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Abstract

This thesis investigates the possibility of measuring the density profile of super-
critical fluids with the use of neutron radiography. One of the generation IV nuclear
reactors currently under investigation makes use of supercritical water. One of the
challenges of this design is predicting the fluid flow of the supercritical water. Being
able to measure the density profile of a supercritical fluid in an experimental setup
could help to gain insight in the fluid flow and could be an extra tool to verify
computational models.
A possible tool for this purpose is the use of neutron radiography. This is a 2D imag-
ing tool, where the average macroscopic cross section in the direction of measurement
can be detected by the change in neutron intensity. Because the macroscopic cross
section is proportional to the density, the density field can theoretically be extracted
from this result.
In this work neutron radiography is used to measure density profiles, mimicked by
polyethylene slopes, and the restrictions and optimal settings for this technique are
further investigated.
One of the most surprising results was the fact that for atoms with a high scatter
cross section, like hydrogen, the scattered neutrons invoke a large error to the mea-
surement. In this thesis a method is introduced and tested to remove this blur from
the results. The most challenging part of this method is finding the right scatter
angle distribution.
More research is necessary to gather insight in how to find the scatter angle distri-
bution and it seems likely that with the correct distribution the density profile of
super critical fluids can be measured with the use of neutron radiography.
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1 Introduction

Supercritical water is widely used in the industry, since its high pressure and tempera-
ture give it some interesting properties. It is for these properties, the use of supercritical
water is investigated in the nuclear energy field. A challenge in the design of a super-
critical water reactor is calculating the buoyancy effects of supercritical water. Being
able to measure the density field of supercritical water could help to validate designs
and computermodels. Existing density measurement techniques are not very suited for
measuring super critical water, since they make use of light rays and need transparent
materials, something which is hard to achieve at the high pressures of supercritical wa-
ter. High pressures are less of an issue for neutron radiography. This chapter will go
into more detail about supercritial fluids, reactors, neutron radiography and existing
measurement techniques, which form the motivation for the research question. In the
last paragraph the outline of the rest of this thesis is given.

1.1 Supercritical fluids

Figure 1: Phase diagram with pressure and temperature on the axis.

In a phase diagram, with on the axis the temperature and pressure, a line can be drawn
between the liquid and gaseous phase, defining the boiling points for that particular fluid.
At a certain temperature and pressure this line stops in the critical point. When the
temperature and the pressure of a fluid both exceed their critical value that substance
is per definition in a supercritical state. In the supercritical region there are no boiling
points anymore and therefore a fluid can change from a fluid to a gas by going through
the supercritical region without incurring a phase transition. The closer however to the
critical point, the more abrupt the changes are. In figure 2 the density and specific
heat are plotted as a function of temperature, for a pressure just above the critical
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point. A sharp decrease of the density and a sharp peak for the specific heat can be
observed. Increasing the pressure in this plot would result in a more gradual chance of
these properties. Supercritical fluids are used as a working fluid in power plants, because
the high temperature results in a better efficiency. Another application of supercritical
fluids is the extraction of specific solvents. It is for example used in the decaffeinating
of coffee beans.

Figure 2: Density and specific heat profile for supercritical water a pressure of 24Mpa.

1.2 Supercritical water reactor

For nuclear energy there is a design in which supercritical water is being used. This is one
of the generation-IV nuclear power plants and is abbreviated as SCWR: SuperCritical
Water Reactor. The main advantage of using supercritical water is the higher efficiency.
A SCWR has an expected efficiency of around 45%, while the current Light Water
Reactors have an efficiency of around 33%. The SCWR is designed as a single-cycle
system, meaning that the supercritical water is directly used to power a generator. This
single-cycle is possible because the working fluid does not undergo a phase change, so
no separation of phases is needed. A challenge for designing a SCWR is that still a
lot is unknown about how to calculate the fluid-flow of supercritical fluids [2]. Big
density changes have a major influence on fluid flows, heat transfer and moderation of
fast neutrons. At the Reactor Physic and Nuclear Materials group, RPNM, research is
being done on computer models that predict the fluid flow of supercritical fluids, both
by improving these models and validation with measurements of supercritical flows.
The measurement technique introduced in this research could also be used to validate
computational models.
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Figure 3: Scheme of a supercritical water reactor.

1.3 Neutron radiography

Neutron Radiography is an imaging technique where the interaction between a sample
and neutrons can be measured. Since neutrons don‘t interact with electric charge, unlike
X-rays, they can give a completely different contrast on an image[3]. The basic principle
of neutron radiography is that you can measure the difference in absorption or scat-
tering of neutrons by different materials, by putting your sample in a neutron bundle
and detecting the drop in intensity. Strong neutron absorbers are for example hydro-
gen and gadolinium, and weak neutron absorbers are for example lead and aluminium.
This makes neutron radiography very suitable for 2-phase flow imaging in heavy metal
casings[4] or water transport in fuel cells [5]. More insight in the physics behind neutron
radiography and the experimental setup will be given in chapters 2 and 3.
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1.4 Density measurement techniques

Although density is easily defined and widely used as a unit, ways to measure the density
of a material, especially of a fluid, are less evident. It is trivial to calculate the average
density of something by obtaining the volume and the weight of an object, but to measure
the internal density field is very complex in many cases. In the subsections below a few
existing measurement techniques are discussed. These techniques are all based on light
rays and therefore the medium should be opaque.

1.4.1 Schlieren photography

With Schlieren photography variations in the refractive index caused by density gradients
are used to form an image of relative density changes[9]. As shown in figure 4, a knife
edge is placed just below the focus point, blocking in uniform density half of the incoming
light rays. Light rays that are deflected due to a positive or negative density gradient
in the normal direction of the knife edge will be blocked to a respectively higher and
lower extent by the knife edge, resulting in darker and lighter patches on the screen. It
is not possible to get an accurate absolute density field in this way, but it is a suitable
technique to visualise density variations within a sample.

Figure 4: Scheme of the Schlieren photography method.

1.4.2 Moiré deflectometry

In Moiré deflectometry the deformation of a known image gives a measure for the density
gradient. This phenomena can be seen in daily life when looking for example at the
landscape trough the air behind the exhaust of an airplane or above a burning candle.
When the undistorted image is known, for example a grid of black and white squares,
the density gradient can be calculated.
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1.4.3 Interferometry

In interferometry the phase change of optical waves when they are going through a
density field is used to make an image[8]. When the optical beam is aligned with a
reference beam an interference pattern occurs where the light that got a phase shift of
half a wavelength will die out. Therefore when the test cell is empty the right image will
be completely lighted and the top image completely dark, since there will be a phase
shift between the 2 bundles in the top image. In figure 5 a setup of Mach Zehnder
interferometry is shown.

