
VARIANCE REDUCTION IN A
THREE-DIMENSIONAL SPACE

USING THE CORRECTON METHOD
PNR-131-2011-001

M.V. Huisman
January 2011



c© January 2011, M.V. Huisman
All rights reserved.



Variance Reduction in a
Three-Dimensional Space using

the Correcton Method

Delft
January 2011

M.V. Huisman
Bachelor Applied Physics

1357964

Supervised by

ir. Bart Sjenitzer

Second Evaluator

dr.ir. Eduard Hoogenboom

Delft University of Technology
Faculty of Applied Sciences

department of

Radiation, Radionuclides & Reactors

section

Physics of Nuclear Reactors





Table of Contents

Table of Contents i

List of Figures iii

List of Tables v

Abstract vii

1 Introduction 1

2 Background 3

2.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 History of Monte Carlo Simulation . . . . . . . . . . . . . . . 3

2.1.2 Theory of Monte Carlo . . . . . . . . . . . . . . . . . . . . . 3

2.1.3 Production of Random Numbers . . . . . . . . . . . . . . . . 3

2.1.4 Generating a Probability Distribution . . . . . . . . . . . . . 3

2.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Microscopic Cross Section . . . . . . . . . . . . . . . . . . . . 4

2.2.2 Macroscopic Cross Section . . . . . . . . . . . . . . . . . . . . 5

2.3 Transport Equation for Monte Carlo Simulation . . . . . . . . . . . . 5

2.4 Modeling the Life of a Neutron . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Sampling Collision . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Reduction of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 Principles of Variance Reduction . . . . . . . . . . . . . . . . 10

3 Correcton Method 11

3.1 Transform Neutrons to Correctons . . . . . . . . . . . . . . . . . . . 11

3.2 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Implementing Correctons . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Extension of the Correcton Method to a 3D Environment 15

4.1 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Implementing Correctons . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 The Analog Monte Carlo Simulation . . . . . . . . . . . . . . 18

4.3.2 One Directional Continuous Flux Guess . . . . . . . . . . . . 19

4.3.3 Three Directional Continuous Flux Guess . . . . . . . . . . . 21

4.4 Comparison of the Found Results . . . . . . . . . . . . . . . . . . . . 23

Table of Contents i



5 Correcton Method using Discrete and Adjoint Flux Guess 27
5.1 Discrete Flux Guess . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Discretization of the Flux Guess . . . . . . . . . . . . . . . . 27
5.1.2 Discontinuous Flux Guess . . . . . . . . . . . . . . . . . . . . 28
5.1.3 The Estimation for the Discrete Flux Guess . . . . . . . . . . 28
5.1.4 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.5 Comparison of the Found Results . . . . . . . . . . . . . . . . 32

5.2 Adjoint Flux Guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 The Estimation for the Adjoint Flux Guess . . . . . . . . . . 33
5.2.2 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 Comparison of the Found Results . . . . . . . . . . . . . . . . 36

5.3 Discrete Flux Guess versus Adjoint Flux Guess . . . . . . . . . . . . 37
5.4 Comparison of the Important Techniques . . . . . . . . . . . . . . . 38

6 Conclusions and Future Directions 41

Acknowledgements 43

Bibliography 45

ii



List of Figures

2.1 An overview of possible nuclear collision reactions. . . . . . . . . . . 4

2.2 An overview of the path of a neutron. . . . . . . . . . . . . . . . . . 7

3.1 An overview of flux guesses and the neutron flux. . . . . . . . . . . . 13

3.2 An overview of the neutron fluxes found for different β-values and by
using the analog Monte Carlo method. . . . . . . . . . . . . . . . . . 14

3.3 An overview of the FOM the analog Monte Carlo Simulation and the
two flux guesses. The neutron flux can be found in Fig. 3.2. . . . . . 14

4.1 The 1-directional flux guess of Eq. 4.2 is plotted using the β-value 0.8. 16

4.2 The 3-directional flux guess of Eq. 4.4 is plotted using the β-value 0.5. 16

4.3 An overview of the location of the plotted data . . . . . . . . . . . . 17

4.4 The found neutron flux using an analog Monte Carlo simulation. . . 18

4.5 The FOM of the analog Monte Carlo simulation. . . . . . . . . . . . 18

4.6 The neutron flux using an 1-directional flux guess, the chosen β-value
is 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.7 The FOM using an 1-directional flux guess, the chosen β-value is 0.8. 19

4.8 The neutron flux using an 1-directional flux guess, the chosen β-value
is 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.9 The FOM using an 1-directional flux guess, the chosen β-value is 0.4. 20

4.10 The neutron flux using an 3-directional flux guess, the chosen β-value
is 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.11 The FOM using an 3-directional flux guess, the chosen β-value is 0.5. 21

4.12 The neutron flux using an 3-directional flux guess, the chosen β-value
is 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.13 The FOM using an 3-directional flux guess, the chosen β-value is 0.25. 22

4.14 An overview of the 1- and 3-directional flux guesses and the found
neutron flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.15 The neutron flux calculated using the 1-directional flux guess and the
analog Monte Carlo Method. . . . . . . . . . . . . . . . . . . . . . . 24

4.16 The FOM of the 1-directional flux guesses and the analog Monte Carlo
Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.17 The neutron flux calculated using the 3-directional flux guesses and
the analog Monte Carlo Method. . . . . . . . . . . . . . . . . . . . . 25

4.18 The FOM of the 3-directional flux guesses and the analog Monte Carlo
Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 The neutron flux calculated with the diffusion theory for a source
point in an infinite medium. . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 The different β-values in each direction after “normalization”. . . . . 29

5.3 The neutron flux calculated using the discrete values of the discrete
flux guess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 The FOM calculated using the discrete values of the discrete flux guess. 30

5.5 The neutron flux calculated using the discrete flux guess. . . . . . . 31

5.6 The FOM calculated using the discrete flux guess. . . . . . . . . . . 31

List of Figures iii



5.7 An overview of the discrete flux guess with only discrete values,
discrete flux guess and the found neutron flux. . . . . . . . . . . . . 32

5.8 The neutron flux calculated with the discrete flux guess with only
discrete values, discrete flux guess and analog Monte Carlo method. 32

5.9 The FOM of the discrete flux guess with only discrete values, discrete
flux guess and analog Monte Carlo method. . . . . . . . . . . . . . . 33

5.10 The different β-values in each direction after “normalization”. . . . . 34
5.11 The neutron flux calculated using the discrete values of the adjoint

flux guess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.12 The FOM calculated using the discrete values of the adjoint flux guess. 35
5.13 The neutron flux calculated using the adjoint flux guess. . . . . . . . 35
5.14 The FOM calculated using the adjoint flux guess. . . . . . . . . . . . 36
5.15 An overview of the adjoint flux guess with only discrete values, adjoint

flux guess and the found neutron flux. . . . . . . . . . . . . . . . . . 36
5.16 The neutron flux calculated with the adjoint flux guess with only

discrete values, adjoint flux guess and analog Monte Carlo method. . 37
5.17 The FOM of the adjoint flux guess with only discrete values, adjoint

flux guess and analog Monte Carlo method. . . . . . . . . . . . . . . 37
5.18 The FOM of all important flux guesses and the analog Monte Carlo

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iv



List of Tables

4.1 An overview of the results of the one directional flux guess in the
opposite corner cell in comparison to the source. . . . . . . . . . . . 26

4.2 An overview of the results of the three directional flux guess in the
opposite corner cell in comparison to the source. . . . . . . . . . . . 26

5.1 An overview of the results of the discrete scalar flux guesses in the
opposite corner cell in comparison to the source. Where d.f.g. means
discrete flux guess and a.f.g. means adjoint flux guess. . . . . . . . . 38

List of Tables v





Abstract

This research project extents the correcton simulation technique in to an three-
dimensional space. The correcton method is an hybrid Monte Carlo-deterministic
technique for simulating global particle transport-problems. It couples a cheap
deterministic calculation, with a more extensive Monte Carlo simulation. The
estimated fluxes of the neutron flux are called the scalar flux guess, the particles
used in the correcton methods are correctons. In this thesis various scalar flux
guesses are compared.

