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Abstract

The world’s energy consumption is rapidly increasing and with the corresponding growth
in emission of greenhouse gases, a new sustainable way of energy production is needed.
Therefore a Molten Salt Reactor (MSR) fuelled with thorium is introduced. The MSR is
a generation IV reactors which is low in risk and can be fuelled with abundant thorium
instead of uranium.

Inside a MSR, fission products like noble gasses and metals need to be extracted. The
noble metals xenon and krypton are neutron poisons and therefore decrease the reaction
activity. Additionally, metallic particles plate out on metal surfaces which causes damage
to the reactor. To extract noble gasses helium bubbling is used. With helium bubbling,
hydrophobic particles attach to the gas bubbles which makes it possible to collect the par-
ticles. This process is called flotation. Since flotation is a process depending on several
correlated variables, it is hard to predict the extraction efficiency from physical calcula-
tions. Since measurements are very time-consuming, a model is desired to predict the
extraction efficiency. To make this model, a combination of Proper Orthogonal Decom-
position and Radial Basis Function is applied. It is in the aim of this research to see if a
reduced model can be made to predict the extraction efficiency.

Using a set-up pre-examined by Journee [1], a time dependent extraction efficiency model
is trained by doing measurements with different flow rates V̇, particles sizes R and par-
ticle densities ρ. A time dependent extraction for molybdenum and iron is found, from
which only molybdenum turned out to be satisfactory as a result of shortage of data for
iron. The model on molybdenum was able to make an approximation that had only 8%
relative error with the measurement, but also consisted of a prediction with an error of
61%. Therefore it can be concluded that more experiments need to be done to see if the
reduced model is appropriate.

In further research more experiments should be done for at least iron and other parti-
cles with different densities. This should be done with the same flow rate and particle
sizes as used for molybdenum. The set-up should be improved to make sure all samples
have the same volume.
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Chapter 1

Introduction

1.1 Nuclear Energy

With the growth in global populations, the energy consumption increases. According
to the U.S Energy Information Administration (EIA) [2], the global energy consumption
will have grown with 28% between 2015 and 2040. Nuclear energy is the second fastest
growing producer of this valued energy. EIA expects an average of 1.5% increase of nu-
clear energy production per year. Nuclear energy will therefore become more important
on the energy consumption scale. With its importance growing, it is time to look for safer
and more sustainable ways of nuclear energy.

1.2 Thorium Fuel Cycle

For many years thorium has been a prospecting outcome in the nuclear world. Unfor-
tunately most thorium related projects were stopped because of cost and proliferation
concerns or technological problems [3]. Uranium was chosen as the fuel for most reac-
tors instead. With growing concerns about the long-term availability of cheap uranium,
new research is conducted to see if there is a future for thorium as a fuel.

The major isotope of thorium in nature is thorium-232. Unlike uranium which is a fis-
sile element, thorium-232 is fertile [4]. Therefore thorium needs uranium or plutonium
to start a reaction. Thorium-232 will absorb a neutron from the fission of uranium or
plutonium and thorium-233 is produced. Thorium-233 will decay to uranium-233 via
protactinium-233, which in turn decays while producing neutrons. These neutrons are
again captured by thorium-233 and this way the reaction is sustained [5]. This cycle is
displayed in figure 1.1.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Thorium fuel cycle: the U-233 fission produces neutron, neutrons are absorbed
by Th-232 and produce Th-233, Th-233 decays and forms Pa-233. U-233 is formed after
Pa-233 decays and produces new neutrons when decaying. These neutrons are again
used to produce Th-233 out of Th-232 [6]

.

The benefits of thorium are listed below:

• thorium is more abundant than uranium [7, 8].

• low amount of transuranics produced and has a low radio-toxicity at long term.

• low amount of weapons produced plutonium as a fission product of Thorium [9].

• theoretical lower cost compared with uranium fuel cycle because there is no enrich-
ment needed.

1.3 Molten Salt Reactor

The Molten Salt Reactor (MSR) was initially designed for the use of nuclear propulsion
programs for aircrafts. Here a MSR was interesting because of its high power density.
Though the experiment was successful it was cancelled because it became clear in-air
refuelling was possible [10]. When the necessity for a MSR in the aircraft industry was
gone , the reactor was further developed as a new breeder reactor [11].The MSR is a
generation IV reactor which has a liquid as fuel instead of solid fuel rods. The high
potential of liquid-fuel reactor comes from the following beneficial characteristics relative
to the solid-fuel reactor:

• Since the fuel is liquid it expands when heated, which slows down the nuclear
reactions, thus making the reactor self-regulated. This is caused by the negative
temperature feedback coefficient.[12].

• The MSR also has a negative void feedback coefficient. This also causes a self-
regulated behaviour [13].

