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Second examiner: Dr. ir. D. Lathouwers

Delft, July 23rd 2018



ii



Abstract

In proton therapy, the calculation of the dose distribution is of great importance in order to
find the best treatment plan. For a treatment plan with high quality, several error scenarios
are investigated, in order to come up with a general plan that suits best in these scenarios. All
of the scenarios have a different simulated error, e.g., in patient displacement and proton beam
range. In order to cope with a large number of errors scenarios, a quick calculation method is
needed. In this work, a method that used Reduced Order Modelling (ROM) and subsequently
polynomial regression to overcome the computational problem is presented, as well as its results
on a real head and neck cancer patient. Before error scenarios are simulated, using inverse
optimisation a treatment plan is calculated for a perfectly known position and organ structure
of the patient, i.e. the nominal scenario. Then, several error scenarios are simulated and for each
of these scenarios, the real dose on tissue is calculated, using the treatment parameters that were
previously set for the nominal scenario. The dose distributions of all these scenarios are stored
in a matrix, on which a Singular Value Decomposition (SVD) is executed. A reduced order of
singular values and vectors is used, together with regression models on the right singular vectors,
to reconstruct the dose distribution matrix. This is done in order to create a computationally
cheap method for dose distribution calculations. The right singular vectors are now a function
of the used parameters: positioning errors dx, dy, dz and proton beam range error dρ. The
dose distribution matrix is reconstructed from the left singular vectors, first few singular values
and the function for the right singular vectors. Range errors with a uniform distribution with
a maximum of 3% and positioning errors with a normal distribution with a standard deviation
of 3mm in each direction were simulated. For 100 error scenarios, the dose distribution matrix
could be reconstructed with an average accepted error of 1% on a voxel relative to the maximum
dose for 96.5% of the voxels, using a voxel-by-voxel comparison. These results were obtained
for a 17th order of the SVD and a 7th order polynomial in the regression. On unseen test data,
the acceptance was 81.0% of the voxels with an allowed error of 1%. For an allowed error
of 3%, 92.5% of the voxels of this test set were accepted. These results are promising and
encouraging for future research. First of all, it is recommended to examine the regression of the
right singular vectors more closely, especially the regression of the higher order right singular
vectors. Further subjects of interest would be to perform the same procedure that is done on
the dose distribution matrix on the dose influence matrix. Also, harder-to-reach error scenarios,
like organ movement and tumour deformation could be taken into account. This research was
conducted at the Medical Physics and Technology section, a part of the Department of Radiation
Science and Technology at Delft University of Technology. The project was part of the Bachelor
program of Applied Physics at the Technical University of Delft.
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1 Introduction

Worldwide, every sixth death is due to cancer and its consequences, making it the second leading
cause of death, only behind cardiovascular diseases [1]. For 2016, it is estimated that 8.9 million
people died from the various types of cancer. This number is estimated to grow due to expected
population growth and ageing. The chance to develop cancer is 1 in 3 for both males and
females, while the risk of dying from cancer is 1 in 5 [2].

1.1 Radiation therapy

Treatment of a cancer patient is most often done with (a combination of) chemotherapy, radi-
ation therapy and surgery. For the second part, traditionally x-ray beams are used. However,
this method has its disadvantages. Proton therapy is a promising alternative, because of the in-
creased accuracy that can be reached. The use of proton therapy becomes more widespread, as
several proton therapy centres are being built worldwide [3]. A representation of the difference
between these two radiation methods is shown in Figure 1.

Radiating using photons leads to the undesired entrance and exit dose, as can be seen in
Figure 1(a). This rest dose is a major drawback of this traditional therapy. Some improvements
can be achieved, e.g., by including radiation from different angles to spread out healthy tissue
damage. In Figure 1(b) it can be seen that proton has the ability to destruct a tumour more
accurate, leaving surrounding tissue less damaged.

(a) With conventional x-ray radiation, the shallow
tissue between the entrance and tumour receives a
dose of radiation, as well as the deep tissue between
tumour and exit.

(b) For proton radiation, entrance tissue still re-
ceives dose, but this dose is lower than for x-ray
therapy. Additionally, when applied well, zero dose
is given to deep tissue.

Figure 1: Comparison of radiation impact on the body of x-ray therapy to that of proton
therapy. Image retrieved from Protom International [4].

In both cases, the process of treatment with radiating tissue is based on selected cell de-
struction through ionisation of an atom. This complex phenomenon will just superficially be
touched in this thesis. Selected cell destruction uses a specific source to create a particle that
delivers an amount of energy in a cell. The charged particle or photon will collide with an
electron that is bound to an atom. This electron is released from the atom, leaving an ion.
Damage on atoms leads to destruction of molecules, as part of cell structures, and eventually
this leads to DNA damage. Cancerous tissue cells are less capable in repairing DNA, compared
to healthy tissue, so cancerous cells will be disassembled and stop dividing more quickly.

During treatment, a patient will have to undergo several radiation sessions. When a patient
would receive all dose at once, healthy tissues that get even a relatively low dose lack time to
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recover from damage. When tissue is irradiated in several separated fractions, healthy cells gets
time to recover, while tumourous cells miss information in DNA that gives them the capability
to recover quickly.

1.2 Proton therapy and its challenge

With intensity modulated proton therapy (IMPT) it is possible to minimise the drawback of
damaging surrounding tissue, by making use of the sudden sharp dose curve of protons, which
can be seen in Figure 2. This characteristic Bragg-peak makes it possible to radiate the tumour
shape precisely, while surrounding tissue is spared from high doses. According to the law of
Lambert-Beer, given in Equation (1), the intensity I of a photon travelling through matter is an
exponential function of the linear attenuation coefficient µ and depth x with the initial intensity
I0. The tissues superficial to the tumour are irradiated with a beam of higher intensity than
the tumour itself.

I(x) = I0e
−µx (1)

Protons, on the other hand, have an increased energy number of collisions just before their
targeted stopping depth. The loss of energy in this Bragg peak, that can be seen in Figure 2,
causes accurate local increased tissue destruction.

Figure 2: X-ray beams lose energy and destroy tissue following a rather slow exponential de-
crease. The loss in energy of proton beams is narrowly peaked and shows a sharp decrease
after this Bragg-peak. Deep tissues will not receive dose. To make sure all tumourous tissue
is treated well, several beams are used. A single beam would only irradiate a small local area,
but several beams lead to a spread out Bragg-peak (SOBP) that covers the whole tumour.

As said, protons offer higher dose conformity compared to x-ray therapy, but this comes at
a cost. The dose distribution for x-ray therapy is rather insensitive to small errors, since in case
of such an error, the whole radiated area is just slightly modulated. In an error scenario, still
the majority of the tumour will be irradiated properly. However, the sharper intensity edges of
IMPT are more sensitive to uncertainties like patient positioning, proton beam range, internal
organ motion, tumour expansion and shrinkage or anatomical changes, like weight loss [5].
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The positioning error can be overcome by fixating a patient in its position, but this does not
account for other errors [6]. Another way to cope this issue is using robust treatment planning.
Instead of using just the nominal case, for which all uncertainties are ignored, different scenarios
considering a worst case error are also taken into account. The treatment plan is calculated
such that in all of these (error) scenarios, all of the constraints, i.e. treatment goals on dose
distributions, are achieved as well as possible.

