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Abstract

This bachelor thesis implements angular discretisation for the steady-state mono-energetic
Linear Boltzmann Transport Equation (LBTE) in the Fokker-Planck limit into the in-house
program Phantom of the NERA research group, TU Delft. The implementation uses a con-
trol volume method (CVM) scheme, whereas the spatial discretisation (which is already im-
plemented in Phantom) of the LBTE uses a Discontinuous Galerkin finite element method
(DCGM).

In chapter 2 the CVM discretisation scheme is explained step by step. Furthermore flux
error calculations are introduced by use of the method for manufactured solutions. Spherical
harmonics are used for the angular dependent part of the flux as these are the eigenvalues of
the Laplacian that appears in the Fokker-Planck limit.

In chapter 3 the results of Nauta (2016) are reproduced, to assure correct implementation.
Next streaming is enabled. Uniform angular refinement and a quadratic angular depended flux
are used to determine the effectiveness of the implementation. This shows angular convergence
around first order is achieved for early refinement steps. Higher refinement however results
in lower convergence orders. Convergence of the scalar error start out promising, resulting in
convergence order p = 2.37 and p = 2.06 for the Spherical angular mesh refinement method
between zeroth and third level and for the Octagon angular mesh refinement method between
zeroth and fourth level refinement respectively, after which the convergence breaks down.
A cubic angular depended flux shows even more deviation from ideal angular convergence.
Scalar error convergence between zeroth and third level refinement is p = 2.04 and p = 1.98
for the Spherical and Octagon method respectively, after which the convergence breaks down.

Comparing the CVM to results obtained with a DCGM by Hennink and Lathouwers (2017)
shows that the CVM is much less effective. For The angular flux error of fourth level re-
finement achieved with the CVM can be reached with first level refinement using a DCGM.
The scalar errors of the CVM with third level refinement are surpassed with first level refine-
ment using a DCGM. These findings merit the use of a DCGM over the CVM for angular
discretisation.

This project is conducted at the NERA research group of the TU Delft and supervised by
Dr. ir. D. Lathouwers.
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Chapter 1

Introduction

Radiotherapy is one of the main options for cancer treatment. High energy photons are
beamed at the tumour in order to ionise the diseased tissue. The incoming radiation can
directly ionise the atoms that make up the DNA (direct ionisation) or the photons ionise water
molecules that form free radicals, which subsequently damage the DNA (indirect ionisation).
This damage can cause the cell to immidiatly die (mitotic catastrophe). As the cancer cells
are less able to repair themselves compared to healthy cells and reproduce fast, non-lethal
damage is passed on and can cumulatively result in cell death too. To prevent the healthy
tissue from undergoing too much damage, the tissue is radiated from different angles causing
only the diseased tissue to be exposed to the full dose.

The sensitivity of the tumour towards the radiation depends on the particular type of cancer.
Highly sensitive types such as lymphomas and leukimias are highly receptive to radiation and
might require doses of 20 to 40 Gy. Types with limited susceptibility as epithelial cancer may
require significantly larger doses of 60 to 80 Gy. Radioresitant tumours, such as melanoma,
would require unsafe doses. Besides the sensitivity towards radiation therapy, the location
and spread of the cancer are of critical importance to the viability of radiation therapy. When
the cancer is too spread out (as often the case with leukimias) or they are located next to
critical tissue that should not be damaged, the effective use of radiotherapy is very limited at
best.

1.1 Dose deposition & Proton Therapy

The damaging of DNA through ionisation resulting into mitotic catastrophe can also be
achieved by the radiation of charged particles. Different types of radiation treatments each
have their unique dose deposition profile within the tissue. See figure 1.1. This makes those
radiation treatments more or less suitable as treatment depending on the particular case.
Electron therapy can be used for tumours at the surface, as the dose deposition is very high
on entry (entrance dose) and sharply drops off to zero after a certain depth, leaving tissue
behind the tumour undamaged. Radiotherapy has a surface sparing effect, as the entrance
dose is low. Deeper inside the tissue the dose reaches a maximum after which it will gradually
decrease. This leaves an exit dose which damages the tissue located behind the tumour. Heavy
charged particles (e.g. protons and carbon ions) show a different profile as well.

As the heavy charged particles move through tissue they lose energy described by the stopping
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Figure 1.1: Left: The dose deposition patterns plotted for different methods of radiation. For
160MeV protons the characteristic Bragg-peak is cleary visible. Ir-192 is the depos-
ition pattern when using Iridium-192 seeds. The profiles for 9MeV electrons, 30MeV
neutrons and 15MV photons are shown as well. This image is taken from Czito et al.
(2006). Right: Proton depositions of different energies and intensities are shown in red,
combined these create a Spread-Out Bragg Peak shown in blue. The green line shows
the deposition profile of photons. This image is taken from Grant and Chang (2014)

power, this energy lost (the deposited dose) results in a lower velocity of the particles. As
the loss in energy is inversely proportional to the velocity squared, just before the particles
coming to a halt the energy deposition will peak. This peak called the Bragg peak. After the
Bragg peak the dose is zero for protons and almost zero for heavier charged particles such
as carbon ions. Combining proton radiation of different energies allows for coverage of the
complete tumour with a spread-out Bragg peak (SOBP), this is shown in figure 1.1. Another
advantage of heavy charged particles is that the high mass of the particles causes the beam
to be less divergent from the incident axis.

