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Abstract 
Proton therapy is an advanced, high potential method introduced into radiotherapy as of late-

ly. Protons have a well-defined spot size known as the Bragg peak. Due to this Bragg peak 

precise treatment with minimal damage to normal tissues can be possible. Planning methods 

for proton therapy nowadays consist out of slow methods like Monte Carlo Simulation or SN 

method. These methods are statistical based and therefore carry statistical uncertainty. To 

reduce uncertainty one has to run these slow methods over and over again. 

 

Adjoint theory creates an opportunity to calculate response changes without having to calcu-

late the proton transport equation over and over again. This thesis provided a first and critical 

review of the adjoint proton transport equation. The goal of the thesis is to test the suitability 

of adjoint theory for calculating proton doses and response changes.   

 

To check if the change in response can be calculated with the help of the adjoint proton flux, 

we changed the total cross with ±1%, 5% and ±10% and compared this adjoint calculation 

with the normally used calculation. After plotting the response changes for an adjoint source 

on the whole space domain and for a local adjoint source around the Bragg peak, we can con-

clude that the response changes can be calculated accurately with the help of the adjoint pro-

ton flux. Calculating response changes with adjoint theory is much faster than forward calcu-

lations. Adjoint theory creates an opportunity to do many calculations way faster. With this 

theory one can treat tumours in the future more accurately. This can improve the future of 

proton therapy vigorously. 

 

The method that we used needs to be improved before one can apply it into proton therapy 

clinics: (i) the 3D adjoint proton transport equation from the 3D Boltzmann Fokker-Planck 

approximation has to be derived to provide more detail and complicity, (ii)  a 3D calculation 

of the adjoint source / tumour is needed for an exact practical representation, (iii) energy that 

is transferred to secondary particles must be included in the SN method to create an opportuni-

ty for proton therapy calculations in the typical energy range (70MeV-200MeV) and, (iv) to 

accomplish proton beam adaptions due to movement of the patient (breathing, slight move-

ment of the body), one need to continuously image the patient during treatment. 
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List of Symbols 

Latin Symbols 

Symbol Description Units 

An An indication for operators [-] 

B 1D linear Boltzmann equation [-] 

B
† 

Adjoint 1D linear Boltzmann equation [-] 

E Energy [MeV] 

Eg-1/2  Energy on upper boundary of energy group g [MeV] 

Eg+1/2 Energy on lower boundary of energy group g [MeV] 

∆Eg Width of energy group g [MeV] 

Emax Maximum energy of energy domain (boundary condition) [MeV] 

Emin Minimum energy of energy domain (boundary condition) [MeV] 

f(x) A function to define the response at/in some region/point [-] 

l Depth of penetration in x direction [cm] 

L
†
CSD Adjoint continuous slowing down operator [cm

-1
] 

p
A 

Basis function (p
A
 = 1) [-] 

p
E 

Basis function (p
E
 = 2(E-Eg)/∆Eg) [-] 

R Response of fixed source calculations  

S Fixed source of protons [MeV] 

S
† 

Adjoint source [MeV] 

S(E) Stopping power [MeV cm
-1

] 

Sg +/- 1/2 Stopping power evaluated at boundaries of energy group g [MeV cm
-1

] 

u(x) Unit step function: 0 if x<0, 1 if x≥0 [-] 

x Spatial component [cm] 

xmax Maximum depth of tumour [cm] 

xmin Minimum depth of tumour [cm] 
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Greek Symbols 

Symbol Description Units 

δij Kronecker delta: 0 if i≠j, 1 if i=j [-] 

δ(.) Dirac Delta function [-] 

μ Cosine scatter angle [-] 

π pi: 3.14159265359… [-] 

σt Total macroscopic scatter cross section [cm
-1

] 

σtr Macroscopic transport cross section [cm
-1

] 

ΣD Response function corresponding to dose factor [MeV] 

φ(x,E,Ω) 
Angular proton flux at position x, energy E and moving in 

direction Ω 
[cm

-2 
MeV

-1
 s

-1
] 

φ
†
(x,E,Ω) 

Adjoint angular proton flux at position x, energy E and 

moving in direction Ω 
[cm

-2 
MeV

-1
 s

-1
] 

φa,i,n,g 
Average proton flux in spatial cell i, discrete ordinate n and 

energy group g 
[cm

-2 
MeV

-1
 s

-1
] 

φe,i,n,g 
Normalized slope of flux in spatial cell i,  discrete ordinate 

n and energy group g 
[cm

-2 
MeV

-1
 s

-1
] 

φi,n,g Flux in spatial cell i, discrete ordinate n and energy group g [cm
-2 

MeV
-1

 s
-1

] 

ΦE Energy flux [MeV s
-1

] 

Ω Direction of motion [-] 
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1. An Introduction to Proton Therapy 

1.1. Treating Cancer with Radiotherapy 
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or 

spread to other parts of the body. There are more than two hundred types of cancers. Cancer is 

the second leading cause of death globally, and was responsible for 8.8 million deaths in 

2015. Globally, nearly 1 in 6 deaths is due to cancer. About 40% of cancer patients receive 

radiotherapy as part of their treatment. 

Radiotherapy is a cancer treatment that uses high doses of radiation to kill cancer cells or slow 

their growth by damaging their DNA. Cancer cells whose DNA is damaged beyond repair 

stop dividing or die. When the damaged cells die, they are broken down and removed by the 

body. Radiation therapy does not kill cancer cells right away. It takes days or weeks of treat-

ment before DNA is damaged enough for cancer cells to die. Then cancer cells keep dying for 

weeks or months after therapy ends. Due to the type of cancer, location of the tumour and the 

size of the tumour medical experts will choose the type of radiation therapy. There are two 

main types of radiation therapy, external beam and internal. Radiation beams used in external 

radiation therapy come from four types of particles: photons, electrons, protons and neutrons. 

This thesis will focus on proton therapy.
 [1],[8]

 

 

1.2. Proton Therapy 
During the past three decades, clinical procedures using highly collimated radiation beams 

have been used routinely. The main idea in radiation therapy has been to maximize the dose in 

each point of the tumour, without affecting the surrounding healthy tissue and especially the 

vital organs like the spine and the liver. The dose received by the healthy tissue and vital or-

gans is usually lower than the dose received by the tumour, since multiple, individually non-

lethal beams that intersect at the tumour, are used during treatment. 

There are many advanced methods introduced into radiotherapy as of lately. One of the meth-

ods is proton therapy, a method with a high potential. The dose distribution of a proton beam 

is very convenient in radiotherapy and therefore protons might even be a better way to threat 

tumours than the ‘usual’ used methods like x-rays and electrons 
[7],[14]

. Protons have a well-

defined spot size (a few millimetres) with a high dose in that region, also known as the Bragg 

peak (see figure 1). Beyond the Bragg peak no energy is deposited. A second advantage is 

that protons do not have a high entrance dose like x-rays or neutrons. This gives an opportuni-

ty for a precise treatment with minimal damage to normal tissues. At the Lawrence Berkeley 

National Laboratory in 1954, they treated the first patient with this ‘new’ therapy. The main 

challenge during proton therapy is how to adapt the particle accelerator so that the protons are 

useful for therapy. Protons have a Bragg peak of only a few millimetres, so to treat the tumour 

one has to spread out the protons along and orthogonal to the beam direction. There are cur-

rently two methods of proton therapy: passive scattering and active scanning, which are dis-

cussed in chapters 1.1 and 1.2. 
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To determine the treatment method that is suited best for a particular patient, a computed to-

mography scan (CT-scan) or a magnetic resonance imaging scan (MRI-scan) is made of the 

patient’s body. With this scan one can determine the geometry of the body. After the scans 3D 

dose calculations are needed to determine the trajectory of the proton beams and where they 

deposit the dose. 

 

 
Figure 1: Schematic of dose distribution along a single line for protons vs other types of radiation. [4] 

 

1.2.1. Passive Scattering 

In passive scattering techniques, the proton beam is spread by placing scattering material into 

the path of the protons. A single scattering broadens the beam sufficiently for treatments re-

quiring small fields. For larger fields, a second scatterer is needed to ensure a uniform dose 

profile. A combination of custom-made collimators and compensators conform the dose to the 

target volume. The spread out Bragg peak (SOBP) used for treatment is obtained via a set of 

range modulator wheels or ridge filters inside the nozzle of the delivery system 
[7]

. 

Figure 2: Proton Scattering diagram. [11] 
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1.2.2. Active Scanning 

Active scanning, better known as beam scanning, is based on magnets that deflect and steer 

the proton beam to the right point. A computer is controlling the narrow mono-energetic beam 

that scans the volume part by part in one layer. Varying the energy of the beam controls the 

depth of each layer.  