Figure 5: Scheme of Mach Zehnder interferometry.
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1.5 Research question

None of the density measuring techniques as described above measure the absolute value
of the density, only the relative change in density. Furthermore these techniques all use
light, limiting the materials of the container suitable for these techniques to only trans-
parent materials. At the high pressures and temperatures needed to get supercritical
water, the constraint of a transparent container is a big downside. Neutron radiography
would not have this constraint, as some though materials, like aluminium, are almost
completely transparent to neutrons. The following question is therefore investigated in
this thesis:
Is it possible to measure the density of supercritical fluids with neutrons?
and if so what are the optimal settings to get a clear density field?
To answer this question a computer model was used to acquire the sensor specifications
and an experimental setup was build to test the sensor design.

1.6 Thesis outline

In the next chapter a further understanding of the underlying theory of neutron in-
teractions and some calculations on which factors are relevant in the sensor design are
outlined.
Chapter 3 provides more details on the computer model used and the experimental
setup, next to an outline on the calibration of the experimental setup. In chapter 4 the
results are outlined and discussed In chapter 5 recommendations for further research
are given. After which in chapter 6 conclusions are drawn. Lastly in Appendix A, a
simple example of the method used to remove scatter blurr is given and in Appendix B,
a detailed calculation is given on how the normalization factor is fitted.
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2 Theory

In this chapter an overview will be given of the theory behind neutron interactions by
discussing the microscopic and macroscopic cross sections. This theory will be expanded
to formulate usable formulas specifically for the experiments performed for this thesis.
A more comprehensive explanation of the theory discussed in this chapter can be found
in various literature, a good overview is for example given in Nuclear reactor analysis
[1]

Figure 6: Different types of neutron-nucleus interactions.

2.1 Microscopic cross sections

Because a neutron has no charge, coulomb forces do not play a role, so when calculating
the path of an individual neutron the only factor which has to be taken into account is
the possibility that the neutron will interact with another atom. The classical way to
look at this interaction is to calculate if a neutron goes through the geometrical cross
section of an atom, the same way the path of a billiard ball would be calculated. Due to
quantum mechanical effects and resonances though, also a neutron passing outside the
geometrical cross section of an atom can interact with this atom. To take these effects
into account the microscopic cross section σ is introduced:

R = σIN (1)

with R the interaction rate [cm−2s−1], I the neutron beam intensity [cm−2s−1] and N
the number of atoms in a plane [cm−2].
The microscopic cross section typically lies in the order of 10−24cm2, which can be
expressed as a so-called barn. When a neutron interacts with an atom several things can
happen, divided into two main groups: scattering and absorption. In figure 6 the different
events are shown. The microscopic cross section strongly depends on the neutron energy
and the nucleus type. Furthermore the cross sections associated with specific types of
interactions can be added to get the total cross section.
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2.2 Macroscopic cross sections

Equation (1) is only valid in a thin layer where no atoms are shielded by others. Deeper
in the material the neutron beam will be smaller since some neutrons already reacted
with the material and therefore the reaction rate will be lower. To calculate the intensity
of the neutron beam in the spatial domain a budget equation can be derived:

σtINdx = −dI(x) = I(x)− I(x+ dx) (2)

The spacial gradient is given by:

dI

dx
= −NσtI(x) (3)

With the boundary condition that I(0) = I0 the following expression for the neutron
beam intensity can be derived:

I(x) = I0e
−Nσtx (4)

the exponent is often expressed as the macroscopic cross section Σt = Nσt, with di-
mension [m−1]. If equation (4) is divided by I0 one gets the probability that a neutron
travels a distance x through the material without interacting with it:

I(x)

I0
= P (x) = e−Σx (5)

Equation (5) is key in this thesis, as this equation expresses the relation between neutron
intensity and sample thickness. This relation can be rewritten to give a direct relation
between intensity and density:

I(x)

I0
= e−Σx = e−Nσx = e−ρxσ/u (6)

with N the amount of atoms in a square centimeter, σ the microscopic cross section, x
the thickness of the sample, ρ the density of the material and u the atomic weight.
With equation (5), both the probability that a neutron will travel a distance x without
interacting can be calculated, as well as the probability that a neutron will interact
within a distance dx:

P2(x) = 1− I(x+ dx)

I(x)
= 1−

I(x) + dI(x)
dx dx

I(x)
= 1− 1− 1

I(x)

dI(x)

dx
dx = Σdx (7)

With equations (5) and (7) the mean free path, λ, can be calculated. This is the average
length a neutron will travel before interacting.

λ =

∫ ∞
0

xP (x)P2(x)dx =

∫ ∞
0

xe−ΣxΣdx =
1

Σ
(8)

Combining equation (8) and (5) shows that the intensity at distance λ in the material
has dropped with a factor e.
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2.3 Intensity differences

The objective of this thesis is to investigate the feasibility of measuring a density field.
In the last section a relation between the density and neutron intensity was shown. A
change in density will result in a change in intensity of the measured neutron beam.
When the difference in intensity for a given change in density becomes larger, it will be
easier to measure that density change. In other words the contrast of the sensor becomes
better. This section will look into maximizing the contrast.
When two beams with the same intensity go through the same material at different spots
with different densities, the difference in intensity can be calculated in the following
way:

∆I = I0(e−ρ1xσ/u − e−ρ2xσ/u) (9)

From equation (9) it can be seen that taking the limit of x to zero or infinity both result
in the intensity difference going to zero. This makes sense since a limit to zero means
that both beams do not interact with the sample at all and a limit to infinity means
that the sample is so thick that every neutron reacts with the sample, despite the value
of the density. The intensity difference can be maximized by changing the thickness, x,
of the sample:

d∆I

dx
= 0⇒ xmax =

ln(ρ2/ρ1)u

(ρ2 − ρ1)σ
=
ln((ρ1 + ∆ρ)/ρ1)

∆ρ

u

σ
(10)

Using the result of equation (10) into equation (6) gives the absolute intensity for which
there is a maximum difference in intensity.