The different methods are tested by looking at cube of 15x15x15 cm. This cube
contains a source region in one of it is corners. First the flux shape is found using
the analog Monte Carlo method. This method is time consuming and not precise.
When a billion particles are used, the complete flux shape is not found.

The different flux guesses are compared in the cell that is the furthest away of
the source, the value that is investigated is the Figure of Merit. This value gives
an idea of the performance of the calculation. There are four different scalar fluxes
guesses compared, namely 1-directional flux guess, 3-directional flux guess, discrete
guess and adjoint flux guess

The first scalar flux guess that is made is an 1-directional flux guess in the x-
direction. There are two kinds of guesses made, namely a strong and weak one.
Both are able to penetrate the whole system. The weak estimation has Figure of
Merit-value of 9.522 · 10−5 and the strong estimation has a value 1.944 · 10−3. The
same is done for the three directional flux guess. The weak estimation has Figure
of Merit-value of 6.833 · 10−3 and the strong estimation has a value 4.619 · 10−2.

The discrete guess is divided into pure the discrete values of the discrete guess and
discrete guess itself. The discrete values scores a Figure of Merit-value of 1.853 ·10−4

and the discrete guess of 2.673 · 10−2. The last scalar flux guess is the adjoint flux
guess. The discrete values of the adjoint flux guess scores a Figure of Merit-value of
3.429 · 10−4 and the adjoint flux guess of 2.984 · 10−2. This makes the adjoint flux
guess best preforming discontinuous flux guess.

The best estimation of the neutron flux is with the strong estimation of the 3-
directional flux guess. The reason for why it is preforming the best is that the
flux guess needs less calculation steps for calculation a new position than the
discontinuous flux guesses. Thereby making it ideal for homogeneous materials,
the discontinuous flux guesses are more interesting for non-homogeneous materials.
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Chapter 1

Introduction

The goal of this thesis is to show that it is possible to estimate the neutron flux using
the correcton method in an 3D space. The correcton method is a way to implement
a flux guess into the Boltzmann equation. The benefit of this method is that the
Figure of Merit in the calculated neutron flux is higher than when using analog
Monte Carlo simulation. In the paper of Becker [Becker et al, 2006] and the master
thesis of Bart Sjenitzer [Sjenitzer, 2009] this method is proven to indeed increase the
Figure of Merit of the calculated neutron flux in an 1D space. The situations that
the correcton method is tested in are neutron transport and criticality calculations.
In Chapter 3, also an 1D situation is made to show that the method indeed will
decrease the variance. It is interesting to see if this also applies to an 3D space. The
background of how the code is working is shown in chapter 2.

The new part of the research can be found in chapter 4 and 5. Becker suggested that
the correcton method is also possible in an 3D space, but did not prove it in 2006. In
his PhD thesis of 2009, Becker uses an adjoint flux guess for solving his 3D source-
detector and source-region problem. Becker suggested in ideas for the future not to
look only at the adjoint flux guess, but also at other distributions. In this thesis
besides a discrete adjoint flux guess also continuous flux guesses and discrete flux
guesses are used. The continuous flux guess can be divided in to two subsections,
namely one directional flux guess and a three directional flux guess. The adjoint
flux guess and the discrete flux guess are two subsections of the discontinuous flux
guess

The system that is used is a cube of 15x15x15 cm with a small cube, 1 cm3, as
source region in a corner. To measure the effectiveness of the flux guesses the Figure
of Merit is investigated, this is done in the opposite corner of the source, making it
a classical source-detector problem.
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Chapter 2

Background

2.1 Monte Carlo Simulation

2.1.1 History of Monte Carlo Simulation

The first systematic application [Jäckel et al, 2010] of statistical sampling in
science was Enrico Fermi in the early 1930’s. He used it to predict the results
of experiments in relation to the properties of the neutron. After World War II,
the Los Alamos National Laboratory developed a new computer, ENIAC. Stanislaw
Ulam suggested that the ENIAC computer should be used for statistical sampling.
Nicholas Metropolis dubbed the numerical technique ”the Monte Carlo method”.
Together with Neumann, Ulam, Fermi and others the Monte Carlo simulation was
further developed. The ENIAC computer could do about 5000 additions or 400
multiplications per second and occupied the size of a large room. Today every
computer is able to run a Monte Carlo simulation program and much faster than in
the old days.

2.1.2 Theory of Monte Carlo

Jäckel defines Monte Carlo as follows:

“A Monte Carlo method is any technique whose purpose it is to approximate a

specific measure defined on a given domain by the aid of sampling according to

a pre-determined distributional law.”

In this thesis a Monte Carlo method is used to estimate the neutron flux in
several situations. The reason why Monte Carlo method is used for solving
neutron transport equations is, because the different interactions of the particles are
stochastic event and the problem can not be solved using a deterministic program.

2.1.3 Production of Random Numbers

When the random number generator is used on a computer, random number
sequence is not totally random. The random number is made with a logarithm
function, the function repeats itself over time. This period is in the order of 246.
When the sequence walked through, it will start at the beginning. The randomness
of the sequence is therefore not totally random, this phenomenon is called pseudo-
random. The benefit of this is that the calculation can be repeated. The typical
production of random numbers is in the range between 0 and 1.

2.1.4 Generating a Probability Distribution

When using Monte Carlo simulation, it is desirable to have any variable depending
on an uniform distributed variable, ρ. The probability that a random number is

Background 3



smaller for a certain value should be equal for both distributions [Sjenitzer, 2009].

P (x < ρ) = P (y < s) (2.1)

The probability is in the range between 0 and 1. Eq. 2.1 can be rewritten as a
cumulative distributions: ∫ ρ

−∞
g (x) dx =

∫ s

−∞
f (y) dy (2.2)

The left side of the equation is the uniform distribution between 0 and 1 and f (y)
is the distribution needed. For the uniform distribution becomes:∫ ρ

−∞
g (x) dx = ρ (2.3)

Eq. 2.2 now becomes:

ρ =

∫ s

−∞
f (y) dy (2.4)

In this way any distribution can be made with an uniform distribution.

2.2 Material Properties

2.2.1 Microscopic Cross Section

Microscopic cross section is the probability that a neutron-nuclear reaction will occur
[Duderstadt et al, 1976]. Because the radius of a nucleus is in the order of 10−12

cm, the geometrical cross section is in the order of 1 barn. The microscopic cross
section can be defined as:

σ =
(R/N)

I
(2.5)

Where R is the rate that reactions occur per unit area, I is the intensity of the
beam and N is the number of target atoms per unit area. The total microscopic

Figure 2.1: An overview of possible nuclear collision reactions.

cross section is sum of the individually microscopic cross section of the material.
Therefore the total microscopic cross section becomes:

σt = σs + σc + σf (2.6)

The subscript t is for the microscopic total cross section, s is for the scattering
part, c is for the capture part and f is for the fission part. An overview of different
reactions is shown if fig. 2.1 [Lathouwers et al, 2010].
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2.2.2 Macroscopic Cross Section

The microscopic cross section is for small targets [Duderstadt et al, 1976], but a
small target is not used in simulations. Instead a chunk of material is used, the
macroscopic characterizes the probability of neutron interaction in that chunk. The
macroscopic cross section is defined as:

Σi = Nσi (2.7)

Where N is the number density of nuclei in the target, which can be calculated with:

N =
ρmNA

Mm
(2.8)

Where ρm and Mm are the density and molar mass of the material and NA is
Avogadro constant (6.02214179 x 1023 mol−1)

2.3 Transport Equation for Monte Carlo Simulation

Neutron transport equation [Hoogenboom et al, 2008] in a stationary integro-
differential form is defined as:

Ω · ∇φ (r, E,Ω) + Σt (r, E)φ (r, E,Ω) =∫ ∞
0

∫
4π

Σs

(
r, E′ → E,Ω′ → Ω

)
φ
(
r, E′,Ω′

)
dE′dΩ′ + S (r, E,Ω) (2.9)

Where the variables r, E and Ω are for the position, energy and angle. The
neutron flux is φ (r, E,Ω) and the source part is S (r, E,Ω). The total and scatter
macroscopic cross section are Σt and Σs. An apostrophe means the variable before
the collision or the transition.

