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Abstract

This research investigates whether the CFD code OpenFOAM can be used
to simulate the mass and heat transfer through a nuclear pebble-bed reactor.
OpenFOAM is a finite volume, open-source CFD program, which has the
advantage that the code can be changed to suit the user. This research
focusses on the Pebble-Bed Modular Reactor (PBMR-400), which is a nuclear
reactor design based on the pebble-bed type, of the generation IV initiative,
with as major advantages passive safety and online refuelling. In this reactor
the fuel is contained in pebbles, which form a randomly packed bed through
which helium coolant flows. Many other CFD codes have simulated the mass
and heat flow of the PBMR, and serve as a computational benchmark for
this reactor.

To verify the OpenFOAM code, four test cases simulating mass and heat
flow have been investigated, as well as a simulation of the mass and heat
flow through the PBMR. The one-dimensional pressure drop case showed
that discrete steps in porosity cause local fluctuations in the pressure and
velocity field, which can lead to errors on coarse meshes, but should not in-
fluence the final results of a pebble-bed reactor, because these reactors are
large compared to the local fluctuations. The two-dimensional laminar flow
case showed the code is capable of solving Poiseuille flow. The Achenbach
pressure drop case showed that the KTA relation would describe Achen-
bach’s measurements better than the code, which uses Ergun’s relation, and
predicted a pressure difference of 70 % for Reynolds numbers of a PBMR,
around 4 ∗ 104. The analytical heat transfer case was solved correctly.

The PBMR computation showed a good agreement with the axial coolant
and pebble temperature profiles, but differed by 20 K, because the bench-
mark did not account for absorption of energy due to expansion in the anal-
ysis of conservation of energy. The calculations showed that this term should
not be ignored in conservation of energy. The boundary conditions for heat
flux through the walls could not be computed with the code, so artificial
boundary conditions were used. The computation also used a different Nus-
selt relation for the heat transfer from the pebbles to the fluid, and used
a simplified pebble-pebble heat transfer relation. This caused an error in
the radial temperature profiles of the coolant and pebbles. The computed
pressure drop over the pebble-bed was 75 % higher than the benchmark sug-
gested, which was explained by the use of different pressure drop relations,
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as predicted by the Achenbach test case. The OpenFOAM code is thus capa-
ble of solving the mass and heat flow through a nuclear pebble-bed reactor,
especially if Ergun’s relation is replaced by the KTA relation.
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Chapter 1

Introduction

After the Chernobyl disaster, the world’s point of view on nuclear energy
changed radically. Nuclear energy was not an option any more and since
then almost no nuclear power plants have been built. However, with the
greenhouse effect becoming ever more visible and the heavy oil dependence
of the economy, alternatives need to be sought for fossil fuel. Sustainable
energy is one of the alternatives, but is still not a practical energy source,
and nuclear energy has become the most viable option for the world’s energy
supply. New nuclear reactors have been developed, under the Generation IV
initiative, that have found ways to circumvent former drawbacks. One of
these new nuclear reactor types is the pebble-bed reactor, discussed in this
thesis.

1.1 The Very High Temperature Reactor

Just after the second world war the first ideas of a pebble-bed reactor arose,
and several years later the idea of a nuclear powered pebble bed took shape.
This idea was conceptually different from normal nuclear reactors, because
of the combination of fuel, containment, structure and neutron moderator.
The pebbles used in this concept are also highly temperature resistant, re-
sisting up to 1600 Kelvin. This temperature is much higher than the highest
registered temperature in nuclear reactors during normal operation and even
during reactor accident scenarios. Also, this makes the pebble-bed reactor
inherently safe, because during an accident, active cooling is never necessary.
This type of reactor allows for online refuelling, which means the reactor does
not require a shut-down any more. The pebbles pass through the pebble bed
and at the exit the status of the pebbles is checked. The pebbles can pass
the reactor many times, which ensures a better usage of fuel, since frequently
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passing through the reactor takes care of the space-dependance of uranium
usage [12].

In 1966 the Arbeitsgemeinschaft Versuchreaktor (AVR) was built, be-
ing the first pebble-bed research reactor. It had a capacity of 15 MW and
a power density thirty times smaller than a light water reactor, for safety
considerations. After 21 years of successful research the AVR was decommis-
sioned in 1988, due to the recent disaster at Chernobyl and some operational
problems. After inspection of the bed and removal of most of the pebbles,
the bottom reflector appeared to be broken, which made the AVR the most
heavily beta-contaminated nuclear installation worldwide [16].

The Thorium High-Temperature nuclear Reactor (THTR-300) began op-
eration in 1983 and was designed to breed usable uranium from thorium,
which is plentiful in the earth’s surface, during service. The reactor was put
out of commission rather quickly due to poor design, that caused accidents
releasing small radioactive quantities into the environment, and financial
problems [22].

The High Temperature Reactor (HTR-10) began operation in the year
2003. It was designed as a prototype for a commercial scale 250 MW mod-
ular reactor. Current research is focussed on two pebble-bed reactors. One
type is situated in China, the High Temperature Reactor-Pebblebed Mod-
ules (HTR-PM), designed to produce 250 MW of thermal energy per module.
Construction started in 2009 and completion is expected in 2013. The other
type is located in South-Africa, the Pebble-bed Modular Reactor (PBMR-
400), of which a schematic view is given in figure 1.1. The design started in
1999, but due to financial problems, the design process has slowed down. The
PBMR-400 is only in its design phase, but a lot of computational work has
been done on this reactor type, because it has been made a computational
benchmark [7]. Steady-state and transient situations regarding the thermo-
hydrolics and neutronics have been computed and serve as a benchmark for
CFD programs focussed on pebble-beds.

1.2 Previous Research

Computational research on pebble-bed reactors is necessary because physical
experiments with pebble-bed reactors cannot provide a full description of
the pebble-bed, without altering the set-up. Without a full description of a
pebble-bed reactor, it cannot be used safely.

