waves propagating in the bulk of the
medium only. We derived the solutions of the differential wave equations de-
scribing the propagation of waves, characterized by the material properties. In
this section where shall investigate some aspects of waves impinge on bound-
aries, which even in the simplest case are rather complicated. We will apply
specific boundary conditions to the wave solutions which determine the local
behavior of the waves near the boundaries. These conditions rely on the conti-
nuity of certain quantities, like displacement or stress. In general the behavior
of the sound waves are much in the same way as the behavior of optical light
passing through a boundary between two different isotropic media. A specific
fraction of the energy of the incoming wave will reflect at the interface, while the
remaining energy will transmit into the next medium. Due to different material properties the transmitted
wave will refract with a specific angle. The relationship between the angles are given by Snell’s law, where
the angles are with respect with the normal:

si n(α)

c1
= si n(γ)

c2
. (2.23)

Figure 2.4: Snell’s law: angle of refraction (or reflection) for incoming angles by and the influence of the velocity ratio

The angles are defined in figure 2.3, that will be used for the rest of this report. Figure 2.4 shows the influence
of the wave velocity for the refraction angle. For equal wave velocities the angle of reflection angle will be the
same as the angle of incidence. Note that therefore β=α, in figure 2.3.

In this section we are going to look at three different interfaces. The first interface is a relative simple case and
useful to get a general idea of the behavior of sound waves at the boundaries. The last to interfaces represent
two situations in our setup.

• Fluid-Fluid Interface

• Solid-Air Interface

• Solid-Fluid Interface

2.4.1. Liquid-Liquid Interface

Even though we do not have the liquid-liquid interface in the experimental setup, it is a useful case where we
can get a proper idea of the reflections and transmission of the waves at the boundary. Furthermore, the great
benefit of Snell’s law and the convenience of the acoustic impedance will be established. Consider a plane
wave travelling in the (x,y)-plane from liquid 1 (ρ1,c1) to liquid 2 (ρ2,c2). Since the two media must stay in
intimate contact at a perfect interface the boundary conditions are [15]:

1. Continuity of pressure: p1 +p ′
1 = p2,
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2. Continuity of normal velocities: v̂1 + v̂1
′ = v̂2 ,

where p ′
1 and v̂1

′ are the pressure and the normal velocity of the reflected wave, respectively. The continuity
of pressure can only be fullfilled if Snell’s law is applied. Solving the continuity of the normal velocity by using
Snell’s law gives the following coefficients: [12]

R = Z2 cosα−Z1 cosγ

Z2 cosα+Z1 cosγ
, (2.24)

T = 2Z2 cosα

Z2 cosα+Z1 cosγ
, (2.25)

where Z is the acoustic impedance (ρc) by (2.22). R and T are the reflection and transmission coefficient,
respectively. These denotes the ratio of the reflected or transmitted amplitude and the amplitude of the
incoming wave. In figure 2.5 these coefficient are given as a function of the incident angle α, based on equa-
tions (2.23), (2.24) and (2.25).

Figure 2.5: Reflection and refraction amplitude coefficients for incoming angles, with equal density and c1
c2

= 10.

So for Z1 > Z2 the transmission coefficient decreases and the reflection coefficient increases for increasing α.
These coefficients describe how large the amplitude of the reflected or transmitted waves are after interaction
with the boundary. For further investigation of the influence of the material properties to the coefficients
the transmission coefficient will be plotted in figure 2.6 against the angle of incidence with c1/c2 = 2 and a
logaritmic decreasing ρ1/ρ2, i.e. 1, 1/10, 1/100 and 1/1000.

Figure 2.6: Transmission coefficient for incident angles and different impedances, with Z1 > Z2.
Increasing impedance difference results in a reduction of the transmission coefficient

The reflection and transmission coefficients can also be expressed in terms of energy (intensity), instead of
displacement amplitudes. The energy of the waves is equal to the squared wave amplitude multiplied by the
impedance depending upon the medium in which the wave is propagating [16]. Reflection and transmission
coefficient (2.24) and (2.25) in terms of energy can be written as, where R +T = 1, for the conservation of
energy:
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R = Z1

Z1

(
Z2 cosα−Z1 cosγ

Z2 cosα+Z1 cosγ

)2

=
(

Z2 cosα−Z1 cosγ

Z2 cosα+Z1 cosγ

)2

, (2.26)

T = Z2

Z1

(
2Z2 cosα

Z2 cosα+Z1 cosγ

)2

= 4Z1Z2 cos2α

(Z2 cosα+Z1 cosγ)2 . (2.27)
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2.4.2. Solid-Air Interface

This interface is present at the edge of the rod, where the solid is surrounded with air. In the previous section
we saw that for enormous impedance differences, the transmission coefficient can be neglected. Since the
impedance of solids is generally larger than the impedance of air, we can consider the solid-air interface as a
free boundary, where the air will be considered as vacuum. Therefore the impedance difference is approach-
ing infinity and no transmission will occur. In solids, the incoming wave can be a longitudinal or a transverse
wave with each its own behavior at the free boundary interface, see figure 2.7a and 2.7b.

