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Abstract

The Dancoff factor is a key element investigating very high temperature reactors
(VHTR), because of the nature of their fuel design. Because the fuel particles
are located close to one another in the moderator background, neutrons are
more likely to enter adjacent fuel lumps before colliding with the moderator
(as opposed to conventional reactor fuel designs). Therefore the self-shielding
effect of the fuel is increased and has a strong impact on the overall criticality
of the reactor. Dancoff factors have been calculated in the past for these re-
actor desings, but efficient investigation requires fast and flexible methods for
these calculations. Earlier research includes the application of the chord length
method to the calculation of the Dancoff factor for VHTR fuel designs. This
approach proved to be successful in determining the Dancoff factor to some ex-
tent, but more accurate chord length probability density functions (PDFs) are
required for better results.

In this research, two Fortran codes are written in order to generate empirical
PDFs. The first code generated a distribution of TRISO fuel particles and
constructed the PDF for path lengths between those particles. The second
code determined the PDF of chord lengths through the moderator between fuel
zones in a pebble bed reactor. The PDFs that were generated proved to be
a more accurate approximation than the distribution functions used in earlier
research, mainly due to the incorporation of the dual-sphere model of the fuel
design. Several PDFs for a variety of fuel zone packing fractions and pebble
sizes were evaluated using a MATLAB script. This approach allowed for a
separate investigation of different probabilities that contribute to the overall
Dancoff factor of the system. The expected behavior of these probabilities
was successfully demonstrated, and the overall Dancoff factors were calculated.
Results from the analytical approach yielded an overestimation of the Dancoff
factor, which could be partly corrected by using the emprical PDFs.

The separate calculation of the contributing probabilities allows for a very
flexible method of determining the Dancoff factor. Any combination of packing
fraction and pebble size can directly be evaluated once the two PDFs have been
determined, be it analytically or empirically.
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Chapter 1

Introduction

Following the disaster at the Fukushima Daichii nuclear plant in 2011, the pub-
lic popularity of nuclear energy has rapidly decreased. Germany announced the
shutdown of eight of its reactors and its intentions to close the rest by 2022.
France started the process of revisiting their nuclear safety regulations and in-
vestigating the safety of their operational nuclear plants. Meanwhile, due to
the rapidly increasing global energy consumption and the decrease in fossil fuel
availability [1], the need for more reliable energy sources has been receiving in-
creasing attention worldwide. Predictions for the upcoming decennia [2] and the
pressing matter of global warming and climate change place even more empha-
sis on their development. The safety and environmental impact of these energy
sources will be key factors in determining their success. Nuclear energy must
face the same challenges in order to regain its popularity.

While older reactor designs are found not to meet current safety regulations,
newly developed safer reactor designs are introduced. The upcoming decen-
nium will see the implementation of Generation III+ reactor designs and the
development of the Generation IV reactor types. The Generation IV initia-
tive is an international cooperation aimed at facilitating the development of the
new generation of nuclear reactors [3]. The main goals of the initiative include
sustainability, safety, reliability and affordability. It consists of 6 new system
designs, among which the Very-High-Temperature reactor (VHTR). The Pebble
Bed Reactor (PBR) is a specific VHTR design that involves graphite pebbles
filled with TRISO fuel particles.

1.1 The pebble bed reactor

The pebble bed reactor is a graphite-moderated VHTR, cooled by gaseous
helium. The reactor vessel is filled with stacked graphite pebbles containing
TRISO fuel particles and is lined with graphite reflectors (see Figure 1.1). This
pebble bed allows for the helium coolant to flow through the space inbetween
the pebbles, as well as through the reflectors.
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Figure 1.1: Schematic overview of a pebble bed reactor [4].

A standard pebble design consists of a 50mm diameter graphite sphere filled
with randomly distributed TRISO fuel particles, and a 5mm thick fuel free
graphite shell on the outside. The TRISO fuel particles consist of a uranium
and thorium fuel kernel of up to 500µm in diameter coated with carbon layers
of typically 200µm total thickness. For a schematic view of this type of pebble,
see Figure 1.2. The pebbles can be continuously transported in and out of the
vessel during operation of the reactor. This type of pebble is already in use in
the HTR-10 at the Tsinghua University in China [5].

Figure 1.2: Schematic cross-section of a pebble [4].

One of the main advantages this brings as opposed to a conventional water-
cooled reactor is that no internal piping is required to facilitate the coolant
flow. Water-cooled systems are often very costly due to the cooling system
complexity and extensive safety systems. Additionally, the water can become
radioactive, causing the embrittlement of the high-pressure piping. A pebble-
bed reactor cooled by helium contains no piping in the core and the coolant does
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not contain hydrogen (helium is far less susceptible to radiation), ruling out the
possibility of embrittlement. Another advantage is that the pebble bed reactor
can operate at considerably higher temperatures than conventional systems.
The helium exits the vessel at up to 1000 degrees Celsius, allowing for a highly
efficient conversion to mechanical energy by gas turbines, and the generation of
hydrogen as a byproduct.

However, the primary reason why the pebble bed reactor is so interesting, is
that it can be designed to be passively safe. When the temperature in the reactor
rises, negative feedback in the system will eventually cause the chain reaction
to stop, mainly due to an effect called Doppler broadening. Additionally, the
TRISO particle coating is designed to safely contain the fuel and reactants up
to a temperature of 1600 degrees Celsius, which has been successfully tested in
the HTR-10 [5].

1.2 The Dancoff factor

In a nuclear reactor, the neutrons released by fission have a kinetic energy that
exceeds the thermal spectrum of most heavy nuclides used as fuel in a nuclear
reactor. Moderator material is therefore used to slow down these neutrons
through moderator collisions. When a neutron has suffered a sufficient number
of moderator collisions its energy will be in the thermal range, resulting in a
relatively high fission cross section. It can then induce a next fission reaction.

In a normal reactor geometry, the moderator and fuel are placed in separate
regions. This is mainly because the neutrons, while they are slowed down, can
become very susceptible to capture in absorption resonances of a nuclide such as
uranium-238. In a pebble bed reactor however, the fuel lumps are located close
to one another inside the moderator. Therefore, the probability that a neutron
escapes a fuel lump and has its first interaction in the moderator, usually referred
to as the first-flight escape probability, must be corrected for the chance that the
neutron enters another fuel lump. This probability is called the Dancoff factor
[6], and it is very important in calculating collision probabilities and resonance
integrals.

The Dancoff factor can be conveniently split into two factors, the first of
which is called the intra-Dancoff factor. This factor accounts for all the fuel
lumps inside the same pebble. The second is called the inter-Dancoff factor
and accounts for all the fuel lumps located inside the other pebbles. The Dan-
coff factor was first introduced by Dancoff and Ginsburg in 1944 [7]. Various
methods have since been applied to compute it, both analytical [10][11] and
by computer simulation [12][13]. Prior to the work of Dancoff and Ginsburg,
Dirac used the chord length method to replace complicated integrals over angles
and surfaces by simple one-dimensional integrals over chord length probability
density functions (PDF), in order to calculate neutron multiplication factors
for finite volumes. This approach can also be used to simplify Dancoff factor
calculations, as was shown by Ji and Martin [6].
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1.3 Research outline

As mentioned in the previous section, Dancoff factors have been calculated by
means of Monte Carlo simulation, yielding excellent results. However, compu-
tation time has been prohibitive, especially if the simulations become too ex-
tensive. Analytical or semi-analytical methods have proven to be a quicker and
far more flexible solution, but it is difficult to achieve accurate results because
of the complexity of the geometry.