1.3 Aim of this project

Calculating the dose for a large number of error scenarios would increase the quality of a
treatment plan, but it is computationally costly. This comes from the fact that in IMPT, each
error scenario has to be recalculated, for which the intensive calculation of the dose influence
matrix is needed. In this thesis, a computationally cheaper way of computing the real dose
distribution under simulated errors is presented. Errors in proton beam range and patient
positioning in first two and later three direction are simulated separately and combined. Using
a reduced order of the singular value decomposition (SVD) of the dose distribution matrix
first, and subsequently use a regression model on the right singular vectors, it is possible to
reconstruct the original dose distribution matrix. This computationally cheap method is tested
on a head and neck patient, by comparing to the slower accurate dose distribution calculations.
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2 Theory

2.1 Treatment planning

2.1.1 Treatment requirements

For each patient that is treated, a specific treatment plan has to be calculated. The steps that
have to be taken to come to such an IMPT plan are listed in Section 3.2. The requirements for
such plans are given by objectives and constraints on the dose distribution. Roughly speaking
should tumourous tissue absorb a higher radiation dose than healthy tissue. The requirements
are drafted in dialogue with a doctor and roughly speaking state that a target dose has to be
given to cancerous tissue, without damaging healthy tissues.

For the received dose, a distinction is made between the dose that irradiates a certain area
and the effect that this dose has. The Relative Biological Effect (RBE) ratio compensates for
the difference in biological effect that equal energies have on tissue and thus gives a measure
for the loss in cell function that a radiation unit leads to. The factor is dependent on the
type of radiation. IMPT uses a proton RBE relative to high-energy photons of roughly 1.1 [7].
Converting the physical dose to the RBE-weighted dose is just a matter of scaling.

2.1.2 Treatment plan calculations

The execution of treating a patient with IMPT is done using several proton beams. These
protons are first accelerated with a particle accelerator, before they travel to the patient. In
the IMPT plan calculations, the weight intensity that is needed for each proton beamlet is
optimised. During treatment, not just a single beam is used. Instead, for each beam, a grid of
bixels all shoot have beamlets with its own weight, as can be seen in Figure 3.

Figure 3: Visualisation of the grid of beamlet sources. On the right side only 3 slices of the
image are shown, whereas in the real case there are 161 voxel in x- and y-direction and 67 in
z-direction. See also Figure 5 and 6, where the CT image is given. Part of image is retrieved
from Mark Arntzenius [8].

The dose due to all of the individual beams can be calculated with several algorithms. One
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of them is the Monte Carlo calculation, which relies on the repeated simulation of the path of
an individual proton. The method that is used during this project is a pencil beam calculation
with a conventional pencil beam for IMPT, using the matRad equipment [9]. For this proton
dose (Ddose) calculation, the fall-off is analysed in lateral (X and Y ) and depth dependent (Z)
components separately.

Ddose = X(x, z)Y (y, z)Z(z) (2)

For the X(x, z) and Y (y, z) components, the dose fall-off is simulated with a single Gaussian
in x- and y-direction respectively. In this pencil beam algorithm, the effects of materials up-
stream of the patient and of the air gap between source and patient are taken into account [10].

Before optimisation of the bixel weights is started, several parameters are set, including
the number of beams, the angles of radiation and the bixel width. Once these are set, the
influence of a certain weight on the tissue is examined bixel by bixel. By inverse optimisation,
the treatment plan weight intensities are then obtained by minimising the cost function f of
Equation (3), that is weighted by pi for each of the objectives fi, where the sum goes over all
objectives i.

f =
∑
i

pifi (3)

The objectives fi are a sum over the errors that each voxel with index k in the objective
tissue makes, so

fi =
∑
k

|Dk −Dpd|, (4)

where Dk is the dose a voxel receives and Dpd is the prescribed dose for that voxel. An example
for an objective fi is the dose deviation from the mean requested dose for certain tissue. Other
objective examples are overdosing of healthy tissue or underdosing of tumourous tissue. For
all of these objectives, a penalty pi is given. Optimisation of the objective function is done
using the Interior Point Optimizer (IPOPT) method [11]. During the inverse optimisation,
constraints on the dose are taken into account as boundary conditions. Examples of constraints
are an absolute maximum or minimum dose on any voxel in a certain tissue.

Once the optimised bixel weights and the influence of the weights are known, the calculation
of the total dose distribution is possible. This total dose per voxel is the sum over all the
dosimetric effects of the individual beamlets.

2.1.3 Robust treatment plan calculations

One way of coping with setup and range uncertainties is to include them in the bixel weights
optimisation process. With robust planning, several errors are taken into account; e.g. errors
in patient positioning and organ movement. Optimising the IMPT plan is typically done using
the minimax approach, in which the (maximal) error of the worst-case scenario relative to the
prescription dose is minimised. The weight intensities are then inversely optimised, so that
the required dose is at minimum given to a minimum fraction of the voxels; e.g. 98% of the
tumourous cells receive 95% of the prescribed dose in at least 98% of the scenarios. [12] [13].

2.2 Reduced Order Modelling

In this project, factorisation of a matrix using Singular Value Decomposition (SVD) is per-
formed. The path that is followed is visualised in Figure 4. As shown in Figure 4(a) the matrix
D is decomposed in a matrix of left singular vectors U , a matrix containing singular values S
and a matrix containing right singular vectors V T [14]. Shown in Figure 4(c) is the reduced
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order matrix DO, which is computed from the first O left singular column vectors U , the first
O diagonal elements as singular values of S and the first O right singular row vectors of V T so
that

DO = UO ∗ SO ∗ V T
O . (5)

Performing SVD and taking a reduced order is an exact decomposition, so in the limit

lim
O→N

DO = D. (6)

(a) Visual representation of the singular value decom-
position. The information in D is represented by left
singular vectors in U , singular values in S and right
singular vectors in V T .

(b) A more economical version that can be used is
to take the biggest possible square matrix for S and
correspondingly change the size of U .

(c) Visualisation of theO’th order approximation of D,
where on the right-hand side of the equation only the
red highlighted parts of the matrices are extracted to
get as reduced order matrices UO on the left, SO in the
middle and V T

O on the right. Taking a reduced order
will result in loss of information from D, but most
information is stored in the first few singular values,
so keeping more terms will result in an ever-decreasing
amount of information that is added to D.

Figure 4: Visualisation of different types of Singular Value Decomposition of a matrix and the
resulting Reduced Order Model (ROM).
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3 Numerical methods and materials

3.1 Patient data

In this project, a contoured computed tomography (CT) scan of a real head and neck cancer
patient from the Common Optimization for Radiation Therapy (CORT) data set is used [9] [15].
The contours label tissue of the CT image after its biological name. In this way, tumourous
tissue can be separated from other organs, but most importantly from Organs At Risk (OAR).
An example of such an CT image is given in Figure 5. Here only a slice is shown, for z = 180mm,
whereas the whole CT image has 3 dimensions, namely x, y and z. This 3D CT image is given
in Figure 6.

