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Abstract 
 

The Molten Salt Reactor (MSR) is a member of safer and more sustainable fourth generation of 

nuclear reactors, the development of the might be crucial to continually secure supply of electrical 

energy from the near future onwards. Because the fluorides of ruthenium (44Ru) are a poorly 

investigated group of fission products that might be born during MSR operation, some 

computational research was done on their thermochemistry. 

 

Because little experimental data on these species has been obtained, the gas-phase molecular 

geometries and formation enthalpies of all known Ru-F binary compounds, RuF, RuF2, RuF3, RuF4, 

RuF5, RuF6, (RuF5)2 and (RuF5)3 are calculated by Density Functional Theory. The DFT/B3LYP 

method was employed with quasi-relativistic ECP28MWB pseudopotentials and basis set on 

ruthenium and cc-pVTZ basis set on fluorine. Standard molar entropies and heat capacities were 

then also calculated by statistical mechanics computations. 

From the obtained thermochemical data, part of which had to be optimized, and additional data on 

the solid and liquid phases, the Ru-F subsystem was assessed using the CALPHAD methodology. 

Based on the developed model, a phase diagram, Ellingham diagram and gas-phase equilibrium 

diagram were calculated. These diagrams serve as a first attempt to describe and predict the 

behavior of ruthenium in the reactor core during operation of the MSR.  

 

It was found that, assuming that the calculated parameters correctly represent the Ru-F 

subsystem, ruthenium prefers to be in its metallic solid state under MSR operation conditions. 

Generation of more experimental thermochemical data on ruthenium fluorides is desired to confirm 

or correct the data obtained from the computations, in order to eventually be able to commercially 

operate MSRs for future electricity generation. 
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1.  Introduction 
 

1.1. Nuclear Energy Generation 
 

The principle of nuclear energy generation is basically expressed by Einstein’s famous formula 

 𝐸 = 𝑚𝑐2 (1) 

stating that mass essentially is an appearance of energy. Conversion of mass-energy to other 

forms of energy (such as heat, work, or electricity) is implied possible by application of the First 

Law of Thermodynamics, and the technology involved to facilitate the generation of nuclear power 

has been developed over a hundred years. 

 

In contrast with today’s main (fossil) energy sources, such as oil, natural gas and coal, the 

generation process of nuclear power produces no CO2. Therefore, it is a promising candidate to be 

a solid and reliable basis of future energy supply. Its only emission sources are fuel pre- and post-

processing, as well as facility construction, the latter of which, although often neglected, is also 

non-zero for devices like solar panels and wind turbines. 

 

Although the energy generation process itself thus is climate neutral, nuclear energy is not widely 

considered ‘green’. This might be because, in contrast to well-known sustainable energy sources 

as solar, wind, and hydropower, nuclear fuel is mined and processed, just like fossil fuels. Also, the 

fact that highly radiotoxic waste is left at the end of the process contributes to the generally 

negative public attitude towards nuclear power. 

 

Public opinion on nuclear energy is highly affected by three incidents. In 1979, control was lost 

over one of the reactors at Three Mile Island, PA. Although only little radioactive material escaped, 

this accident initiated the anti-nuclear movement.  

Seven years later, the infamous Chernobyl accident occurred. It released radioactive materials 

over nearly all of Europe, and the area around the reactor complex will be too toxic to inhabit for 

ages. After the Chernobyl disaster, various nuclear power plants in Europe were decommissioned 

– some of which were not even built yet – and only few reactors have been built since [1].  

More recently, a tsunami after an earthquake knocked out the Fukushima nuclear power plant, 

which lost a significant amount of radioactive material and set Japan too to think about the safety 

of their nuclear reactors. Likely, the exact consequences of this latest accident cannot be 

determined yet. 

 

Fortunately, these accidents have not stopped research into nuclear reactors, and the current, 

fourth generation of nuclear reactors is being developed thoroughly to achieve safer designs and 

less production of lower-radiotoxic waste. Among these Gen-IV reactor concepts, the one which 

the research reported here applies to, is the Molten Salt Reactor. 

 

1.2. The Molten Salt Reactor (MSR) [2] 
 

The concept of the Molten Salt Reactor (MSR) is not completely new. Already from 1957 onwards, 

in the very childhood of nuclear power, the US Atomic Energy Commission ran a small MSR 

experiment at the Oak Ridge National Laboratory (ORNL) in Tennessee [3]. The experimental 

reactor operated in 1965-68 on 235U fuel and was in 1968-69 the first-ever nuclear reactor using 

the 232Th/233U fuel cycle; after completion of all experiments, it was shut down [3, pp. 10-13]. 
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The most distinctive MSR feature is the use of liquid-state fuel instead of the solid fuel rods usually 

employed to date. This fuel fluid consists of one or several actinide fluorides (such as UF4 and 

ThF4) dissolved in a molten fluoride salt, which can contain various salts like LiF, BeF2, and ZrF4. 

These nuclei have small neutron-capture cross sections, so that they virtually do not interfere with 

the nuclear chain reaction. As a moderator, graphite is commonly used. 

 

The MSR is operated at ambient pressure (which annihilates the risk of explosion) and 

temperatures around 900 K. Because nuclear fission also generates heat, the reactor is cooled 

with a second molten salt circuit, also containing fluoride salts like LiF-BeF2 (FLiBe) or NaF-NaBF4. 

The main reason why MSRs are inherently safer than the nuclear reactors in commercial use, 

besides the ambient pressure, is the fact that the MSR temperature and void coefficients of 

reactivity are negative. This means that in case of a sudden power increase, the MSR core does 

not run away, but levels off its power output. 

 

1.3. Fission Products in MSRs [3] 
 

As uranium fission occurs in the molten salt, its fission products will be produced therein. Highly 

volatile fission products, such as xenon and krypton isotopes, are likely to come out of the fluid, 

assisted by helium bubbling. Most elements, including iodine, bromine, rubidium, cesium and all 

lanthanides, form stable fluoride salts that dissolve in the salt mixture. The class of fission products 

that needs most attention is the group of noble metals, such as niobium, molybdenum, silver, and 

ruthenium. These metals are expected to form solid precipitates and therefore accumulate in the 

mixture, settling on various surfaces and thereby forming obstacles in the energy production 

process. For good operation of a MSR, fission product behavior must be understood [3, p. 2]. 

 

Most uranium fission products themselves are also radioactive, and most of them (including the 

abovementioned ruthenium isotopes) will disintegrate by beta decay. Moreover, the average 

oxidation state of the metals in the mixture changes; uranium (or thorium) is fed as U4+/Th4+, while 

the average oxidation state of the fission products is around +3 [4]. As a result of the production of 

fission products of lower oxidation state and of beta particles (physically equal to electrons), the 

electronic status of the reactor contents, known as redox potential, is changing over time. When 

this potential increases enough, even the most noble metals will be oxidized and form salts, 

blending in the melt. Likely, most of these salts will be fluoride salts, as the fluoride anion is amply 

present as constituent of the feed salt mixture. Different anions are formed in the reactor 

processes, like iodide or bromide, perhaps even selenium or tellurium anions, but these are not 

abundant in the reactor contents. Thus, the redox condition of the MSR contents is described by 

the fluorine potential [5]: 

 
∆𝐺𝐹2 ≡ 𝑅𝑇 ln𝑝𝐹2 (2) 

with 𝑅 the gas constant, 𝑇 the temperature and 𝑝𝐹2 the partial pressure of gaseous fluorine. This 

fluorine potential is usually controlled by addition of some UF3 to the fuel salt. By effective and 

efficient fluorine potential management, operators know what are the chemical forms and states of 

the reactor contents, and are able to know them also in case of an accident. 

 

Typically, the fluorine potential in a MSR is about ∆𝐺𝐹2 ≅ −700 kJ/mol. This can be calculated by 

the dissolved-salt control formula (15) from [5, p. 271], assuming a U4+/U3+ ratio of 100 [3, p. 15] 

and using the Gibbs energies of formation for UF4 and UF3 dissolved in FLiBe as reported in the 

report ORNL-4076 [6, p. 49], which are given in kcal/mol. 
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Of the noble metals, a considerable, yet poorly investigated portion is ruthenium, in particular the 

isotopes 103Ru and 106Ru [3, pp. 17, 19-90]. Both will decay further, but their reasonably long half-

life periods (of 39.26 days and 373.59 days respectively) make them to be considered. In fact, after 

the ORNL experimental MSR shut down, substantial amounts of ruthenium were found all over the 

reactor inventory [3, pp. 91-134]. 