1.3. The Current Problem without Adjoint Flux 
In reactor physics the Monte Carlo (MC) method (or other approximations, like the SN meth-

od) has been well established for calculating effective multiplication factors or dose rates in 

shielding problems. The power of the MC method lies in the possibility to include various 

desired variables and to represent accurately any physical model for particle scattering, cross 

section and/or geometrical complexity. The desired variables for proton therapy are three spa-

tial coordinates, energy, two directional variables and time. 

MC methods are a broad class of computational algorithms that rely on repeated random sam-

pling to obtain numerical results. Their essential idea is using randomness to solve problems 

that might be deterministic in principle. Due to the statistical nature of the MC methods, the 

outcome always includes a statistical uncertainty. This uncertainty is proportional to the 

square root of the number of samples. To reduce the uncertainty with a factor of a hundred, 

one has to expand the sample size by a factor ten thousand. This slow reduction of uncertainty 

causes exponential increase of computation time, which is the biggest disadvantage of the MC 

method. If one is interested in quantities averaged over small intervals of one or more varia-

bles, the MC method becomes more and more inefficient. For this kind of problems the ad-

joint MC method comes in handy. The adjoint method provides a completely different equa-

tion, the so called ‘importance’ equation, that is simulated by MC.
[6]

 

 

 

 

 

Figure 3: Proton Scanning diagram. [11] 

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random_sampling
https://en.wikipedia.org/wiki/Random_sampling
https://en.wikipedia.org/wiki/Randomness
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1.4. Goal of this Thesis 
Current clinical dose calculation codes generally rely on semi-empirical methods that are fast 

and work well for geometrically simple problems, but are less accurate for practical, geomet-

rically complex problems. The best known method that can cope with these kind of physical 

and geometrical complexity is the Monte Carlo method 
[3]

. However a disadvantage of the 

Monte Carlo method is that accurate calculations with reasonably low errors take a lot of 

computation time. To reduce computation time a different method is introduced known as the 

Sn method. While the SN method reduces the computation time, it still takes much time to run 

in order to reduce the errors significantly. In this thesis, a new approach for dose calculations 

aimed for radiotherapy treatment planning is introduced, based on the adjoint SN method. On-

ly a 1D geometry is examined for simplicity. The proposed approach is more accurate and has 

the promise to be faster than the current methods. 

 

The goal of this thesis is to theoretically derive and numerically determine the adjoint proton 

flux. With this adjoint proton flux one can perform dose calculations much quicker and 

cheaper, because one can calculate changes in the response, without calculating the change of 

the flux. To reach this goal, the available models and literature on proton transport and adjoint 

calculation are being studied thoroughly. 

The process to reach the goal can be structured into four individual parts. In section 2.1, the 

adjoint proton transport equation will be derived using the SN method with the Fokker-Planck 

approximation. The SN method with the Fokker-Planck approximation is validated in previous 

research reports.
[14]

 In section 2.2 we derive an expression for response calculation with the 

help of adjoint theory. In section 2.3 of the thesis, an expression for the adjoint source is de-

termined. There is an adjoint source expressed for one point and another expression for a cer-

tain tumour region. The adjoint source for a certain tumour region is eventually used for the 

numerical calculation of the adjoint proton flux. In section 3 the adjoint proton transport equa-

tion and the adjoint source are discretized, by inspecting the behaviour of the functions on the 

group boundaries and making use of linearity of flux and stopping power. In section 4, the 

numerical approach is worked out and tested. The result of this numerical calculation is pro-

vided and compared with a proven precise result. Due to this comparison one can check if the 

result makes sense and if it is practically applicable. Conclusions and recommendations for 

future work are made in section 5, regarding investigations which need to be performed in 

order to implement the adjoint proton flux in proton therapy practice. 

 

This thesis is part of a bachelor research of Technology University of Delft at the section of 

Medical Physics and Technology at the Reactor Institute Delft.  
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2. Adjoint Calculations 
In this chapter the adjoint proton transport equation will be derived. This derivation is based 

on a convenient additivity property of the adjoint. The adjoints of all the individual operators 

will be calculated separately and combined into one adjoint proton transport equation. 

The adjoint source will be calculated in a similar way, with the help of perturbation theory 

calculations. 

2.1. Calculation of the Adjoint Transport Equation 

The transport equation for protons is derived from the linear 1D Boltzmann equation: 

 

 

Ω̂ ∙ ∇𝜑(𝑥, 𝐸, Ω̂) + 𝜎𝑡𝜑(𝑥, 𝐸, Ω̂) = ∫ ∫ 𝜎𝑠(𝑥, 𝐸
′ → 𝐸, Ω̂′ → Ω̂)

∞

04𝜋

𝜑(𝑥, 𝐸′, Ω̂′)𝑑𝐸′𝑑Ω̂′, 

 

(2.1.1) 

where φ(x,E,Ω), the angular proton flux, is the quantity considered in this equation. It is a 

particle density with kinetic energy E, moving in direction Ω through the surface at the point 

x. The first term of equation 2.1.1 is the streaming term, which describes the free movement 

of the particles through the domain. The second term of the left hand side of equation 2.1.1 is 

the total removal term, this term describes all interactions of particles that scatter to an energy 

different than E and another direction than Ω. The right hand side of equation 2.1.1 indicates 

the Boltzmann scatter operator. This operator describes all the particles that had initial energy 

E’ and direction of movement Ω’ and end up at the energy E and direction of movement Ω. 
[2]

 

 

After applying the Fokker-Planck Approximation and neglecting relatively small/unimportant 

terms we gain the 1D proton transport equation: 

 

 
𝜇
𝜕𝜑(𝑥, 𝐸, Ω̂)

𝜕𝑥
+ 𝜎𝑡𝜑(𝑥, 𝐸, Ω̂) =

𝜕(𝑆(𝐸)𝜑(𝑥, 𝐸, Ω̂))

𝜕𝐸
+
𝜎𝑡𝑟
2
∇Ω
2𝜑(𝑥, 𝐸, Ω̂), 

 

(2.1.2) 

where μ is the cosine scatter angle, φ is the proton flux still depending on the position, kinetic 

energy and direction of movement, S(E) is the stopping power, σt is the total scatter cross sec-

tion and σtr is a material based constant dependent of the differential cross section. 

The first part of the left hand side of equation 2.1.2 still represents the streaming term. The 

second part of the left hand side of equation 2.1.2 is the total removal term. The second term 

of the right hand side of equation 2.1.2 is the continuous scatter operator and the first term of 

the right hand side is the continuous slowing down term. This term describes inelastic scatter 

whereupon little energy is lost in every collision 
[14]

. 
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The goal is to calculate the adjoint of the proton transport equation. The definition of the ad-

joint is: 

 

 < 𝐴φ,φ† > = < 𝜑, 𝐴†𝜑† >, 

 
(2.1.3) 

where the brackets represent the inner product or the so called dot product. To calculate the 

adjoint of the transport equation one can use the fact that all the terms are linear. One property 

of the adjoint is that the adjoint of two linear terms equals the sum of the adjoint of the two 

individual parts. 

 (𝐴1 + 𝐴2)
† = 𝐴1

† + 𝐴2
†
 

 
(2.1.4) 

Applying the additivity property from equation 2.1.4 on the proton transport equation results 

in: 

 

 𝐴1 + 𝐴2 = 𝐴3 + 𝐴4 → 𝐴1
† + 𝐴2

† = 𝐴3
† + 𝐴4

†, (2.1.5) 

 

where A1-A4 stand for the four individual operators of equation 2.1.2, later clarified in more 

detail. 

So to calculate the adjoint transport equation, one can calculate the individual adjoint parts 

and assemble them together at the end. 

We begin with the first part of equation 2.1.2 and define the corresponding operator: 

 

 
𝐴1𝜑 = 𝜇

𝜕𝜑(𝑥, 𝐸, Ω̂)

𝜕𝑥
→ 𝐴1 = 𝜇

𝜕

𝜕𝑥
. 

 

(2.1.6) 

To determine the adjoint of this operator equation 2.1.7 needed to be solved: 

 

 

< 𝐴1𝜑,𝜑
† > =  ∫ 𝑑𝐸

∞

0

∫ 𝑑Ω̂

4𝜋

∫𝜇 (
𝜕

𝜕𝑥
𝜑)𝜑†𝑑𝑥

𝐿

0

=< 𝜑, 𝐴1
†𝜑† >.  (2.1.7) 

 

The right-hand side of equation 2.1.7 can be integrated by parts to give: 

 

 

∫ 𝑑𝐸

∞

0

∫ 𝑑Ω̂

4𝜋

([𝜇𝜑𝜑†]0
𝐿 −∫𝜑(𝜇

𝜕𝜑†

𝜕𝑥
)

𝐿

0

𝑑𝑥). (2.1.8) 

 

To make the boundary term disappear, the boundary conditions have to be chosen such that: 

 

[𝜇𝜑𝜑†]0
𝐿 = 0. 