The dose deposition profile of proton radiation makes proton therapy advantageous when
the tumour is located next to critical tissue. The lack of an exit dose allows for the critical
tissue to be undamaged, while the tumour is being radiated. Another suitable use for proton
therapy is when the tumour requires dose escalation as it responds better to higher doses.
With the localised character of the Bragg peak, proton therapy allows for these higher doses.
This leads to the use of proton therapy for tumours near the eye, near the spinal cord as well
as for prostate cancer amongst other applications.

1.2 Dose Prediction

The prediction of the dose deposition is of natural importance for a treatment plan, as the
tumour needs to be destroyed while damage to the surrounding tissue needs to be limited
as much as can be. For proton therapy this is even more so the case, as the application
specializes in tumours next to critical tissue and localised high dose deposition.

Uniform intensity algorithms to predict the dose deposition are simple and fast, but too crude
to use in treatment plans. Pencil beam approximations provide a much better alternative,
calculation is fast and the results are reasonably accurate. This technique, derived first by
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Rossi and Greisen (1941), considers the incident particle beam to be a weighted conglomer-
ate of many much smaller pencil beams. The divergence of these pencil beams is modelled
on experimental data. The pencil-beam approximation is however difficult to implement for
inhomogeneous media and more general geometries, such as with head and neck treatments
(Jiang et al., 2007). Discrepancies arising from dose prediction using pencil-beam approxim-
ation might in certain cases have clinical implications (Paganetti et al., 2008).

The most precise method of dose prediction is the use of Monte Carlo simulation where
the path and interactions of a single particle are tracked many times over. The aggregate
of these paths gives a very precise prediction of the dose distribution. The high precision
allows for Monte Carlo simulations to act as a benchmark for other prediction models. High
computational costs however make these simulations of limited use for individual treatment
plans. It is expected that with the rise of computing power these simulations will become
much more used in treatment planning. Paganetti et al. (2008).

Another direction that has been explored to predict the dose distribution is discretely solv-
ing the transport equation for protons (Morel, 1981; Uilkema, 2012). In theory solving the
equation would achieve a similar level of accuracy as with the Monte Carlo method and has
several other benefits. It is much faster in calculation than the Monte Carlo method, the dose
distribution for the entire region is calculated and this method allows for sensitivity analysis
used to calculate uncertainties, for example caused by movements of the patient or as a result
of chemical decomposition inside the body (Uilkema, 2012).

To discretely solve in the (in this case) linear Boltzmann transport equation, different methods
have been applied. The Sy method uses a finite set of discrete-ordinates to approximate the
possible directions of travel and subsequently discretises the equation in all variables. The
method was developed by nuclear reactor physicists to calculate de neutron distribution in a
reactor core. The large number of small scatter interactions in proton transport, lead to a
nearly singular differential cross section. Making expansion of the differential cross section in
Legendre polynomials as is traditional with neutron distributions unfeasible Uilkema (2012).
The Fokker-Planck approximation is used for the small angle scatter interactions instead, this
introduces unfortunately an error claimed to be greater than the error due to the pencil beam
approximation (Borgers and Larsen, 1996; Hennink, 2015). However, the great versatility of
a discrete solution makes this approach still very much desirable.

As the Sy method is not wholly suitable for charged particle transport a fully adaptable
deterministic numerical approach has been described by Hennink (2015). This approach is
based on the discontinuous Galerkin method (DCGM) for both the spatial and angular parts.
The inhouse software Phantom of NERA (TU Delft), mainly developed by Danny Lathouwers,
included this DG discretisation in space of the transport equation at the start of this project.
The DG discretisation in the angular part was implemented during this project. The goal
of this bachelor thesis is to implement a more simplistic and computational lighter angular
discretisation method for the transport equation in Phantom. The method being a control
volume method used for the Fokker-Planck equation by Nauta (2016).



Chapter 2

Theoretical Overview

2.1 Linear Boltzmann Transport Equation and Fokker-Planck

Proton transport can be described by the steady-state Linear Boltzmann Transport Equation
(LBTE). For the validity of the underlying assumptions see Uilkema (2012); Duderstadt
and Hamilton (1976). In this particular work, the energy dependency is neglected. This
dependency is not implemented in the existing transport code and doing so is not the topic
of this research. Leaving out the energy dependencies, the equation for proton transport is
the following steady-state mono-energetic LBTE (Hennink, 2015):

2 (57 ) Pra )+ Ealr)o(r. ) - Qelr,2) = S(r. ) (2.1)

The equation describes the angular proton flux (¢), which can be considered the particle
density moving in a certain direction (€2) on a specific location (r). S(r,€2) is the angular
source term. Y,(r) is the macroscopic absorption cross-section. The macroscopic scatter
cross-section is represented by Q. This cross section describes the probability density function
of small deviations mostly due to coulomb scattering with electrons and elastic scattering with
nuclei resulting in a change of direction of the incident protons.