Figure 5: Slice of a head and neck CT image of a cancer patient. For the tumour, different
regions are distinguished. The Gross Tumour Volume (GTV) is the region in which tumour
can be seen on a CT scan. The Clinical Target Volume (CTV) indicates the region where,
besides tumour visible on the CT image, microscopic cancerous cells might be found when
viewed surgically. The Planning Target Volume (PTV) is the region that is planned to be
irradiated, taken uncertainties of movement of the tumour into account. Only these PTVs are
indicated with a desired absorbed dose of ionising radiation in units of Gray (Gy). For its vital
functionality, the spinal cord is spared from high doses. The spinal cord shown in the CT image
is encompassed by a Planning Risk Volume (PRV), which again takes uncertainties of movement
into account, to be sure the spinal chord itself will be excluded from radiation dose. Besides,
the left and right parotids are spared, because damage could lead to the dry mouth syndrome.
The dose on skin is also minimised.
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(a) Without Planning Target Volumes indicated. (b) With Planning Target Volumes indicated.

Figure 6: 3D CT images, indicating the location of the Planning Target Volumes.

3.2 Treatment plan calculations

For this project, the Matlab software matRad is used. This is open source software for three-
dimensional radiation treatment planning for IMPT and other radiation therapies [9]. The steps
that are taken in order to come up with a plan are briefly described here. In this section, the
calculation and optimisation for only the nominal case scenario is explained.

In the first place, a 3D CT image containing patient data is loaded in the program. This
image is displayed in Figure 5. With the CT comes a segmentation set that indicates tissue
coordinates as well as clinical objectives and constraints (CST), as explained in Section 2.1.1.
The objectives and constraints that are used are listed in Table 1. Before calculating, a plan
structure (PLN) is set (See Figure 7), which includes the radiation modality and beam orienta-
tion. An automatic result is the beam geometry, i.e. the beamlet spot placements. The steering
information (STF) contains settings like beam width and angle. Using these information, the
dose influence matrix Di,j is calculated, which gives the relation between certain bixel weights
and the received voxel doses due to the weights. This dose distribution is a summation over
all the lateral dose profiles from the individual beams that were radiated from the bixel spots.
Then, using inverse optimisation, weights are assigned to all the bixels, in such a way that the
requirements of Table 1 are as closely met as possible.

Figure 7: The plan parameters that were set for the nominal treatment plan calculation, dis-
played in matRads Graphical User Interface.
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Table 1: Objectives and constraints (CST) for the optimisation. The volumes of interest (VOI)
are assigned either as target organ or as OAR. For each VOI, several parameters on objectives
or constraints are set.

3.3 Simulated errors

In a clinical case, one can come up with plenty of error scenarios that influence the received
dose. The scope of this project only includes errors in patient positioning and errors in proton
beam range. Other thinkable errors are organ movement, organ size change, tightened muscles
and breathing.

Positioning errors are simulated with a Gaussian with a standard deviation of 3mm. To
create one example error scenario first, the CT images isocenter is moved in the y-direction.

After performing a positioning error in 1 direction, the range error of the proton beams is
for N = 100 scenarios simulated with a uniform distribution between -3% and 3%. This range
shift is simulated by rescaling the CTs Hounsfield Units HU . The Hounsfield scale is a measure
of radiodensity, with a higher HU indicating that a unit of radiation is less able to pass the
material, so that material has higher stopping power. In case of up scaled Hounsfield units,
the proton beams lose their energy prior to their original stopping depth, reflecting a range
error. The HU -scale is relative to water, as is shown in Equation (7). µtissue, µwater and µair
are the linear attenuation coefficients for tissue, water and air. By definition, HUwater = 0 and
HUair = −1000.

HUtissue = 1000 ∗ µtissue − µwater
µwater − µair

(7)

After the range errors, 100 error scenarios of first 2- and later 3-directional displacements
are simulated, all with a standard deviation of 3mm in all directions. Lastly, 100 error scenarios
with a combination of both patient displacements and range errors are investigated.

3.4 Treatment plan recalculations

3.4.1 Recalculations of dose distribution

For each of the error scenarios, the resulting dose distribution matrix is calculated. The bixel
weights that were set for the nominal case will still be used, because the patient is irradiated
with the beams with these beamlet weight intensities. The dose will be calculated using these
non-ideal weights, without re-optimising. Both for range shifting and displacement, the dose
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influence of a unit weight changes with respect to the nominal case. The new dose every voxel
receives in every error scenario is stored in a matrix.

3.4.2 Representation of dose distribution

The RBE-weighted dose that each voxel gets is represented in 3 dimensional matrix form, which
shape is shown in Figure 8. This dose distribution matrix DM (i) is different for each different
error scenario i. The dimensions of a single dose distribution matrix are the same as these of
the CT scan: Nx = 161 voxels in x-direction, Ny = 161 voxels in y-direction and Nz = 67 voxels
in z-direction. The total number of voxels M = Nx ∗Ny ∗Nz = 161 ∗ 161 ∗ 67 ≈ 1.74 ∗ 106.

DM (i) =

D1,1,1 . . . DNx,1,1

...
. . .

...

D1,Ny ,1 . . . DNx,Ny ,1
D1,1,2 . . . DNx,1,2

...
. . .

...

D1,Ny ,2 . . . DNx,Ny ,2
D1,1,Nz

. . . DNx,1,Nz

...
. . .

...

D1,Ny ,Nz
. . . DNx,Ny ,Nz

Figure 8: Dose distribution matrix, where the elements DNx,Ny ,Nz are the doses that the voxel
receives in error scenario i.

This matrix representation with DM (i) ∈ RNx×Ny×Nz is converted to a vector DV (i) repre-
sentation, where for one scenario all voxel doses are arranged into one vector.

DV (i) =



D1,1,1
...

DNx,1,1
...

DNx,Ny ,1

D1,1,2
...

DNx,Ny ,2

D1,1,Nx

...
DNx,Ny ,Nz



∈ RM (8)

A full dose distribution matrix Dfulldose with the vectors DV (i) as columns is formed. The
size of this matrix depends on the number of scenarios N and the number of voxels M .

Dfulldose = [DV (1) DV (2) . . . DV (N)] ∈ RM×N (9)
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3.5 Singular Value Decomposition of dose distributions

Before the procedure of performing a SVD is executed, the size of the matrix is reduced to make
the SVD computationally cheaper. The masking is done with a cutoff dose. As visualised in
Figure 9, rows for which all voxels have a dose below 0.1 Gy are removed and only the rows
with at least 1 higher dose are modulated in Dfulldose,chopped.

Then, the procedure that is described in section 2.2 is used on Dfulldose,chopped, so that
instead of the matrices of Equation (10), those of Equation (11) will be used to obtain the
resultant dose distribution matrix.