• A MSR has the ability to use continuous fission-product removal. This way fission
products and actinides can be extracted. Extracted actinides can then be reintro-
duced into the fuel circuit. [12].
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• The MSR is designed such that if the molten salt is overheated, freeze-plugs at the
bottom of the reactor will melt and all the fuel salt will drain into passively cooled
critically safe dump tanks. Therefore overheating is made impossible[10].

• MSR does not operate under high pressure and does not need water as a coolant.
This makes a steam explosion impossible[12].

1.3.1 General description of the MSR

Figure 1.2: Generation IV MSR with multi-reheat helium Brayton cycle[11]

In a Molten Salt Reactor, as displayed in figure 1.2, a molten fluoride salt with dissolved
fuel flows into a reactor core. Here fission reactions take place within the fuel salt. After
flowing through the reactor core, the fuel salt reaches the primary heat exchanger. The
heat is transferred from the fuel salt to a secondary molten salt coolant. The secondary
molten salt coolant transfers the heat to the Brayton cycle to produce electricity or a hy-
drogen production facility.

1.3.2 Fission Products

As the fission activity of thorium is depending on the available neutrons, it is important to
remove elements that can also absorb free neutrons. Noble gases like xenon and krypton
should therefore be removed to prevent so called neutron poison [14]. Besides neutron
poison, noble metals tend to form metallic particles, which can plate out on the metal
surfaces of the reactor which can cause damage[11]. These noble metals should therefore
also be extracted from the molten salt. The properties of some noble gasses and metals
are displayed in table 1.1 and 1.2. The liquid in the Molten Salt Reactor is a composition
of LiF − BeF2 − ThF4(70%− 18%− 12%), which forms a molten salt. Its properties are
displayed table 1.3.
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Name Symbol Atomic number Density(g/cm3)
Xenon Xe 54 5.9 ∗ 10−3

Krypton Kr 36 3.73 ∗ 10−3

Table 1.1: Noble gasses present in a Molten Salt Reactor which
need to be extracted to prevent neutron poison[15, 16]

Name Symbol Atomic number Density(g/cm3)
Molybdenum Mo 42 10.22
Technetium Tc 43 11
Ruthenium Ru 44 12.2
Rhodium Rh 45 12.44
Palladium Pd 46 12.02

Table 1.2: Metallic particles present in a Molten Salt Reactor
which need to be extracted to prevent them from plating out to

the inside of the reactor[17, 18]

Name Density ρ g/cm3 @ 900◦K Kinematic viscosity ν mm2/s
Molten Salt [19] 3.098 1.40 ∗ 10−2

Table 1.3: properties molten salt

1.4 Research goals

To extract particles out of a Molten Salt Reactor, helium bubbles can be used. The hy-
drophobic particles will attach to the gas bubbles and will float to the surface. There
the particle-bubble aggregate will detach and the particles can be extracted. This process
is called flotation. Since flotation is depending on several correlated variables it is very
hard to make a physical calculation to predict the total extraction efficiency of flotation.
Therefore, a model is needed. Because some variables are correlated, a reduced model
is made. This work looks into the possibilities to make a reduced model by varying the
variables particle size R, particle density ρ and volumetric gas flow rate V̇.



Chapter 2

Flotation process

Flotation is a separation process which can be used to achieve online fission-product
removal inside a Molten Salt Reactor. The primary aim in flotation is to attach hydropho-
bic particles to gas bubbles which will carry the particles to the surface. A froth zone
forms where the particles will separate from the bubble and can be collected [20]. The
flotation process is depending on several interactions and parameters such as internal
forces, particles properties and chemicals used [21]. The forming of a particle-bubble
aggregate which is necessary for flotation can be divided into three main steps. These
are particle-bubble collision, attachment and detachment. This can be seen from the fol-
lowing formula which describes the probability of a particle being collected by a bubble
[22]:

P = PcPa(1− Pd) (2.1)

in this equation Pa is the probability of attachment, Pd the probability of detachment and
Pc is the probability of collision.

Probability of collision

The probability that particles will collide with each other depends on the particle size Dp,
bubble size Db and the flow regime around the bubble. As there is not a single relation
between Pc and the ratio Dp/Db, which describes the whole range of bubble sizes, a
general relation is derived:

Pc = A
(

Dp

Db

)n

(2.2)

Where the variables A and n are given for four different flow regimes. Stokes describes
the probability of collision for the smallest bubbles ( Re� 1), the second and third equa-
tion give variables in the intermediate bubble sizes and the potential limit for the biggest
bubbles (80 < Re < 500 [23]) [22][24].