2.1.1 Focker-Planck

The Fokker-Plack (FP) method can be used to approximate the macroscopic cross-section
term (). For the derivation see Uilkema (2012); Morel (1981). As only steady-sate is con-
sidered, the Fokker-Planck equation will lose its stochastic character and becomes an ordinary
differential equation. The approximation leads to:

Ot
Q@(Taﬂ) ~ %V% SO(T7Q) (22)
Here o0y is the macroscopic transport cross-section. This cross-section can be measured
experimentally or predicted from theoretical models. oy is energy depended, which is as
stated earlier neglected in this work. V?) is the Laplacian in the angular coordinates of €2.
The direction is represented on a unity sphere by the spherical coordinates 6 and , the

azimuthal and zenith angle respectively. The Laplacian and Divergence operator in these

4
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Figure 2.1: left: Local refinement of the angular mesh on a octahedron face. The angular elements
are up to level 4. right: Angular mesh on sphere, one octant has a refinement of level 1
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The Fokker-Planck approximation describes a diffusive process of the angular flux and is
hence called the diffusion term. Whereas € (a%) o(r, ) is called the streaming part. The
LBTE becomes:

@ (2) olr. )+ ZuSiolr. ) = TV o, 0) = 5(r. ) o

2.2 Angular Elements

As mentioned earlier, the direction of flux can be described by the two angular coordinates,
the azimuthal and zenith angle. An angular mesh is created on a octahedron. Each of the
eight triangle faces is an angular element or so-called patch. These elements can be refined by
dividing the triangle up in to four triangles. This is done by connecting the three bisection-
points of the original patch. This way first level (refined) angular elements are created (The
original element being zeroth level of refinement). This process can be repeated to create
higher level elements. When all angular elements have an equal level, there is said to be
uniform refinement. If this is not the case, there is local refinement. See figure 2.1.

The elements on the octahedron are projected on the surface of the unity sphere to create
the final angular mesh. There are different ways to construct the angular mesh, see Hennink
(2015). One way would be to take the halfway points of the sides of an octant projected on the
unity sphere and connect those using the shortest path (Great-circle navigation). Phantom
has implemented two ways to calculate the angular mesh. The 'octagon method’ calculates
the mesh refinements on the octagon before projecting it on a unity sphere. The ’spherical
method’ immediately calculates the angular grid refinement on the unity sphere.
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2.3 (Angular) Discretisation of FP-LBTE

The goal is to discretise mono-energetic steady-state LBTE with the FP approximation. The
discretisation in space has already been implemented in Phantom using the Discontinious
Galerkin Finite Element method. For the angular discretatsion a more simplistic method
will be used, a control volume method. This particular method was used in the bachelor
thesis work of Nauta (2016). For a specific spatial element k and angular element [, using
the Discontinuous polynomial approximation, the angular proton flux can be considered as
follows. Lathouwers (2014):

N

M
kil kil kil
@k’l(ﬁ Q) ~ Z Z ;59 ("')hz‘,j (€2) (2.4)

j=1i=1

Here h(€2) and g(r) are the angular and spatial basis functions. The control volume method,
used for the angular discretisation, has only one angular basis function h(Q2) = 1 as the
proton flux is taken to be constant for each angular element. This simplifies the discontinuous
polynomial approximation to:

M
p(r ) ~ Yo g (r) (2.5)
i=1
To find the expansion coefficients using the Discontinuous Galerkin Method (DCGM), the
original equation is multiplied by a test function (in the case of DCGM, the test function
is the basis function). The integrate over the spatial and angular element of the subsequent
equation must hold for the numerical solution. For the Diffusion part of the equation this
leads to the following integral for spatial element k£ and angular element {:

M
//—U“"VQ (r, 2)g (r)dQdr =~ Z/—";’“va gof’l(ﬂ)dﬂ/gzlf’l(r)gf’l(r)dr i=1,..
v=1 i

k
(2.6)

Here the polynomial approximation of equation (2.5) is used, but only for the spatial de-
pendencies, thus gof’l = (pfl(ﬂ) The equation is divided in an angular en spatial part.
Concentrating on the integral over the angular element (patch) and using Green’s theorem
([J¢VF da = §, F-ndl). The integral over the (angular) patch can be rewritten as:

/ U"VQ ace) dn_““"/v (Ve ok (’”fv BlQ) - adl (2.7
l

2.3.1 Divergencce of flux

The Control Volume Method (CVM) assumes a constant angular flux on each patch, the value
of the angular flux is taken to be on the centre of mass of the patch. In order to calculate
the centre of mass (CoM) the vectors from the origin of the unity sphere to the three vertices
of the patch are summed and subsequently normalised. This constructed vector is taken to
point from the origin to the centre of mass.
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Figure 2.2: A patch with four subfaces. « is the angle between the normal of the (sub)face and the
difference vector of the CoM and it’s (sub)face-neighbours CoM.

In figure 2.2 it is shown that while every patch has three faces, due to local refinement it can
have more than three face-neighbours and therefore has sub-faces that need to be taken into
account. The lines BC and CD are the sub-faces of BD.