Dfulldose,chopped = U ∗ S ∗ V T (10)

Dfulldose,chopped,O = UO ∗ SO ∗ V T
O . (11)

(a) Dfulldose, where M is the number of
voxels in the CT and N is the number
of error scenarios. Only the green high-
lighted areas pass the dose mask criterion
of > 0.1Gy.

(b) Dose distribution matrix
Dfulldose,chopped after chopping off
low values, where Mr is the number of
remaining voxels after chopping of low
doses. N is the number of error scenarios.

Figure 9: Using a dose mask, the rows for which the RBE-weighted doses < 0.1Gy in all N
error scenarios are chopped off.
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3.6 Regression of right singular vectors

The next step is to find a function

V T
f,O(dx, dy, dz, dρ) ≈ V T

O (dx, dy, dz, dρ), (12)

that will be used to reconstruct the right singular values by only plugging in the parameters of
the error scenario. Several orders of polynomial and sinusoidal regressors will be compared to
estimate V T as close as possible. First, for 1 and 2 directional errors, MATLABs Curve Fitting
Tool is used up to perform regression with 5th polynomial orders and separately for 5 sinuses.
For 3- and 4-directional errors, a regression model with up to 3rd order polynomial crossterms
and up to 7th order polynomial separate terms is used. In all cases, most desirable is to have
as less parameters as possible, while preserving sufficient accuracy.

Using the estimated function, calculation of V T can be done quickly, while the matrix
multiplication of Equation (13) is also computationally cheap. Together this paves the path for
quick dose distribution calculations. The parameters can be filled in and the resultant dose is
calculated, using the matrices U and S, which were calculated from the SVD of the nominal
case.

Dfulldose,chopped,f,O(dx, dy, dz, dρ) = UO ∗ SO ∗ V T
f,O(dx, dy, dz, dρ), (13)

where
Dfulldose,chopped,O ≈Dfulldose,chopped,f,O(dx, dy, dz, dρ). (14)

Dfulldose,chopped,O is the reduced order, full dose distribution matrix, according to how
it is visualised in Figure 4(c). The reduced order, regressed, full dose distribution matrix
Dfulldose,chopped,f,O is easy to compute, when the input variables are known.

3.7 Reconstructing the dose distribution matrices and evaluating the accu-
racy of the Reduced Order Model and regression

As mentioned in Section 2.2, the SVD is exact in the limit O → N . However, taking only the
first O order will result in some loss of information, unless the left out singular values are 0.
To analyse the effect of reducing the order, Dfulldose,chopped,O is compared to Dfulldose,chopped

with a voxel-by-voxel comparison using Equation (15), where i and j represent the position of
the voxel in the dose distribution matrix. The difference between the voxels is divided by the
maximum dose Dmax of Dfulldose,chopped. The fraction of the voxels that is within acceptable
margin, having a percentage error in dose εdose is calculated. First this is done for an average
over N scenarios, then also for the worst case error scenarios, where the range error dρ or the
displacement error ds =

√
dx2 + dy2 + dz2 is biggest.

εdose(i, j) =
Dfulldose,chopped,O(i, j)−Dfulldose,chopped(i, j)

Dmax
(15)

To see how well the regression on the right singular vectors works, V T
f,O is compared to

V T
O . In order to do this comparison, the coefficients are scattered and the estimated function

is plotted. For quantitative insight, the residuals are calculated.
For comparing the regression of the training set to the data of the test set, its right singular

vectors are calculated using Equation (16)-(18), where the pseudo-inverse is used.

Dfulldose,train,chopped,f,O ≈ Utrain,O ∗ Strain,O ∗ V T
train,f,O (16)

The following step is sort of a forced SVD, because U and S are not chosen freely. Still, in the
limit O → N this is an exact decomposition.
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Dfulldose,test ≈ Utrain,O ∗ Strain,O ∗ V T
test,f,O (17)

And to extract the new right singular vectors on the right side only

(Utrain,O ∗ Strain,O)−1 ∗Dfulldose,test ≈ V T
test,f,O. (18)

The resultant right singular vectors for the test set are scattered in the same image as
described for the train set.

To see how well the regression works on the dose distribution matrix, Dfulldose,chopped,O is
compared to Dfulldose,chopped,f,O, again using the voxel-by-voxel comparison.

To see how well the combination of the ROM and the regression works, Dfulldose,chopped,f,O

is compared to Dfulldose,chopped using voxel-by-voxel comparison. This is also done for unseen
test data, where Dfulldose,chopped,f,O is compared to Dfulldose,chopped,test. For the test data, still
the dose mask is used, and only the rows that were included for training data are examined.
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4 Results and Discussion

4.1 Nominal treatment plan results

To start calculations, a treatment plan is calculated for the scenario in which the exact position
of the patient is known and fixed. This is called the nominal scenario. When the steps of
Section 3.2 are followed, the dose that every voxel gets is calculated with this treatment plan.
In Figure 10, the resulting dose for each voxel is shown. The real image is a 3D image, so here
only a single slice is shown.

Figure 10: Physical radiation dose per fraction is plotted in the CT image of Figure 5. It can
be seen that the PTV receives a high dose compared to the surrounding tissue. Even at the
PTV boundaries, the dose is relatively high. The spinal cord PRV, skin and parotids are spared
from high doses.

The resulting dose can be analysed using a Dose Volume Histogram (DVH), which is done
in Figure 11(a). With a DVH, the fraction of an organ that receives at least a certain dose
can be obtained. From a DVH, the exact distribution for each voxel can not be read, so it
works complementary to Figure 10. In Figure 11(a) it can be seen that the dose falloff for both
PTVs is rather steep between 2.2 and 2.5Gy. This means that almost all of the tumour volume
receives well-nigh the same dose. This outcome is preferred over a dose with a higher deviation.
The received dose that is shown here is the RBE-weighted dose.
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(a) DVH of the nominal case scenario. The mean dose for the PTV63 is 2.2Gy and the mean dose for
the PTV70 is 2.3Gy. The mean dose on the spinal cord is 0.091Gy. This is an acceptable plan, which
still could be improved, e.g. by increasing the number of beams and optimising the radiation angles.

(b) DVH of the error case scenario, where dy = 14mm. The mean dose for the PTV63 is 1.8Gy, for the
PTV70 it is 2.0Gy. The mean dose on the spinal cord is 0.4Gy.

Figure 11: DVH of the nominal scenario and of an error scenario. Shifting the patient by 14mm
has a significant influence on the quality of the dose distribution that results from the nominal
treatment plan. In the error scenario, the PTV70 that includes the tumour should receive a
dose of 23.3Gy per fraction, but is on average underdosed by 0.3Gy per fraction and the spinal
cord PRV, that should be protected, is on average overdosed by 0.3Gy. This is the result of
not taking this error scenario into account in the optimisation of the plan.