5
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Flow conditions A n
Stokes 2/3 2

Intermediate 1 3/2 + (4Re0.72)/15 2

Intermediate 2
3
2

[
1 +

3/16Re
1 + 0.249Re0.56

]
2

Potential 3 1

Table 2.1: flow conditions and their variables

Figure 2.1: Effects of bubble size on collision efficiency under
given flow conditions [24]

In figure 2.1 the different flow regimes are plotted according to experiments done by
Yoon [24]. It becomes clear that Stokes underestimates the collision probability unless
the particles size becomes sufficiently small. The potential approximation overestimates
the experimental values. The intermediate approximation, in the figure referred to as
’Yoon and Luttrell’ and ’Weber and Paddock’, give a good estimate of the outcome.

Probability of Attachment

The probability of attachment is mainly affected by the way the bubbles are distributed
and how much the contact area is already covered with particles. Besides, the particles
have to be sufficiently hydrophobic to be able to make a strong enough attachment [25].
Both the flowrate and the hydrophobic characteristics of the particles are high enough to
make the assumption that the majority of the particles will collide with a bubble and if
the time of sliding is long enough the particle will attach.
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Probability of Detachment

For small particles Pd is negligible because of its low inertia and considered equal to 0
[24]. When the diameter increases the detachment forces outweigh the attachment forces
and therefore the particle detaches from the bubble. The upper grain limit is the size of
a particle for which the kinetic energy of the particle to the energy required or particle
detachment is reached. The theoretical upper grain size limit of floatability Rp,max can be
calculated from the following force balance [26, 27]:

4
3

πR3
p,maxρpbm =

2
3

πR3
p,maxρFl g

[
1−

2ρp

ρFl
− cos3ω∗ +

3h
2Rp,max

sin2ω∗−

3
a2R2

p,max
sinω∗sin(ω∗ + θ)

]
− πR2

p,maxsin2ω∗
(

2σ

RB
− 2RBρFl g

) (2.3)

Where ρp is the density of particles in g/cm3, bm is the turbulent acceleration in cm/s2,
ρFl is the fluid density in g/cm3, g the gravitational acceleration in cm/s2, ω∗ the stream
function of fluid flow angular frequency in s−1, θ the static contact angle in degrees, Rb
the bubble radius in cm and σ the surface tension in mN/m. This equation can be solved
numerically or by separatly plotting the kinetic energy and the detaching energy as a
function of Rp. Both Schulze and Crawford and Ralston have experimentally shown the
applicability of equation 2.3 [27].

Force balance on a particle bubble aggregate

Because of the hydrophobic characteristic of the particles used in this work and consider-
ably low probability of detachment, the aggregate is not very common to detach. How-
ever, this does not mean all aggregates are extracted. For particles which are not heavy
enough to detach, it could happen that instead of detaching, the whole aggregate sinks to
the bottom of the column. Therefore apart from the probabilities on the particle-bubble
aggregation, also the net force working on the aggregate should be taken into account.



Chapter 3

Proper Orthogonal Decomposition
and Radial Basis Functions

As can be seen in the chapter (2), extraction efficiency is depending on many variables.
Because several of these variables are correlated it is very hard to make a physical calcu-
lation on the expected extraction efficiency. Therefore, it is hard to make a model from
experimental data of the extraction efficiency. Hence, a reduced model has to be derived.
This chapter explains how a reduced model is derived for this work.

3.1 Proper Orthogonal Decomposition

To reduce the number of variables Proper Orthogonal Decomposition (POD) can be used.
The central idea of POD is to rewrite a high dimensional system of correlated variables
into a system with uncorrelated vectors. These new uncorrelated vectores ϕϕϕ1, ϕϕϕ2, . . . , ϕϕϕK
are called the Principal Components (PC’s) and form a new basis of the model. Each PC
will be multiplied by amplitudes so that each of the original data sets is described in the
following way:

UUU = ΦΦΦAAA (3.1)

Hence when the orthogonal basis ΦΦΦ is defined, a matrix AAA has to be found where the
multiplication between ΦΦΦ and AAA gives the original system UUU. The PC’s are sorted in such
a way that the first PC’s have the most information of the original data set, and the last
have almost no information. Therefore the last few PC’s can be left out without causing
significant error. Now, one can rewrite a N-dimensional system into a K-dimensional
set of uncorrelated systems where K < N, without losing too much information. The
truncated system can now be expressed as:

UUU ≈ ΦΦΦKAAAK (3.2)

3.1.1 Singular Value Decomposition

As an extension on the previous discussed method to decrease the amount of dimensions
in a system and write the system in uncorrelated vectors, the singular value decomposi-
tion approach can be used in situations of non-square matrix UUU. Considering a N × M
matrix UUU, there exists an orthogonal N × N matrix VVV1, and a M×M matrix VVV2 such that