The divergence of the flux in equation (2.7) is approximated for each (sub-)face in the following
manner. The difference in flux between the patch and it’s particular face-neighbour is taken
and divided by the distance between their respective CoM (As). The gradient direction is
taken to be the normalised difference vector between the two centres of mass, Va. The dot-
product between gradient direction Vg and the normal vector (pointing outwards) of the
face between the two patches n gives Va - = cosa. Where a is the angle between the two
vectors. See figure 2.2

The normalised cross-product between the two vectors from the origin to the edges of the
(sub)face creates a vector f, parallel to the normal of the (sub)face. The cross-product
of the two CoM-vectors is taken to construct a vector a, perpendicular to the gradient
direction. The angle between these normalised vectors is calculated using the cross-product

| fn X @n| =sin .

As a, is perpendicular to the gradient direction and fn is parallel to normal of the face,
it follows that « = § — B2 or a = 1 — § depending on the direction of a. In either case

Va i = |fu X @nl.

Summing over all the (sub)faces this leads to the line integral over the patch being discretised
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as:
#(sub) faces o o
Otr A Otr PNCoM,i — PCoM & N
I fVa e ndl ~ r : Ve i Al;
9 f; Qe-n ; 2 ASi Qi1 i
#(sub) faces ol
g ~ . .
= Y (encomi — pcon)|fui X il 5 (2.8)
2 Osi

i

Here Al; is the length of the specific (sub-)face. @cons is the angular flux value taking at
CoM of the patch, where pncon,i is the flux value of the specific neighbour. The term ﬁiﬁ-
can be calculated by dividing angle between the vectors from the origin to the two edges of
the (sub-)face by angle between the two CoM-vectors. This way there is no need to take the

curvature of the distances in account, which simplifies the calculation.

The discrete expression from equation (2.8) combined with equation (2.6) deals with the the
discretisation of diffusion term. Note however that the subscripts ¢ from both equations refer
to different variables, the (sub-)face number in equation (2.8) and the particular spatial test
function in equation (2.6).

2.3.2 Non-diffusion terms

Having discretised the angular dependency of the diffusive part, the other terms of equa-
tion (2.3) are still left. The sources term is depended on both r and €. The integral over
spatial element k£ and angular element [ of the source multiplied by the test-function can be
easily evaluated with the local quadrature sets on both the spatial element and angular patch.

#lap #kqp

//S(T,Q)gi(r)dﬂdr DY GiolopSop =1, M (2.9)
kJi > o

Here the source term is calculated for each spatial and angular quadrature point and multiplied
by its total quadrature weight ¢,,. Summation over all the quadrature points leads to the
discrete approximation of the integral of the spatial element and patch. The adsorption term
can be discretised in a similar fashion, but is a bit more complicated as the flux appears in
this term:

M
e / / pgl(r)drdQ ~ £, ) ol / gFlgPdr / Q@ i=1,.M (2.10)
kJi — k !

For this project the macroscopic adsorption coefficient ¥, is taken to be constant. In cases
where it has spatial dependencies, taking the coefficient constant on each spatial element
is an option or it can be evaluated with the spatial quadrature sets. The integral over the
spatial test functions can be calculated and appears just as it did with the discretisation of
the diffusion term in equation (2.6).

Discretisation of the streaming term is more complex. As this part of the function is already
implemented in Phantom code using DCGM and as it is considered to be out of the scope of
this project the report will not further expand on it. Combining the implemented streaming
term with the equations (2.6) (2.8) (2.9) (2.10) leaves a system of M equations that can be

solved to obtain the flux coefficients go{f’l.
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2.4 Method of manufactured solutions

In order to test the CVM implementation, the method of manufactured solutions is being used.
By choosing the source term S in such a way that the flux can be analytically calculated,
a comparison can be made between the analytical and numerical solutions. The ’analytical’
calculation is done at all the local quadrature points of the spatial and angular elements.

A constant solution would be a trivial solution. When taking the angular flux to be a product
of an angular depended and a spatial depended part (¢(r, Q) = R(r)®()), more interesting
solutions can be constructed. Taking a look at only the angular depended part first. The
streaming term disappears from the equation, as there is no space dependency.

The eigenfunctions are the simplest non-trivial analytic solutions. Analogue to the Schrédinger
equation, the eigenfunctions of the Laplacian are the spherical harmonics:

B(Q) = Yy () (2.11)
S(Q) = (%z(z 1)+ 5,)8(Q) (2.12)

Here the function Y, ;(€) is a spherical harmonic, any linear combination of the spherical
harmonics would of course be a solution as well. Substituting equation (2.11) into equa-
tion (2.3) results in the angular depended source term given by (2.12). When the spatial part
is considered to be constant (R(r) = 1), spatial streaming is non-existing. This is used to
compare the implementation to the work of Nauta (2016).