 

1.4. Research Aim 
 

Combining the aforementioned considerations, the research reported here attempts to calculate 

the behavior of ruthenium as it depends on the system temperature and fluorine potential. After 

investigation what binary species of ruthenium fluorides are found to exist, the thermochemical 

properties of these are computed combining DFT and statistical mechanics calculations. As a 

result, a phase diagram is to be presented showing the thermodynamically expected behavior of 

ruthenium in a MSR environment. 
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2.  Literature Review 
 

Various ruthenium fluorides are known to exist, although little research has been investigating their 

thermochemical behavior under high-temperature MSR conditions.  

 

A 1987 thesis mentions the existence and synthesis methods of five binary ruthenium-fluorine 

compounds: RuF3, RuF4, RuF5, RuF6 and RuF8, alongside with mono-, di- and trivalent anions of 

RuF6 [7]. The hexa- and octafluoride are reported to be thermally unstable: whereas the former has 

a distinct red-brown vapor and a decomposition temperature around 200 °C [8], the latter already 

decomposes at –50 °C [7]. Ruthenium octafluoride has not been mentioned in literature ever since, 

and is therefore not included in this work. 

The following year, the gaseous lower ruthenium fluorides (RuF and RuF2) are found in literature 

[9], and five years later, the RuF5 gas phase is observed to consist of mainly trimeric molecules in 

two different, non-planar conformations, as well as some dimeric molecules [10]. Several values for 

the formation enthalpies, bond dissociation energies, molecular bond lengths and symmetries for 

gaseous ruthenium fluorides are shown in Table 1. In addition to the symmetry point groups listed 

there, the pentafluoride is already known to prefer the square pyramidal C4v structure over the 

trigonal bipyramidal D3h, and the tetrafluoride is reported to be more stable in square planar D4h 

conformation than in the initially expected tetrahedron Td [11], [12]. 

 

Table 1: Standard Enthalpy of Formation ∆𝑯𝒇
𝟎, bond dissociation energies 𝑫𝒆, bond lengths and 

point groups of the gaseous ruthenium fluorides found in literature. Here and henceforth, (ax) 
refers to bonds from a central (ruthenium) to an axial positioned atom, (eq) to a bond in the 
equatorial plane, and (b) to a bond to a bridging (Ru-F-Ru) atom. 
 

 
∆𝑯𝒇

𝟎 

(kJ/mol) 

𝑫𝒆 
(kJ/mol) 

Bond lengths (Å) 
Point 
Group 

Ref. 

RuF 

328.4 402   [9] 

271.2    [13] 

 364.8 2.05  C∞v [11], [14] 

RuF2 

–55.2 464   [9] 

–130.3    [13] 

 508.4 1.96  D∞h [11], [15] 

RuF3 
–314.2 339   [9] 

–390.3    [13] 

RuF4 

–595.0 361   [9] 

–646.0    [13] 

  1.87  Td [16] 

RuF5 
–740.5    [13] 

–744.8  1.87  D3h [16] 

RuF6 

–848.3    [13] 

  1.8775  Oh [16] 

  1.8467 (ax), 1.8204 (eq) D4h [17] 

(RuF5)2 –1686.2    [13] 

(RuF5)3 
–2600.5    [13] 

  2.00 (b), 1.85 (ax), 1.77 (eq)  C3v, CS [10], [11] 
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The often serious differences between obtained numbers arise usually from the approach elected 

to calculate the desired value. Siegbahn (in [14], [15]) calculates the properties of the bonding in 

second-row transition metal (di-)fluorides in correlation with their (di-)hydrides and (di-)chlorides. 

Hildebrand and Lau [9] used some figures from neighboring molybdenum (Z=42; for Ru, Z=44) to 

fill knowledge gaps to calculate formation enthalpies from enthalpies of reactions involving 

ruthenium and silver fluorides, whereas Nikitin and Zbezheva [13] only use mutual equilibrium 

reactions amongst the ruthenium fluorides themselves and calibrate these relative values with a 

literature value measured by bomb calorimetry [18]. This measured value for solid ruthenium 

pentafluoride is reported to be ∆𝐻𝑓
0(RuF5, (s)) = –892.9 kJ/mol. Data on the condensed phases of 

all other ruthenium fluorides appear to be scarce, if not non-existent. 

 

Clearly, there is an enormous lack of data on the majority of ruthenium fluoride species. Part of the 

information that is available is not even calculated, but estimated; thermochemical data usually is 

not even available. Therefore, the thermodynamics of the mentioned ruthenium fluorides are to be 

computed again, while the literature serves as a reference background to judge the reasonability of 

the newly calculated values – the only exception is the mentioned measured value for RuF5 (s). 
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3.  Theoretical Background 
 

3.1. Density Functional Theory (DFT) 

 

Density Functional Theory is an ab initio quantum mechanical approach to calculating molecular 

geometries and properties, which simplifies the Hamiltonian of the Schrödinger equation by 

considering all individual electrons as one ‘cloud’ of time-averaged electron density. Nowadays, it 

is one of the most used tools in computational chemistry. It is capable of computing all molecular 

properties quite accurately with reasonable effort [19].  

 

First of all, there are multiple ways to calculate molecular energetics from DFT, called methods. 

The one method that was used in this work is called B3LYP [20], one of today’s most used and 

most accurate methods [19, pp. 266-98]. It is an Adiabatic Connection Method (ACM), the 

mentioned ‘connection’ being made between the Kohn-Sham (KS) system, in which electrons do 

not interact with each other, and the actually interactive system. The correction thus carried out is 

commonly denoted as exchange-correlation energy (𝐸𝑋𝐶), which is included in the energetic 

expression following from the KS Self-Consistent Field (SCF) methodology [19, pp. 255-57]. 

 

The main output of the DFT calculations is the molecular geometry (represented in vector �⃗� ), which 

all molecular properties depend on. It is computed by minimizing the energy functional  

 
𝐸[𝜌(�⃗� )] =  𝑇𝑛𝑢𝑐,𝑖[𝜌(�⃗� )] + 𝑉𝑛𝑢𝑐−𝑒𝑙[𝜌(�⃗� )] + 𝑉𝑒𝑙−𝑒𝑙[𝜌(�⃗� )] + ∆𝑇[𝜌(�⃗� )] + ∆𝑉𝑒𝑙−𝑒𝑙[𝜌(�⃗� )] (3) 

where the terms 𝑇 are kinetic energy functionals and the terms 𝑉 potential energy functionals of 

the electron density 𝜌. Their subscripts specify whether terms apply to nuclear or electronic 

energy. This total energy functional may be rewritten in terms of orbitals 𝜒𝑖 as 

 

𝐸[𝜌(�⃗� )] =∑(⟨𝜒𝑖|−
1

2
∇⃗⃗ 𝑖
2|𝜒𝑖⟩ − ⟨𝜒𝑖| ∑

𝑍𝑘
|�⃗� 𝑖 − �⃗� 𝑘|

𝑛𝑢𝑐𝑙𝑒𝑖

𝑘

|𝜒𝑖⟩)

𝑁

𝑖

+ ∑⟨𝜒𝑖|
1

2
∫

𝜌(�⃗� ′)

|�⃗� 𝑖 − �⃗� ′|
𝑑�⃗� ′ |𝜒𝑖⟩

𝑁

𝑖

+ 𝐸𝑋𝐶[𝜌(�⃗� )] 

(4) 

where indices 𝑖  and 𝑘 run over the 𝑁 electrons and the number of atoms, respectively; 𝑍𝑘 denotes 

the nuclear charge of atom 𝑘. The electron density 𝜌 is, as common for Slater-determinantal wave 

functions, defined as 

 

𝜌 =  ∑⟨𝜒𝑖|𝜒𝑖⟩

𝑁

𝑖=1

 (5) 

 The orbitals 𝜒𝑖 needed to minimize 𝐸 are found to satisfy the Schrödinger-like equations 

 
ℎ̂𝑖
𝐾𝑆𝜒𝑖 = 휀𝑖𝜒𝑖 (6) 

where 휀𝑖 are the orbital energies, and the one-electron KS operator is 

 ℎ̂𝑖
𝐾𝑆 = −

1

2
∇⃗⃗ 𝑖
2 − ∑

𝑍𝑘
|�⃗� 𝑖 − �⃗� 𝑘|

𝑛𝑢𝑐𝑙𝑒𝑖

𝑘

+∫
𝜌(�⃗� ′)

|�⃗� 𝑖 − �⃗� ′|
𝑑�⃗� ′ + 𝑉𝑋𝐶 (7) 

most terms of which were already defined in Eq. 4, while the last term is the exchange-correlation 

potential 

 

𝑉𝑋𝐶 = 
𝛿𝐸𝑋𝐶[𝜌(�⃗� )]

𝛿𝜌(�⃗� )
 (8) 
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The expression for the exchange-correlation energy that is characteristic to the B3LYP method [19, 

pp. 266-68] is 

 
𝐸𝑋𝐶
𝐵3𝐿𝑌𝑃 = (1 − 𝑎)𝐸𝑋

𝐿𝑆𝐷𝐴 + 𝑎𝐸𝑋
𝐻𝐹 + 𝑏𝐸𝑋

𝐵 + (1 − 𝑐)𝐸𝐶
𝐿𝑆𝐷𝐴 + 𝑐𝐸𝐶

𝐿𝑌𝑃 (9) 

the parameters of which expression were optimized to 𝑎 =  0.20, 𝑏 =  0.72 and 𝑐 =  0.81. The 

superscript abbreviations refer to the Local Spin Density Approximation, Hartree-Fock, Becke [21] 

and Lee-Yang-Parr [22] functionals respectively [19]. 