As suggested by Ji and Martin [6], the chord length method can be used to
simplify analytical calculation of finite medium Dancoff factors. This method
involves evaluation of integrals over chord length PDFs of the finite medium of
interest. It has proven to be a flexible and accurate method, only limited by the
precision of the used PDFs. Ji and Martin derived analytical approximations
for these PDFs in previous work [14], but empirical generation of these PDFs
can prove to be more accurate. The primary aim of this research is to improve
the accuracy of the model by Ji and Martin by implementing empirical PDFs.

A new Fortran code, MC-PDF-LB is written to generate empirical chord
length PDFs of different TRISO configurations in an infinite medium. These
PDFs are used to calculate the intra-Dancoff factor by means of the analyt-
ical method proposed by Ji and Martin. The results are compared to those
calculated using the original approximations of the PDFs, and to Dancoff fac-
tors calculated by a benchmark Monte Carlo simulation. Additionally, the code
PDF-PB is used to generate chord length PDFs of different pebble bed geome-
tries. Evaluation of these PDFs combined with the PDFs from MC-PDF-PB
yields the inter-Dancoff factors, which is compared to factors calculated using
the original approximations of the PDFs.

Chapter 2 will cover the basic theory of nuclear reactor physics, followed by
a derivation of the analytical formala by Ji and Martin. Chapter 3 is a detailed
description of the two codes used to generate the PDFs, PDF-PE and PDF-PB,
including uncertainty analysis. Chapter 4 will cover the results produced by the
codes and numerical evaluation of the PDFs, accompanied by their discussion.
Conclusions drawn from the results and recommendations for future research
are summarized in Chapter 5.
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Chapter 2

Theory

In this chapter, the basics of nuclear reactor physics relevant to study of the
Dancoff factor are explained, followed by a short description of the Dancoff
factor itself. Next, a derivation of the chord length method as described by Ji
and Martin is given.

2.1 Nuclear reactor physics

This section will give a brief explanation of the basic concepts in nuclear reactor
physics that are relevant to the study of the Dancoff factor.

2.1.1 Cross sections

The probability that a neutron has a certain interaction with a target nucleus
is determined by the relevant nuclear cross section. For a single nucleus or thin
layer of nuclei, the microscopic cross section is defined:

σ =
number of interactions/nucleus/s

number of incident neutrons/cm2/s
(2.1)

The value of the relevant cross section depends mainly on the type of inter-
action, the energy of the incident neutron, and the type of the target nucleus.
The two primary forms of interaction are absorption (σA) and scattering (σS).
These two cross sections can be further subdivided into partial cross sections
that govern the subsequent event. For example, absorption may lead to fission
(σf ) or gamma radiation (σγ). While studying the Dancoff factor, it is often
more convenient to look at the total microscopic cross section σT , which is in-
dependant of the type of interaction. Because the individual cross sections are
essentially probabilities, they can be added up:

σT = σA + σS = σf + σγ + ... (2.2)
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In a nuclear reactor system, incident neutrons face a complete lattice of
nuclei. The macroscopic cross section determines the probability of interaction
with all the nuclei combined and is given by:

ΣT = NσT , (2.3)

where the number N is the density of nuclei. As will be explained in sub-
sequent sections, the Dancoff factor can be determined by evaluation of the
probability that a neutron reaches another fuel lump without having an interac-
tion with a nucleus. The probability that a neutron travels a distance x through
the medium without an interaction is given by:

P (no interaction) = e−ΣT x. (2.4)

2.1.2 Resonance shielding

In order to successfully operate a nuclear reactor, neutrons released by fission
must engage in subsequent reactions. Because the energy of the neutrons re-
leased by fission generally exceeds that required for a sufficiently high fission
cross section (<0.01 eV), the neutrons must be slowed down by suffering mod-
erator collisions. Due to a large absorption cross section for thermal neutrons
in fuel, the flux of thermal neutrons drops rapidly over distance in a fuel lump.
This means that the outer regions of the fuel are ’shielding’ the inner regions, an
effect that is therefore referred to as the self-shielding of the fuel. Additionally,
while the neutrons are being slowed down to thermal range, their energies will
often match those of a number of capture resonances. These are large peaks
in the absorption cross section spectrum of heavy nuclides such as uranium-238
and thorium-232 (see Figure 2.1).

Figure 2.1: Neutron absorption spectrum of uranium-238 [15].
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The neutron flux will be extremely low for the energies of those capture res-
onances due to the increased self-shielding of the fuel. This must be taken into
account when calculating total neutron flux, which is usually done using group-
wise cross sections. The Dancoff factor, which will discussed in the following
sections, plays an important role in these calculations.

2.1.3 Criticality

The concept of reactor criticality is not essential in this specific study of the
Dancoff factor. However, because it is a key factor in the operation of nuclear
reactors and it is strongly influenced by the Dancoff factor in the case of pebble
bed reactors [13], it is still very relevant. Because successful operation of a
nuclear reactor requires a self-sustaining chain reaction, the number of neutrons
in each reaction generation is important. The multiplication factor is therefore
defined as:

keff =
number of neutrons in given generation

number of neutrons in preceding generation
. (2.5)

This factor gives information concerning the criticality of the reactor. In the
case that keff equals 1, the reaction is self-sustaining and the reactor is called
critical. Because in this situation the amount of energy produced is constant
this situation implies a safe and effective operation of the reactor. While the
reactor is being started, keff is slightly higher than 1 and the reactor is called
supercritical. Contrary, when keff is smaller than 1, the number of fission
reaction per unit time is decreasing and the reactor is called subcritical. This
is the case when the reactor is being shut down.

2.2 The Dancoff factor

As explained in the previous sections, in order for a fast neutron to be slowed
down into thermal range, it must suffer moderator collisions. The probability
that a neutron excapes a fuel lump and has its next interaction in the moderator
is essential in governing this process. This probability PM is equal to the first
flight probability Pesc, which denotes the probability that a neutron escapes the
fuel lump.

In a pebble bed reactor however, the fuel lumps are located at smaller dis-
tances to one another inside the moderator. Therefore, the neighbouring fuel
lumps must be taken into account when determining PM . This influence can
be described by the Dancoff factor C, the probability that a neutron will en-
ter another fuel lump inside the same pebble or in another pebble. PM now
becomes:

PM = Pesc
1− C

1− C(1− PF )
. (2.6)
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Here PF denotes the probability that a neutron suffers an interaction inside
an encountered fuel kernel. From the equation it can be seen that a higher
Dancoff factor implies a lower PM , which is often referred to as the ”shadowing
effect”. For simplification, it is evaluated only for neutron energies of 10-100 eV
because most of the capture resonances of uranium-238 are in this range, and
because the graphite total cross-section only varies slightly in this range.

2.3 Application of the chord length method

This section will cover some of the derivations done by Ji and Martin in applying
the chord length method to the calculation of the Dancoff factor.