If streaming is taken into account and thus the spatial part of the flux is non-trivial, more
useful assessments can be made about the effectiveness of the implementation in Phantom.
The spatial part is taken as follows:

R(r)=z(1 —z)y(1 —y)z(1 — 2) (2.13)

This is for a 3D spatial domain. In the case of 2D spatial dependency the z term disappears
from the equation (2.13) and as such becomes R(r) = (z — 22)(y — ¥?). The contribution of
the streaming term to the source term is:

o OR(r) OR(r) OR(r)
Sstreamzng—(Qx o +Qy 8y +QZ Oz )(I)(Q) (214)

Here the angular coordinates are expressed in there Cartesian form to allow for an easier
treatment of the streaming term and it’s source contribution. The total source can now be
constructed for which the analytical flux is known:

o(r, Q) = R(r)®(Q) = V5 () (x — 2°)(y — y°) (2 — 2°) (2.15)
S(r, ) = (7211 + 1) + S)R(Q)R() + (2 agi’“) +Q, az;(j) Lo, 81;2") )B(Q) (2.16)

Using this constructed source term the flux is computed. The (relative) error of computation
can now be determined as the analytical flux is known. By increasing the number of angular
elements the relative error should decrease. The relation between the relative error and the
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angular patch size (error convergence) gives information about the effectiveness of the angular
discretisation and computation. The relative angular flux error is calculated as follows:

ff(sonum _ @)2
r Q

€flux = 3
7

(2.17)

The integrals are evaluated by summing the local integrals over all the spatial elements and
patches. The local integrals are calculated with their particular quadrature sets for each
element. Furthermore ™™ is the numerically calculated flux value and ¢ is the ’analytical’
flux.

When the angular mesh is refined by one level, the number of patches is increased to four

times the former amount. The number of patches is hence given by: N; = 8 % 4%, here i is

Am
N;

is proportional to a power function of the characteristic length: €; oc h?, here p is the order
of convergence. For the control volume method being used the theoretical error is of order
p = 1. The order of convergence that is achieved with calculation is given by:

the level of refinement. The characteristic size of the patch is h; = The relative error

ln(e%k)

iy
ln na

So between each refinment step the order of convergence is p = In (%) /1n (0.5).

(2.18)

In dose predictions the total error in each location is much more important than the angular
error. This error can be calculated with the scalar flux which is given by pgeqr = fn o(r, Q)dQ.
The relative scalar flux error (€4.4;) can be calculated in a similar manner as the angular flux

error: 9
J (it — ©scat)

(2.19)

€scal =

f gOgcal
r

A third method of error calculation is used. The numerically calculated flux value, which is
taken to be on the CoM of each patch, is compared to the actual flux value in the CoM. This
gives the following CoM flux error:

#patches : .
f ; ((pnum - (Ta QCOM))2
T

F#patches
> ¢, Qcom))?
l

(2.20)

€CoM =

T



Chapter 3

Results

3.1 Uniform refinement, no streaming

As this work is a continuation of the work of Nauta (2016). First the results obtained in
that research will be reproduced. To accomplish that, the streaming part of the transport
equation is turned off and the flux is considered to be only angular dependent. The follow-
ing combination of spherical harmonics is as used as flux for the method of manufactured
solutions.

0(Q) = 2/7(0.7Y50(2) — 0.5Y1 1(2) + 0.1Y2,0(2) 4 0.3Y32(£2)) (3.1)

Furthermore, ¥, = 10cm™" and oy = 25cm™!. The program Phantom has the feature to

use the coordinates on the octagon and use these for the creation of the refined angular mesh
before projecting this mesh on the sphere. Another option is to immediately refine the mesh
on the unity sphere. For both ways of mesh creation the angular discretisation is tested. The
results using the flux from equation (3.1) are shown in table 3.1.

With the spherical method the results of Nauta (2016) can not be reproduced. The con-
vergence rate lacks behind on the theoretical expectation. The octagon method gives better
convergence compared to the spherical method and it matches the results produced in Nauta
(2016) exactly. For the first two refinement levels (0 and 1) there is no difference between

Table 3.1: Angular flux error for ¢ given by equation (3.1), ¥, = 10ecm~}, o4, = 25cm~!, uniform

refinement.
Spherical Method Octagon Method
Angular Order of Angular Order of
N | flux error  Steps  conv (p) flux error  Steps  conv (p)
8 4.459E-01 6 4.459E-01 6

32 3.052E-01 12 0.547 3.052E-01 12 0.547
128 1.496E-01 20 1.03 1.442E-01 20 1.08
512 7.791E-02 38 0.941 7.420E-02 37 0.958
2048 4.408E-02 76 0.822 3.857TE-02 74 0.944
8192 3.034E-02 148 0.539 2.178E-02 139 0.825
32768 2.593E-02 285 0.227 1.489E-02 278 0.548

11
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the spherical and octagon method, for higher refinement however the methods produce dif-
ferent results. Even though the octagon method shows better convergence, when the angular
refinement goes up the convergence becomes less strong. The octagon method does not only
show a better rate of convergence, it takes less steps in calculation as well and is therefore
computationally more effective in this case.