This equation is not suitable for Monte Carlo simulations because it is difficult
to simulated. A better way is to think in terms of neutron events like the source,
transitions and collisions. We define the source as:

S (r, E,Ω) (2.10)

For the probability for a neutron to make a transition kernel is defined as:

T
(
r′ → r, E,Ω

)
dV (2.11)

and for the probability for a neutron to make a collision with exiting energy E and
a direction Ω

C
(
r, E′ → E,Ω′ → Ω

)
dEdΩ (2.12)

The last things to be defined are the event densities. The collision density is:

ψ (r, E,Ω) (2.13)

and the emission density is:

χ (r, E,Ω) (2.14)
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Now it is possible to deduce the following relations

χ (r, E,Ω) = S (r, E,Ω) +

∫
V
T
(
r′ → r, E,Ω

)
ψ (r, E,Ω) dV (2.15)

ψ (r, E,Ω) =

∫ ∞
0

∫
4π
C
(
r, E′ → E,Ω′ → Ω

)
χ
(
r, E′,Ω′

)
dE′dΩ′ (2.16)

To make it easier to read the previous two equation, a short-hand notation and a
combined transport kernel will be defined:

(P) = (r, E,Ω) (2.17)

L
(
P′ → P

)
= C

(
r, E′ → E,Ω′ → Ω

)
T
(
r′ → r, E,Ω

)
(2.18)

The Eq. 2.15, 2.16, 2.17 and 2.18 combined gives:

ψ (P) =

∫
V
C
(
r, E′ → E,Ω′ → Ω

)
S
(
r′, E,Ω

)
dV ′ +

∫
L
(
P′ → P

)
ψ
(
P′
)
dP′

(2.19)
The next step is to split ψ (P) into components where every component has had k
collisions.

ψ (P) =
∞∑

k1=0

ψk (P) (2.20)

Where k is the number of collisions that had occur. When k = 0 collisions the source
is given

ψ0 (P) =

∫
V
C
(
r, E′ → E,Ω′ → Ω

)
S
(
r′, E,Ω

)
dV ′ (2.21)

The relationship between collision density around a collision is defined as:

ψk (P) =

∫
ψk−1

(
P′
)
L
(
P′ → P

)
dP′ (2.22)

This leads to:

ψk (P) =

∫
..........

∫
ψ0 (P0) ·K0 ·K1..........Kk−1dP0..........dPk−1 (2.23)

When the source is known of a reactor, the collision density can be calculated with
Eq. 2.23. An overview of the path of a neutron is shown in Fig. 2.2. The way of
modeling is discussed in the next section.
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Figure 2.2: An overview of the path of a neutron, where S stands for the source, T for the
transition and C for the collision. Also the collision density, χ, and emission density, ψ, are

shown.

2.4 Modeling the Life of a Neutron

2.4.1 Transition

The distance that a neutron travels between two collision is a Poisson distribution
[Sjenitzer, 2009]. It can be anywhere between 0 and∞, but with the result of Eq. 2.4
it possible to calculate the travel distance:∫ ρ

0
dρ′ =

∫ s

0
Σte
−Σts′ds′

ρ = 1− e−Σts

s = − ln(ρ− 1)

Σt

(2.24)

The mean free path length is λ = 1/Σt. Because in this paper an 3D space will be
used, the following two angles must be defined:

µ = 2ρ− 1

φ = 2πρ (2.25)

These two angles make up the the 3D space, these three angles are defined as:

u = µ

v =
√

1− µ2cos(φ)

w =
√

1− µ2sin(φ) (2.26)

Where u, v and w are the angle relative to the Ω′-axis, the Ω′⊥1-axis and the
Ω′⊥2-axis, [Becker, 2009]. The Ω′-axis is the direction that a neutron got from the
previous collision. The Ω′⊥1-axis and the Ω′⊥2-axis are orthogonal to the Ω′-axis.
These sampled angles should be rotated to the canonical basis of R3, {i, j,k}. The
outgoing direction Ω is defined as:

Ω = u ·Ω′ + v ·Ω′⊥1 + w ·Ω′⊥2 (2.27)

Background 7



The collision is isotropic one and depends on the ingoing direction vector. Therefore
the outgoing direction vector should be calculated as function of these variables.
The basis should be rotated the canonical basis, where Ω is represented as

Ω = Ω1i + Ω2j + Ω3k (2.28)

With this basis it is possible to calculated the new positions and the effective
macroscopic cross section, Eq. 3.8. Where the basis vectors of Eq. 2.27 ate given by
the following equations:

Ω′ = Ω′1i + Ω′2j + Ω′3k (2.29)

Ω′⊥1 =
Ω′2√

Ω
′2
1 + Ω

′2
2

i− Ω′1√
Ω

′2
1 + Ω

′2
2

j (2.30)

Ω′⊥2 =
Ω′1Ω′3√

Ω
′2
1 + Ω

′2
2

i +
Ω′2Ω′3√

Ω
′2
1 + Ω

′2
2

j−
√

Ω
′2
1 + Ω

′2
2 j (2.31)

The omegas with an apostrophe are the omegas of the incoming direction. The first
event should be defined separately, because there is no previous direction vector.

Ω = u · i + v · j + w · k (2.32)

The transition from the old position to the new position is given by:

xnew = xold + Ω1 · s
ynew = yold + Ω2 · s
znew = zold + Ω3 · s (2.33)

2.4.2 Sampling Collision

When a neutron has traveled a certain distance a collision occurs [Sjenitzer, 2009],
with three possible events:

A capture event means that the neutron is absorbed in the material. The life of
the neutron is therefore ended.

A fission event means that there are new neutrons made when the original
neutron is captured by fissile material. On average ν new neutrons are produced,
for good sampling not Σf is used but νΣf in Eq. 2.34. The reason for this is that
ν is not an integer number and it is desirable to have an integer number of new
neutrons.

A scatter event means that the neutron will make collision with a nucleus and
survives. It will get an new angle and it goes to the next collision.

The probability that one of the events has taken place is

Σi

Σt
(2.34)

Where i is a substitution for s, c and f . The subscript t is for the macroscopic total
cross section, s is for the scattering part, c is for the capture part and f is for the
fission part.
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Implicit Capture

This method is also called survival biasing or survival by weight reduction. This
method does not use a capture event, but it reduce the weight of the neutron. The
weight lost is equal to the probability of capture. The new weight after a collision
is:

wgtnew = wgtold

(
1− Σc

Σt

)
(2.35)

If fission occurs it is also a form of absorption, therefore it is better to include this
in the implicit capture:

wgtnew = wgtold

(
1− Σa

Σt

)
(2.36)

This is called implicit absorption but implicit capture is also used for this equation.
The drawback of this method is that the path of the neutron is only stopped when it
is outside the system. Therefore it is useful to extend implicit capture with Russian
roulette, because when the weight of the neutron is too small it has no added value
to the calculation. Hence, when the weight becomes below a certain weight, wgtrr,
the change of survival is:

wgt

wgtsur
(2.37)

If the neutron survivals the new weight is wgtsur, in the model wgtsur = 2wgtrr is
used. On the other hand when the weight is to high you can split the neutron in
two even parts with each half the weight.

2.4.3 Estimators

There are several estimators for the flux [Sjenitzer, 2009], but in this thesis only the
collision estimator is used. The collision estimator is defined as:

φ =
1

NV

N∑
i

(
wgt

Σt

)
i

(2.38)

Where N is the number of particles, V is volume of the detector and for the
summation a remark has to be made. A particle’s score is the sum of all the scores
for one estimator throughout it’s lifetime. If the flux of the whole system desirable,
multiple flux estimators are build in a regular structure.