4.2 Demonstrating the sensitivity of IMPT treatments with an error in y-
direction

To start the calculation of dose distributions in error scenarios, an error in the placement of the
patient is simulated. In this case, the patient is moved by −14mm in y-direction. The dose
is recalculated, following the steps of Section 3.4.1. The resultant dose distribution is shown
in Figure 12(b). The difference between the nominal and error scenario is shown in Figure 12.
What catches the eye is the blue and red horizontal bar in Figure 12(c), indicating respectively
a decreased and increased received dose. This difference becomes clearer in the DVH (see Figure
11(b)). In this error scenario, the plan would not be sufficiently adequate. This demonstrates
that for calculation of an IMPT plan, it is of importance to know these inadequacies beforehand,
in order to optimise the bixel weights also for such error scenarios.
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(a) Resulting physical dose distribution in the
nominal position for the patient.

(b) Resulting physical dose distribution in the error
scenario, for which the patient is shifted by dy =
−14mm. In this figure, one can already see that
part of the dose missed its target, while the spinal
cord receives too much dose.

(c) Difference between the dose distributions of the nominal case and the displaced
case. Like in the DVH of Figure 11(b), it can be seen that the spinal cord PRV
is overdosed and the PTV at around y = 150mm is underdosed relative to the
nominal plan.

Figure 12: The resulting dose distributions in the nominal and a displacement scenario compared
in a CT image slice.
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4.3 Range errors

The problem of having an inadequate treatment plan in an error scenario, like in Section 4.2,
can be overcome. But to know the influence on error scenarios, the dose distribution in these
error scenarios should be calculated before optimising the bixel weights.

In this section, range errors will be analysed. With the procedure mentioned in Section 3.5,
the rows for which every scenario has a low dose are removed. This results in a decrease from
M ≈ 1.7 ∗ 106 rows to a remaining Mr ≈ 7.4 ∗ 104 rows, which makes the SVD computationally
cheaper.

4.3.1 Order approximation of singular values

The dose distribution matrix D, resulting from 100 range errors, has size 7 ∗ 104 voxels by 100
range error scenarios and is decomposed using Equation (5). The singular values are plotted
in Figure 13. It is important to see the decrease in these singular values, knowing that the
first principal component contains more information than the second, and the later ones are of
ever decreasing importance. The first 5 principal components show a decrease of 4 orders in
magnitude. Because of this decreasing contribution, from the next section on only the first O
principal components will be taken into account, based on the accuracy an order gives.

Figure 13: Singular value decrease for the range error scenarios, with a range error between -3%
and 3%, where a uniform distribution is used to simulate errors.

4.3.2 Reconstructing the dose distribution matrix after using a reduced order of
the SVD

The chopped dose distribution matrix is reconstructed using Equation (11). This reconstructed
matrix is compared to the original dose distribution matrix, and the accuracy of the reconstruc-
tion is analysed. In Figure 14(a), the number of voxels that are reconstructed with a certain
error are plotted for several orders, where the accuracy is averaged over the 100 scenarios. In
Figure 14(b), the accuracy is plotted for the worst case scenario, where the range error was
biggest.
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(a) A comparison between the dose distribution
for several Oth orders of the SVD and the cal-
culated dose distribution, as an average over the
100 scenarios.

(b) A comparison between the dose distribution of sev-
eral orders of the SVD, and the calculated dose distri-
bution, for the worst case scenario, where the range
error was 2.93%.

Figure 14: Number of voxels having a certain error plotted for several orders, both for the
average and a worst case scenario.

Using the error histogram (Figure 14), we can determine the order O that is required for
a certain accuracy. The voxels on the left side of an allowed percentage error are the voxels
that are calculated to have at least that chosen accuracy. From Figure 15, it can be seen that
in order to recompute 99.9% of the dose distribution matrix voxels with an accuracy of 0.5%,
only 4 orders of the SVD are needed. For a required fraction of voxels with a margin of 0.1% in
99.9% of the voxels, an order O of 5 is needed, as can be seen in . This most strict requirements,
i.e. an accuracy of 0.1% in 99.9% of the voxels, are set. Hence, in the continuation, only the
first 5 principal components and first 5 eigenvectors in V T are taken into account, so that

Dfulldose,chopped,5 = U5 ∗ S5 ∗ V T
5 . (19)

Figure 15: Fraction of voxels having a smaller error than 0.1% per voxel, averaged over 100
scenarios, as a function of the number of orders used. O = 4 is needed when 99% of the voxels
should be accepted. For an acceptance of 99.9% of the voxels, O = 5 is required.
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4.3.3 Regression

On the right singular vectors a regression is performed with polynomials up to the 5th order,
which can be seen on the left-hand side in Figure 16. This regressions are also compared to
regressions with 5 sinuses, on the right-hand side of that figure. For the first three rows, the
polynomials perform better. On the latter ones, the sinuses perform better, but as these rows
are less important, the calculation in this section is continued with polynomial regression of the
5th order.

(a) Coefficients of row 1, as a function of the ran-
domly generated range, with the regression function
of 5 polynomials.

(b) Same as the figure on the left, but regression is
now performed with 5 sinuses.

(c) Coefficients of row 4, as a function of the ran-
domly generated range, with the regression function
of 5 polynomials.

(d) Same as the figure on the left, but regression is
now performed with 5 sinuses.
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(e) Coefficients of row 5, as a function of the ran-
domly generated range, with the regression function
of 5 polynomials.

(f) Same as the figure on the left, but regression is
now performed with 5 sinuses.

Figure 16: Plots of the coefficients in V T versus range errors, with the fitted regression curves
and corresponding residuals.

4.3.4 Performance on train and test data

After performing regression, the resulting matrix is compared to the matrix before the regression.
Also, the right singular vectors with regression are used for reconstruction of the original dose
distribution matrix and this matrix is compared voxel-by-voxel. As shown in Figure 17(b),
92.7% of the voxels have a value within margins of 0.1%.

(a) Comparing the reduced order matrix with
regression to the reduced order matrix results in
93.0% acceptance of the voxels, allowing 0.1%
difference. All voxels have an error below 1%.

(b) Comparing the reduced order matrix with regres-
sion to the original matrix results in 92.7% acceptance
of the voxels, allowing 0.1% difference. All voxels have
an error below 1%.

Figure 17: Comparison between the reconstructed matrices and the original matrix, for the
average over all scenarios. Regression is done with a 5th order polynomial and O = 5.

Reduced Order Modelling and subsequently regression on the right singular vectors works
well on the training set. Now using the procedure of Section 3.7, the coefficients for unseen test
data are obtained and investigated. For several rows, the coefficients are compared with the
training data and corresponding regression curves in Figure 18.
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(a) First row of V T
train compared to V T

test, plotted
with the regression function.

(b) Second row of V T
train compared to V T

test, plot-
ted with the regression function.

(c) Third row of V T
train compared to V T

test, plotted
with the regression function.

(d) Fourth row of V T
train compared to V T

test, plotted
with the regression function.

Figure 18: Comparison of coefficients from training set and test set per row.

These results on the coefficients look promising for restoring the information in the dose
distribution matrix as well. The data points of the training set are on the same curve as those
of the test set. The comparison for the test between the reconstructed dose distribution and
the original is made in Figure 19, according to Equation (17).
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Figure 19: Comparing the test set, reconstructed with the function to the real calculated dose
distribution matrix results in 91.8% acceptance of the voxels, allowing 0.1% error with voxel-
by-voxel comparison. This is an average over N = 100 test error scenarios.

