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Summary  
The world’s demand for more and environment friendly energy ever increases. SAMOFAR, an 

international initiative of eleven institutions, responds to that demand by performing 

research to prove that a Molten Salt Fast Reactor (MSFR) is a safe option to produce energy. 

Among the research subjects is the design of a viscometer that can withstand the MSFR core’s 

maximal temperature of 1100K.  

In this thesis the Lattice Boltzmann Method (LBM) is used for a quantitative analysis of four 

properties of a falling sphere-like viscometer design: the density range between the sphere 

and the salt, the cross sectional area of the measurement vessel, the shape of the settling 

object and the detection height. The settling sphere method is applied by a permanent 

magnet that is released at the top of the vessel. Its magnetic field is then detected after a 

certain distance. The time the object takes to cover the distance is directly related to the 

viscosity. 

The used LBM model contains the Bhatnagar-Gross-Krook relaxation parameter, a local grid 

refinement in the volume where the largest velocity and pressure gradients occur and an 

application of the halfway bounce-back method on both the stationary and the moving walls. 

The physical simulation volume is 1.2x1.2x2.0mm3. A kinematic viscosity range of 

0.7 ∙ 10−6 − 2.1 ∙ 10−6m2/s was explored. 

Each of the four properties is varied around a common reference set of simulations in order 

to find which value results in the most accurate determination of the viscosity when a 

measurement uncertainty of 0.01s is applied on the settling time. It is generally shown that 

longer settling times enable more accurate viscosity measurements and that the absolute 

uncertainty range is larger for smaller viscosities.   

The reference set shows an uncertainty range of 3.6%− 1.1% for 𝜈 = 0.7 ∙ 10−6m2/s and 

𝜈 = 2.1 ∙ 10−6m2/s respectively. The strongest reduction was due to a decrease in the density 

ratio, namely 1.1%− 0.4%. The cross sectional area reduction and a lower detection point 

both showed an uncertainty range of 2.8% − 0.9%. The elongation of the settling sphere 

reduced the uncertainty ranges to 3.3%− 1.0%. 

This thesis functions as a first quantification of optimisation possibilities for a novel 

measurement technique for molten salt in the core of an MSFR. Multiple possible constraints, 

like the penetration of the magnetic field through the core’s wall, still have to be assessed to 

analyse realisation potential of this method.  
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1 Introduction 

1.1 Problem statement 
Providing enough energy for the world population becomes an increasing challenge over 

time. Not only is the population expected to reach over 9.7 billion in 2050 [1], the effect on 

energy demand increases as energy consumption per capita will grow as well [2]. Because of 

this increasing demand and the worldwide concern for reducing CO2 emissions, nuclear 

power comes forward as a promising solution for the energy problem. However, hesitations 

exist about the future of nuclear power, partly due to the Fukushima Daiichi power plan 

accident in 2011. 

In 2000 six new types of Generation IV Nuclear Reactors were proposed by the Generation IV 

International Forum [3]. The primary goal for the proposals was the development of a way to 

produce nuclear energy in a truly safe way regarding sustainability, safety and reliability, 

proliferation resistance and physical protection. Furthermore, economic competitiveness is 

the last goal of the Generation IV Nuclear Reactors.  

One of these proposed energy reactors is the Molten Salt Reactor (MSR). The Molten Salt Fast 

Reactor (MSFR) is one of the two MSR systems that are under consideration. This type of fast 

spectrum reactor uses thorium fluoride salt as its fuel and would operate near 1100K [4]. 

This temperature enables the fuel salt to melt and mix with other fluoride salts that act as the 

reactor’s coolant, but at the same time, a temperature of 1100K stays far away from the 

boiling temperature of the salts. Due to these properties the process can run at low pressure 

[3].  

The development of the Generation IV Nuclear Reactors is categorised in three phases: the 

viability phase, the performance phase and the demonstration phase. The MSR is expected to 

exceed the viability phase in 2025 [3]. 

SAMOFAR, an international initiative of eleven institutions, aims to ‘deliver indisputable 

evidence of the excellent safety features of the MSFR’ and to bring the MSFR to the 

demonstration phase. To reach this, SAMOFAR plans to explore and experiment with key 

safety features, such as draining of the fuel salt, new coatings and the dynamics of natural 

circulation.  

Among the safety features, the measurement of safety-related data of the fuel salt is a 

research goal as well, as various physical properties need monitoring while the reactor runs. 

Due to the extreme environment the molten salts create, a specific set of measurement 

equipment is necessary. The devices must be robust enough to withstand temperatures up to 

1100K.  

The demonstration phase of the Generation IV Reactors is an engineering-scale process, in 

which prototypical conditions are created to verify physical phenomena and optimise 

material capabilities [3]. In the case of the MSFR, the test setup would consist of a FLiNaK 
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(LiF, NaF, KF) bath. FLiNaK is a eutectic composition and therefore has a relatively low 

melting point – as a reference, 46.5 mol% LiF, 11.5 mol% NaF, 42 mol% KF melts at 727K, 

while each of the individual salts melt at temperatures over 1100K [5]. Though FLiNaK is not 

the salt that will be used in the MSFR, the viscosity range used in this thesis is based on 

extrapolated data of the test salt, as its properties should not differ much from the fluoride 

salts in the reactor. 

1.2 Measurement of viscosity in an MSFR 
Apart from some types that separate a small volume to do measurements, most viscometers 

exist from an object that vibrates, rotates or translates in any way and a part that measures 

its movements. Either the force to keep the movement constant or the time a certain 

attenuation takes is used to base the viscosity measurement on [6]. Due to its high 

temperatures, the MSFR needs a more robust version of the viscometer. Still, the same 

principle can be used as proposed by Rohde [7]: an object with a density larger than the core 

will be released from the top of a certain experimental vessel and time it takes cover a certain 

distance can be measured. Ideally a set of calibration data would provide a direct relation 

between the measured time and the viscosity, when other properties like the salts’ density 

and dimensions of the vessel are known. 

The detection of the settling object would be problematic, as the measuring part of the 

viscometer probably would be unable to withstand the vessel’s environment and therefore 

should be placed outside the vessel, disabling mechanical communication between the two 

parts of the viscometer. However, a magnetic field around the settling object could enable the 

communication through the core’s walls. A cobalt object would be able to maintain a 

magnetic field, as its Curie temperature of 1388-1398K (in case of a hcp lattice) lies well 

above the operating temperature of the MSFR and its test setup [8]. 

The process of a settling object was simulated using Computational Fluid Dynamics (CFD). 

The Lattice Boltzmann Method (LBM) was used to investigate the effect of various values of 

four properties of the viscometer: the ratio between the fluid’s density and the density of the 

settling object, the shape of the object, the cross sectional area of the vessel and the detection 

height. These features were varied to quantify the measurement precision of the viscosity 

and find the most desirable property values.  

1.3 Lattice Boltzmann Method 
LBM finds its roots in the Lattice Gas Automata (LGA), which is a type of CFD using a simple 

set of rules for moving particles in a grid. The first model, proposed by Hardy, de Pazzis and 

Pomeau, discretized a 2D fluid by applying a grid over which discrete particles could move – 

four directions from each node. The particles had one possible speed and their movements 

were managed by a set of advection and collision rules that employ the rules of mass and 

momentum conservation [9]. The model was improved by Frisch, Hasslacher and Pomeau by 

their proposal to create a grid of triangles instead of squares, allowing particles to advect in 

six directions [10]. The results were more promising but still showed noise. The solution was 

introduced  by McNamara and Zanetti, by their idea to apply the Boltzmann equation on the 

LGA. This equation made it possible to manage real numbers instead of Booleans to describe 
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particle flows. They introduced mesoscopic probability density flows of particles that were 

subject to advection and colliding terms that still conserved mass and momentum 

conservation [11]. This proposal marked the start of LBM. 

LBM still was a computationally demanding method to analyse fluid dynamics, and therefore 

a slow way to calculate setups in the desired resolution. Qian et al. found a solution to reduce 

the computational time by introducing the Bhatnagar-Gross-Krook method for lattice gasses 

to LBM. This replaces the numerically heavy collision operator of LBM, originally an operator 

that covered particle redistribution for every two directions particle densities were to come 

together, by a single relaxation parameter [12].  

Computation time was further reduced by multiple suggestions for local grid refinement 

methods. Empirical measurements can identify large velocity gradients in fluids, thereby 

declaring high resolution requirements in certain parts of the setup. This local refinement 

allows the rest of the covered volume to be filled in by a coarser grid [13]. Refinement 

techniques are for example based on rescaling of particle velocities or interpolation of 

particle densities [14] [15]. The method that was used in this thesis was proposed by Rohde 

et al. and is based on temporal refinement of the coarse cells [16]. This second addition 

enables a detailed view within a large area within a reasonable time span.  

1.4 Outline 
This thesis consists of five parts. Chapter 2 will explain the underlying theory on the general 

LBM, along with some constraints that directly affect the choice of input parameters. 

Furthermore multiple features that are added to the original version of LBM are discussed. In 

chapter 3 the completion of the model is covered. Besides, this chapter will elaborate on the 

four explored properties of the viscometer and the data treatment to conclude measurement 

accuracy from the simulations. Chapter 4 includes the simulation data and further explain 

data handling, of which the outcomes will be elaborated on in chapter 5. Recommendations 

for further research are made in chapter 6. 
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2 Theory 

2.1 Settling sphere 
When a sphere is released in a fluid with infinite volume it will be subject to gravitational 

force, buoyancy and drag force. Assuming the density of the sphere is greater than the fluid’s 

density, at first the gravitational force will be dominant, causing the sphere to accelerate 

downwards. Buoyancy and drag will then increase and thereby cause the acceleration to 

decrease until the sphere moves at constant velocity, i.e. its terminal velocity.  

The problem that is described above can be solved analytically. However, if we eliminate the 

assumption of an infinite volume, but instead let the sphere settle in a fluid in a finite volume, 

it cannot. Brenner showed that a particle in a finite tank is affected by the side walls, even if 

those walls are infinitely far away from the particle [17]. It is remarkable though, that the 

presence of a bottom has a far smaller effect. Only when it approaches the bottom very 

closely, a settling sphere behaves very differently from the case of infinite depth [18]. 

However, in this thesis smaller deceleration effects are found earlier in the trajectory as well. 

Thus, to describe the sphere’s motion in a finite volume, a numerical analysis is necessary. 

The Lattice Boltzmann Method was chosen to do this simulation due to its relatively quick 

and accurate results and because solid boundaries are relatively easy to implement in into 

LBM models.  

2.2 General LBM 
The Lattice Boltzmann Method is a numerical approach to fluid dynamics that, in its nearly 

incompressible limit, is shown to approximate the incompressible Navier-Stokes equations 

[19]. This is further elaborated on in paragraph 2.2.3.  

LBM is based on the idea that motion of microscopic particles defines the macroscopic 

behaviour of the fluid. This translation is made by a mesoscopic setup of the particle flow: the 

model describes multi-particle flows that move by advection and collision over a 2D or 3D 

grid that is applied on a certain area or volume.  

LBM works fully discretised: each cell has its dimensions expressed in ls (lattice spacing) and 

every time step takes 1lt (lattice time step). Due to the discretisation, physical units in the 

model are expressed in ls and lt instead of m and s. For conversion the quantities 𝑆 and 𝑇 

were introduced: 

 1ls = 𝑆m;     1lt = 𝑇s  ( 1 ) 

𝑆 has the units [m/ls] and 𝑇 [s/lt]. This allows translation to the LBM for all quantities. For 

example, the sphere’s velocity is conversed by 𝑣∗𝑇/𝑆 = 𝑣 (in units: [m/s][s/lt][ls/m] = [ls/

lt], so 𝑣∗ is expressed in [m/s] and 𝑣 in [ls/lt]). To avoid confusion, from now on physical 

quantities expressed in meters and seconds will be referred to by symbols with an asterisk 

(*). 
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All particles that exist within the volume of one cell are grouped in its center node. Each 

particle is assigned with a discrete velocity that allows it either to move to the node of an 

adjacent cell within one discretised time step, or stay on the same node, i.e. with zero velocity. 