3.2 Uniform refinement, with streaming

Taking the effects of streaming into account, error calculations are made to see the effect-
iveness of the implementation of the CVM in Phantom. A four by four spatial grid is used.
The angular dependencies are calculated for half a sphere as this is possible due to sym-
metry and saves computing costs. The spatial dependent flux is taken as described by
the 2D equivalent of equation (2.13). The angular dependent part is given by: ®(2) =
Co + C192, + C282y + C3(392 — 1) with Co3 = 5;1;2;1, a linear combination of different
spherical harmonics. Here ¥, = 10cm™! and o4 = 2cm™!. Fourth order spatial basis func-
tions are used As the spatial dependency of the flux is of second order, this should eliminate
spatial error dominance. The results are shown in Table 3.2 for the spherical method and
Table 3.3 for the octagon method. Results for the no-streaming case, while using the same
manufactured solution apart from having no spatial dependencies, are presented in Appendix

Al

Table 3.2: Flux error using the Spherical method, ¥, = 10cm™

uniform refinement

1

o = 2cm™t, Coz = 5;1;2; 1,

Angular Order of Scalar Order of CoM flux Order of
N | Steps  flux error conv. (p) flux error conv. (p) error conv. (p)
8 4 2.112E-01 9.639E-03 3.086E-02
32 6 1.058E-01 0.998 2.952E-03 1.71 1.736E-02 0.830
128 15 5.661E-02 0.902 6.844E-04 2.11 9.746E-03 0.833
512 35 2.955E-02 0.938 6.992E-05 3.29 9.190E-03 0.085
2048 89 1.661E-02 0.831 1.683E-04 -1.27 9.222E-03 -0.005
8192 174 1.121E-02 0.567 2.235E-04 -0.409 9.249E-03 -0.004
32768 336 9.391E-03 0.256 2.431E-04 -0.121 9.258E-03 -0.001
Table 3.3: Flux error using the Octagon method, ¥, = 10cm~',04, = 2em™', Coz = 5;1:2:1,
uniform refinement
Angular Order of Scalar Order of CoM flux Order of
N | Steps  flux error conv. (p) flux error conv. (p) error conv. (p)
8 4 2.112E-01 9.639E-03 3.086E-02

32 6 1.058E-01 0.998 2.952E-03 1.71 1.736E-02 0.830
128 15 5.712E-02 0.889 7.576E-04 1.96 5.814E-03 1.58
912 35 2.912E-02 0.972 1.561E-04 2.28 3.552E-03 0.711
2048 75 1.490E-02 0.966 3.149E-05 2.31 3.324E-03 0.096
8192 151 7.999E-03 0.898 6.381E-05 -1.02 3.323E-03 0.000
32768 312 4.940E-03 0.695 7.642E-05 -0.260 3.334E-03 -0.005
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In table 3.2 it can be seen that the order of convergence of the angular flux error starts begins
close to the theoretical value of p = 1 for early refinement. Up to a refinement of level 3 the
order stays within 10% of this theoretical value. After that the convergence starts to break
down however and the order decreases for each consecutive step. The scalar error starts out
with even better convergence which then even significantly increases up to p = 3.29 between
refinement levels 2 and 3 . After this level the error starts to increase again, as the error due
to spatial discretisation becomes dominant. The CoM error converges quickly to a limit and
stays at this limit for higher refinement.

With the octagon method in table 3.3 similar behaviour is seen as with the spherical method.
The angular flux order of convergence drops down less quickly. The increase in order for
the scalar convergence is more gradual but continues for longer achieving the most precise
calculation for refinement level 4. The CoM error calculation again converges to a limit. The
error in this limit is 2.8 times smaller as with the spherical method.

In Appendix A.2 similar results are achieved when the angular depended part of the flux is
a cubic instead of a quadratic function. While the angular flux error of the spherical method
lacks behind compared to the octagon method. The scalar error decrease more rapidly and
reaches its minimum for refinement level 3 as opposed to level 4 for the octagon method. The
order of angular flux convergence drops much faster in the cubic case as opposed to quadratic
angular dependency.

The angular and scalar flux errors are plotted against the characteristic patch size h for both
the quadratic and cubic cases in Appendix A.3.

3.3 Comparisson CVM to DCGM

Data from the currently unpublished work of Hennink and Lathouwers (2017) is used to make
a comparison and see how the CVM implementation holds up against a full Discontinious
Galerkin Method for angular discretisation. The data contains the relative angular- and
scalar- flux errors achieved with the DCGM using the same flux as used for tables 3.2 and
3.3. The only differences being the spatial grids being used and oy, = lem™!. The spatial grid
being a 2D unibox (Domain (0,1)?) consisting of triangles of approximately equal surface.
Different spatial refinement is used: h = 0.0643, h = 0.0308, h = 0.0153, A = 0.0077 and
h = 0.0038. Where the characteristic length is given by h = l/ﬂNelem), with Ngjerm being
the number of spatial elements. First order spatial basis functions are used.

In Hennink and Lathouwers (2017) up to second order convergence is achieved for both the
angular and scalar flux errors. This can be seen in Figure 3.1, copied from the work of
Hennink and Lathouwers (2017). For larger spatial grid size, the spatial error dominance cuts
off the convergence however. As the scalar error is in general of an order smaller than the
angular error, it will reach the convergence boundary imposed by the spatial grid error more
quickly. The spherical method shows better results than the octagon method does. Reaching
the convergence boundary earlier, as the errors are smaller.

