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Abstract

The aim of this research is to investigate if the CFD code Fluidity, designed
at Imperial college is capable of simulating the heat and mass transfer of
the coolant in the Pebble Bed Very High Temperature Reactor (PB-VHTR).
The PB-VHTR is one of the new designs proposed by the Generation IV
intiatiative for safer and more fuel-efficient nuclear reactors, and is sched-
uled to be commercially exploitable in 2020. The Fluidity code is a finite
element based CFD code, with special capabilities for adaptive remeshing.
To verify the code, four test cases simulating both non-thermal and thermal
flows have been investigated, as well as a simulation of flow trough a frac-
tion of a pebble bed. The results show that for simple geometries, like 2D
Poiseuille flow trough a tube, as well as more sophisticated flow patterns,
like a Von Karman Vortex street behind a 2D cylinder, accurate results can
be obtained, including correct predictions of the Strouhal number. Thermal
flow simulations, like the 2D forced convection around a sphere have been
tested and Nusselt relations have been verified. To get results in compliance
with well-researched Nusselt relations, very fine grids were required, although
the adaptive remeshing code can cut calculation time. The reactor core was
simulated using an adaptive mesh containing 5 pebbles. The results showed
that the power output results are in compliance with other research. The
drawbacks of Fluidity are the lack of a dynamic LES model, which is par-
ticularly important when simulating thermal flows, since the dependence of
the behavior of the heat flow on the Smagorinsky coefficient is large in such
simulations, the impossibility to code the heat production equations inside
the reactor pebbles (constant boundary temperatures were used in the sim-
ulation), and the lack of the possibility to directly calculate the steady-state
flow pattern in a geometry.
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Chapter 1

Introduction

The Chernobyl disaster brought the post-war nuclear era to an end: the
public opinion changed radically, nuclear power was not an option anymore,
and almost no new nuclear plants were built afterwards. However, the oil
dependency of the modern economy and the signs of a climate change due
to the emission of COy caused by the burning of fossile fuels are asking for
a wide investigation for alternatives to the current fossile fuel economy. One
of the main alternatives is still nuclear power. The development of new
reactor types, bundled in the Generation IV initiative, shows that a lot of
the current objections to nuclear energy can be resolved, including safety
concerns, nuclear waste production and non-proliferation. One of the most
promising new designs is the Very High Temperature Reactor (VHTR), which
uses graphite pebbles containing the nuclear fuel. This reactor type promises
inherent safety characteristics and a high fuel efficiency rate.

1.1 The Very High Temperature Reactor

Around 1950, the first ideas arised of using spherical elements containing
the fuel and the moderator. These spheres are resistant against very high
temperatures up to 1600 Kelvin, a temperature that is much higher than
the highest reached temperature during operation and in reactor accident
scenarios.

1.1.1 Pebble bed reactors

In 1966 the first research reactor based on the pebble bed principle was built:
the AVR (Arbeitsgemeinschaft Versuchsreaktor) in Jiilich, West-Germany,
which had a capacity of 45 Megawatt. Because of the capability of the spheri-
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cal fuel elements to withstand high temperatures, this reactor was considered
inherently safe: no measures had to be taken in case of accidents. Multiple
tests were successfully run in this reactor, including loss-of-coolant accident
scenarios. However, after the Chernobyl disaster and some operational prob-
lems the reactor was shut down. After the AVR, another commercial plant
using spherical fuel elements was built in Germany: the 770 MW Thorium
High Temperature Reactor, which was capable of breeding U** out of tho-
rium, a possible alternative for the widely used uranium, because Thorium is
available in large amounts in the earth’s bottom. However, the plant suffered
from bad design and financial problems and was forced to shut down after 1
year of service and some accidents that released small amounts of radioactive
gases into the environment.

In 2000 the Chinese research plant HTR-10, the 10 MW High Temperature
Reactor, reached first criticality. This reactor has been built as a prototype
for commercial-scale plants of the HTR Pebble-bed Module (HTR-PM) type:
a 250 MW modular reactor, which is planned for completion in 2013. Also
South-Africa is developing a Pebble-bed reactor, the 400MW Pebble Bed
Modular Reactor. In figure 1.1, a schematic view of the HTR-10 reactor is
shown. Helium is used as coolant. Because of it’s low reactivity properties
the helium won’t become radioactive, and because it is in the gas phase dur-
ing operations, no phase-change will occur, which prevents a fast increase in
pressure. The continuous flow of pebbles through the reactor makes a con-
tinuous energy production possible, without the need of shutting down the
reactor for refueling. The pebble flow causes a random stacking of the peb-
bles in the reactor core, which influences the heat production slightly during
operation [27].

1.1.2 The Very High Temperature Reactor

In 2001, the Generation IV International Forum was found: an initiative of
13 member states (including the European Union) which aims at the devel-
opment of the next-generation nuclear plants, featuring safer, more efficient
and less waste-producing reactor designs. One of the designs is the Very
High Temperature Reactor: a further development of the Pebble Bed Reac-
tor, that features a higher outlet temperature, which allows for more efficient
energy production. This reactor is not only capable of producting electricity,
but also offers the possibility of producing hydrogen and heat for chemical
processes, because of the high outlet temperature. The first commercial-scale
operating plant design is expected around 2020.
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Figure 1.1: Schematic view of the HTR-10 reactor. Picture taken from [18§]
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1.2 Previous research

One of the focuses in the research of the Very High Temperature Reactors
is the temperature profile in the reactor core during operation. Since the
temperature in the core of the VHTR reaches significant higher values than
in conventional Pebble Bed Reactors, accurate information is needed to be
sure that the temperatures don’t reach critical values, even in accident sce-
narios. Temperature calculations in the AVR and THTR reactor seemed to
predict lower values of the temperature in the core than the highest tem-
peratures in the pebbles reached at the AVR, which was measured after the
reactor shutdown[16], which is unacceptable in the VHTR design. Since the
design of the reactor includes a continuous process without the need of re-
actor shutdown for refueling, the pebbles are constantly moving through the
reactor core and no devices are available to measure the core temperature
profile. This creates the need of accurate calculation techniques. To describe
the behavior of the helium flow between the pebbles, computational fluid
dynamics are used. A typical VHTR design contains around 500.000 peb-
bles [14], which makes it impossible to calculate the flow through the whole
reactor using CFD, since the computational power required for this kind of
calculations is far out of reach. Different ways have been used to model the
reactor core. For example [17] uses a 2-phase porous medium approach and
compares the results with a conventional cfd-calculation over a small part
of the pebble bed. They conclude that the porous-medium approach gives
reasonable results for the average behavior, but local effects cannot be ob-
tained using this approach. In [14] a more sophisticated CFD code is used to
determine local effects in the core. However, it remained difficult to compare
the computational results with experimental data.

1.3 Aim of the research

At the Applied Modelling an Computation Group from Imperial College in
London, a new finite-element based CFD code has been developed: Fluidity.
This code has the capability of dealing with complex geometries and offers
features as adaptive remeshing and temperature calculations. The aim of
this thesis is to compute the flow of helium and the transfer of heat in the
pebble bed core using the Fluidity code and to determine if Fluidity is useful
for reactor core calculations.
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1.4 Outline of thesis

In chapter 2 the governing equations of thermal flow are discussed. Chapter
3 gives an overview of the numerical model Fluidity uses and the available
options. In chapter 4 a few test cases are run to check the output results of
Fluidity, as well as different calculation options. Chapter 5 shows the setup
and the measurement results from the pebble bed calculations and chapter 6
shows the conclusions of the project as well as possibilities for further results.