(a) Incoming longitudinal wave (b) Incoming shear wave

Figure 2.7: Reflection angles for incoming longitudinal and shear wave at a free boundary

Due to the fact that there are two waves able to propagate, conversion between the modes of these waves
can occur. This is based on the fact that one form of wave energy can be transformed into another form
[17]. For example, when a longitudinal waves hits an interface at an angle, some of the energy can cause
particle movement in the transverse direction to start a shear wave. This mode conversion occurs when a
wave encounters an interface between materials of different acoustic impedances and the incident angle is
not normal to the interface. Although, for both modes of incoming waves the boundary conditions are the
same:

1. Zero normal stress

2. Zero tangential stress

Using Hooke’s law for isotropic solids to derive the normal and tangential stresses and apply these to the
boundary condition gives the following expressions regarding to the intensities [12, 18, 19]

RLL =−cos2 2β− (cS /cL)2 sin2αsin2β

cos2 2β− (cS /cL)2 sin2βsin2α
, (2.28)

RLS = 2(cS /cL)sin2αcos2β

cos2 2β− (cS /cL)2 sin2βsin2α
, (2.29)

RSL = (cS /cL)sin2αcos2α

cos2 2β− (cS /cL)2 sin2βsin2α
, (2.30)

RSS = cos2 2α− (cS /cL)2 sin2αsin2β

cos2 2β− (cS /cL)2 sin2βsin2α
, (2.31)

where RLL and RLS are the coefficient for an incident longitudinal wave. RSL and RSS are for an incident shear
wave. Furthermore, the following relations can be obtained from the previous equation [12]:

RLL =−RSS , (2.32)

R2
LL +RLS RSL = 1. (2.33)
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Equations (2.28) - (2.31) are plotted in figure 2.8 and 2.9 where the material properties of copper are used,
ρ = 8930[kg/m3], cL = 4760[m/s] and cS = 2325[m/s]. At normal incidence (α= 0◦) all reflected angles are the same
wave mode as the incident wave, for both cases. For increasing α one can see that a fraction of the incoming
waves are converted into another wave mode. Due to the different speed of waves for every wave mode the
angle of reflection is different as well, on the basis on Snell’s law.

For the case of an incident shear wave, it may be seen that the velocity of the reflected wave is greater than the
velocity of the incoming wave, which is inevitably due to cL > cS . There exists a critical value of the incidence
angle for which the reflected longitudinal wave completely disappears. The critical angle for copper is defined
by

αc = si n−1 cS

cL
= 29.2◦. (2.34)

Figure 2.8: Reflection coefficient of longitudinal waves (RLL and shear waves RLS
for incident angles of longitudinal wave at a free boundary

Figure 2.9: Reflection coefficient of shear waves (RSS and longitudinal waves RSL
for incident angles of a shear wave at a free boundary, with critical angle of 29.2◦ for copper
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2.4.3. Liquid-Solid Interface

Figure 2.10: Angles of different waves for
incident longitudinal wave at the

liquid-solid interface

The liquid-solid interface takes place at the end of the rod, we they waves
in the solid transmitted into the fluid. Since we are going to solve the re-
flection and transmission coefficient in terms of energy the coefficients
have many similarities with the coefficient for the solid-fluid interface.
For both cases, the normal component of displacements and forces are
balanced, so the boundary conditions for this interface are [12]:

1. Continuity of normal velocities

2. Continuity of normal stress

3. Zero tangential stress

Solving these boundary conditions for the waves gives the reflection and
transmission coefficients, again regarding to the energy of the waves [12,
20]:

R =
(

K −2ZF

K

)2

, (2.35)

TL = 4ZF ZL

K 2 cos2 2γS , (2.36)

TS = 4ZF ZS

K 2 sin2 2γS . (2.37)

The following substitution are used:

K = ZL cos2 2γS +ZS sin2 2γS +ZF , (2.38)