Determining the flow around all of the pebbles inside the reactor core,
in the order of 100.000 to several million pebbles, is a task far out of the
current computational reach. Some CFD calculations focus on small parts of
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the reactor, determining the flow around several pebbles and using this in-
formation to extrapolate behavior in the total pebble-bed [15]. This method
gives precise information of local heat gradients, but fails to give a good
macroscopic view of the reactor. Other methods depend on using a two-
phase porous medium approach, describing the porous medium only by the
porosity [12]. This makes it possible to get a good macroscopic view of the
behavior inside the reactor, such as wall channeling and non-uniform power
density, but microscopic effects cannot be calculated [13].

However, computations on pebble-bed reactors have yielded different re-
sults than the actual testreactors for low temperature pebble-bed reactors
[16]. A better understanding of the CFD of pebble-bed reactors is therefore
needed.

1.3 Aim of this Thesis

This thesis focusses on an open-source CFD program called OpenFOAM. A
special solver has been developed within OpenFOAM, to solve equations gov-
erning the mass and heat transfer inside pebble-beds, describing the pebble-
bed as a two-phase steady-state porous medium.

The objective of this research is to determine if the solver is capable of
solving heat and mass transfer inside a pebble-bed reactor correctly. This is
done with several testcases, three analytical cases and one physical experi-
ment, based on the experiment of Achenbach. Finally the total code is tested
on the PBMR computational benchmark, to examine if the code calculates
what the benchmark suggests.

1.4 Thesis Outline

This thesis will first cover the equations determining the behavior of the
pebble-bed. Then the implementation of these equations in the solver is
discussed, along with information of CFD in general and specifically about
OpenFOAM. Three analytical test cases are examined, regarding the one-
dimensional pressure drop, Poiseuille flow and one-dimensional heat transfer.
An experiment, done by Achenbach [1], is computed and the PBMR is sim-
ulated [7]. Afterwards a conclusion and recommendation for future research
will be given.
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Figure 1.1: Representation of the PBMR-400.[7]



Chapter 2

Governing Equations

The pebble-bed solver is based on a model consisting of a set of equations,
which are detailed in this chapter. The equations are based on conservation
of momentum, energy and mass.

2.1 Conservation of Momentum and Mass

The velocity field is governed by conservation of momentum, in its compressi-
ble form [6].

φ(∇u)︸ ︷︷ ︸
c.a.

+Fporu︸ ︷︷ ︸
p.d.

+ εT︸︷︷︸
s.s.t.

= −ε∇p︸ ︷︷ ︸
p.g.

(2.1)

The first part of this equation is the convective acceleration term, using the
mass flux φ = ερ|u|, where ε is the porosity, ρ the density and u the velocity
(c.a.). The porous drag is a function of Fpor, which covers the resistance due
to porous media (p.d.). The shear stress term is a function of the deviatoric
stress tensor, T (s.s.t.). Finally the pressure gradient depends on the fluid
pressure, p (p.g.).

The porous drag term depends on the porous drag force, Fpor. The re-
lation of the Fpor is a combination of two parts, the first part is the viscous
flow (Carman and Kozeny) and the last part is the turbulent flow (Burke and
Plummer), and was combined by Ergun in 1952, see equation 2.2 [2] [11].

Fpor =
150µ(1− ε)2

ε2d2
peb

+
1.75(1− ε)ρ|u|

ε2dpeb
(2.2)

Investigation by Achenbach and the German nuclear service, KTA, resulted
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in another relation, see equation 2.3 [1].

Fpor =
160µ(1− ε)3

εd2
peb

+
3µ0.1(1− ε)2.1ρ0.9|u0.9|

εd1.1
peb

(2.3)

Both equations for the porous drag force show, respectively, a viscous and a
turbulent flow part. The code used in this thesis uses Ergun’s equation, eq.
2.2.

Conservation of mass is used to correct the pressure and velocity fields,
eq. 2.4, which will be explained in section 3.4.3.

∇ · φ = ∇ · (ερu) = 0 (2.4)

2.2 Conservation of Energy

The temperature of the coolant is considered by conservation of energy, by
applying this on the enthalpy field of the coolant and using h = cpT , where
cp is the specific heat.

φ · (∇h)︸ ︷︷ ︸
c.e.

−∇ · (εαeff∇h)︸ ︷︷ ︸
d.e.

= htc(Tpeb − THe)︸ ︷︷ ︸
h.t.

+
φ

ρ
· ∇p︸ ︷︷ ︸

p.g.

(2.5)

The first term considers the convection of enthalpy, using mass flux φ and
enthalpy h (c.e.), followed by the diffusion of enthalpy, using the porosity ε,
the thermal diffusivity α and the enthalpy, h (d.e.). The heat transfer term
uses the heat transfer coefficient, htc, and the difference between the pebble
temperature Tpeb and coolant temperature THe (h.t.). The pressure gradient
uses mass flux, φ, density ρ and pressure gradient, p (p.g.) [6].

Empirical formulas are used to calculate the fluid properties in the code,
see equations 2.6 to 2.10

htc =
αcpNu(1− ε)

6d2
peb

(2.6)

αeff =
0.11ρdpeb(ε− 1)|u|

(0.39− 1)
(2.7)

Nu = (1 + 1.5(1− ε)) (2.8)2 +

√√√√(0.664
√
RePr1/3)2 +

(0.037Re0.9Pr)2

Re0.1 + 2.443(Pr2/3 − 1)


Re =

dpebρ|u|
µ

(2.9)

Pr =
µcp
k

(2.10)
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The heat transfer coefficient, htc, determines the heat exchange between
the pebbles and the fluid and is modeled according to the relation given by
Gnielinski [17]. αeff gives the effective diffusion of enthalpy and uses the
relation from Yagi and Kunii [18]. The Nusselt number Nu refers to the
ratio between convective and conductive heat transfer, which is necessary
for the heat transfer coefficient, where dpeb is the pebble diameter, µ is the
kinematic viscosity, and k is the thermal conductivity and is calculated with
the equation from Gnielinski [17]. Pr and Re are the Prandtl and Reynolds
numbers, respectively.

2.3 Pebble Temperature Equation

To calculate the temperature of the pebbles the following equation is used.

−∇ · (kpeb∇Tpeb)︸ ︷︷ ︸
d.t.

+htc(Tpeb − THe)︸ ︷︷ ︸
h.t.