Chapter 2

Governing equations

To be able to simulate flow and heat transfer phenomena in the pebble bed
reactor we need a correct, complete and closed mathematical description of
the phenomena. In this section the governing equations of mass, momentum
and heat transport are being discussed. In section 2.1, the mass equations
are discussed, in section 2.2 the momentum equations, and in 2.3 the energy
equations are treated.

2.1 Mass conservation

The flow of fluids must obey a set of conservation laws. The important laws
which are needed to describe the flow are conservation of mass, momentum
and energy. In case of mass we can easily write

dM
=0 (2.1)

because we assume no destruction or production of mass during the process.
To use this equation we need to use the concept of control volumes and control
mass. A control volume is a arbitrarily chosen volume somewhere in the flow
being analyzed, a control mass is the same, except being a mass rather than
a volume. The conservation laws must hold for every chosen control volume.
Now the conservation laws can be seen as a kind of bookkeeping. The change
in the amount of the conserved quantity is what flows in minus what flows
out. We define the intensive form of the conservation law, in which the
conserved quantity gets independent of the size of the volume or mass. In
the case of mass conservation we use the density (p). To re-obtain the total
mass we just integrate over the volume €2 [2]:

/deQ =M (2.2)
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When applying the conservation law on a control volume we get the conser-
vation equation. In case of mass it becomes [2]:

2/de—l—/p’v'nszo (2.3)
ot Jq I

With I' the complete boundary area of the control volume, and v-n the total
velocity perpendicular to every boundary element. With Gauss’ theorem this
can be rewritten into the form:

% + V- (pv)=0 (2.4)

This equation is called the continuity equation.

2.2 Momentum conservation

Momentum in the intensive form can be expressed by the density times the
velocity:

p=pv (2.5)
In case of the momentum equations, we get an extra production term in the
integral equation:

2/pde+/pvv~ndF—Zf (2.6)
ot Jq r

This production term is caused by 2 kinds of forces: forces acting on the vol-
ume (gravity, electromagnetic forces etc), and forces acting on the boundary
(pressure terms, surface tension, shear stress etc).

2.2.1 The Newtonian Stress Tensor

In many cases we can make the assumption that the fluid we are analyzing
is a Newtonian fluid. Such a fluid is defined[1] as a fluid for which holds:

T = ua—y (2.7)

for a 2D flow in the z-direction, with 7 being the shear stress term, and u
the dynamic viscosity. Now the Newtonian Stress Tensor can be constructed

[2]:
T:—(p+§uv-v>l+2uD (2.8)

With I the unity tensor, p the static pressure, and D the tension tensor:

D= % [Vv + (V’U)T] (2.9)
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2.2.2 The Navier-Stokes equations

When filling in the stress tensor in equation 2.6 we get the following result:

2/p'de—i-/p'vv-NdS:/T~ndS+/pbdQ (2.10)
ot Jq S S Q
With Gauss’ theorem this can be rewritten into:

0

%Jrv-(pvv):v-mrpb (2.11)

In this equation all the forces acting on the volume (so-called body forces)
are collected under the term b. Equation 2.11 is called the Navier-Stokes
Equation and is the basic equation for flowing phenomena in fluids. The
equation is closed: all terms, except the velocity v have been defined, so
in theory our problem is solved. Unfortunately, the Navier-Stokes equation
is a nonlinear partial differential equation, for which no exact solution is
known, except in rare easy cases. Even the existence and uniqueness of the
solution have not been proved yet. To be able to use these equations for fluid
dynamics, numerical methods must be employed to find a solution for the
velocity field. This will be discussed in chapter 3.

2.3 Energy conservation

We’re not only interested in the velocity field, but also in the temperature
field in the flowing medium. To solve for the temperature we use the conser-
vation law for energy, so the conservation equation can be used again. There
are two ways heat is transported through the fluid: Diffusion and advection.
Advection is the transport of heat due to the motion of the fluid. Diffu-
sion is the phenomenon that heat is transported to the fluid on a microscale
from molecule to molecule. It is described on macroscale by the Fourier heat
conduction law([1], for which the 1-dimensional version reads:

dq oT
o~ or

q is the heat flow per square meter, A the thermal conductivity and T the
temperature. Plugging in into the conservation equation leads to [2]:

(2.12)

2/pTdQ+/pTv-71,dF:/pC’p)\VT-ndF (2.13)
It Jo r r

We make two approximations about the specific heat C,, of the fluid here. It’s
both constant in time and independent of pressure and temperature. Now
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we have a closed equation, with only the temperature field 7" as unknown.
Again we use Gauss’ theorem to rewrite the equation:

opT

% +V - (pTw) = V - (pC,VT) (2.14)
When a source term is present it can be incorporated in the equation with
an extra term s. This leads to a so-called advection-diffusion equation:

opT

e + V- (vpT — pC,NVT) = s (2.15)

2.4 Initial and boundary conditions

We have derived the equations for the temperature and velocity field, but not
yet treated the initial conditions to start the calculations. At first, the initial
conditions for the fields must be set. Initial conditions define the values
of the velocity and temperature at the start of the simulation. Secondly
we define the boundary conditions, rules applied to specific areas in the
simulation that must be met during the whole time the simulation runs.
There are two different kinds of boundary conditions: Dirichlet and Neumann
conditions. There are also two commonly used boundary conditions that
represent more or less real’ circumstances, which are based on Dirichlet and
Neumann conditions: the no normal flow condition for vector quantities, like
velocity and the zero flux condition for scalar quantities like temperature.

Dirichlet

A Dirichlet boundary condition imposes a defined value of the variable on
the boundary, for example T}, 10, = 0, meaning that the inflow temperature
is zero. For the velocity field, we define this boundary condition as a vector,
but we can also limit it to certain directions, for example v, = 1, with no
further constraints on v, and v..

Neumann

A Neumann boundary condition defines the first deriverative of a quantity
on the boundary:

VT -n=q On the boundary I' (2.16)

This can be used for example to define a temperature gradient on a boundary,
or a zero-flux condition, whereby the normal component of the gradient on
the boundary must be equal to zero.
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No normal flow

The no normal flow condition imposes a Dirichlet boundary condition with
v, = 0, to the flow perpendicular to the boundary. This is a way to simulate a
domain boundary that is not a wall, but an infinite space. It also incorporates
momentum conservation: when applied to a boundary, no momentum will
flow through this boundary.

Zero flux

A zero flux boundary condition imposes a Neumann boundary condition of
zero to the normal of the domain. Using such a boundary condition ensures
no scalar quantity can flow out of or into the specified boundary. This is
similar to an insulating boundary for e.g. the temperature field. It also acts
as an energy conservation condition: no thermal energy can enter or leave
through the boundary with an applied zero flux condition.

2.5 Approximations

To calculate all the effects in the fluid requires a lot of computational power.
To avoid this, some approximations can be made in the Navier Stokes equa-
tion to speed up calculation. In this research two additional approximations
are made for the Navier Stokes equation, besides the assumption that the
fluid is Newtonian, which was used in paragraph 2.2.1 to obtain the Navier
Stokes equations.