 

 



 

 14  

 

This relation holds because of the chosen boundary conditions: 

𝜑(𝑥 = 0, 𝜇 > 0) = 0, 𝜑(𝑥 = 𝐿, 𝜇 < 0) = 0, 𝜑†(𝑥 = 0, 𝜇 < 0) = 0, 𝜑†(𝑥 = 𝐿, 𝜇 > 0) = 0 

 

Using [𝜇𝜑𝜑†]0
𝐿 = 0 yields: 

 

 

∫ 𝑑𝐸

∞

0

∫ 𝑑Ω̂

4𝜋

(−∫𝜑(𝜇
𝜕𝜑†

𝜕𝑥
)

𝐿

0

𝑑𝑥) = < 𝜑, 𝐴1
†𝜑† >. (2.1.9) 

 

 
𝐴1
† = −𝐴1 = −𝜇

𝜕

𝜕𝑥
 

 

(2.1.10) 

Take the second part of the Boltzmann proton transport equation (equation 2.1.2) and call this 

term A2:  

 

 𝐴2𝜑 = 𝜎𝑡𝜑(𝑥, 𝐸, Ω̂) → 𝐴2 = 𝜎𝑡. 
(2.1.11) 

 

Then a calculation of the inner product is performed: 

 

 

< 𝐴2𝜑,𝜑
† > = ∫ ∫ ∫(𝜎𝑡𝜑)𝜑

†𝑑𝑥𝑑Ω̂𝑑𝐸 =< 𝜑, 𝐴2
†𝜑† >

𝐿

04𝜋

∞

0

. (2.1.12) 

 

Inside the integral one may swap the order of terms to structure. So one can simply swap the 

order of the two phi’s to determine the adjoint of this operator: 

 

 

= ∫ ∫ ∫𝜑(𝜎𝑡𝜑
†)𝑑𝑥𝑑Ω̂𝑑𝐸

𝐿

04𝜋

∞

0

= < 𝜑, 𝐴2
†𝜑† >. (2.1.13) 

 

From this calculation one can conclude the following: 

 

 𝐴2
† = 𝐴2 = 𝜎𝑡. 

(2.1.14) 
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Taking the third part of the proton transport equation (equation 2.1.2) and defining its opera-

tor: 

 

 
𝐴3𝜑 =

𝜕(𝑆(𝐸)𝜑(𝑥, 𝐸, Ω̂))

𝜕𝐸
→ 𝐴3 =

𝜕

𝜕𝐸
(𝑆(𝐸)(. )). 

(2.1.15) 

 

To calculate the adjoint of the operator, equation 2.1.16 needed to be solved: 

 

 

< 𝐴3𝜑,𝜑
† > = ∫𝑑𝑥

𝐿

0

∫ 𝑑Ω̂

4𝜋

∫ (
𝜕

𝜕𝐸
(𝑆𝜑))𝜑†𝑑𝐸 =< 𝜑, 𝐴3

†𝜑† >.

∞

0

 

 

(2.1.16) 

Integrating the right-hand side of 2.1.16 by parts results in: 

 

 

∫𝑑𝑥

𝐿

0

∫ 𝑑Ω̂

4𝜋

([𝜑†𝑆𝜑]0
∞ −∫ 𝑆𝜑

𝜕

𝜕𝐸
(𝜑†)𝑑𝐸

∞

0

). (2.1.17) 

 

To make the boundary term disappear, the boundary could have to be chosen properly:  

𝜑(𝐸 = ∞) = 0, 𝜑†(𝐸 = 0) = 0. 

 

So the boundary term disappears: 

[𝜑†𝑆𝜑]0
∞ = 0 

 

From the part that is left over from equation 2.1.17, we can determine the adjoint: 

 

 

∫𝑑𝑥

𝐿

0

∫ 𝑑Ω̂

4𝜋

(−∫ 𝑆𝜑
𝜕

𝜕𝐸
(𝜑†)𝑑𝐸

∞

0

) = < 𝜑, 𝐴3
†𝜑† >. (2.1.18) 

 

 
𝐴3
† = −𝑆(𝐸)

𝜕

𝜕𝐸
 

(2.1.19) 
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Taking the fourth and last part of equation 2.1.2 and once again defining the corresponding 

operator leads to: 

 

 𝐴4𝜑 =
𝜎𝑡𝑟
2
∇Ω
2𝜑(𝑥, 𝐸, Ω̂) → 𝐴4 =

𝜎𝑡𝑟
2
∇Ω
2 . (2.1.20) 

 

Once again, a calculation of the inner product is needed to determine the adjoint: 

 

 

< 𝐴4𝜑,𝜑
† > = ∫𝑑𝑥

𝐿

0

∫ 𝑑𝐸

∞

0

∫ (
𝜎𝑡𝑟
2
∇Ω
2𝜑)𝜑†

4𝜋

𝑑Ω̂ =< 𝜑, 𝐴4
†𝜑† >. (2.1.21) 

 

When integrating equation 2.1.21 by parts, one will get the following result: 

 

 

= ∫𝑑𝑥

𝐿

0

∫ 𝑑𝐸

∞

0

(
𝜎𝑡𝑟
2
[𝜑†∇Ω𝜑]4𝜋 −

𝜎𝑡𝑟
2
∫ ∇Ω
4𝜋

𝜑†∇Ω𝜑𝑑Ω̂). 
(2.1.22) 

 

Due to Stokes’ theorem, that says that a closed sphere has no boundary, the boundary terms 

will disappear. If the surface is closed one can use the divergence theorem. The divergence of 

the curl of a flux is zero. Intuitively if the total flux of the curl of a vector field over a surface 

is the work done against the field along the boundary of the surface then the total flux must be 

zero if the boundary is empty. 

 

[𝜑†∇Ω𝜑]4𝜋 = 0 

 

When the boundary term disappears, one will end up with the following expression derived 

from equation 2.1.22: 

 

∫𝑑𝑥

𝐿

0

∫ 𝑑𝐸

∞

0

(−
𝜎𝑡𝑟
2
∫ ∇Ω
4𝜋

𝜑†∇Ω𝜑𝑑Ω̂). 
(2.1.23) 

 

 

Equation 2.1.23 needs to be integrated by parts once again, resulting in: 

 

 

∫𝑑𝑥

𝐿

0

∫ 𝑑𝐸

∞

0

(−
𝜎𝑡𝑟
2
[∇Ω𝜑

†𝜑]4𝜋 +
𝜎𝑡𝑟
2
∫ ∇Ω

2

4𝜋

𝜑†𝜑𝑑Ω̂). (2.1.24) 

 

−[∇Ω𝜑
†𝜑]4𝜋 = 0 

 

(This holds again, because a closed sphere has no boundary.) 
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The result one ends up with is the following: 

 

 

∫𝑑𝑥

𝐿

0

∫ 𝑑𝐸

∞

0

(+
𝜎𝑡𝑟
2
∫ ∇Ω

2

4𝜋

𝜑†𝜑𝑑Ω̂) = < 𝜑, 𝐴4
†𝜑† >. (2.1.25) 

 

 𝐴4
† = 𝐴4 =

𝜎𝑡𝑟
2
∇Ω
2  (2.1.26) 

 

When summing equation 2.1.10, 2.1.14 up on the left hand side of equation 2.1.27 and sum-

ming 2.1.19 and 2.1.26 up at the right hand side of equation 2.1.27, one will end up with the 

adjoint 1D proton transport equation: 

 

 
−𝜇
𝜕𝜑†(𝑥, 𝐸, Ω̂)

𝜕𝑥
+ 𝜎𝑡𝜑

†(𝑥, 𝐸, Ω̂) = −𝑆(𝐸)
𝜕𝜑† (𝑥, 𝐸, Ω̂)

𝜕𝐸
+
𝜎𝑡𝑟
2
∇Ω
2𝜑†(𝑥, 𝐸, Ω̂). 

 

(2.1.27) 
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2.2. Calculation of the Response Change 
Perturbation theory and adjoint-based techniques can be very useful in certain types of 

transport calculations to solve complex models. In this specific case one uses perturbation 

theory to write down an expression for the change in response. Time-independent 1D fixed 

source calculations involve solving an inhomogeneous equation of the form: 

 

 𝐵𝜑(𝑥, 𝐸, Ω̂) = 𝑆(𝑥, 𝐸, Ω̂), (2.2.1) 

 

where B corresponds to the linear Boltzmann equation, φ is the proton flux depending on 

depth, energy and direction. S is the fixed source of protons, which is considered to be an in-

put quantity of this calculation. 

 

The response a linear function: 

 

 𝑅 =< Σ𝐷 , 𝜑 >, (2.2.2) 

 

where the brackets are indicating the ‘dot product’. Calculating this dot product can be done 

by taking the integral over space, energy and direction and ΣD is the response function. 