ZF = ρF cF

cosα
, ZL = ρcL

cosγL
, ZS = ρcS

cosγS
. (2.39)

and with R +TL +TS = 1. In order to discuss the formulae, we consider again copper as solid and glycerol as
fluid (cF = 1920[m/s], ρF = 1264[kg/m3]). The reflection and transmission coefficients are shown in figure2.11,
with two different critical angles. The first critical angle of incidence (α1), the angle of refraction of the pres-
sure wave in the solid reaches 90◦ and thus, at this point the pressure wave disappears from the solid. This
angle is given byα1 = sin−1(

c f

cl
). For the copper-glycerol interface is the first critical angle at 23.8◦. In the solid

for α>α1 the incident P wave is completely transformed into the mode converted shear wave. The intensity
of the latter rapidly increases at the expense of the reflected pressure wave. If we further increase the angle
of incidence, the angle of refraction of the S wave also reaches 90◦ and at this point the S wave disappears
as well. This second critical angle of incidence (α2) is given by α2 = sin−1(

c f

cs
) and is for our interface 55.7◦.

For α>α2 the reflection coefficient for the incident pressure wave in the liquid is equal to one since all other
wave modes are no longer present.

2.5. Conclusion

From continuity requirements it follows that we are able to use Snell’s law to determine the relationship of
the angles. It enables us to set up coefficients of the reflected or transmitted wave as a ratio of the incoming
wave as well. These coefficients can be expressed in terms of amplitude of energy. The amplitude expression
differ for each material, where the energy expression does not. The coefficients in terms of energy describes
the behavior of the waves at the boundaries the clearest and therefore we prefer this expression.
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All interfaces encounter complex wave behavior. The solid-air interface can be considered as a free boundary,
neglecting the transmission of waves into the air. Although, one form of wave energy can be transformed into
another form, called mode conversion. The behavior of the waves at this boundary depends on the angle and
mode of the incoming waves. For copper is this behavior stated in figure 2.8 and figure 2.9.

Since CF < CL the fluid-solid interface has two critical angles, which for copper and glycerol are 23.8◦ and
55.7◦. Later on, there will looked of waves with normal incidence, resulting in an enormous simplification of
equations (2.35) and (2.36).

Figure 2.11: Reflection coefficient (R) and transmission coefficients of longitudinal waves (TL )
and shear waves (TS ) in solid for the fluid-solid interface
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Experimental Background

Figure 3.1: Propagation of waves through
fluid and reference measurement to de-
termine the acoustic parameters [1]

Ultrasound waves are generated by a piezoelectric transducer and trans-
mitted into a solid buffer rod, which is needed to dissipate the heat of the
high temperature fluid. Subsequently, the waves propagate through the
rod and transmit into the fluid,then they are reflected back into the rod
and received by the transducer. The measurement is compared with a ref-
erence measurement, to determine the reflection coefficient, wave veloc-
ities and the attenuation. In this way, the acoustic parameters, such as
density and viscosity, can be computed for small amounts of fluids with
high radioactivity and corrosiveness at high temperature.

In the executed experiment, copper is used as a material for the buffer rod
and glycerol for the fluid, where their most important material properties
are stated in table 3.1. The transmitted ultrasonic wave will be affected
by the fluids viscous properties before propagating back into the rod. The
received waves by the transducer are not only affected by these properties
of the fluid but also by the elastic properties of the solid buffer rod. These
effects are the so called spurious echoes and interfere with the desired sig-
nal. In figure 3.3 the spurious echoes are clearly visible with a ultrasonic
measurement. The major peak at t = 2.2×10−5s represents the incident
wave and the other great peak at t = 5.7×10−5s, 9.3×10−5s and 1.3×10−4s
represent the reflections at the end of the rod and their repetitions. All the
other minor peaks are the spurious echoes. [1]

Table 3.1: Properties of used materials at room temperature (298K)

Density [kg/m3] Speed of longitudinal waves [m/s] Speed of transverse waves [m/s] Viscosity [mPa s]
Copper 8930 4760 2325 -
Glycerol 1260 1920 - 950

3.1. Normal Incidence and Captured Waves

The transmitted waves by the transducer are plane waves. These waves are
reaching the end of the rod at normal incidence, what can be seen in the figure 3.2. Therefore the reflection
coefficient (2.35) and transmission coefficient (2.36) for the fluid-solid interface are simplified enormously
and will be

R =
(

ZL −ZF

ZL +ZF

)2

, (3.1)
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TL = 1−R = 4ZF ZL

(ZL +ZF )2 . (3.2)

Due to this impedance difference the reflection coefficient is relatively large compared to the transmission
coefficient. So the waves in the fluid are barely able to transmit into the solid and the waves are captured in
the fluid. This has to be taken into account, for analyzing the experimental results.