2.5.1 The Boussinesq approximation

The density of fluids encountered in many applications doesn’t vary very
much during the simulation. The Boussinesq approximation supposes that
the variation in density of the fluid is only relevant when dealing with gravity
terms and that the difference in inertia is negligible. The correctness of this
assumption is mainly related to the temperature differences occurring in the
flow. Due to this approximation, the Navier Stokes equations are simplified:

ov

pog + poVov =V - T+ pb (2.17)

in which py represents the averaged density. The equations can be simplified
even more when the density is considered as constant throughout the simula-
tion. This will eliminate the density-dependent body force term in equation
2.17: pb ~ pyb Now the density has become independent of the velocity field.
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2.5.2 Incompressible fluids

Another approximation can be made for the fluid, namely the incompressibil-
ity of it. Most fluids and gases for which the Mach number Ma = v,,42 /Vsound
is low (Ma < 0.3) can be considered incompressible. This follows from the
following relationship[24]:
o Ma? (2.18)
p
Then when Ma < 1, the term dp/p approaches zero. Incompressible fluids
are fluids for which the divergence of the velocity field is zero: (V- v = 0).
Now the Newtonian stress tensor simplifies to

T = —pl +2uD (2.19)

This is a simplification of equation 2.8.



Chapter 3

The numerical model

Equation 2.11 and equation 2.15 are closed equations and it should be pos-
sible to find a solution, when the boundary conditions are sufficient. The
non-linearity of these equations makes it impossible to solve them analyti-
cally, as discussed before, so we have to use numerical methods to evaluate
the equations. Computational fluid dynamics (CFD) software contains such
numerical models. The research has been conducted with the Fluidity CFD
code developed by the Applied Modelling an Computation Group at Imperial
College in London. This chapter is dedicated to the numerical discretizations
used by Fluidity to solve the differential equations. Both space and time
must be discretized in order to solve the model numerically. In section 3.1
the spatial discretization , and in section 3.4 the temporal discretization is
discussed.

3.1 Spatial discretization

There are a number of methods to discretize the domain spatially. Three of
these methods are most widely used|[3]:

1. Finite Difference Method
The finite difference method makes use of the difference approximation
of the deriveratives of a function: f(a) =~ (f(a + h) — f(a))/h. The
domain on which the differential equation must be solved is divided in
a grid, with the gridpoints as step size h of the difference equation.

2. Finite Volume Method
The finite volume method divides the area of the flow on which the
equations must be solved into small volumes. Every volume contains a
node, that holds a value the quantities to be calculated, then the whole
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volume is expected to hold that value. The time is also discretisized
into small steps. At every timestep, the difference of nodal values at
the boundary between 2 volumes determines the amount transported
between volumes. Due to this transport, the nodal values change, and
a new timestep can be started. This process can be repeated until a
steady-state has been reached: a simulation has reached a steady state
when the nodal values don’t change anymore at new timesteps.

3. Finite Element Method

The Finite Element Method is similar to the Finite Volume method
in the way that the domain is spatially and temporally discretisized,
but now, the nodal value is not supposed to be the value of the whole
volume element. The method looks for a piecewise linear function that
connects all the nodes and satisfies the differential equation. This leads
to a function of the calculated quantity that is defined everywhere on
the domain.

3.1.1 The finite element method

The finite element method is used by Fluidity to solve the Navier Stokes equa-
tions and the temperature equations. This method consists of a few steps.
At first, the mathematical model must be constructed to define the physical
problem. This has been done in chapter 2, and brought us to the equations
just mentioned. After that, both space and time have to be discretized. The
spatial discretization process is called meshing. When simulating a 2D flow
problem in a square, a mesh could look like figure 3.1

3.1.2 Shape functions and the weak formulation

Take for example the 1-dimensional Fourier Heat Equation!

d*T
—-K— = 3.1
I (3.1)
on the domain 0 < x < [. We have 2 boundary conditions: the Neumann
boundary condition —KdT'/dx = q on x = 0 and the Dirichlet boundary
condition T'= T}, on x = L. When Q is constant, the exact solution to this
equation is known:

T(z) =Ty + %(L — )+ %(L2 —2?) (3.2)

!The discussion of the Finite Element Method presented here is based on [25]
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Figure 3.1: Example of a 2D mesh
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Figure 3.2: 1D finite element spatial discretization example

For most problems we have to solve, no exact solution is available. To solve
such equations the same approach is used as given below, and is called the
Galerkin weighted residual method. The first step is to discretize the domain
in elements, noted eg: e, = {z:x <o < xRy}, see figure 3.2. The end
points x, and xp,; are called nodes. The solution to equation 3.1 is now
approximated over every element by a predefined set of functions dependent
on z, denoted by ¢;(z). These functions are called shape functions, and their
weighted sum must approach the final solution:

n+1

T(z) = Z a;d; (3.3)

with n the number of elements. In practice, the solution 1" obtained from
equation 3.3 will not be exactly equal to the true solution of equation 3.1, so
we can define a residual R:

d*T

R(T,2) = —K—— —Q (3.4)
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Now we introduce the weighting function W (z) which aim is to make the
residual zero in the following way:

/ W R(T, 2)dr = 0 (3.5)

The Galerkin method is used to determine the weighting function W. The
function is set equal to the shape function ¢(z):

Wiz) = éi(x) (3.6)

The number of unknown parameters a; is equal to the number of shape
functions ¢;. This guarantees existence and uniqueness of the solution. The
next step is to determine the shape functions. The most simple case is the
linear approximation: ¢; is linear over the corresponding element. However,
when combining equations 3.5 and 3.4 we obtain

/0L¢()< K%—Q)day:o (3.7)

This expression contains higher-order deriveratives, which are present in the
‘real’” solution 7', but vanish when T is linearly approximated over the ele-
ments and gives discontinuities at the nodes. Integration by parts provides
a solution. Using integration by parts, equation 3.7 can be rewritten into

d dT dT
/0 K404 / 6Qdr — K65 1k =0 (3.8)

All higher-order deriverative terms have now disappeared, but this equation
still contains exactly the same information as equation 3.1. This form of the
differential equation is called the weak formulation. Linear approximations
over the elements have now become useful, since they have a nonzero first
deriverative. Adding equation 3.3 leads to the following expression, which is
called the Galerkin form:

n+1l [n+1
Z[ZK(/O Zﬁ”ﬁl‘md) /@Qdm@( ZZ)M]_O
j=1

i=1

(3.9)
When the shape functions are known, this problem only has 7+ 1 unknowns:
a;. An example of a linear approximation over elements is shown in figure
3.3. The problem can now be written into a matrix equation. The procedure
to do this is called the assembly procedure.
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Figure 3.3: Example of a linear approximation in 1D

3.1.3 The assembly procedure

First we have to define our shape functions. These functions are linear and
every node has his own shape function. Continuing the 1D example:

To — T < <
N={ Tp—a T1=T=" (3.10)
0 otherwise

for the first element. For all the elements in between:

T — T
szl Tiog ST ST
Ni = ?E—:i Ty S XS Tig (3.11)
3
0 otherwise
and for the final element:
T — Ty
= n_ gz <z<zx
Npp1 =4 Tnpt —Tp 0 =7 = onil (3.12)
0 otherwise

Now the weak form of the differential equation over the whole domain is
divided into equations over every element:

Z/ - ( K—T—Q> —0 (3.13)

and T can be expressed as:

T =Y Nix)T; (3.14)
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For simplicity in mathematical notation we now take 2 elements with length
L/2. This leads to the following expression of the differential equation:

S (P2 dAN; (s dN; ] ar\ 1
{5 () v [ ().

i=1
L2 AN; (<= dN; i ar\ 14"

K— —2T | = N; N; | - K— =0 (3.15

o e (S ) e ()] f =0 o

This equation can be splitted in equations corresponding to each element.