2.5 Reduction of Variance

2.5.1 Statistics

When using the Monte Carlo simulation, it is important to know the variance of your
answer. Due to the fact the found answer is only the estimation of the equation.
There are two techniques [Dekking et al, 2003]: the law of large numbers and the
central limit theorem.

The Law of Large Numbers

The law of large numbers tells that the mean of an estimation x is given by:

µ = lim
N→∞

1

N

N∑
i=1

xi (2.39)
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Where N is the number of particles, this is only valid when N is indeed ∞, then
is µ a exact answer. But when N < ∞, the law of large numbers will not held up.
Then the central limit theorem is needed.

The Central Limit Theorem

The estimated mean with the central limit theorem is given by:

x̄ =
1

N

N∑
i=1

xi (2.40)

When the central limit theorem is used the found estimate mean is not precise. The
variance is defined as:

s2 =
1

N − 1

N∑
i=1

(xi − x̄)2 (2.41)

Instead of using x̄, it is also possible to fill in a theoretical value. Because the found
estimate mean in equation 2.40 is not precise, the variance is desired. The variance
of the mean is given by:

s2
x̄ =

1

N − 1

 1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2


s2
x̄ =

1

N
s2

σx̄ =
√
s2
x̄ (2.42)

In σ difference of the mean 68.2% of all answers can be found, for 2σ it is 95.5%
and 99.7% for 3σ.

2.5.2 Principles of Variance Reduction

The reason why variance reduction is desirable, because low variance means that the
found answer has more certainty. To compare the different techniques the Figure of
Merit, FOM, is used. First the relative error is defined:

RE =
σx̄
x̄

(2.43)

The relative error, RE, tells you about the effectiveness of the calculation. Then
Figure of Merit is defined as:

FOM =
1

RE2T
(2.44)

The relative error is proportional to 1/
√
N and the time, T , is proportional to N .

This makes Figure of Merit independent of N . A high Figure of Merit is desirable,
this means a short calculation time or a reduction of the relative error must be
achieved.
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Chapter 3

Correcton Method

3.1 Transform Neutrons to Correctons

When a large system is used, the analog Monte Carlo simulation, will only perform
well close to the source. In the deep parts the flux has dropped several orders of
magnitude. When the standard analog Monte Carlo method is used the relative
error will increase in those parts.

The correcton method is a technique for reducing the variance of the calculation
in deep parts. The Monte Carlo particles used in the correcton method are called
correctons. The correcton flux is the multiplicative correction to the deterministic
flux. The method ensures that the correctons are more uniform distributed than
the neutrons. This means that the variance far from the source should in theorem
decrease and the correctons will reach deeper parts.

The simplest form of the correcton method is the one without angular biasing [Becker
et al, 2006]. Also it is considered that the model is a mono-energetic, isotropic
scattering deep-penetration problem driven by a localized source:

Ω · ∇ψ (r,Ω) + Σtψ (r,Ω) =
Σs

4π

∫
4π
ψ
(
r,Ω′

)
dΩ′ +

S (r)

4π
, r ∈ V (3.1)

boundary conditions: ψ (r,Ω) = 0 , r ∈ ∂V , Ω · n < 0 (3.2)

Where the variables Ω and r are for the angle and location. Left side of the equation
is the balance of neutron flying in and out of system at (r,Ω). The right side will
have interaction and therefore will have a new angle.

The correcton method is an estimation of the neutron flux. When an approximated
(scalar) flux guess, φ̂ (r), is made and the correcton flux, f (r,Ω), is found. The
angular flux can be found with:

ψ (r,Ω) =
φ̂ (r)

4π
f (r,Ω) (3.3)

The flux guess is divided with a factor of 4π solid angle, because the flux guess is
the flux summation over all angles. When Eq. 3.3 is substituted into Eq. 3.1, the
following equation is the result:

Ω · ∇

(
φ̂ (r)

4π
f (r,Ω)

)
+ Σt

φ̂ (r)

4π
f (r,Ω)

=
Σs

4π

∫
4π

φ̂ (r)

4π
f
(
r,Ω′

)
dΩ′ +

S (r)

4π
, r ∈ V (3.4)

boundary conditions:
φ̂ (r)

4π
f (r,Ω) = 0 , r ∈ ∂V , Ω · n < 0 (3.5)
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Equations 3.4 and 3.5 can simplified to:

Ω · ∇f (r,Ω) +
[
Σt + Ω · ∇lnφ̂ (r)

]
f (r,Ω)

=
Σs

4π

∫
4π
f
(
r,Ω′

)
dΩ′ +

S (r)

φ̂ (r)
, r ∈ V (3.6)

boundary conditions: f (r,Ω) = 0 , r ∈ ∂V , Ω · n < 0 (3.7)

The result of Eq. 3.6 looks quite similar to Eq. 3.1 only the total macroscopic cross
section is different. The total macroscopic cross section in Eq. 3.6 is called the
effective total macroscopic cross section and is defined as:

Σt,eff = Σt + Ω · ∇lnφ̂ (r) (3.8)

It is desirable that the effective total macroscopic cross section does not depend on
the position of the particle and it must be positive all the time. The effective total
macroscopic cross section will be put in the standard Monte Carlo simulation at the
place of the total macroscopic cross section. For example the loss of weight will now
be:

wgtnew = wgtold

(
Σs

Σt + Ω · ∇lnφ̂ (r)

)
(3.9)

3.2 The System

The 1D system is a slab of 25 cm thick. The material has a total macroscopic cross
section of 1 cm−1 and a macroscopic scatter cross section of 0.7 cm−1. This means
that the system 25 mean free paths deep is. To measure the neutron flux, 25 flux
estimators are build every centimeter. The transport Eq. 3.1 becomes:

µdψ(x,µ)
dx + Σtψ (x, µ) = Σs

2

∫ 1
−1 ψ (x, µ′) dµ′ 0 < x ≤ 25

ψ (0, µ) = 1 0 < µ ≤ 1
ψ (25, µ) = 0 −1 ≤ µ < 0

(3.10)

The Ω of Eq. 3.1 for the x direction is not taken from Eq. 2.26, but only the angle
µ is used. After each collision a new angle µ is sampled and used for the effective
total macroscopic cross section. The first boundary condition tells the system where
the source is, the second indicates a vacuum at the right of the system.

3.3 Implementing Correctons

Because a exponential decay is expected, the flux can be estimated with:

φ̂ (x) = 2e−βx (3.11)

Because the flux is independent of the angle µ, a summation of the angles should be
made, hence the factor 2. Where the estimation of the β is found with:

β =

√
3 (1− c)

1 +
(√

3− 1
)

(1− c)
(3.12)

c =
Σs

Σt
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For this material β ≈ 0.77. Using Eq. 3.8 the effective macroscopic cross section for
this system becomes:

Σt,eff = Σt − βµ (3.13)

Because Σt = 1 and |µ| ≤ 1, the values for β should be in the range of 0 ≤ β < 1,
otherwise a negative effective cross section is possible. The start weight is defined
as:

wgtcorrecton =
1

φ̂ (r)
wgtneutron (3.14)

To transform the found correcton flux back to a neutron flux, the following equation
will be used:

wgtneutron = φ̂
(
r′
)
wgtcorrecton (3.15)

The transformation is done when a score is registered, but the weight of the particle
stays in the correcton frame of reference when it travels futher in the system.

3.4 The Results

There are two estimations made, namely the estimated β value 0.77 and mid range
β = 0.39. Also an analog Monte Carlo simulation is made using β = 0. The flux
guess and the found analog neutron flux are plotted in Fig. 3.1.

Figure 3.1: An overview of flux guesses and the neutron flux.