= Q︸︷︷︸
source

(2.11)

The left side contains the diffusion of heat between the pebbles and uses
the pebble-bed conductivity kpeb, which includes the heat transfer due to
radiation between the pebbles, and the internal heat transfer of the pebbles
(d.t). The pebble-pebble heat transfer through contact points is not included
as it is considered negligible compared to the high radiative heat transfer
at high pebble temperatures in the pebble-bed. The next term calculates
the heat transfer from the pebbles to the coolant (h.t.). The right side of
the equation contains the source term, Q, which is the power generated by
fission inside the pebbles in W/m3. The porosity may approach 1 in near-wall
situations, which makes the thermal conductivity approach infinity. For these
situations special near-wall formulas are used. The thermal conductivity of
graphite inside the pebble-bed is given by Zehner and Schluender [20], and
the thermal conductivity of graphite near the walls is given by Tsotsas and
Martin [21].

kwithingraphite = 4σT 3dpeb (2.12)(1−
√

(1− ε)
)

+

√
(1− ε)
2
εr
− 1

(
Bz + 1

Bz

)1 +
1(

2
εr
− 1

)
Λ

−1


knear−wallgraphite =
4σT 3dpeb(

2
εr
− 1

) (1−
√

(1− ε)
)

+
√

(1− ε)

 1
4σT 3dpeb

( 2
εr
−1)

+
1

pg


−1

(2.13)
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Where σ is the Stefan-Boltzmann constant, εr is the emissivity of the pebbles,
which is 0.8 and Bz, Λ, and pg are given in equations 2.14, 2.15, and 2.16.

Bz = 1.25
(

1− ε
ε

)10/9

(2.14)

Λ =
pg

4σT 3dpeb
(2.15)

pg = 108.901− 0.188285T + 2.79606 · 10−4T (2.16)

−2.18888 · 10−7T 3 + 6.6 · 10−11T 4



Chapter 3

Solving the Equations with
OpenFOAM

The equations governing the physics of pebble-beds discussed in chapter 2 do
not have an analytical solution - except in extremely simplified cases - and
need to be solved computationally. In our case this has been done with the aid
of the open source software package OpenFOAM. The implementation of the
equations in OpenFOAM and the methods used to solve them numerically
are discribed below.

First an introduction is given on the various methods generally used to
solve computational fluid dynamics (CFD) problems. The next section de-
scribes the OpenFOAM software package, followed by an explanation of the
schemes used to discretize the various equations of chapter 2. The last sec-
tion details the implementation of the equations in the my pebbleBedFoam
solver and how this system of equations is solved.

3.1 Introduction to CFD

The equations defining the behavior of the pebble-bed, and generally the
behavior of fluid mechanics inside the given geometry, often consist of differ-
ential equations, which demand special ways of approaching. For approxi-
mating these problems and geometries, a certain discretization method needs
to be chosen. Over the years, several discretization methods have been in-
vented, all having their strong and weak points, of which the most important
are:

• Finite Difference Method

• Finite Volume Method
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• Finite Element Method

These discretization methods rely on a mesh to be able to solve. A mesh is a
collection of points, at a given distance from each other, covering the entire
object of interest. This mesh does not need to be uniformly distributed or
orthogonal, but non-uniformity and non-orthogonality need to be taken into
consideration at the discretization schemes. For greater accuracy and detail
the grid can be made finer at places of interest, see [4].

3.1.1 Finite Difference Method

This is the oldest method of solving partial differential equations, discovered
by Euler in the 18th century, and is based on approximations of the partial
derivatives between nodal points within the mesh. This method starts off
with the conservation laws in a differential form. The mesh with this method
is mainly based in structured grids, which are also used as coordinate lines.
The downside of this method is that the conservation laws are not enforced,
unless special care is taken.

3.1.2 Finite Volume Method

This method devides the mesh into small volumes, with in its center a node.
The conservation laws are stated in an integral form using single volume cells
and use Gauss’ Theorem to switch from volume to surface integrals. This
method requires interpolation to determine the values at the edges of the
control volume. The advantage of this method is that the surface integrals
at both sides of the boundary need to be the same, which makes it easy
to enforce the conservation laws. The disadvantage is the fact that this
code relies on three calculation methods, namely integration, interpolation
and differentiation, making the code more difficult. OpenFOAM, the CFD
program used in this thesis, is based on the FV method.

3.1.3 Finite Element Method

This method is similar to the Finite Volume Method, because the domain is
spatially discretisized and considered with the use of volume integrals, but
depends on a piecewise function between all nodal points that satisfies the
differential equation. This gives a function defined everywhere in the domain,
and not only on the nodes. The advantage of this method is the fact that
it can be used on any grid, regardless of geometry. A drawback is that for
simpler grids it is more difficult to find efficient solution methods.
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3.2 A Quick Tour in OpenFOAM

OpenFOAM is a C++ based CFD code, which relies on the Finite Volume
Method. One of the greatest advantages of OpenFOAM is that it is open-
sourced. This means everybody can change the code to the way he/she
prefers. Much configuration has to be done by the user, but this gives a lot
of freedom compared to commercial packages [5].

The Basic Format

OpenFOAM is run on a UNIX cluster. Two directories are of importance,
namely the case directory and the solver directory. The case directory con-
tains the situation dependant information, such as the boundary and initial
conditions, the mesh and discretization methods. The solver directory con-
tains the files in which the equations governing the case and their solution
steps are defined. The files in the solver are converted into an executable
which can be run in the case directory. The output can either be viewed
with a text editor or with a visualization program.

3.3 Discretization Schemes

In CFD the problems need to be discretized, because computational methods
rely on solving discrete quantities instead of continuous functions. Space,
time, and the equations need to be adapted to discrete parts. Time dis-
cretization will not be considered in this thesis, because only steady-state
situations are evaluated. Space discretization will be done with the use of a
mesh. This splits the domain into a set of cells that fill and bound it. Before
the equations can be solved on the mesh, they need to be discretized. The
operators are also discretized. This section will explain the operators used
in the code in OpenFOAM [4] [13] [23].