First, consider the generalized case where arbitrary nonreentrant shapes are
dispersed randomly in a background moderator. The fission neutrons generated
in the fuel lumps may be slowed down in the moderator and enter the resonance
energy range of the absorption spectrum and be absorbed inside the fuel lump.
In order to model this, a uniform and isotropic source of resonance energy
neutrons is assumed in the moderator. For a source density Q neutrons/cm3·s
at a point r′ in the moderator, the rate at which neutrons enter a fuel lump
through a small surface element dA at surface point r can written as [6]:

J =
QλA

4

[
1−

∫
dA
∫
dΩ cos θ(e−l/λ)∫

dA
∫
dΩ cos θ

]
. (2.7)

Here θ is the angle between r−r′ and dA, l is the length of the chord through
the point r in the direction (θ, φ) to the surface of any other fuel lump that can
see the fuel lump of interest. dΩ is a solid angle element in that same direction
and A is the total surface area of the finite volume. λ is the mean free path
length of resonance neutrons through the moderator, defined by the macroscopic
cross section ΣT . This equation was found by Dancoff and Ginsburg [7]. The
first part of the equation is the total rate at which resonance neutrons would
enter a fuel lump, if that fuel lump would be the only one that existed. The
second part is the reduction in that rate due to neighbouring fuel lumps, of
which the term in brackets is called the Dancoff factor C.

Introducing the PDF for the distribution of chord lengths between fuel lumps
in the moderator, this equation can be simplified. According to Dirac [8], the
chord length distribution PDF f(l) is defined such that for any function g(l):∫

f(l)g(l)dl =

∫
dA
∫
dΩ cos θ[g(l)]∫

dA
∫
dΩ cos θ

, (2.8)

So that the infinite medium Dancoff factor becomes:

C∞ =

∫
f(l)e−l/λdl. (2.9)

This equation reduces the calculation of an infinite medium Dancoff factor to
the determination of the chord length PDF between fuel lumps in the moderator,
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an approach that can be easily applied to TRISO fuel particles. In order to
calculate Dancoff factors for pebble bed reactors however, the finite geometries
of the pebbles must be taken into account. The intra-Dancoff factor Cintra
accounts for the fuel lumps inside the same finite medium (e.g. pebble), and
the inter-Dancoff factor Cinter accounts for all the fuel lumps in other finite
media.

2.3.1 Intra-Dancoff factor

Following the same method for a finite medium, the average intra-Dancoff factor
over all fuel lumps can be written as:

Cintra =
1

4πV

∫
dA

∫
dΩ cos θ

∫ L

min d

C(l)dl, (2.10)

where V is the total volume and A the total surface area of the finite medium.
L is the maximum distance to the boundary of the finite medium, and min d
is the minimum distance between fuel lumps, for example due to the coating
radius of the TRISO particles. This equation allows for a similar approach as
in Equation 2.8, again using the chord length PDF. After a number of algebraic
manipulations, this leads to:

Cintra =
1

〈L〉

∫
dLF (L)

∫ L

min d

dl

∫ l

min d

dl′f(l′)e−l
′/λ, (2.11)

Where 〈L〉 = 4V/A is the mean chord length for the finite medium, and F (L)
the PDF for the distribution of chord lengths inside the finite medium. The
multidimensional integrals over surface and angle domains has been reduced
to the evaluation of one-dimensional integrals over two chord length PDFs.
Equation 2.11 is used to evaluate the empirical PDFs generated in Chapter
3. For the case of a pebble with fuel zone radius R1 filled with TRISO fuel
particles, F (L) is well known, and f(l) was approximated by Ji and Martin [14]
using the single-sphere model (see Figure 2.2):

F (L) =
L

2R2
1

, 0 < L < 2R1; (2.12)

f(l) =
1

〈l〉
e−l/〈l〉, 0 < l <∞, (2.13)

where

〈l〉 =
4r

3

1− frac′

frac′

is the mean chord length between two fuel kernels and frac′ the ratio of
total fuel kernel volume to the whole medium volume. Note that frac′ =
frac · (r/R)3, with frac the ratio of total of TRISO particle volume to the
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Figure 2.2: Single-sphere (left) and dual-sphere (right) models of TRISO fuel
particles [6]

.

whole medium volume, also known als the ”volume packing fraction”. The
average intra-Dancoff factor is now defined as:

Cintra = C∞ [1− P ∗esc] , (2.14)

Here the infinite medium Dancoff factor and the first flight escape probability
are given by:

C∞ =
λ∗

〈l〉
, (2.15)

P ∗esc =
3

4

(
λ∗

R1

)
− 3

4

(
λ∗

R1

)2

e−2(R1/λ
∗) +

3

8

(
λ∗

R1

)3 [
1− e−2(R1/λ

∗)
]
, (2.16)

with

Σ∗ =
1

λ∗
=

1

λ
+

1

〈l〉
(2.17)

the effective cross section of the finite medium. This model yielded fairly
accurate results [6], except for a small underestimate of the intra-Dancoff factor
at lower packing fractions. Although the deviation was well in the acceptable
range, a dual-sphere model might accomplish a better approximation.

2.3.2 Inter-Dancoff factor

The inter-Dancoff factor can be defined as the probability that a neutron escap-
ing from a fuel lump in a finite volume enters another fuel lump in a different
finite volume. It can be expressed as a function of several basic probabilities:

Cinter = P1P2P3
1

1− P2Ptr
, (2.18)
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with:

• P1 the average probability that a neutron escaping a fuel lump in a finite
volume escapes the volume without entering another fuel lump or colliding
with the moderator, equivalent to P ∗esc;

• P2 the average probability that a neutron escaping from a finite volume
enters another volume without colliding with the moderator;

• P3 the average probability that a neutron incident on a finite volume enters
a fuel lump within that volume;

• Ptr the average probability that a neutron incident on a finite volume
traverses it without entering any fuel lump or colliding with the moderator.

Through application of the chord length method, these probabilities can be
derived:

P1 =
1

〈L〉

∫
dLF (L)

∫ L

min d

dle−l/λ

(
1−

∫ L

min d

f(l′)dl′

)
, (2.19)

P2 =

∫
H(S)e−S/λ, (2.20)

P3 =

∫
dLF (L)

∫ L

min d

f(l)e−l/λdl, (2.21)

Ptr =

∫
dLF (L)e−L/λ

(
1−

∫ L

min d

f(l′)dl′

)
. (2.22)

H(S) is the chord length PDF between two volumes in an infinite background
medium of volumes. This PDF can be interpreted as the distribution of chord
lengths through the moderator between two pebbles in the case of a pebble bed.
Ji and Martin approximated H(S) by means of an exponential PDF:

H(S) =
1

〈S〉
e−S/〈S〉, 0 < S <∞, (2.23)

with

〈S〉 =
4R1(1− FRAC)

3FRAC
,

where FRAC is the volume packing fraction of the pebble fuel zone in the
whole medium. With this exponential PDF and the PDFs f(l) and F (L) as
defined before, the separate probabilities are found to be:
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P1 = P ∗esc, (2.24)

P2 =
1

1 + 〈S〉/λ
, (2.25)

P3 = C∞
〈L〉
λ∗

P ∗esc, (2.26)