7=1
When these equations are combined, this leads to the following system of
equations:

1 -1 0] [y 1 q
oK l
0 —1 1 Ty 1 — (—Kﬁ—g)x:l

This equation is solvable algebraically when T3 is known (T,—; = T3), due
to the boundary condition term in the right-hand side of the equation. The
above method is easily expandable to higher-order shape functions and di-
mensions. This generally leads to very large systems of equations that must
be solved.

3.1.4 Using the method in 3 dimensions

The example of the preceding paragraph is a 1D example, although the prob-
lems that must be solved are mostly in 3D. The finite element method can
easily be used in 3D. To do so, the shape functions must be replaced by their
3D counterpart. When the domain is meshed by tetrahedra, every element
is defined by 4 nodes: (a,b, c,d), and when linear shape functions are used,
the nodal value ¢ is defined as:

O = aq + apT + azy + ayz (3.17)
This leads to an element matrix for the 4 nodes defining the element:

ol I o oy 2| |aa
¢2 1 T2 Yz 29 (6]
¢3 1 23 ys 23| |3 (3.18)
G4 1 2y ya 2| |ois
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To get the volume of every element the following relation is used:

Ty Y1 oz

T2 Yz 22 (319)
T3 Y3 Zz3

Ty Ya Zz4

V = —det

—_ = = =

3.2 Solvers

To solve the matrix equations of the form Ax = b arising from the finite ele-
ment method, for example equation 3.16, the traditional method of Gaussian
elimination would cost too much computational power, so iterative methods
are used to approximate the exact solution. Fluidity uses the PETSc library
of matrix solvers and preconditioners to solve the systems of equations. The
goal of the solvers is to minimize the residual 7, of the approximate solution
at the n-th iteration:

r, =b— Ax, (3.20)

After every iteration, a new guess is made for a:
Tp—1 = Ty, +Cp, (3.21)

When the residual is small enough, the approximate solution «x,, is said to
be converged.

3.2.1 Conjugate Gradient

The conjugate gradient method is an iterative method, which can be applied
to real symmetric positive-definite matrices. The system of equations for the
pressure field in fluidity is such a matrix. The algorithm from table 3.1 is
used[7]. This algorithm requires A and P to be positive definite. P is the
preconditioner matrix, which will be discussed in the next paragraph. The
conjugate gradient method is fast and reliable, but not applicable to non-real,
non-positive-definite matrices.

3.2.2 GMRes

To solve matrices which cannot be handled by the conjugate gradient algo-
rithm, the Generalised Minimum Residual method can be used. The method
constructs a basis of orthogonal vectors based on the Arnioldi iteration pro-
cess. For a complete description of this method, see [19]. This method
gives accurate results, but is significantly slower than the conjugate gradient
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Table 3.1: Algorithm for the Conjugate Gradient method
xg= 0,79 :b,to = 8y = Pil'r‘o,k’ =0
while (7, t;) > €(ro, to)

o = (’l‘k, tk)/(sk, ASk)
T = xp + aksy

Tiky1 = Tk — Oék?ASk
Solve Pty 1 = 7111

Br = (Trg1, tegr) /(T tr)
Sk41 = trg1 + Bisk
k=k+1

0 end while

= O 00 O O Wi

method, so it is only useful for solving non-real and non-positive definite
systems of equations, when the conjugate gradient method is not capable of
solving the system. This is the case for the velocity and temperature field.

3.2.3 Preconditioning

Even with an iterative method, solving a system of equations can consume
a lot of time. To reduce the amount of time needed for calculation, precon-
ditioners are used. The aim of a preconditioner is to create a new system of
equations with a lower condition number. The condition number of a ma-
trix is the ratio between the largest and smallest eigenvalue. The lower the
condition number, generally the faster the system can be solved. In Fluidity
the main preconditioner is SOR: Successive Over Relaxation:

M = (D+ L)YD™ (D + L)* (3.22)

Solving the new system M ~!Ax = M~'b will reduce calculation time signif-
icantly.

3.3 Meshing and adaptive remeshing

To get accurate results using the Finite Element method, a suitable mesh
must be created. By using a finer mesh, results will become closer to the real
solution, however, the calculation time will grow when the mesh is refined.
So the mesh must be chosen in a way that the results are close enough to the
real solution, but small enough to keep the time needed to process within
bounds. There are 2 ways of using meshes in the simulation:
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1. Using a predefined mesh: before the simulation starts, define a mesh
and use this mesh throughout the simulation.

2. Adaptive remeshing: adapt the mesh during the processing to capture
details where needed and use bigger elements where appropriate.

3.3.1 The predefined mesh

The Fluidity code can read meshes from the 'GMSH’” mesh format: meshes
created by the open source code GMSH 2. With this program, the geometry
is defined and can be meshed. The geometry is defined with points and
lines connecting the points. The characteristic element size can be defined
on every point, so the mesh can be refined or coarsened at certain points.
GMSH can mesh the geometry using a variety of algorithms:

2D algorithms

1. Meshadapt
2. Delaunay
3. Frontal

3D algorithms
1. Delaunay
2. Frontal

Since the aim of this research is 3D simulations, we briefly discuss the De-
launay and Frontal algorithms here.

Frontal meshing

Frontal meshing is the most straightforward method. Define nodes at all the
boundaries of the domain and then start to expand into the domain, until
it’s completely covered.

Delaunay meshing

The Delaunay mesh algorithm makes use of Delaunay the triangulation prin-
ciple [23]. A triangulation of a collection of nodes V' is the collection of
triangles (or tetrahedra in 3D) that connects all vertices without any line of
any triangle intersecting any other. A circle is empty when there is not any

2See http://geuz.org/gmsh/
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Figure 3.4: Example of a Delaunay triangulation, picture from [23]

node inside (Nodes on the boundary are allowed). Now, an edge for which
a circle exists that circumscribes this edge and is empty is called Delaunay.
When every edge has a empty circumcircle, the triangulation is called a De-
launay triangulation. See for an example figure 3.4 The Delaunay meshing
algorithm now looks for non-Delaunay edges in the mesh, and changes the
mesh, until it’s completely Delaunay. There are a few algorithms to do so.
See for example [23]. The advantage of a Delaunay algorithm is that is max-
imizes the minimum angle between edges, so the aspect ratio of the elements
remain small. Small aspect ratios give more accurate results in the Finite

Element Method[10].

3.3.2 Adaptive remeshing

One way of improving the calculation while minimalizing the computational
power required is adaptive remeshing: changing the mesh in a way that the
mesh is detailed where needed and coarse where possible. The scheme used
by fluidity is developed by C.C. Pain,, A.P. Umpleby, C.R.E. de Oliveira and
A.J.H. Goddard and documented in [11]. A brief overview (based on [11]) is
given here. To calculate the quality of the mesh, the following functional is
to be minimized:

§ = ¥, (3.23)

In which F'is a vector containing all elements of the domain, defined by

= % S (02 + ()’ (3.24)

leLe
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where £, is the set of all edges in element e and p is equal to 1. In this
functional, the first term describes the size of the element, and the second
term describes the shape.