8



3.2. RADIAL BASIS FUNCTION 9

UUU = VVV1SSS(VVV2)T (3.3)

here SSS is a rectangular N ×M matrix with only nonzero elements on the diagonal equal
to

sii = σi, σ1 > σ2 > . . . > σr > 0 r = min(M, N) (3.4)

These diagonal elements σi are called singular values of U. They give an indication of
how much variation there is in the direction of that Principal Component. Therefore the
ordering of the PC’s can be found by looking at the value of σi. The Principal Compo-
nents as described in the previous subsection are collected in the matrix VVV1

K. The reduced
system now looks like this:

UUU ≈ VVV1KAAAK (3.5)

3.2 Radial Basis Function

Collected in matrix UUU are different datasets for different inputs (nodes). In order to make
an approximation for inputs other than these node, a continuous function over the whole
input domain is needed. Radial Basis Functions (RBF’s) are used to create this continuous
function depending on the entire dataset. The approximation for this radial basis function
is a linear combination of gi, that can be written as a function of non-linear functions,
namely

f (x)x)x) ≈
N

∑
j=1

αi · gi(xxx) (3.6)

where αi are the coefficients of the linear combinations spanned up with nonlinear func-
tions gi. There are several ways to determine gi. The most common one is the euclidian
distance given by

gi(xxx) = g(||xxx− xxxi||) i = 1, 2, . . . , N (3.7)

with gi well defined, αi needs to be found to get the final continuous function. This can
be done by describing the system as follows

GGG =

 g1(xxx1) . . . gN
...

. . .
...

g1(xxxN) . . . gN(xNxNxN)

 (3.8)

ααα = [α1, α2, . . . , αn]
T YYY = [y1, y2, . . . , yN ]

T (3.9)

aaa ·GGG = YYY (3.10)

For every data set with outcomes YYY the unknown interpolation coefficients can be de-
rived. When these interpolation coefficients are know, an approximation of the outcome
can be given at any given point xxx. Because the interpolation coefficients are calculated
all at the same time and involve all known values of functions, a big advantage is cre-
ated over normal interpolation techniques. Another advantage is given by the fact that
there is no need for an regular distribution of the nodes. This means, the different inputs
do not have to be equally spaced to make an approximation. A scattered grid of inputs
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though, leads to an increase in error of the interpolation. This error is also influenced by
the choice between different RBF [28].

To obtain the most accurate prediction from the radial basis function, the radial basis
functions displayed in equations 3.12-3.15 are compared. The script defines a maximal
error for the truncated matrix. This is, the model will truncate the system until this max
error is reached. The error is defined as the L2-norm between the original and the trun-
cated matrix.

Thin− Plate splines : ||x− xj|| ln(||x− xj||) (3.11)

Linear splines : ||x− xj|| (3.12)

Cubic splines : ||x− xj||3 (3.13)

Gaussian : exp

(
−
||x− xj||

c2
j

)
(3.14)

Multiquadric :

√√√√1 +
||x− xj||2

c2
j

(3.15)

3.3 Proper Orthogonal Decomposition & Radial Basis Func-
tions

The purpose of RBF is to find a continuous function depending on input vector ppp which
describes system outcome uuu.

f (ppp) = uuu (3.16)

It is also possible to use the RBF on an already truncated system. Since this truncated
system is represented in terms of amplitudes AAA it is possible to write equation 3.16 as

f (ppp) = φ · fa(ppp) = uuu (3.17)

The same technique used for RBF can be applied to approximate fa. By multiplying
matrix AAA by matrix GGG, a third matrix is obtained which describes the system as follows:

uuu ≈ Φ · BBB · ggg(ppp) (3.18)

In equation 3.18 it becomes clear that the originally heavy calculation on a big dataset
and interpolation on it, is replaced by one matrix-multiplication. For every following
prediction for a random input, only ggg(xxx) has to be determined, since matrices φ and BBB
are constant and trained for every model. This method is used to make a model and is
summarized in figure 3.1.
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Figure 3.1: Flowchart of the operations needed to be performed in order to train the POD-
RBF model. To obtain matrix ΦΦΦ, SVD is applied on experimental results compiled into
matrix UUU [28]

.



Chapter 4

Materials and Methods

4.1 Set-up

Column

The experiments in this work were performed using the set-up displayed in figure 4.1a.
The column of the set-up has a length of 50 cm and a inner diameter of 26mm [1]. At the
top and bottom of the column there are two tube connections. The top connection is used
to insert the particles into the column and the second is to empty the column. The bottom
opening is connected to the bubble distributor with a flange connection. The bottom of
the column and its details are displayed in figure 4.1b

(a) used during experiment with 1: flotation
column, 2: sintered metal plate with airflow
through it, 3: mass flow meter, 4: Separatory

funnel, 5: Hallimond tube

(b) bottom of the column. On the left the tube
connection to extract the content of the column
can be seen. Also the flange connection to the

bubble distributor can be noticed.