The case of a so-called D2Q9 setup is shown in Figure 1: a 2D grid with nine possible 

velocities. In this thesis a D3Q19 model is used.  

Particles are fully described by these two properties: the location of their cell 𝑥⃗ at time 𝑡, and 

their velocity 𝑐𝑖. Furthermore, instead of individual particles, particle density distributions 

are simulated, as proposed by McNamara and Zanetti [11]. This creates a mesoscopic 

environment that allows LBM’s celebrated quickness and accuracy. 

 

Figure 1. In LBM of the D2Q9, particle densities have nine possible velocities. They can move in eight 
directions (𝒄𝟏…𝒄𝟖) to its eight adjacent cells or have zero velocity (𝒄𝟗). In three dimensions D3Q15 and 
D3Q19 methods exist. 

Each propagation step contains two separate actions: a advection process and a collision step 

that redistributes the particle densities’ velocities. The particle density 𝑓𝑖 (𝑖 = 1…𝑄, where 𝑄 

is the number of directions that the particles can travel) as proposed by McNamara and 

Zanetti is represented as follows: 

 𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥⃗, 𝑡) + Ω𝑖(𝑓(𝑥⃗, 𝑡))  ( 2 ) 

The streaming step allows a particle density 𝑓𝑖 at location 𝑥⃗ and time 𝑡 to travel a distance of 

𝑐𝑖∆𝑥 within ∆𝑡, where |𝑐𝑖| = ∆𝑥/∆𝑡 . Following the model’s discretisation, generally ∆𝑥 = 1ls 

and ∆𝑡 = 1lt. However, local grid refinement allows other values, as described in paragraph 

2.3. 

The collision step is represented by Ω𝑖(𝑓(𝑥⃗, 𝑡)), an operator that expresses the change in 𝑓𝑖 

due to collision. This operator describes the scattering rate between every combination of 

two particle densities that flow from different directions to meet in a node. Moreover, it 

provides conservation of mass and momentum in the lattice. As the original operator 

appeared very demanding regarding computational time it is often replaced by the 

Bhatnagar-Gross-Krook collision term. The BGK method replaces Ω𝑖(𝑓(𝑥⃗, 𝑡)) so the LBGK 

equation is obtained [12]: 
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 𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥⃗, 𝑡) −
𝑓𝑖−𝑓𝑖

𝑒𝑞

𝜏
 ( 3 ) 

Here 𝜏 = 1/𝜔 where 𝜔 is the singe relaxation term. The relaxation time 𝜏 is directly related to 

the kinematic viscosity 𝜈 in LBM-units: 

 𝜈 = 1/3(𝜏 − 1/2)  ( 4 ) 

Next, the term 𝑓𝑖
𝑒𝑞

 in equation ( 3 ) comes forward in the formal expansion of 𝑓𝑖 about the 

local equilibrium distribution function:  

 𝑓𝑖 = 𝑓𝑖
𝑒𝑞
+ 𝜖𝑓𝑖

(𝑛𝑒𝑞)
 ( 5 ) 

𝑓𝑖
𝑒𝑞

 represents the local equilibrium distribution function, while 𝑓𝑖
(𝑛𝑒𝑞)

 is its counterpart, the 

nonequilibrium distribution function. Here 𝜖 is of a magnitude in the order of 𝑆 and 𝑇. 

In case of an applied body force 𝑔⃗, due to gravity, another term has to be added in equation ( 

3 ). The expanded equation reads 

 𝒇𝒊(𝒙⃗⃗⃗ + 𝒄⃗⃗𝒊∆𝒕, 𝒕 + ∆𝒕) = 𝒇𝒊(𝒙⃗⃗⃗, 𝒕) −
𝒇𝒊−𝒇𝒊

𝒆𝒒

𝝉
+ 𝒕𝒇,𝒊𝝆𝒍(𝒄⃗⃗𝒊 ∙ 𝒈⃗⃗⃗) ( 6 ) 

There 𝝆𝒍 is the fluid’s density and 𝑡𝑓,𝑖 is a scaling factor that depends on the type of LBM and 

𝑐𝑖 [12]. In case of D3Q19,  

 𝑡𝑓,𝑖 =

{
 
 

 
 
12

36
: 𝑐𝑖 = (0,0,0)                                                     

2

36
: 𝑐𝑖 = (±1,0,0), (0 ± 1,0), (0,0 ± 1)          

1

36
: 𝑐𝑖 = (±1,±1,0, )(0,±1,±1), (±1,0,±1)

 

Equation ( 4 ) introduces 𝜈, a representation of kinematic viscosity expressed in [ls2/lt]. This 

enables direct use of the value in the LBM model. Conversion is done by 𝜈 = (𝑇/𝑆2)𝜈∗. 

Furthermore, 𝑔⃗∗ [m/s2] , the body force due to gravity, has an LBM equivalent 𝑔⃗ [ls/lt2].  

However, the fluid’s density (𝜌𝑙
∗) and its momentum density (𝜌𝑙

∗𝑢⃗⃗∗) do not have a direct 

conversion to LBM equivalents like 𝜈 and 𝑔⃗. They are defined as discrete sums of the particle 

distribution functions: 

 𝜌𝑙 = ∑ 𝑓𝑖
𝑄
𝑖=1 ;   (𝜌𝑙 𝑢⃗⃗) = ∑ 𝑓𝑖𝑐𝑖

𝑄
𝑖=1  ( 7 ) 

2.2.1 Stokes flow 

As the model is meant to create an environment to measure viscosity precisely, the effect of 

advective forces should be smaller than viscous forces, which means Stokes flow simulations 

provide the most accurate results. To maintain Stokes flow, the model should generally obey 

that Re ≪ 1. Simulations by Rohde et al. [13] of a settling sphere of 𝐷 = 8ls in a range of 

Reynolds numbers of 0.1 to 1.0 showed that no significant change in drag force occurred for 

𝑅𝑒∗ < 0.5. Hence, a Reynolds number of 0.5 is small enough to simulate a flow in the Stokes 

regime. 



8 
 

2.2.2 Kinematic viscosity value in LBM 

Like every numerical method, LBM shows an error due to various properties of the model. 

The error due to the halfway bounce-back boundary condition, that applies on fluid velocity 

𝑢⃗⃗𝑖 at node 𝑘 at height 𝑧𝑘, was found by He et al. [20] and expanded with a second term by 

Rohde et al. [21]. This equation was originally derived for the error in channel flow 

simulations, but it was also shown to be a close approximation for the error in the flow 

around a sphere by Rohde. 

 Δ𝑢𝑖(𝑧𝑘) =
𝑈𝑚𝑎𝑥(16𝜏

2−20𝜏+3)

3𝐿2
+
4𝑈𝑚𝑎𝑥𝛼(𝛼−1)

𝐿2
 ( 8 ) 

Here 𝑈𝑚𝑎𝑥 is the maximum velocity of a Poiseuille flow profile and 𝐿 is the height of the 

channel. 𝛼 represents the volume fraction of a cell at the boundary. In case of the walls where 

the halfway bounce-back method is applied, 𝛼 = 1, as the boundary lies exactly between two 

nodes, so the second term of equation ( 8 ) becomes 0. In case of a differently shaped wall, for 

example a settling discretised sphere, 𝛼 has different values.  

Δ𝑢𝑥(𝑧𝑘) can actually approach zero, as 16𝜏2 − 20𝜏 + 3 = 0 for 𝜏 = (5 ± √13)/8. The smaller 

of the two solutions is not to be used as equation ( 4 ) shows that this value for 𝜏 it would 

create a negative 𝜈. Therefore the model is optimised for 𝜈 = (1 + √13)/24ls2/lt. 

2.2.3 Mach number 

LBM converges to the compressible, isothermal Navier-Stokes equations [22]: 

 𝜕𝑡𝜌𝑙
∗ + ∇ ∙ (𝜌𝑙

∗𝑢⃗⃗∗) = 0 ( 9 ) 

 𝜕𝑡(𝜌𝑙
∗𝑢⃗⃗∗) + ∇ ∙ ((𝜌𝑙

∗𝑢⃗⃗∗𝑢⃗⃗∗) + 𝑐𝑠
∗2𝜌𝑙

∗I) = ∇ ∙ S∗ +𝑂(Ma∗3/Re) ( 10 ) 

In these equations, 𝑐𝑠
∗2𝜌𝑙

∗ is the pressure, I is the identity tensor and S∗ is the viscous stress 

tensor. Furthermore, 𝑢⃗⃗∗ is the macroscopic velocity of the fluid, and 𝑐𝑠
∗2 is the speed of sound 

in the fluid. Finally, the term 𝑂(Ma∗3/𝑅e) represents compressibility, thus by stating the 

Mach number Ma∗ ≪ 1, the Navier-Stokes equations are solved in the incompressible limit, 

where 𝜌𝑙
∗ is constant [22]. (Although the Mach number is a dimensionless number, an asterisk 

is added because an LB-version will be introduced later in this thesis.) 

For small Ma∗ , the incompressible Navier-Stokes equation is solved, with an error 

proportional to Ma∗2 [22]. As the event that is simulated happens in the incompressible limit, 

it is necessary to work with these values where  Ma∗ ≪ 1 so the error is minimal. Generally 

values that obey Ma∗ < 0.07 are used. 

 Ma∗ =
|𝑢⃗⃗⃗∗|

𝑐𝑠
∗2  ( 11 ) 

As the |𝑢⃗⃗∗| that is to be found in the fluid will lay far from the speed of sound in a liquid, this 

constraint is accomplished easily.  

However, the model has another constraint regarding maximum velocity: the sphere may 

only move a distance much smaller than ∆𝑥 per ∆𝑡 to be simulated correctly by the model. To 
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set this constraint, another interpretation of the Mach number can be used. An LB-equivalent 

of the number would be  

 Ma =
|𝑣⃗⃗|

𝑐𝑠
  ( 12 ) 

Here 𝑣⃗ represents the sphere’s velocity and 𝑐𝑠 is the speed of sound in LBM. When Ma∗ ≪ 1 is 

obeyed, the fluid can be considered to be incompressible, thereby stating that compressions 

with the speed of sound can be ignored. As the speed of sound no longer matters, its value in 

LBM, 𝑐𝑠, becomes a tuneable quantity. However, for a 3D model with 𝑄 = 19, generally 

𝑐𝑠 = 1/√3 is used [23]. If the Ma < 0.07 constraint is kept, like for Ma∗, |𝑣⃗| < 0.04ls/lt is 

stated. This prevents the sphere from moving more than 0.07∆𝑥 in 1 ∆𝑡. 

2.3 Local grid refinement 
McNamara and Zanetti originally proposed a homogenous, Carthesian grid. However, the 

Lattice Boltzmann equation does not require a pre-fixed geometry: neither Carthesian 

coordinates nor equality of each cell are key conditions. The equation allows other 

discretisations of the simulated volume, which opens new possibilities regarding 

computational time reduction. 

In areas where particle velocity gradients are high, a very fine grid is necessary to capture 

these gradients accurately enough. This results in a large amount of cells, requiring large 

computation times. To reduce the number of nodes, various proposals were made to vary the 

cells’ dimensions.  On volumes that are expected to carry high velocity gradients a finer grid 

can be applied. This obviously is a large reduction of nodes relative to a full coverage of the 

fine grid. The local refinement model used in this thesis was proposed by Rohde et al. [16], 

and uses rescaling factors to recalculate conversion constants 𝑆 and 𝑇. As two cell sizes are 

used, rescaling introduces 𝑆𝑓 for the fine grid and 𝑆𝑐 for the coarse one, and 𝑇𝑓 and 𝑇𝑐  

respectively. A rescaling factor 𝑛 = 2 is used. 

 𝑆𝑐 = 𝑛𝑆𝑓;   𝑇𝑐 = 𝑛𝑇𝑓 ( 13 ) 

In this refinement method, fine cells are considered ‘normal’, so 𝑆𝑓 = 𝑆, 𝑇𝑓 = 𝑇 and therefore 

𝑆𝑓m = 1ls and 𝑇𝑓m = 1lt. This means that fine cells have a volume of 1ls3, and coarse cells, 

having edges of 2ls = 1m/𝑆𝑐, have the volume equal to eight fine cells. As 𝑐𝑖 remains constant, 

particles can pass a fine cell in 1lt, but need 2lt = 1s/𝑇𝑐  to pass a coarse cell.  