 

When the molecular energy is minimized at 𝐸0, the geometrical configuration is fixed. Based upon 

this geometry, its molecular vibrations and thermodynamic properties can be calculated. [23]. This 

computation requires the creation of a mass-weighed Hessian matrix out of the Cartesian Hessian: 

 

𝑓𝑀𝑊𝐶 𝑖,𝑗 =

𝑓𝐶𝑎𝑟𝑡 𝑖,𝑗|𝑒𝑞

√𝑚𝑖𝑚𝑗
=

𝜕2𝑉

𝜕𝑞1𝜕𝑞2
|
𝑒𝑞

 (10) 

where the mi are the masses of the atoms in the molecule, and the compound displacement 

variables 𝑞𝑛 thus become 𝑞1 = ∆𝑥1√𝑚1, 𝑞2 = ∆𝑦1√𝑚1, 𝑞4 = ∆𝑥2√𝑚2, and so on, covering the 

three spatial degrees of freedom of all atoms in the molecule. The subscript 𝑒𝑞 means at 𝐸 = 𝐸0. 

A copy of this mass-weighed Hessian is diagonalized, yielding eigenvalues and eigenvectors of 3𝑁 

normal modes – 𝑁 now referring to the number of atoms. To sort these normal modes out, the 

origin of the coordinate system is shifted to the center of mass, and the inertia tensor 𝑰 can be 

calculated: 

 

𝑰 = (

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

) =

(

 
 
 

∑ 𝑚𝑎(𝑦𝑎
2 + 𝑧𝑎

2)
𝑎

−∑ 𝑚𝑎(𝑥𝑎𝑦𝑎)
𝑎

−∑ 𝑚𝑎(𝑥𝑎𝑧𝑎)
𝑎

−∑ 𝑚𝑎(𝑦𝑎𝑥𝑎)
𝑎

∑ 𝑚𝑎(𝑥𝑎
2 + 𝑧𝑎

2)
𝑎

−∑ 𝑚𝑎(𝑦𝑎𝑧𝑎)
𝑎

−∑ 𝑚𝑎(𝑧𝑎𝑥𝑎)
𝑎

−∑ 𝑚𝑎(𝑧𝑎𝑦𝑎)
𝑎

∑ 𝑚𝑎(𝑥𝑎
2 + 𝑦𝑎

2)
𝑎 )

 
 
 

 (11) 

(where index 𝑎 refers to each individual atom) which, after being diagonalized, gives its 

eigenvalues and eigenvectors. The eigenvalues 𝑰’ are the molecule’s principal moments of inertia, 

and the matrix filled with the normalized eigenvectors, called 𝑿, is needed for the extraction of the 

rotational modes form the 3𝑁 normal modes. 

 

Next, the transformation matrix 𝑫 is made as follows. Its three vectors are translational, with atomic 

indices √𝑚𝑖 for the (x,y,z) element of atom 𝑖. The rotational vectors are defined as 

 

𝐷4 𝑗,𝑖 = ((𝑃𝑦)𝑖𝑋𝑗,3 −
(𝑃𝑧)𝑖𝑋𝑗,2) √𝑚𝑖⁄  

 

𝐷5 𝑗,𝑖 = ((𝑃𝑧)𝑖𝑋𝑗,1 − (𝑃𝑥)𝑖𝑋𝑗,3) √𝑚𝑖⁄  
 

𝐷6 𝑗,𝑖 = ((𝑃𝑥)𝑖𝑋𝑗,2 − (𝑃𝑦)𝑖𝑋𝑗,1) √𝑚𝑖⁄  

(12) 

where 𝑖 is the atomic index, 𝑗 runs over (x,y,z), and 𝑃 is the dot product of 𝑹 (atomic coordinates 

with respect to the center of mass) and the corresponding row of aforementioned matrix 𝑿. These 

six vectors are then normalized and checked for being normal modes. The number of translational 

and rotational modes is checked to correspond with the expected values: 3 for atoms, 5 for linear 

molecules, 6 otherwise. Schmidt orthogonalization generates the remaining vibrational mode 

vectors. 
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The produced matrix 𝑫 then is used to transform the mass-weighed Hessian from Eq. 10 to 

internal coordinates, which is done as follows: 

 
𝑓𝐼𝑛𝑡. = 𝑫

†𝑓𝑀𝑊𝐶𝑫 (13) 

From this Hessian in internal coordinates, the 𝑁𝑣𝑖𝑏×𝑁𝑣𝑖𝑏 submatrix, no longer containing the 

translational and rotational modes, is extracted and diagonalized, so that it gives 𝑁𝑣𝑖𝑏 eigenvectors 

and eigenvalues: the wavelengths 𝜆𝑖. These wavelengths are converted to wavenumbers 

 

𝜈𝑖 = √
𝜆𝑖

4𝜋2𝑐2
 (14) 

the units of which are finally all converted from atomic to more common macroscopic units. More 

properties for all these vibrations, such as reduced masses and displacements in Cartesian 

coordinates, are obtained, but not used in this work [23]. 

 

3.2. Statistical Mechanics 
 

Statistical mechanics calculations rely on the definition of the partition function 𝑞(𝑉, 𝑇). This 

function is the statistical sum of all the possible states of the system, from which the values for the  

molar thermodynamic state functions at any given temperature can be derived. The standard molar 

entropy 𝑆, the enthalpy difference (𝐻(𝑇) − 𝐻0) and isobaric heat capacity 𝐶𝑃 are calculated as 

 

𝑆(𝑇) = 𝑅 ln
𝑞

𝑁
+ 𝑅𝑇 (

𝜕 ln 𝑞

𝜕𝑇
)
𝑃
 

𝐻(𝑇) − 𝐻0 = 𝑅𝑇2 (
𝜕 ln 𝑞

𝜕𝑇
)
𝑃
 

𝐶𝑃(𝑇) = (
𝜕(𝐻(𝑇) − 𝐻0)

𝜕𝑇
)
𝑃

=  2𝑅𝑇 (
𝜕 ln 𝑞

𝜕𝑇
)
𝑃
+ 𝑅𝑇2 (

𝜕2 ln 𝑞

𝜕𝑇2
)
𝑃

 

(15) 

Under certain assumptions pointed out below, the partition function can be divided into four 

components: translational, rotational, vibrational and electronic motion, and the eventual system 

values of 𝑆(𝑇), (𝐻(𝑇) − 𝐻0) and 𝐶𝑃(𝑇) are the sum of its four contributions. These partition 

function components are now reviewed [24]. The first component is exemplary worked out below, 

application of the formulae in Eq. 15 to the other three, is included in Appendix A. The relation 

between the isochoric and isobaric heat capacities 𝐶𝑉 and 𝐶𝑃 is elaborated on in Appendix B. 