3.3.1 Interpolation

Interpolation is necessary for FV solvers because values are stored at the
centers of the volumes, but are sometimes needed on the faces of the volume.
Two different interpolation schemes are implemented in OpenFOAM:

• Central Differencing: a weighted mean between two nodes

• Upwind Differencing: uses the value of the node upstream.
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Upwind differencing is a faster method and has inherent stability, yet has a
smaller accuracy than central differencing. Central differencing is best used
on course meshes, but can give instability in non-orthogonal meshes.

3.3.2 Gradient

Just as interpolation, the gradient, ∇φ, can be calculated with two differ-
ent methods. The first method considers Gauss’ theorem and examines the
gradient with the use of volume and surface integration.∫

V
∇φdV =

∫
S
φdS ≈

∑
f

Sfφf (3.1)

The V and S boundaries of integration are the volume and surface domains
of the cell, f is the index of the cell faces. The sum over f is the sum over
all the cell faces, with φf the variable of interest on the cell face, times the
surface face vector, Sf .

The second method divides the difference between two nodes, by the
distance between the two nodes.

φN − φP
|d|

= ∇⊥f φ (3.2)

The difference between the cell of interest, P, and the neighboring cell, N,
divided by the cell size, |d|, gives the divergence perpendicular to the face,
thus in the direction of the surface face vector. In case the mesh is non-
orthogonal a correction term needs to be considered.

3.3.3 Divergence

The divergence is considered over a volume-cell with Gauss’ theorem.∫
V
∇ · φdV ≈

∑
f

Sf · φf (3.3)

3.3.4 Laplacian

The laplacian is considered over a volume cell, which, with Gauss’ theorem,
is converted into an inner product between the gradient and surface vector.∫

V
∇ · ∇φ ≈

∑
f

Sf · ∇φf (3.4)
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3.3.5 Source Term

The source term, indicating production or destruction of a variable, can be
a general function of φ. Going from the general linearization to the, for FV
schemes necessary, integral form.

Sφ = φSI + SE →
∫
V
Sφ(φ)dV = SIVPφP + SEVP (3.5)

Sφ is the linearised source term, governed by SI and SE, respectively the
implicit and explicit source terms, and VP is the volume of the cell. The
implicit term, SI , uses the the current iteration’s variables. The explicit term,
SE, uses previous iteration’s variables. Both variables may be a function of
the previous iteration’s φ.

3.3.6 Under-Relaxation

Under-relaxation is a trick used to prevent large fluctuations between itera-
tions. It is based on adding less than the total correction of an iteration to a
variable, by a factor of α, the relaxation factor. This may cause convergence
to occur slower, but guarantees stability for sufficiently low α.

φnew = φold + αφcorrection (3.6)

Note that 0 < α ≤ 1

3.4 The Solver: my pebbleBedFoam

my pebbleBedFoam is the name of the pebble-bed solver that was tested in
this thesis. The solver runs the subsolvers in this specific order:

• calculate UEqn.H, governing the momentum transfer.

• calculate hEqn.H, governing the heat transfer of the coolant.

• calculate pEqn.H, governing the pressure-momentum coupling.

• calculate TpebEqn.H, governing the pebble temperature.

These sequence will be iterated, until the solution is converged. The following
subsections will explain the equations that are solved by the code.
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3.4.1 UEqn.H

Regarding the velocity field, conservation of momentum, eq. 2.1, is rewritten
to facilitate solving the equation for u.

∇ · (φu)− (∇ · φ) u + Fporu + εT = −ε∇p (3.7)

This equation is solved with the explicit p value. This u field does not
obey the continuity equation, eq. 2.4, which will be corrected for in the
pEqn routine. The equation is solved with a relaxation factor of 0.8 and the
∇ · (φu) term uses the Gauss scheme with upwind differencing, or simply
Gauss upwind.

3.4.2 hEqn.H

First of all this sub-solver updates the values of α and cp and recalculates the
values of Pr, Re, Nu, htc and αeff , with equations 2.6 to 2.10. The coolant
energy conservation equation, eq. 2.5, has been rewritten to make it more
suitable for computational calculation.

∇ · (φh)− (∇ · φ)h−∇ · (εαeff∇h) +
htc

cp
h = ∇ ·

(
φ

ρ
p

)
(3.8)

−P∇ ·
(
φ

ρ

)
+ htcTpeb

After solving this equation for h, the temperature effects on physical parame-
ters are updated, and the sub-solver is done. This equation uses a relaxation
factor of 0.9. The ∇ · (φh) term is approximated with Gauss upwind, the
∇ · (εαeff∇h) term is approximated with Gauss linear, using central differ-
encing and ρ is interpolated with the use of central differencing.
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3.4.3 pEqn.H

The pEqn calculates the pressure field and adjusts the velocity field so it
obeys the continuity equation, eq. 2.4. This subroutine uses the SIMPLE-
algorithm to compute the pressure and velocity fields [4] [10].

The SIMPLE Algorithm

The momentum equation, eq. 2.1, is written down in a matrix notation, eq.
3.9.

AuiP u
n+1
i,P +

∑
l

Auil u
n+1
i,l = Qn

ui
−
(
δpn

δxi

)
P

(3.9)

In this equation A is the matrix representation of equation 2.1, u indicates
the velocity field, Q indicates a source term, p is the pressure field, and x is
the cell width of the gradient. The P index indicates the node in question
and the l index indicates the neighboring nodes. The i index denotes the
direction of u and x.

In the code, current values for the pressure and source terms are not
known, so the values of previous computations are used. Rewriting equation
3.9, with the use of m = n+1, and using the fact that the source and pressure
terms use previously computed values, results in equations 3.10 and 3.11.

um∗i,P =
Qm−1
ui
−∑lA

ui
l u

m∗
i,l

AuiP
− 1

AuiP

(
δpm−1

δxi

)
P

(3.10)

um∗i,P = ũm∗i,P −
1

AuiP

(
δpm−1

δxi

)
P

(3.11)

The use of the asterisk, ∗, indicates that this value is not yet the final value
of u, because it does not obey continuity yet. The first term on the right
hand side of equation 3.10 is replaced by ũ for convenience.