Furthermore, 𝜈 and |𝑔⃗ | are to be converted as well for in the coarse grid. Due to the new 

quantity 𝜈𝑐, 𝜏𝑐  is introduced as in equation ( 4 ). Due to all different values, viscosity and body 

force are applied on the two grid types separately. 

 𝜈∗ = (𝑇𝑓/𝑆𝑓
2) 𝜈𝑓 = (𝑇𝑐/𝑆𝑐

2) 𝜈𝑐 = (𝑛𝑇𝑓/𝑛
2𝑆𝑓

2) 𝜈𝑐                →
1

𝑛
𝜈𝑐 = 𝜈𝑓 = 𝜈 

 |𝑔⃗∗| = (𝑇𝑓
2/𝑆𝑓) |𝑔⃗𝑓| = (𝑇𝑐

2/𝑆𝑐) |𝑔⃗𝑐| = (𝑛
2𝑇𝑓

2/𝑛𝑆𝑓) |𝑔⃗𝑐|  → 𝑛|𝑔⃗𝑐| = |𝑔⃗𝑓| = |𝑔⃗|  

The grid refinement algorithm exists of five steps.  
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- First, the collision part of LBM is applied on both grids separately, as they do not 

interact yet.  

- After that particles from each coarse cell are redistributed to eight cells of the size of 

the fine grid.  

- This allows the third step, the convection part, to happen because particles can flow 

between the two grid types without constraints.  

- Afterwards, as 𝑇𝑐 = 2𝑇𝑓 , the particles in the fine grid undergo the collision step again, 

leaving the particles that are to enter the coarse grid untouched. Then again the 

streaming step is repeated for both grids.  

- After that, the particle densities in the virtual smaller cells within the coarse grid are 

summed.  

2.4 Halfway bounce-back method 

2.4.1 Straight, stationary walls 

General LBM allows various methods to describe the lattice’s boundaries. In this research no-

slip walls are used, by imposing the halfway bounce-back method. This method works as if 

there is one more layer of grid cells beyond the boundary of the lattice. These cells mirror the 

activities of the outer nodes within the lattice: they send back the exact particle flow they 

receive from the lattice, but with the opposite velocity. 

  

Figure 2. The grey cells represent the row of adjacent phantom cells, sending a mirrored 𝒇𝒊′ back when 𝒇𝒊 
flows from a boundary cell inside the lattice. Here |𝒇𝒊| = |𝒇𝒊′|. 

This tweak causes the particle velocity at the boundary to be zero in every direction and 

thereby meet the no-slip requirement. 

2.4.2 Discretely curved walls 

The object that is to settle in the simulation is generally a arbitrarily shaped wall that is able 

to move through the fluid: the walls influence the particles’ flow and vice versa. The no-slip 

halfway bounce-back method applies on this wall as well.  

The object is discretised in a way that allows its resolution to be finer than that of the grid 

which it is to be placed in: it is a set of coordinates that are grouped in triplets, forming 

triangular facets. Each coordinate is part of six triangles, and the triangles form a closed 

representation of the object. For each facet the normal unit vector, 𝑛⃗⃗𝜙 is calculated, as well as 
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its surface area 𝐴𝜙, where 𝜙 represents the facet. The object’s coordinates are grouped in a 

way that creates only 𝑛⃗⃗𝜙 that point outwards of the object.  

The calculations for interaction with a stationary stairs-like wall of which the boundaries 

coincide with the cell borders of the grid was introduced by Chen et al. [24]. An extension 

allowing other geometries as well was later proposed by Rohde et al. [13]. Particles from cells 

adjacent to the object can flow with velocity 𝑐𝑖 so that they are to interact with the object’s 

wall. When the particles hit the wall with velocity 𝑐𝑖, they are bounced back at  −𝑐𝑖. To 

calculate the amount of particles that will collide, 𝑃𝑖
𝑑𝑖𝑠𝑡(𝑥⃗) is introduced, which represents the 

amount of particles with velocity 𝑐𝑖 that are to interact with the wall. Here 𝑥⃗ is the cell from 

which the particles flow. The share of particles that are to collide is given by 

 𝑃𝑖
𝑑𝑖𝑠𝑡(𝑥⃗) = ∑

𝑉𝑖
𝜙(𝑥)

∆𝑉(𝑥)𝜙  ( 14 ) 

where 𝑉𝑖
𝜙(𝑥⃗) is the volume of the cell that lies within 𝑐𝑖∆𝑡 of the wall facet 𝜙, and ∆𝑉(𝑥⃗) the 

total volume of the cell, minus the possible volume that is occupied by the object within that 

cell. One cell may lie within a distance of 𝑐𝑖∆𝑡 of multiple facets. As a matter of fact, the 

particles that are to interact with the wall all lie in a parallelepiped extruded from the facet 

up to a distance of |𝑐𝑖|∆𝑡 in the opposite direction of 𝑐𝑖. These parallelepipeds have a volume 

of  Ψ𝑖
𝜙
= |𝑐𝑖 ∙ 𝑛⃗⃗

𝜙|𝐴𝜙∆𝑡. 

 

Figure 3. A representation of the bounce-back method around a discretised object (marked with dark 
grey). Only one direction 𝒄⃗⃗𝒊 is elaborated on in this figure. The parallelepipeds that are extruded from two 
facets are marked light blue. The volumes of cell 𝒙⃗⃗⃗ that lie within 𝒄⃗⃗𝒊∆𝒕 from facets 𝝓𝟏 and 𝝓𝟐 represent 

𝑷𝒊
𝒅𝒊𝒔𝒕(𝒙⃗⃗⃗). 

The adjusted equation for LBM now is 

 𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑃𝑖
𝑢𝑛𝑑𝑖𝑠𝑡(𝑥⃗)𝑓𝑖̃(𝑥⃗, 𝑡) + 𝑄𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡) ( 15 ) 

In this equation 𝑃𝑖
𝑢𝑛𝑑𝑖𝑠𝑡 is the undisturbed part of the particles that flow in the 𝑖-direction, so 

𝑃𝑖
𝑢𝑛𝑑𝑖𝑠𝑡 = 1 − 𝑃𝑖

𝑑𝑖𝑠𝑡(𝑥⃗). 𝒇𝒊̃(𝑥⃗, 𝑡) represents the right part of normally used equation ( 6 ), i.e. 
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𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝑥⃗, 𝑡) −
𝑓𝑖−𝑓𝑖

𝑒𝑞

𝜏
+ 𝑡𝑓,𝑖𝜌𝑙(𝑐𝑖 ∙ 𝑔⃗). This leaves 𝑄𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡) to be the mass 

that is reflected by the object. 

 𝑄𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡) = ∑
𝑉𝑖
𝜙(𝑥⃗+𝑐𝑖∆𝑡)

Ψ𝑖
𝜙𝜙 Γ𝑖

𝑜𝑢𝑡,𝜙
(𝑡) ( 16 ) 

In this equation Γ𝑖
𝑜𝑢𝑡,𝜙

(𝑡) represents the particle flow, originally with velocity 𝑐𝑖, that is 

reflected from facet 𝜙. 

2.4.3 Moving discretely curved walls 

Equation ( 15 ) applies to the case of a stationary object. If the object moves at velocity 𝑣⃗(𝑡) 

however, another term is to be added: 

 𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡∗) = 𝑃𝑖
𝑢𝑛𝑑𝑖𝑠𝑡(𝑥⃗)𝑓𝑖

′(𝑥⃗, 𝑡) + 𝑄𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡)  

                                                                     + 𝐵𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡) ( 17 ) 

Here 𝑡∗  represents the moment before the wall moves. This new 𝐵𝑖 -term introduces 

additional particle flux that is transferred from boundary cells within the object to the 

adjacent fluid cells in case that 𝑐𝑖 ∙ 𝑣⃗(𝑡) < 0 and transferred the other way when 𝑐𝑖 ∙ 𝑣⃗(𝑡) > 0. 

Over the total volume, mass is therefore conserved, while momentum is transferred to the 

bottom of the descending object. This transferred mass is in this case 

 ∆Γ𝑖
𝑜𝑢𝑡,𝜙(𝑥⃗, 𝑡) = 2𝑡𝑓,𝑖

𝑉𝑖
𝜙(𝑥,𝑡)

∆𝑉(𝑥,𝑡)
𝑀(𝑥⃗, 𝑡)(𝑣⃗(𝑡) ∙ 𝑐𝑖)/𝑐𝑠

2 ( 18 ) 

Here 𝑡𝑓,𝑖 is the same weight factor as used in equation ( 6 ). 𝑀(𝑥⃗, 𝑡) is the total mass in cell 𝑥⃗ 

at time 𝑡, depending on 𝑀̃(𝑥⃗, 𝑡), the total mass in the cell without the addition of the 𝐵𝑖-term: 

 𝑀(𝑥⃗, 𝑡) = 
𝑀̃(𝑥⃗,𝑡)

1−2∑ ∑ {𝑉
𝑖
𝜙(𝑥⃗,𝑡)}/{∆𝑉(𝑥⃗,𝑡)𝑡𝑓,𝑖(𝑣⃗⃗(𝑡)∙𝑐𝑖)/𝑐𝑠

2} 
𝑖∈𝑐⃗⃗𝑖∙𝑛⃗⃗⃗

𝜙(𝑡)>0
 𝜙

 ( 19 ) 

Now ∆Γ𝑖
𝑜𝑢𝑡,𝜙(𝑥⃗, 𝑡) is fully expressed, it is possible to write 𝐵𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡) in terms of it: 

 𝐵𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡) = ∑ ∆Γ𝑖
𝑜𝑢𝑡,𝜙(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡)𝜙  ( 20 ) 

In the model the flow near this descending object can be simulated following five steps 

- First, quantities that follow directly from the stationary geometry should be calculated: 

∆𝑉(𝑥⃗, 𝑡), Ψ𝑖
𝜙(𝑡), 𝑉𝑖

𝜙(𝑥⃗, 𝑡) and 𝑛⃗⃗𝜙(𝑡). 

- The flow field for a fixed wall can now be calculated as described in equation ( 15 ), but 

now for 𝑡 = 𝑡∗. 

- Now 𝐵𝑖  can be added: 𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡∗) is calculated from equation ( 17 ). 

- Next, the object is moved over a distance of 𝑣⃗(𝑡)∆𝑡. 

- Now 𝑓𝑖(𝑥⃗ + 𝑐𝑖∆𝑡, 𝑡 + ∆𝑡) can be calculated. 
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N.B. this model only allows translational motion for the object, hence rotational motion is not 

included here. 

2.5 Hydraulic diameter of the object 
The simulated shear stress on the settling object shows an offset due to the model’s 

formulation of the shear stress. This deviation is unphysically dependent on the used value of 

𝜈 and can be corrected for by a slight rescaling of the object. This rescaling is realised by 

introducing the hydraulic diameter, 𝐷ℎ𝑦𝑑𝑟 [13] that deviates slightly from the diameter of the 

object, 𝐷.  

To determine the value of 𝐷ℎ𝑦𝑑𝑟 , multiple simulations with various values of 𝜈 must be 

executed. The simulated drag force and analytical drag force values, as derived by Hasimoto 

[25], can be compared. Rohde et al. [26] showed that for small values of 𝜈, like 𝜈~1/96, the 

drag force in the simulation is larger than the analytically found one, while simulated drag 

force appears smaller than analytical values for large 𝜈 (𝜈~2/3). The simulated and the 

analytical solutions meet near the value of 𝜈 = 1/6ls2/lt, which lies close to 𝜈 = (1 +

√13)/24ls2/lt.  

𝐷ℎ𝑦𝑑𝑟 corrects for drag force deviations between simulations and analytically found values. 