Figure 3.2: Normal incidence of the first wavefront resulting in an enormous simplification
of reflection and transmission coefficients

3.2. Attenuation

Attenuation is energy loss of sound propagation due to dissipation by the viscous properties of fluids. This
leads to a significant reduction of the amplitude of the waves. For the investigation of this energy consump-
tion we are considering the one-dimensional plane wave solution

p = p0e±i (kx−ωt ), (3.3)

with angular frequency ω and wavenumber k equal to ω
c . Inserting this plane wave solution into the acoustic

wave equation for viscous fluids (2.7) gives

(1+ iω
4

3

µ

ρ0c2
0

)k2 − ω2

c2
0

= 0, (3.4)

that can also be written as

k =±ω
c

(1+ iω
4

3

µ

ρc2 )−
1
2 =±βF − iαF , (3.5)

and inserted back into the plane wave solution we obtain

p = p0e−((βF −iαF )x−ωt ) = p0e−αF x e
iω(t− x

ωβF
)
. (3.6)

Solving equation (3.5) gives the attenuation coefficientαF by apply Taylor expansion forαF = 1
2
ω
c

√
6(9+ε)−1/2 −18(9+ε)−1,

considering ε= 16ω2µ2
F

ρ2c4 ¿ 1 [14]:

αF = 1

2

ω

cF

√√√√1

9

16ω2µ2
F

ρ2
F c4

F

= 2ω2µF

3ρF c3
F

. (3.7)
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Doing the same approximation for wavenumber βF :

βF = ω

cF
. (3.8)

The magnitude of the attentuation coefficientαF determines how fast the peak amplitude decays in space.
Moreover, the attenuation coefficient increases quadratic with the frequency and is a function of unknown
parameters viscosity and density. The attenuation coefficient can be determined by measuring the relative
amplitude reduction with

e−2αF d = A

Ar e f
, (3.9)

where d is the thickness of the fluid. A and Ar e f are the wave amplitudes. Using (3.1) and (3.2) the density
can be determined by considering normal incidence of the incoming waves at the solid-fluid interface, i.e.
cosα= cosγ= 1 and Z1 = cFρF .

ρF = Z2

cF

(
1−R

1+R

)
, (3.10)

where Z2 is the acoustic impedance of the buffer rod. For (3.10) the reflection coefficient can be determined
by measuring the amplitude difference of the signal with a reference measurement [1]

R = A

Ar e f
Rr e f . (3.11)

3.3. Conclusion

Since normal incidence of the waves at the interface of the rod and the fluid, equations (2.35) and (2.36) are
simplified into equations (3.1) and (3.2). With the properties of copper and glycerol, 79.8% of the energy
reflects and 20.2% transmits at their interface. Consequently, ultrasound waves in the fluid cannot transmit
directly back into the buffer rod and are practically ‘captured’ in the fluid.

Using (3.10) and (3.7) the density and viscosity of a fluid can be determined by measuring the velocity and
amplitude of the reflected waves.

Figure 3.3: Measured signal of [1], consisting of the initial signal and its repetitions (major peaks)
and the spurious echoes in between
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Simulation of Ultrasound
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4

Simulation Model

In order to investigate the causes of spurious echoes for ultrasonic measurements, a simulation model is
created to visualize the behavior of the ultrasonic waves. For the simulations the software COMSOL Mul-
tiphysics is used, what has ingrained physical expressions and the material characteristics. The software is
based on Finite Element Method to solve the differential equations by transform them into discrete intervals.
This discretization will be discussed in a later section. With COMSOL different problems can be studied: fre-
quency domain and time domain study, stationary study, eigenvalues study and eigenfrequency study. In this
research we are interested in the time domain study, as the emitted ultrasonic waves are finite signals.

The setup of the executed experiments consist of three domains: the transducer, the solid buffer rod and
the liquid fluid,of which the properties have to be determined. The simulation of the transducer will be
treated in later section. The simulation of the fluid domain has not been our interest, since firstly we want
to investigate the behavior of the sound waves in the buffer rod resulting in spurious echoes. In this section
we are going to focus on the solid domain, i.e. the buffer rod. For this domain the module Solid Mechanics
has been used, where the elastic vibrations described in displacement. The geometry is reduced to a simpler
two-dimensional problem with Cartesian coordinates. This is done to prevent excessively long computation
time, that makes unattractive working with three-dimensional models. In a subsequent research, this can
still be investigated.