Imax
I0

=
I(xmax)

I0
=

(
ρ+ ∆ρ

ρ

)−ρ/∆ρ
(11)

ρ >> ∆ρ⇒ Imax
I0

=
1

e
(12)

Since this is exactly the intensity at the relaxation length we can state that:

xmax = λ =
1

Σ
(13)

Using the result of equation (10) into equation (9) gives the maximum amount of intensity
difference:

∆Imax
I0

=
∆ρ

ρ+ ∆ρ

(
ρ+ ∆ρ

ρ

)−ρ/∆ρ
(14)

Equation (14) does not depend on the cross section of the material but purely on the
relative change in density. This implies that changing the material or energy of the
neutrons will not change the maximum contrast, however, they will of course change the
thickness at which this maximum contrast appears, due to equation (13). Furthermore,
it can be seen that the maximum contrast becomes lower when the density increases. To
get the best contrast over a specific range of densities the highest density in that range
should be taken for ρ in the equations above.
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2.4 Uncertainty

In the previous section the conditions for maximum contrast were calculated. This con-
trast is lowered by uncertainties, caused by fluctuations in the intensity of the incoming
neutron beam and the measuring uncertainty of the neutron sensor. In this section the
relation between this uncertainty and the measuring time will be investigated.
By studying the temporal fluctuations in the measurements of the incoming bundle,
both the uncertainty of the incoming bundle as the uncertainty of the neutron sensor
can be measured. In the equation below a normalized standard deviation is defined for
measurements for the duration of 1 second:

σ1 =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

x
(15)

where xi is a specific measurement and x the average over N measurements.
Assuming a Gaussian distribution for the overall uncertainty gives an equation for the
value of the standard deviation as function of measuring time:

σt =
σ1√
t

(16)

with t the measuring time in seconds.
To be able to differentiate between two different densities, the ratio between the standard
deviation and measured intensity difference should not be too high. If the ”3-sigma rule”
is used, i.e. a 99.7% certainty that the measured density does not differ more than ∆ρ,
the following relation applies:

3σt =
∆Imax
I0

(17)

By combining equation (14), (16) and (17) the minimum measurement time needed to
measure a difference of ∆ρ with 99.7% certainty is:

t =

(
3σ1ρ

∆ρ

(
ρ+ ∆ρ

ρ

)ρ/∆ρ)2

(18)

Equation (18) can be simplified by using ∆ρ = ηρ:

t =

(
3σ1

η
(1 + η)1/η

)2

(19)

In which η is the relative density difference.
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3 Setup

This chapter will first describe the computational model that was used. In the second
part, the experimental setup and calibration method are given.

3.1 Serpent

Neutron simulations done in this research have been preformed with Serpent v2.1.12 [13].
Serpent is a three-dimensional neutron Monte Carlo code using continuous energies. To
simulate the neutron bundle, the source in Serpent was defined by 17 different energies
bins, following the Maxwell-Boltzmann distribution for thermal neutrons. These bins
are shown in table 1.

energy bin [10−2eV ] ratio [%]

0.0-0.5 0.5703

0.5-1.0 3.7459

1.0-1.5 8.7215

1.5-2.0 13.4212

2.0-2.5 16.1342

2.5-3.0 16.2027

3.0-3.5 14.0559

3.5-4.0 10.7368

4.0-4.5 7.3084

4.5-5.0 4.4685

5.0-5.5 2.4678

5.5-6.0 1.2361

6.0-6.5 0.5632

6.5-7.0 0.2340

7.0-7.5 0.0888

7.5-8.0 0.0308

8.0-2Mev 0.0137

Table 1: Energy bin distribution used in Serpent.

In the simulated bundle, neutrons have a velocity, according to their assigned energy,
solely in the x-direction. This means that the simulated bundle is perfectly parallel.
They were all created in a source plane, 5x5cm wide in the y/z-direction. Behind the
source plane a numerical sample is placed, also with a size of 5x5cm. To simulate the
sensor output of the experimental setup the reaction rate in a thin plate of Lithium is
recorded. In figure 7 a drawing of the setup in Serpent is shown. The JEFF-3.1.1 [10]
database is used as a cross section library. This database stores the cross sections and
scatter angle distributions for different neutron interactions.
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Figure 7: Setup in Serpent.
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3.2 Experimental setup

To verify the theoretical and computational results of this research an experimental test
setup was build. In the chapters below the test setup will be explained. A detailed expla-
nation is given about the neutron sensor and the method of calibrating and processing
the data from the sensor.

3.2.1 Scatter material

In the experimental setup a thermal neutron beam [12] from the HOR reactor in Delft is
used as a neutron source. This neutron bundle has a Maxwell-Boltzmann distribution,
which is described by:

f(ε) =

√( m

2πkT

)3
4πε2e−

mε2

2kT (20)

Where ε is the neutron energy.
In this distribution the most probable neutron speed is given by:

Vp =

√
2kT

m
(21)

Which is roughly 2.2km/s or 0.025 eV.
The overall cross section for this energy distribution can be found by integration:

σmb =

∫ ∞
0

f(ε)σ(ε)dε (22)

The JEFF 3.2 cross section library is used to find the energy dependence of different
cross sections. The overall microscopic cross sections can be found in table 2.

atom cross section [barn]
1H 31.27
12C 4.97
16O 3.99

Table 2: Overall microscopic cross sections,σmb, for a Maxwell-Boltzmann neutron en-
ergy distribution.

As can be seen in table 2, hydrogen has a significantly higher microscopic cross section
compared to oxygen or carbon. Therefore it can be expected that the hydrogen atoms
in water account for the biggest contribution to neutron interaction. To mimic the
scattering effect of water, plates of polyethylene were used as a sample material. Because
polyethylene is solid at room temperature it is much easier to vary the thickness of the
material. Polyethylene is a plastic with solely carbon and hydrogen atoms and just like
water has a high fraction of hydrogen atoms. Plates of 2mm were used and when a
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different thickness was needed the plate was milled to the desired thickness. In figure 8
a picture of the eperimental setup is shown. In some experiments not the whole neutron
bundle, but only a very small bundle was required. In this case a plate made out of a
strong neutron absorber with a pinhole, 750 µm in diameter, was attached to the pipe
with the incoming neutron bundle. In the picture it is referred to as pinhole plate.

Figure 8: Experimental setup.