The case of 𝐷ℎ𝑦𝑑𝑟 < 𝐷 corrects for small 𝜈 and  𝐷ℎ𝑦𝑑𝑟 > 𝐷 for large values of 𝜈.  
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3 Methodology 

3.1 LBM model 

3.1.1 General setup 

In each of the simulations the fluid volume is simulated by a cuboid with two grid types: a fine 

one with cell edges of 1ls and the coarse grid with edges of 2ls. The fine grid is implemented 

in the center of the lattice, where Ten Cate et al. [27] showed the largest velocity gradients to 

occur. A volume of 16 × 16 × 100 ls3 is applied. It is surrounded by a 22ls thick layer of the 

coarse grid, creating a total cuboid volume of 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 60 × 60 × 100 ls
3 . The 

thickness of the coarse layer is only varied when exploring the effect of different volume sizes 

as explained in paragraph 3.3.2. 

Ten Cate et al. [27] performed viscosity measurements with a silicone oil in which a Nylon 

sphere was released. It was found that the highest velocity gradients occur within a cross 

sectional area of 2𝐷 × 2𝐷 in the center of the vessel [27]. In this simulation the fine grid 

therefore roughly covers the volume up to a distance of 𝐷/2 from the sphere.  

  
Figure 4. The top view of the lattice. Simulations were performed on a 100ls high cuboid. 

The settling object is, apart from the simulations that varies the shape 3.3.3, the same as the 

one used by Rohde et al.: a discretised sphere, consisting of 176 triangular faces of which 

each corner is represented by a coordinate [26]. The coordinates that make up the sphere 

obey 𝐷 = 9ls. However, due to the discretisation process the surface area of the sphere 

becomes smaller, as shown in the case of a circle in Figure 5. Therefore a slightly larger 

geometrical diameter is introduced, that causes the area of the object to resemble that of a 

sphere with 𝐷 = 9ls more accurately. Every coordinate is multiplied by a factor 𝐷𝑔𝑒𝑜𝑚/𝐷. In 

Rohde’s 176-faced object, 𝐷𝑔𝑒𝑜𝑚 = 9.16ls was used, and that value will be re-used for the 

same sphere in this thesis.  
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Figure 5. a. The periphery of a discrete approximation of a circle  with the same diameter mismatches that 
of the real circle. The larger the amount of faces, the better the approximation. b. If the diameter of the 
discrete figure is slightly larger, the periphery becomes a better approximation 

Furthermore, this sphere is assigned with a hydraulic diameter of 𝐷ℎ𝑦𝑑𝑟 = 9.027ls, as it had 

in Rohde’s experiments. As explained in paragraph 2.5, 𝐷ℎ𝑦𝑑𝑟 is a correction factor that 

reduces the difference between the simulated drag force and analytically found values of that 

force. The deviation of simulated shear stress depends on 𝜈 in an unphysical way, so 𝐷ℎ𝑦𝑑𝑟 is 

dependent on 𝜈. Though Rohde used 𝜈 = 1/6 ls2/lt and this thesis uses 𝜈 = (1 + √13)/24, 

𝐷ℎ𝑦𝑑𝑟 = 9.027ls remains a close enough approximation. 

For each calculation the sphere’s center is placed in the center of the cuboid as seen from the 

top, at ℎ0 = 80ls (ℎ = 0ls being the bottom of the vessel). The object is released at 𝑡 = 0lt and 

from then subject to the gravitational force 𝑔⃗. After every time step of 1lt its position 

coordinates and the three gradients are saved.  

The object is detected when its center passes ℎ𝑑 = 40ls, except for the simulations that 

examine the influence of different detection heights, as elaborated on in paragraph 3.3.4. This 

height is sufficiently far away from the bottom to avoid major bottom effects, as those only 

appear about 1ls above the bottom [18]. 

3.1.2 Determination of quantities in LBM 

3.1.2.1 Viscosity 

As an LBM model uses the LB-units ls and lt, an LB-version of the kinematic viscosity is 

necessary. As shown in paragraph 2.2.1, 𝜈 = (1 + √13)/24ls2/lt ≈ 0.19ls2/lt reduces the 

error in fluid velocity that is induced by the halfway bounce-back method.  

An analysis of the effect of using a different value for 𝜈 is made before fixing values of 𝑆 and 𝑇 

for the actual simulations. Therefore, a set of test runs is performed. Because the effect of 

varying 𝜈 is explored, all other properties must remain constant. Therefore each run 

simulates the same sphere settling in the same volume of a fluid with the same viscosity 

𝜈∗ = 5.0 ∙ 10−4m2/s. The special conversion factor is fixed as well: 𝑆 = 2.0 ∙ 10−3m/ls. 

Obviously, the LB-viscosity, 𝜈, is varied. Now 𝜈∗, 𝑆 and a range of 𝜈-values are set, 𝑇 is a result 

of those, as  𝑇 = 𝑆2𝜈∗/𝜈. The variables for each run are shown in Table 1. For all 

combinations, Ma < 0.07. 
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Table 1.Measurement values setup for Figure 6. To explore the effect of a varied 𝝂, 𝝂∗ and 𝑺 are kept 
constant. A range of 𝝂 was chosen, and 𝑻 was used to fit the other three quantities together.  

𝛎∗ [𝐦𝟐/𝐬] 
× 𝟏𝟎−𝟒 

𝑆 [m/ls] 
×  10−3 

𝑇 [s/ts] 
× 10−3 

𝜈 [ls2/lt] 
 

𝟓. 𝟎𝟎 2.00 1.60 0.20 
𝟓. 𝟎𝟎 2.00 1.33 0.17 
𝟓. 𝟎𝟎 2.00 1.00 0.13 
𝟓. 𝟎𝟎 2.00 0.80 0.10 
𝟓. 𝟎𝟎 2.00 0.40 0.05 

Simulations with the sphere with 𝐷 ≈ 9ls are run from ℎ0 = 80ls in the 60 × 60 × 100 ls3 

lattice. 𝐷ℎ𝑦𝑑𝑟 depends on 𝜈: it should decrease when 𝜈 increases and vice versa. However, as 

determination of 𝐷ℎ𝑦𝑑𝑟 was not available for other values of 𝜈 it was kept constant at 

𝐷ℎ𝑦𝑑𝑟 = 9.027ls, while it should increase slightly as 𝜈 decreases. Figure 6 clearly shows that a 

varying 𝜈 has a heavy effect on the velocity 𝑣∗ of the sphere, even though the same physical 

problem is solved for every run. Because the other values create a significant offset 

𝜈 = 0.19ls2/lt is kept constant for all further simulations. 

 

Figure 6. The height of the settling sphere with various 𝝂 values, while 𝝂∗ was kept constant. Values of 𝒕 are 
multiplied by the scaling factor 𝑻 to express 𝒕∗ in seconds. 

Now that 𝜈 is fixed, a range of 𝜈∗ is chosen for the simulations. This range is based on 

extrapolated data of Janz et al. [5] on the dynamic viscosity and density of FLiNaK. A 

temperature range of 850 − 1100K roughly corresponds to a kinematic viscosity range of 

6 ∙ 10−7 − 2.2 ∙ 10−6m2/s [28]. Intervals of 2 ∙ 10−7m2/s are chosen to observe the viscosity’s 

effects on settling time. 

3.1.2.2 Lattice space and lattice time 

With a value for 𝜈 fixed and a range for 𝜈∗ set, the conversion factors 𝑆 and 𝑇 can be 

determined. Because the simulation sets are meant to vary one property (i.e. density ratio, 

cross sectional area, object shape or detection height), other physical properties are to be 

kept constant throughout the runs, the volume of the vessel being one of those. To maintain a 
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constant volume, 𝑆 and volume 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 60 × 60 × 100 ls
3  are chosen to be invariable. 

This leaves 𝑇 to be determined as a result of 𝜈∗, 𝜈 and 𝑆, because 𝑇 = 𝑆2𝜈∗/𝜈. 

𝑆 and 𝑇 cannot be chosen arbitrarily, as the model has to meet the constraint of Ma =

√3|𝑣⃗| < 0.07. To explore the constraint the terminal velocity 𝑣⃗𝑡𝑒𝑟𝑚
∗  of a sphere moving with 

constant velocity in an infinite medium is calculated for  each value of the 𝜈∗-set. Then a value 

for 𝑆 is chosen that allows 𝑣⃗𝑡𝑒𝑟𝑚
∗  for each value of 𝜈∗ to be converted to a small enough 𝑣⃗ to fit 

the Mach constraint. That value is 𝑆 = 2.0 ∙ 10−5m/ls. Table 2 shows the resulting 𝑇-range 

and values for |𝑔⃗|. 

The choice for this value of 𝑆 means that the physical volume of the simulation is 

1.2 × 1.2 × 2.0 mm3. This seems unrealistically small, but the model can be scaled up as long 

as the Reynolds number remains the same.  

Table 2. To maintain a constant volume, 𝑺 is constant. 𝑻 is then a result of 𝝂, 𝝂∗ and 𝑺. The Ma constraint is 
met for each data set. The used body force is calculated in the last column.  

𝛎  [𝐦𝟐/𝐬] 
× 𝟏𝟎−𝟕 

𝑆 [m] 
× 10−5 

𝑇 [s] 
× 10−5 

Ma 
× 10−2 

|𝑔⃗| [ls/lt2] 
× 10−2 

6.00 2.00 12.8 4.63 0.803 
8.00 2.00 9.59 2.46 0.452 
10.0 2.00 7.68 1.96 0.289 
12.0 2.00 6.40 1.64 0.201 
14.0 2.00 5.48 1.40 0.147 
16.0 2.00 4.80 1.23 0.113 
18.0 2.00 4.26 1.09 0.089 
20.0 2.00 3.84 0.98 0.072 
22.0 2.00 3.49 0.89 0.060 

 

3.2 Data analysis 

3.2.1 Height and velocity of the sphere 

Each simulation results in the position of the center of the sphere in three dimensions and its 

velocity in three directions (i.e. 𝑣⃗(𝑡) = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)) at each time step. An example of a 

simulation is given in Figure 7, where the sphere’s height and velocity are plotted against time. 

This simulation corresponds to the first case that is described by Table 2, i.e. 𝜈∗ = 6.00 ∙

10−7m2/s, 𝑆 = 2.00 ∙ 10−5m/ls, 𝑇 = 12.8 ∙ 10−5s/lt and |𝑔⃗| = 0.803 ∙ 10−2ls/lt2 . The density 

ratio 
𝜌𝑠

𝜌𝑙
= 1.15 (𝜌𝑠 represents the density of the settling object), the settling object was a 

sphere and the cross sectional area 60 × 60ls2. 

The height of the sphere in graph (a) shows an acceleration in roughly the first 1000lt. Then a 

period of constant velocity follows, continued by a deceleration. The model stops when the 

sphere’s center is 4.60ls from the bottom.  

The velocity profile (b) shows the same: acceleration after release and deceleration as the 

sphere approaches the bottom. However, a peak near ℎ = 4.60ls shows an extreme activity 
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just before the sphere hits the bottom. This peak is due to the very high pressure and velocity 

gradients when the sphere approaches the bottom, which are not calculated accurately with 

the current resolution. This problem could be solved by refining the grid just above the 

bottom, but as the model works well for the heights that are relevant for the viscometer, 

further refining was not necessary.  

The last graph of Figure 7 shows that the velocity, and thus the displacement of the sphere in 

the x and y directions, is noisy and much smaller than the motion in the z direction. Though 

the x gradient seems to show a certain shape, its magnitude is negligible compared to the 

velocity in the z direction. Therefore these movements can be considered insignificant and 

are thus ignored. 
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Figure 7. The direct output of a LBM simulation, where 𝝂∗ = 𝟔. 𝟎𝟎𝐦𝟐/𝐬, in a 𝟔𝟎 × 𝟔𝟎 × 𝟏𝟎𝟎𝐥𝐬𝟑 grid with a 
regular discrete sphere, while 𝝆𝒔/𝝆𝒍 = 𝟏.𝟏𝟓. a. The height of the center of the sphere over time. b. The 
velocity in the z direction over time. c. The velocities in x and y direction over time. 
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3.2.2 Measurement accuracy 

Figure 8 shows the heights over time of three simulations. From each simulation one quantity 

is recorded for further analysis: the past time ∆𝑡𝑑
∗  between the release of the sphere at ℎ0 and 

the detection at ℎ𝑑 = 40ls. The values of ∆𝑡𝑑
∗  are marked by the dotted lines in Figure 8.  