Figure 4.1: set-up used (a), bottom connection (b)

12
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Hallimond tube

On top of the column is a modified Hallimond tube attached. The Hallimond tube is
equipped with a manual valve to be able to take samples during the extraction experi-
ment. The Hallimond tube has an angle of 115 degrees relative to the column. This angle
chosen to prevent the bubbles from colliding with the wall of the tube which causes par-
ticles to detach from the bubble. This angle also makes sure that the particles that will
detach at the gas-liquid interface, will not flow back into the column. Some particles that
do not enter the reservoir will form a deposit layer at the arch of the Hallimond tube. The
Hallimond tube and its deposit are displayed in figure 4.2a and figure 4.2b.

(a) empty Hallimond tube
(b) deposit of extracted particles which are

accumulated during the whole experiment but
only measured at t=60.

Figure 4.2: hallimond tube (a), hallimond tube with deposit during experiment (b)

Separatory funnel

A separatory funnel is used to insert the particles into the column via the upper tube
connection. The particles are inserted by opening the valve of the separatory funnel. By
using this valve all particles can be inserted at the same time after the bubbling is started.
As a result, it is impossible for the particles to sink to the bottom before the bubbling is
started.

Gas Supply

The gas used in the experiment is air. The air supply into the column is controlled by the
mass flow meter. The air from the line is reduced to 2 bar by a pressure controller. The
pressure meter shows the outlet of the air valve. It is important that the air input from
the line is high enough so no pressure drop will occur during the experiment. The air
valve is connected to a Bronkhorst gas controller. The eventual gas input is controlled by
two software programs: FlowDDE and FlowView. The air is inserted uniformly into the
column by a sintered metal plate through which bubbles are formed.
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4.2 Experimental Methods

This work considered three different variables. The density ρ which changes the proba-
bility of detachment, the particle size Rp which changes the probability of collision and
probability of detachment. The last variable is the volumetric flow rate, which changes
the bubble radius and Reynolds number for the experiment set-up, which both change
the probability of collision. The densities of molybdenum and iron are investigated. For
molybdenum, several different particle sizes are tested as can be seen in table 4.1. These
particle sizes are all tested for flow rates 5, 10, 25, 40, 50 and 70 sccm. For iron the particle
sizes are also displayed in table 4.1 and these are tested for flow rates 10, 25, 40 and 50
sccm.

particle Particle Size µm density g/cm3

Molybdenum
Mo

5
10 10.22 [17]
88
100
149

Iron Fe
10
74 7.874 [29]
841

Table 4.1: particles used and their size

For every size of particle, approximately 0.2g is weighted and introduced in the separa-
tory funnel with fluid. Meanwhile the airflow is started and the particles are introduced
into the flotation column. The flotation products are collected after t= 10, 30 and 60 min.
As can be seen in figure 4.2b not all flotation product was collected due to deposit at the
glass of the set-up arch. After the t=60 min sample, this deposit is collected and added to
the total extraction efficiency. Afterwards, the deposit at the bottom of the column and
the leftover particles floating in the column are collected.

When collected, the samples are filtered with filtering paper with pass-through density
smaller than 2.5µm for the particles with radius 5µm and with the density of 45µm for the
other particles.

After filtering, the filters are put inside crucibles and put into a Venticell Eco Line to
dry the filters. When dry, the filters are burned inside the Borel oven which heats up to
550◦C. This temperature is chosen to make sure all of the filter is burned. The filters start
burning at a lower temperature already, but by setting the max temperature to 550◦Cit is
made sure the filters are at least several hours exposed to a temperature above the burn-
ing temperature.

After burning the filters, the crucibles are weighted. The final weight of the particles
has to be corrected because when being exposed to air molybdenum and iron react with
oxygen in the following way:

2Mo + 3O2 −→ 2MoO3 (4.1)

3Fe + 2O2 −→ Fe3O4 (4.2)
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The eventual correction is depending on relative concentration of Mo and MoO3 and of Fe
and Fe3O4. These relative concentrations are determined by a X-ray Powder Diffraction
scan. The correction factors are given by:

MM Mo
0.12MM Mo + 0.88MM MoO3

= 0.6943 (4.3)

MM Fe
MM Fe3O4

= 0.3497 (4.4)

Hence, the total weight of the particles found has to be multiplied by the factor above to
get the real weight of the extracted particles molybdenum and iron

The liquid used to represent the Molten Salt is a water-glycerol mixture with properties
diplayed in 4.2. The water-glycerol mixture with ratio 41.5mass−% which has almost the
same kinematic viscosity as the fluid inside the molten salt reactor. Therefore the fluid
used during the experiment and the molten salt have a comparable Reynolds number.