3.2.2 Sensor

To measure the incoming neutrons a detector from Neutron Optics [11] is being used.
This detector uses lithium to capture neutrons, this reaction has helium and hydrogen
as fission products

6Li+1 n→3 H +4 He+ 4.79MeV (23)

The fission products are thereafter absorbed by a scintillator (ZnS), as a result of this
absorption the scintillator emmits photons which can be detected by a CCD. To protect
the CCD, the CCD is not placed behind the scintillator in the neutron beam, but a
mirror reflects the emmitted fotons to the CCD outside of the neutron beam.
The lithium and zinksulfide are mixed in a thin sheet called the scintillator screen. The
thickness of the the scintillator screen determines the effectiveness of the detector, since
a thicker screen has a higher chance of capturing a neutron, and therefore detecting it.
On the other hand a thicker screen also reduces the resolution of the image [7]. The
detector used in this experiment has a 200 µm scintilator screen and a pixel size on the
CCD of 110 µm.
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3.2.3 Calibration

Measuring neutron intensity with a scintilator screen and CCD introduces errors, which
will be addressed in this section. First for some pixels the outcome does not seem to
give any plausible results. When measuring without an incoming neutron bundle these
pixels light up. Since the location of these pixels is the same for different measurements,
the cause of this error must be in the measuring device. Most of these errors occur due
to the fact that these pixels are broken on the CCD [11]. From now on these pixels will
be referred to as non-working pixels. A measurement were there is no incoming neutron
bundle will from now on be called a dark measurement. Figure 9 shows a histogram with
the occurrences of photon intensity on the y-axis for a dark measurement. As shown
there is no clear distinction between working and non-working pixels. The vast majority
of the pixels, more then 98%, has an intensity of less then 350. All pixels with a higher
intensity then 350 at a dark measurement are defined as non-working.
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Figure 9: Histogram of the CCD output of the sensor for a dark measurement.

Besides non-working pixels, the working pixels also have an offset error. In Figure 10 the
cumulative output of the CCD when the detector is irradiated by the neutron bundle
is plotted for different measuring times. As shown, a linear plot through these points
does not go through the (0,0) point. The fitted offset does exactly match the cumulative
CCD output for a dark measurement. The offset is not increasing in time, so each dark
measurement, independent of measuring time, gives the same result. Therefore, as with
the non-working pixels, this offset must also have an internal cause.
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Figure 10: Cumulative CCD output of an empty measurement for different measuring
times.

Because of the non-working pixels and offset error the sensor needs to be calibrated. A
flowchart of the used calibration procedure is given in figure 11. As shown two calibration
measurements are needed: A dark measurement, where the sensor output is measured
without an incoming bundle, and an empty measurement, where the sensor output of
the neutron bundle without any sample is measured. From the dark measurement the
non working pixels and offset error are acquired. With these errors known, the intensity
of the incoming bundle can then be calculated from the empty measurement.

empty measurement
Ei,j

dark measurement
Di,j

measurement
Mi,j

I0
i,j = (Ei,j − O)Pi,j

non working pixels
if (Di,j > 350) :

Pi,j = 0
else: Pi,j = 1

data
= (Mi,j − O)Fi,j/I

0
i,j

frame
if (I0

i,j > α) : Fi,j = 1
else: Fi,j = 0

offset
O =∑

i

∑
j
Di,jPi,j/

∑
i

∑
j
Pi,j

Figure 11: Flow chart of compensation for non working pixels and the offset error of the
measuring device. α is a threshold for defining the measurement frame.
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Figure 12: CCD output of an empty measurement, meaning the sensor was put in front
of the bundle without any sample. The figure shows the average value of 60 20second
measurements, after compensating for the offset.

The CCD output is stored by the sensor in 16bits integers. To avoid data overflow,
the maximum exposure duration is set to 20 seconds. In figure 12, the time averaged
spacial intensity of the empty measurement is shown, this is the average CCD output
for 60 measurements of 20 seconds duration after compensation for errors as described
in figure 11. As shown the intensity of the bundle is not uniform in the spacial domain,
but varies significantly. Since there is no clear edge of the bundle, defining a clear spacial
window were the neutron bundle is present is challenging. However this window, from
now on called the measuring frame, is needed to define which pixels to include in the
measurement. To help defining the measuring frame, the relative standard deviation σri,j
is introduced:

σri,j =
σi,j
Ii,j

(24)

Where σi,j is the standard deviation over the different measurements for a specific pixel
and Ii,j the average intensity of that pixel.
The relative standard deviation is a direct measure for the uncertainty component of the
neutron bundle when comparing two measurements. To limit this uncertainty the mea-
suring frame should only include measurements where the relative standard deviation of
the incoming bundle is below a certain threshold. Defining the measuring frame directly
from the relative standard deviation would result in an noncontinuous frame without
a clear edge, this is undesirable because with a clear measuring frame measurements
on different locations can be added together to cover a larger area. In contrast to the
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relative standard deviation the intensity of the bundle does gradually decline from the
center of the bundle outwards, therefore it is easier to define the measuring frame by
the intensity of the bundle. In figure 13 for each pixel the relation between the average
intensity and the relative standard deviation is plotted. As shown the higher the inten-
sity the lower the relative standard deviation, so using the intensity of the bundle would
still result in a measuring frame with a low relative standard deviation. The higher the
threshold the lower the average relative standard deviation, but setting the threshold
too high would result in a too small frame. From this picture a CCD value of 18000
seems like a good threshold for this measurement.
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Figure 13: Relation between measured intensity and relative standard deviation, every
blue dot is representing a pixel on the sensor. The yellow line is a fit.
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4 Results and discussion

In this chapter the results of the experiments are presented and discussed. The aim
of the experiments is to accurately measure the thickness of a slab of material. An
experiment is conducted where a polyethylene plate is put in front of a neutron bundle
with the neutron sensor far away from the sensor. Secondly a situation is modelled
computationally where the sensor is put close behind the slab. Lastly the computational
model setup, with the sensor close behind the slab, is validated experimentally, again
with a polyethylene sample.