 

The partition function of translational motion is defined as 

 

𝑞𝑡 = (
2𝜋𝑀𝑘𝐵𝑇

𝑁ℎ2
)
3 2⁄ 𝑉

𝑁
 (16) 

where 𝑀 is the molecular mass, 𝑘𝐵 the Boltzmann constant, 𝑁 the number of molecules, and ℎ the 

Planck constant. The molecular volume 𝑉 is approximated by the ideal gas law, thus 𝑉 𝑁⁄  =

 𝑘𝐵𝑇/𝑃. The partial differential of the partition function logarithm with respect to 𝑇 is 5/(2𝑇). So, the 

translational contributions to the molecular thermodynamics are 

 

𝑆𝑡(𝑇) = 𝑅 (ln((
2𝜋𝑀𝑘𝐵𝑇

𝑁ℎ2
)
3 2⁄ 𝑘𝐵𝑇

𝑃
) + 𝑇 (

5

2𝑇
)) = 𝑅(ln

𝑞𝑡
𝑁
+
5

2
) 

(𝐻(𝑇) − 𝐻0)𝑡 = 𝑅𝑇
2 (
5

2𝑇
) =

5

2
𝑅𝑇 

𝐶𝑃𝑡(𝑇) =  
5

2
𝑅 

(17) 
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At rotational motion, molecular geometry enters the stage. For single atoms, the partition function 

is just 𝑞𝑟 = 1 and thus contributes nothing to the thermodynamic properties as both the logarithm 

and partial temperature derivative of 1 are zero. For linear molecules, like all diatomic ones, the 

partition function is 

 
𝑞𝑟 = 

1

𝜎
(
𝑇

Θ𝑟
) (18) 

where 𝜎 is the rotational symmetry number of the molecule, which is associated with the molecular 

symmetry point group, and with the rotational temperature Θ𝑟 = ℎ
2 (8𝜋2𝐼𝑘𝐵)⁄ , 𝐼 being the moment 

of inertia. For general polyatomic molecules, the partition function looks a little more complicated: 

 

𝑞𝑟 = 
√𝜋

𝜎
(

𝑇3 2⁄

√Θ𝑟,𝑥Θ𝑟,𝑦Θ𝑟,𝑧
) (19) 

but it has essentially the same form as the translational partition function, 𝑞 ∝ 𝑇3 2⁄ ; all other 

parameters are molecular constants. For computational ease, the molecules are assumed to 

behave like rigid rotors. 

 

The partition function of vibrational motion is more complex in nature than its translational and 

rotational counterparts, because its multiplicity is defined not by the three-dimensionality of space, 

but by the number 𝑁 of atoms in the molecule, as 3𝑁 − 6 (or 3𝑁 − 5 in case of a linear molecule). 

The thermodynamic contributions from vibration are therefore the contributions of all individual 

modes 𝐾 at frequencies 𝜈𝐾 with characteristic vibrational temperatures Θ𝑣,𝐾 = ℎ𝜈𝐾 𝑘𝐵⁄  together. An 

additional complication is that either the potential well bottom or the first vibrational level (V=0) 

may be taken as reference. The difference between these two methods is the zero-point vibrational 

energy. Taking the well bottom as starting point, we are to consider the partition functions 

 

𝑞𝑣,𝐾 = 
𝑒−Θ𝑣,𝐾/2𝑇

1 − 𝑒−Θ𝑣,𝐾/𝑇
 (20) 

from which the overall partition function is calculated as the product of all these partition functions 

of the vibrations 𝐾. All molecular vibrations are assumed to be harmonic oscillations. 

 

The electronic partition function can be written as 

 

𝑞𝑒 = ∑ 𝜔𝑛𝑒
−𝜖𝑛 𝑘𝐵𝑇⁄

𝑛
 (21) 

where 𝜔𝑛 is the multiplicity and 𝜖𝑛 the energetic level of electronic state 𝑛. 

Here, the simplest approach assumes that all excited states (𝑛 > 0) are unavailable at all 

temperatures, which simplification is valid only for very low 𝑇. If then the electronic ground state 𝜖0 

is put to zero, the partition function is curtailed to 𝑞𝑒 = 𝜔0, which is the spin multiplicity of the 

ground state [24]. This reduces the entropy contribution to 𝑆𝑒 = 𝑅 ln𝜔0 and the energy and heat 

capacity contributions then are identically 0 [24]. In order to extend the validity of the calculated 

functions for higher temperatures, atomic energy levels are included in the calculation of the 

electronic contributions; the number of them that was considered, depends on the temperature. 

 

Except the electronic ground state multiplicity, which is an input variable, all parameters in the 

process, which are the rotational symmetry number 𝜎, the three-dimensional product of rotational 

constants (manually converted to moments of inertia) and vibrational frequencies, are printed in the 

DFT output files. Also, the zero-point energy 𝐸𝑍𝑃𝐸 and the sum of all aforementioned contributions 

to the energy, called total internal energy correction 𝐸𝑡𝑜𝑡 are explicitly given. Of the other listed 

values, only 𝐻𝑐𝑜𝑟𝑟 = 𝐸𝑡𝑜𝑡 + 𝑘𝐵𝑇 is used for the calculation of formation enthalpies [24]. 
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3.3. Phase Stability 
 

Once the thermodynamic behavior of all molecules is known, the equilibrium composition of the 

system can be calculated. As all values calculated so far are only valid for the gas phase, data on 

the solid and liquid phases is either found in literature or approximated to complete the data set of 

the system. 

 

For each compound, the stability of a phase at any given temperature 𝑇 is given by the Gibbs free 

energy 𝐺(𝑇), which, in terms of the derived quantities, is defined [25] as 

 

𝐺(𝑇) =  ∆𝐻𝑓
0(298 𝐾) − 𝑇𝑆0(298 𝐾) + ∫ 𝐶𝑝(𝑇) 𝑑𝑇

𝑇

298

− 𝑇∫ (
𝐶𝑝(𝑇)

𝑇
)  𝑑𝑇

𝑇

298

 (22) 

where, as elsewhere, ∆𝐻𝑓
0 is the formation enthalpy of the compound at 298 K, 𝑆0 the standard 

entropy at that same temperature, and 𝐶𝑃(𝑇) the isobaric molar heat capacity, for that phase. 

 

When all these values for all possible phases are calculated, the next step is to find the 

energetically lowest phase composition given the elemental composition and the temperature of 

the system. A phase diagram is the common graphical way to depict the most stable status of the 

system. Its axes run over the system parameters, which are the elemental composition and the 

temperature. Each tile in the diagram stands for the combination of compounds that is most stable 

within the temperature and composition boundaries of the tile. Crossing a line from one tile to 

another, therefore, means a phase transition or a shift in reaction equilibrium. 

 

Another important variable is the fluorine potential (Eq. 2). The phase diagram showing the 

relations between the temperature and the fluorine potential of the system is called an Ellingham 

diagram. The data in this diagram are important to the fluorine potential management. 

 

A third diagram shows the composition of the system of ruthenium and fluorine as a function of the 

elemental composition. In case of a stable gas phase, it predicts what amounts of what compounds 

will be found in the off-gas flow; for condensed phases, it indicates what compounds are present in 

the reactor core. The physical state of the present compounds then need to be evaluated to predict 

whether they are most likely to be dissolved in the salt mixture or settled on the reactor surfaces. 

 

These calculations are done by a program, called FactSage, that implements the CALPHAD 

methodology [26]. The term CALPHAD is acronymic for CALculation of PHAse Diagrams, which 

states exactly what it does. The main strengths of this approach are that subsystems can be 

combined to describe a larger, multi-component system, and that it allows refinement of its input 

parameters to improve the correspondence between the calculations and experimental data. 

Because of the former quality, it is not yet necessary to take into account the complete set of other 

MSR contents, such as lithium, beryllium, uranium, and all its decay products. The latter attribute is 

very helpful for (sub)systems constituted of poorly examined components like the ruthenium 

fluorides. 
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4.  Experimental 
 

4.1. Geometrical Calculations 
 

Calculation of molecular structures using DFT was done by the Gaussian program [27] using the 

B3LYP method. The quasi-relativistic ECP28MWB pseudopotentials and corresponding basis set 

used on the ruthenium atoms were taken from the University of Cologne [28], where its 

Department of Theoretical Chemistry keeps a database of energy-consistent pseudopotentials as 

correct as possible. On the fluorine atoms, the in-program cc-pVTZ basis set was used. The 

calculation route  

 # B3LYP/gen pseudo=read opt freq pop=none (23) 

was taken for all possible multiplicity states in all attempted starting geometries of the investigated 

molecules. The keyword opt commands optimization of the molecular geometry in the input file, 

and freq prompts calculation of the molecular vibrational frequencies and derived thermochemical 

properties. These operations are carried out as described above. 

Multiplicity of the electronic state is conform its definition calculated as 2𝑆 + 1, 𝑆 being the total 

spin angular momentum. This can be simplified by the consideration that paired electrons, 

including all the core electrons, cancel out each other in this calculation; hence, the product 2𝑆 in 

all cases simply reduces to the number of unpaired valence electrons. Initial parameter guesses 

are listed in Table 2. The one multiplicity number that yielded the most stable molecular geometry 

is retained and used through the following calculations. 