 

Introducing a perturbed state as: 

 

 𝐵𝜑′(𝑥, 𝐸, Ω̂) = 𝑆′(𝑥, 𝐸, Ω̂), (2.2.3) 

 

the corresponding response function is: 

 

 𝑅′ =< Σ𝐷 , 𝜑
′ >. (2.2.4) 

 

We define the adjoint equation for this problem by the following equation: 

 

 𝐵†𝜑†(𝑥, 𝐸, Ω̂) = 𝑆†(𝑥, 𝐸, Ω̂). (2.2.5) 

 

By taking the dot product of equation 2.2.1 with the adjoint flux φ
†
 and taking the dot product 

of equation 2.2.5 with the flux φ, one ends up with equations 2.2.6 and 2.2.7: 

 

 < 𝜑†, 𝐵𝜑 > = < 𝜑†, 𝑆 > 

 

(2.2.6) 

 < 𝐵†𝜑†, 𝜑 > = < 𝑆†, 𝜑 > 

 

(2.2.7) 
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When subtracting equation 2.2.6 from equation 2.2.7 the following relation will come out: 

 

 < 𝜑†, 𝑆 > = < 𝑆†, 𝜑 > = 𝑅. (2.2.8) 

 

When following the same procedure for the perturbed response one finds: 

 

 < 𝜑†, 𝑆′ > = < 𝑆†, 𝜑′ > = 𝑅′. (2.2.9) 

 

Comparing equation 2.2.2 with equation 2.2.8 it turns out convenient to choose S
†
 as follows: 

 

 𝑆† = Σ𝐷 . 

 

(2.2.10) 

Subtracting equation 2.2.8 and equation 2.2.9 results in: 

 

 Δ𝑅 = < 𝜑†, (𝑆′ − 𝑆) > = < 𝜑†, Δ𝑆 >. 

 

(2.2.11) 

Perturbation theory can also be used to assess the effects of changing data appearing in the 

Boltzmann operator. Suppose that a perturbation is made in the cross section in the Boltzmann 

operator, then there will be a perturbation in the flux which will change the value computed 

for the change in the flux. The perturbed flux will obey the equation: 

 

 (𝐵 + Δ𝐵)(𝜑 + Δ𝜑) = 𝑆. 

 

(2.2.12) 

After simplifying equation 2.2.12 and neglecting the second-order term, the following relation 

is obtained for the change in the flux: 

 

 𝐵Δ𝜑 ≅ −Δ𝐵𝜑 

 

(2.2.13) 

Subtracting the inner product of φ
†
 with equation 2.2.13 and the inner product of ∆φ with 

equation 2.2.5 results in the following relation: 

 

 −< 𝜑†, Δ𝐵𝜑 > = < Δ𝜑, 𝑆† > = < Δ𝜑, Σ𝐷 > = Δ𝑅 (2.2.14) 

 

So one can now calculate the change in response by calculating ∆B, without calculating the 

change in flux (which costs a lot of time). 
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2.3. Calculation of the Adjoint Source 
To determine the adjoint source one first needs to introduce the distribution of the deposited 

energy, making use of the energy flux: 

 

 

Φ𝐸(𝑥) = ∫ ∫ 𝐸𝜑(𝑥, 𝐸, Ω̂)𝑑Ω̂𝑑𝐸.

4𝜋

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

 

 

(2.3.1) 

The energy flux is the amount of energy going through the point x in the domain and is used 

to obtain a balance equation of energy in a cell. 

Multiplication of the 1D proton transport equation (equation 2.1.2) by the energy E, and inte-

grating the result over the angular and energy domain results in the balance equation of ener-

gy in that cell. After filling in equation 2.1.2 into equation 2.3.1 we end up with the following 

expression: 

 

 

∫ ∫ 𝐸𝜇
𝜕𝜑(𝑥, 𝐸, Ω̂)

𝜕𝑥
𝑑Ω̂

4𝜋

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝑑𝐸 + ∫ ∫ 𝐸𝜎𝑡𝜑(𝑥, 𝐸, Ω̂)𝑑Ω̂

4𝜋

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝑑𝐸 

= ∫ ∫ 𝐸

4𝜋

𝜕(𝑆(𝐸)𝜑(𝑥, 𝐸, Ω̂))

𝜕𝐸
𝑑Ω̂𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

+ ∫ ∫ 𝐸
𝜎𝑡𝑟
2
∇Ω
2𝜑(𝑥, 𝐸, Ω̂)𝑑Ω̂𝑑𝐸

4𝜋

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

. 

 

(2.3.2) 

∫ ∫ 𝐸
𝜎𝑡𝑟

2
∇Ω
2𝜑(𝑥, 𝐸, Ω̂)𝑑Ω̂𝑑𝐸

4𝜋

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛
 is zero in this scenario, since no energy is created in this 

process. And therefore this term does not have any impact on the deposited energy balance 

equation. 

The first term on the left hand side is a streaming term and represents the nett energy flow 

through the domain. This term is not a deposition term. The second term on the left hand side 

is a deposition term. This term represents the total amount of energy which has been removed 

due to scatter interactions. For simplicity we neglect this term in further calculations. 

Therefore the stopping power term is the only deposition term to take into account: 

 

 

∫ ∫ 𝐸
𝜕(𝑆(𝐸)𝜑(𝑥, 𝐸))

𝜕𝐸
𝑑Ω̂

4𝜋

𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

. 

 

(2.3.3) 

We change the order of integration for simplicity: 

 

 

∫ 𝑑Ω̂

4𝜋

∫ 𝐸
𝜕(𝑆(𝐸)𝜑(𝑥, 𝐸))

𝜕𝐸
𝑑𝐸.

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

 (2.3.4) 
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And apply integration by parts to find an expression for the deposited energy: 

 

 

∫ 𝑑Ω̂

4𝜋

([𝑆(𝐸)𝜑(𝑥, 𝐸)𝐸]𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥 − ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

). 

 

(2.3.5) 

We choose the boundary condition to be: 

𝜑(𝑥, 𝐸 = 𝐸𝑚𝑎𝑥) = 0. 

 

And therefore this is the result of equation 2.3.6, after applying boundary conditions: 

 

 

− ∫ 𝑑Ω̂

4𝜋

(𝑆(𝐸𝑚𝑖𝑛)𝜑(𝑥, 𝐸𝑚𝑖𝑛)𝐸𝑚𝑖𝑛 + ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

). (2.3.6) 

 

The goal of this calculation is to determine the gain of protons. The integral over the transport 

equation gives the loss of protons. To give the response of the system one need to simply mul-

tiply the result from equation 2.3.6 with -1: 

 

 

∫ 𝑑Ω̂

4𝜋

(𝑆(𝐸𝑚𝑖𝑛)𝜑(𝑥, 𝐸𝑚𝑖𝑛)𝐸𝑚𝑖𝑛 + ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

). 

 

(2.3.7) 

A calculation of the system’s response by integrating equation 2.3.7 over x is done: 

 

 

𝑅 = ∫ ∫ 𝑑Ω̂

4𝜋

((𝑆(𝐸𝑚𝑖𝑛)𝜑(𝑥, 𝐸𝑚𝑖𝑛)𝐸𝑚𝑖𝑛 + ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

) ∙ 𝑓(𝑥))𝑑𝑥

𝐿

0

. 

 

(2.3.8) 

Defining f(x) as a response over a certain region (1) (tumour length) and defining f(x) as a 

response at a certain point x0 (2). 

 

 𝑓(𝑥) = 𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥)    (1) 

 𝑓(𝑥) = 𝛿(𝑥 − 𝑥0)                     (2) 

 

(2.3.9) 

u(x) is the unit step function 𝑢(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 and with δ(x-x0) a Delta-Dirac function at 

x=x0. 
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The calculation of the response over the region using expression (1) of f(x) is done first: 

 

 

𝑅 = ∫ 𝑑Ω̂ ∫ (𝑆(𝐸𝑚𝑖𝑛)𝜑(𝑥, 𝐸𝑚𝑖𝑛)𝐸𝑚𝑖𝑛 + ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

)

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛4𝜋

. 

 

(2.3.10) 

It turns out to be clever to write the response as an integral over depth, energy and direction so 

that one can directly write down S
†
, according to the definition of S

† 
formulated in equation 

2.2.8. 

 

 

𝑅 = ∫ 𝑑Ω̂∫ ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛)(𝑢(x𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝑑𝐸

𝐿

0

𝑑𝑥

4𝜋

 

+ ∫ 𝑑Ω̂∫ ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)(𝑢(x𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))𝑑𝐸𝑑𝑥

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝐿

04𝜋

. 

 

(2.3.11) 

So the adjoint source over a tumour region equals: 

 

 𝑆† = Σ𝐷 = 𝑆(𝐸)(𝑢(x𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))(1 + 𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛)). 
(2.3.12) 

 

To determine the adjoint source for a point one has to repeat the same calculations as equation 

2.3.10 and equation 2.3.11 for f(x)=δ(x-x0) 

 

 
𝑅 = ∫ 𝑑Ω̂∫(𝑆(𝐸𝑚𝑖𝑛)𝜑(𝑥, 𝐸𝑚𝑖𝑛)𝐸𝑚𝑖𝑛𝛿(𝑥 − 𝑥0) + ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝛿(𝑥 − 𝑥0)𝑑𝐸

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

)

𝐿

04𝜋

. (2.3.13) 

 

 

𝑅 = ∫ 𝑑Ω̂∫ ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛)𝛿(𝑥 − 𝑥0)

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝑑𝐸

𝐿

0

𝑑𝑥

4𝜋

+ 

∫ 𝑑Ω̂∫ ∫ 𝑆(𝐸)𝜑(𝑥, 𝐸)𝛿(𝑥 − 𝑥0)𝑑𝐸𝑑𝑥

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝐿

04𝜋

. 