Ptr = 1− 〈L〉
λ∗

P ∗esc, (2.27)

with C∞ and P ∗esc as defined in Equations 2.15 and 2.16. The approximation
made in Equation 2.23 yielded very poor results for P2. In the next chapter,
two Fortran codes are described that empirically determine f(l) and H(S) from
TRISO distributions and a pebble stacking. By means of Equations 2.19 - 2.22,
they can be evaluated to calculate inter- and intra-Dancoff factors.
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Chapter 3

Fortran codes

This chapter covers the two Fortran codes written in order to obtain empirical
chord length PDFs in TRISO distributions and pebble bed configurations. PDF-
LB generates a random TRISO distribution and generates a chord length PDF
by evaluating randomized neutron paths. PDF-PB loads a pregenerated pebble
bed configuration, and generates a second chord length PDF by sampling the
distance traveled through the moderator in a similar fashion. The PDFs are
then evaluated by using a MATLAB script, and compared to the analytical
results from Ji and Martin. In addition, a Monte Carlo benchmark simulation
is used for comparison of the intra-Dancoff factor. Uncertainty calculations and
the influence of packing fraction fluctuations are also discussed.

3.1 PDF-LB

The code used to generate TRISO distributions and their chord length PDFs
consists of three parts. First the desired TRISO distribution is randomized,
following a procedure similar to that of Ji and Martin [14]. Then the hypothet-
ical neutron flight paths are simulated and their chord lengths sampled. The
sampled chord lengths are used to generate the PDFs by using a histogram
algorithm. Computation time for this code for 1 million neutrons is between
roughly 4 hours and 18 hours depending on the packing fraction. Multiple PDFs
can be generated for a single TRISO distribution.

3.1.1 Generating the TRISO distribution

The chord length PDF for distances between fuel lumps in the moderator should
approximate that of an infinite distribution. To accomplish this, the fuel lumps
are placed randomly inside a large cubical box. The box dimensions depend on
the fuel zone radius of the pebbles to be studied. For example, the pebbles of
interest in this research have a fuel zone radius of 25mm. That means that the
maximum distrance traveled through the pebble is roughly 50mm. The neutrons
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that are generated in this simulation must therefore not be able to reach the
edge of the box within 50mm of their original position in order to generate a
correct representation of the PDF.

The TRISO distribution is generated by randomizing single TRISO coor-
dinates, and then checking for overlap with all TRISOs that were previously
placed. If the TRISO overlaps with any of the other TRISOs, the coordinates
are rejected and randomized again. This process is repeated until all the TRISO
coordinates are accepted. The number of TRISO coordinates rejected increases
as more TRISOs are generated, and therefore it strongly depends on the packing
fraction of the desired distribution, given by:

frac = NTRISO
4π

3

(
RTRISO
Lbox

)3

, (3.1)

where Rkernel is the fuel kernel radius, RTRISO the TRISO shell outer radius
and Lbox the cubical box edge length. This algorithm has been shown [16] to
work well for packing fractions up to 32%. The packing fractions in this research
range from 2% to 24%, which is far below the maximum achievable 62%, but
well suited for studying practical situations.

3.1.2 Neutron path simulation

Once the TRISO distribution is generated, the individual neutrons are simu-
lated. Note that the only relevant quantity obtained from the simulation is the
flight path length through the moderator (ignoring moderator collisions) to a
subsequent TRISO fuel kernel. This is a significant difference as opposed to
standard Monte Carlo simulation of a neutron flight path.

First a random TRISO is chosen from the TRISO distribution. This TRISO
must be located inside a predefined inner box centered at the center of the outer
box. The dimensions of the inner box are chosen so that neutrons generated
inside this box would need to travel at least the maximum distance to reach
the edge of the outer box. In the case of a maximum travel distance of 50mm,
the inner box surface must be at least 50mm away from the outer box surface.
A summary of the input parameters used is given in Table 3.1. The TRISO
dimensions used in this research are conform the NGNP Point Design [18], for
easy comparison to the results by Ji and Martin.

Input parameter Value
Rkernel 175µm
RTRISO 390µm
Lbox 110mm
Linner 10mm
ΣM 0.041mm−1

Σcoating 0.041mm−1

Table 3.1: TRISO distribution related input parameters.
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When the fuel kernel has been selected, the neutron direction is randomized
as a cosine distributed angle. Then the neutron location inside the fuel kernel
is generated by randomly selecting a location inside a cube with edges twice
the kernel radius, and then checking if the neutron is inside the kernel itself.
This has proven to be a far more efficient method than randomizing the neutron
location inside the kernel right away by using for example spherical coordinates.
The distance to the fuel kernel surface is calculated, and the neutron is moved to
the surface intersection along its predetermined direction. Note that form this
point on, the neutron travels through the TRISO coating and the moderator,
and the distance traveled must be sampled.

As can be seen in Table 3.1, the moderator and TRISO coating are assumed
to have the same total cross section. The cross sections of graphite moderator
and the carbon coating are almost the same, so this is a valid approximation.
This means that the distances traveled through these materials do not require
separate registration. A quadratic formula is now used to determine whether or
not the neutron path has an intersection with each of the other fuel kernels. If so,
the distance to that intersection is registered and the smallest of these distances
is sampled as the chord length. Whenever a neutron path does not cross another
kernel, or the distance exceeds the maximum travel distance, no path length is
sampled. These neutrons still contribute to the total neutron count however,
which is important for normalization of the PDF and uncertainty calculations.

3.1.3 Chord length PDF

When all neutrons have been generated, a simple histogram algorithm is used
to generate the PDF. The number of bins in the PDF depends on the number
of neutrons generated: Nbin =

√
Nneutron. For every path length, the algorithm

loops through all the bins to find the appropriate one. The PDF array will
eventually contain a number of variables, which are shown in table 3.2.

Parameter Meaning
dbin bin size [mm]
L̄ average bin path length [mm]
N bin count [-]
N̄ normalized bin count [-]
uN bin count uncertainty [-]
uN̄ normalized bin count uncertainty [-]

Table 3.2: PDF array parameters.

The normalized bin count will be used as a representation for the actual
PDF value f(l), and is given by:

N̄ =
N

Nneutrondbin
. (3.2)

The standard count uncertainty for a Monte Carlo simulation is the square
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root of the count divided by the number of experiments. Therefore the bin
count uncertainty is:

uN =

√
N

Nneutron
, (3.3)

so that

uN̄ =

√
N

Nneutron(x2 − x1)
. (3.4)

The normalized bin count uncertainty is used in the calculations of Subsec-
tion 3.3.2 in order to determine the uncertainty in the Dancoff factor.

3.2 PDF-PB

The code used to determine the distribution of chord lengths between pebbles
is organized in a similar fashion. First coordinates of a pregenerated pebble
stacking are loaded. Then the neutron flight paths are simulated, and the path
lengths are sampled. This process is described in the following subsections. A
short analysis of the influence of packing fraction fluctuations near the reactor
wall is also included. The construction of the PDF is identical to that in Subsec-
tion 3.1.3, and is therefore not discussed here. Computation time for 1 million
neutrons was a little over 1 hour. Note that this excludes generating the pebble
distribution, because only one distribution is required.