 

Once the multiplicity of the electronic ground state, molecular geometry and corresponding 

symmetry point group were confirmed, tight conversion via the route 

 # B3LYP/gen pseudo=read opt=tight int=ultrafine scf=conver=9 freq pop=none (24) 

was applied to that molecule to compute the structural and thermodynamic parameters more 

accurately. In any doubt on the exact structure, tight conversion was applied to all configurations in 

question, after which the most stable conformation was kept.  

 

Since the pentafluoride trimer configurations (C3v and CS) differed very little energetically, both 

conformations were retained. Additionally, they were checked and confirmed to have reached the 

true ground state within their respective symmetries by a special Gaussian operation taking as 

input the optimized geometry from the check file made during the calculation. The command for 

this computational route is 

 
# B3LYP/gen pseudo=read geom=check guess=read Stable=Opt pop=none (25) 

 

Table 2: Initial guesses for geometries (point groups), ground state multiplicities and bond lengths 
for the DFT calculations. Most bond lengths were taken from literature, see Table 1. 
 

 RuF RuF2 RuF3 RuF4 RuF5 RuF6 (RuF5)2 (RuF5)3 

PGs C∞v D∞h,  C2v 
D3h, C3v, 

C2v 
D4h, Td, 
C3v, C2v 

D3h, C4v, 
D5h 

Oh D2h 
C3v, CS, 

D3h 

GS mult. 2, 4, 6, 8 1, 3, 5, 7 2, 4, 6 1, 3, 5 2, 4 1, 3 1, 3, 5, 7 
2, 4, 6, 
8, 10 

Bonds 
(Å) 

2.05 1.96 1.9 1.87 1.87 1.8775 
2.0 (b), 1.85 (ax), 

1.77 (eq) 
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During the calculations, some expected symmetries broke down to lower levels. In these cases, 

the newly obtained symmetries were then used as input to be optimized, going through the 

complete DFT process again, with the most recently obtained bond lengths and all possible ground 

state multiplicities.  

 

In addition to the compounds, the ruthenium and fluorine atoms were calculated through, because 

the output on these elements is a reference state for the enthalpy calculations. 

 

4.2. Thermodynamic Calculations 
 

From the energetic DFT output data mentioned above on all molecules and both elements, values 

for the standard enthalpy of formation ∆𝐻𝑓
298 𝐾 were calculated as follows [24]: 

 ∆𝐻𝑓(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑)
298 𝐾 = ∆𝐻𝑓(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑)

0 𝐾 + ∆𝐻(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑)
298 𝐾−0 𝐾 −∑∆𝐻(𝑎𝑡𝑜𝑚𝑠)

298 𝐾−0 𝐾 (26) 

 ∆𝐻𝑓(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑)
0 𝐾 =∑∆𝐻𝑓(𝑎𝑡𝑜𝑚𝑠)

0 𝐾 − ∆𝐸𝑎𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (27) 

 ∆𝐻(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑)
298 𝐾−0 𝐾 = (𝐻𝑐𝑜𝑟𝑟 − 𝐸𝑍𝑃𝐸)𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (28) 

 ∆𝐸𝑎𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =∑(𝐸0 + 𝐸𝑍𝑃𝐸)𝑎𝑡𝑜𝑚𝑠 − (𝐸0 + 𝐸𝑍𝑃𝐸)𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (29) 

For the fluorine atom, ∆𝐻(𝐹)
298 𝐾−0 𝐾 was taken as half of the value for elemental fluorine (F2). 

Reference values for ∆𝐻(𝑎𝑡𝑜𝑚𝑠)
298 𝐾−0 𝐾 and ∆𝐻𝑓(𝑎𝑡𝑜𝑚𝑠)

0 𝐾  were taken from JANAF tables [29] for fluorine 

and from the NBS tables [30] for ruthenium.  

 

Gaussian does some thermodynamic analysis on the molecule, but it neglects the electronic 

contributions to the thermodynamics [24]; therefore, entropy and the heat capacity calculations 

were done by a program called MoTher, short for Molecular Thermodynamics. Because the 

electronic energy levels up to 30000 cm-1, as obtained from Moore [31], are put in, MoTher is able 

to also calculate the electronic contributions to the entropy and heat capacity. Only a limited range 

of energy levels is put in to save time, as a result of which the value ranges for the heat capacity 

𝐶𝑃(𝑇) and molar entropy 𝑆(𝑇) are valid only on a temperature range of 298-3000 K. As the MSR 

temperature normally is around 900 K, this range is large enough to regard the results meaningful 

to the reactor operation. From the entropy, only the value at 298 K is needed. To the heat capacity 

values, a function was fitted, having the general formula 

 𝐶𝑃(𝑇) = 𝐴 + 𝐵𝑇 + 𝐶𝑇
2 +𝐷 𝑇2⁄ + 𝐸𝑇3 + 𝐹 𝑇⁄  (30) 

with 𝐹 only non-zero when a reasonable fit could not be obtained with 𝐹 = 0. The fit is accepted 

reasonable when 𝑅² >  0.999. 

 

4.3. Phase Diagram Calculations 
 

The calculated gas-phase data have to be complemented with thermodynamic data on the liquid 

and solid phases of the compounds. As little information is available in literature, most of these are 

to be estimated. The values and functions for the entropy and heat capacity of the RuF3, RuF4 and 

RuF6 solids were obtained from the Neumann-Koop rule: 

 
𝑓(RuF𝑛, s) =  

1

5
(𝑛 × 𝑓(RuF5, s) + (5 − 𝑛) × 𝑓(Ru, s)) (31) 

with 𝑓 either the entropy 𝑆0 or heat capacity 𝐶𝑃(𝑇) function. The form of this rule is based on the 

equilibrium reaction 

 𝑛 RuF5 (s) + Ru (s) ↔ 5 RuF𝑛(s) (32) 



16 
 

Then, some post-calculation CALPHAD optimizations had to be done also on the formation 

enthalpy of some of the gaseous molecules, particularly on the higher ruthenium fluorides. The 

combination of the calculated and otherwise generated data did not accurately reproduce the 

thermodynamic properties of these molecules, such as melting point, boiling point, and 

decomposition temperatures. The calculated formation enthalpies were therefore optimized to fit 

the experimental data. 

 

The phase, Ellingham and equilibrium diagrams were computed by the FactSage modules Phase 

Diagram and Equilib, based on calculated, optimized and additionally looked up parameters.  
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5.  Results and Discussion 
 

5.1. Molecular Geometry 
 

The DFT-calculated structures of the ruthenium fluoride compounds are shown in Figure 1; the 

computed parameter values of these molecules are included in Table 3. 
 

 
 

 

 

  

 

  
 
 

Figure 1: Ball-and-stick models of the ruthenium fluorides; ruthenium in darker grey, fluorine in 
lighter grey. Left to right: mono-, di- and trifluoride; tetra-, penta- and hexafluoride; pentafluoride 
dimer; pentafluoride trimers in chair, boat conformation. 
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Table 3: Calculated molecular parameters of the gaseous ruthenium fluorides, as well as the elemental 
data needed for the thermodynamic calculations. 
 

S
p

e
c
ie

s
 

P
o

in
t 

G
r.

 

G
S

 m
u

lt
. 

Bond 
lengths  

Å 

Bond 
angles  

° 

Rotational 
constants 

GHz 

Vibrational 
frequencies 

cm
-1

 

Moments of 
inertia 

𝑰𝑿 · 𝑰𝒀 · 𝑰𝒁 
(kg·cm

2
)
3
 

Ru  5      

F  2      

RuF C∞v 4 1.8943  8.79493 599.33 9.5420E-46 n1 

RuF2 D∞h 5 1.8734 180 3.78977 141.48 (2), 609.51, 680.42 2.2144E-45 n2 

RuF3 Cs 4 
1.8503, 

1.8499 (2) 
99.7 (2), 

160.3 

7.72588 
4.00158 
2.63839 

139.77, 142.38, 171.71, 
517.07, 650.75, 694.52 

7.2460E-135 

RuF4 D2d 5 1.8453 168.7 (2) 
3.86837 (2) 

1.97205 

48.95, 179.38, 249.11 (2), 
269.20, 621.59, 676.59, 

717.65 
2.003E-134 

RuF5 C4v 4 
1.797 (ax), 
1.837 (eq) 

97.8 
(ax-eq) 

2.64824 (2) 
2.00726 

120.73, 166.99 (2), 237.52, 
266.11 (2), 273.85, 631.49, 
684.61, 720.60 (2), 734.38 

4.1986E-134 

RuF6 D4h 3 
1.832 (ax) 
1.806 (eq) 

90 
2.02884 

1.99621 (2) 

156.76 (2), 214.28,  
276.85 (2), 322.59, 327.68, 
390.13 (2), 629.69, 635.97, 
702.43, 731.67, 744.60 (2) 