Figure 8. Three simulations for the 𝟔𝟎 × 𝟔𝟎 × 𝟏𝟎𝟎 𝐥𝐬𝟑 grid and sphere with  𝝆𝒔/𝝆𝒍 = 𝟏. 𝟏𝟓. The time each 
sphere took to reach 𝒉𝒅 = 𝟒𝟎𝐥𝐬 was recorded for further analysis. As 𝑻 differs for each simulation 𝒕[𝐥𝐭] was 
converted to 𝒕∗[𝐬]. 

When simulations with multiple values of 𝜈∗ are run, a data set is created combining a ∆𝑡𝑑 

with each value of 𝜈∗. When plotted, like in Figure 9, these data resemble a (∆𝑡𝑑
∗ , 𝜈∗)-

calibration graph for the viscometer. If a certain ∆𝑡𝑑
∗  would be measured for the sphere to 

reach ℎ𝑑 = 40ls, these data points allow that information to be coupled to a certain viscosity. 

For example, if the sphere would reach the detection point in ∆𝑡𝑑
∗ = 0.307s, 𝜈∗ = 7.00m2/s 

would be found, as can be seen in Figure 9.  

The steepness of this graph is normative for the accuracy of the measurement device. This 

can be shown by direct conversion of a time measurement uncertainty to an uncertainty in 

the viscosity value, as the dotted lines in Figure 9 demonstrate. If ∆𝑡𝑑
∗ = 0.307 ± 0.01s was 

measured, this would result in an uncertainty range of 𝜈∗ = 7.00 ± 0.25m2/s , or 7.14%. This 

method shows that a steeper graph will impose a less accurate determination of 𝜈∗, because a 

certain interval on the ∆𝑡𝑑
∗  axis corresponds with a larger range on the 𝜈∗ axis. 

Note that relatively large steps in 𝜈∗ were chosen in Figure 9. Interpolation can be used to 

acquire the data between the found values of 𝜈∗, or more points can be simulated to obtain 

more accurate results.  
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Figure 9. Calibration graph like data set. The intersections from Figure 8 are displayed as circles. An 
uncertainty conversion was made from ∆𝒕𝒅

∗  to 𝝂∗. 

When a feature of the model is changed, for example the density of the sphere, the steepness 

of the ∆𝑡𝑑
∗ , 𝜈∗-graph varies as well. By evaluating the steepness for either a higher or a lower 

density of the sphere, the effect of  density variation on measurement accuracy can be 

researched. 

3.3 Explored features of the viscometer 
The effect of four properties on the measurement accuracy of a falling sphere viscometer 

were explored:  

- The density ratio between the fluid and the sphere 

- The cross sectional area of the vessel 

- The shape of the settling object 

- The height at which the object is detected  

One data set was part of every property’s analysis and therefore functions as a reference for 

each variated property. This set contains runs with the standard sphere with density ratio 

𝜌𝑠/𝜌𝑙 = 1.15, with a 60 × 60 ls2 cross sectional area and detection at ℎ𝑑 = 40ls. 

3.3.1 Density ratio 

For every simulation normalisation is applied on the particle densities, so that the fluid 

density in LBM remains constant in every dataset: 

 𝜌𝑙 = ∑ 𝑓𝑖
𝑄
𝑖=1 = 1 ( 21 ) 

Because the density ratio is defined to be 𝜌𝑠/𝜌𝑙  , the property of equation ( 21 ) causes the 

density ratio to be equal to the density of the sphere in the fluid. Even though the material of 

the sphere is cobalt, the density is still variable, as the core of the sphere may be hollow. 
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Densitie ratios 𝜌𝑠/𝜌𝑙 =1.05, 𝜌𝑠/𝜌𝑙 =1.15 and 𝜌𝑠/𝜌𝑙 =1.25 are examined. All simulations are 

done in the 60 × 60 × 100ls3 grid with the sphere-like shape, and the sphere is detected at 

ℎ𝑑 = 40ls. 

3.3.2 Cross sectional area  

The cross sectional area of the fluid volume is varied as well. The region where the largest 

velocity and pressure gradients occur, and thus where the grid must be fine, depends on the 

diameter of the sphere, 𝐷. As the sphere’s diameter remains constant at 𝐷 = 9ls, the fine grid, 

i.e. the center of a 16 × 16 × 100 ls3, can be kept constant.  

Therefore the volume of the coarse grid was changed so that total cross sectional areas of 

40 × 40 ls2, 60 × 60 ls2 and 80 × 80 ls2 are created. Shear stress on the walls decelerates the 

sphere, so an in the cross sectional area decreases the wall effects, allowing the sphere have a 

larger velocity. 

All simulations are done with 𝜌𝑠/𝜌𝑙 = 1.15 and the sphere, and detection occurs at ℎ𝑑 = 40ls. 

3.3.3 Object shape 

As stated in paragraph 3.3.1, the settling object is in most cases a point cloud, creating 

triangles that form a discretised sphere. The model has some constraints regarding the 

shapes it can process during the simulations: the shapes may not be concave, nor can the 

object have any sharp edges.  

Therefore, a relatively conservative shape change was applied on the original sphere. It was 

slightly stretched in the z-direction to create egg-like shapes. To do so, the z coordinates of 

the point cloud were multiplied by factors 0.9, 1.0 and 1.1. This creates ellipsoids with 

various diameters: 𝐷𝑥 = 𝐷𝑦 = 𝐷 = 9ls  for each object, and a varying 𝐷𝑧 = 𝑚𝐷 , with 

𝑚 = 0.9, 1.0, 1.1.  

Such a deformation affects the settling velocity in two ways. The volume, and thereby the 

mass, of the ellipsoids differs from that of the sphere. Furthermore, the changed shape and 

surface area both affect the drag. These deviations alternately accelerate and decelerate the 

sphere. 
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Figure 10. Three discretised objects. The one in the center represents an actual sphere. For the others the 
z coordinates were multiplied by 0.9 (left) and 1.1 (right). 

Previously, to match the surface area of a real sphere better, a geometrical diameter, 

𝐷𝑔𝑒𝑜𝑚 = 9.16, was applied on the discrete spheres that is used in all other simulations. Now 

ellipsoids are introduced, 𝐷𝑔𝑒𝑜𝑚 must be re-evaluated. However, the same rate of extension is 

a good approximation for the ellipsoids, as the number of facets remains the same and the 

diameters do not change much. In the model 𝐷𝑔𝑒𝑜𝑚 is applied as a factor 𝐷𝑔𝑒𝑜𝑚/𝐷 which all 

coordinates are multiplied by. Therefore the 𝐷𝑔𝑒𝑜𝑚 part of the code remains the same for the 

ellipsoids. 

The hydraulic diameter 𝐷ℎ𝑦𝑑𝑟 must be adapted though. In the model, the hydraulic diameter 

is used to calculate the volume of a sphere with, i.e. 𝜋𝐷ℎ𝑦𝑑𝑟
3 /6. As explained in paragraph 2.5, 

𝐷ℎ𝑦𝑑𝑟 depends on 𝜈. For the normal sphere, Rohde’s [26] value of 𝐷ℎ𝑦𝑑𝑟 = 9.027ls can be 

used, as that value corresponds to 𝜈 = 1/6ls2/lt, which is close to 𝜈 = 0.19ls2/lt that is used 

in this thesis. To calculate the volume of the ellipsoids, 𝐷ℎ𝑦𝑑𝑟 was multiplied by the cube root 

of the multiplication factors 0.9 and 1.1. 

All simulations are done in the 60 × 60 × 100 ls3 volume with 𝜌𝑠/𝜌𝑙 = 1.05ls, and the sphere  

is detected at ℎ𝑑 = 40ls. 

3.3.4 Detection height 

Lastly, the detection height ℎ𝑑 was varied. Detection heights were 30ls, 40ls and 50ls. All 

simulations were done on the 60 × 60 × 100 ls3 grid with the sphere while 𝜌𝑠/𝜌𝑙 = 1.05ls. 
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4 Results 

4.1 Uncertainty variation caused by changing the density ratio 
The ∆𝑡𝑑

∗ , 𝜈∗ graph of the density ratio (obtained like Figure 9) is shown in Figure 11. This 

figure is a graphical representation of measurement accuracy, as explained paragraph 3.2.2. 

The local steepness of the graph determines the accuracy, as a steeper graph results in a 

larger uncertainty in 𝜈∗ when a certain measurement uncertainty range is applied on ∆𝑡𝑑
∗ . In 

Figure 11 two features stand out immediately. Firstly, the graph of 𝜌𝑠/𝜌𝑙 = 1.05 lies quite far 

from the other two, and secondly the graphs appear to be linear. 

 

Figure 11. Each graph represents the time ∆𝒕𝒅
∗  in which the sphere reaches detection height 𝒉𝒅 = 𝟒𝟎𝐥𝐬 for 

various viscosities. The density ratio between the sphere and the fluid is varied, creating three graphs. As 
the density ratio increases, the sphere moves faster, resulting in smaller  ∆𝒕𝒅

∗  and steeper graphs. 

Firstly, apparently the density ratio has an increasing impact on the settling time as it 

approaches 𝜌𝑠/𝜌𝑙 = 1. A longer ∆𝑡𝑑
∗  means that the velocity of the sphere becomes smaller. 

This relation is a logical result, as can be seen when the simulations are compared with the 

ideal case of a sphere that moves with constant velocity in an infinite volume. Equation 22 is 

the force balance of that ideal case, showing that 𝑣∗ must grow when ∆𝜌∗  = 𝜌𝑠
∗ − 𝜌𝑙

∗ 

increases. Furthermore, 𝐶𝐷
∗  represents the drag coefficient, 𝐴⊥

∗  is the area perpendicular to 

the flow and 𝑉∗ is the sphere’s volume. 

 
1

2
𝐶𝐷
∗𝐴⊥

∗ 𝜌𝑙
∗𝑣∗2 = 𝑉∗∆𝜌∗|𝑔⃗∗|  ( 22 ) 

Secondly, a statement about straightness can be reviewed by taking the derivative over ∆𝑡𝑑
∗ . 

Figure 12 shows the derivatives of each graph and makes clear that in case of a small density 

ratio the graph of Figure 11 indeed approaches a straight line, as the derivative is nearly 

constant. A constant derivative means that the accuracy of measurements is independent of 

which ∆𝑡𝑑
∗ , or 𝜈∗, is to be found.  
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A constant derivative indicates that the simulation resembles the settling trajectory of a 

sphere with a constant velocity in an infinite volume in case of Stokes flow. In the case of 

Stokes flow, 𝐶𝐷
∗~1/Re∗ and Re∗ = 𝑣∗𝐿∗/𝜈∗, where 𝐿∗ represents the characteristic length. 

Furthermore, 𝑣∗ = (𝐿𝑧
∗ − ℎ𝑑

∗ )/∆𝑡𝑚
∗ . Now the force balance ( 22 ) of a sphere with constant 

velocity in an infinite medium can be rewritten: 

 
𝜈∗

∆𝑡𝑑
∗ ~

2𝑉∗∆𝜌∗|𝑔⃗⃗∗|𝐿∗

𝜌𝑙
∗𝐴⊥

∗ (𝐿𝑧
∗−ℎ𝑑

∗ )
 ( 23 ) 

As each of the quantities at the right side of the equation are constant during the 

measurement, in the ideal case, 𝜈∗/∆𝑡𝑑
∗  would be constant over time. Apparently, the graph 

for 𝜌𝑠/𝜌𝑙 = 1.05 is a close approximation of the ideal case.  

On the other hand, the curved left parts of the trends of larger density ratios show that the 

simulations do not mimic the ideal situation. Apparently, ∆𝑡𝑑
∗  dependence of the uncertainty 

occurs for measurements of smaller viscosities. Moreover, when the density ratio rises, the 

curvature of the graphs increases, so the measurement accuracy appears to be increasingly 

dependent of viscosity as the mass of the sphere increases. The increase in curvature is a 

result of non-ideal features of the model: the wall effect and acceleration trajectory. 