4.1 Experimental setup, dealing with divergence

The objective of this thesis is to investigate the feasibility of measuring density differences
in supercritical water. As supercritical water has a very high temperature and pressure,
polyethylene was chosen as a test substrate as it can be used at room temperature and
normal atmospheric pressure, and most importantly, its molecular structure has a high
ratio of hydrogen atoms similar to water.
Making high density variations in polyethylene is not possible, but as was shown in
section 2.2, varying the thickness of the plate has the same effect on neutron interaction
as varying the density. The mean free path of thermal neutrons in polyethylene is
around 2mm, so a plate of this thickness is used. To mimic density differences, six 3mm
wide layers with uniform thickness were milled in the plate with from top to bottom a
thickness of 1.9 mm, 1.8 mm, 1.7 mm, 1.5 mm, 1.0 mm and 0.5 mm.
In this first experiment, the sensor was placed approximately 20 cm behind the plate to
minimize the effect of scattering. Results of this measurement are shown in figure 14.
In figure A the intensity of the incoming bundle is shown with no plate in place in front
of the sensor. In figure B the intensity is shown with the plate in place. Figure C shows
the ratio between A and B, given by B/A. A measuring window is introduced in figures
C&D, as explained in section 3.2.3. Lastly, figure D shows the calculated thickness of
the plate using equation (6). Figure D clearly shows the 6 layers and the measured
thickness corresponds well to the actual thickness. On the edges though, some blur can
be seen, most clearly visible on the bottom layer of figure D. This blur is caused by
the divergence of the bundle. The incoming neutron bundle is not completely parallel
but diverges slightly, which causes neutrons that cross the polyethylene plate at the
same position to end up on slightly different spots on the sensor. This effect will be
smaller if the sensor is placed closer to the plate. This will be shown in the second set
of experiments.
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Figure A: intensity incoming bundle Figure B: intensity with plate
distance [pixels] distance [pixels]

distance [pixels] distance [pixels]
Figure C: ratio between A and B Figure D: calculated thickness [cm]

Figure 14: radiography of a polyethylene plate of 2mm with horizontal cavities of dif-
ferent thickness, from top to bottom: 1.9mm, 1.8mm, 1.7mm, 1.5mm, 1.0mm, 0.5mm.
Figure A shows the incoming neutron bundle (empty measurement), figure B shows the
neutron intensity with the sample, figure C shows the ratio of A and B, B/A and lastly
figure D shows the calculated thickness using figure C and equation (6).
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4.2 Computational setup, dealing with scattering

As shown in the previous section the sensor has to be as close as possible to the sample,
because the slightly divergent bundle causes blurring. The objective of this research is to
measure fluids in the supercritical state, a casing around the sample is required, because
of the high pressure involved in these fluids. This casing makes it impossible to measure
directly behind the sample. In this paragraph therefore a distance between the sample
and the sensor of 2 cm is taken, as 2 cm is a feasible thickness for such a casing.
Putting the sensor this close to the sample however gives another type of blurring:
blurring due to scattering. Neutrons scattering with a small angle will still hit the
sensor and therefore invoke an uncertainty in the measurement. A simulation of the
sensor output in Serpent has been performed for a neutron bundle going through a slab
of supercritical water with vertically six different layers of uniform densities, varying
from 0.5 kg/dm3 to 0.3 kg/dm3. As shown in figure 15 the simulated sensor output
is not constant over the layers of uniform density. For example the neutron intensity
within the top layer varies more than 12 percent. The neutron intensity stands for the
amount of neutrons hitting the sensor per second at a given pixel. Since the neutron
intensity is not directly related to the density, due to scattering, as figure 15 shows, the
density field can not immediately be calculated from this result.

Figure 15: Neutron intensity on a plane 2 cm behind a slab of water with vertically
six different layers of uniform density from 0.5 kg/dm3 to 0.3 kg/dm3 (simulated with
Serpent).

The result of an incoming neutron bundle can also be seen as a superposition of the
result of multiple thin bundles, since neutrons do not have any interaction with each
other. To further study the non-uniformity results of the last section, the interaction of
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a set of multiple thin bundles will be explored. For this, a simulation is performed where
a neutron bundle, with a very small diameter, is send through a slab of water of uniform
density. Without putting the slab in front of the sensor the bundle would just hit 1 pixel
on the sensor. With the slab in place, scattering will occur. In the left hand graph of
figure 16 the normalized intensity is plotted against the radial distance over which the
neutrons scatter. The data is normalized according to equation (25), such that the sum
of the intensity over a given data set is 1.

α
∑
i,j 6=0,0

Ii,j = 1 (25)

These normalized intensities, shown in figure 16, show that the shape of the data sets
does not depend on the density of the material. Since the thickness of the slab is around
the mean free path, the amount of neutrons that scatter multiple times is too small
to affect the shape of the radial intensity. The graph on the right shows the average
intensity as a function of scatter angle instead of distance. To get the distribution of
intensity for scatter angles, the average has to be compensated for the fact that larger
angles scatter over a larger area:

fangle =
Iangle2πr∫
Iangle2πrdr

(26)

where r is the radial distance.
In the right hand graph of figure 16 this is represented by the green line. The most
likely scatter angles are roughly between 10 and 30 degrees. These results follow from
the data in the JEFF311 [10] database that Serpent uses.
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Figure 16: Normalized radial intensity for a pixel wide incoming neutron bundle (simu-
lated with Serpent). The yellow line in the left figure is the average result over all data
sets. All data is normalized such that the integral is 1.
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Figure 17: Schematic drawing of the radial intensity, in the drawing I0
0,0 is a delta

function that without a sample would only hit the sensor at pixel 0,0

The average in the left hand graph of figure 16 is the normalized radial distribution
of neutron intensity for a single beam. This normalized radial intensity solely depends
on the radial distance and will be called the radial distribution, RD(r). In figure 17 a
schematic drawing is given of the radial intensity, the distribution of scattered neutrons
for a single neutron beam. The shape of the radial intensity is defined by the radial
distribution, but the actual neutron intensity at a given radial distance for a single
beam also depends on the intensity of the incoming bundle, I0, and the density, since a
higher density will result in more scattered neutrons. This dependence on the density
will be represented by the normalization factor, NF:

Ii,j = I0
0,0 ∗NF (D0,0) ∗RD(

√
i2 + j2) (27)

with I0
0,0 a delta function representing the incoming neutron bundle, NF (D0,0) the

normalization factor, the factor of neutrons that scatter and still hit the sensor, D0,0 the
density of the sample at 0,0 and RD the radial distribution function.
The normalization factor is not a simple linear function: in the extreme cases of a
density of 0 or an infinitely high density the contribution will in both cases be zero. The
normalization factor will be defined by the following function:

NF (D0,0) =

∑
i,j 6=0,0 Ii,j

I0
0,0

(28)

with I0
0,0 a delta function only hitting the sensor at i,j = 0,0 and Ii,j the radial intensity

for the density at 0,0.
The normalization factor can be seen here as the fraction of the incoming intensity that
scatters and still hits the sensor. The contribution to the intensity of a specific pixel
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at position i,j, by incoming neutrons aiming at position k,l can be expressed by the
following equation:

Ii,j = I0
k,l ∗NF (Dk,l) ∗RD

(√
(k − i)2 + (l − j)2

)
(29)

Where the indexes i,j and k,l refer to a specific pixel location, I0 is the incoming intensity,
NF the normalization factor and RD the radial distribution
In figure 18 the normalization factors for the different densities are plotted. In this graph
the total intensity of the scattered neutrons increases with increasing density. This makes
sense since a higher density means more neutrons collide and scatter. If much higher
densities or ticker samples would have been used the intensity would become lower for
increasing density, because now the probability that neutrons scatter multiple times to
larger angles or get absorbed is increasing faster than the probability that neutrons
scatter towards the sensor. For the thickness considered in this work, as calculated in
equation (10), however, an increasing normalization factor for increasing density is a
typical result. A curve can be fitted through the points to get an expression for the
normalization factor as function of the density. In Appendix B an analytical approach
is introduced to derive an expression for this fit.
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Figure 18: Normalization factor for the incoming scattered neutron intensity as a func-
tion of the density (between 0.3 kg/dm3 and 0.5 kg/dm3). Data obtained with Serpent.

Once the shape of the radial intensity distribution (figure 16) is known and the constants
for the fit in figure 18 are calculated, a method can be introduced to subtract the
scattering blur from the calculated image as presented in figure 15. With a function for
the radial intensity, RD(d), the normalization factor, NF(Di,j), and the initial intensity
of the bundle, I0

i,j , the intensity on the sensor, Si,j , can be calculated when the density,
Di,j , is given:

Si,j = I0
i,je
−ΣtDi,j +

∑
k,l

I0
k,l ∗NF (Dk,l) ∗RD

(√
(k − i)2 + (l − j)2

)
(30)
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The first term in this equation (30) represents the neutrons that did not interact with
sample. With increasing density the amount of neutrons that do not interact decreases
exponentially. The second term is the sum over all scatter contributions from surround-
ing pixels. To conclude, provided that the radial intensity and the normalization factor
are known, the intensity on the sensor can be calculated for a given density field. It is
not possible however to reverse the formula to get an explicit expression for the density
field. To calculate the density on a specific point the density on all other points must
be known first. The density field can be approximated by iteration. Since changing the
density in the first term in equation (30) has a much larger effect on the intensity on
the sensor than changing the density in the second term, the iteration converges rapidly
when for the update of the density field only the first term of equation (30) is taken into
account:

dS

dD
≈ d

dD
(I0e−ΣtD) = −I0Σte

−ΣtD

Dnew
i,j = Dold + ∆S/

dS

dD
= Dold

i,j + (Si,j −Mi,j)/I
0
i,jΣte

−ΣtDoldi,j

(31)

where M is the intensity of the measured data.
The iteration process is shown in a flow chart in figure 19. In Appendix A a simplified
example for the method described above is elaborated.

get measurement M

guess density field D

calculate S
(with equation 30)

update density field
(with equation 31)

compare
δ =

∑
|Si,j −Mi,j |

final D-field

δ > treshold

δ < treshold

Figure 19: Flow chart of the iteration process.

In figure 20, the reconstructed density field Di,j , is shown. One can clearly see the six
layers of uniform density. The noise shown in the picture is due to the uncertainty of the
neutron bundle in Serpent, which is also clearly visible in figure 15. When the average
densities over the layers are evaluated, these values are very close to the real densities,
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with errors below 1 percent. This method for removing the scatter blur thus works really
well, at least for the output of this simulation.

Figure 20: Final density field, calculated with data from a simulation with Serpent, after
applying the methodology as described in figure 19.
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4.3 Experimental setup, dealing with scattering

In this experiment the procedure explained in the previous section was put into practice.
The first step is to measure the amount of blur due to the divergence. For this the
bundle is reduced to a small bundle with a strong neutron absorbing material with a
small pinhole of 0.75mm in diameter. In figure 22 the radial intensity profile for different
distances between the sensor and the pinhole is plotted. The larger distance was not
measured but is between 20 and 25cm. Figure 22 shows that the blur due to divergence
can be neglected for small distances up to 3.5cm. Further measurements in this section
are all done with a distance of 3.5cm between the sensor and the pinhole. Since for small
distances the divergence can be neglected, the expected outcome for radial intensity
would be a step function, because the strong neutron absorber will block all neutrons
that do not pass the pinhole. In the figure this expected outcome is indicated by a
dotted line. The reason for the difference between the measured result and the expected
outcome must be sought in the sensor, since any effect before the sensor would have
resulted in a deviation between the measurement at the pinhole and 3.5cm away from
it.
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Figure 21: Bundle intensity as a function of the radial distance from the center of the
bundle for different distances between the pinhole and the sensor.

A possible explanation for the difference between the expected and measured result in
figure 22 can be that the location of the neutron is different from it‘s measured position.
As discussed in section 3.2.2, the sensor absorbs neutrons and then sends out an alpha
particle. This alpha particle emits light due to the scintilator which is then captured
by a CCD. In this process the measured position of the neutron could deviate from the
actual position. In the following section this effect will be looked into.
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Figure 22: Schematic drawing of the vectors used in equation 33 and 34

4.3.1 Sensor blur

In the previous section a difference was shown between the expected outcome of a pinhole
measurement and the actual measurement result. A possible explanation for this can
be sought in a deviation between the actual position of a neutron and it‘s measured
position by the sensor. This section will investigate this hypothesis by trying to find a
probability function for this deviation and compare this probability function with the
measured data.
If assumed that there is a function f that gives the radial probability of a neutron hitting
the sensor at r = 0 being detected at position r, with:∫ 2π

0

∫ ∞
0

f(r)rdθdr = 1 (32)

Furthermore, if assumed that the neutron intensity does not deviate significantly over
the pinhole, setting the incoming neutron bundle within a radius R equal to IB0, a
small area within the radius R then contributes to the measured intensity at position q
with:

IB0f(|~q − ~r|)dA (33)

integrating over the whole area with radius R then gives the measured intensity at
position q: ∫ 2π

0

∫ R

0
IB0f(|~q − ~r|)rdθdr = IPQ (34)

this integral cannot be solved since ~r and ~q depend on both r and θ. But in the special
case where q = 0, at the center of the incoming bundle, the θ dependency disappears
and the following integral can be made:
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∫ 2π