The neutron fluxes are plotted in Fig. 3.2, besides the flux also the error bars (1 σx̄)
are shown. The three found neutron fluxes are overlapping each other nice, but in
the deeper parts the standard deviation of the analog Monte Carlo simulation is
increasing. This happens because too few particles have reached this part of the
system.

A better way to compare the different estimations is to look at the FOM, as explained
in subsection 2.5.2. For Eq. 2.44 the time of calculating the neutron flux for one
estimation is used. For the deep parts the relative error is smaller if the estimation
becomes closer to the actual neutron flux. Because extra steps were made for
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Figure 3.2: An overview of the neutron fluxes found for different β-values and by using the
analog Monte Carlo method.

calculation the effective macroscopic cross section, the calculation time increases.
Therefore there is a smaller FOM closer to the source, also the fact that the particles
are now more even distributed throughout the system increases the relative error
near the source. The conclusion is that the estimation using β = 0.77 gives a much
more better result then the analog Monte Carlo simulation, but also β = 0.39 gives
a better result.

Figure 3.3: An overview of the FOM the analog Monte Carlo Simulation and the two flux
guesses. The neutron flux can be found in Fig. 3.2.
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Chapter 4

Extension of the Correcton
Method to a 3D Environment

4.1 The System

The 3D system is a cube of 15x15x15 cm. The material is the same as in the
1D shielding problem, so it has a total macroscopic cross section of 1 cm−1 and a
macroscopic scatter cross section of 0.7 cm−1. Because the system is symmetric, it
is only necessary to measure a plane. Also an 4D, a position(x,y,z) and the neutron
flux, plot hard to visualize. Therefore the flux through the x-plane, y-plane and
the rear side (relative to the source) will be measured. The comparison is made by
looking at the space diagonal. The source is defined as:

x = ρ

y = ρ

z = ρ

µ = 2ρ− 1

φ = 2πρ (4.1)

Where ρ is a random number between 0 and 1. The start weight of a neutron is
taken 1. The cube is placed in vacuum. Therefore once the neutron is outside the
system, it will be lost.

4.2 Implementing Correctons

There are two flux guesses made. The first one is an 1-directional flux guess in the
x-direction.

φ̂ (r) = 4πe−βx (4.2)

The flux guess is independent of the angles µ and φ, a summation of the angles
should be made, hence the factor 4π. The estimation is plotted in Fig. 4.1. The
estimated β of Eq. 3.12 can not be used because the neutrons have two more degrees
of freedom, therefore a higher exponential decay is expected. Using Eq. 3.8 the
effective macroscopic cross section for the flux guess becomes:

Σt,eff = Σt − βΩ1 (4.3)

This effective macroscopic cross section is the same as for the 1D system, see
Eq. 3.13. Therefore the same conditions for β are usable. In other words the value
which β can take is between 0 and 1.
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Figure 4.1: The 1-directional flux guess of Eq. 4.2 is plotted using the β-value 0.8.

The second flux guess is similar to the previous flux guess, but now a 3-directional
flux guess is made. The assumption is made that in the x-, y- and z-direction the
same decay factor (β) exists, because the material has homogeneous properties. This
flux guess can be defined as:

φ̂ (r) = 4πe−βxe−βye−βz (4.4)

Figure 4.2: The 3-directional flux guess of Eq. 4.4 is plotted using the β-value 0.5.

This flux guess is also independent of the angles µ and φ, hence the factor 4π.
The estimation is plotted in Fig. 4.2. Using Eq. 3.8, the effective macroscopic cross
section becomes:

Σt,eff = Σt − β (Ω1 + Ω2 + Ω3) (4.5)

First the maximum value of sum the angle is investigated. The sum of the begin
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angles of Eq. 2.32, using Eq.2.26, looks like this:

u+ v + w

µ+
√

1− µ2 (cos(φ) + sin(φ)) (4.6)

The φ-angle where the sum is the highest can be found at φ = π/4. This value is
inserted in the previous equation.

cos(π/4) + sin(π/4) =
√

2

µ+
√

2
√

1− µ2 (4.7)

The highest value for Eq. 4.7 is at µ =
√

1/3. The sum of the angles has then a
value of

√
3, because Σt has a value of 1 and the maximum β-value can be found:

βmax =
√

1/3 ≈ 0.57 (4.8)

This value should not be exceeded otherwise a negative effective cross section is
found.

4.3 The Results

The results are split into four subsections. The first three will contain a different
estimation of the neutron flux. Because a 3D flux is difficult to visualize, three slice
are made through the system. There are three planes chosen, see Fig. 4.3, which
will be plotted. In the last subsection the neutron flux and the FOM is analyzed by
looking at space diagonal of the system. For each simulation the same number of
particles is used, namely 1 billion.

Figure 4.3: The pink cube is the source in the system. The blue plane, subfigures a, is the
z-plane, the green plane, subfigures b, is the y-plane and the red plane, subfigures c, is the
rear side of the system. The yellow dashed line is the line on which the different methods

are compared.
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4.3.1 The Analog Monte Carlo Simulation

In Fig. 4.4 the analog Monte Carlo is plotted. The analog Monte Carlo makes uses
of implicit capture and Russian roulette, these techniques are also used when the
flux guesses are made. This modified analog Monte Carlo is this thesis called the
analog Monte Carlo simulations. The dark blue parts of the flux are parts where no
neutrons are found. The model has also run with an higher number of particles, but
the results is not the same as the result of a billion particles. The reason for this is
that the program has not got a high enough precision. When using more then one
billion particles it will be very time consuming, it is not strange to wait a day or
two for the results and still the system is not well penetrated. This fact shows that
the analog Monte Carlo method is not ideal for calculating the neutron flux in large
areas. There is a clear circular pattern to see around the source. The explanation
for this phenomenon is that an isotropic scattering is used, therefore the particles
have no direction of preference. At the edges of the system a decrease of the flux is
seen, this is because the system is placed in vacuum.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.4: The found neutron flux using an analog Monte Carlo simulation.

When looked at the FOM, Fig. 4.5, the same pattern as the flux can be seen. The
reason for this is that the neutron particles have macroscopic effective cross section
which is equal to the total macroscopic cross section. Therefore it has no angular
dependence.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.5: The FOM of the analog Monte Carlo simulation.
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4.3.2 One Directional Continuous Flux Guess

At first a β-value is chosen which is higher than the estimated β-value calculated
with Eq. 3.12. The optimal β-value for a 1D system is 0.77, the exponential decay
factor for the 3D system is 0.8. This way the correctons have not a strong preference
to move in the positive x-direction, otherwise the correctons will not reach to the y-
and z-interfaces with the vacuum. The neutron flux is plotted in Fig. 4.6. At the rear
side of the system a circular pattern is appears. The reason for this phenomenon is
that the flux has a ratio with the distance with the source. The circles are positions
where the distance are equal to each other, therefore the flux is the same.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.6: The neutron flux using an 1-directional flux guess, the chosen β-value is 0.8.

When the FOM, Fig. 4.7, is investigated the preference direction is clearly visible.
The plane looks a lot like a smoke plume in the x-direction. In spite of using the
1-directional flux guess the FOM decreases slower than the analog Monte Carlo
simulation.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.7: The FOM using an 1-directional flux guess, the chosen β-value is 0.8.

The same is done for a smaller β-value, namely 0.4. This value between the analog
Monte Carlo simulation and β-value 0.8. This is done to show that a weak estimation
also improves the found results. The results of the neutron flux, Fig. 4.8, are similar
the results of the previous estimation, Fig. 4.6.
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(a) z-plane (b) y-plane (c) the rear side

Figure 4.8: The neutron flux using an 1-directional flux guess, the chosen β-value is 0.4.