 

Figure 12. Derivative of 𝝂∗ over ∆𝒕𝒅
∗  of Figure 11. The steepness of the graphs of Figure 11 depends on both 

the density ratio 𝝆𝒔/𝝆𝒍, as can be seen by the values of 𝝏𝝂∗/𝝏∆𝒕𝒅
∗ , and on the viscosity 𝝂∗, as the curvature of 

the graph shows. The curvature increases as the density ratio grows, causing the steeper graphs to 
become even steeper for small values of 𝝂∗.  

4.1.1 Accuracy assessment 

In order to assess the three data sets equally regarding measurement accuracy, one value of 

𝜈∗ is chosen. The ∆𝑡𝑑
∗  values of its intersections with the graphs are marked (Figure 13, for 

𝜈∗ = 1.3 ∙ 10−6m2/s). As every data set contains only nine measurements, interpolation is 

necessary to find these actual values of ∆𝑡𝑑
∗ . Due to the fact that all trends are quite straight, 

linear interpolation can be used.  
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Figure 13. This figure resembles Figure 11, only a line representing 𝝂∗ = 𝟏. 𝟑 ∙ 𝟏𝟎−𝟔𝐦𝟐/𝐬 is imposed. The 
intersections of the viscosity value and the three graphs mark the settling time ∆𝒕𝒅

∗  each sphere takes to 
reach the detection height 𝒉𝒅 = 𝟒𝟎𝐥𝐬. 

Then a uncertainty range, ±𝛿∗, is applied to ∆𝑡𝑑
∗ , with 𝛿∗ = 0.01s, as the time measurement 

device of the viscometer will have a measurement uncertainty. Then the points 𝜈∗(∆𝑡𝑑
∗ ± 𝛿∗) 

are found, again by linear interpolation, as shown in the zoomed in Figure 14. The resulting 

uncertainty ranges are shown in Table 3. 

 

Figure 14. Zoomed in image of the intersections of Figure 13. A constant uncertainty range of 0.01s is 
imposed on the marked values of ∆𝒕𝒅

∗ . Each uncertainty range is translated to an uncertainty range in 
viscosity 𝝂∗, that is marked by the coloured arrows. These values are shown in Table 3. The steeper the 
graphs are, the larger the found uncertainty becomes. 
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Table 3. Uncertainty assessment due to an uncertainty of 𝜹 = 𝟎. 𝟎𝟏 from ∆𝒕𝒅
∗  at 𝝂∗ = 𝟏.𝟑 ∙ 𝟏𝟎−𝟔𝐦𝟐/𝐬 for 

various density ratios. 

𝜌𝑠/𝜌𝑙  1.05 1.15 1.25 

∆𝑡𝑑
∗   1.649 0.554 0.335 

𝜈∗(∆𝑡𝑑
∗ + 𝜹∗) ∙ 10−6  1.308 1.324 1.340 

𝜈∗(∆𝑡𝑑
∗ − 𝜹∗) ∙ 10−6   1.292 1.276 1.260 

∆𝜈∗ ∙ 10−8   0.7914 2.402 4.044 

 

The value of 𝛿∗ is arbitrarily chosen. The expected measurement uncertainty of the real 

viscometer is hard to predict, as it might appear difficult to measure ∆𝑡𝑑
∗  accurately in reality. 

The measurement would be the determination of the optimum of a passing magnetic field, 

which could be hard to do with great accuracy. However, as the simulated data lie in a quite 

straight line, linear interpolation is used. When points a and d are simulated data points and b 

and c represent points with x coordinates ∆𝑡𝑑
∗ ± 𝛿∗ within that range of [𝑎 𝑏], then  

 
𝜈∗(𝑑)−𝜈∗(𝑎)

∆𝑡𝑑
∗ (𝑑)−∆𝑡𝑑

∗ (𝑎)
=

𝜈∗(𝑐)−𝜈∗(𝑏)

∆𝑡𝑑
∗ (𝑐)−∆𝑡𝑑

∗ (𝑏)
=

𝜈∗(𝑐)−𝜈∗(𝑏)

2𝛿∗
 

As long as 𝑐 and 𝑑 lie between points 𝑎 and 𝑏, the uncertainty range 𝜀∗ = 𝜈∗(𝑐) − 𝜈∗(𝑏) scales 

linearly with  measurement uncertainty range 2𝛿∗, as the steepness is constant: 

 𝜈∗(𝑐) − 𝜈∗(𝑏) = 2𝛿∗𝐶;      𝐶 =
𝜈∗(𝑑)−𝜈∗(𝑎)

∆𝑡𝑑
∗ (𝑑)−∆𝑡𝑑

∗ (𝑎)
 ( 24 ) 

Therefore, a smaller or larger value of 𝛿∗ would only result in an linear shift in the 

uncertainty range in 𝜈∗. Thus, adjustments of 𝛿∗ add no further information when various 

simulations are to be compared. 

This uncertainty analysis is repeated for the seven other values of 𝜈∗. Table 4 shows the 

outcomes, expressed in both absolute uncertainty ranges 𝜀∗ [m2/s] and the uncertainty in 

terms of percent, 𝜀% = 𝜀
∗/𝜈∗. The data develop the same way as shown in Figure 12 because of 

the use of linear interpolation. The uncertainty is linearly correlated with the steepness of the 

graphs as shown in equation 24, and the course of that steepness is plotted in Figure 12.  

The curvature of the graphs show that the uncertainty ranges increase for smaller values of 𝜈∗. 

This effect depends on the density ration: the uncertainty rises significantly for the larger 

values of 𝜌𝑠/𝜌𝑙 , while the graph of 𝜌𝑠/ 𝜌𝑙 = 1.05 shows no curvature at all. Furthermore, the 

uncertainty ranges of smaller density ratios are significantly smaller.  

The magnitude of the uncertainty 𝜀∗ for 𝜌𝑠/𝜌𝑙 = 1.15 lies roughly in the middle of those of the 

other density ratios. Figure 12 shows this: the distances between the middle graph and the 

other two are equal. This implies that the found uncertainty ranges scale linearly with the 

density ratios. This result can be predicted by analysis of the idealised version of the simulated 

setup: a sphere, settling with constant velocity in an infinite medium in the case of Stokes flow. 

The force balance was introduced in paragraph 4.1: 
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𝜈∗

∆𝑡𝑑
∗ ~𝐹∆𝜌

∗;      𝐹 =
2𝑉∗|𝑔⃗⃗∗|𝐿∗

𝜌𝑙
∗𝐴⊥
∗ (𝐿𝑧

∗−ℎ𝑑
∗ )

  

When ∆𝜌∗ is changed, this has a linear effect on the steepness of the graph. The same is shown 

in the simulations, where imperfections such as a non-constant velocity and wall effects create 

a small deviation from the statement of linearity. 

Furthermore, the uncertainty ranges 𝜀∗ change hardly whereas as 𝜈∗ increases over various 

simulations. Therefore, 𝜀% = 𝜀
∗/𝜈∗ becomes smaller as the viscosity increases.  

Lastly, the numerical instabilities in 𝜀∗ that appear in the otherwise constant part of the 

uncertainty ranges (i.e. the flat parts of the graphs in Figure 12) are analysed. For 

𝜌𝑠/𝜌𝑙 = 1.05 the fluctuations are locked in a range of 2.5% of the mean uncertainty range 𝜀̅∗. 

Because the data set for 𝜌𝑠/𝜌𝑙 = 1.05 showed the relatively largest fluctuations, its 2.5% 

range supports the assumption that the deviations are due to the model’s constraints and 

represent nothing physical. 

Table 4. The uncertainty analysis of the three variations of density ratios. The uncertainty ranges 𝜺∗ and 

relative uncertainty ranges 𝛆% are significantly smaller for when 𝛒𝐬/𝛒𝐥 approaches 1. Furthermore, the 

relative uncertainty range decreases as 𝝂∗ increases.  

 𝜌𝑠/𝜌𝑙  = 1.05  𝜌𝑠/𝜌𝑙 = 1.15  𝜌𝑠/𝜌𝑙 = 1.25  
𝜈∗ 

[m2/s] 
× 10−6 

∆𝑡𝑑
∗  

[s] 

 

𝜀∗ 
[m2/s] 
× 10−9 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

0.7 0.896 8.03 1.1% 0.307 2.50 3.6% 0.190 4.31 6.2% 

0.9 1.146 7.99 0.9% 0.388 2.44 2.7% 0.237 4.16 4.6% 

1.1 1.397 7.94 0.7% 0.471 2.42 2.2% 0.286 4.09 3.7% 

1.3 1.649 7.91 0.6% 0.554 2.40 1.8% 0.335 4.04 3.1% 

1.5 1.901 7.96 0.5% 0.637 2.40 1.6% 0.385 4.02 2.7% 

1.7 2.153 7.91 0.5% 0.720 2.40 1.4% 0.434 4.00 2.4% 

1.9 2.405 7.94 0.4% 0.804 2.38 1.3% 0.484 3.99 2.1% 

2.1 2.655 8.11 0.4% 0.888 2.38 1.1% 0.534 4.00 1.9% 

 

4.2 Accuracy variation caused by changing the cross sectional area 
Variation of the cross sectional area, of the cuboid was simulated next. From Figure 15 it 

immediately comes forward that the settling time increases as the area decreases. In case of a 

small area, wall effects have a larger decelerating effect on the sphere’s velocity. The decrease 

of velocity translates to a less steep graph. 
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Figure 15. Each graph represents the time ∆𝒕𝒅
∗  in which the sphere reaches detection height 𝒉𝒅 = 𝟒𝟎𝐥𝐬 for 

various viscosities. The cross sectional area is varied, which changes the wall effect on the settling sphere, 
creating three graphs. As the area decreases, the sphere is able to move faster, resulting in smaller  ∆𝒕𝒅

∗  
and steeper graphs. 

Like in the case of the varied density ratios the trends seem linear. This is checked by taking 

the derivatives, that are shown in Figure 16. The curvature increases as the cross sectional 

area increases, so for smaller viscosities the ∆𝑡𝑑
∗ , 𝜈∗ graphs become steeper. Lastly, the bottom 

graph of Figure 16 again shows some numerical instabilities. 

 

Figure 16. Derivative of 𝝂∗ over ∆𝒕𝒅
∗  of Figure 15. The steepness of the graphs of Figure 15 depends on both 

the applied cross sectional area, as can be seen by the values of 𝝏𝝂∗/𝝏∆𝒕𝒅
∗ , and on the viscosity 𝝂∗, as the 

curvature of the graph shows. The curvature increases as the density ratio grows, causing the steeper 
graphs to become even steeper for small values of 𝝂∗.  
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4.2.1 Accuracy assessment 

A measurement uncertainty of  𝛿 = ±0.01s is applied on the intersection values of ∆𝑡𝑑
∗  for 

𝜈∗ = 1.3 ∙ 10−6m2/s. Figure 16 shows that the uncertainties are dependent on the cross 

sectional area and that the smaller areas show smaller values of 𝜀∗, as those produce the least 

steep graphs. However, the steepness of each of the three graphs appears to be 

approximately the same, resulting in smaller differences in 𝜀∗. 

The result of uncertainty analyses for multiple viscosities is shown in Table 5, and due to the 

linear interpolation method, the data scale linearly with Figure 16. The graphs show that the 

uncertainty 𝜀∗ increases as smaller values for 𝜈∗ are measured. The data also reveal that the 

significance of this local increase rises as the area becomes larger.  

 
Figure 17. Zoomed in image of Figure 15 the intersections with 𝝂∗ = 𝟏. 𝟑 ∙ 𝟏𝟎−𝟔𝐦𝟐/𝐬. A constant 
uncertainty range of 0.01s is imposed on the marked values of ∆𝒕𝒅

∗ . Each range is translated to an 
uncertainty range in viscosity 𝝂∗, that is shown in the fourth row in Table 5. The steeper the graphs are, 
the larger the found uncertainty becomes. 