Name Density g/cm3 Kinematic viscosity mm2/s
Water 0.998 1.004

Glycerol 1.260 1.189
Water-Glycerol 41.5 mass% 1.107 3.999

Table 4.2: properties water and glycerol whom together model
as the molten salt at a temperatur of 293 K [30]

4.3 Model

The removal rate is determined by a time function given by:

dC
dt

= k(C2 − C1) (4.5)

where k is the flotation rate constant and C is the particle concentration in mass per unit
volume . Assuming the first-order rate equation [21], the extraction rate can be calculated
as follows:

E = Emax

[
1− e−k·t

]
(4.6)

To obtain the variables Emax and k cftool matlab is used. the flotation rate constant k is
found by fitting a line with equation described in 4.6 through the extractions on t=10, 30
and 60 min. this can be seen in figure 4.3a. Next a line with equation 4.6 and a found
value k is fitted through the total extraction rate as displayed in figure 4.3b.
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(a) Fit through time dependent points t=10, 30
and 60 min.

(b) time dependent fit through maximal extractin
efficiency point

Figure 4.3: Fit with equation 4.6 through the time dependent points (a), Fit with the time
dependent coefficient k through the point of maximal extraction efficiency (b)

4.4 Neutron Flux

To validate the matlab script used, different data is used to compare the prediction from
the model and some real values. The data provided is the data of the neutron flux inside a
reactor depending on how much two fuel rods are inserted into the reactor. The distance
that the rods are inserted varies from 0 ( not inserted) to 1 (totally inserted).

First the RBF is trained for optimal c. With the optimal c, Leave One Out (LOO) is done
on 10 random points. LOO training is a way of training a model where all datapoints
are used except one. By doing this, the use of data to train on is maximised. Therefore a
model can be trained for small datasets which decreases the amount of time necessary for
doing experiments. Before the LOO validation is done, the data is truncated. An allowed
error of 10−5 % between the original and truncated data set is defined. For this small
error, the data set can already be truncated from 196 to 12 modes. The rapid decrease
in error can be seen in figure 4.4a. The result of the Radial Basis Function optimisation
is displayed in figure 4.4b. An average error of 3.4% is achieved from LOO training 10
randomly chosen points.

(a) Error with number of modes left over on the
x-axis.

(b) RBF optimisation for the neutron flux inside
a reactor.

Figure 4.4: Truncation error in figure (a) and the RBF optimisation in (b) with optimal
c=3.84
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Results

5.1 Iron

To make a model for the extraction rate of iron, a RBF optimisation is done on the time
dependent extraction rate displayed in figure 5.1a and total extraction efficiency is dis-
played in table 5.1. The RBF optimisation is shown in figure 5.1b. For the data on iron an
optimal RBF is found for the Gaussian kernel function with c=4.36.

(a) Time dependence of Iron particles with in
the legend the first number as V̇ and the second
number the particle size

(b) RBF optimisation of the time dependent
data of iron

Figure 5.1: time-dependent extraction rate of iron (a) and the RBF optimisation which
gives c=4.36 as optimal value (b)

Table 5.1: extraction efficiency of iron (%)

particle size µm ↓ flow sccm→ 10 20 25 40
10 11 28 14 13
74 15 18 11 12
841 3 4 5 6

To test the ability of this RBF with optimised c to make an approximation of the time
dependency of the extraction, LOO training is used. This can only be done for V̇ 20 and
25 from R=74 because these are the only non-limit values. If one would try this for other
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variables the RBF would have to extrapolate, which is not the aim of the RBF. The results
are shown figure 5.2. The corresponding L2-norms are respectively 29% and 37%. For
the total extraction, also LOO is applied. Again only for V̇ 20 and 25 from particle 74 an
approximation can be made. The outcome of the approximated extraction efficiency are
12% and 17% respectively. The relative L2-norm of these results are 32% and 48%. The L2-
norm is also known as the Euclidean distance and depicts the error of the approximation.

