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1
Introduction

1.1. Proton Radiation Therapy
Proton therapy is a type of radiation therapy which uses high energy protons to irradiate the tumor. A particle
accelerater is used to create a beam of high energy protons to target the tumor. These protons are absorbed
by the cancerous cells, destroying their DNA in the process. The cancer cells lack the mechanisms to repair
DNA damage, making them particularly vulnerable to such damage and killing them off.
Unfortunately radiation also gets absorbed in the surrounding tissue. This damages the healthy tissue and
increases the risk of new tumors and other complications. This is particularly a problem in sensitive areas
such as the prostate or the brain. Proton radiation is more precise than other types of radiation therapy
because of two properties of protons. Protons have a relatively high mass compared to other particles used
in radiation therapy, reducing the scatter in the tissue. This keeps the proton beam narrow and focused on
the tumor. Furthermore high energy protons have a very narrow Bragg peak. Very few protons get absorbed
before this depth and almost none after it. By sending out proton beams at different energies the entire tumor
can be irradiated with little absorbtion in the surrounding tissue. This is illustrated in figure 1.1. This also
makes the proton beams susceptible to small errors in position. Numerical methods are needed to properly
model the energy deposits in therapy [1].

Figure 1.1: A comparison of the penetration depth of proton beams compared to x-rays. Most protons get absorbed in a very narrow
region called the Bragg peak. By combining proton beams of different energies, these peaks can be combined into a region of finite size.
After this region the proton absorption rate drops sharply compared to x-ray beams [1].
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2 1. Introduction

1.2. Numerical Methods In Proton Therapy
Unfortunately none of the currently available methods are suitable yet. One method uses a Monte Carle
method to track the protons. This method is very accurate and flexible, but it is too costly for use in treat-
ment. With the increase in computational power it is expected Monte Carlo methods will eventually become
routine tools, but until such a time different methods are needed [2] [8].
Currently medical equipment uses a Fermi pencil-beam approximation. This method is fast, but inaccurate
in non-homogenous tissues. Figure 1.2 shows a dose distribution calculated by these two systems. This figure
shows that there is a high difference between the two systems around the brain stem. This inaccuracy could
lead to future complications in the patient if the pencil-beam approximation is used.

Figure 1.2: Axial view of dose distributions using two different systems. On the left is a commercially available system based on a pencil-
beam algorithm (XiO (Computerized Medical Systems)) and on the right is a Monte Carlo system. The red arrow indicates an area where
the discepency is large due to a density interface parallel to the proton beam [6].

1.3. The Transport Equation
In this research a mono-energetic, time-independent model of charged particle transport was considered. In
such a model the angular particle flux φ=φ (r,Ω) depends only on the spatial position r and the direct vector
Ω. This angular flux can be described with the linear Boltzmann equation, which is given by

Ω · ∂
∂r
φ+Σaφ−Qφ= S (1.1)

whereΩ·∂φ/∂r is the streaming term, Σa is the macroscopic absorption cross section and S is the angular
source. The scattering term Qφ can be written as

Qφ (r,Ω) =ΣS

(∫
S2

1

2π
p

(
Ω′ ·Ω)

φ
(
r,Ω′)dΩ′−φ (r,Ω)

)
(1.2)

where ΣS is the macroscopic scattering cross section and p is a probability density function. This scatter-
ing term is dominated by Coulomb interactions between the charged particles and the nuclei. These inter-
actions slightly deflect the particles, which results in the direction vector undergoing small deviations as the
particle travels throught the medium.
Equation 1.2 can be simplified by taking the Fokker-Planck approximation. In the model the limit is taking of
infinitely many particle-nucleus interactions, with each interaction being infinitesimaly small. This is chosen
such that the total angular deviation per distance traveled is kept constant on average. This would mean that
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p
(
Ω′ ·Ω) = 0 for Ω′ ·Ω 6= 1, allowing the integral to drop out of equation 1.2. Instead the scattering term is

approximated as a spherical Laplace operator [5] [7]:

Qφ→ α

2
∇2

Sφ= α

2

(
1

sin2ψ

∂2φ

∂2θ
+ 1

sinψ

∂

∂ψ

(
sinψ

∂φ

∂ψ

))
(1.3)

Here θ and ψ are the polar and azimuthal angles respectively. This equation describes a diffusive process
on the unit sphere. The diffusion constant α is also known as the macroscopic transport cross section. This
is usually measured experimentally.
If we disregard the streaming term for now, this gives the mono-energetic Fokker-Planck equation

Σa φ (Ω)− α

2
∇2

S φ (Ω) = S (1.4)

This equation will be used to develop a numerical scheme for charged particle transport.