3.2.1 Pebble bed stacking

This program is capable of loading a pregenerated pebble stacking. The pebble
stacking used in this research is a cylindrical bed generated using the expanding
system method by Auwerda et al. [19]. The characteristics of this stacking and
the pebbles are presented in Table 3.3. Note that the pebble fuel zone radius
does not influence the pebble stacking geometry. The size of the pebbles can
be adjusted by multiplying their coordinates with a scaling factor. Of course,
other geometry parameters must be changed as well then.

Quantity Value
Npebble 67500
Rbed 150cm
Rpebble 30mm
Rfuel 25mm

Table 3.3: Pebble bed characteristics
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3.2.2 Neutron path simulation

Once the pebble coordinates are loaded, single neutrons are generated. First
the neutron direction is randomized, and a random location inside a cube of
side twice the pebble fuel zone radius is selected. If the location is inside the
actual fuel zone, it is accepted as the initial neutron location. The neutron
is moved to the intersection with the fuel zone surface in the given direction.
Then, the distance to the pebble outer radius is calculated and the neutron is
moved to the pebble outer surface in the same direction. For all other pebbles,
the program determines whether or not there is a surface intersection, and
the one at the smallest distance from the neutron is selected. If the neutron
would hit the pebble fuel zone, the distance to that fuel zone is sampled and
the next neutron is generated. Otherwise, the neutron is placed on the other
end of its trajectory through the pebble. The distance through the pebble is
sampled and the process is repeated. Only the distances traveled through the
pebble moderator regions are sampled. If a neutron does not hit any pebble, no
distance is sampled. The ’leaked’ neutrons are however counted among the total
number of neutrons. When the desired number of neutrons has been sampled,
the PDF array is constructed as shown in Table 3.2.

3.2.3 Neutron leakage

The Dancoff factor is most usefully applied when it is made independant of
geometry. To this end, the pebble stacking must resemble an infinite medium
of pebbles, and neutron leakage must be minimized. Additionally, pebble bed
stackings show significant packing fraction fluctuations near the reactor wall [17].
Neutrons may therefore only be generated in pebbles at a minimum distance
from the outer edges, to minimize leakage to the outer region or out of the
pebble bed. This results in an inner cylinder at distance Dout from the outer
surface. The number of leaked neutrons Nleaked is a good indication of the
leakage to the outer region. Table 3.4 shows the leakage for a number of test
runs at different pebble sizes for Dout = 500mm. From the table it is evident
that Dout = 500mm is sufficient for smaller pebbles. For larger pebbles Dout is
increased to 800mm.

Rpebble/Rfuel % leaked
1.2 0.0002%
1.4 0.1555%
1.6 1.7027%
1.8 1.6388%
2.0 1.6140%
2.2 1.5825%
2.4 1.5691%

Table 3.4: Neutron leakage at Dout = 500mm
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3.3 PDF processing

A MATLAB script is written in order to process the generated PDFs. The
script numerically evaluates integrals over the PDFs in order to calculate the
Dancoff factors and their uncertainty.

3.3.1 Dancoff factor calculation

Once the required PDFs are loaded into MATLAB, the script numerically evalu-
ates the integrals described in Equations 2.11 and 2.19 - 2.22 in order to calculate
the intra- and inter-Dancoff factors. The integrals are calculated as combina-
tions of Riemann sums by a number of for loops. The average chord lengths L̄
represent l, l′, L and S. The integration steps dl, dl′, dL and dS are represented
by dbin and the normalized bin counts N̄ represent the values of f(l) and H(S).
The limits of integration are given by the TRISO coating thickness dcoating for
d min and the pebble fuel zone diameter for Lmax. The intra-Dancoff factor for
example is then given by:

Cintra =
3

4Rfuel

Nbin∑
i=1

dbin
L̄(i)

2Rfuel

i∑
j=1

dbin

j∑
k=1

dbinN̄(k)e−L̄(k)/λ. (3.5)

3.3.2 Uncertainty analysis

In order to calculate the Dancoff factor uncertainty, the individual normalized
bin uncertainty uN̄ must also be processed. Because the integrals are evalu-
ated as a combination of Riemann sums, the prefactors in these sums must
accompany those bin uncertainties. This means that all the prefactors that an
individual bin is multiplied with, must be quadratically added in order to obtain
the total bin uncertainty prefactor. An example would be:

Σ = a1b1N̄1 + a1b2N̄1 + ..., (3.6)

so that

u(Σ) =
√

(a1b1)2 + (a1b2)2 · u(N̄1) + .... (3.7)

This same approach can be applied to calculate the uncertainties in the prob-
abilities from Equations 2.19 - 2.22. The inter-Dancoff factor is a multiplication
of these uncertainties. That means that the uncertainty in the inter-Dancoff
factor is given by:

u(Cinter) =

√(
dCinter
dP1

)2

u(P1)2 +

(
dCinter
dP2

)2

u(P2)2 + ... (3.8)
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3.4 Benchmark

As a comparison for the method used to calculate the intra-Dancoff factor, a
Monte Carlo benchmark simulation is created. This simulation operates in a
similar fashion as PDF-LB, except that the TRISO particles are now created
inside a single pebble fuel zone. The chord lengths that are sampled can directly
be evaluated to produce the intra-Dancoff factor through:

Cintra,B =

∑
e−l/λ

Nneutron
. (3.9)

This is a very convenient and accurate method for determining the intra-
Dancoff factor. Its computation time is significantly lower than that of PDF-LB,
because far less TRISOs are created inside a single fuel zone as opposed to the
large box from PDF-LB. However, it can not be used to generate usable chord
length PDFs, because in order to do that there must be a uniform distribution
of TRISOs for every path length up to the maximum path length. The PDFs
generated from a single fuel zone are therefore not suited for calculation of the
inter-Dancoff factor.
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Chapter 4

Results and discussion

This chapter will present the results produced by the Fortran codes in Chapter
3, followed by the calculated Dancoff factors. The results for the intra-Dancof
factor are compared to the analytical results and the results by the benchmark
simulation, for several different packing fractions. The intra-Dancoff factor is
compared to the analytical results as well as results from Spoor [16], both for
different packing fractions and pebble sizes.

4.1 Intra-Dancoff factor

The intra-Dancoff factor was calculated by numerically evaluating the integrals
from Equation 2.11 over the PDFs generated by the PDF-LB code. As men-
tioned in Chapter 2, the analytical description of the Dancoff factor by Ji and
Martin uses a single sphere model [14] approximation shown in Equation 2.13.
The influence of this model on the chord length distribution can be studied by
comparison of that function to the PDFs generated by PDF-LB. The plot in
Figure 4.1 is given as an example.

Because the dual-sphere model was used to generate the PDF with PDF-
LB, that PDF shows no hit count for chord lengths under L =0.215mm, which
is the total thickness of the coating. The approximation by Ji and Martin on
the other hand, does show hit count in that region, because the single-sphere
model allows for overlap of the TRISO coating. This should lead to a slight
overestimate of the Dancoff factor by the analytical approach, because neutrons
are less likely to have an interaction with the moderator before entering a fuel
kernel at these smaller path lengths. The influence of this effect should increase
with TRISO packing fraction, resulting in a higher hit count for smaller chord
lengths.