The FOM, Fig. 4.8, of this estimation has a smaller smoke plume as Fig. 4.11. The
particles are now traveling less in the x-direction, the relative error increases in the
deep parts. Hence the decrease of the FOM.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.9: The FOM using an 1-directional flux guess, the chosen β-value is 0.4.
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4.3.3 Three Directional Continuous Flux Guess

The neutron flux of a three directional flux guess is plotted in Fig. 4.10. The β-value
is chosen to be 0.5, this is close to the maximum value, see Eq. 4.8.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.10: The neutron flux using an 3-directional flux guess, the chosen β-value is 0.5.

The value is chosen as high as possible, but not too close the maximum value,
otherwise a distance can be sampled which is greater than the system. Because the
particles have now a more uniform movement outwards from the source. The found
structure of the flux in Fig. 4.10(c) is finer then that in Fig. 4.6(c).

(a) z-plane (b) y-plane (c) the rear side

Figure 4.11: The FOM using an 3-directional flux guess, the chosen β-value is 0.5.

The FOM, Fig. 4.11, shows that the particles have equal preference in each direction.
The spots mean that these cells are under sampled.

Just like the 1-directional flux guess a weaker estimation is made. This time the β-
value is chosen between the strong estimation and the analog Monte Carlo Method,
namely β = 0.25. The found neutron flux is just as fine as the strong estimation of
the 3-directional flux guess.
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(a) z-plane (b) y-plane (c) the rear side

Figure 4.12: The neutron flux using an 3-directional flux guess, the chosen β-value is 0.25.

In Fig. 4.13 is the same phenomenon visible as in Fig. 4.11, but there is clear
difference in the values of the FOM. This is also seen Fig. 4.18, where the two FOM
lines are close to each other. Note that in Fig. 4.13 no spots are visible, apparently
the β-value of 0.5 is too close to the maximum β-value causing a distance sampled
greater than the cube.

(a) z-plane (b) y-plane (c) the rear side

Figure 4.13: The FOM using an 3-directional flux guess, the chosen β-value is 0.25.
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4.4 Comparison of the Found Results

As said the comparison is made at the space diagonal of the cube. The reason for
that is the previous 2D plots does not show if the found neutron fluxes are within
one σx̄ of each other. First, an overview the estimations in Fig. 4.14 is seen.

Figure 4.14: An overview of the 1- and 3-directional flux guesses and the found neutron
flux.

In Fig. 4.15 the neutron fluxes are plotted using an one directional flux guess and the
analog Monte Carlo simulation, also error bars (size is one σx̄) are plotted. All found
neutron fluxes are within these error bars, meaning they do not contradict with each
other. The bend close to the source is due the fact a region source is used. Deeper in
the system the source can be seen as a point source, hence the straight line. The fact
that the analog Monte Carlo simulation is not reaching the deep part is visible and
the weak estimation, β = 0.4, suffers from not having enough particles in deep parts.
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Figure 4.15: The neutron flux calculated using the 1-directional flux guess and the analog
Monte Carlo Method.

The FOM of the neutron fluxes, Fig. 4.16, shows that the flux guesses have an higher
FOM throughout the system. This means that the flux guesses preform better than
the analog Monte Carlo method. Also the correctons are going deeper into the
system.

Figure 4.16: The FOM of the 1-directional flux guesses and the analog Monte Carlo
Method.

The same plot as Fig. 4.15 is also done for the 3-direction flux guess, Fig. 4.17. In
this plot the data points are also within one time the standard deviation of the mean.
Both flux guesses are reach the deepest part of the cube with enough particles, which
is good.
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Figure 4.17: The neutron flux calculated using the 3-directional flux guesses and the
analog Monte Carlo Method.

When the FOM, Fig. 4.18, is plotted of the methods of Fig. 4.17. It’s clear to
see that the estimations are preforming much better than the analog Monte Carlo
method. Near the source a drop is seen caused by the longer processor time and the
fact that the particle are more evenly distributed.

Figure 4.18: The FOM of the 3-directional flux guesses and the analog Monte Carlo
Method.
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To compare better the results, a closer look is taken at the furthest bin from the
source. The data of this approach are shown in table 4.1 and 4.2.

Table 4.1: An overview of the results of the one directional flux guess in the opposite
corner cell in comparison to the source.

Method β-value FOM Time
needed

Variance Number of
particles

Dimension − Hours #2cm−6s−1 #

Analog n.a. 2.8 n.a. 109

Weak estimation β = 0.40 9.522 · 10−5 2.9 5.828 ·10−25 109

Strong estimation β = 0.80 1.944 · 10−3 3.0 2.307 ·10−25 109

Table 4.2: An overview of the results of the three directional flux guess in the opposite
corner cell in comparison to the source.

Method β-value FOM Time
needed

Variance Number of
particles

Dimension − Hours #2cm−6s−1 #

Analog n.a. 2.8 n.a. 109

Weak estimation β = 0.25 6.833 · 10−3 3.2 1.112 ·10−25 109

Strong estimation β = 0.50 4.619 · 10−2 3.5 1.182 ·10−26 109

It is not possible to compare the correcton method with the analog Monte Carlo
method by looking at the tables, but the figures 4.16 and 4.18 shows that the analog
method is not preforming better. To reach a complete penetration of the system
by using the analog Monte Carlo simulation, an 100 times more particles should
probably be used, which will cost roughly 12 days to calculated. The time difference
between the two techniques is explained by the fact that the three directional flux
guess has more calculation steps. When a look is taken at the column FOM, the
best estimation of these four is the three directional flux guess with a β-value of 0.5.
The effectiveness of a good estimation is good visible between the strong estimation
of the one directional flux guess and the weak estimation of the three directional
flux guess. The difference of the estimated flux is small, see Fig. 4.14, but the
three directional flux guess is preforming much better. Because the one directional
flux guess gives the particles a preference to move along the x-axis and the three
directional flux guess gives the particles a more even distribution throughout the
system.

26



Chapter 5

Correcton Method using
Discrete and Adjoint Flux
Guess

5.1 Discrete Flux Guess

5.1.1 Discretization of the Flux Guess

By discretization the flux guess a flux guess can made for each cell separately. The
benefit is that the flux guess is prepared for using a non-homogeneous material. The
flux guess is defined as:

φ̂ (r) = Ce−βx·(x−xc)e−βy ·(y−yc)e−βz ·(z−zc) (5.1)

Where C is the amplitude of the scalar flux at the center of a bin. The center of the
bin is defined as (xc, yc, zc). Instead of using one β for all the directions, a β-value
is calculated in each direction. The idea is to use a “cheap” method to estimate the
scalar flux. The β-values for cell Ci,j,k can be calculated using these equations:

βc,x =
1

∆xi
ln

(
Φi+1/2,j,k

Φi−1/2,j,k

)
βc,y =

1

∆yj
ln

(
Φi,j+1/2,k

Φi,j−1/2,k

)
βc,z =

1

∆zk
ln

(
Φi,j,k+1/2

Φi,j,k−1/2

)
(5.2)

Where Φ is the cheap estimation of the neutron flux. The flux is taken at the center
points of the opposite faces. When the β-values are calculated using Eq. 5.2, they are
checked if they are not causing a negative effective total macroscopic cross section.
To this assumption is made that Ω1, Ω2 and Ω3 have each a maximum at the same
time, which is one. This theoretical is not possible, because of the interrelationships
of the angles, see also Eq. 4.8. Still this assumption is used, therefore sum of the
three β-values should not be greater then 1, if they are greater than one each β-value
should be divided by the sum of the β-values, to keep the proportion between the
β-values the same. When the continuous flux guess is used in the discontinuous
code, the sum of the β-values can be greater, because the β-values are the same. In
discrete model β-values are not the same amplitude to ensure that there will be no
negative effective cross section this assumption is made
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5.1.2 Discontinuous Flux Guess

The flux guess will be discontinuous when the sum of the decay factors are greater
than one. Therefore some adjustments should be made to the weight of a particle
at these discontinuities. Taken in mind that the neutron flux is continuous at the
location of the discontinuous scalar flux guess.

lim
ε↓0

ψ (r + εΩ,Ω) = lim
ε↑0

ψ (r + εΩ,Ω) (5.3)