 

(2.3.14) 

Ending up with the adjoint source for a point: 

 

 𝑆† = Σ𝐷 = 𝑆(𝐸)𝛿(𝑥 − 𝑥0)(1 + 𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛)). (2.3.15) 
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2.4. Conclusions 
The Boltzmann Fokker-Planck approximation is introduced to describe the transport of pro-

tons. This approximation consists of four terms: streaming, total removal, continuous slowing 

down and continuous scatter. With this approximation one calculated the adjoint proton 

transport equation, making use of additivity of the individual terms and smart choices of 

boundary conditions. 

An expression for response changes is derived. The change in response can be calculated 

without having to calculate the changes in the Boltzmann Fokker-Planck approximation, but 

with the help of the adjoint. 

The systems’ response is calculated. Therefore we first determined the deposited energy terms 

and added a test function to provide response in a certain tumour region and/or response for a 

single point inside the body.  
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3. Discretization 
With the adjoint proton transport equation and adjoint source one can determinate the adjoint 

proton flux. This determination has to be done numerically. To code this down, one needs to 

discretize the adjoint continuous slowing down operator and the adjoint proton source. The 

general procedure in discretizing an independent variable is to divide the range of the variable 

into a number of cells and subsequently integrate the transport equation over the volume of 

each cell. A coupled set of equations, describing the flux inside the cell is the result.  

These terms both include the stopping power which is assumed to be linear inside a cell.  

3.1. Discretization of the Adjoint Continuous Slowing Down Operator 
The discretization of the energy variable is the so called multi-group method. The energy 

range is divided into a number of cells which are called energy groups. The energy group with 

the highest energy corresponds to g=1. For the energy domain, we use the linear discontinu-

ous Galerkin method. This method is assuming a linear flux inside one energy group and can 

be discontinuous at the boundaries of each energy group. 

 

 
Figure 4: Representation of the Galerkin method used to discretize the adjoint slowing down and adjoint source 

terms. [5],[14] 

 

As calculated in equation 2.1.19 the adjoint operator of the stopping power term equals: 

 
𝐿𝐶𝑆𝐷
† = −𝑆(𝐸)

𝜕

𝜕𝐸
 

(3.1.1) 

 

To determine the proton flux inside each energy group it is smart move to express this flux in 

another way using this set of (orthogonal) basis functions: 

 

 𝑝𝐴(𝐸) = 𝑝0(𝐸) = 1 

𝑝𝐸(𝐸) = 𝑝1(𝐸) =
2

Δ𝐸𝑔
(𝐸 − 𝐸𝑔), 

(3.1.2) 

where ∆Eg stands for the width of the g
th

 energy group. And Eg is the centre energy value of 

energy group g. 
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Due to the orthogonality of the basis functions, the following orthogonality property holds: 

 

 

∫ 𝑝𝑖(𝐸)𝑝𝑗(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

=
Δ𝐸𝑔

2𝑗 + 1
𝛿𝑖𝑗 . 

(3.1.3) 

 

The proton flux expressed in the basis functions will look like this: 

 

 𝜑𝑖,𝑛,𝑔
† = 𝜑𝑎,𝑖,𝑛,𝑔

† (𝐸)𝑝𝐴(𝐸) + 𝜑𝑒,𝑖,𝑛,𝑔
† (𝐸)𝑝𝐸(𝐸). (3.1.4) 

 

φa,i,n,g is the average adjoint flux in spatial cell i, discrete ordinate n and energy group g. φe,i,n,g 

is the normalized slope of the adjoint flux in spatial cell i, discrete ordinate n and energy 

group g. 

 

It is also possible to express the stopping power with the same set of basis functions as the 

flux in the energy groups: 

 

 

𝑆(𝐸) =

𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2

2
𝑝𝐴(𝐸) +

𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2

2
𝑝𝐸(𝐸). 

(3.1.5) 

 

Since there are two unknowns per energy group, the average flux and the slope of the flux, 

one needs two equations in each group to solve these unknowns. To obtain these equations an 

expansion of the flux into the two basis functions, multiply the equation by one of the basis 

functions, integrate over the volume of an energy group and use the upwind scheme to evalu-

ate the surface integrals is needed. 

 

To determine the average part of the equation, equation 3.1.6 has to be solved: 

 

 

1

Δ𝐸𝑔
∫ 𝐿𝐶𝑆𝐷

†

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝜑𝑖,𝑛,𝑔
† (𝐸)𝑝𝐴(𝐸)𝑑𝐸, (3.1.6) 

which equals: 

 

=
1

Δ𝐸𝑔
∫ −𝑆(𝐸)

𝜕

𝜕𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

(𝜑𝑖,𝑛,𝑔
† (𝐸))𝑝𝐴(𝐸)𝑑𝐸. (3.1.7) 
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Integrating by parts and making use of the fact that p
A
(E) equals 1 result in: 

 

 

1

Δ𝐸𝑔
∫

𝜕

𝜕𝐸
(𝑆(𝐸))𝜑𝑖,𝑛,𝑔

† (𝐸)𝑝𝐴(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

−
1

Δ𝐸𝑔
[𝑆(𝐸)𝜑𝑖,𝑛,𝑔

† (𝐸)]
𝐸
𝑔+
1
2

𝐸
𝑔−
1
2 (3.1.8) 

 

When evaluating the surface integral using the upwind scheme this is the result: 

 

 

∫ 𝐿𝐶𝑆𝐷
†

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝜑𝑖,𝑛,𝑔
† (𝐸)𝑝𝐴(𝐸)𝑑𝐸 = 

1

Δ𝐸𝑔
∫

𝜕

𝜕𝐸
(𝑆(𝐸))𝜑𝑖,𝑛,𝑔

† (𝐸)𝑝𝐴(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

−
1

Δ𝐸𝑔
(𝑆

𝑔−
1
2
(𝜑𝑎,𝑖,𝑛,𝑔

† + 𝜑𝑒,𝑖,𝑛,𝑔
† ) − 𝑆

𝑔+
1
2
(𝜑𝑎,𝑖,𝑛,𝑔+1

† + 𝜑𝑒,𝑖,𝑛,𝑔+1
† )). 

(3.1.9) 

 

The first part of the right-hand side of equation 3.1.9 can be worked out even further: 

 

 
1

Δ𝐸𝑔
∫

𝜕

𝜕𝐸
(𝑆(𝐸))𝜑𝑖,𝑛,𝑔

† (𝐸)𝑝𝐴(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

=
1

Δ𝐸𝑔
∫

(𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)

Δ𝐸𝑔
𝜑𝑖,𝑛,𝑔
† (𝐸)𝑝𝐴(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

. (3.1.10) 

 

When we work out the integral in the right hand side of equation 3.1.10 by making use of the 

orthogonality property in equation (3.1.3) we end up with equation 3.1.11: 

 

 (𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)

Δ𝐸𝑔
𝜑𝑎,𝑖,𝑛,𝑔
† . 

(3.1.11) 
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Substituting the integral in equation 3.1.9 with the result of equation 3.1.11 results in: 

 

 

∫ 𝐿𝐶𝑆𝐷
†

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝜑𝑖,𝑛,𝑔
† (𝐸)𝑝𝐴(𝐸)𝑑𝐸 = 

(𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)

Δ𝐸𝑔
𝜑𝑎,𝑖,𝑛,𝑔
† −

1

Δ𝐸𝑔
(𝑆

𝑔−
1
2
(𝜑𝑎,𝑖,𝑛,𝑔

† + 𝜑𝑒,𝑖,𝑛,𝑔
† ) − 𝑆

𝑔+
1
2
(𝜑𝑎,𝑖,𝑛,𝑔+1

† + 𝜑𝑒,𝑖,𝑛,𝑔+1
† )), 

(3.1.12) 

 

where 
(𝑆
𝑔−
1
2

−𝑆
𝑔+
1
2

)

Δ𝐸𝑔
𝜑𝑎,𝑖,𝑛,𝑔
†

 is the volumetric term, −
1

Δ𝐸𝑔
𝑆
𝑔−

1

2

(𝜑𝑎,𝑖,𝑛,𝑔
† + 𝜑𝑒,𝑖,𝑛,𝑔

† ) is the group 

outflow and 
1

Δ𝐸𝑔
𝑆
𝑔+

1

2

(𝜑𝑎,𝑖,𝑛,𝑔+1
† + 𝜑𝑒,𝑖,𝑛,𝑔+1

† ) represents the flux flowing in. 