What could be expected from the coefficients of the training results occurs for the test set
as well indeed. Using the reduced order and regression function works really well. The result
is an almost perfectly reconstructed dose distribution matrix, accepting all of voxels, having
an allowed error of 1% compared to the maximum dose. Being even stricter with an allowed
margin of 0.1%, still 91.8% of the voxels are accepted, so the reconstruction results for range
error scenarios are extremely good.
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4.4 Positioning errors in 2 directions

After the successful procedure on range errors, position errors in 2 direction are examined. Dose
masking leaves only Mr ≈ 8 ∗ 104 rows. Again 100 error scenarios are obtained.

4.4.1 Order approximation of singular values

The singular values are decreasing, just like for the range error. As can be seen in Figure 20,
the values decrease with an order of magnitude of 3 within the first 11 principal components.

Figure 20: Singular values decrease for positioning errors in x- and y-direction, with displace-
ments error randomly generated with a Gaussian with a standard deviation of 3mm.

4.4.2 Reconstructing the dose distribution matrix after using a reduced order of
the SVD

In Figure 21(a), the error that is made on the voxels is plotted for several orders, as an average
over 100 scenarios. In Figure 21(b) this is done for the worst case scenario. From both of the
images it can be obtained that taking only the first couple of orders leads to a high fraction of
information being preserved.
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(a) A comparison between the dose distribution
of an order of the SVD and the real calculated
dose, as an average over the scenarios.

(b) A comparison between the dose distribution
of an order of the SVD and the real calculated
dose, for the worst case scenario, where the dis-
placement error ds = 13.0mm.

Figure 21: Distribution of voxel dose errors for several orders, both averaged over 100 scenarios
and for the worst case scenario.

In order to recompute 99% of the dose distribution matrix elements with an accuracy of
0.5%, 14 orders of the SVD are needed (Figure 22(b)). For 99.9% acceptance, the first 29 orders
should be used. For a required margin of 1% in 99.9% of the voxels, an order of 12 is needed,
as can be seen in Figure 22(a). In the continuation, only the first 14 principal components and
first 14 eigenvectors in V T are taken into account, to ensure accurate dose reconstruction in
99% of the voxels.

(a) Fraction of voxels having a smaller error than
0.5% per voxel, averaged over 100 scenarios, as a
function of the number of orders used. O = 14 is
needed when 99% of the voxels should be accepted.
For an acceptance of 99.9% of the voxels, O = 29 is
required.

(b) Fraction of voxels having a smaller error than
1% per voxel, averaged over 100 scenarios, as a func-
tion of the number of orders used. O = 8 is needed
when 99% of the voxels should be accepted. For
an acceptance of 99.9% of the voxels, O = 12 is
required.

Figure 22: Accepted voxelfractions as a function of the order O, for a 0.5% (a) and a 1% (b)
voxel error margin, as an average over 100 scenarios.
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4.4.3 Regression

On the right singular vectors a regression is performed with polynomials up to the 5th order in
both x- and y-direction. The resulting surfaces can be viewed in Figure 23.

(a) Coefficients and scattered deviations with
fitted surface for row 1 of V T .

(b) Coefficients and scattered deviations with
fitted surface for row 2 of V T .

(c) Coefficients and scattered deviations with
fitted surface for row 3 of V T .

(d) Coefficients and scattered deviations with
fitted surface for row 4 of V T .

(e) Coefficients and scattered deviations with
fitted surface for row 7 of V T .

(f) Coefficients and scattered deviations with
fitted surface for row 8 of V T .
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(g) Coefficients and scattered deviations with
fitted surface for row 13 of V T .

(h) Coefficients and scattered deviations with
fitted surface for row 14 of V T .

Figure 23: The coefficients of V T are plotted against the displacement data dx and dy. Also in-
cluded are the fitted surfaces and corresponding residuals. In all cases, the 5th order polynomials
in both x- and y-direction are used.

4.4.4 Performance on train and test data

Just like in the range error case, are the resulting matrices compared. Analysing regression only
is done in Figure 24(a), both the reduced model and regression in Figure 24(b).

(a) Comparing the reduced order matrix with re-
gression to the reduced order matrix results in
97.3% acceptance of the voxels, allowing 1% dif-
ference.

(b) Comparing the reduced order matrix with re-
gression to the original matrix results in 96.5% ac-
ceptance of the voxels, allowing 1% difference.

Figure 24: Comparison of reduced order, regressed dose distribution matrix with the reduced
order and original matrix in a histogram. The number of voxels that has a certain error is
plotted for the 14th order of the SVD.

The reduction of the order and subsequently regression on the right singular vectors works
well on the training set, although the acceptance is lower than with range errors. A comparison
is made between the coefficients for training and test data in Figure 25. It can be seen that the
coefficients lay almost on the same surface, which points to a rather good working regression
model.
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(a) Coefficients for row 1. (b) Coefficients for row 2.

(c) Coefficients for row 9. (d) Coefficients for row 10.

(e) Coefficients for row 13. (f) Coefficients for row 14.

Figure 25: Comparison between test set and training set for several rows of V T . Also the fitted
surface is plotted.
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Figure 26: Comparing the test set, reconstructed with the function to the real calculated dose
distribution matrix results in 64.1% acceptance of the voxels, allowing 1% error with voxel-by-
voxel comparison. This is an average over N = 100 test error scenarios.

However, there is a significant drop in accuracy between range and positioning errors. Where
for range errors all voxels were accepted, allowing 1% difference, are for positioning errors only
64.1% of the voxels within margins. It is likely that this comes from the increased number of
degrees of freedom, but there might be other influences as well. In the first place, it is possible
that range errors are more consistent in the influence on the dose distribution matrix. Secondly,
the difference can be a result of the direction in which the displacement is performed, namely x
and y. As can be seen in Figure 7, the beams travel from a gantry angle of 70◦ and 270◦, which
is for the first beam an angle of 20◦ to the x-axis, and for the second beam a shift parallel to
this axis. A reason for the falloff can be that the regression overfits on the dependence of the
error in this direction. The error in 2 direction will be repeated for directions y and z. A reason
that can not be overcome by this change of direction is the influence of outliers in the test set.
For that, a higher number of error scenarios would have to be simulated.

4.4.5 Positioning errors in y and z direction

For this part, some underpinning figures are included in Appendix A. The same steps that are
taken for the displacement dx and dy will now be taken. In Figure 41(a), the singular values
are displayed, in Figure 41 the error that is made on the voxels is plotted for several orders of
the SVD. In Figure 42, the fraction of voxels that is accepted is plotted for several margins.
Figure 43 shows how good the reconstruction of the original and reduced order matrix works.