The results for the intra-Dancoff factor are presented in comparison to the
analytical results from Equation 2.14, and the Monte Carlo benchmark simula-
tion in Table 4.1. Both PDF-LB and the benchmark simulation were performed
for 1 million neutrons.
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Figure 4.1: Comparison of empirical PDF to analytical approximation of the
TRISO PDF f(l)

.

Packing fraction Cintra,PDF Cintra,MC Cintra,A
0.04 0.15332 ± 0.00029 0.15532 ± 0.00039 0.15742
0.08 0.27214 ± 0.00040 0.27410 ± 0.00052 0.27693
0.12 0.36568 ± 0.00048 0.36598 ± 0.00060 0.36971
0.16 0.43170 ± 0.00053 0.43865 ± 0.00066 0.44323
0.20 0.49387 ± 0.00057 0.49664 ± 0.00070 0.50259
0.24 0.54226 ± 0.00061 0.54650 ± 0.00073 0.55132

Table 4.1: Intra Dancoff factor for various packing fractions. PDF = results
from PDF-LB, MC = Monte Carlo Benchmark, A = analytical results.

Results from the evaluation of the PDFs are in reasonable agreement with
the benchmark calculation, with errors ranging between 0.1% and 2.5% and an
average error of 0.8%. These errors exceed the uncertainty range, so the accu-
racy of the method is not perfect. The aforementioned prediction concerning
the overestimation by the single-sphere model seems to be supported by the
results in Table 4.1, which show a small overestimation (average error 1.2%) of
the Dancoff factor by the analytical formula that increases with TRISO packing
fraction. Figure 4.2 shows a plot of these results from which the deviation is
evident.

This error appears to be fixed when evaluating the PDFs from PDF-LB (see
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Figure 4.2: Cintra analytical results versus benchmark simulation.

also Figure 4.3), which is to be expected since it uses the dual-sphere model.
Interestingly, the PDF-LB results seem to slightly underestimate the Dancoff
factor for some TRISO packing fractions. This deviation is smaller than that of
the analytical results, and is probably related to the accuracy of the histogram
algorithm. The average bin path length L̄ is calculated as the average of the bin
limits, resulting in a slight overestimate of the actual average chord length in
the bin. A histogram algorithm that calculates the actual average chord lengths
might be able to solve this issue.

4.2 Inter-Dancoff factor

The inter-Dancoff factor can be calculated using Equations 2.18 and 2.19 - 2.22.
The calculation of P1, P2, P3 and Ptr is very relevant to the accuracy of the
inter-Dancoff factor results. The following subsections will present the separate
results for these probabilities.

4.2.1 P1, P3 and Ptr

Because P1, P3 and Ptr do not depend on H(S), they are not influenced by
the pebble shell thickness. This is a very convenient result of the methodology
used, because it enables an independent calculation of packing fraction and
pebble shell thickness influences on the Dancoff factors and a separate analysis
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Figure 4.3: Cintra results from PDF-LB versus benchmark simulation.

of these influences. Table 4.2 shows the separate probabilities for a range of
packing fractions, as calculated using f(l) from PDF-LB.

Packing fraction P1 P3 Ptr
0.04 0.41892 ± 0.00017 0.21842 ± 0.00037 0.19453 ± 0.00015
0.08 0.35065 ± 0.00023 0.37145 ± 0.00049 0.13438 ± 0.00019
0.12 0.29849 ± 0.00027 0.48063 ± 0.00057 0.09615 ± 0.00022
0.16 0.26209 ± 0.00029 0.55411 ± 0.00063 0.07220 ± 0.00023
0.20 0.22898 ± 0.00032 0.61669 ± 0.00067 0.05468 ± 0.00025
0.24 0.20358 ± 0.00034 0.66324 ± 0.00071 0.04270 ± 0.00025

Table 4.2: Separate probabilities over a range of packing fractions.

From the table it is evident that the probabilities show the expected behav-
ior. P1 is equivalent to the first flight escape probability P ∗esc and must therefore
decrease as packing fraction increases. P3 is very similar to the intra-Dancoff
factor and must resemble its behavior. Figure 4.4 shows a plot of P3 and the
intra-Dancoff factor. The probability that a neutron incident on a pebble en-
ters a fuel lump within that pebble, appears to be significantly higher than the
intra-Dancoff factor. This can be explained by the fact that neutrons incident
on a pebble are more likely to travel a longer distance through that pebble.

Ptr is the probability that a neutron incident on a pebble traverses it without
entering a fuel lump. Its behavior should therefore be similar to that of P1, the
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Figure 4.4: P3 versus intra-Dancoff factor Cintra.

first flight escape probability. A plot of these two probabilities over a range of
packing fractions is shown in Figure 4.5. P1 appears to be significantly higher
than Ptr. Analogous to the explanation for the behavior in Figure 4.4, neutrons
originating from a fuel lump inside the pebble are less likely to travel a long
distance through the pebble, and therefore are more likely to escape that pebble,
as opposed to neutrons that are incident on the pebble.

4.2.2 P2

P2 is calculated using either the pebble PDF from PDF-PB, or its analytical
approximation by Ji and Martin. The exponential PDF used to approximate
H(S) assumed a uniform background moderator. The actual distribution of
chord lengths in the pebble bed is a more complicated function, as can be seen
in Figure 4.6, which shows a generated PDF (using 1 million neutrons) for the
standard pebble size, compared to the analytical PDF.

Since the pebble bed is a closely packed stacking, the pebbles are located
at approximately periodic distances from eachother. The first maximum in the
plot represents the first ’ring’ of pebbles around the initial pebble, and so on.
For larger path lengths the rings are less defined, and their associated maxima
less distinguishable. This behavior has a strong influence on the calculation of
P2 and therefore a good approximation is required to produce accurate results.
Fitting procedures may prove useful to determine a suitable model.

To validate the evaluation of the PDFs from PDF-PB, the results for P2
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Figure 4.5: Ptr versus first flight escape probability P1.

calculated using those PDFs are shown in table 4.3 versus the benchmark and
analytical results by Ji and Martin.

Rpebble/Rfuel P2,PDF P2,MC P2,A

1.2 0.45887 ± 0.00050 0.4406 0.50188
1.4 0.20979 ± 0.00026 0.1996 0.29606
1.6 0.10095 ± 0.00015 0.0945 0.19154
1.8 0.05048 ± 0.00008 0.0466 0.13179
2.0 0.02614 ± 0.00005 0.0238 0.09485
2.2 0.01387 ± 0.00003 0.0125 0.07065
2.4 0.00755 ± 0.00002 0.0067 0.05410

Table 4.3: P2 for different pebble shell thicknesses. PDF = results from PDF-
PB, MC = Monte Carlo Benchmark, A = analytical results.

From the table it is clear that the PDFs generated by PDF-LB result in a
better approximation of P2 than the function used by Ji and Martin, although
not perfect. Because the method used to generate the PDFs is actually a stan-
dard Monte Carlo simulation, the deviation might be explained by a difference
in simulation method. Another explanation might be that some information is
lost when the PDF is generated from the chord lengths, as mentioned in the
previous section.
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Figure 4.6: Comparison of empirical PDF to analytical approximation of the
pebble PDF H(S) for Rpebble/Rfuel = 1.2

4.2.3 Cinter

From the separate probabilities the inter-Dancoff factor can be calculated using
Equation 2.18. For comparison, Cinter was also calculated using the Monte
Carlo method by Spoor [16], and using the analytical method by Ji and Martin.
The results of these different approaches are shown in Table 4.4, for a range of
packing fractions.