For the slope part of the equation we multiply the continuous slowing down operator by p
E
(E) 

and integrate over an energy group: 

 

 

3

Δ𝐸𝑔
∫ 𝐿𝐶𝑆𝐷

† 𝜑𝑖,𝑛,𝑔
† (𝐸)𝑝𝐸(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

. (3.1.13) 

 

 

3

Δ𝐸𝑔
∫ −𝑆(𝐸)(

𝜕

𝜕𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝜑𝑖,𝑛,𝑔
† (𝐸))𝑝𝐸(𝐸)𝑑𝐸. (3.1.14) 

 

Making use of partial integration results in: 

 

 

3

Δ𝐸𝑔
∫

𝜕

𝜕𝐸
(𝑆(𝐸)𝑝𝐸(𝐸))𝜑

𝑖,𝑛,𝑔
† (𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

−
3

Δ𝐸𝑔
[𝑆(𝐸)𝜑

𝑖,𝑛,𝑔
† (𝐸)𝑝𝐸(𝐸)]

𝐸
𝑔+
1
2

𝐸
𝑔−
1
2 (3.1.15) 

 

 

Here one uses the same upwind scheme as done at equation 3.1.9: 

 

 

∫ 𝐿𝐶𝑆𝐷
† 𝜑𝑖,𝑛,𝑔

† (𝐸)𝑝𝐸(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

=
3

Δ𝐸𝑔
∫

𝜕

𝜕𝐸
(𝑆(𝐸)𝑝𝐸(𝐸))𝜑𝑖,𝑛,𝑔

† (𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

− 

3

Δ𝐸𝑔
(𝑆

𝑔−
1
2
(𝜑𝑎,𝑖,𝑛,𝑔

† + 𝜑𝑒,𝑖,𝑛,𝑔
† )𝑝𝐸(𝐸𝑔−1/2) − 𝑆𝑔+1

2
(𝜑𝑎,𝑖,𝑛,𝑔+1

† + 𝜑𝑒,𝑖,𝑛,𝑔+1
† )𝑝𝐸(𝐸𝑔+1/2)). 

(3.1.16) 
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The first term of the right-hand side of equation 3.1.16 can be worked that out even further: 

 

 
3

Δ𝐸𝑔
∫

𝜕

𝜕𝐸
(𝑆(𝐸)𝑝𝐸(𝐸))𝜑𝑖,𝑛,𝑔

† (𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

= 

3

Δ𝐸𝑔
∫

𝜕𝑆(𝐸)

𝜕𝐸
𝑝𝐸(𝐸)𝜑𝑖,𝑛,𝑔

† (𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

+
3

Δ𝐸𝑔
∫ 𝑆(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝜕𝑝𝐸(𝐸)

𝜕𝐸
𝜑𝑖,𝑛,𝑔
† (𝐸)𝑑𝐸 = 

(3.1.17) 

 

 

 1

Δ𝐸𝑔
(𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)𝜑𝑒,𝑖,𝑛,𝑔

† +
3

Δ𝐸𝑔
(𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2
)𝜑𝑎,𝑖,𝑛,𝑔

† +
1

Δ𝐸𝑔
(𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)𝜑𝑒,𝑖,𝑛,𝑔

†
 

=
3

Δ𝐸𝑔
(𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2
)𝜑𝑎,𝑖,𝑛,𝑔

† +
2

Δ𝐸𝑔
(𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)𝜑𝑒,𝑖,𝑛,𝑔

†  

(3.1.18) 

 

Making use of the fact that p
E
(Eg-1/2) = 1 and p

E
(Eg+1/2) = -1 and substituting the integral in 

equation 3.1.16 with the result of equation 3.1.18 results in: 

 

 

∫ 𝐿𝐶𝑆𝐷
† 𝜑𝑖,𝑛,𝑔

† (𝐸)𝑝𝐸(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

=
3

Δ𝐸𝑔
(𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2
) 𝜑𝑎,𝑖,𝑛,𝑔

† +
2

Δ𝐸𝑔
(𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2
)𝜑𝑒,𝑖,𝑛,𝑔

†
 

−
3

Δ𝐸𝑔
(𝑆

𝑔−
1
2
(𝜑𝑎,𝑖,𝑛,𝑔

† + 𝜑𝑒,𝑖,𝑛,𝑔
† ) + 𝑆

𝑔+
1
2
(𝜑𝑎,𝑖,𝑛,𝑔+1

† + 𝜑𝑒,𝑖,𝑛,𝑔+1
† )), 

 

(3.1.19) 

where  
3

Δ𝐸𝑔
(𝑆
𝑔+

1

2

+ 𝑆
𝑔−

1

2

)𝜑𝑎,𝑖,𝑛,𝑔
† +

2

Δ𝐸𝑔
(𝑆
𝑔−

1

2

− 𝑆
𝑔+

1

2

)𝜑𝑒,𝑖,𝑛,𝑔
†

 are volumetric terms,  

−
3

Δ𝐸𝑔
𝑆
𝑔−

1

2

(𝜑𝑎,𝑖,𝑛,𝑔
† + 𝜑𝑒,𝑖,𝑛,𝑔

† ) is the flux flowing out of the group and  

−
3

Δ𝐸𝑔
𝑆
𝑔+

1

2

(𝜑𝑎,𝑖,𝑛,𝑔+1
† + 𝜑𝑒,𝑖,𝑛,𝑔+1

† ) is the flux flowing in the group.  
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3.2. Discretization of the Adjoint Source 
As calculated in equation 2.3.12 the adjoint source for a tumour region/slab equals: 

 

 𝑆† = 𝑆(𝐸)(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))(1 + 𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛)) (3.2.1) 

 

To discretize this adjoint one can use the same approach as the discretization for the energy. 

The basis functions mentioned in the energy discretization part (equation 3.1.2) are the same 

for the adjoint source discretization. 

 

To determine the average part of equation 3.2.1, equation 3.2.2 has to be solved: 

 

 
1

Δ𝐸𝑔
∫ 𝑆(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))(1 + 𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛))𝑝
𝐴(𝐸)𝑑𝐸 (3.2.2) 

 

 

(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))

(

 
 1

Δ𝐸𝑔
∫ 𝑆(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝑝𝐴(𝐸)𝑑𝐸 +
1

Δ𝐸𝑔
∫ 𝐸𝑆(𝐸)𝛿(𝐸 − 𝐸𝑚𝑖𝑛)𝑝

𝐴(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2 )

 
 
. (3.2.3) 

 

The ES(E)δ(E-Emin) term in equation 3.2.3 equals zero except if the minimum energy is in 

between the two lowest energy boundaries.  

The first integral in equation 3.2.3 can be worked out even further: 

 

 

1

Δ𝐸𝑔
∫ 𝑆(𝐸)𝑝𝐴(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝑑𝐸 = 

1

Δ𝐸𝑔
∫ (

𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2

2
𝑝𝐴(𝐸) +

𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2

2
𝑝𝐸(𝐸))

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝑝𝐴(𝐸)𝑑𝐸. 

(3.2.4) 

 

Making use of the orthogonality of the basis functions in equation 3.1.3: 

 

 1

Δ𝐸𝑔
(

𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2

2
)Δ𝐸𝑔 = (

𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2

2
). 

(3.2.5) 
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Finally ending up with this discretization for the average part of adjoint source: 

 

 

∫ 𝑆(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))(1 + 𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛))𝑝
𝐴(𝐸)𝑑𝐸 = 

(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))

(

 
 
(

𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2

2
) +

1

Δ𝐸𝑔
∫ 𝐸𝑆(𝐸)𝛿(𝐸 − 𝐸𝑚𝑖𝑛)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2 )

 
 
. 