In the previous equation is the definition of Eq. 3.3 substituted, the result is:

1

4π
lim
ε↓0

φ̂+ (r + εΩ,Ω) f+ (r + εΩ,Ω) =
1

4π
lim
ε↓0

φ̂− (r + εΩ,Ω) f− (r + εΩ,Ω)

(5.4)

Here φ̂− is the old flux guess and φ̂+ is the new flux guess. The smallest limit
of the correcton flux is the weight of a single particle, therefore the the Eq. 5.4 is
transformed to:[

lim
ε↓0

φ̂+ (r + εΩ,Ω)

]
wgt+ =

[
lim
ε↓0

φ̂− (r + εΩ,Ω)

]
wgt− (5.5)

Now it is possible to calculate the new weight of the particle when it crosses a
discontinuity in the flux guess.

wgt+ = wgt−
φ̂− (r)

φ̂+ (r)
(5.6)

When a particle comes to a discontinuity in the flux guess, it is stopped. The
particles weight is changed and a new distance is sampled. Note, the particle must
still be stopped at the edges of the cell, because the β-values are different and
therefore the effective total macroscopic cross section is different

5.1.3 The Estimation for the Discrete Flux Guess

The same system as in the previous chapter is used, meaning a cube of 15x15x15 cm
with a small source cube in one of the corners. When the neutron flux is wanted at a
great distance from the source, the source can be assumed to be a point source. The
one-speed diffusion model gives a solution for an point source in an infinity medium.
This solution is defined as:

φ̂ =
3ΣtS0

4π

1

r
e−r/L (5.7)

Where S0 is the source strength, r is the distance to the source

r2 = x2 + y2 + z2 (5.8)

and L is the diffusion length defined as:

L2 =
1

3ΣtΣa
(5.9)
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For the estimation the first fraction (Eq. 5.7) set to the value 1 and the point source
is placed at the origin of the system. The amplitude of the center of the bins is
plotted in Fig. 5.1. The neutron flux has the shape as found flux in the previous
chapter. This estimation is not perfected, because it assumes a point source, but it
is a source region. Also the fact that the cube is placed in vacuum is not accounted
for.

Figure 5.1: The neutron flux calculated with the diffusion theory for a source point in an
infinite medium.

The β-values are plotted in Fig. 5.2. The β-values in the x-direction is the highest
along the x-axis, because the distance relative to the source changes the most in this
direction. Therefore a does have a little difference in the y and z direction.

(a) x-direction (b) y-direction (c) z-direction

Figure 5.2: The different β-values in each direction after “normalization”.
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5.1.4 The Results

Discrete Flux Guess only with the Discrete Values of the Estimation

At first only the discrete values of the diffusion solution are used for making the
estimation. This is done to show that the result improves by using this technique.
The effect is that the particles weight is changing when it traveling through the cell
boundary, the Russian roulette becomes a weight window. The found neutron flux,
see Fig. 5.3, has the shape as the previous found neutron fluxes. But the particles
are traveling deeper in the system because they gain weight, however the Russian
roulette boundary is still the same. This leads to the fact that the deep parts have
less “noise”.

(a) z-plane (b) y-plane (c) the rear side

Figure 5.3: The neutron flux calculated using the discrete values of the discrete flux guess.

The FOM of Fig. 5.3 has the same shape as the analog Monte Carlo simulation,
Fig. 4.5. This flux guess is preforming better than the analog Monte Carlo method,
because the weight is changing throughout the system and the Russian roulette is
a weight window. By doing so the particles have a longer lifetime and therefore
penetrating the system better than the analog Monte Carlo method.

(a) z-plane (b) y-plane (c) the rear side

Figure 5.4: The FOM calculated using the discrete values of the discrete flux guess.
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Discrete Flux Guess

The next step to implement the found β-values found by using Eq. 5.2. The benefit
is that the effective total macroscopic section can be used, which will improve the
distribution of the particles. As shown in the previous chapter this has a positive
effect on the results. The neutron flux in Fig. 5.5 shows a neutron flux which is well
defined, this is seen when a look is taken at the rear side of the system. The neutron
flux has not got a blocky appearance as in Fig. 5.3, but is more smooth.

(a) z-plane (b) y-plane (c) the rear side

Figure 5.5: The neutron flux calculated using the discrete flux guess.

This is supported when a look is taken at the FOM, Fig. 5.6. The FOM is the first
one where the values not coming below the 10−2, this means that the calculation
is going well, due to the fact that the particles are even more evenly distributed.
The shape in Fig. 5.6(a) can be explained by the fact the particles are pushed along
the “φ = π/4”-line, at this line there is maximum for the sum of the angles. The
shape in Fig. 5.6(b) is the effect that the particles are only traveling upwards in
the system, this can also be seen at the rear side. There are the lower bins lesser
sampled, hence the darking of color blue.

(a) z-plane (b) y-plane (c) the rear side

Figure 5.6: The FOM calculated using the discrete flux guess.
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5.1.5 Comparison of the Found Results

Just like the previous comparisons a closer look is taken at the space diagonal, in
this way the results can be more quantized. In Fig. 5.7 the neutron flux and the
two flux guesses are plotted. These flux guesses stay closer to the real neutron flux
than the continues flux guesses of Fig. 4.14.

Figure 5.7: An overview of the discrete flux guess with only discrete values, discrete flux
guess and the found neutron flux.

Close to the source the guess is not perfect but deeper in the system is it a good fit.
Using the two flux guesses the neutron flux is calculated, see Fig. 5.8.

Figure 5.8: The neutron flux calculated with the discrete flux guess with only discrete
values, discrete flux guess and analog Monte Carlo method.

The three found neutron fluxes are not contradicting each other, see Fig. 5.8 (plotted
with error bars of one σx̄). When a look is taken at the FOM, Fig. 5.9, it is seen
that the discrete value are performing slightly better than the analog method. The
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discrete guess is behaving much better that the analog Monte Carlo simulation.

Figure 5.9: The FOM of the discrete flux guess with only discrete values, discrete flux
guess and analog Monte Carlo method.

5.2 Adjoint Flux Guess

5.2.1 The Estimation for the Adjoint Flux Guess

In the end the results are compared by looking at the opposite corner, the so called
detector. The adjoint flux guess is used an importance function or contribution flux.
The importance function will tell which parts will score the most in the detector. The
aim is that the particles are now have the tendency to move towards the detector.
Through this process the detector will register more scores, thereby decreasing the
relative error and in the end increasing the FOM. The last step will only occur when
no extra time is needed. The adjoint flux guess can be founded using:

ψ (r) =
1

ψ∗ (r)
(5.10)

Where ψ∗ (r) is the importance function. The result of this transformation only
needs to take one more step and that is to normalize the amplitudes.

A way of finding the importance flux guess is when the source and the detector
are switched. To accomplish this, the point source is moved to the position
(x = 15, y = 15, z = 15). The mean values and β-values are calculated using the
same principles, see Fig. 5.10 for the results. These β-values will push the correctons
into the direction to the detector region. Using the Eq. 5.10, the adjoint flux guess
can be loaded into the same model as the discrete guess.
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(a) x-direction (b) y-direction (c) z-direction

Figure 5.10: The different β-values in each direction after “normalization”.

5.2.2 The Results

Adjoint Flux Guess only with the Discrete Values

The same is done as the discrete flux guess, first the guess is made by only using
the discrete values of the adjoint flux guess. The found neutron flux can be seen in
Fig. 5.11. The result have the same shape as the result in Fig. 5.3.

(a) z-plane (b) y-plane (c) the rear side

Figure 5.11: The neutron flux calculated using the discrete values of the adjoint flux guess.

Also the FOM, Fig. 5.12, is similar to Fig. 5.4. The reason for this is that the flux
guess looks the same as the flux guess of the discrete value of the discrete guess.
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(a) z-plane (b) y-plane (c) the rear side

Figure 5.12: The FOM calculated using the discrete values of the adjoint flux guess.