4.1. Boundary Conditions

There are two boundary conditions to consider: one that simulates the transducer and one that take in con-
sideration the external surface of the rod. Since we only consider the solid rod and exclude the whole fluid
domain, the rod is totally enveloped with air. As we saw in previous section at page 14 this interface could be
considered as free boundary, where the surrounding air could be simulated as vacuum and only reflections
occur. In COMSOL it means the boundary condition free. With this boundary condition it results in are no
constraints and no loads acting on the boundary.

The decision which boundary condition has to function as a transducer depends on what you want to mea-
sure. Because next to generating ultrasonic waves the simulated transducer has to be able to detect and re-
flect the incoming reflected waves as well. Taking this into account there are two possible boundary condition
suitable for simulating the transducer

• Pressure load

• Prescribed displacement

The pressure load condition has expression ~σ ·~n = −p~n at the boundary, which implies that the stress will
be always keep zero after the function of the source. So this boundary condition is useful when measuring
displacements of the solid at the place of the transducer. The prescribed displacement has function u = u0x

25
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at the position of the transducer and is therefore suitable for measuring pressure, but not for measuring the
displacement. The transducer’s amplitude will be simulated as an infinite sinus with frequency of 3.5 MHz
with Gaussian window with a standard deviation of 3.5

6 period of the sinus, see figure 4.1. The Gauss function
is considered zero after three standard deviation steps. [7]

Figure 4.1: Wave packet as boudnay source consisting of sinus ( f =3.5[MHz]) with Gaussian window

4.2. Discretization

Wave propagation simulation are currently done with finite element method by dividing the time-domain
of the solution into small intervals, time-steps. In much the same way the spatial-domain is divided into
small spatial elements by a mesh. There will be always strived to minimize the number of spatial elements
and time-steps to allow the calculations to be performed in a reasonable time. However, there is an impor-
tant consideration in both spatial- and time-domains. Does the amount of spatial/time elements permit the
features of the solution to evolve accurately? For the simulation of waves this generally depends upon the fre-
quency and the wavelength of the wave, which is related to the Nyquist-rate: the mesh size has to be smaller
to the half the wavelength to generate no errors and likewise the time-step size has to be smaller than half the
period of the highest frequency of the wave to prevent errors [21].

Figure 4.2: Signals with different times of peak values
for determination of the influence of the total amount

of mesh elments

In our setup the frequency will keep always the same, but the
longitudinal and transverse waves differ from wavelength. By
the Courant–Friedrichs–Lewy (CFL) condition the time step

can be determined by tstep = λS
C F LcL

, where literature studie say
that a CFL of 0.2 is near optimal [22, 23]. In addition, the time
step has to be rather the small, to be sure that the solution will
be accurate, therefore c is cL and λ is λS .

The quality of the mesh is of great importance to retrieve accu-
rate results. A balance has to be found between accuracy and
computation time. The mesh is a mapped mesh distributed
over the edges of the geometry where the number of mesh ele-

ment is determined by # = N l eng th
λS

. With N is the number of
mesh element per wavelength. After investigation of times of
peak values of signals with different amount of mesh elements,
can be concluded that eight mesh elements is the minimum
amount of mesh elements per wavelength that produce accu-
rate simulation outcomes. The delay times of the peaks values
for signals with a different amount of mesh elements per wave-
length are stated in figure 4.3

Once a Nyquist-error emerges it will propagate throughout the
solution and it can evolve to dominate the solution. In severe
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cases, the calculation will be terminated by the convergence criterion in the solver. In less severe cases a
solution will be found which does not represent physical behavior properly. It can be difficult to detect this
error, so it is essential to have a critical attitude towards the simulation outcome. The numerical solutions
has to be checked by the physical knowledge. Despite the failures, the poorly-configured model still produces
results that have some physical correctness. Failures of poorly configured models [21]:

• Wave-fronts appearing ahead of the first wave-front, producing an erroneous dispersion effect

• Waves appear to reverberate inside the transducer for much longer that well-configured models predict

Figure 4.3: Time delay of signals for increasing number of mesh elements

4.3. Conclusion

To prevent excessively long computation time, the simulation model is performed with a two-dimensional ge-
ometry. However, the two-dimensional domain does not take into account the axial interaction and the simu-
lation outcome will be slightly different with the reality. For more accurate simulation and being able to com-
pare the results with the experimental measurement, a three-dimensional geometry have to be used. How-
ever, first three-dimensional simulation show a non-linear relation for different source amplitudes. In next
research a amplitude source has to be determined, which matches with the behavior of the transducer.