The uncertainty 𝜀∗ generally increases as the area becomes larger, which is not promising 

because the simulated viscometer ultimately must measure in a vessel that is much larger 

than 1.2 × 1.2 × 2.0 mm3 . However, the uncertainty growth is a decreasing effect: 

𝜀40×40
∗ − 𝜀60×60

∗ < 𝜀60×60
∗ − 𝜀80×80

∗ , and 𝜀80×80
∗ − 𝜀100×100

∗  will again be smaller. The 

uncertainty 𝜀∗ will not grow along with dimension, but will hit an upper limit. 
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Table 5. The uncertainty analysis of the three variations of cross sectional areas. The uncertainty ranges 𝜺∗ 
and relative uncertainty ranges 𝛆% decrease for smaller cross sectional areas. Furthermore, the relative 
uncertainty range decreases as 𝝂∗ increases. 

 𝐴 = 40 × 40ls2  𝐴 = 60 × 60ls2  𝐴 = 80 × 80ls2  
𝜈∗ 

[m2/s] 
× 10−6 

∆𝑡𝑑
∗  

[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

0.7 0.366 1.99 2.8% 0.307 2.50 3.6% 0.288 2.80 4.0% 

0.9 0.467 1.97 2.2% 0.388 2.44 2.7% 0.361 2.71 3.0% 

1.1 0.569 1.96 1.8% 0.471 2.42 2.2% 0.435 2.67 2.4% 

1.3 0.671 1.96 1.5% 0.554 2.40 1.8% 0.510 2.64 2.0% 

1.5 0.773 1.94 1.3% 0.637 2.40 1.6% 0.586 2.64 1.8% 

1.7 0.876 1.97 1.2% 0.720 2.40 1.4% 0.662 2.62 1.5% 

1.9 0.978 1.95 1.0% 0.804 2.38 1.3% 0.739 2.61 1.4% 

2.1 1.080 1.95 0.9% 0.888 2.38 1.1% 0.815 2.61 1.2% 

 

4.3 Uncertainty variation caused by object deformation 
Figure 18 clearly shows the resemblance between all three graphs. Apparently an elongation 

or compression of the sphere to 𝐷𝑧 = 1.1𝐷 or 𝐷𝑧 = 0.9𝐷 respectively has a much smaller 

effect than variations in the density ratio and area from the previous paragraph. This is of 

course partially due to the fact that relatively small deformations were chosen.  

 

Figure 18. Each graph represents the time ∆𝒕𝒅
∗  in which the object reaches detection height 𝒉𝒅 = 𝟒𝟎𝐥𝐬 for 

various viscosities. The settling objects are a sphere’s elongation in the settling direction, a normal sphere 
and a compressed sphere. As the diameter in the z direction, 𝑫𝒛, increases, the sphere is able to move 
faster, resulting in smaller  ∆𝒕𝒅

∗  and steeper graphs. 

However, it immediately becomes clear that the elongated sphere moves quicker than the 

compressed version. The effects of elongation are a 10% volume increase, which accelerates 

the sphere, but the increased volume also creates a larger surface area for shear stress to 
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work on, which decelerates it. The increased surface area will cause the object to experience 

more drag. However, apparently the accelerating due to mass affects the sphere more, as the 

elongated sphere settles faster.  

 
1

2
𝐶𝐷
∗𝐴⊥

∗ 𝜌𝑙
∗𝑣∗2 = 𝑉∗∆𝜌∗|𝑔⃗∗| ( 22 ) 

Lastly, with the graphs being closely together, the derivative of the graphs show small 

differences as well. Still, a slight decrease in the curvature can be noted when 𝐷𝑧 decreases. 

This is shown in Figure 19. 

Figure 19. Derivative of 𝝂∗ over ∆𝒕𝒅
∗  of Figure 18. The steepness of the graphs of Figure 18 depends on both 

the diameter in the z direction, 𝑫𝒛, as can be seen by the values of 𝝏𝝂∗/𝝏∆𝒕𝒅
∗ , and on the viscosity 𝝂∗, as the 

curvature of the graph shows. The curvature is roughly equal for all graphs.  

4.3.1 Accuracy assessment 

Table 6 shows that when the length of the object increases, the uncertainty increases as well, 

as the object reaches a higher velocity and creates a steeper (∆𝑡𝑑
∗ , 𝜈∗) graph. The increase of 

the uncertainty scales almost linearly with the elongation, as the uncertainty range of the 

𝐷𝑧 = 1.0𝐷 data set is nearly the mean of the other two sets.  

The slight decrease in curvature as 𝐷𝑧 becomes smaller, shown in Figure 19, which translates 

to a decrease in uncertainty range dependency of 𝜈∗. 
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Figure 20. Zoomed in image of Figure 18 near the intersections with 𝝂∗ = 𝟏.𝟑 ∙ 𝟏𝟎−𝟔𝐦𝟐/𝐬. A constant 
uncertainty range of 0.01s is imposed on the marked values of ∆𝒕𝒅

∗ . Each range is translated to an 
uncertainty range in viscosity 𝝂∗, that is shown in the fourth row in Table 6. The steeper the graphs are, 
the larger the found uncertainties becomes. 

 

Table 6.  The uncertainty analysis of the three variations of sphere deformations. The uncertainty ranges 
𝜺∗ and relative uncertainty ranges 𝛆%of the varied 𝑫𝒛 do not differ much, however, the uncertainty is 
smallest for 𝑫𝒛 = 𝟎. 𝟗𝑫. Furthermore, the relative uncertainty range decreases as 𝝂∗ increases. 

 𝐷𝑧 = 0.9𝐷  𝐷𝑧 = 1.0𝐷  𝐷𝑧 = 1.1𝐷  
𝜈∗ 

[m2/s] 
× 10−6 

∆𝑡𝑑
∗  

[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

0.7 0.33 2.30 3.3% 0.31 2.50 3.6% 0.29 2.68 3.8% 

0.9 0.42 2.26 2.5% 0.39 2.44 2.7% 0.36 2.62 2.9% 

1.1 0.51 2.24 2.0% 0.47 2.42 2.2% 0.44 2.59 2.4% 

1.3 0.60 2.23 1.7% 0.55 2.40 1.8% 0.52 2.57 2.0% 

1.5 0.69 2.22 1.5% 0.64 2.40 1.6% 0.60 2.56 1.7% 

1.7 0.78 2.21 1.3% 0.72 2.40 1.4% 0.67 2.56 1.5% 

1.9 0.87 2.21 1.2% 0.80 2.38 1.3% 0.75 2.56 1.3% 

2.1 0.96 2.20 1.0% 0.89 2.38 1.1% 0.83 2.55 1.2% 

 

4.4 Uncertainty variation caused by changing the detection height 
Finally the height of the detection point was varied. The (∆𝑡𝑑

∗ , 𝜈∗) graph shows that settling 

time increases as the detection height becomes smaller, which is obvious because the 

distance the sphere must move increases. 
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Figure 21. Each graph represents the time ∆𝒕𝒅
∗  in which the sphere reaches detection height 𝒉𝒅 = 𝟒𝟎𝐥𝐬 for 

various viscosities. For each graph the height of the detection point, 𝒉𝒅, was varied. As the detection point 
gets further away from the bottom of the vessel, the time the sphere settles decreases, resulting in smaller  
∆𝒕𝒅

∗  and steeper graphs. 

What is remarkable about Figure 21 is how equal the distances are between the graphs that 

represent ℎ𝑑 = 30ls and ℎ𝑑 = 40ls  and between ℎ𝑑 = 40ls and ℎ𝑑 = 50ls. The distances 

would be perfectly equal when the velocities of the spheres were constant over time. 

Apparently only a small effect deviates the graphs from having equal distances from each 

other.  

The steepnesses in Figure 22 do not show equal distances between ℎ𝑑 = 30ls and ℎ𝑑 = 40ls  

and ℎ𝑑 = 40ls and ℎ𝑑 = 50ls.  However, equal distances are expected in the ideal case, as is 

shown in the equation below, that represents the case of a sphere with constant velocity in an 

infinite medium with Stokes flow:  

 
𝜈∗

∆𝑡𝑑
∗ ~𝐺(𝐿𝑧

∗ − ℎ𝑑
∗ );      𝐺 =

2𝑉∗∆𝜌∗|𝑔⃗⃗∗|𝐿∗

𝜌𝑙
∗𝐴⊥
∗   

If this equation represented the simulations of this paragraph, only ℎ𝑑 was to be varied.  The 

fact that wall effects and acceleration are the same for every ℎ𝑑-varying simulation means 

that the effect of a ℎ𝑑 variation from the equation should translate linearly to the simulation’s 

outcome, so the steepnesses for ℎ𝑚 values that lie 10ls apart from ℎ𝑚 = 40ls, should show 

equal deviations from (𝜕𝜈∗/𝜕∆𝑡𝑑
∗)ℎ𝑚=40ls   as well.  

However, the variable effect of the acceleration at the beginning of the trajectory creates an 

offset. The influence of that relatively slow part of the trajectory becomes smaller ∆𝑡𝑑
∗  

increases. The deceleration near the bottom, which will appear most notable in case of 

ℎ𝑑 = 30ls, may affect this as well. The deceleration occurs near ℎ = 35ls for every simulation, 

but the velocity loss is near 1% at ℎ = 30ls, so the slowing effect remains nearly insignificant. 

However, these effects cause the distances between the three graphs to be unequal. 
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Figure 22. Derivative of 𝝂∗ over ∆𝒕𝒅
∗  of Figure 21. The steepness of the graphs of Figure 21 depends on both 

the detection height, as can be seen by the values of 𝝏𝝂∗/𝝏∆𝒕𝒅
∗ , and on the viscosity 𝝂∗, as the curvature of 

the graph shows. The curvature increases as the sphere is allowed less time to settle, causing the steeper 
graphs to become even steeper for small values of 𝝂∗.  

Lastly, Figure 22 shows that 𝜕𝜈∗/𝜕∆𝑡𝑑
∗  is hardly dependent on the detection height ℎ𝑚, which 

is different from the previous results. The relatively large uncertainty for smaller velocities 

however, appears in this case like in all other cases.  

4.4.1 Accuracy assessment 

As shown in Figure 23, the uncertainty increases when detection occurs at a higher point, but 

not much. Table 7 shows that for lower viscosities, the uncertainty becomes larger, and this 

effect is nearly equal for every value of ℎ𝑑. 
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Figure 23. Zoomed in image of Figure 20 near the intersections with 𝝂∗ = 𝟏.𝟑 ∙ 𝟏𝟎−𝟔𝐦𝟐/𝐬. A constant 
uncertainty range of 0.01s is imposed on the marked values of ∆𝒕𝒅

∗ . Each range is translated to an 
uncertainty range in viscosity 𝝂∗, that is shown in the fourth row in Table 7. The steeper the graphs are, 
the larger the uncertainty range becomes. 

 

Table 7. The uncertainty analysis of the three variations of detection height. The uncertainty ranges 𝜺∗ and 
relative uncertainty ranges 𝛆% decrease as the detection height approaches the bottom. Furthermore, the 
relative uncertainty range decreases as 𝝂∗ increases. 

 ℎ𝑑 = 30ls  ℎ𝑑 = 40ls  ℎ𝑑 = 50ls    
𝜈∗ 

[m2/s] 
× 10−6 

∆𝑡𝑑
∗  

[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

𝑡𝑑
∗  
[s] 

 

𝜀∗ 
[m2/s] 
× 10−8 

𝜀% 
[−] 

 

0.7 0.381 1.98 2.8% 0.307 2.50 3.6% 0.233 3.37 4.8% 

0.9 0.483 1.95 2.2% 0.388 2.44 2.7% 0.294 3.28 3.6% 

1.1 0.587 1.93 1.8% 0.471 2.42 2.2% 0.355 3.24 2.9% 

1.3 0.691 1.92 1.5% 0.554 2.40 1.8% 0.417 3.21 2.5% 

1.5 0.795 1.91 1.3% 0.637 2.40 1.6% 0.479 3.21 2.1% 

1.7 0.899 1.92 1.1% 0.720 2.40 1.4% 0.542 3.20 1.9% 

1.9 1.004 1.90 1.0% 0.804 2.38 1.3% 0.604 3.18 1.7% 

2.1 1.109 1.90 0.9% 0.888 2.38 1.1% 0.667 3.17 1.5% 
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5 Conclusion 

5.1 Qualitative conclusions 
The general outcome of the analysis of the simulations is that any variation in density, cross 

sectional area, object shape or detection height that allows the object to move a shorter time 

before it is detected, decreases the accuracy of the measurement. A larger velocity decreases 

∆𝑡𝑚 and, therefore, 𝜈∗/∆𝑡𝑑 becomes larger. This causes an uncertainty range 𝜹∗in ∆𝑡𝑑 to 

translate into a larger range 𝜀∗ in 𝜈∗. 