0

∫ R

0
IB0f(| − ~r|)rdθdr =

∫ 2π

0

∫ R

0
IB0f(r)rdθdr = IP0 (35)

With IP0 the intensity at r = 0 with the pinhole, IB0 the intensity at r = 0 without the
pinhole and R the radius of the pinhole

Using equation (32) and (35), two unknowns in a guess for the function f(r) can be
calculated. The following two functions where evaluated:

f(r) = Ae−Br an e-power function (36)

f(r) = Ae−Br
2

a Gauss function (37)

Solving equations (36) and (37) with the integrals (32) and (35) gives a solution for A
and B respectively:

A =
B2

2π
IP0
IB0

= 1− e−BR(BR+ 1) (38)

A =
B

π
B = −ln(1− IP0

IB0
)/R2 (39)

Using these assumptions for f(r) the expected measurement result can be calculated for
an incoming radial distribution of a step-function. In figure 23 the calculated radial
distribution is plotted for the two assumed functions for f(r), and compared with the
measured data. As shown the outcome of these calculations match quite well with the
measured data.
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Figure 23: Bundle intensity as a function of the radial distance from the center of
the bundle, as well as 2 calculated results for an incoming step-function with different
distributions.
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4.3.2 Removing sensor blur

As shown in figure 23 the Gauss distribution gives a slightly better result. This function
will be used in this section to remove the sensor blur from measurements made with
a pinhole and a plate of polyethylene in front of the neutron bundle. The assumption
is that after removing the sensor blur the only two contributions will be a uniform
circular bundle the size of the pinhole, caused by the neutrons that did not scatter, and
the scatter contribution. The goal is to extract the scatter contributions from these
measurements and calculate the radial intensity the same way as in the computational
case (figure 16).
In figure 24a the radial distributions with a pinhole in place is plotted for different
thicknesses of polyethylene. Using the Gauss distribution of equation (37) and the
iterative procedure shown in figure 19 an iterative result for the incoming neutron bundle
is achieved. In this iterative calculation an initial incoming neutron field is guessed, then
the Gauss function is used to calculate the blur caused by the sensor and the resulting
neutron field is compared with the actual measurement to update the guess for the
incoming bundle.

Si,j
?
=
∑
k,l

Gk,l ∗ f
(√

(k − i)2 + (l − j)2
)

(40)

with S the data measured by the sensor, G the guess for the incoming neutron field and
f the Gauss function derived in the previous section.
Figure 24a represents the data given by the sensor (S in equation (40)) and figure 24b
the calculated incoming neutron bundle assuming a Gaussian blur by the sensor (G in
equation (40)). As can be seen the result of Figure 24b is much closer to the expected
step-function. Still the procedure does not give a close enough result compared with the
expected step function. Next to the spikes in the high part of the functions in figure
24b, at a radial distance higher than 4 pixels the graph still shows the highest neutron
intensity for the data without a plate of polyethylene. This is not an expected result, as
a lower density should result in less scattering and therefore in a lower intensity outside
the radial window of the pinhole.
Clearly the sensor blur is reduced in figure 24b, but not completely removed. From this
result it is not possible to extract the scatter contribution and find a function for the
radial intensity.
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Figure 24: Radial distribution of pinhole measurements with different thickness of
polyethylene (0.5mm,1mm,1.5mm,2mm). Measured (a) and calculated with a Gaussian
distribution (b).

Since from the result of figure 24 no information can be extracted about the scatter
angles of scattered neutrons, the pinhole measurements as described in this section do
not help in finding a function for the radial intensity of scattered neutrons. This radial
intensity is needed in order to subtract the scatter contribution from the measurements.
One alternative strategy is to assume a scatter profile. The most easy to calculate
assumption then is a uniform scatter profile. Another option is to calculate a radial
distribution using a computational model, for example with Serpent, like was done in
section 4.2 and shown in figure 16. It is not possible to use the result of figure 16 as a
radial distribution for the experimental case, since an other material was simulated, with
another thickness and another distance to the sensor. Making another calculation with
Serpent is outside of the scope of this thesis, the next section will therefore show the
calculation of the radial distribution on the sensor for a uniform scatter profile.
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Figure 25: Schematic drawing of an incoming neutron bundle and the scatter angle θ.

4.3.3 Radial distribution for uniform scattering

Since the pinhole measurements did not give a clear result for the radial distribution of
scattering, this section will calculate the radial distribution assuming a uniform scatter
distribution, this means it is assumed all scatter angles are equally likely.
Looking at figure 25 one could imagine a three dimensional cone with angle θ that is a
part of a sphere, where the whole sphere represents all the possible scatter angles. The
volume of the cone divided by the volume of the sphere would, in the case of uniform
scattering, be the fraction of scattered neutrons that hit the sensor within a radius
r.

F (θ) =
Vcone
Vsphere

=
1

3
4πr

3

∫ 2π

0

∫ r

0

∫ θ

0
r2sinθdθdrdφ =

1

2
− 1

2
cosθ (41)

When the cone is increased with an angle dθ, increase of sensor area hit by the extra
neutrons, will equal 2πrdr. Assuming a function RD(r), that gives the radial distribution
of scattering, the following equation can be stated:

F ′(θ)dθ =
1

2
sinθdθ = 2πrdrRD(r) (42)

Using figure 25 and the small-angle approximation sin(dθ) ≈ dθ, it can be seen that:

dθ =
Ddr

r2 +D2
(43)

Combining equation (42) and (43) gives an expression for the radial distribution:

RD(r) =
D

4π(r2 +D2)
3
2

(44)
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Figure 26: Technical drawing of the polyethylene plate used.

4.3.4 Uniform scattering correction

In this section the results of the final experiment are discussed, where a polyethylene
plate is placed close in front of the sensor. In the plate, 4 lanes, 5mm wide, with an
incremental thickness of 0.4mm were milled. In figure 26 a technical drawing of this
polyethylene plate is shown. To correct for the blur due to scattering, uniform scatter-
ing, as discussed in the previous section, will be assumed.

Figure 27: In figure (a) the CCD output is shown for the final experiment, where the
red box shows the area that is averaged in the x-direction and shown in figure (b). In
figure (b) the green line represents the incoming neutron bundle, the red line the CCD
output and the blue line the CCD-output after being corrected for uniform scattering.