The continuity equation, eq. 2.4, can be rewritten to equation 3.12

δρumi
δxi

= 0 (3.12)

In this equation umi is the new velocity field, which obeys continuity. This can
be rewritten as equation 3.13, where pm is the new pressure field. Inserting
this in equation 3.12 results in equation 3.14.

umi,P = ũm∗i,P −
1

AuiP

(
δpm

δxi

)
P

(3.13)

δ

δxi

[
ρ

AuiP

(
δpm

δxi

)]
P

=

[
δρũm∗i
δxi

]
P

(3.14)
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This equation can be solved for the pressure field p, and with this corrected
pressure, a correction for the velocity can be computed, using the updated
version of equation 3.11, equation 3.13. The new velocity field obeys con-
tinuity, but not necessarily conservation of momentum 2.1. With the new
pressure field, a new um∗i can be calculated, and again a new pressure field.
This process is iterated until the pressure and velocity fields are converged.

This solver uses a lot of unstable mathematics, so a low relaxation coeffi-
cient of 0.22 is used. The mass flux φ is interpolated with central differencing
and the pressure laplacian, ∇2

(
ε2ρp
Aui

)
is evaluated with the Gauss central dif-

ferencing scheme.

3.4.4 TpebEqn.H

This subroutine calculates λg and kpeb, eq. 2.13, followed by equation 3.15.

htc(Tpeb − THe) = ∇2(kpebTpeb) +Q (3.15)

A relaxation factor of 0.9 is used on the pebble temperature and the laplacian
uses the Gauss gradient method, with linear interpolation.
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Test Cases

The code is verified with the use of several test cases. Each test case focuses
on certain parts of the code. The momentum equation is tested with the
use of a one-dimensional pressure drop case and a two dimensional case,
concerning laminar flow between parallel plates. To conclude the momentum
part of the code, an experiment done by Achenbach is simulated. The thermal
part of the code is tested by a one-dimensional heat transfer case.

4.1 One-Dimensional Pressure Drop

This calculation concerns the pressure drop in a one dimensional case, which
has the benefit it has a simple analytical solution. Besides verification of
the pressure drop, the dependence on mesh size and measuring position are
examined.

4.1.1 Set up, Measurement & Expectations

The geometry consists of a one-dimensional column of 1.4 m high. From 0.2
m to 1.2 m the porosity is 0.39 and the first and last 0.2 m the porosity is
1, so the flow field can stabilize. The pebble diameter is 0.06 m. The fluid
properties are kept constant, with µ = 10−5 kgm−1s−1 and ρ = 1 kgm−3.
The velocity is varied between 0.02 and 10 ms−1, resulting in a Reynolds
number distribution from 120 to 60000. To investigate the effect of cell size,
the mesh size is varied between 140, 280, 700 and 1400 cells. Additionally, for
the 1400 mesh the pressure drop is calculated over three different intervals
for the 1400 cell mesh:

• total field: The pressure difference between the in- and outlet of the
domain.
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• porosity field: The pressure difference between the begin and end part
of the porous field.

• derivative: The pressure gradient in the middle of the porous field.

The pressure drop should follow the analytical solution, given by Ergun’s
equation, eq. 2.2. The dependence on the mesh size is unknown, as is the
dependence on the measuring position.

4.1.2 Results

The results of the measuring position computations are displayed as a relative
difference between the analytical solution and the calculated value, see figure
4.1. This figure shows that the derivative in the pebble-bed is in excellent
agreement with Ergun’s equation. The pressure drop over the whole domain
and the pressure drop over the porous field show some error, with the biggest
relative error in the pressure drop between the begin and end of the pebble-
bed. For almost all Reynold numbers the pressure drop over the porous
region is larger than over the total field.

This behavior is caused by unstable regions caused by the discrete transi-
tion of porosity at the beginning and end of the porous region. This discrete
transition causes fluctuations in the pressure and velocity fields, which cause
greater errors on the transition position than over the total bed.

The results of the mesh dependance are displayed in figure 4.2. This com-
putation uses the relative difference of the total field with Ergun’s analytical
solution, eq 2.2. The reciprocal relative difference is plotted against the mesh
size. The result is a linear relationship, which indicates a 1

nodes
relationship.

A possible explanation is that the unstable regions, causing the inaccuracies,
always have the same length in nodes. When the number of nodes increases,
the percentage of nodes that have unstable behavior decreases as 1

r
.
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Figure 4.1: The relative difference be-
tween the analytical solution and the
computed value plotted against the
Reynolds number

Figure 4.2: The reciprocal relative dif-
ference between the analytical solu-
tion and the computed value plotted
against the mesh size for a Reynolds
number of 120
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4.2 Two-Dimensional Laminar Flow Between

Parallel Plates

This computation concerns the perpendicular velocity of a laminar flow be-
tween two parallel plates. For this experiment, the expected solution is
Poiseuille flow, see equation 4.1.

4.2.1 Set Up, Measurements & Expectations

The geometry consists of two parallel plates, through which a fluidum flows.
The plates are 0.01 m apart and are 1 m long. A no slip boundary condition
exists on the plates and the inlet velocity is 1 ms−1, which is distributed
uniformly. The fluid properties are kept constant, with µ = 10−3 kgm−1s−1,
ρ = 1 kgm−3 and since there is no pebble bed, the porosity is 1. This results
in a Reynolds number of 10. The mesh is 200 cells in the flow direction and
50 cells perpendicular to the flow direction.

Poiseuille flow, see equation 4.1, is expected for the perpendicular velocity,
since the mesh size should be adequate and the Reynolds number is well
within the laminar flow range. The analytical solution for this case is:

ux =
1

2µ

dp

dx

y2 −
(
d

2

)2
 (4.1)

ux is the flow in the flow direction, µ is the dynamic viscosity, dp
dx

is pressure
gradient in the flow direction and the last term describes the distance from
the walls, where y is the radial distance, and d is the distance between the two
plates. The Poiseuille flow has a quadratic distribution. The computation
will be compared to the quadratic solution, to check whether it fits poiseuille
flow.

4.2.2 Results

The flow field between the two plates is displayed in figure 4.3. The fluid
flow first has to stabilize, because the velocity field is uniform at the inlet.