2
Method

2.1. Finite Volume Method
In this chapter a numerical method for modeling angular diffusion is derived. The Finite Volume Method
(FVM) is chosen. This is a numerical method for approximating partial differential equations. The method is
very flexible compared to the Finite Difference Method and simple compared to the Finite Elements Method
(FEM). Furthermore this scheme automatically follows the conservation laws, making it highly suitable for
conserved quantities.
First we consider the time-independent, mono-energetic Fokker-Planck equation.

Σa φ (Ω)− α

2
∇2

S φ (Ω) = S (2.1)

In this equation Ω is the coordinate on the unit sphere and ∇2
S is the Laplace operator in spherical coordi-

nates.
To apply the FVM we first divide the unit sphere in triangular patches. A 2D representation of these patches
is shown in 2.1. We integrate the Fokker-Planck equation over one of these patches. Next we apply Gauss’s
divergence theorem to reduce the order of the differential equation.

∫
Σa φdΩ+

∮
α

2
n̂ ·~∇φ d ∂Ω=

∫
S dΩ (2.2)

These integrals will each be approximated seperately. The two area integrals are approximated through a
Gaussian quadrature. The differential will be approximated through a first order finite difference scheme
evaluated between the centers of two neighboring patches. This will then be integrated along each of the
three edges of the patch [3].

∫ hi 1

hi 2

α

2
n̂ ·~∇φ d ∂Ω≈ α

2

φ j −φi

dφi ,φ j

cos
(
β
)

dh1,h2 (2.3)

In this equation φi is the value of φ evaluated at the center of patch i , dφi ,φ j is the distance between the
centers of patches i and j along the surface of the sphere, dh1,h2 is the length of the boundary between the
two patches along the surface of the sphere and β is the angle the arc between the two centers makes with
the vector normal to the border between the two patches.
This approximation allows us to formulate a linear system of equations which can be solved through standard
methods. For this research the LAPACK software package was used.
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6 2. Method

Figure 2.1: A 2D representation of the patches that constitute the mesh. Here φi is the center of patch i , dφi ,φ j
is the distance between

the centers of patches i and j , h1 and h2 are the outsides of the edge between the two patches, dh1 ,h2
is the length of the edge between

the two patches and β is the angle between the lines
(
φi ,φ j

)
and (h1,h2).

2.2. FVM On Spherical Surface
To solve the equation the sphere is divided into spherical triangles. At the coarsest refinement level the sphere
is divided into its eight octants. In each further refinement each spherical triangle is divided into four smaller
spherical triangles. These triangles are chosen as the patches for the FVM with their centers of mass as the
evaluation points. Such a mesh refined to 128 patches can be seen in figure 2.3
To evaluate the distance between two points on the unit sphere the inner product between these two points
is taken.

cos
(
dri ,r j

)
= ri · r j (2.4)

This can be used to evaluate both the distance between the centers of two neighboring patches and the length
of the boundary between the two patches.
To find the angle β we consider that cos

(
β
) = sin

(
γ
)

with γ being the angle the arc between the two centers
makes with the border between two patches instead of the vector normal to the border. The angle between
arcs is the same as the angle between the two planes spanned by the endpoints of the arcs and the center
of the unit sphere, which is equal to the angle between the two vectors normal to these planes. The vector
normal to a plane can be found by taking the cross product of any two independent vectors inside this plane.
In this case the vectors between the center of the unit sphere and the endpoints of the arcs are chosen.

cos
(
β
)= sin

(
γ
)= ∥∥∥∥∥ nf ×ng

‖nf‖
∥∥ng

∥∥
∥∥∥∥∥

nf = (h1 −O)× (h2 −O)

ng = (ri −O)× (
rj −O

) (2.5)

Here ri and rj are the centers of the two neighboring patches and h1 and h2 are the two endpoints of the
border between the two patches.
With the values for β and dri ,r j the linear system described in 2.3 can be constructed and the value of the flux
can be estimated for each patch.
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Figure 2.2: A figure showing the calculation for the value of β. Here ri and r j are the vectors from the center of the sphere to the centers
of patches i and j , h1 and h2 are the vectors from the center of the sphere to the outsides of the edge between patches i and j and n f is

the cross product between h1 and h2, ng is the cross product between ri and r j . sin
(
γ
)

can be calculated by taking the cross product of
n f and ng and from γ the value of β can be calculated.

2.3. Error Estimates For Uniform Refinement
To determine the rate of convergence for the method only a single example needs to be considered. Any other
solutions should follow the same rate. It is often simplest to use the eigenfunctions.