To acquire same accuracy in the original dose distribution matrix as in the previous section,
21 orders have to be taken instead of 14. Subsequently, the regressions are performed and
compared to Figure 23. The regression functions of Figure 44 seem to have clearer dependence
on both directions, instead of a clear dependence on one direction and hardly any on the second
direction. With the reduced order and regression, the original dose distribution matrix can in
98.4% of the voxels be reconstructed with an accuracy of 1%, which is low compared to the
dx-dy case.
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However, as can bee seen in Figure 27, the performance drops less on unseen test data,
relative to training data. The regression thus works better in general case, so the problem of
overfitting is reduced.

Figure 27: Comparing the test set, reconstructed with the function, to the real calculated dose
distribution matrix results in 87.8% acceptance of the voxels, allowing 1% error with voxel-by-
voxel comparison. This is an average over N = 100 test error scenarios.
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4.5 Positioning errors in 3 directions

Now, heading towards an error in directions x, y and z, the matrix can be chopped from
M ≈ 1.7 ∗ 106 rows to Mr ≈ 8 ∗ 104.

4.5.1 Order approximation of singular values

The decrease in singular values in Figure 28(a) is still visible. The data for these error scenarios
is generated using a Gaussian with a standard deviation of 3mm in all direction. When a new
data set is created with standard deviation 5mm in all direction, this drop-off tends to go a
little slower, as can be seen in Figure 28(b). Still, for the first 20 orders a decrease of factor
1000 can be noticed.

(a) Singular value decrease for the 3 directional er-
ror scenarios, where data is created with standard
deviation of 3mm.

(b) Singular value decrease for the 3 directional er-
ror scenarios, where data is created with standard
deviation 5mm.

Figure 28: Singular value decrease for two sets of 3-directional simulated errors, one with
standard deviation of 3mm (a), one with standard deviation of 5mm(b).
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4.5.2 Reconstructing the dose distribution matrix after using a reduced order of
the SVD

In Figure 29(a) and 29(b), the error that is made on the voxels is plotted for several orders, as an
average over 100 scenarios. In Figure 29(c) and 29(d) this is done for the worst case scenarios.
The right hand side figures represent the scenarios with bigger deviation in the displacement.

(a) Error on the dose per voxel for several orders,
averaged over the 100 scenarios. Data set with
positioning errors with standard deviation 3mm.

(b) Error on the dose per voxel for several orders,
averaged over the 100 scenarios. Data set with po-
sitioning errors with standard deviation 5mm.

(c) Error on the dose per voxel for several orders for
the worst case scenario, where ds = 13.0mm. Data
set with positioning errors with standard deviation
3mm.

(d) Error on the dose per voxel for several orders for
the worst case scenario, where ds = 16.8mm. Data
set with positioning errors with standard deviation
5mm.

Figure 29: Comparison of the influence of the order O on the accuracy of the reconstruction,
both for a worst and average scenario, with positioning errors with a standard deviation of 3
and 5mm.

In order to recompute 99% of the dose distribution matrix elements with an accuracy of
0.5%, the 31 orders of the SVD are needed, as can be seen in Figure 30(a). For 99.9% acceptance,
the first 49 orders should be used. For a required accuracy of 1% in 99% of the voxels, an order
of 17 is needed, as can be seen in Figure 31. In the continuation, only the first 17 principal
components and first 17 eigenvectors in V T are taken into account. For the higher-deviation
case, the first 21 components and eigenvectors would be needed to reach same accuracy. A plot
of the fraction of voxels that is reconstructed with an accuracy of 0.5% is shown in Figure 31.
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(a) Fraction of voxels having a smaller error than
0.5% per voxel, averaged over 100 scenarios with
standard deviation 3mm, as a function of the num-
ber of orders used. O = 31 is needed when 99% of
the voxels should be accepted. For an acceptance
of 99.9% of the voxels, O = 49 is required.

(b) Fraction of voxels having a smaller error than
0.5% per voxel, averaged over 100 scenarios with
standard deviation 5mm, as a function of the num-
ber of orders used. O = 40 is needed when 99% of
the voxels should be accepted. For an acceptance
of 99.9% of the voxels, O = 58 is required.

Figure 30: The average accepted voxelfraction as a function of the order O, for datasets with a
different standard deviation in the displacement error.

Figure 31: The average accepted voxelfraction as a function of the order O. O = 17 is needed
when 99% of the voxels should be accepted. For an acceptance of 99.9% of the voxels, O = 24
is required.
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4.5.3 Performance on train and test data

The result on training data are shown in Figure 32. The results are still very reasonably,
quantitatively comparable to the 2 directional error scenario. Especially the accuracy on the
test set, shown in Figure 33, is promising, showing 88.7% of the voxels being accepted within
margins of 1%.

(a) Comparing the reduced order matrix with regres-
sion to the reduced order matrix results in 90.0% ac-
ceptance of the voxels, allowing 1% difference.

(b) Comparing the reduced order matrix with regres-
sion to the original matrix results in 87.1% acceptance
of the voxels, allowing 1% difference.

Figure 32: Comparison of reduced order, regressed dose distribution matrix with the reduced
order and original matrix.

Figure 33: Comparing the test set, reconstructed with the function to the real calculated dose
distribution matrix results in 88.7% acceptance of the voxels, allowing 1% error with voxel-by-
voxel comparison. This is an average over N = 100 test error scenarios.
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4.6 Combination of positioning and range errors

The more different types of errors are taken into account when simulating an error scenario,
the more it represents real life scenarios. In this section, both positioning and range errors
are considered. Reduction in size of the dose distribution matrix lead to a decrease from
M ≈ 1.7 ∗ 106 to Mr ≈ 9 ∗ 104 rows.

4.6.1 Order approximation of singular values

The decrease of singular values, shown in Figure 34, tends to go slower than in all previous
cases. However, still there is a 4 orders of magnitude difference between the first and the 25th

principal component.

Figure 34: Singular value decrease for the scenarios with error for dρ and dx, dy and dz direction.

4.6.2 Reconstructing the dose distribution matrix after using a reduced order of
the SVD

Taking too few orders will not lead to a nicely reconstructed dose distribution matrix. The
dependency of the accuracy of the SVD order is shown in Figure 35 for both the average and
the worst case scenarios. As can be seen, the accuracy increases when the number of orders O
increases. This becomes also clear from Figure 36, from which the average accepted fraction of
the voxels can be obtained.
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(a) Average relative error on the reconstructed voxels for several orders.

(b) Relative error on the reconstructed voxels for sev-
eral orders. The error is for the worst range scenario,
where dρ = 2.98%.

(c) Relative error on the reconstructed voxels for
several orders. The error is for the worst displace-
ment scenario, where ds = 13.0mm.

Figure 35: Histogram with the accuracy of reconstruction of the voxel doses for several orders
and different scenarios.
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(a) 0.5% deviation per voxel requires O = 35 when
99% of the voxels should be accepted. For an accep-
tance of 99.9% of the voxel, O = 52 is required.

(b) 1% deviation per voxel requires O = 18 when
99% of the voxels should be accepted. For an accep-
tance of 99.9% of the voxel, O = 26 is required.

Figure 36: The average accepted fractions as function of the reduced order of the SVD.