7.3107E-134 

(RuF5)2 D2h 7 
1.832 (ax), 
1.806 (eq), 
2.0324 (b) 

91.998 
(ax-eq), 
87.649 
(ax-b), 
95.560 
(eq-eq), 
94.492 
(eq-b), 

75.457 (b-b) 

1.12520 
0.33691 
0.32401 

65.82, 90.66, 107.74, 
133.49, 144.13, 153.32, 
200.84, 206.85, 243.28, 
234.76, 241.53, 242.41, 
259.56, 260.95, 266.87, 
270.75, 297.22, 304.38, 
368.57, 445.41, 460.52, 
486.95, 662.48, 663.06, 
713.43, 721.92, 724.44, 
732.07, 742.01, 746.44  

4.8119E-132 

(RuF5)3 C3v 10 
1.832 (ax), 
1.804 (eq), 
2.017 (b) 

86.80 
(ax-b), 
94.25 

(eq-eq), 
86.75 
(b-b) 

0.22397 (2) 
0.13458 

27.18 (2), 40.16, 95.40 (2), 
98.19, 113.48 (2),     

138.55 (2), 145.48, 147.79, 
200.28 (2), 211.96,   

215.63 (2), 234.13 (2), 
239.11, 243.17, 256.67, 
262.53 (2), 271.54 (2), 

273.04, 275.17 (2), 297.72, 
328.78, 332.62, 332.62, 

462.49, 543.03 (2), 663.03, 
665.66 (2), 711.66,   

724.79 (2), 726.13 (2), 
733.98 (2), 744.68, 748.91 

8.7550E-131 

(RuF5)3 Cs 10 
1.83 (ax), 
1.80 (eq), 
2.02 (b) 

86.84 
(ax-b), 
94.32 

(eq-eq), 
86.74 
(b-b) 

0.22727 
0.22436 
0.13578 

20.80, 28.42, 38.98,  
87.25, 93.41, 103.65, 

112.57, 118.15, 131.26, 
136.41, 145.28, 151.54, 
203.70, 204.11, 208.54, 
214.26, 216.72, 230.13, 
233.26, 238.58, 242.22, 
254.94, 261.72, 263.40, 
268.64, 270.67, 271.03, 
276.03, 285.67, 296.49, 
328.16, 339.86, 343.49, 
460.97, 539.11, 540.39, 
662.86, 665.32, 665.41, 
711.23, 722.94, 723.41, 
726.59, 727.17, 733.31, 

744.08, 748.37 

8.5266E-131 

 

n1: Only a one-dimensional number (i.e. unit is kg·m
2
) because the molecule is linear. Calculated but not used as a diatomic 

molecule requires a different way of input in MoTher. 
n2: Only a one-dimensional number (i.e. unit is kg·m

2
) because the molecule is linear. 
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The geometry of the two lowest ruthenium fluorides nicely corresponds with the literature values 

[11], [14], [15]; only the bond lengths here are shorter. The same holds for RuF5 [11], [12], [16]. 

 

As said, some molecules were calculated to have a lower level of symmetry than initially expected. 

On RuF3, C3v became CS; RuF6 reduced its symmetry to D4h; on RuF4, Td broke down to a totally 

disordered CS, the structure of which was visually recognized as an attempt to get D2d – which was 

not reached because Gaussian cannot recognize higher symmetries out of optimizing lower ones.  

 

The irregular shape of the trifluoride is yet to be explained. If the molecule were flat, it would have 

C2v symmetry; if all its F-Ru-F angles were equal, it would be C3v. The remarkable result, having 

only CS symmetry, is halfway between the options with higher symmetry. 

 

The symmetry point group of ruthenium hexafluoride (D4h) also appeared not to be the expected 

Oh. However, Jahn-Teller distortions, already expected when the molecule was first investigated 

[8], were observed by spectroscopic studies [11], [32], which indicates that its molecular symmetry 

is indeed not perfectly octahedral. As reported in Table 3, it suffers from axial elongation. Another 

recent study [17], using a slightly different calculation method, also found a similar, tetragonally 

distorted D4h structure (although with shorter bonds) as ground state, and reports a small (2.5 

kJ/mol) interconversion barrier to the perfect octahedral Oh geometry, which may well explain the 

weakness of the Jahn-Teller effect. 

 

For the tetrafluoride, the D2d molecule reported here is in good agreement with the molecular 

structure of niobium tetrafluoride [25]. Considering this structure and its relationship with the Td and 

D4h structures which have been reported [11], [12], [16], I expect a parabola-like course of the 

energy level, having the D2d structure calculated here as minimum, and the flat and tetrahedron 

structures on either side of the atom displacement axis. This model correctly explains why the flat 

structure is more stable than the tetrahedron: because it is closer (in terms of atom displacement 

needed) to the calculated ground state geometry. 

 

The structures of the di- and trimers of ruthenium pentafluoride show no unexpected measures, 

they nicely agree with the electron diffraction measurements reported in [10], [11].  

 

5.2. Molecular Thermodynamics 
 

The calculated values for the standard formation enthalpy and molar entropy from the DFT 

computations are listed in Table 4. The formation enthalpies neatly follow the same trend as the 

literature values. Nearly all values are close to those in [13]; however, for RuF the calculated 

formation enthalpy corresponds better with [9], and the four largest molecules (hexafluoride and 

pentafluoride dimer and trimers) are all calculated to be approximately 100 kJ/mol more stable than 

[13] calculated. Especially regarding the hexafluoride, described as highly reactive and known to 

decompose to ruthenium pentafluoride and elemental fluorine [8], this is quite remarkable, and 

possibly further away from reality than [13]’s values.  

The molar entropy values, on the other hand, show the expected features: numbers increase 

generally with the amount of atoms in the molecule, while molecules of higher symmetry and/or 

with internal rings have reduced entropy as they have fewer degrees of freedom.  
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Table 4: Calculated values for formation enthalpy and 
molar entropy for the gas-phase ruthenium fluorides at 
298.15 K from DFT computations. 

 
Species 

∆𝑯𝒇
𝟎 

kJ/mol 
𝑺𝟎 

J/(mol·K) 

 

 RuF 324.43 233.67  

 RuF2 –126.09 261.21  

 RuF3 –368.89 330.28  

 RuF4 –640.96 344.23  

 RuF5 –827.10 357.72  

 RuF6 –932.37 355.19  

 (RuF5)2 –1808.3 515.39  

 (RuF5)3 C3v –2743.8 704.27  

 (RuF5)3 CS –2744.3 718.14  

 

Parameter values for the calculated molar isobaric heat capacity Eq. 30 as computed by MoTher 

are given in Table 5. 

 

Table 5: Parameters for Eq. 30 to fit the heat capacity function of the gaseous ruthenium fluorides. 
 

Species 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 

RuF 81.82795 –0.02306 5.25696E-6 3.22103E6 –2.25792E-10 –23102.42767 

RuF2 147.52073 –0.05968 1.79678E-5 4.70101E6 –1.99256E-9 –38777.87151 

RuF3 78.29614 0.0066 –3.08214E-6 –9.34619E5 4.74228E-10 0 

RuF4 99.49598 0.01167 –5.44031E-6 –1.49949E6 8.36277E-10 0 

RuF5 121.55812 0.01556 –7.25225E-6 –1.96018E6 1.11431E-9 0 

RuF6 143.35432 0.01984 –9.25174E-6 –2.72021E6 1.42190E-9 0 

(RuF5)2 260.88445 0.0296 –1.38041E-5 –4.33956E6 2.12178E-9 0 

(RuF5)3 C3v 399.57647 0.04448 –2.07362E-5 –6.39571E6 3.18684E-9 0 

(RuF5)3 CS 399.63709 0.0444 –2.07002E-5 –6.39972E6 3.18143E-9 0 

 

An overview of the individual contributions to the entropy and heat capacity at 298 K from all 

molecular motion are given in Table 6. The entropic contributions, as did their sums in Table 4, 

follow the expected trends: higher entropy with larger molecule for translation and rotation, slight 

deviations downwards for vibration on the molecules of higher symmetry. The translational and 

rotational contributions to the heat capacity clearly show the molecule’s spatial dimensions of 

motion, and the vibrational contribution logically increases with the number of possible modes. The 

electronic contributions are zero from RuF3 onwards because no electronic levels are available for 

Ru(III) and higher [31]. 

Table 6: Contributions to the entropy and heat capacity from translational, rotational, vibrational and 
electronic motion of the gaseous ruthenium fluorides at  298 K. 
 