For the simulated transducer emitting a finite signal with constant frequency a sinusoidal signal with a Gaus-
sian window will used as source. The boundary condition driven by this source will be a displacement con-
dition, in order to have no constraints in the stress. Therefore we are able to measure in the same quantity as
pressure for fluids, in the end.

Accurate simulation outcomes require minimal eight mesh elements per wavelength. For the time-stepping
is the Courant–Friedrichs–Lewy (CFL) condition applied and based on other literature studies considered
with five time intervals in each period. In subsequent research, this number can be optimized as well, for
more efficient calculations.
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Simulation Results

In the previous section we treated all settings in COMSOL in order to make an accurate simulation of ultra-
sonic waves. In this section we are going the look at the simulation and will seek about the causes of spurious
echoes. In figure 5.1 one can see an image of a propagating wave front in the buffer rod. We will focus on three
probable causes of the spurious echoes: head waves, longitudinal wavefronts and ratiated edge waves.

Figure 5.1: Propagation of ultrasonic waves (f=2[MHz] in a copper buffer rod at t = 2.4 ·10−5[s]. The simulation consist of four types of
waves, including the spurious echoes

5.1. Mode Converted Head Waves

The initiated wavefront with longitudinal wave is propagating almost over the whole width parallel to the
rod’s longitudinal axis. In figure 5.2 the direction of the displacement of the local particles are given by the
arrows. In this figure it can be seen that for the waves in the initial wavefront the displacement of the particles
is in the same direction as the direction of the wave. Because of the rod’s finite diameter, these collide with
the edge of the rod, resulting in continuous reflections consisting of longitudinal and shear waves. Since the
longitudinal waves propagate nearly parallelly to the longitudinal axis, the angle of incidence is almost 90◦.
In figure 2.8 can be seen that for a copper rod most of the reflected waves are longitudinal waves, for those
incident angles. The vast minority of the reflected waves are shear waves and following Snell’s law (2.23)
reflected with an angle of 29.2◦, for copper. The angle difference between those reflected of those waves is
60.8◦. The proof that these refracted waves are shear waves can be given by measure the actual angle between
the reflected waves in figure 5.2.

In figure 5.2 the particle movements of the local particles are parallel with the intensity lines, it suggest that the
combination of all particles vibrations forsm shear waves. The measured angles between the perpendicular
line of the those displacements and the direction of the waves in the initial wavefronts corresponds with the
earlier mentioned angle of 60.8◦. Together this is a proof that these waves are shear waves, produced by the
longitudinal waves in the initial wavefront. [7, 24]
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Figure 5.2: Longitudinal displacement and transverse displacement
for longitudinal and shear waves, respectively, in copper rod

These waves are called head waves instead of normal shear waves, because they seem to propagate at the
speed of longitudinal waves, while they are shear waves. The explanation of this phenomenon is that the
‘production’ of the waves at the edge of the rod taken place at the location where the waves in the wavefront
impinge this edge, that is moving with the longitudinal wave speed along the longitudinal axis.

The reflected head waves form a slanting line to the opposite edge because they are reflected with a certain
angle with the longitudinal waves and they are propagation with a speed which is generally around half the
speed of the longitudinal waves. The angle and the intensity of the head waves depend on the angle of the
incident wave and the material properties of the buffer rod. Figure 5.3 shows a reflection reduction of 10% by
changing the material for the buffer rod from copper to lead (cL = 2160[m/s],cS = 700[m/s]). Even though, the
reflection coefficient remains relatively small for incident angle of almost 90◦ but it will be still a important
phenomenom and will be treated in next section

Figure 5.3: Reduction of mode conversion with lead as buffer rod material

5.2. Mode Converted Longitudinal Wavefronts

When the head waves strike to the opposite edge of the rod there will be again reflection of two waves, but
this time with an incident shear wave instead of an incident longitudinal wave. Figure 2.9 shows the re-
flection coefficients for the longitudinal and shear waves for this incident shear waves. It appears from this
figure that approximately 2/3 of all reflected waves are longitudinal waves, and is relatively much mode con-
verted reflected waves, comparing it with the fraction of produced shear waves from the waves in the intitial
wavefront. The new longitudinal waves from the head waves will travel with the same velocity as the initial
wavefront and are directed almost parallel to the longitudinal axis of the rod.