4.6.3 Performance on train and test data

First, the performance of the regression alone is analysed. In Figure 37, the number of voxels
that are accepted are plotted against the error. Then, the performance on the original matrix
is analysed in Figure 38. As is expected, the difference between these two figures is not big,
because for O = 26, the ROM loses only a small fraction of the dose distribution information.
As can be seen, the dose distribution matrix for the training set can be reconstructed with an
accuracy of 1% for 96.5% of the voxels.
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Figure 37: Comparing the reduced order matrix with regression to the reduced order matrix
results in 98.0% acceptance of the voxels, allowing 1% difference.

Figure 38: Comparing the reduced order matrix with regression to the original matrix results
in 96.5% acceptance of the voxels, allowing 1% difference.

And again, this reduced order, regression model is tested on unseen test data. The results
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show that allowing a deviation of 1%, 81.9% of the voxels are accepted, which is a reasonably
high fraction. For a deviation of 3%, 92.5% of the voxels are accepted. This is a reasonable
accuracy, surely regarding the computational speed of the process.

Figure 39: Comparing the test set, reconstructed with the regression function to the real calcu-
lated dose distribution matrix results in 81.0% acceptance of the voxels, allowing 1% error with
voxel-by-voxel comparison. This is an average over N = 100 test error scenarios.

4.7 Computational speed

The results show that in most cases, the dose distribution matrix can be computed with reason-
able accuracy. The time that calculating the dose distributions of 100 error scenarios took was
6±1h. After this procedure was done, the reduced order model and subsequently the regression
model took 0.03 s for 100 error scenarios. The total time for the calculation of dose distributions
for 200 error scenarios is then approximately 6h. However, when the number of unseen error
scenarios increases, the total computational time hardly increases. The dose distributions of
any new error scenario can be calculated very quickly, using Equation (17). This is a great
result for the improvement of optimisation of an IMPT plan.
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5 Conclusion and Recommendations

In conclusion, it can be said that with a Reduced Order Model of the Singular Value Decom-
position, a dose distribution matrix can be approximated to acceptable level. For 100 range
and positioning error scenarios of at maximum 3% and a standard deviation of 3mm in all
directions, only the first 35 order were needed to reach an accuracy of 0.5% margin in 99% of
the voxels. Performing a regression on the right singular vectors of the singular vectors works
good for range and positioning errors of at maximum 3% and a standard deviation of 3mm in
all direction for the first 8 rows with a 5th order polynomial function. With this reduced order,
regression model, the full dose distribution matrix could be restored with 98.8% acceptance of
voxel, allowing a deviation of 1%. On test data, the acceptance was lower, with 81.0% accep-
tance for margin of 1%. For an allowed margin of 3%, 92.5% of all voxel were accepted, using
voxel-by-voxel comparison.

For future research, some topics raised interest. In the first place, the same procedure that
is executed in this project could be repeated using a better nominal treatment plan, including
multiple beams from multiple directions. Besides, analysing these beams could be done with a
Monte-Carlo simulation instead of a pencil beam calculation.

Besides that, increasing the size of the training data set could lead to a higher accuracy in
the regression, while increasing the test set lead to more certainty in results. Also, evaluating
the deviations that were taken in this thesis, one can conclude that they do not represent the
real treatment, where the discrepancy in the patient positioning can be reduced to no more
than 5mm in each direction [16]. In order to create data that represents all of the possible error
scenarios, one could also use linearly spaced intervals for the errors dx, dy, dz and dρ. This
reduces the influence of outliers on the regression model.

The regression on the right singular vectors is performed such that the error between V T
f as

a function and V T is minimised. For this part, also other regression models can be examined,
in order to create better fits. Alternatively, one could investigate in minimising the Euclidean
norm ||UO ∗ SO ∗ V T

f,O −Dfulldose,chopped,f,O||2.
In order to come up with scenarios that represent errors real treatments more accurate,

different types of errors can be simulated, e.g. rotation of the patient. Also harder-to-reach
error scenarios, like organ movement and tumour deformation could be taken into account.

With the whole procedure discussed in this thesis, calculating the dose distribution became
computationally cheaper. However, to come up to the answer, still a number of dose influence
matrices have to be calculated, before proceeding with the dose distribution calculation. Perhaps
most favourable future research would be to investigate in applying the same procedure with
ROM and regression on the dose influence matrix Dij . By doing this, the influence of the error
that comes from the multiplication of the bixel weight intensities by the influence matrix can be
reduced. In that case, the influence of a certain set bixel weight intensities on an error scenario
could quickly be calculated with the reduced order, regressed dose influence matrix Dij,f,O and
the set of weights. Optimisation of the bixel weights can then be done quicker, because after
each iteration, the resulting dose distribution is quickly calculated.
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A Figures for the dy-dz error scenarios

Figure 40: Singular values decrease for positioning errors in x- and y-direction, with displace-
ments error randomly generated with a Gaussian with a standard deviation of 3mm.

(a) A comparison between the dose distribution of
an order of the SVD, compared to the real calculated
dose, as an average over the scenarios.

(b) A comparison between the dose distribution of
an order of the SVD, compared to the real calcu-
lated dose, for the worst case scenario, where the
displacement error ds = 9.54mm.

Figure 41: Number of voxels for each accuracy plotted for several order, both for an averaged
and a worst case scenario.
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(a) Accuracy as a function of the order, with an
accepted margin of 0.5% on a voxel, averaged over
100 scenarios. The 27th order is needed in order to
recompute 99% of the voxels within, the 44th order
for 99.9% acceptance.

(b) Accuracy as a function of the order, with an
accepted margin of 1% on a voxel, averaged over
100 scenarios. The 14th order is needed in order to
recompute 99% of the voxels within, the 21th order
for 99.9% acceptance.

Figure 42: For an average over all scenarios, the accepted voxelfraction as a function of the
order, for several allowed voxel error margins.

(a) Comparing the reduced order matrix with re-
gression to the reduced order matrix results in
97.3% acceptance of the voxels, allowing 1% dif-
ference.

(b) Comparing the reduced order matrix with re-
gression to the original matrix results in 96.5% ac-
ceptance of the voxels, allowing 1% difference.

Figure 43: Comparison between the reconstructed matrices and the original matrix, for the
average over all scenarios. Regression is done with a 5th order polynomial and O = 21.
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(a) Coefficients and scattered deviations
with fitted surface for row 1 of V T .

(b) Coefficients and scattered deviations
with fitted surface for row 2 of V T .

(c) Coefficients and scattered deviations
with fitted surface for row 4 of V T .

(d) Coefficients and scattered deviations
with fitted surface for row 5 of V T .

(e) Coefficients and scattered deviations
with fitted surface for row 6 of V T .

(f) Coefficients and scattered deviations
with fitted surface for row 8 of V T .

(g) Coefficients and scattered deviations
with fitted surface for row 9 of V T .

(h) Coefficients and scattered deviations
with fitted surface for row 10 of V T .

Figure 44: Plots of displacement data versus the coefficients in V T , with the fitted surfaces and
its residuals. In all cases, the 5th polynomials is both x- and y-direction is used.
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