(3.2.6) 

 

To determine the slope part of equation 3.2.1, equation 3.2.7 has to be solved: 

 

 

3

Δ𝐸𝑔
∫ 𝑆(𝐸)(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

(1 + 𝐸𝛿(𝐸 − 𝐸𝑚𝑖𝑛))𝑝
𝐸(𝐸)𝑑𝐸 = (3.2.7) 

 

 

(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))

(

 
 3

Δ𝐸𝑔
∫ 𝑆(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝑝𝐸(𝐸)𝑑𝐸 +
3

Δ𝐸𝑔
∫ 𝐸𝑆(𝐸)𝛿(𝐸 − 𝐸𝑚𝑖𝑛)𝑝

𝐸(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2 )

 
 
. (3.2.8) 

 

The last integral term in equation 3.2.8 equals zero except the case where the minimum ener-

gy is in between the groups with the lowest energy. The first integral in equation 3.2.8 can be 

worked out even further: 

 

 
3

Δ𝐸𝑔
∫ 𝑆(𝐸)

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝑝𝐸(𝐸)𝑑𝐸 =
3

Δ𝐸𝑔
∫ (

𝑆
𝑔+
1
2
+ 𝑆

𝑔−
1
2

2
𝑝𝐴(𝐸) +

𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2

2
𝑝𝐸(𝐸))

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2

𝑝𝐸(𝐸)𝑑𝐸. (3.2.9) 

 

Making use of the orthogonality of the basis functions in equation 3.1.3: 

 

 3

Δ𝐸𝑔
∙
1

3
(

𝑆
𝑔−
1
2

− 𝑆
𝑔+
1
2

2
)Δ𝐸𝑔 = (

𝑆
𝑔−
1
2

− 𝑆
𝑔+
1
2

2
). (3.2.10) 

 

So this is the final expression for the slope part: 

 

(𝑢(𝑥𝑚𝑖𝑛) − 𝑢(𝑥𝑚𝑎𝑥))

(

 
 
(

𝑆
𝑔−
1
2
− 𝑆

𝑔+
1
2

2
) +

3

Δ𝐸𝑔
∫ 𝐸𝑆(𝐸)𝛿(𝐸 − 𝐸𝑚𝑖𝑛)𝑝

𝐸(𝐸)𝑑𝐸

𝐸
𝑔−
1
2

𝐸
𝑔+
1
2 )

 
 
. (3.2.11) 
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3.3. Computational Set-up 
A numerical code is created to calculate fluxes in forward mode and in adjoint mode. This 

code solves the 1D transport equation to obtain the average flux and the slope of the flux. In 

this code one can vary every single parameter that has influence on the flux. In this research 

we have only one spatial variable x, because we do calculations in 1D, and that is defined 

between 0 and 10 cm, that corresponds to the 1
st
 and 128

th
 element. We vary the energy of the 

incoming proton beam between 2MeV and 100MeV and divide that energy equally over the 

energy groups. The boundaries of those energy groups are specified in the following way: 

 

 𝐸1
2
= 𝐸𝑖𝑛 +

1

2
Δ𝐸 (3.3.1) 

 Δ𝐸 =
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠
. (3.3.2) 

 

To compare results and discretization we set the number of energy groups initially at 128 and 

compare it with 256 energy groups. In the numerical approach we have used 4 angular ele-

ments that correspond to the direction of movement. The total macroscopic scatter cross sec-

tion and transport cross section are constants inside the code, with the transport cross section 

equal to 0. The tumour region can be adapted inside the code, but normally be between the 1
st
 

and 128
th

 space element. 

3.4. Conclusions 
To implement the adjoint flux and adjoint source inside a numerical code, we first have to 

discretize the continuous slowing down term and the adjoint source. Therefore we transform 

the adjoint transport equation and the adjoint source into a set of coupled orthogonal basis 

functions. In this thesis we choose the linear discontinuous Galerkin discretization method, to 

discretize the terms. In order to discretize these terms, we assumed that the flux is linear in-

side an energy group and that the stopping power is linear as well.  
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4. Results 
The discretized adjoint transport equation is a set of linear equations.  As adjoint protons 

stream through the domain they gain energy, which is what the adjoint continuous slowing 

down operator describes. We’ll give the protons an initial energy of 2 MeV, and the protons 

stream out of the system at the upper energy boundary of 100 MeV. These boundaries are 

proven to give be the best working range when using the SN method.
[14]

 When we increase 

energy, energy will be transferred to secondary particles, like electrons and neutrons, inside 

the body, which are not included in the SN approximation. This energy which would have 

been carried by these particles is assumed to deposit locally. The two equations that describe 

the angular proton flux are calculated as follows: 

 

 
[
𝑚11 𝑚12
𝑚21 𝑚22

] ∗ [
𝜑𝑎,𝑖,𝑛,𝑔
†

𝜑𝑒,𝑖,𝑛,𝑔
†

] = [
𝑎1
𝑎2
]. 

(4.1) 

 

The matrix [
𝑚11 𝑚12
𝑚21 𝑚22

] in equation 4.1 is filled with all variables that directly depend on the 

average and slope of the adjoint flux in the group that we try to solve. Variables that directly 

depend on these functions are outflow and volumetric terms. The array [
𝑎1
𝑎2
] in the right hand 

side of equation 4.1 is filled with volumetric source terms and terms that depend on neighbour 

groups like inflow from lower energy groups. These terms can be found in equation 3.1.12 for 

the average adjoint flux and in equation 3.1.19 for the slope adjoint flux. 

 

The discretized terms derived in Section 3.2. and Section 3.3. are implemented into a numeri-

cal code that solves this set of equations simultaneously, since average adjoint flux and slope 

adjoint flux are coupled. In this research we used Fortran to solve this problem and try to find 

values for average adjoint flux and for slope adjoint flux in each energy group. Fortran is es-

pecially suited for numeric computation and scientific computing
[9]

. The terms that are im-

plemented into the code are tested for two simple cases (see Appendix 1). The goal of the 

thesis is to calculate response changes due to input changes, with the adjoint proton flux. We 

choose the stopping power to be: 𝑆(𝐸) =
1.88506∗109

3.5269∗10−6𝐸+2
. This expression for the stopping 

power isn’t the true value of stopping power inside the body, but works well enough to con-

clude relevant meaningful results. 
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4.1. Adjoint Flux 
At first we tried to plot the adjoint flux and try to validate and check if these plots make sense. 

 
Figure 5: A plot of the adjoint flux for the 126th energy group (blue), 84th energy group (red), 42nd energy group (yel-

low) and first energy group (purple). Assuming the tumour/adjoint source is on the whole x-domain [0-10]. (Plot with 

the adjoint source on the whole space domain, 128 energy groups, 128 space elements and 1 angular element  μ = -

0.7092178.) 

In the graph of figure 5 we see that adjoint protons stream from right to left and will gain en-

ergy while decreasing in group number. This means that the energy will flow from higher 

groups to lower groups. Particles in the lowest energy group will have the largest energy, due 

to energy gaining in the higher neighbour groups. Particles in the highest energy group will 

not gain energy because the instream of this group is set to zero in the numerical code.  

To show the function of the angular element the following graph is plotted: 

 
Figure 6: A plot of the adjoint flux for the 126th energy group (blue), 84th energy group (red), 42nd energy group (yel-

low) and first energy group (purple). Assuming the tumour/adjoint source is on the whole x-domain [0-10]. (Plot with 

the adjoint source on the whole space domain, 128 energy groups, 128 space elements and 1 angular element μ = 

+0.7880198.) 

The graph shown in figure 6 is almost identical to the graph in figure 5, except the fact that 

particles will stream from left to right. Therefore we perceive this difference. 
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In practice the tumour is most of the time not on the whole domain of 0 to 10 cm and there-

fore we plotted a graph with a local tumour/adjoint source from element number 70 to 100, 

corresponding to a depth of 5.47cm to 7.81cm. This tumour location is not chosen randomly. 

We want to treat the tumour at the Bragg peak of the dose. The location of the Bragg peak can 

be determined by making a plot of the dose, as shown in figure 7. During treatment we want 

the Bragg peak to overlap with the tumour region and therefore we choose the tumour to be 

between the 70
th

 and 100
th

 space element (5.47cm-7.81cm). 

 
Figure 7: Plot of the dose distribution in forward calculations. (Plot details: 128 energy groups, 128 space elements 

and 1 angular element μ = -0.7092178.) 

 
Figure 8: A plot of the adjoint flux for the 126th energy group (blue), 84th energy group (red), 42nd energy group (yel-

low) and first energy group (purple). Assuming the tumour/adjoint source is between the 70th and 100th element. (Plot 

with the adjoint source between the 70th and 100th space element (5.47cm-7.81cm), 128 energy groups, 128 space ele-

ments and 1 angular element μ = -0.7092178.) 
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We still observe that the adjoint flux in the highest energy group remains zero because its 

instream is set at zero and therefore it has no importance. We see that the adjoint flux in the 

84
th 

group gains energy from the local adjoint source and will go to zero after the tumour re-

gion. Adjoint flux in the 42
nd

 group will gain a lot more energy and reaches its maximum flux 

at the boundary of the local adjoint source. It gains more energy because there are more 

neighbour groups that gained energy through the adjoint source. 

 

4.2. Response Changes 
To check whether the change in response can be calculated with the help of the adjoint proton 

flux, we calculated the change in response in two different ways: calculating the Boltzmann 

proton transport equation, once with initial inputs and once with input changes for the forward 

case. One can simple calculate the response change by looking at the flux differences. With 

the adjoint one can calculate response changes with equation 2.2.14. These two types calcula-

tions are compared with one another. 

We chose to vary the total cross section σt. Initially setting the total cross section to 0.025cm
-1

 

and change its value with ±1%, ±5% and ±10%. 