Figure 5.2: Approximation of the time dependent extraction
efficiency calculated with the Gaussian Radial Basis Function

with c=6.32

Conclusion

From the high L2-norm it can be concluded that the model is not sufficient for predict-
ing the extraction rate of iron. Especially the fact that the wrong filter was used for the
particle sizes R=10 decreases the model to train on, from the mere 12 reliable points to 8
points. These 8 points alone would not suffice as a training set because this would only
include 2 points on the particle size grid. This is not enough to do LOO training and
therefore the unreliable measurements from particle size 10 are included. These mea-
surement nevertheless, form a poor basis to train a model on. Furthermore, the particle
size grid is too irregularly distributed. The step from 74 to 841 is too big to make a good
approximation in the range around either of both particle sizes. From figure 5.1a can be
seen that there is almost no time dependency as expected. This can be derived from the
straight lines instead of the exponential dependency we expect from equation 4.6. From
this amount of data it is unclear to conclude if this low time-dependence is due to an
error in the measurements or if iron does not have a high time dependence.
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5.2 Molybdenum

For molybdenum, the time dependent extraction is displayed in figure 5.3 and total ex-
traction efficiency is shown in table 5.2.

Figure 5.3: Time dependence of molybdenum per volumetric flow rate V̇ and all
different particle sizes R

Table 5.2: extraction efficiency of molybdenum (%). *experiment conducted by dr. E.
Capelli

particle size µm ↓ flow sccm→ 5 10 25 40 50 70
5 37 43 42 56 43 43
88 33* 38 41* 35 38* 42
100 24 22 18 22 32 35
149 16* 25 25* 24 18 23

Again, an analysis of the RBF is done for Molybdenum. The results for the optimisation
for both the time dependent extraction rate and final extraction for the uncorrected data
are displayed in Figure 5.4. The optimal value is c=6.57.
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Figure 5.4: c-optimisation for the total extraction and time dependent data of
Molybdenum

With these RBF’s, LOO training can be done for particle sizes 88 and 100 µm with vol-
umetrci flow rate V̇ 10, 25, 40 and 50 sccm. The results of the time dependent approx-
imations are presented in figure 5.5. The L2 norm corresponding to the approximated
time dependence is shown in table 5.3 For the total extraction efficiency LOO predicts the
extractions shown in table 5.4. Euclidean distances corresponding with these predictions
are shown in table 5.5.

Figure 5.5: approximation made with leave one out training of Molybdenum

Conclusion

The experiments for particle sizes 88 and 149 for V̇ 5 and 10 only consist of two samples
(three if t=0 is included), which result in an irregular time dependency. This causes an
error when using data points to train on. Furthermore the V̇ 10 and 40 of particle size 5
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Table 5.3: relative L2-norm of the time dependent extraction efficiency approximation
(%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 17 35 8 10
100 18 61 43 15

Table 5.4: extraction efficiency approximation (%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 33 30 34 36
100 25 28 28 29

Table 5.5: relative error extraction rate approximation (%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 14 28 1 6
100 14 52 30 10

are straight lines which suggests that they do not have an exponential time dependence.
For V̇ 10 this can be explained by the fact that these samples are filtered with a filter with
pore size bigger than 5 µm and therefore not all extracted particles are collected. The V̇
40 experiment was conducted with the right filter, so the straight line indicates an error
in the measurement. It is unclear how the high error on V̇ 25 particle size 100 is caused.
Therefore it is assumed it is a result of an experimental error.

5.2.1 Correction

The experiments have big differences in the total percentage of particles recovered after
the experiment. To make sure the approximation is not influenced by an error due to
missing particles, the total extraction is corrected to make every total recovery of parti-
cles 100%. However, this correction only increases the error as can be seen in table 5.6
and therefore this correction is not used for further analysis. The loss of particles could
partially be explained by the fact that the correction factor from equation 4.3 and 4.4 are
not adjusted for different experiments. Some experiments may have had a longer heating
cycle which causes more oxidation. Therefore their actual weight might be different than
considered.

Table 5.6: Relative error extraction efficiency approximation from corrected data (%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 7 37 16 10
100 24 54 25 16
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5.2.2 Compensation Measurement Errors

In table 5.7 the flotation rate constants of molybdenum are shown. It can be seen that
some of the results are not in line with its neighbours. In this subsection, an attempt is
made to improve the data on physical and emperical motives.

Table 5.7: Time coefficient k from equation 4.6

particle size µm ↓ flow sccm→ 5 10 25 40 50 70
5 0.031 0.0024 0.037 3.5e-04 0.025 0.015
88 0.0082 0.024 0.047 0.028 0.0045 0.017
100 0.050 0.033 0.025 0.0087 0.016 0.016
149 2.1e-05 0.048 0.045 0.022 0.019 0.023

It becomes clear that for V̇ 5 sccm particle size 149 µm and for V̇ 40 sccm particle size
5 µm the flotation rate constants are divergent from the neighbouring ones. For the ex-
periment with V̇ 5 sccm particle size 149 µm this deviation can be dedicated to the fact
that the experiment for this point only consisted of 3 time points instead of 5. Therefore
the fit becomes an almost straight line with time-dependence coefficient k� 1.
For the experiment with V̇ 40 sccm and particle size 5 µm there is no clear explanation
for the deviation in value of the flotation rate constant. The difference could be explained
by the different sample sizes taken. Because the particles have a small radius they do not
directly precipitate. Thus not all particles extracted deposit at the bottom of the extrac-
tion reservoir. Therefore the number of particles taken is highly dependent of the size of
the sample taken. If the first samples are too small and the sample on t=60 too big, the
flotation rate constant becomes zero and the extraction rate becomes a straight line.