φ (Ω) = Ylm (Ω) (2.6)

S (Ω) =
(
Σa + α

2
l (l +1)

)
φ (Ω) (2.7)

In these equations Ylm is the real spherical harmonic with eigenvalues l and m. They are normalized such
that 〈Ylm ,Yl ′,m′〉 = δl l ′δmm′.
The source has been chosen to obtain the following solution.

φ (Ω) = 0.7Y00 −0.5Y11 +0.1Y20 +0.3Y32 (2.8)

Furthermore the constants have been set to α= 25 and Σa = 10.
The mesh is uniformly refined with the patch size defined as

h =
√

4π

N
(2.9)

with N being the total number of patches on the sphere. The error is defined as
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Figure 2.3: A sphere divided into a triangular mesh. The mesh consists of 512 patches.

ε=

√√√√∫ (
φ−φh

)2 dΩ∫
φ2dΩ

(2.10)

Here φh is the value of the flux in patch h estimated through the FVM and φ is the actual value. The integral
is estimated with a quadrature method.
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Z
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Y

Z

Figure 2.4: A sphere divided into a nonuniform mesh. The mesh is more refined closer to the top of the sphere. This mesh consists of
2324 patches.

2.4. Local Refinement
In reality the angular aspect of the proton beam is not similar to a spherical harmonic at all. The beam is
very narrow with little defiation in direction. To simulate this the same error estimation was performed with
a source which gave a localized Gaussian function as solution.
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φ (Ω) = exp

(
Ω2

x +Ω2
y + (Ωz −1)2

4σ2

)
(2.11)

S (Ω) =
(
Σa + α

2

(
Ω2

x

4σ4 − Ωx

σ2

))
φ (Ω) (2.12)

This Gaussian solution is near zero on most of the unit sphere. Even the coarsest refinement level is able to
compute the solution in this area with a very low relative error. The peak however does require a high refine-
ment level to properly compute the solution. It is wasteful of resources to refine the entire sphere into such a
high refinement level, so a local refinement algorithm should be used which only refines the patches where
the solution value is high. Patches with near zero solutions are left unrefined.
Because we are working with a symmetric function the refinement was done in layers. Patches closer to the
top of the sphere were allowed to refine more often than patches closer to the bottom, with patches on the
bottom half not being refined at all. The boundaries of these layers were found through trial and error. A
mesh made through this refinement scheme can be seen in 2.4





3
Results

3.1. Uniform Refinement
The results for the FVM on a uniform mesh can be found in table 3.1.

Table 3.1: Results of the FVM on a uniformly refined mesh with the exact solution given by 2.8. The patch size h is calculated according
to 2.9 and the error ε is calculated according to 2.10.

N h ε

8∗40 1.253*100 4.459∗10−1

8∗41 6.267*10−1 3.052∗10−1

8∗42 3.133*10−1 1.442∗10−1

8∗43 1.567*10−1 7.420∗10−2

8∗44 7.833*10−2 3.857∗10−2

8∗45 3.917*10−2 2.178∗10−2

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

log(h)

-3.5

-3

-2.5

-2

-1.5

-1

lo
g

(
ǫ
)

log-log fit of error

Figure 3.1: A log-log plot of the data points. The logarithm of the patch size h is on the x-axis and the logarithm of the error ε is on the
y-axis. A linear fit has been performed on the datapoints to estimate an order of convergence of 0.951±0.042. The first datapoint has
been excluded from the fit due to its poor fitness.
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12 3. Results

Table 3.2: Results of the FVM on a locally refined mesh with the exact solution given by 2.11. The patch size h is calculated according to
2.9 and the error ε is calculated according to 2.10.

N h ε

8 1.253*100 8.962∗10−1

20 7.927*10−1 4.637∗10−1

44 5.344*10−1 2.614∗10−1

128 3.133*10−1 1.712∗10−1

608 1.438*10−1 7.565∗10−2

2324 7.353*10−2 4.745∗10−2

9020 3.733*10−2 3.736∗10−2

To estimate the order of convergence the logarithm was taken of the patch sizes and error values and a
linear fit was performed on these values. The order of convergence is estimated by taking the slope of this
linear fit. This fit can be found in figure 3.1. In this fit the first datapoint has been excluded because of its
high defiation from the fitted linear function. From this fit an order of convergence of 0.951±0.042 has been
estimated. This estimate is close to the expected value of 1. The reason the estimated order of convergence
is lower than the predicted one could be because the solution is insufficiently smooth on the patches. This is
particularly visible on the largest patch size, where the order of convergence was low enough to be excluded
from the fit. But even on the finer patches this effect should still be visible.