Figure 4.3: The fluid velocity in the flow direction, red indicates high veloc-
ities, blue indicates low velocities
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Figure 4.4: The data points of the velocity distribution(data), fitted by a
quadratic function(quadratic).

The velocity profile is examined at 0.8 m from the inlet, see figure 4.4. It
is also fitted by a quadratic distribution, eq. 4.1. The sum of the absolute
errors is 0.06 %, which means this test case is in excellent agreement with
the expected analytical solution.



26 Test Cases

4.3 Achenbach’s Experiment

Achenbach measured the pressure drop over a packed bed in a physical ex-
periment for Reynolds ranging from 150 to 3 ∗ 105 and compared his results
with the pressure drop relation from the KTA, see equation 2.3 [1]. This test
case will compare the code to the experimental data gathered by Achenbach.

4.3.1 Set Up, Measurements & Expectations

The geometry consists of a 1.4 m high cylinder, with a radius of 0.5 m. The
first and last 0.2 m have porosity 1, the pebble-bed has a uniform porosity
of 0.39 and a pebble diameter of 0.06 m. The fluid is air, at a constant
temperature of 293 K. The velocity on the walls has the slip boundary
condition and the inlet velocity ranges from 0.1 to 25.6 ms−1. Two outlet
pressures are used of 105 and 106 Pa. Different outlet pressures are used,
because if the pressure drop is in the order of the outlet pressure, the pressure
drop affects the fluid properties. The mesh consists of 70 nodes in the flow
direction, 50 nodes in the radial direction, and uses a wedge symmetry plane
to simulate a cylinder.

In the experiment done by Achenbach, [1], a measure for the pressure
drop is given by the use of the pressure drop coefficient, ψ, see equation 4.2

ψ =
2dpeb
ρ|u|2

(
ε3

1− ε

)
∆p

∆h
(4.2)

The paper concludes with a relationship for ψ, see equation 4.3, which is the
KTA relation for the pressure drop [1].

ψ =
320
Re
1−ε

+
6(

Re
1−ε

)0.1 (4.3)

The data Achenbach gathered in his experiment and his fit through the data
are displayed in figure 4.5. This data will be used for code comparison. The
paper of Achenbach notes that the relation, eq. 4.3, does not describe his
measurements for Reynolds numbers higher than 8 ∗ 104. The computed
results are expected to follow Ergun’s equation, eq. 2.2, since this equation
is used in the code.
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Figure 4.5: The data Achenbach gathered in his experiment and his fit of the
data. The o indicate measurements at atmospheric pressure, the x indicate
measurements at higher pressure.

4.3.2 Results

The results of the computation are plotted in figure 4.6 and in table 4.1. For
the low pressure situation, the computational result and the analytical result
start to diverge for Reynolds numbers of 2 ∗ 104. For the high pressure situ-
ation, the computational and analytical result start to diverge for Reynolds
numbers of 2 ∗ 105. The divergence for higher Reynolds numbers is because
the pressure drop over the domain is high compared to the outlet pressure,
resulting in significant change in the density over the domain, see table 4.1.

Figure 4.6: The pressure drop coefficient according to the analytical Ergun
equation (ψ ergun), the computed data (ψ ergun computed), the KTA rela-
tion, and the data gathered by Achenbach.
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Table 4.1: The Reynolds number, ψ, pressure drop, inlet density and outlet
pressure(low (105)) or high (106)) of the computation of Achenbach’s exper-
iment

Re ψ ∆p ρ pout
[−] [−] [Pa] [kgm−3] [Pa]
196 4.49 1 1.1863 105

392 3.96 4 1.1863 105

785 3.71 15 1.1865 105

1570 3.58 58 1.1869 105

3147 3.52 229 1.1890 105

6335 3.50 918 1.1970 105

13035 3.52 3800 1.2314 105

29648 3.67 18049 1.4004 105

67655 4.13 72402 2.0452 105

3920 3.54 36 11.863 106

19620 3.48 883 11.865 106

39270 3.48 3538 11.870 106

78800 3.51 14340 12.032 106

159640 3.68 60944 12.580 106

340590 4.68 330164 15.780 106

Ergun’s equation and the KTA relation, and thus the measurements, start
to diverge for a Reynolds number of around 400. The PBMR case expects
Reynolds numbers of around 4 ∗ 104. When the measured data and Ergun’s
relation are compared at this Reynolds number, ψ differs by a factor of
100.31

100.54
= 1.70. An error of a factor 1.70 can be expected at the PBMR test

case [7].
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4.4 Analytical Heat Transfer

This calculation concerns the one-dimensional heat transfer of a stacked bed.
The heat transfer occurs from the pebbles to the fluid.

4.4.1 Set Up, Measurements & Expectations

The geometry is a one-dimensional column of 1 m high. The porosity is 0.4
and the pebble diameter is 0.06 m. Fluid properties are kept constant in the
pebble bed, with ρ = 1 kgm−3 and cp = 4 ∗ 103 m2s−2K−1. The htc is fixed
at 10000 kgs3m−1K−1. The inlet velocity is set at 2.5 ms−1. This results
in a mass flux, φ, of 1 kgs−1m−2 and an αeff of 0.01582 kgm−1s−1, see eq.
2.7. The inflow temperature of the coolant is set at 500 K, a zero gradient
boundary condition for the outflow temperature of the coolant is enforced
and the pebbles are kept at a constant temperature of 1000 K. Two meshes
are used, to check the effect of cell size on the error, of 200 and 2000 nodes
in the flow direction. This test case has an analytical solution, which can be
calculated by rewriting equation 2.5 into equation 4.4

∇(cpφ︸︷︷︸
A

T )−∇(εcpαeff︸ ︷︷ ︸
B

∇T ) + htc︸︷︷︸
C

T = htcTpeb︸ ︷︷ ︸
D

(4.4)

Here T is the coolant’s temperature and Tpeb is the pebble temperature. For
one dimension, equation 4.4 has the standard solution of equation 4.5

T (x) = c1e

(
A−
√
A2+4BC
2B

)
x

+ c2e

(
A+
√
A2+4BC
2B

)
x

+
D

C
(4.5)

Using the boundary conditions in equations 4.7 and 4.6, c1 and c2 can be
calculated.