Using the CVM scheme under the same conditions, close to first order convergence is achieved
for the angular flux and up to second order convergence for the scalar flux. The results are
plotted in Figure 3.2. For the angular error no spatial grid error dominance is encountered
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is the error starts out much higher than with the DCGM scheme and does not converge
fast enough to reach this boundary. The scalar flux error starts out angular dominated and
therefore higher as with the DCGM. The lower order of the scalar flux error (compared to
the angular flux error) combined with its higher convergence makes that the convergence
boundary is reached for the less refined spatial meshes. However, this does not happen as
fast as with the DCGM. The differences between the spherical and octagon method are not
as clear as in Figure 3.1.

Q-functions octa-functions
—F— h=0.0643
—i— h=0.0308
=+= h=0.0153
== h=0.0077
1077 —&— h=0.0038
1072 4
2
2
1077 7
1 \‘\\
N 107 kY
b ] W
N ] \:\
y W
% *
T T T T T T T T T T
o 1 2 3 4 o 1 2 3 4
level (I} level ()
(a) relative Lg-error of angular flux (|en — @l g2 /1¢lp,52)
O-functions octa-functions
10-7
10-4
10-5 4

level (I} level (1)

(b) relative Lo-error of sealar flux (|on — o4 /| a4 )

Figure 3.1: This figure is taken from Hennink and Lathouwers (2017). Here the convergence of the
angular (top) and scalar (bottom) flux errors are shown for increasing angular refinement
levels and different spatial mesh size (h). Both spherical (left) and octagon (right) method
are plotted
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Figure 3.2: Angular (top), scalar (middle) and CoM (bottom) flux errors are shown for increasing
angular refinement levels (i) and different spatial mesh size (heierm ). Both spherical (left)
and octagon (right) method are plotted



Chapter 4

Conclusion and Discussion

The results for uniform refinement of the patches obtained with this CVM scheme by Nauta
(2016) can be exactly reproduced using the octagon method of angular grid refinement
(table 3.1). The first step of refinement shows unexpectedly poor convergence of order
p = 0.547. With next three refinement steps the convergence recovers and stays within
10% of the theoretical expected value of p = 1. After the initial recovery the order of con-
vergence starts to drift away more and more from the expected and desired p = 1. Using the
spherical method for angular mesh refinement less desirable results are achieved. From the
second refinement step, the calculated error stays behind compared to octagon method. The
order of convergence walks away more quickly from the theoretical first order, while taking
more steps of calculation to produce the results.

The results obtained when the streaming part of the LBTE is turned on show a convergence
of the angular flux error that starts out immediately around the theoretical desired value.
The octagon method stays close to this value longer than the spherical method does, but for
both methods the convergence starts to break down eventually. The scalar error decreases
much more rapidly. With an order of up to p = 3.29 for the Spherical method (table 3.2 ) and
an order of p = 2.37 from refinement level zero to three, after which the convergence breaks
down. The octagon method (table 3.3) shows a maximum convergence order of p = 2.31. The
total convergence order, before break down after the fourth refinement level, is p = 2.06. A
break down of scalar error convergence can be explained by the error due to spatial grid size
becoming the dominant error. Fourth order spatial basis functions and a flux of second order
spatial dependency should have prevented this. It does also not explain the increase in scalar
error after break down, as the error is expected to remain relatively constant. The error in the
numerical flux value at CoM-coordinates and the analytical value in these coordinates quickly
converges to a limit, disallowing the error to reduce further. The angular flux error, starting
out larger, appears to converge to a similar limit, although the dataset is not sufficiently
extensive to confidently state this is indeed the case. It merits more research here to discover
the exact cause of this limit, it being due to spatial grid size errors, a natural result from the
approximations made with the CVM discretisation scheme or it having a different cause.

The octagon method achieves smaller errors. The scalar flux error converges slighty better
in the spherical case however, but breaks down earlier and at a larger error than the octagon
method does. In the no-streaming case of Section A.1 similar angular and CoM as for the
streaming case are achieved as for the streaming case.

16



17

When the flux is assumed to be cubic in its angular dependencies the angular error convergence
shifts away from ideal behaviour much earlier as compared to the quadratic case (Tables A.3
and A.4). The scalar error convergence does again much better with a maximum of p = 2.19
and p = 2.01 for the Spherical and Octagon method respectively. The total convergence from
zeroth to third level refinement being p = 2.04 and p = 1.98 respectively. Further refinement
results in breakdown of scalar convergence.

While scalar error convergence of second order and higher is achieved. The implemented
CVM scheme lives up to its potential only in part. The achieved angular error convergence
starts out for low level refinement around first order convergence as expected, but as the
refinement increases, the order decreases and the error deviates more and more away from first
order convergence. This unfortunate behaviour limits the effectiveness of the implementation
and warrants the search for different discretisation schemes. Within Phantom a Discontinous
Galerkin Method has been implemented for the angular discretisation during the length of this
project. Altough more computational costly, the non-ideal behaviour of this CVM scheme and
the higher theoretical angular convergence (order p = 2) of the DCGM make this a desirable
alternative. The results in Section 3.3 show the CVM implementation is indeed inferior to
the DCGM. The DCGM achieves second order convergence for both angular and scalar flux
errors as is shown in Hennink and Lathouwers (2017). With the CVM, the achieved errors
are much larger. As can be seen from Figures 3.1 and 3.2. The angular convergence is close
to first order, while the angular error starts out much larger. First level refinement with the
DCGM shows a similar angular error as fourth level refinement with the CVM scheme. And
while the scalar convergence is promising for the CVM, as up to second order convergence is
achieved, the scalar error starts out much higher to begin with. Scalar errors close to 10~ can
be achieved with refinement level 3, the DCGM surpasses this at refinement level 1 however.
These results show the DCGM is indeed much more effective than the implemented CVM
method.