Packing fraction Cinter,PDF Cinter,MC Cinter,A
0.04 0.04610± 0.00010 0.04711± 0.00022 0.05287
0.08 0.06369± 0.00012 0.06508± 0.00026 0.07258
0.12 0.06887± 0.00013 0.07041± 0.00027 0.07855
0.16 0.06892± 0.00013 0.07080± 0.00027 0.07858
0.20 0.06646± 0.00014 0.06865± 0.00026 0.07605

Table 4.4: Cinter over a range of TRISO packing fractions. PDF = results from
PDF-LB and PDF-PB, MC = Monte Carlo Benchmark, A = analytical results.

Interestingly, Cinter decreases for higher packing fractions. This is due to
the fact that the first flight escape probability decreases with packing fraction,
and outweighs the other prababilities for higher fractions. Neutrons are less
likely to escape the initial pebble at those higher packing fractions.
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The errors of the results from PDF-LB and PDF-PB again exceed the un-
certainty bounds, with an average error of 2.6%. Although significant, these
errors are small compared to the average 11% error by the analytical approach
from Ji and Martin. Figure 4.7 shows a plot of these results.

Figure 4.7: PDF, Monte-Carlo, and Analytical calculations of Cinter over a
range of packing fractions for Rpebble/Rfuel = 1.2.

The analytical description of the fuel zone PDF H(S) causes a significant
overestimation of the inter-Dancoff factor. This can be explained in the same
way as the deviation found for the intra-Dancoff factor, because the approxima-
tion of the PDF leads to a higher hit count for path lengths smaller than the
pebble shell thickness.

In order to study the influence of the analytical description of f(l), the inter-
Dancoff factor is calculated using the analytical PDF f(l), and the empirical
PDF H(S). The results of this semi-analytical approach are shown in Figure
4.8, and surprisingly appear to be a slight improvement compared to the results
from the PDF approach with an average error of 1.1%. This means that using
analytical description of f(l) leads to an underestimation of Cinter through
the first flight escape probability P1. Apparently the underestimation of P1

compensates for the overestimations of the other probabilities, including that of
P2 by the empirical PDF H(S).
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Figure 4.8: PDF, Monte-Carlo, and Semi-analytical calculations of Cinter over
a range of packing fractions for Rpebble/Rfuel = 1.2.

4.3 Total Dancoff factor

The total Dancoff factor C is the total probability that a neutron escaping from
a fuel lump enters another fuel lump before colliding with the moderator. It is
given by the sum of the intra- and inter-Dancoff factors C = Cintra+Cinter and
the results of this calculation are presented in Table 4.5, in comparison with the
Monte Carlo results using the method of Spoor [16] and the analytical results
using that of Ji and Martin [6]. These results are further illustrated in Figure
4.9, which plots C versus the packing fraction.

Packing fraction CPDF CMC CA
0.04 0.19942± 0.00031 0.20284± 0.00045 0.21029
0.08 0.33584± 0.00042 0.33843± 0.00058 0.34951
0.12 0.43455± 0.00049 0.43586± 0.00066 0.44826
0.16 0.50063± 0.00054 0.50957± 0.00071 0.52181
0.20 0.56033± 0.00059 0.56599± 0.00075 0.57865

Table 4.5: Dancoff factor C over a range of packing fractions. PDF = results
from PDF-LB and PDF-PB, MC = Monte Carlo Benchmark, A = analytical
results.

The average error of the results compared to the Monte Carlo benchmark
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results is 1.1%, the highest error being 2.5%. This is significantly lower than
that of the analytical results, with an average of 3% and a highest error of
4.3%. The empirical PDF results show a slight underestimation of the Dancoff
factor and the analytical results show an overestimation, both of which can be
expected from the results in the previous sections. To investigate the influence
of the analytical description of f(l) on the total Dancoff factor, the results are
again plotted in Figure 4.10, in comparison to the results calculated using the
analytical PDF f(l) and the emprical PDF H(S).

Figure 4.9: PDF, Monte-Carlo, and Analytical calculations of the total Dancoff
factor C over a range of packing fractions for Rpebble/Rfuel = 1.2.

This semi-analytical approach proves to be a viable alternative with an av-
erage error of 0.5%, and the highest error being 1.2%. Similarly to the semi-
analytical calculation of Cinter, the slight underestimation of Cintra is now com-
pensated by the slight overestimation of Cinter.

4.4 Computational method

One of the aims of this research is to investigate whether or not the generation
of empirical chord length PDFs is an efficient method for calculating Dancoff
factors, as opposed to conventional Monte Carlo simulation or the analytical
method by Ji and Martin. Computation time for the generation of the TRISO
distributions and their PDFs ranges between 4 and 18 hours, which is compa-
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Figure 4.10: PDF, Monte-Carlo, and Semi-nalytical calculations of the total
Dancoff factor C over a range of packing fractions for Rpebble/Rfuel = 1.2.

rable to conventional Monte Carlo methods. However, significantly less compu-
tation time is required to generate the PDFs from PDF-PB.

The model used fixes some of the problems in the analytical derivations
by Ji and Martin. This includes using the dual-sphere model for generating
the TRISO PDF, instead of the single sphere-model used by Ji and Martin,
which solves the overestimation of the intra-Dancoff factor. Most importantly,
a viable PDF is generated to represent the chord lenghts through the moderator
between fuel zones. These are two valuable improvements as opposed to the
analytical description. The generated PDFs may even be approximated using
fitting procedures in order to accomplish a more accurate analytical description
of the distributions. More accurate histogram algorithms can be used to improve
the accuracy of the generated PDFs.

The main advantage of this methodology lies in its flexibility as opposed
to conventional Monte Carlo methods. Instead of generating an entire pebble
bed distribution including TRISO coordinates and performing an entire neutron
flight path simulation, this method allows for separate generation and analysis
of the TRISO and pebble bed PDFs. Once the separate distributions have been
generated, they can be combined at will in order to investigate different packing
fraction and pebble size combinatins. Furthermore, other complicated VHTR
geometries such as the prismatic reactor type might be described using their
distribution PDFs.
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Chapter 5

Conclusions and
recommendations

The central aim of this research was to apply the chord length method derived
by Ji and Martin [6] to emprically generated PDFs in order to investigate their
model and improve some of the approximations they made. Ji and Martin
applied the chord length method to VHTR fuel analysis, and specifically the
pebble bed reactor, in order to calculate Dancoff factors. They derived an
analytical description of the chord length PDF for distances between TRISO
fuel particles using the single sphere model. In order to evaluate the flaws in
this approximation, the Fortran code PDF-LB was written, which generated
emprical TRISO distribution PDFs using the dual-sphere model, for different
volume packing fractions.

Additionally, Ji and Martin did not succeed in deriving a correct model for
the distribution of path lengths through the moderator between pebble fuel
zones. The Fortran code PDF-PB was written in order to generate empirical
PDFs for these chord lengths using a pregenerated pebble stacking.