The metric

The metric used in equation 3.24 is made dependent on the desired error. In
a multi-dimensional grid, the metric is defined as

=1\ (3.25)
€

with v = 1, and € the desired interpolation error. H is the Hessian of the
field that is adapted to.

The term ¢; from equation 3.24 is defined as §; = r; — 1 with r; the length
of edge §; with respect to the metric M. It’s constructed in such a way that
the edge length [ becomes 1 with respect to the metric M when the desired
interpolation error € has been reached. The shape function ¢, is defined as:

Q@

Qe py 1 (3.26)
o being 1/(2v/6) and p, the radius of the inscribed sphere of element e with
respect to the metric. Now, the adaptive remeshing code makes changes to
the mesh and compares the changed mesh with the old mesh. When the
change of the mesh results in a lower value of § = ||F[,, the change is
accepted, otherwise, it’s rejected. This process is repeated until the desired
interpolation error bound has been reached.

3.4 Temporal discretization

Time is also discretisized in the simulation. Unlike some other CFD codes,
Fluidity can’t be used to do time-independent steady-state calculations. Since
the amount of transferred quantity is time-dependent, it’s necessary to dis-
cretisize the time in a way the solution of the computational problem rep-
resents the real fluid behavior. Fluidity works with timesteps, at which the
equations are solved. After a sufficiently converged solution is calculated for
a certain timestep, a new timestep will start.

3.4.1 Explicit and implicit control

The timestep discretization process is the algorithm that replaces the time-
dependent deriveratives in the governing equations by a numerically solvable
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system. One of these methods is the so called ©-method. The ©-method
replaces the time deriverative by a simple difference:

du (™) —u(t)
— = 3.27
dt At ( )
The ©-method uses the parameter © to control the discretization process:
u(tn+1) _ U(tn)
At

The parameter © must be on the interval [0,1]. Three choices of © are
common:

=Ou" + (1 - O)u" (3.28)

=1 Backward implicit method
© =1/2 Crank-Nicolson-Galerkin method (3.29)
©=0 Explicit Euler forward scheme

For all the values of © except © = 0, the value of ™" must be obtained

implicitly from this equation. The methods differ in accuracy and stability,
and all methods with ® < 1/2 are not unconditionally stable. The most
widely used method is the Crank-Nicolson-Galerkin method, which is always
stable, and gives accurate results when the timestep is small enough. The
timestep size is discussed in the next paragraph. When the timestep becomes
too big, the method will show oscillatory behavior, which is a non-physical
outcome of the equations[25]. The explicit timestepping algorithm (© = 0),
is only conditionally stable, and the numerical accuracy is lower[2].

3.4.2 Courant Number and adaptive timestepping

When the timesteps are getting too large, the distance some quantities ad-
vect along the elements, can get longer than the cell size. This will make
the results obtained in the affected area unusable, since they don’t repre-
sent a mathematical correct solution. To avoid this situation, the Courant
Friedrichs Lewy condition must be met [9]:

At
v <1 (3.30)
with [ the smallest length element in the mesh, and At the timestep. To
get accurate results, but optimize calculation speed, the timestep size can be
adapted to meet this condition. For the Crank-Nicolson method, the Courant

number: At

CFL = ’UT (3.31)
must also be equal to or smaller than 1 at every element to prevent oscillatory
behavior of the solution[2].
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3.5 Turbulence modelling

The flows which are going to be simulated are in the high-Reynolds-region,
which imposes that turbulence effects will occur. The multiscale character
of turbulence makes it impossible so solve for the smallest vortices in the
flow, due to the limitations in computational power. To include the effects of
turbulence into the simulation, a model is needed to incorporate the turbulent
strains.

3.5.1 Large Eddy Simulation

Since the larger eddies in a turbulent region depend mostly on the geometry,
and the smaller eddies don’t, the aim is to solve only for the large eddies and
use a sub-gridscale model for the smaller eddies. The Navier Stokes equation
in incompressible form is rewritten [2] into

— +pV - (9B) =V -T+pb (3.32)

where v is the above-gridscale (average) velocity. The stress tensor T is then
defined as
T = —pl +2(u+ p)D (3.33)

The next step is to find the correct value of y;, the sub-gridscale eddy vis-
cosity. The most widely used method to determine p; is the Smagorinsky
model.

3.5.2 The Smagorinsky model
The Smagorinsky model used by Fluidity is[4]

pe = pC2M ™!

D( (3.34)

The metric M from the adaptive remeshing process described in paragraph
3.3.2 is used as the filter scale in Fluidity. C; is the Smagorinsky coefficient
and D is the above-filterscale tension tensor, as defined in equation 2.9.

3.5.3 The Smagorinsky coefficient

To close the Smagorinsky model, the value of s needs to be determined.
Entering the correct value of C is important: the value of the coefficient
directly influences the rate of turbulent dissipation. There is, however, no
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‘correct’ value of the constant. One of the used expressions is for example

22]:
1/ 92 \34
Co=—|— 3.35
7r <3a> ( )
Where o &~ 1.5 is the Kolmogorov constant, which leads to a value for Cy of

0.17. There are, however, various studies which report values between 0.065
and 0.25, for example [4], [2] and [12].



Chapter 4

Model validation

To check if the results obtained from the CFD code are in accordance with
real results, four test case have been run. The first two tests (in paragraph
4.1 and 4.2) are 2D tests to check if the calculations done on the velocity
field lead to useful results. The last two tests are a 2D (paragraph 4.3) and
a 3D (paragraph 4.4) test in which the temperature field is checked.

4.1 2D Laminar flow through a tube.

The first test case is the laminar flow through a tube at low Reynolds numbers
(RE << 2000). In such case, a Poiseuille flow will occur in the tube. For the
Poiseuille flow, an exact solution of the Navier Stokes equation exists, so it
can be easily compared.

4.1.1 Physical parameters and geometry

For this case the physical parameters are used as in table 4.1. For such a flow,
the solution to the Navier Stokes equation is known as the Hagen Poiseuille

Table 4.1: Physical parameters for the 2D tube test case

Property Dimension Value

Tube length m 1

Tube diameter m 0.1

Inflow velocity m/s 1.0 - 1073 uniform over the inflow
Dynamic viscosity | Pa - s 1.0-1073

Density kg/m? 1000
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Figure 4.1: Mesh of the 2D tube case

Law/[1]:

o 32/Lvinflow[/
IR
with Ap the pressure drop over the tube, d the tube diameter, viy,fi0, the

mean inflow velocity and L the tube length. Filling in the values of table 4.1
in equation 4.1 leads to an expected pressure drop of 3.2 - 1073 Pa.

Ap (4.1)

4.1.2 Numerical discretizations

The mesh used in this calculation is shown in figure 4.1. A timestep size of
0.01 seconds is used and the simulation stops after 10 seconds. As temporal
discretization, the Crank-Nicolson scheme is used for it’s numerical stability
and reliability.

4.1.3 Results

The simulation returns a pressure drop of 3.1-1073 Pa, which is close to the
expected value. Also the characteristic parabolical shape of the velocity field
over the tube diameter is observable, when compared to the theoretical graph,
see figure 4.2. The difference between the expected result and the computed
result, although not big may have a few causes, the numerical discretization
may be too coarse, and the Hagen Poiseille law only holds for tubes where
the inflow is already fully developed, e.g. not uniform, but parabola-shaped.
Since the inflow in this case is uniform and has to develop, the pressure drop
may be different.