Another result that comes out of every data set was that the absolute uncertainty range is 

larger for smaller viscosities. This effect appears to be stronger in case of variations that 

increased the sphere’s velocity. In the ideal case of a sphere that moves in an infinite volume 

with constant speed, the uncertainty range would be the same for every velocity. The reason 

the simulated data differ from the idealised values are wall effects and acceleration, and 

sometimes deceleration near the bottom has a small share as well.  

5.2 Quantitative conclusions 
The results section shows the effect that multiple variations of density ratio, cross sectional 

area, object shape and detection height have on the uncertainty in viscosity measurements. 

The effect of various property variations can be compared as they all share a reference 

measurement that was done with an object with 𝐷𝑧 = 1.0𝐷, 𝜌𝑠/𝜌𝑙 = 1.15 with a cross 

sectional area of 60 × 60ls2 and a detection height of 40ls. This reference data set showed 

uncertainty ranges 3.6% for 𝜈∗ = 0.7 ∙ 10−6m2/s, down to 1.1% for 𝜈∗ =2.1∙ 10−6m2/s 

Analysis of the effects of three variations of the density ratio between the sphere and the 

liquid show that for a time measurement uncertainty of 𝜹∗ = 0.01s, uncertainty ratios in 

viscosity measurements can be reduced to 1.1% for 𝜈∗ = 0.7 ∙ 10−6m2/s, down to 0.4% for 

𝜈∗ =2.1∙ 10−6m2/s. This reduction takes place when 𝜌𝑠/𝜌𝑙 = 1.05, so by differentiation of 

0.10 from the density ratio of the reference simulation set. Reduction of 55% of the cross 

sectional area in which the viscometer operates causes a smaller uncertainty decrease than 

that of the density variation: 2.8% down to 0.9% respectively. Furthermore an elongation of 

10% shows an even smaller decrease in uncertainty range of 3.3% to 1.0%. Lastly, letting the 

sphere settle 10ls further than the reference measurement imposes an uncertainty range of 

2.8% to 0.9%. This range is equal to the uncertainties due to area reduction. 

Of course the effectiveness of uncertainty reductions depends on the magnitude of the 

variation that is applied on a property. A much larger cross sectional area reduction probably 

causes the uncertainty range to reach below that of 𝜌𝑠/𝜌𝑙 = 1.05. Still, small density ratios are 

a more easily applicable method to drastically decrease the uncertainty range in viscosity 

measurements. The constraint for minimisation of the uncertainty range lies in the maximum 

time a measurement may take. Theoretically, the uncertainty can be reduced drastically when 

the density of the sphere is nearly equal to the density of the liquid. However, this would 

cause ∆𝑡𝑑
∗  to become infinitely long, so the minimum uncertainty range depends on the 

maximum allowed measurement time.  
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5.3 Relation to constant velocity in an infinite volume 
For the density ratio and the shape variations, the uncertainty scaled nearly linearly with the 

variation of the value 𝜌𝑠/𝜌𝑙. In the case of density ratio the variations were translatable to a 

change of a single quantity in the force balance for stationary movement through an infinite 

volume. This direct relation explains the linear dependency of the uncertainty on the density 

ratio 𝜌𝑠/𝜌𝑙.  

The shape variation however, affects multiple quantities of that infinite case and therefore 

seems less predictable. The shape shift consisted of an elongation only, which affected 

volume (and thus mass) and surface area of the object. The effect on multiple quantities 

cannot be prevented, because if the 𝑉 is to be kept constant while 𝐷𝑧 increases, 𝐴⊥ decreases 

et cetera. However, apparently a linear balance of the changed quantities is established, 

creating a linear dependency on the variation.  

The detection height is one of the quantities of the idealised force balance, but the uncertainty  

range did not show this linear dependency on variation of ℎ𝑑. This inconsistency is due to the 

fact that this time the sphere’s velocity is not varied by a change in a property, but the 

distance the sphere had to cover instead. Apparently, because the acceleration part has a 

decreasing influence when the detection occurs nearer to the bottom, imposing a lower 

detection height has a clear minimising effect on the uncertainty range.  

The fourth varied property, the cross sectional area, stands out as it is not part of the force 

balance of the ideal case. Besides, the cross sectional area cannot be tweaked to improve the 

performance of the viscometer, as it is the area of the vessel the viscometer has to measure in. 

Generally, an increasing cross sectional area means a decrease of wall effects on the sphere, 

and the wall effects are dependent on the sphere’s velocity. The outcomes show that the 

sphere accelerates decreasingly as the bottom’s dimensions are increased, and therefore that 

the uncertainty decreasingly grows. 
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6 Outlook 
Future possibilities for research on the viscometer for a MSFR are twofold: adjustments 

should be made on the used LBM model to resemble reality in a better way, and multiple 

features of the viscometer must be explored to confirm whether the settling sphere method 

can actually be used. 

6.1 Adjustments to the LBM model 
The model that was used in this thesis resembles a very idealised version of a  settling object 

in a fluid vessel and thus needs additional features to represent reality in a better way. 

First of all,  in the used model only one degree of freedom was allowed for the sphere to have. 

In reality drag could cause it to rotate, thereby introducing a translational motion in x or y 

directions as well, or the translation might be caused by any other fluid flow in that way 

inside the core. The possibility to rotate the sphere should be implemented in the model to 

explore potential motions in every direction.  

Either a way to prevent these motions or a correction for it in software should be developed 

to create a working viscometer. The first option is preferable, as without any guiding 

equipment the settling object would be able to travel through the whole vessel, making 

repetitive measurements impossible. Adding a rod like object to the model, that allows the 

object to slide down like a bead around it, will prevent any drifting. Such an addition would 

also carry possibilities to raise the sphere up for next measurements. However, the effect of 

friction between the rod and the sphere must be researched. 

Furthermore, the current results show that a compressed sphere delivers more accurate 

measurements than normal or elongated spheres, as such a flatter shape moves more slowly. 

However, these shapes are more likely to create vertices in their tails as they settle, which 

may again blur the measurements.  

Regarding the shape of the object further research should be done on the various effects that 

elongation has, as it remains unclear whether the found effects are the result of a larger mass 

of the object, the actual shape or a larger area on which shear stress applies. 

Lastly, the effect of the detection height on the uncertainty might behave differently if ℎ𝑑 

would be decreased further, as deceleration affects the measurement increasingly as the 

bottom is near the detection height. For the explored heights a lower detection height seemed 

to result in smaller uncertainty ranges, but this may change if the deceleration near the 

bottom plays a larger part in the trajectory.  

6.2 Practical conditions for a settling sphere viscometer 
The practical features of the viscometer in the MSFR form a source of challenges that lay 

beyond this thesis.  

Firstly, many physical phenomena that would take place when the viscometer would be used 

in reality, are not taken into account. Natural convection has serious consequences for this 

viscometer, as it would create a flow upwards. This flow would of course disturb the motion 
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of a settling sphere. The potential of the settling sphere viscometer depends on possibilities 

to correct for this upward convection. 

Due to natural convection a non-uniform distribution of temperature, and thereby of density 

and viscosity, would be imposed on the volume. This affects measurements as local viscosity 

could differ from the mean viscosity of the vessel. The significance of this problem should be 

explored as well. 

The communication between sphere and measurement  device has to be researched further 

as well. This thesis assumes that detection of the magnetic field of the settling object is 

possible. However, it was not assessed whether a magnetic field would penetrate the 

materials of which the core’s wall are to be made of. Furthermore, though cobalt is a 

ferromagnetic element, its potential to form a strong permanent magnet are not confirmed. 

Besides, although the Curie temperature of cobalt lies well above that of the core, the high 

temperature would still cause a decrease in the magnetic field to occur over time. Therefore a 

requirement for a minimal life time of a magnetic field of predetermined strength would have 

to be made and met. 

If this works, the accuracy of time measurement using this magnetic field should be assessed 

and possibly enhanced, to enable viscosity measurements that have an appropriate 

uncertainty range. 

Lastly, the current model can only combine a value of the viscosity with a measured time 

when the density of the molten salt is known. The results of this thesis show that the density 

ratio between the fluid and the sphere has the largest effect on the settling time and the 

uncertainty range, so accurate value must be known. The possibility to do these 

measurements is vital for this method. Therefore a method for measuring density must be 

known to be possible for further development of the settling sphere viscometer. 

 

  



43 
 

  



44 
 

Table of symbols 
Symbol Description Unit 

𝐴𝜙  Surface of facet 𝜙 ls2  
𝐵𝑖   Additional mass due to motion of a wall - 
𝑐𝑖  Lattice velocity in direction 𝑖 ls lt−1  
𝑐𝑠  Speed of sound in LBM ls lt−1  
𝑐𝑠
∗  Speed of sound m s−1 
𝐷  Diameter of a sphere ls 
𝐷𝑔𝑒𝑜𝑚  Geometrical diameter of the settling object ls 
𝐷ℎ𝑦𝑑𝑟  Hydraulic diameter of the settling object ls 
𝐷𝑥, 𝐷𝑦, 𝐷𝑧  Diameters in x, y and z directions of a ellipsoid ls 
𝑓𝑖  Local particle density distribution - 
𝑓𝑖
𝑒𝑞
, 𝑓𝑖
𝑛𝑒𝑞

  Local equilibrium function, nonequilibrium function - 
𝑔⃗  Body force in LBM ls lt−2  
𝑔⃗∗  Body force m s−2  
ℎ  Height/z coordinate ls 
ℎ0  Height at 𝑡 = 0lt  ls 
ℎ𝑑  Detection height ls 
𝐿𝑥 , 𝐿𝑦, 𝐿𝑧  Dimensions in x, y and z directions ls 
𝑛  Level of refinement in case of local refinement - 
𝑛⃗⃗𝜙  Normal vector of a facet of the settling object - 

𝑃𝑖
𝑑𝑖𝑠𝑡 , 𝑃𝑖

𝑢𝑛𝑑𝑖𝑠𝑡  Disturbed/undisturbed mass fraction - 
𝑄  Amount of directions a particle flow can go - 
𝑄𝑖   The mass reflected by a wall - 
𝑆  Spatial scaling factor in LBM mls−1 
𝑇   Time scaling factor s lt−1 
𝑡𝑓,𝑖  Scaling factor depending on type of LBM - 
∆𝑡  Discrete time step lt 
∆𝑡𝑑

∗   Time between release and detection s 
𝑢⃗⃗𝑖  Macroscopic velocity (in direction 𝑖) ls lt−1 
𝑢⃗⃗∗  Macroscopic velocity m/s 
𝑈𝑚𝑎𝑥  Maximum velocity of Poiseuille flow profile ls lt−1 
𝑣  Velocity of settling object in LBM ls lt−1 
𝑣∗  Velocity of settling object ms−1  

𝑉𝑖
𝜙

  Intersection volume ls3  

∆𝑉  Volume of a boundary cell  ls3  
𝑥⃗  Spatial position ls 
∆𝑥  Discrete spatial step ls 
𝑧𝑘  Height of boundary cell k ls 
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Greek Description Unit 
𝛼  Area of a grid cell ls2  

Γ𝑖
𝑜𝑢𝑡,𝜙

  Mass reflected from facet 𝜙 - 

𝛿∗  Uncertainty in measured time lt 
𝜀∗  Uncertainty range in viscosity ls2 lt−1  
𝜀%
∗   Relative uncertainty range in viscosity - 
ν  Kinematic viscosity in LBM ls2 lt−1  
ν∗  Kinematic viscosity m2 s−1  
𝜌𝑙, 𝜌𝑠 Density of liquid/object in LBM ls−3  
𝜌𝑙
∗, 𝜌𝑠

∗ Density of liquid/object kg m−3  
𝜏  Relaxation term - 
𝜙  Indication of a facet - 

Ψ𝑖
𝜙

  Volume of parallelepiped ls3  

Ω𝑖   Collision operator in direction i - 
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