Species 
Entropy (𝑺𝟎(𝟐𝟗𝟖)) 

J/(mol·K) 
Heat Capacity (𝑪𝑷(𝟐𝟗𝟖)) 

J/(mol·K) 

Transl. Rot. Vib. El. Transl. Rot. Vib. El. 

RuF 168.572 2.198 62.859 0.045 20.786 8.315 4.684 0.296 

RuF2 170.404 26.488 64.096 0.218 20.786 8.315 23.859 1.082 

RuF3 172.001 38.888 107.865 11.526 20.786 12.472 36.318 0 

RuF4 173.416 56.870 100.566 13.382 20.786 12.472 52.538 0 

RuF5 174.687 67.865 103.643 11.526 20.786 12.472 70.475 0 

RuF6 175.841 70.032 100.185 9.134 20.786 12.472 84.884 0 

(RuF5)2 183.332 192.525 123.354 16.179 20.786 12.472 186.847 0 

(RuF5)3 C3v 188.389 361.318 135.415 19.145 20.786 12.472 306.447 0 

(RuF5)3 CS 188.389 363.722 146.832 19.145 20.786 12.472 306.441 0 
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5.3. System Assessment 
 

In Table 7, the FactSage input figures are listed that are not directly obtained from the calculations 

by and based on DFT, but that were found in literature, approximated, or optimized to fit 

experimental data. 

 

The formation enthalpy of RuF3 (s) was optimized using data from the Oak Ridge National 

Laboratory (ORNL) Molten Salt Reactor Experiment (MSRE) [3]. Interestingly, this value differs 

over 300 kJ/mol from the gas-phase value – a rather large number for a sublimation enthalpy. 

However, Nikitin and Zbezheva [13] calculated a similar value.  

The solid RuF4 formation enthalpy was optimized based on experimental data from Nikitin and 

Zbezheva [13]. The resulting number is also close to their reported value. 

The RuF6 formation enthalpies of all phases were optimized to fit the data on its vapor pressure 

and boiling point from [8].  

The RuF5 system has the most secure experimental background, as its solid phase enthalpy of 

formation was measured by bomb calorimetry [18]. The solid-phase entropy and heat capacity 

values, as well as data on the liquid phase was taken from [33]. The complex gas phase of the 

pentafluoride, which consists of monomeric, dimeric and trimeric molecules, had the formation 

enthalpies of its constituents optimized based on the total RuF5 pressure as reported in [34]. Also, 

from this point onwards, only the most stable conformer of the RuF5 trimer, in CS symmetry, 

represented the trimer on its own. It is, however, safe to assume that both configurations of the 

pentafluoride trimer will be present in their known ratios [10]. 

The molar entropies and heat capacities for the solids, except for RuF5, were obtained from the 

Neumann-Koop rule. 

  

For RuF6 and the pentafluoride oligomers, the optimized values for the formation enthalpy come 

closer to those that [13] calculated; the optimized RuF5 monomer is significantly more stable than 

their calculations.  

 

The resulting diagrams seem to be reasonable. The Ru-F2 phase diagram, featured in Figure 2, 

shows the preferred oxidation states of ruthenium as they depend on the fluorine availability. The 

most prominent vertical phase boundaries are the lines at F2/(Ru + F2) = 0.6, the exact ratio of 

RuF3, at F2/(Ru + F2) = 0. 667, equal to RuF4, and at F2/(Ru + F2) ≅ 0.714, corresponding to 

RuF5. The RuF6 line at F2/(Ru + F2) = 0.75 too is discernible. From the horizontal phase 

transitions, the melting points of both RuF6 (𝑇 = 327 K) and RuF5 (𝑇 = 360 K) as well as the RuF5 

Table 7: FactSage input obtained by optimization calculations. 
 

Species 
∆𝑯𝒇

𝟎 (298 K) 

kJ/mol 
𝑺𝟎 (298 K) 
J/(mol·K) 

𝑪𝑷 
J/(mol·K) 

RuF3 (s) –690.444 108.06 81.17 + 0.05𝑇 

RuF4 (s) –838.09 134.57 101.2528 + 0.05021𝑇 

RuF6 (s) –937.50 187.59 140.72 + 0.0805𝑇 

RuF6 (l) 𝛥𝐻𝑓𝑢𝑠 = 4.50 kJ/mol at 327 K 190 

RuF6 (g) –829.019   

RuF5 (s) –892.866 161.084 124.55 + 0.0692𝑇 

RuF5 (l) 𝛥𝐻𝑓𝑢𝑠 = 18.828 kJ/mol at 359.65 K 182.004 

RuF5 (g) –802.253   

(RuF5)2 (g) –1692.586   

(RuF5)3 (g) –2577.863   
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boiling point around 𝑇~500 K are clearly visible. Also, the RuF4 decomposition temperature at 

𝑇~930 K is featured. 

 

 

 

 

Figure 2: Calculated phase diagram of the Ru-F2 system. Horizontal axis: mole fraction of molecular 
fluorine; vertical axis: temperature in K. Pressure: 1 atm. 
Indicated phases: A Ru (s), RuF3 (s); B RuF3 (s), gas mixture; C RuF3 (s), RuF4 (s); D RuF4 (s), gas 
mixture; E RuF4 (s), RuF5 (l); F RuF4 (s), RuF5 (s); G gas mixture; H RuF5 (l), gas mixture; J RuF5 (l), 
RuF6 (l); K RuF5 (s), RuF6 (l); L RuF5 (s), RuF6 (s); M RuF6 (l), gas mixture; N RuF6 (s), gas mixture. 
All gas mixtures are assumed to be ideal. 

 

The Ellingham diagram is shown in Figure 3. Again, the tri- and tetrafluoride are the dominant 

compounds, and a significant part of the picture is taken by metallic ruthenium. Evaluating this 

diagram at 900 K, the standard MSR operation temperature, the following transition points are 

estimated: Ru (s) ↔ RuF3(s) at ∆𝐺𝐹2 ≅ −320 kJ/mol, RuF3 (s) ↔ RuF4(s) at ∆𝐺𝐹2 ≅ −150 kJ/mol, 

and RuF4 (s) ↔ (g) at ∆𝐺𝐹2 ≅ −120 kJ/mol. 

 

Assuming that the system properties are correctly described, ruthenium is under MSR conditions 

mainly present as metallic solid, as the typical fluorine potential is about ∆𝐺𝐹2 ≅ −700 kJ/mol. 
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Figure 3: Calculated Ellingham diagram. Horizontal axis: temperature in K; vertical axis: fluorine 
potential in J/mol. The gas mixture (g) is assumed to be ideal. 

 

Figure 4 shows the gas-phase composition cross-section at 900 K. Consistent with the two 

diagrams above, RuF3 and RuF4 dominate the picture when fluorine is limitedly available, and the 

higher fluorides are only there when enough fluorine is supplied; RuF is completely absent. 

 

Figure 5 puts the calculations on ruthenium fluorides from this work into perspective. Compared to 

the niobium and molybdenum Ellingham diagrams, ruthenium is positioned at higher, less negative 

fluorine potentials. Thus, when the noble metal precipitate is to be separated by fluorination, 

increasing the fluorine pressure (thus the fluorine potential) will affect niobium first, then 

molybdenum, followed by ruthenium. 

Transition metals in higher-numbered groups tend to become more noble, so the bottom-to-top 

order 41Nb – 42Mo – 44Ru neatly follows expectations. If needed, reasonable 43Tc data could be 

interpolated from this diagram. 
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Figure 4: Calculated composition of the gas phase at 900 K and atmospheric pressure. Horizontal 
axis: mole fraction of ruthenium; vertical axis: logarithm (base 10) of species activity, which equals 
partial pressure for ideal gases on the left-hand side of the graph. 
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Figure 5: Ellingham diagram of 44Ru (black, see Fig. 3) and its neighbors 41Nb (blue)and 42Mo (red). 
Drawn using previously calculated data on the niobium [25] and molybdenum fluoride systems. 
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6.  Conclusion 
 

6.1. Conclusion 
 

The thermochemical behavior of the Ru-F subsystem under MSR conditions has successfully been 

assessed by CALPHAD computations, mainly using data on the ruthenium fluoride compounds as 

generated by DFT/B3LYP and statistical mechanics calculations. 

From the computed data, ruthenium appears to be the mostly present in its metallic solid state in a 

MSR-like environment at 900 K and atmospheric pressure. The amount of fluoride anions available 

per atom of ruthenium is expected to be limited, as the fuel salt contains only four per molecule. 

Hence, it seems reasonable that metallic ruthenium dominate the system. 