The incident angle of the head waves is equal to their previous refracted angle, which is just below the critical
angle. When the angle of incidence is larger than the critical angle then all the reflected waves would be shear
waves and not longitudinal waves. But this is impossible, since waves of the initial wavefront cannot impinge
the edge with a angle of 90◦ or larger.
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The intensity of the produced longitudinal waves will become almost as great as the initial wavefront. Due to
the continuous production of head waves, the production of the longitudinal by these head waves is large as
well. Once, converted from head waves back into longitudinal waves, the longitudinal waves will propagate
again with the velocity of the longitudinal waves and all new longitudinal waves gather at the same place.
Therefore, the waves develop into a new wavefront with increasing intensity. Due to this increasing intensity
this phenomenon has a great contribution to the spurious echoes.

5.3. Radiated Edge Waves

The transducer should generate solely longitudinal waves propagating purely as plane waves along the lon-
gitudinal axis. Transducers, however, have the side effect of producing edge waves as well. It is well-known
these edge waves propagate as diffracted longitudinal waves through the rod. Because of their smaller angle
of incidence they amplify the production of the head waves. However, the simulations show that the trans-
ducer seems to produce shear edge waves as well. These waves can be seen in figure 5.4 and can be recognized
by their wave velocity, which is half the speed of longitudinal waves.[25]

Figure 5.4: Radiation of edge waves, consisting of longitudinal and shear waves
for a transducer with RR = 0.30

The intensity of shear waves depends on the maximum amplitude of the transducer and the incident angle of
these waves are dependent on the ratio of the transducer and the width of the buffer rod. The width of a trans-
ducer can be defined as a RR-number, where RR = Rtr ansducer

Rr od
. Figure 5.5b shows the spurious echoes caused

by a wide transducer, with RR=0.90. Due to the chancing incident angles of the radiated shear waves and
therefore no structural behavior at the boundaries, let us conclude that the radiated shear waves causing
random noise and therefore will not contribute greatly to the spurious echoes.

(a) Radiated shear waves for transducer of RR=0.3 (b) Absence of shear waves for transducer of RR=0.9

Figure 5.5: Relative low contribution of the limited diameter of transducer to the spurious echoes



32 5. Simulation Results

5.4. Conclusion

Spurious echoes are clearly visible in the simulations. Based on the simulations one can divide the echoes
created in the buffer rod into three types: head waves, longitudinal wavefronts and edge waves. Regarding
to the intensities the head waves and the edge waves are considered as non-significant for the contribution
of the spurious echoes. Though, the head waves create additional longitudinal wavefronts when impinge on
the opposite edge. These longitudinal waves have a high contribution to the spurious echoes. Therefore the
head waves are important for the reduction of these spurious echoes.

Next, the simulations show that the transducer seems to produce shear edge waves as well. In subsequent
research the presence and possible contribution of these shear edge waves has to be investigated.



6

Conclusion and Recommendation

For the investigation of the ultrasonic waves in the buffer rod a simulation model is made. In this research is
shown that accurate simulations require minimal eight mesh elements per wavelength. Less mesh elements
lead to false simulations, where more element result in unnecessary long computation time. The time step
is assumed from literature studies, with the CFL-number set to 0.2. An optimal CFL-number has to be in-
vestigated in subsequent research, for more efficient calculations. To prevent excessively long computation
time, the simulation model is performed with a two-dimensional geometry. However, the two-dimensional
domain does not take into account the axial interaction and the simulation outcome will be therefore slightly
different from reality. For more accurate simulation and being able to compare the results with the experi-
mental measurement, a three-dimensional geometry has to be used. However, three-dimensional simulation
show a non-linear relation of the amplitude and the simulation outcome. This influence of the amplitude has
to be investigated in a next research.

In the experimental measurements, the spurious echoes are present between the peaks of the initial wave’s
reflection and its repetitions. Spurious echoes are caused by multiple phenomena. First, impedance differ-
ence of the fluid and the solid rod lead to ‘captured’ waves, since the waves in the fluid are barely able to
transmit into the solid and the waves are captured in the fluid.