The generated PDFs were evaluated using a MATLAB script, which cal-
culated the intra- and inter-Dancoff factors for the geometry of interest. The
results of these calculations were compared to analytical results using the de-
scription by Ji and Martin, and to benchmark results generated using the more
standard Monte Carlo method by Spoor [16].

5.1 Conclusions

The PDFs generated by PDF-LB using the dual-sphere model were compared
to the analytical description of the PDF by Ji and Martin. The chord length
distributions showed substantial differences, especially for smaller chord lengths.
The analytical description was predicted to result in a slight overestimate of the
intra-Dancoff factor, which was successfully demonstrated. The use of the dual-
sphere model in PDF-LB addresses this issue, which resulted in a more accurate
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calculation of the intra-Dancoff factor with an average error of 0.1%. The intra-
Dancoff factor was calculated over a range of volume packing fractions in the
fuel zone, and the expected behavior was demonstrated (as packing fraction
increases, so does the intra-Dancoff factor).

PDF-LB was used to generate the PDFs for the distribution of chord lengths
between fuel zones in the moderator. These PDFs showed a rather complex be-
havior because of the nature of the pebble stacking, which explains why the
analytical description of this function by Ji and Martin was inaccurate. Several
different probabilities that contribute to the inter-Dancoff factor were calculated
by evaluating the PDFs from PDF-LB combined with those from PDF-PB us-
ing the MATLAB script. The method used to evaluate the PDFs proved to
be an effective tool for investigating these different probabilities and their con-
tribution to the inter-Dancoff factor separately. The inter-Dancoff factor was
then calculated by combining these probabilities, and compared to the Monte
Carlo Benchmark and the analytical results. The results had an average error
of 2.6%, which is significant but small compared to the 11% of the analytical
results. Another approach involved combining the analytical TRISO distribu-
tion PDF with the empirical fuel zone distribution PDF in order to study the
influence of the TRISO distribution PDF approximation on the inter-Dancoff
factor.

Finally the total Dancoff factor was calculated with an average error of 1.1%,
as opposed to 3% by the analytical approach. The semi-analytical approach
used to investigate the influence of the TRISO distribution PDF was also used
to calculate the Dancoff factor and proved to be a viable alternative with an
average error or 0.5%. This means that the analytical TRISO distribution
PDF, although proven slightly incorrect, remains a viable resource in calculating
Dancoff factors. In combination with an empirical fuel zone PDF, which is
generally a more complex function, this approach yields accurate results for
relatively short computation times (roughly 2 hours). Monte Carlo methods
become increasingly cumbersome for high TRISO packing fractions. In these
cases a pregenerated set of TRISO distribution PDFs or a viable analytical
description of those PDFs can prove to be a powerful tool.

5.2 Recommendations for future research

The method used for calculation of the Dancoff factors has proven to be very
flexible and capable of a separate analysis of the involved probabilities. It can
be further improved by using a more accurate algorithm for generating the
PDFs, or by deriving a better approximation for the actual TRISO distribution
PDF using the PDFs generated by PDF-LB. The latter approach may produce
similarly accurate results for the intra-Dancoff factor. Combined with the em-
pirical chord lengths generated by PDF-PB this can prove to be a very fast
and flexible method for calculating the overall Dancoff factors in various VHTR
configurations.

34



Bibliography

[1] International Energy Agency, ”Key World Energy Statistics 2011”,
OECD/IEA, Paris, (2011).

[2] International Energy Agency, ”World Energy Outlook 2011: Key Graphs”,
IEA, Paris, (2011).

[3] OECD Nuclear energy Agency, ”Generation IV International Forum”,
www.gen-4.org, (2001-present).

[4] European Nuclear Society, ”Pebble bed reactor”,
http://www.euronuclear.org/info/encyclopedia/p/pebble.htm, (July 2012).

[5] Tsinghua University Institute of Nuclear and New Energy Technology,
”HTR-10”, http://www.tsinghua.edu.cn/publish/ineten/5696/index.html,
(July 2010).

[6] W. Ji and W.R. Martin, ”Application of the Chord Method to Obtain
Analytical Expressions for Dancoff Factors in Stochastic Media”, Nuclear
Science Engineering, Vol. 169, pp. 19-39 (2011).

[7] S. M. Dancoff and M. Ginsburg, Surface Resonance Absorption in a Close-
Packed Lattice, CP-2157, (1962).

[8] P.A.M. Dirac, Approximate Rate of Neutron Multiplication for a Solid of
Arbitrary Shape and Uniform Density”, Declassified British Report MS-D-
5, Part I (1962).

[9] K. M. Case, F. De Hoffmann, and G. Placzek, Introduction to the Theory
of Neutron Diffusion, Vol. I, pp. 1922 (1953).

[10] R.K. Lane, L.W. Nordheim and J.B. Samson, Resonance Absorption in
Materials with Grain Structure, Nuclear Science Engineering, Vol. 14, pp.
390-396 (1962).

[11] E.E. Bende, A.H. Hogenbirk, J.L. Kloosterman and H. van Dam, Analytical
Calculation of the Average Dancoff Factor for a Fuel Kernel in a Pebble
Bed High-Temperature Reactor, Nuclear Science Engineering, Vol. 113, pp.
147-162 (1999).

35



[12] J.L. Kloosterman and A.M. Ougouag, Comparison and Extension of Dan-
coff Factors for Pebble-Bed-Reactors, Nuclear Science Engineering, Vol.
157, pp. 16-29 (2007).

[13] S.H. Kim, H-C Kim, J.K. Kim and J.M. Noh, New strategy on the evalua-
tion of Dancoff factor in a pebble bed reactor using Monte Carlo method,
Nuclear Technology, Vol. 177, pp. 147-156 (2012).

[14] W. Ji and W.R. Martin, ”Determination of Chord Length Distributions in
Stochastic Media Composed of Dispersed Microspheres”, Transactions of
the American Nuclear Society, Vol. 96, pp. 467-469 (2007).

[15] University of Tennessee, Knoxville, Nuclear Energy,
http://electron6.phys.utk.edu/phys250/modules/module205/nuclear energy.htm
(July 2012).

[16] F. Spoor, Monte Carlo and analytical calculations of the Dancoff Factor
in Pebble Bed Reactors, specifically for Wallpaper Fuel and Moderator
Pebbles, BSc. Thesis, Delft University of Technology (2012).

[17] G. Ouwendijk, Analysis of randomly stacked pebble bed reactors using a
Monte Carlo neutron transport code with a statistical geometry model,
MSc. Thesis, Delft University of Technology (2011).

[18] P. E. MacDonald et al., NGNP Preliminary Point Design - Results of
the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03,
INEEL0EXT-03-00870 Rev. 1, Idaho National Engineering and Environ-
mental Laboratory (2003).

[19] G.J. Auwerda, J.L. Kloosterman, A.J.M. Winkelman, J. Groen and V. van
Dijk, Comparison of Experiments and Calculations of Void Fraction Dis-
tributions in Randomly Stacked Pebble Beds, PHYSOR 2010 - Advances
in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Penn-
sylvania, USA, (May 2010)

36