The positioning of the ruthenium compounds in the Ellingham diagram is consistent with the 

placement of ruthenium in its row of transition metals, as it is just less easily fluorinated than its 

neighbor noble metals niobium [25] and molybdenum. 

 

The general picture of the thermochemistry of ruthenium fluorides in a MSR environment is now 

made clear; to obtain more accurate results, needing less optimizations afterwards, and to thereby 

make more reliable predictions, a couple of issues yet has to be solved.  

 

6.2. Recommendations 
 

First and foremost, more experimental data on the thermodynamics of ruthenium fluorides is 

needed to either confirm or correct all individual numbers used here. The most important 

compounds for further research are RuF3 and RuF4, as they dominate the high-temperature 

chemistry of the system. The most important knowledge yet to be acquired is thermochemical and 

geometrical. Especially calorimetry, IR and Raman spectroscopy, and electron diffraction studies 

are desired. 

Secondly, the ongoing progress of computational chemistry will be eager to use that generated 

data to produce and refine the molecular modeling at all levels. Ultimately, even less post-

calculation optimizations will have to be performed to obtain accurate and precise descriptions of 

the ruthenium fluoride behavior, facilitating both MSR management and future research. 
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A. Worked-out Contributions 
 

Rotational Contributions 
 

For linear molecules, the rotational thermodynamic contributions for linear molecules are 

 
𝑆𝑟(𝑇) = 𝑅 (ln

𝑞𝑟
𝑁
 + 𝑇 (

1

𝑇
)) = 𝑅 (ln(

1

𝜎𝑁
(
𝑇

Θ𝑟
)) + 1) 

(𝐻(𝑇) − 𝐻0)𝑟 = 𝑅𝑇
2 (
1

𝑇
) = 𝑅𝑇 

𝐶𝑃𝑟 = 𝑅 

(A1) 

For a general, non-linear molecule (Eq. 19), rotation contributes like 

 

𝑆𝑟(𝑇) =  𝑅 (ln
𝑞𝑟
𝑁
+ 𝑇 (

3

2𝑇
))  =  𝑅 (ln(

√𝜋

𝜎𝑁
(

𝑇3 2⁄

√Θ𝑟,𝑥Θ𝑟,𝑦Θ𝑟,𝑧
)) + 

3

2
) 

(𝐻(𝑇) − 𝐻0)𝑟 = 𝑅𝑇
2 (
3

2𝑇
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2
𝑅𝑇 

𝐶𝑃𝑟(𝑇) =  
3

2
𝑅 

(A2) 

which comes down to contributions of 𝑅𝑇/2 to the enthalpy and of 𝑅/2 to the heat capacity per 

degree of freedom [24]. In Table 6, this is clearly visible for the heat capacity. 

 

Vibrational Contributions 
 

The complexity of the total partition function (product of all K Eqs. 20) results in more difficult 

calculations for the thermodynamic consequences of vibrational motion, the final results of which 

[24] are 

 
𝑆𝑣(𝑇) = 𝑅∑ (

Θ𝑣,𝐾/𝑇
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Θ𝑣,𝐾/𝑇

𝑒−Θ𝑣,𝐾/𝑇 − 1
)
2

𝐾
 

(A3) 

 

Electronic Contributions 
 

When given the electronic states as input, MoTher calculates the electronic contributions to the 

thermodynamics: 
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where n effectively runs over occupied electronic levels only, because the exponent approaches 

zero for the higher energetic levels. 
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B.  Heat Capacities relationship 
 

There is a discrete distinction between the isochoric heat capacity 𝐶𝑉 and the isobaric heat 

capacity 𝐶𝑃. They are defined as 

 𝐶𝑉 = (
𝜕𝐸

𝜕𝑇
)
𝑁,𝑉

 and 𝐶𝑃 = (
𝜕𝐻

𝜕𝑇
)
𝑁,𝑃

 (B1) 

It is immediately evident where the difference comes from. First of all, as the names clarify, the 

isochoric system operates in a constant volume, allowing the pressure to vary, whereas the 

isobaric system operates under constant pressure, while it may vary its volume. Additionally, the 

work that the system does by variation of its volume is taken into account in the isobaric heat 

capacity, as it is calculated from 𝐻 = 𝐸 + 𝑃𝑉 rather than from just 𝐸. The heat capacities reported, 

those that MoTher computes, are the isobaric heat capacities, while Gaussian, as outlined in its 

whitepaper [24], calculates the isochoric heat capacities. 

 

For ideal gases, however, there is also a fairly simple relationship between these two heat 

capacities. In general, it can be derived from thermodynamics that the difference between the two 

heat capacity expressions is 

 
𝐶𝑃 − 𝐶𝑉 =  𝑇 (

𝜕𝑃

𝜕𝑇
)
𝑁,𝑉
(
𝜕𝑉

𝜕𝑇
)
𝑁,𝑃

 (B2) 

From the ideal gas law, it is clear that 

 
𝑃 =

𝑛𝑅𝑇

𝑉
, (

𝜕𝑃

𝜕𝑇
)
𝑁,𝑉

=
𝑛𝑅

𝑉
 (B3) 

 
𝑉 =

𝑛𝑅𝑇

𝑃
, (

𝜕𝑉

𝜕𝑇
)
𝑁,𝑃
=
𝑛𝑅

𝑃
 (B4) 

Division by N = 1 mol (i.e. n = 1) obtains intensive quantities, and substitution into Eq. B2 yields 

 
𝐶𝑃,𝑚 − 𝐶𝑉,𝑚 =  𝑇

𝑅

𝑉𝑚

𝑅

𝑃
= (

𝑅𝑇

𝑉𝑚
)
𝑅

𝑃
=  𝑃

𝑅

𝑃
 =  𝑅 (B5) 

Of course, this relationship is valid only for the full heat capacities, and not for all of its contributing 

components singularly. 
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C.  Exemplary input files 
 

Exemplary Gaussian input file

RuF5 (D3h), multiplicity 4. Geometry is followed 

by basis sets and pseudopotentials. 

 

%chk=RuF5.chk 

%nprocshared=8 

%Mem=500MB 

# B3LYP/gen pseudo=read opt freq pop=none 

 

RuF5  

 

0 4 

Ru 

F 1 r2 

F 1 r1 2 a1 

F 1 r1 2 a1 3 a2 1 

F 1 r1 2 a1 4 a2 1 

F 1 r2 2 a3 4 a1 1 

 

r1=1.85 

r2=1.80 

a1=90. 

a2=120. 

a3=180. 

 

F  0 

cc-pVTZ 

**** 

Ru 0 

S 3 1.00 

7.9365700 -1.1196656 

5.9842450 1.4453293 

4.8822200 0.6261653 

S 1 1.00 

1.1446240 1.0 

S 1 1.00 

0.5230170 1.0 

S 1 1.00 

0.1175730 1.0 

S 1 1.00 

0.0480500 1.0 

S 1 1.00 

0.0160000 1.0 

P 2 1.00 

3.7546090 -4.7226565 

2.9165710 4.9909084 

P 2 1.00 

1.0486750 0.7285467 

0.5073200 0.3039043 

P 1 1.00 

0.2673980 1.0 

P 1 1.00 

0.0697480 1.0 

P 1 1.00 

0.0229270 1.0 

D 4 1.00 

6.0099130 -0.0327160 

2.1042800 0.2657392 

0.9215000 0.4812398 

0.3885980 0.4099778 

D 1 1.00 

0.1528360 1.0 

D 1 1.00 

0.0510000 1.0 

F 1 1.00 

1.6660000 1.0 

F 1 1.00 

0.4780000 1.0 

G 1 1.00 

1.0570000 1.0 

**** 

 

Ru 0 

ECP28MWB 4 28 

G-Komponente 

1 

2 1.000000 0.000000 

S-G 

2 

2 11.105269 209.822971 

2 5.414745 30.654726 

P-G 

2 

2 9.771271 146.336182 

2 5.073991 24.127877 

D-G 

2 

2 7.671423 67.515897 

2 4.136565 9.870104 

F-G 

2 

2 11.360000 -28.340616 

2 5.680000 -4.944629 



   

Exemplary MoTher input file 

Optimized structure of RuF2, mentioning consecutively the number of atoms and the rotational 

symmetry number 𝜎, the atomic energy levels, the 3D moment of inertia and the vibrational modes. 

 

RuF2 

   3  2.     

   6 

    0.0    1 

 1158.8    1 

 1826.3    1 

 2266.3    1 

 2476.0    1 

27162.8    1 

   2.214420-45          

  3 

   141.5      2 

   609.5      1 

   680.4      1 

  0 

  -000000  2 

Ru  1.0 

F2  1.0 
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