3.2. Local Refinement

The results for the FVM on a locally refined mesh can be found in table 3.2.

To estimate the order of convergence the logarithm was taken of the patch sizes and error values and a
linear fit was performed on these values. The order of convergence is estimated by taking the slope of this
linear fit. This fit can be found in figure 3.2 as the blue line.
From this fit an order of convergence of 0.908±0.073 has been estimated. This estimate is close to, but a little
less than the expected value of 1. The estimate is here a bit lower than in the uniformly refined case could be
because of the different test function used. The Gaussian has a more complicated source than the eigenfunc-
tions, which would add more to the error. It is also more local, which would further decrease the accuracy of
lower refinements we have also seen in the case of the uniform refinement.
In figure 3.2 we can also see a fit of the Gaussian test function on a uniformly refined mesh as the green line.
From the figure we can see that the locally refined mesh follows a similar trend as the uniformly refined mush,
except the error is lower for the same number of patches.
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Figure 3.2: A log-log plot of the data points of the Gaussian test function on a uniformly refined mesh (green) and a locally refined mesh
(blue). The logarithm of the patch size h is on the x-axis and the logarithm of the error ε is on the y-axis. The uniformly and locally
refined mesh fits show a similar slope, with the locally refined mesh having a lower estimated error than the uniformly refined mesh at
the same number of patches. A linear fit has been performed on the datapoints of the blue curve to estimate an order of convergence of
0.908±0.073.
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Figure 3.3: The top figure shows a heat map of the numerical error on a mesh that has been locally refined to 2324 patches. The red areas
are areas that have high numerical error while the areas blue areas have low numerical error. There is a band of high error around the
top of the sphere, where the derivative of the Gaussian would be highest.
The bottom figure shows the same function solved on a mesh refined up to 8192 patches. This figure shows high numerical errors in
the same areas as the top figure. This suggests the error is inherent in solving the problem on this type of mesh rather than being a
consequence of the local refinement.





4
Conclusion and Discussion

4.1. Conclusion
This research has focused on two separate parts. First the Finite Volume Method has been developed and
tested on a uniformly refined mesh. Uniformly refined meshes are ordinarily used for FVM and provided a
benchmark for the other test. Next this FVM scheme has been tested on a mesh which has been locally re-
fined. In such a mesh the size of the patches, the angle the numerical flux makes through the edge of such a
patch and the number of neighbors a patch has is different for each patch. These conditions are normally not
present in a FVM scheme. If the FVM works properly in such a mesh, it is expected the rate of convergence
will be higher than on a uniformly refined mesh.
The local refinement in this research was performed by splitting the mesh into layers, with each layer being
allowed to refine a maximum number of times. The boundaries of these layers were found through trial and
error.

The FVM works properly on a uniformly refined mesh refined up to 5 times. The convergence rate in this
range has been estimated to be 0.951±0.042. This is close to the expected value of 1. This estimated value is
lower than the theoretical one because the function is insufficiently smooth on the patches. This is an inher-
ent feature of this method and there is no obvious way to improve this. The convergence rate is expected to
go to 1 as the refinement increases.

The FVM also converges almost linearly with local refinement. A convergence rate of 0.908±0.073 has been
estimated on this mesh. A uniformly refined mesh showed a similar convergence rate with the same test func-
tion. However the locally refined mesh showed a lower estimated error than the uniformly refined mesh at
the same number of patches. This shows that the FVM also works properly on non-uniformly refined meshes
and that this can be used to increase performance by leaving the mesh unrefined at uninteresting sections of
the sphere.

4.2. Discussion
This FVM scheme appears to work properly as it is. However, the numerical error might be reduced further
by increasing the order of the derivative approximations. This might become more complicated because the
mesh is not rectangular but rather triangular. Another improvement to this FVM scheme might be obtained
by using a more accurate method to approximate the numerical flux integrals. Currently the flux is taken to be
constant at the edge between two patches. A higher accuracy might be obtained by instead using a quadra-
ture scheme.
It might also be worth to investigate the h-box method. This method is supposed to increase the accuracy of
the FVM on non-uniform meshes. The effort of implementing such a scheme was deemed to be outside the
scope of this research [4].

The local refinement algorithm used could also be improved. For this research the sphere was split into layers
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16 4. Conclusion and Discussion

with the boundaries of each layer being found through trial and error. A better refinement scheme might im-
prove performance even further. That would also allow this FVM scheme to be tested with more complicated
test functions.
The next step would be to incorporate this scheme into an upwind streaming scheme to emulate the total
Boltzmann equation and test it against experimental values. At this point it should become more clear how
this method holds up against different methods of proton stream modeling.
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