4.2 2D Flow past cylinder

The second test case is the simulation of a 2D non-thermal flow. This is a
standard CFD test case, so both numerical and experimental data are widely
available. This makes verification of the obtained results very easy.
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Figure 4.2: Flow velocity over the tube diameter (black) compared with the
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Table 4.2: Physical parameters of the 2D flow past cylinder test case

Property dimension value
Inflow velocity m/s 1
Density kg /m? 0.01
Dynamic viscosity | Pa - s 2.8-1075
Reynolds number | - 100

4.2.1 Physical parameters and geometry

A non-thermal flow is being simulated. The geometry is shown in figure 4.3.
The fluid properties of this case are listed in table 4.2. In this test case, a
periodic oscillation is expected to occur in the domain[5]. This oscillation
is called vortex shedding and causes a Von Karman vortex street in the
wake behind the cylinder. To verify this case, the Strouhal-relation is used.
The Strouhal number is the dimensionless parameter of the frequency of the

oscillation and is defined as[6]:

_Jd
St = = (4.2)
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Figure 4.3: The used geometry with the boundary conditions

Table 4.3: Settings for the 2D flow past cylinder case
Test run no. ‘ Interpolation errorbound Timestep

1 0.04 0.001
2 0.06 0.001
3 0.06 0.005

Where f is the oscillation frequency and v the mean inflow velocity. There is
a strong empirical relationship between the Strouhal and Reynolds number,
which is discussed in section 4.2.3.

4.2.2 Numerical discretisations

In this test case the adaptive remeshing option of Fluidity is tested, as de-
scribed in section 3.3.2. Three test runs have been computed, each with a
different value of the desired velocity interpolation error bound. The timestep
size is 1-10~*s. The Crank-Nicolson scheme is used as temporal discretization
as in the previous test cases. Three test cases have been run. The description
of the test cases is listed in table 4.3. To simulate sub-gridscale turbulence,
a large eddy simulation model is used, as described in section 3.5.1. The
Smagorinsky coefficient C used is 0.1, which is the recommended value for
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Table 4.4: Test results for the 2D flow past cylinder case
Test run nr. ‘ Run time Maximum no. of nodes Strouhal-number

1 1330 min 19500 0.224
2 754 min 11810 0.243
3 502 min 103500 err

most cases [4].

4.2.3 Results

The results of the 3 test runs are listed in table 4.4. The timestep size of
test run 3 was too big, so the Courant number exceeded 1. This caused an
overshoot around the cylinder, which resulted in a non converging solution
after t = 5.57. Because of this overshoot, no vortex street was visible in
the wake after the cylinder. It also led to a rise in the number of nodes
needed in calculation. Because of this, this measurement must be considered
as unusable. The other two simulations showed the expected vortex street
behavior in the cylinder wake, see figure 4.4. The Strouhal number of the two
simulations gave values around 0.2, which is in accordance with the various
existing computational and experimental data available, which predict values
of St between 0.16 and 0.31 for Re = 100[6][5]. The difference in literature
data may be caused by small geometry differences and boundary condition
settings. Most of the simulations use a no-normal-flow condition for the side
boundary instead of a no-slip condition. However, the obtained results are
in accordance with the expected values. The problems in test run 3 show
that it is important to watch the Courant number carefully, and make sure
it does not exceed 1.

4.3 2D Forced convection around cylinder

After the verification of the velocity field, the thermal flow model must be
validated. The 2D forced convection around a cylinder has been chosen to do
this job, because extensive research had been conducted about the Nusselt
relation of this case[8], so the results can be easily checked.

4.3.1 Physical parameters and geometry

The geometry is a simple rectangle with a cylinder in it, see figure 4.5. In con-
trast to the non-thermal flow validation case from paragraph 4.2 the outside
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Table 4.5: Physical and model properties of the 2D forced convection case
Quantity Value
Kinematic viscosity | 2-107°
Thermal diffusivity | 2-107°
Prescribed density | 1
Reynolds 500
Prandtl 1
Cylinder perimeter | 0.1

Table 4.6: 2D forced convection case test settings
Test Run ‘ Abs. Vel. interpl. Errorbnd. Errorbnd. as % of vingow

1 0.001 1%
2 0.002 2%
3 0.008 8%

wall boundary condition has been changed from a no-slip to a no-normal-
flow condition. Using this boundary conditions, all the heat transferred to
the fluid must flow out of the boundary at the top when steady state has been
reached. All the relevant physical and model parameters are listed in table
4.5. This case is extensively researched, and the following Nusselt relation
has been found [8], assuming constant viscosity:

Nu = (0.4Re'/? + 0.06Re*?)Pr'/* (4.3)

leading to a expected Nusselt number of 12.7. The Nusselt number can be
extracted from the steady state simulation result. To do so, the surface
integral of the velocity times temperature over the outflow must be taken,
which yields the total heat flux: ¢g = pc, [, vo(T — Tp)dA. Then Nusselt is

given by:
¢Q

71-(T,sphere - T‘inﬁow) A

Nu = (4.4)

4.3.2 Numerical discretizations

The simulation has been run several times, with different setting for the
adaptive remeshing error bound. The different settings are listed in table
4.6. To overcome the problems with the Courant number exceeding 1, as in
the 2D flow past cylinder case, an adaptive timestepping algorithm is used
in this case, which changes the timestep in such a way that the Courant
number never exceeds a selected value. In this test case, the maximum
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Table 4.7: Results of the 2D forced convection case
Test Run ‘ No. of nodes Mean timestep Averaged Nusselt number

1 17000 0.0015 15.6
2 11000 0.002 16.3
3 2500 0.0035 18.3

allowed Courant number is 0.9. The same LES model is used as in the 2D

flow past cylinder case with the same value for the Smagorinsky coefficient:
C, =0.1.

4.3.3 Results

As expected in the 2D cylinder case, vortex shedding occurred, so there is
no steady state, and the energy outflow is not constant over time. The mean
output energy over one period had to be calculated. This led to the results
in table 4.7. As seen from the results, the Nusselt number seems to converge
to a lower value as the number of nodes increases, and test run 1 is within a
fair range of 25 percent of the measured value, the same variance as reported
in [8]. In literature, different values of the Smagorinsky coefficient are used.
When the grid is coarse, the Smagorinsky model will have a greater impact
in the calculation results than when the grid is fine. It is difficult to obtain a
good value of this coefficient which gives accurate results for a specific case.
Recently new models have been developed, which use a local value for the
Smagorinsky coefficient at each node, see for example [14]. Unfortunately,
the Fluidity code doesn’t contain such a model. Since the results of the
simulation strongly depends on the subgridscale turbulence modelling, which
in itself depends on the value of the Smagorinsky coefficient, the value of this
number must be chosen carefully.

4.4 3D Forced convection around sphere

The last test case is a 3D sphere with a uniform temperature placed in a flow
with a constant inflow temperature. Since a Nusselt relation in known for
this case, it is a good check for all the parameters in 3D.