 
Figure 9: Plot of response changes vs sigma t changes. This calculation is performed with an adjoint source / tumour 

on the whole domain. (Plot details: 128 energy groups, 128 space elements and 1 angular element  μ = -0.7092178) 

A response calculation is done with the two different approaches. The response calculation 

with the help of the adjoint works very well for this type of calculation. 
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We did the same ∆R calculations for a local adjoint source / tumour around the Bragg peak 

(space element 70-100). We did this calculation again using the two different approaches. The 

result that we obtained is plotted in figure 10: 

 
Figure 10: Plot of response changes vs sigma t changes. This calculation is performed with an adjoint source / tumour 

on the Bragg peak (space element 70-100). (Plot details: 128 energy groups, 128 space elements and 1 angular element  

μ = -0.7092178) 

The response changes calculated with the adjoint flux work well with a local adjoint source. 

The response calculated with the adjoint flux accurately approaches the response calculated 

with the forward dose calculations. The difference between the local adjoint source and the 

adjoint source on the whole space domain can be obtained by looking at the ∆R/R-axis. The 

response changes with a local source at the Bragg peak are bigger than for the adjoint source 

on the whole space domain. 
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5. Discussion and Conclusion 
The main goal of this thesis was to test the suitability of adjoint theory for calculating proton 

doses. Therefore one derived and discretized an equation for the adjoint proton flux and dis-

cretize this flux, to implement it into a numerical code and solve it. With this adjoint proton 

flux one can perform dose and flux calculations much quicker and cheaper, because one can 

calculate changes in the response, without calculating the change of the flux. 

In this chapter one can read the discussion about the main results and conclusions of this the-

sis. And in the final section of this chapter, we give recommendations and possible improve-

ments for future work. 

5.1. Conclusion 
To check if the change in response can be calculated with the help of the adjoint proton flux, 

we calculated the change in response in two different ways. The first way to determine re-

sponse changes is the regular forward way, by calculating the Boltzmann proton transport 

equation, once with initial inputs and once with input changes and determine the response 

changes. One can simple calculate the response change by looking at the flux differences. 

With the adjoint one can calculate response changes by working out the following derived 

equation (equation 2.2.14): −< 𝜑†, Δ𝐵𝜑 >. These response calculations are compared with 

one another. 

We initially set the total cross section σt at 0.025cm
-1

 and change its value with ±1%, ±5% 

and ±10%. 

After plotting the response changes for an adjoint source on the whole space domain and for a 

local adjoint source around the Bragg peak, we can conclude that the response changes can be 

calculated accurately with the help of the adjoint proton flux. With the necessary improve-

ments calculating response changes with adjoint theory is much faster than forward calcula-

tions. Adjoint theory creates an opportunity to do many calculations at once, to decrease un-

certainty in locating the Bragg peak. This can improve the future of proton therapy vigorous-

ly. 

5.2. Future Work 
This thesis provides a good basis for future research; however some improvements are needed 

to implement this technique into practice. In this section, we provide improvements that are or 

may be needed for more accurate results and practical implementation. 

In order to reach the full potential and accuracy of proton transport inside the body, one has to 

derive the 3D adjoint proton transport equation from the 3D Boltzmann Fokker-Planck ap-

proximation. The Fokker-Planck approximation itself is a good approximation, but with every 

approximation it provides not the actual theoretical value. In this thesis we neglect energy 

straggling in the continuous slowing down term for simplicity. To reach the best results pos-

sible, this term has to be taken into account. 

 

Energy that is transferred to secondary particles must be included in the SN method. When 

this is done, one can create a calculation using the typical energy range of proton therapy 

(70MeV-200MeV).  



 

 38  

 

A 3D calculation of the adjoint source is needed for an exact practical representation. To cal-

culate the 3D adjoint source, one needs the 3D Boltzmann Fokker-Planck proton transport 

approximation. 

 

In this thesis we have neglected the streaming- and removal terms in energy decomposition to 

derive an expression for the adjoint source. For more accurate derivation of the energy de-

composition, and thus a more accurate derivation of the adjoint source, these terms must be 

taken into account. 

In the expression for the adjoint source we have neglected the EminS(Emin)/∆Eg term that must 

be added between the two lowest energy boundaries. In future work this term has to be im-

plemented into the numerical code for a slight energy addition inside the lowest energy group. 

 

For simplicity we considered the adjoint flux to be linear inside the energy groups. While this 

is a reasonable assumption, in practice (adjoint) flux and stopping power cannot be complete-

ly linear inside a group. To reach linearity inside energy groups, one need to expand the num-

ber of groups, resulting in increase of computation time. In future work one needs to investi-

gate the ideal balance between the number of energy groups and reasonable computation time. 

Inside the code we have chosen a fitted stopping power. In future work this has to be replaced 

with the stopping power of water. 

 

In future work, there has to be developed a more accurate way to define the adjoint flux inside 

the energy groups. A possible improvement for this linear adjoint flux would be to expand the 

number of basis functions. Expansion of the number of basis functions could decrease the 

amount of equations to solve or the number of energy groups, and therefore decreases compu-

tation time. In future work, the optimal number of basis functions should be evaluated. This 

evaluation can be done for discretization in the energy domain, spatial domain and angular 

domain. With a larger number of basis functions we expect a more accurate and faster way of 

discretizing. 

 

For the discretization of the adjoint proton transport equation and the adjoint source we have 

used the linear discontinuous Galerkin discretization method. In future work a better, more 

precise and advanced discretization methods can be investigated for an improvement of the 

results and a decrease in computation time. 

There is also room for improvement to decrease computation time even more. It should be 

investigated if a larger number of basis functions can provide more accurate results that are 

computed quicker. 
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To accomplish proton beam adaptions due to movement of the patient (breathing, slight 

movement of the body), one need to continuously image the patient during treatment. A com-

puted tomography scan (CT-scan) or a magnetic resonance imaging scan (MRI-scan) can be 

used to obtain this information. It would be ideal if these scans can capture the exact composi-

tion to determine the stopping power inside the tissues. Therefore the program can calculate 

the change in response and adapt the proton beam automatically. After the performance of 

these investigations the adjoint proton calculations can be implemented into proton therapy 

clinics.  
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Appendix 

1. Testing Numerical Approach 

To check if the numerical approach is coded down the right way a test has to be done. In the 

code there is an opportunity to turn individual parts of the (adjoint) Boltzmann proton 

transport equation off. This can be convenient when one wants to test if the new part of the 

code makes sense. 

The streaming- and angular diffusion term are switched off to test the adjoint source and ad-

joint slowing down. The resulting adjoint equation is as follows: 

 

 
𝜎𝑡𝜑

† + 𝑆(𝐸)
𝜕

𝜕𝐸
𝜑†  = 𝑆†. 

(A.1.1) 

 

The adjoint source for a certain region is derived in equation 2.3.12, and only depends on the 

stopping power which is linear in a group: 

 

 𝑆(𝐸) = 𝑎𝐸 + 𝑏. (A.1.2) 

 

φ is linear in a group and therefore has a linear form: 

 

 𝜑† = 𝑐𝐸 + 𝑑. (A.1.3) 

 

For the test one has the freedom to choose the coefficients a and b of the stopping power S(E). 

To test the adjoint source a constant stopping power proves to be intelligent: 

 

 𝑆(𝐸) = 𝑎. (A.1.4) 

 

After filling this data in into equation A.1.1, we will end up with this equation: 

 

 𝜎𝑡(𝑐𝐸 + 𝑑) + 𝑎𝑐 = 𝑎 (A.1.5) 

 

 𝜎𝑡𝑐𝐸 + 𝜎𝑡𝑑 = 𝑎(1 − 𝑐) (A.1.6) 

 

To make sure this equation holds, it follows that 𝑐 = 0 𝑎𝑛𝑑 𝑑 =
𝑎

𝜎𝑡
, resulting in an adjoint 

angular flux: 𝜑† =
𝑎

𝜎𝑡
. 
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To test the adjoint slowing down term, a linear stopping power is needed. For simplicity we 

assume σt to be zero. Filling this data again in into equation A.1.1, leads to this a new equa-

tion: 

 

 𝑐(𝑎𝐸 + 𝑏) = 𝑎𝐸 + 𝑏 (A.1.7) 

 

 𝑎𝑐𝐸 = 𝑎𝐸 + 𝑏 − 𝑏𝑐 (A.1.8) 

 

From equation A.1.8 this relation follows: 𝑐 = 1, 𝑑 = 𝑓𝑟𝑒𝑒 𝑐ℎ𝑜𝑖𝑐𝑒, resulting in an angular 

flux: 𝜑† = 𝐸 + 𝑑. 

 

So for every a and b that in the stopping power equation, an adjoint angular flux in the form 

of 𝜑† = 𝐸 + 𝑑 must come out. When this adjoint flux come out of the numerical approach, 

then one can conclude that the adjoint source and adjoint slowing down terms are coded down 

the right way. The adjoint flux with only the slowing down term working on it looks like this: 

 
Figure 11: A plot of the energy vs adjoint flux when only the adjoint slowing down works on the flux. Green line rep-

resents the slowing down term inside the code. Red and blue line represent theoretical values for lower bound energy 

and upper bound energy. (Plot details: 128 energy groups, 128 space elements and 1 angular element  μ = -0.7092178) 

 

 