dTcoolant
dx

∣∣∣∣∣
x=0

= 0 (4.6)

Tcoolant|x=L = 500K (4.7)

In these boundary conditions, x is the position along the column and L is the
total length of the column, 1 m. Boundary condition eq. 4.6 is not a physical
boundary, but is enforced because the code requires a boundary condition on
the outlet. This results in equation 4.8 for c1 and equation 4.9 for c2.

c1 =
500− D

C

e

(
A−
√
A2+4BC
2B

)
+ A−

√
A2+4BC

A+
√
A2+4BC

e

(
A+
√
A2+4BC
2B

)
x

(4.8)

c2 =
500− D

C

e

(
A+
√
A2+4BC
2B

)
+ A+

√
A2+4BC

A−
√
A2+4BC

e

(
A−
√
A2+4BC
2B

)
x

(4.9)
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Figure 4.7: The temperature profile of
the computation and of the analytical
solution

Figure 4.8: The relative error between
the computational result and the ana-
lytical solution

4.4.2 Results

The results are plotted in figures 4.7 and 4.8. Figure 4.7 shows the compu-
tational temperature profile and is compared to the analytical solution, eq.
4.5. Figure 4.8 shows the difference between the computational result and
the analytical solution.

The computational result and the analytical solution are in good com-
parison, with a maximum difference of 0.04%. The relative difference shows
an increase in error near the outlet. This is because the code forces zero
gradient between the node and the wall. The analytical solution has zero
gradient on the wall, so there is a difference in position. For the large mesh,
the error is less than for a the small mesh, as expected.

This test case shows that the code is capable of calculating the heat
transfer through helium correctly.
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Pebble-Bed Modular Reactor

The Pebble-Bed Modular Reactor (PBMR) is an international benchmark,
based on the PBMR-400MW design. It is a code-to-code comparison to
test different CFD codes. The tests on the PBMR concern steady-state and
transient processes, but this case will only focus on the steady-state processes
[7].

5.1 Set Up, Measurement & Expectations

The geometry is an axisymmetric cylinder, with a height of 11.5 m, an inner
radius of 1 m and an outer radius of 1.85 m. The first 0.5 m from the inlet
has a porosity of 1. The packed bed, from 0.5 to 11.5 m has a porosity of 0.39
and a pebble radius of 0.06 m. The helium inlet mass flux is 192.7 kgs−1 and
the outlet pressure is 9 MPa. Using the fluid properties of helium at 9 MPa,
a velocity of 4.291 ms−1 is found. The inlet temperature of the coolant is
773 K and the power distribution is given in figure 5.1, with a total power
of 400 MW [7].

The benchmark suggests simulating a 2 m thick graphite wall, with an
outer temperature of 293 K, as a boundary condition for the outer wall. This
cannot be simulated by the code, so two methods will be used to account for
this.

• Zero Gradient: No wall heat flux, by forcing a zero gradient on both
walls.

• Fixed Value: Fixed outer wall temperature, supplied by previous CFD
results from the benchmark. The inner wall temperature has a zero
gradient boundary condition.
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Figure 5.1: The power density profile inside the PBMR reactor. The left side
is towards the reactor center [3].

A 230 by 50 cells mesh is used. Most computations of the benchmark suggest
an outlet helium temperature of 1172 K, an average helium temperature of
1022 K, an average pebble temperature of 1042 K and a pressure drop of
2.75 bar.

5.2 Results

The results of the CFD code will be discussed in three sections, first dis-
cussing the helium temperature, followed by the pebble temperature and
finally the pressure drop.

5.2.1 Helium Temperature

The numerical results of the benchmark case are given in table 5.1. This
table contains the average helium temperature of the total porous region
and from the outlet, the average pebble temperature, and the pressure drop
of the benchmark and of the two computations. The helium temperature
profiles in the axial and in the radial direction can be seen in figures 5.2 and
5.3.

Table 5.1: The results of the PBMR computation, with the fixed value case
and zero gradient case compared with the benchmark results.

Fixed Value Case Zero Gradient Case Benchmark
T Helium Outlet [K] 1159.3 1153.7 1172
T Helium Average [K] 1011.9 1007.6 1022
T Pebble Average [K] 1034.2 1030.0 1042
Pressure Drop [Pa] 4.80∗105 4.77∗105 2.75∗105



5.2. Results 33

Figure 5.2: The average helium tem-
perature in the axial direction of the
fixed value and zero gradient case,
compared with the average, minimum
and maximum benchmark tempera-
tures.

Figure 5.3: The average helium tem-
perature in the radial direction of the
fixed value and zero gradient case,
compared with the average, minimum
and maximum benchmark tempera-
tures.

Table 5.1 shows that the outlet and average fixed value temperatures are
higher than the zero gradient temperatures. This means the pebble-bed is
heated by the fixed value boundary condition on the outer wall. Although
both cases and the benchmark provide similar temperature profiles, the fixed
value and the zero gradient cases result in different outlet temperatures than
the benchmark suggests, with a maximum temperature difference of around
20 K at the outlet. This is outside of the minimum value of the benchmark’s
computations.

The temperature difference is caused by the absorption of energy due to
expansion. The benchmark’s computations do not account for this. The
temperature difference of 20 K can also be shown by equation 5.1. In this
equation the difference in thermal outlet energy is compared to the energy
the fluid absorbs when it expands through the pebble-bed. A specific heat
of 5195 m2s−2K−1 is used, and the density at the in- and outlet are 4.525
kgm−3 and 4.295 kgm−3 respectively. A constant temperature of 1000 K
and a pressure drop of 5 bar are assumed.

mcp∆T = Q =
∫ V2

V1
pdV ≈ p∆V = (φ∆t)

(
1

ρ1

− 1

ρ2

)
p (5.1)

∆T =

(
1

ρ2

− 1

ρ1

)
p

cp
=
(

1

4.295
− 1

4.525

)
9 ∗ 106

5195
= 20.5K
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Table 5.2: The results of the computation with the pressure gradient term
turned off in the enthalpy equation, for two cases and compared with the
benchmark.