Adjoint Flux Guess

When adjoint flux guess is used as estimator the found neutron flux, see Fig. 5.13,
shows a promising start, because the found neutron flux is not blocky.

(a) z-plane (b) y-plane (c) the rear side

Figure 5.13: The neutron flux calculated using the adjoint flux guess.

But it the interesting part is found in the FOM of the adjoint flux guess, Fig. 5.14.
The FOM-values are relative higher than other techniques, meaning that the
calculation is preforming well. The reason why there is no clear tendency seen
around the source as in Fig. 5.6 is because the β-values are not that different from
each other. The effect of the using adjoint flux guess is seen in Fig. 5.14(c), because
at the bottom right the FOM is lower caused by undersampling.
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(a) z-plane (b) y-plane (c) the rear side

Figure 5.14: The FOM calculated using the adjoint flux guess.

5.2.3 Comparison of the Found Results

Just like the previous comparisons a closer look is taken at the space diagonal. In
Fig. 5.15 the neutron flux and the two flux guesses are plotted. These flux guesses
do not have the same shape as Fig. 5.7. At a close look it is seen that the curvature
is now a different shape.

Figure 5.15: An overview of the adjoint flux guess with only discrete values, adjoint flux
guess and the found neutron flux.

In Fig. 5.16 the neutron flux is plotted, the discrete values is preforming well but
the last data points the found neutron flux are fluctuating, due to undersampling of
the bins. This is effect is caused by undersampling of the data points. The adjoint
flux guess is preforming good, this is clearly seen in Fig. 5.17.
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Figure 5.16: The neutron flux calculated with the adjoint flux guess with only discrete
values, adjoint flux guess and analog Monte Carlo method.

The FOM of the adjoint flux guess is much higher than the analog and discrete
values. The discrete values of the adjoint scalar flux has the same effect as the
discrete values of discrete guess. The adjoint flux guess ensures that the particles
are the tendency to move to the detector, hence the higher FOM.

Figure 5.17: The FOM of the adjoint flux guess with only discrete values, adjoint flux
guess and analog Monte Carlo method.

5.3 Discrete Flux Guess versus Adjoint Flux Guess

Just like the continuous flux guesses the discontinuous flux guesses are compared by
looking at the furthest cell from the source. The data is shown in tables 5.1.
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Table 5.1: An overview of the results of the discrete scalar flux guesses in the opposite
corner cell in comparison to the source. Where d.f.g. means discrete flux guess and a.f.g.

means adjoint flux guess.

Method FOM Time
needed

Variance Number of
particles

Dimension − Hours #2cm−6s−1 #

Analog n.a. 2.8 n.a. 109

Discrete values of the d.f.g. 1.853 · 10−4 3.6 4.501 ·10−24 109

Discrete guess 2.673 · 10−2 4.8 7.321 ·10−24 109

Discrete values of the a.f.g. 3.429 · 10−4 3.4 3.714 ·10−26 109

Adjoint guess 2.984 · 10−2 4.6 7.185 ·10−24 109

The discrete values of both flux guesses have the same order of FOM, but it is the
adjoint discrete values are better preforming with respect to discrete values of the
discrete guess. Also the adjoint flux guess is preforming better than the discrete
flux guess.The discrete values of the adjoint flux guess has the lowest variance, but
when Fig. 5.16 is investigated the found neutron flux shows a large drop at the end,
which is not seen before, whereby the relative error is not decreasing, this effect is
cause by undersampling.

5.4 Comparison of the Important Techniques

At last the FOMs of the important flux guesses and the analog Monte Carlo method
along the space diagonal are plotted in Fig. 5.18. They can be also found separately
in Fig. 4.16, 4.18, 5.9 and 5.17 as well those who are not plotted in this figure. The
weak estimations of the 1- and 3-directional continuous flux guesses are preforming
worst than their strong counterparts and therefore they are not very interesting to
see. The same applies for discrete values of the discrete guess, this guess looks a lot
like the discrete values of the adjoint guess, but its performance is worse.

Figure 5.18: The FOM of all important flux guesses and the analog Monte Carlo method.
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Three techniques are preforming much better than the analog Monte Carlo method.
The strong 3-direction continuous flux guess is preforming the best, but it can not
be compared with the discrete flux guess and adjoint flux guess due to the fact that
they need more calculation steps. The adjoint flux guess is the best performing
discontinuous flux guess.
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Chapter 6

Conclusions and
Future Directions

Conclusions

The first part of this bachelor project existed of the reproduction of the correcton
method in 1D space as proven by Becker, [Becker et al, 2006], and Sjenitzer,
[Sjenitzer, 2009]. The same results as Becker and Sjenitzer are found, namely that
the correcton method preforming better than the analog Monte Carlo Simulation .

The second part was to extend the correcton method to 3D space and try different
type of scalar flux guesses. The guesses are compared by looking at the FOM. First
an analog Monte Carlo simulation is run to see its performance, it has a lot of trouble
of penetrating the system. When using a billion particles, the deep parts were not
reached and therefore the neutron flux could not be found. All the flux guesses are
done using the same number of particles as the analog Monte Carlo method.

At first an 1-directional continuous flux guess is made, two types of guesses are
made: a strong and a weak estimation. The weak estimation is able to penetrate
the whole system, but when the stronger estimation is used the results are even
better. The particles have now the tendency to move into one direction, this is
visible in the 2D figures of the FOM.

The next step is to use a 3-directional continuous flux guess, where the same decay
factor is chosen for each direction. These flux guesses have lower maximum value for
the decay factor as the 1-directional flux guess, due to the sum of the angles. Here
is also chosen for a weak and strong estimation. The weak estimation is better
preforming than the strong estimation of the 1-directional flux guess. When a
stronger estimation is used the FOM becomes higher.

The following move is use discontinuous flux guesses. With the use of diffusion
theory a discrete guess is made. This guess is used in two ways, first with only
the discrete values and discrete values with the found decay factors (discrete guess).
The discrete values will extend the lifetime of the particles, but the deeper parts of
the system are still under sampled. When the discrete guess is used the FOM-values
are higher through out the system.

The last investigated flux guess is the adjoint flux guess, this guess uses an
importance function. The adjoint flux guess gives the particles a tendency to move to
a certain point. This leads to the fact that this point will have increase of sampling,
hereby the variance will decrease. The results are that the discrete values of adjoint
flux preforming better than the discrete values of the discrete flux guess. The adjoint
flux guess was the best behaving discontinuous flux guess.
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The continuous and discontinuous flux guesses can not be compared due to the
fact that the discontinuous flux guess needs more calculation between the collisions.
For this system the 3-directional continuous flux guess recommend, because the
calculation steps for a new collision position are done quick and the FOM has
the highest score. When a more complex system is used the adjoint flux guess
is recommended, because the adjoint flux guess is almost scoring the same FOM
despite the more calculation steps that are needed. Also it is easier to implement
different material properties throughout the system.

Future Directions

There are several things that can be investigated in future research. For instance
the limits of the decay factors of the discontinuous flux guess are probably higher
than assumed, because the sum of the decay factors in the continuous flux guess are
higher than the maximum value of the discontinuous flux guess. When the decay
factor can be chosen higher the flux guesses will be preforming better, just like the
difference between the weak and strong estimations of the continuous flux guesses.

The discrete and the adjoint flux guess might be better determined by using an
deterministic code. In this way better β-values can be found which will decrease the
variance in the system.

An other aspect that can be changed is the material properties of the system.
Instead of only using an absorber, a reflector and/or fissile material can be added
to the system, but also a combination of materials can be used. But likewise the
scattering can be biased or a biased correcton method can be used as proposed by
Becker, [Becker et al, 2006].

To achieve a more homogeneous distribution throughout the system one could think
of using weight windows. In this way any outliers will be removed making the
calculation more accurate.

The last thing that might be interesting is a self-learning algorithm, which will
performance better after each time the code is run.
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