4.4.1 Physical parameters and geometry

This simulation uses the geometry and boundary conditions as in figure 4.6.
The temperature gradient at the outer walls is zero (Neumann boundary
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Figure 4.6: Geometry of the 3D sphere forced convection case

Table 4.8: Used constants at the 3D sphere forced convection case

Dynamic viscosity 2.107°
Density 1
Thermal diffusivity (ﬁ%) 2.10°"
Pr 1

Re 5000
Pe 5000

condition). The inflow temperature is zero and the sphere temperature is
100. All the used physical values are listed in table 4.8. This case has
been extensively researched, which has led to the following Nusselt relation
(under the assumption that the viscosity is constant i.e. not varying with
temperature)[8]:

Nu=2+ (0.4Re1/2 + 0.06Re2/3> P (4.5)

In this case Nu is determined by measuring the total energy outflow:
bg = pCp/ v, - TdS2 (4.6)
Q
Now the heat transfer coefficient h is defined as [8]:

_ ¢q
A4 d2AT (47)
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Table 4.9: Test results of the 3D forced convection case
Test case ‘ Velocity error bound Temp. error bound Nodes Nu

1 0.6 45 11000 34,3
2 0.4 30 36000  26.2
3 0.2 15 154000 41.8

And Nu is defined as

Nu = 5% (4.8)

In this case, equation 4.5 gives Nu=46.

4.4.2 Numerical discretizations

In this simulation, adaptive remeshing is used with various parameters. The
Smagorinsky LES model is used to simulate turbulence effects, which are
expected due to the high Reynolds number (Re = 5000). The value of the
Smagorinsky coefficient C; = 0.17, the same as used in the Pebble Bed simu-
lation in [14]. Three simulations have been run with a varying interpolation
error bound, so coarse and fine meshes were checked.

4.4.3 Results

The results of the various measurements are listed in table 4.9.  As can
be seen, the values for Nu are below the expected value, but when the grid
becomes fine enough, the value of Nu approaches this value. Run 2 gives an
unexpected result: the Nusselt number lies 42% below the expected value,
while the highest measured deviation from equation 4.5 reported by [8] is
30%. So, to make accurate predictions of the temperature field, the mesh bust
be very fine. The interpolation error bound can be calculated as a percentage
of the input velocity and temperature. This leads to a relative value of the
interpolation error bounds: €l = €™ /Uinow and € = e/ Tiifow

velocity temperature

rel = 0.2 for the velocity interpolation error bound and

velocity
eiginperature = (.15 for the temperature interpolation bound for test case 3,

which returned adequate results.

which leads to ¢



Chapter 5

Pebble Bed simulation

The main aim of this research is to determine if Fluidity can be used to do
thermal calculations on the coolant flow in VHTR reactors. In order to check
this, a small part of a pebble bed is simulated. In this chapter, the set-up and
results of the pebble bed simulation will be discussed. The following para-
graphs are about the geometry, boundary conditions and simulation settings.
The results are discussed in paragraph 5.5.

5.1 Geometry

Since the computational power required to do a complete DNS calculation
over the whole pebble bed is too big, even for the world’s fastest computers,
a small domain of the pebble bed is taken for simulation. The geometry of
the simulation is a 3D non-random pebble stacking, consisting of 9 pebbles,
6 half pebbles, 12 quarter pebbles and 8 1/8 pebbles, as shown in figure 5.1.
The pebbles have a diameter of 5 centimeter and a space between them of 1
centimeter. These values have been chosen, because Fluidity is not capable
of processing two pebbles touching eachother(Processing such a geometry
leads to non-converging systems of equations), which would be the case if 6
cm pebbles would have been chosen in the same domain. This geometry can
be considered as a sort of unit cell: when the same geometry is placed on top
of or next to the first one, it still represents a pebble bed. This pebble bed
has a packing fraction of 45 %.

5.2 Properties of helium

Helium is used as coolant in the pebble bed reactor. The properties of helium
are listed below and are valid in the ranges 1-10°Pa < p < 1-107Pa and



Pebble Bed simulation

40

=a

wog

Figure 5.1: 2D cross section and 3D view of the geometry

239K < T < 1773K.

Density
The density of helium in the reactor core is given by[15]:

-6 P 6 P \!
48.14 - 10 T(1+0.4446~10 ﬁ)

Specific heat
The specifc heat of helium is given by|[15]:

J
Cp = 5195@

Dynamic viscosity
The dynamic viscosity is given by[15]
p=3.674-10""T°7

Thermal conductivity

The thermal conductivity of helium is given by[15]:

A=2.682-107% (1 + 1.123 - 10~ %p) TO7H(1-2107"%)

(5.3)
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Table 5.1: Physical parameters of the core calculations
Quantity Value
Background pressure | 3 MPa
Mean temperature 773K

Diffusivity 3.1-1075
Density 1.86%

Dynamic viscosity 3.86-107°Pa - s

Other physical parameters

The viscosity, density and thermal diffusivity terms are constant, using the
equations from section 5.2 and a temperature of 773K and an inlet pressure
of 3MPa. The diffusivity term is defined as:

A

a=—
pCy

(5.5)

This leads to the values as in table 5.1.

5.3 Boundary and initial conditions

Velocity boundary conditions

The coolant is modeled to flow downwards. At the top of the geometry, a
Dirichlet Boundary condition is applied with v, = 0.71m/s. This value has
been chosen to represent the flow rate in the Chinese HTR-10 test reactor,
which uses a mass flow of 4.3kg/s[18], which leads to an average flow speed of
0.6m/s in the pebble bed reactor at a packing fraction of 60 %. Aiming at the
same mean helium velocity at this simulation leads to an inflow velocity of
0.71m/s, because the inflow area is relatively small compared to the average
flow area. At the pebble boundaries, a no-slip condition is applied, and at the
side boundaries a no-normal-flow condition is applied: the normal component
of the velocity at the side boundaries is zero. This approximates the periodic
character of the geometry. The background pressure is 3MPa, a typical value
for a pebble bed reactor|[18].

Temperature boundary conditions

The pebble boundaries are at a constant temperature of 800 K, which is a
typical value for the temperature inside the reactor core, since the aim of the
VHTR reactor is to reach temperatures between 500 and 1200K. The helium
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Table 5.2: Adaptive remeshing settings for the core calculations

Setting Value
Velocity interpolation error bound 0.15 m/s
Temperature interpolation error bound | 4K
Minimum edge length 4-107*m
Remeshing period in timesteps 20

inflow temperature is 773K. The temperature difference of 27K is typical
for the pebble bed reactor and calculated in [21]. The low temperature
difference between the helium and the pebbles makes it possible to neglect
the temperature dependency of the physical properties of helium and take
them as constant. The side boundaries carry a zero-flux boundary condition,
so no heat is transferred from or into the domain.

5.4 Numerical model

The simulation uses the adaptive remeshing code of Fluidity , with the set-
tings as listed in table 5.2. The interpolation error bound settings are based
on the same relative errors as in the 3D forced convection case in paragraph
4.4.3: € rarure = 0.15 of the the temperature difference of 27K leads to
an errorbound of 4K and €}¢,,,,, of the inflow velocity of 0.71 m/s leads to
a bound of 0.15 m/s. To deal with turbulence effects, large eddy simulation
is used, with the Smagorinsky coefficient Cs = 0.17, the same value as used
in the LES simulation of a pebble bed in [14]. An adaptive timestepping is

used, with a maximum Courant number of 1.