Fixed Value Case Zero Gradient Case Benchmark
T Helium Outlet [K] 1176.0 1174.8 1172
T Helium Average [K] 1019.3 1016.5 1022
T Pebble Average [K] 1041.5 1038.8 1042
Pressure Drop [Pa] 4.80∗105 4.77∗105 2.75∗105

To verify that the pressure gradient term in equation 2.5 is indeed the
cause for the low average and output temperature of the helium, this term
was turned off and the computations were repeated. This resulted in the
expected behavior, see table 5.2. The temperature differences between the
cases and the benchmark are similar to the differences between the different
computations of the benchmark.

The radial profiles of both cases do not match the benchmark, and the
code’s results are outside the outer values of the benchmark’s computations.
The fixed value boundary condition on the outer wall matches the expected
result, because it’s value is enforced. The temperature difference at the
outer wall for the zero gradient case is around 20 K, which is caused by
the absorption of energy due to expansion, see equation 5.1. The difference
at the inner wall is higher, which is because the benchmark uses a different
boundary condition on the inner wall.
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5.2.2 Pebble Temperature

The pebble temperature profiles can be seen in figures 5.4 and 5.5. The
pebble temperature profiles show wrinkles, which arise from the discrete steps
in the power density field. The temperature profiles of both cases follow the
benchmark’s lowest temperature profile, in both the axial and the radial
direction.

The average pebble temperatures can be found in table 5.1, and show
that both cases result in a lower average temperature than the benchmark
suggests. When the pressure gradient is turned off in the code, see table 5.2
the temperature of both cases and the benchmark differ less. Besides the
pressure gradient term, a different formula for the Nusselt number, eq. 2.9,
is used in the benchmark, and the code uses a slightly simplified relation for
the pebble-pebble heat transfer, eq. 2.11, but this does not seem to have a
significant effect.

Figure 5.4: The average pebble tem-
perature in the axial direction of the
fixed value and zero gradient case,
compared with the average, minimum
and maximum benchmark tempera-
tures.

Figure 5.5: The average pebble tem-
perature in the radial direction of the
fixed value and zero gradient case,
compared with the average, minimum
and maximum benchmark tempera-
tures.
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5.2.3 Pressure Drop

The pressure drop profile can be seen in figure 5.6 and the effective pressure
drops can be seen in table 5.1. The pressure profiles and the pressure drop
of the fixed value and zero gradient case differ from the benchmark.

Both pressure drops are around 4.8∗105 Pa, compared to a pressure drop
of 2.75 ∗ 105 Pa for the benchmark. Figure 4.6 of the Achenbach testcase
showed a ratio between the Ergun and KTA relation, at a Reynolds number
of 4∗104, of

ψErgun
ψKTA

= 1.70. The ratio between pressure drops is
∆pComputation
∆pBenchmark

=
1.75, which shows the different pressure drop relations are indeed the cause
of the different pressure drops.

Figure 5.6: The pressure profile of the PBMR case for the fixed value and zero
gradient case, compared with the average, minimum and maximum pressure
profiles of the benchmark.
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Conclusions

A code implemented in OpenFOAM was investigated using several simple
test cases with analytical or experimental solutions, and by calculating the
PBMR steady state thermohydraulics benchmark.

6.1 Experimental Conclusions

Comparison of the code for the simple test cases showed the code evaluates
the equations implemented in the solver with good accuracy, with one excep-
tion. The one-dimensional test case for the pressure drop pointed out that
near discrete transitions in porosity, such as at the top of a pebble bed, fluc-
tuations arise in the pressure and velocity fields. As these fluctuations are
local and pebble-bed reactors are large, the influence of these fluctuations is
small.

The results of the PBMR case differed on several points with those re-
ported by the participants. Firstly, the coolant and pebble temperature fields
were on average 20 K lower. This difference was caused by the inclusion of
the expansion term in the helium heat transfer equation, causing additional
cooling of the coolant. This expansion term was not included in the bench-
mark, although our calculations show this term should not be ignored.

Also, the results for the pressure drop over the pebble bed showed a 75
% higher pressure drop over the pebble-bed. This difference is because the
code uses Ergun’s relation and the benchmark uses the KTA relation. As seen
in the Achenbach case, the KTA relation closely follows the measurement.
Ergun’s relation, however predicts a significantly higher pressure drop at
higher Reynolds numbers, with a difference of 70 % for Reynolds numbers of
4 ∗ 104, comparable to the Reynolds numbers in the PBMR.

Finally, as the code was not yet capable of calculating heat transfer
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through the central and side reflector, artificial boundary conditions were
used at the walls of the pebble bed. This, together with different relations
for the Nusselt number for the heat transfer from the pebbles to the coolant
and a slightly simplified relation for the pebble-pebble heat transfer, resulted
in small differences in the radial pebble and helium temperature profiles.

Still, the axial coolant and pebble temperature profiles were in good agree-
ment with the results from the benchmark participants which, together with
the good results from the analytical test cases, brings us to the conclusion
that the solver implemented in OpenFOAM can be used to compute heat
and mass transfer in a pebble-bed reactor, especially if Erguns equation for
the pressure drop is replaced by KTA’s relation.

6.2 Future Research

This research leaves some questions unanswered, which could be interesting
for further investigation.

• Discrete steps in porosity result in fluctuations of the pressure and
velocity fields. A different approach to these discrete steps may result
in less fluctuation.

• The porosity in the PBMR benchmark is uniform. In actual pebble-
bed reactors porosity approaches one near the walls, causing a different
flow pattern. Computations with non-uniform porosity can determine
what effect this has.

• The PBMR benchmark states different relations than the relations used
in the code. Changing the relations in the code to the relations sug-
gested by the benchmark could verify if the code can provide the same
results as the benchmark.

• The term for pebble-pebble interactions through contact in the equa-
tion for the diffusion of heat between the pebbles has been neglected,
because it was thought to have negligible influence. A study to the
heat transfer through touching pebbles could determine if this approx-
imation was justified.

• The code was unable to simulate heat transfer through a graphite re-
flector, and therefore unable to calculate the heat flux through the wall
in the manner suggested by the benchmark. Adapting the code to be
able to simulate this reflector could check whether the code is capable
of calculating the radial temperature profile correctly.
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