To see how much error these two experiment cause while training on them, new flotation
rate constants are predicted by extrapolation. The suggested flotation rate constants can
be found in table 5.8. The new LOO trained time dependent extraction efficiency is dis-
played in figure 5.6. The error corresponding to the new approximation can be found in
table 5.9. The extraction efficiency does not change for different flotation rate constants
and can still be found in table 5.2.

Table 5.8: Suggested time coefficients k from equation 4.6

particle size µm ↓ flow sccm→ 5 10 25 40 50 70
5 0.031 0.0024 0.037 0.033 0.025 0.015
88 0.0082 0.024 0.047 0.028 0.0045 0.017
100 0.050 0.033 0.025 0.0087 0.016 0.016
149 0.054 0.048 0.045 0.022 0.019 0.023

Table 5.9: the relative L2-norm of the time dependent extraction of the compensated data
(%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 17 34 7 11
100 18 60 42 15
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Figure 5.6: approximation made with leave one out training of the manipulated data.

Conclusion

From the error found in table 5.9 it can be concluded that the two bad flotation rate
constants do not influence the rest of the data much. However it is likely the constants
were wrong and new measurements are therefore required.
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5.2.3 Validation

To validate the used model some off-grid point will be approximated by the model and
tested with experimental data of this input. The point with volumetric flow rate V̇ 15
sccm and particle size 30 µm is tested.

Figure 5.7: validation for the point R=30 V̇=15 trained on the original data

In figure 5.7 the predicted outcome of the time dependent extraction efficiency and the
measured data can be seen. The total L2-norm for the time dependence is 24%. The total
expected extraction is 36 and has an relative L2-norm of 21%.

Conclusion

From this validation experiment it can be concluded that the model could work. The
error of 24% and 21% could be reduced if there is more data.
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5.2.4 RBF versus Interpolation

Radial Basis Functions are particularly good in modelling complex systems with several
variables. Because our system has only got two variables it may seem redundant to use
a RBF. The RBF uses more computer power and it would therefore be favourable if an
interpolation would suffice. The results of an interpolation for the total extraction are
shown in table 5.10 and its error in table 5.11

Table 5.10: relative error extraction rate approximation with RBF (%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 14 28 1 6
100 14 52 30 10

Table 5.11: relative error extraction rate approximation with interpolation (%)

particle size µm ↓ flow sccm→ 10 25 40 50
88 36 39 17 23
100 45 85 64 8

Conclusion

From the results of the interpolation we can conclude that the Radial basis function is a
better way to model the data than an interpolation.
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Conclusion

The approximation of the extraction efficiency for iron is not sufficient. This is due to the
low amount of reliable data available, which causes errors of 29% and 37%. For molyb-
denum more data was available which reduced some errors to only 8%. Though, some
experiments still had a relative error as high as 61%. By correcting the data these errors
did not improve. The model does not improve drastically when compensating irregu-
lar results. However from physical and empirical point of view, the measurements were
wrong and new measurements are therefore required. The validation test showed a 21%
error in extraction efficiency and 24% in the time dependent approximation.

The used method provided measurements with much deviation. The method should
be improved for further use in a follow-up study. The set-up needs to be improved to
make the sample size constant. Furthermore, more experiments need to point out if the
measurement errors can be prevented.

The model itself has proven to be appropriate during the approximation of the neutron
flux. For molybdenum the model also performed better on RBF than on interpolation.
Unfortunately there are not enough data points to give a very precise prediction and the
influence of the particle density is not included in the model yet.
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Recommendation

To lower the error in time-coefficient, a second valve could be introduced after the cur-
rent valve of the Hallimond tube. By placing a second valve, a constant volume can be
introduced between the two valves. If all samples are the same size, it is less likely to
underestimate or overestimate the time-coefficient.

Moreover from the results it becomes clear that extra measurements have to be done
to improve the model. To improve the range of particles sizes, experiments with radii
outside the current particle size domain should be done. To improve the accuracy differ-
ent particle sizes inside this domain should be included.

Furthermore to get the desired model which is also trained for different particle densities,
several types of particles need to be examined in the same particle size R and volumetric
flow rate V̇ domain as iron and molybdenum. An evenly distributed grid for volumetric
flow rate, particle size and particle density are desired to improve the accuracy.
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