Another method that might be feasible is described and used by Shahbazi et al. (2007). This
method discretely solves the Poisson equation for each patch, not only using the patch his
neighbours in calculation, but the next-nearest patch neighbours as well. This method shows
promise and second order convergence.

As the CVM has non-ideal behaviour for larger angular refinement, low angular flux conver-
gence and as there are more effective techniques such as the DCGM available, it is recom-
mended to use such discretisation schemes over the CVM.



Appendix A

A.1 Results alternative manufactured solution, no streaming

Using the angular manufactured solution of ®(€2) = Cj + C1€2, + Coy, + C3(302 — 1) with
Co:3 = 1;3;2; 1 and the spatial depended part being R(r) = 1, no streaming. The manufac-
tured solution is the same as used for the results of tables 3.2 and 3.3 but without streaming
and spatial dependencies. Table A.1 gives the results for angular flux errors and the CoM
flux errors are presented in table A.2.

Table A.1: Angular flux error, ¥, = 10cm ™!, o4, = 2cm™1,Co.3 = 1;3; 2; 1 uniform refinement.

Spherical Method Octagon Method
Angular Order of Angular Order of
N | flux error  Steps  conv (p) flux error  Steps  conv (p)
8 2.106E-01 4 2.106E-01 4

32 1.057E-01 6 0.995 1.057E-01 6 0.995
128 5.660E-02 12 0.901 5.711E-02 11 0.888
512 2.957E-02 21 0.937 2.912E-02 21 0.972
2048 1.664E-02 40 0.830 1.491E-02 42 0.966
8192 1.125E-02 78 0.564 8.002E-03 82 0.897
32768 9.441E-03 144 0.253 4.945E-03 157 0.694

Table A.2: CoM flux error, ¥, = 10cm™!, 04 = 2cm™1,Cp.3 = 1;3; 2; 1 uniform refinement.

Spherical Method Octagon Method
CoM Order of CoM Order of
N | flux error  Steps  conv (p) flux error  Steps  conv (p)
8 2.650E-02 4 2.650E-02 4

32 1.690E-02 6 0.650 1.690E-02 6 0.650
128 9.694E-03 12 0.801 5.745E-03 11 1.56
512 9.228E-03 21 0.071 3.550E-03 21 0.695
2048 9.277E-03 40 -0.008 3.329E-03 42 0.093
8192 9.309E-03 78 -0.005 3.329E-03 82 0.000
32768 9.319E-03 144 -0.002 3.340E-03 157 -0.005

18
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A.2 Results cubic angular dependency, with streaming

Using the angular manufactured solution of ®(€2) = Co+C1€,+Coy+C3(3Q2 —1)+Cy (5025 —
3Q,) with Co.5 = 1;3;2;1;0.5 and the spatial depended part of R(r) = (1 — z)y(1 — y) the
angular and scalar errors and calculated as well as their order of convergence with regards
to angular refinement. Fourth order spatial basis functions are used. The results for the
spherical and octagon method are presented in tables A.3 and A.4 respectively.

Table A.3: Spherical method, ¥, = 10cm™!,04, = 2ecm™!, Cy.y = 1;3;1;0.5, uniform refinement

Angular Order of Scalar Order of
N | Steps  flux error conv. (p) flux error conv. (p)
8 4 6.025E-01 8.702E-02
32 7 3.007E-01 1.00 2.347E-02 1.89
128 16 1.700E-01 0.823 5.135E-03 2.19
512 39 1.029E-01 0.724 1.264E-03 2.02
2048 91 7.683E-02 0.422 2.184E-03 -0.788
8192 190 6.880E-02 0.159 2.572E-03 -0.236

Table A.4: Octagon method, ¥, = 10cm™',04, = 2cm ™!, Cy.4 = 1;3;1;0.5, uniform refinement

Angular Order of Scalar Order of
N | Steps  flux error conv. (p) flux error conv. (p)
8 4 6.025E-01 8.702E-02

32 7 3.007E-01 1.00 2.347E-02 1.89
128 16 1.748E-01 0.783 6.035E-03 1.96
512 39 1.072E-01 0.706 1.411E-03 2.01
2048 79 8.101E-02 0.404 1.126E-03 0.325
8192 154 7.298E-02 0.151 1.304E-03 -0.212

A.3 Plots scalar and angular flux errors

Plotting the scalar and angular error against the angular grid size (h) to visualise the con-
vergence using the data from Tables 3.2 and 3.3 in Figure A.1 and Tables A.3 and A.4 in

Figure A.2.
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