5.5 Measurement results

The simulation has been run using the setting from the preceding sections
on the TUDelft HPC11 server cluster using 2 cores for faster calculation
times. After 2200 variable timesteps, a total time of 0.5 seconds has been
simulated. This led to a mesh with 350.000 nodes. The calculation took 14
days. The main fields that have been calculated are the pressure, velocity
and temperature fields, and the results of each field will be discussed here.
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Figure 5.2: Pressure field at x-normal

5.5.1 Pressure field

The pressure field at the x-normal at the middle of the domain in the steady
state is shown in figure 5.2 The pressure drop over the simulation area is
about 7 Pascal. For packed beds, the average pressure drop can be estimated
by the Ergun relation[28]:

Ap [ 150p (1—7)
N

1 35 (1-7) ) )
— Uy | Vs 5.6
dpebble ’73 2 P dpebble 73 ( )

with v the packing fraction. This leads for the parameters of our simulation to
an expected pressure drop of 17 Pascal, a value within the order of magnitude,
but still about a factor 2 higher than the simulation value. This may be
explained by the fact that our domain is very small, containing only a few
pebbles, and the Ergun relation, which is based on the average pressure drop
over large packed beds, could break when used in very small domains. Also
the fact that the simulated domain is a set of ordered pebbles not touching
eachother could cause differences with the expected value, which is based on
a randomly filled packed bed. The fact that our simulation domain is small,
and the velocity boundary condition is uniform at the inflow could cause
differences, because the flow pattern must develop.

5.5.2 Velocity field

The z-velocity fields of the x-normal at the origin and x = 0.04 are shown in
figure 5.3. The z-velocity varies between -2.9 m/s and +1.1 m/s. The pres-
ence of positive values of the x-velocity points at the occurrence of vortices
in the simulation. There are indeed areas in the domain which show such
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Figure 5.3: Z-velocity at the x-normal at the origin(left) and = = 0.04(right)
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Figure 5.4: Typical vorticity behavior between 2 vertically adjacent pebbles

behavior, especially in the small areas between 2 vertically adjacent pebbles.
A detailed view of such a vortex is shown in figure 5.5.2.

5.5.3 Temperature field

A x-normal cross section of the temperature field at x = 0 and xz = 0.04 is
shown in figure 5.5 The difference between the inflow temperature and the
mean outflow temperature is 16K. A Nusselt relationship for pebble bed flow
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Figure 5.5: Temperature field at the x-normal at the origin(left) and = =
0.04(right)

has been proposed by Gnielinski[29]:

Nu=(1+15[1—1])

2 0.037%0'8&

1 +2.4438e 7% (Pr% _ 1)
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Filling in all values, with AT = 27 leads to Nu = 64, 3, with Re = 1446 and
Pr = 0.67, which results in A = 162W/m?K. The measured value, obtained
in the same way as the 3D forced convaction case from paragraph 4.4, is
dgy = 676.4]/s. This results in a heat coefficient h = 199.3W/m?K, which
is somewhat higher than the expected value. According to the fact that the
Nusselt relation is based on large randomly-filled packed beds, a deviation
between the calculated results and the Nusselt relationship of equation 5.7
can be expected. However, it is within the range of 20%, which, taking all
the simplifications into account, is acceptable.



Chapter 6

Conclusion

The aim of the research is to investigate if the Fluidity CFD code is capable
of doing calculations on pebble bed cores. The research contains two parts,
the 4 test cases and the pebble bed calculations.

6.1 Test cases

The four test cases have shown a few requirements for the simulations to
produce useful results. The momentum calculations are in accordance with
the expected results, but the thermal calculations must be treated carefully:
coarse grids can cause results that differ significantly from experimental data.
The lack of a local adaptive Smagorinsky coefficient model makes results of
the LES turbulence model questionable. However, with a fine grid and the ap-
propriate value of C acceptable results are produced. The adaptive remesh-
ing code is proven to produce usable meshes, however, the interpolation error
bound setting € must be set carefully, because too big values render results

which differ from expected outcomes. It showed that €< ... = 0.15 and
egiﬁocity = 0.20 provide results which are within 25% of the expected value,

which is within the error marge expected in these cases.

6.2 Pebble bed calculations

The core calculation in this project is a simplified model. The main simpli-
fications are:

e The temperature of the pebbles is uniform at the boundary, in contrast
with the real situation, where the boundary of the pebble varies with
the local flow regime and the properties of the fission process inside.
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e The pebble stacking in the simulation consists of pebbles which do
not touch each other and are not randomly stacked. This led to a
packing fraction of 45 percent, which is lower then real pebble beds
with percentages of about 55-60 percent packing fraction.

e The simulated domain is a 12 by 12 centimeter cube, which is only a
small part of a reactor.

Taking these simplifications into account, reasonable results were obtained for
the pressure drop and the heat transfer coefficient (within the 20% range).
This shows that Fluidity is capable of doing calculations on such geome-
tries and generate acceptable results. Still, the simplifications used in this
research, makes the obtained results unusable for real reactor core calcula-
tions. This means that, in order to be able to use Fluidity for this kind
of calculations, which require a more complete physical model without the
simplifications used here, the code needs some additional features.

6.3 Recommendations

Some missing features of the current Fluidity code can be implemented to
improve the results of this simulation, including;:

e A dynamic Smagorinsky model: such models have already been devel-
oped, and are proven to improve the obtained results.

e A new way for handling heated or cooled objects: now only Neumann
and Dirichlet boundary conditions can be applied to such objects. The
addition of customizable heating and cooling options, such as a constant
heat production option, could make the software more applicable to
more problems.

e The equation of state options in Fluidity are not capable of dealing
with more complex state equations, such as temperature dependency
of the density and diffusivity. Coupling these equations could improve
results.

e Periodic boundary conditions: Instead of a no normal flow velocity and
zero flux temperature conditions at the side boundaries, the boundary
values at each side could coupled to the other side, by using periodic
boundary conditions. Using this approach could deliver more accurate
results.
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e The ability to create meshes with pebbles touching eachother will make
simulations with higher packing fractions possible.

Another issue of the used CFD code is the fact that there is interaction
between the fissile process inside the pebbles and the temperature of the
coolant and the pebbles. In order to make the calculations on heat production
and heat transfer more accurate, the energy production process equations,
the thermohydraulic calculations inside the pebbles and the coolant flow
behavior could be coupled.
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Used symbols

Appendix A

Used symbols

A.1 Units

Symbol definition dimension
a Thermal diffusivity m? /s

b Body force N

C, Specific heat J/KgK
Cs Smagorinsky coefficient -

d Diameter m

D Tension tensor -

e Element number -

f Frequency hz

f Force N

g Gravitational acceleration =z

h Heat transfer coefficient mVQVK

I Unity tensor -

L Object length m

M Mass kg

M Metric -

n The normal -

N; Node number -

P Pressure Pa

P Mean pressure over time Pa

D Momentum kg/m?s
q Heat flow J/m?
Q Heat generation per unit volume J/m3s
S Source term -

t Time S

T Temperature K

w

Weight function
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Symbol definition dimension
T Newtonian Stress tensor -

v Velocity m/s

v Velocity (vector form) m/s

v Mean velocity over area  m/s

0 Mean velocity over time m/s
T, 2 Cartesian coordinates m

Q@ Kolmogorov constant -

vy Packing fraction -

r Domain boundary -

€ Interpolation errorbound -

A Thermal conductivity W/mK
14 Dynamic viscosity Pa-s
v Kinematic viscosity m? /s
) Density kg/m?
00 Bulk density kg/m?
T Shear stress N/m?
) Shape function -

%) Heat flux J/s

Q The domain -

A.2 Dimensionless numbers

Symbol Name Definition
CFL Courant number u%

Ma Mach o fmd

Nu Nusselt hT

Pr Prandtl -

Re Reynolds pvd ”7‘1
St Strouhal é
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