Next, complex interaction of waves in the buffer rod causes new waves, which interfere with the captured
waves. These waves are clearly visible in the simulation and can be divided into three types of waves. The
waves with the largest contribution to the echoes are the new longitudinal wavefronts. Once reflected as lon-
gitudinal waves, the waves will propagate with the velocity of the longitudinal waves and all new longitudinal
waves gather at the same place. Therefore, the waves develop into a new wavefront with increasing intensity
with a large contribution to the spurious waves. Secondly, since the rod has a finite diameter, initially emitted
waves collide with the edge of the rod, resulting in continuous reflections. The reflected waves consisting of
longitudinal and shear waves. The shear waves are called head waves and seem to propagate at the speed
of longitudinal waves, while they are shear waves. These waves are interesting, because they create the lon-
gitudinal wavefronts, when impinge on the opposite edges. We have seen in the theory that the production
of those head waves at a free boundary are dependent on two parameters: speed of sound waves and the
incident angels. Optimization of these parameters can cease the production of the head waves, resulting in
reduction of the spurious echoes. In this research we have shown that the production of head waves can be
reduced with 10%, by replacing the copper rod for a lead rod. Tapering or cladding of the buffer rod suggested
from other studies seem to be good alternatives to reduce the spurious echoes.

Next, the simulations show that the transducer seems to produce shear edge waves as well, what is extraordi-
nary for a longitudinal transducer. In subsequent research the presence and contribution of these shear edge
waves have to be investigated.

In this research, the waves are manually distinguished based on the direction of particle motion. Since all
waves have different velocities, it could be helpful in a next research, to measure the waves by its wavenumber.
Because, for the reduction of the spurious echoes a quantitative measuring method is essential.
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A

Reynolds Transport Theorem

Both acoustic and elastic waves equation are based on the fundamental laws of continuum mechanics de-
scribing the conservation of mass, momentum and energy. All these conservation laws are based on the
Reynolds transport theorem [11] and can be expressed for a vector or scalar-valued function ~f in a do-
main

d

d t

ˆ
Ω

f dV =
ˆ
Ω

∂ f

∂t
dV +

ˆ
∂Ω

(~v ·~n) f dS, (A.1)

where ∂Ω is the boundary of the domainΩwith volume V and surface S. ~n is the outward unit normal vector
to the boundary and ~v is the velocity field. The first integral is the time rate of change of f following the
motion. The second integral is the rate of change of f stored in the domain and the last integral is the net
outflux of f across the surface. We concentrate on the conservation of mass, momentum and energy in order
to derive the acoustic wave equation, where a pressure increase is applied at the plate of the origin, hence
particles will flow to the right, leading to an alternative compression and rarefactions. The conservation of
mass in a fluid flow requires that the change of mass inside a control volume is accounted for the net flow
of mass across the surface since mass cannot be created or destroyed within the control volume. Reynold’s
transport theorem obeys this by for the substitution of ρ for function f and gives the integral

∂

∂t

ˆ
Ω

ρdV +
˛
∂Ω

ρ~v dS = 0. (A.2)

This relation is called the equation of continuity and describes that the rate of change of mass inside the con-
trol volume plus the net rate of outflow of mass across the control volume surface add to zero. The momen-
tum of the fluid in a material volume is the integral of the momentum per unit volume ρ~v over the material
volume. The integral form of the time rate of increase of momentum within the control volume is given by
substituting ρ~v into the Reynold’s transport theorem expression

d

d t

ˆ
Ω

ρ~v dV =
ˆ
Ω

∂ρ~v

∂t
dV +

ˆ
∂Ω

((ρ~v) ·~n)~v dS). (A.3)

To apply Newton’s law of motion to the material volume that coincide with our control volume at a particular
time, we have to determine the forces that act on the fluid within the control volume. Neglecting the viscous
effects and the gravitational forces, the only force that is acting on the fluid will be the force caused by pressure
p acting inward on the control surface S. Combining this pressure force with the Reynold’s transport theorem
will give
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d

d t

ˆ
Ω

ρ~v dV =
ˆ
Ω

∂ρ~v

∂t
dV −

˛
∂Ω

(−p~v)dS. (A.4)

Supposing that the variations of the pressure are small compared with the steady-state pressure, so the middle

term can be neglected. Lastly, the conservation of energy can be fullfilled if we substitute f = ρ(ui nt + ~v2

2 +~g z),
with ui nt as the internal energy and g as the gravitational constant. But in the report we have made some
simplifications for solving the conservation of energy. The conservation laws may be written in integral or
differential form. The integral formulations are used to describe the change of mass, momentum or energy
within the volume, where the differential formulation yields an expression which may be interpreted as the
integral form applied to an infinitesimally small volume. We can consider Ω as an infinitesimal volume to
obtain the differential equation of the conservation laws. The flux of a vector field through a surface can
be related to the behavior of the vector field inside the surface by Gauss’s theorem, called the divergence
theorem

˛
∂Ω

(~f ·~n)dS =
ˆ
Ω

(~∇·~f )dV. (A.5)
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