Figure 27a shows the processed CCD output for a measurement with the milled plate in
front of the sensor. High CCD output corresponds to low thickness, hence the bottom
lane has the smallest thickness. In figure 27b the CCD output is shown for a vertical
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slab where for a given vertical pixel height the CCD-output is averaged over 10 pixels
in the horizontal direction. As can be seen the CDD output of the measurement with a
plate in front of the sensor becomes higher than the output of the empty measurement
between 340-380 pixel height. This is a clear sign that scattering plays a significant
role in this measurement, because the evident explanation for the higher intensity on
that spot is that scattered neutrons will have caused the intensity to increase at that
point. To correct for the contribution of scatter, the correction method as developed for
this thesis and described in section 4.2 is applied and the uniform scatter distribution
of the previous section is assumed. To calculate the normalization factor it is approxi-
mated that scattered neutrons only scatter once and that scattering is the only possible
interaction, because of this approximation the normalization factor becomes:

NFi,j = I0
i,j − Ici,j (45)

with NF the normalization factor, I0 the intensity of the neutron bundle and Ic the
calculated intensity with the polyethylene sample, which is the measured intensity sub-
tracted by the scatter contribution
Basically a neutron now is assumed it can only have two states: it either did not interact
with the polyethylene slap, which makes it part of Ic or it scattered once, which makes
it part of NF . If it scattered, the probability it scattered on the sensor a distance r away
from the position it would have hit the sensor if it didn‘t scatter is given by RD(r). Now
the function to be iterated becomes:

Si,j
?
= Ici,j +

∑
k,l

NFk,l ∗RD
(√

(k − i)2 + (l − j)2
)
∗ dA

= Ici,j +
∑
k,l

(I0
k,l − Ick,l)DdA

4π((k − i)2 + (l − j)2 +D2)
3
2

(46)

with S the measured intensity on the sensor, Ic the calculated intensity and dA the area
size of a pixel.
In equation (46) Ic is updated after each iteration cycle until the 2 sides of the equation
are equal. In figures 27b and 28 Ic is represented by the blue line and S by the red line.
In figure 28a the ratio between the empty measurement and the measurement with the
milled plate before and after scattering correction is shown. The 4 different lanes are
visible and also it is clearly shown that the uniform scattering correction significantly
changes the outcome. In figure 28b the ratio of figure 28a is converted to a thickness,
using equation (5). In this figure the real thickness is indicated by the dotted black
line. As can be seen the thickness is underestimated, So after subtracting the scatter
contribution the intensity is still higher then expected, the most plausible explanation
for this is that the scatter contribution is underestimated in the model. In figure 28b
the result after subtracting a double amount of scattering is shown by the purple line.
This represents a situation where all neutrons scatter uniformly but only in the forward
half sphere. As can be seen, now the scattering is overestimated on the sides but still
underestimated in the middle. Presumably this will change if not a uniform distribution
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but a distribution where small scatter angles are more likely is being used. As can be seen
multiplying the presumed scattering by 2 has a far greater effect on the total scattering
than just a factor of 2, as in changing the assumed scattering has no linear effect on
the final density field. This can be explained by the fact that when a greater amount of
scattering on the sensor is assumed the amount of presumed unscattered neutrons will
be lower. This causes on its turn that a greater fraction of neutron must have scattered
and therefore further reduce the amount of presumed unscattered neutrons, etc. It is
because of this effect that one can not just reverse the calculation and calculate the
scatter angles from the result and known density field.

Figure 28: Ratio and thickness of sample before and after correcting for uniform scat-
tering.
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5 Recommendations for further research

In this section some recommendations are given for further research, with the objective
of a working sensor that can measure the density of super critical water. Two main
sources of uncertainty, sensor blur and scattering, are discussed.

5.1 Measuring sensor blur

In section 4.3 the existence of blur in the measurement due to uncertainties in the sensor
is discussed. This blur increases the uncertainty of a measurement, especially in the case
of a steep change in neutron intensity on the sensor. As shown in figure 22, the sharp
edge of a pinhole is smeared out over a larger area. Correcting for this sensor blur could
increase the accuracy of a measurement, but next to that, could also change the trade
off made in the sensor design between capture efficiency and resolution. If the resolution
can be enhanced computationally by correcting for the sensor blur, the scintillator plate
thickness could be increased, causing a higher capture efficiency, which in turn would
result in a lower measuring time.
In section 4.3.1 a potential correction method is evaluated to correct for the sensor blur
using a function with two unknowns. It is reasonable to assume that a higher order
polynomial will be a better representation for the radial distribution of the sensor blur.
To find this higher order polynomial more constraints are needed. Using pinholes with
different sizes will increase the amount of constraints by using equation (35). Alterna-
tively instead of pinholes, slits of different sizes could also be used to increase the amount
of constraints.

5.2 Measuring scattering

As shown in section 4.3.4, scattering contributes significantly to the uncertainty of a
measurement. When the distribution of scatter angles is known, the blur due to scatter-
ing can be corrected. The difficulty lies in finding the distribution of scatter angles. An
evident recommendation is to try to use Serpent or other neutron simulation software to
calculate the radial distribution for a specific experimental case and see if this leads to
better results. In case the simulation is not able to accurately calculate the distribution
an alternative is to measure it. In this section proposals are discussed to measure this
distribution more accurately.
In section 4.3.2 a pinhole was used in experiments, in order to measure the scatter an-
gles. As shown in that section the blur induced by the sensor made it impossible to
measure the scatter contribution. But also if the sensor blur could be corrected for or
prevented, it is questionable if a usable result can be obtained. For a single pinhole,
the scatter contribution to a specific pixel lays in the same order of magnitude as the
noise measured in an empty or dark measurement. A more accurate way to measure
the scatter contribution is to make use of symmetry. For example for a ring of neutron
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scattering material, the middle of the ring has scatter contributions for only a limited
range of scatter angles, depending on the thickness of the ring. Measuring the increase in
neutron intensity in the centre, with a ring of neutron scattering material in place, will
give a direct result for the amount of scattering at these angles. Different measurements
with different ring sizes could together give a result for the distribution of scatter angles.
As this distribution of scatter angles potentially depends on the kind of material being
used, it is preferable to use the same material for testing as for the final measure-
ments.

6 Conclusions

As shown in chapter 4.1 and figure 22 the neutron bundle used in this thesis shows some
divergence. This causes an uncertainty in a measurement proportional to the distance
between the sample and the sensor. In this thesis it is shown that putting the sensor
directly behind the sample minimizes this uncertainty. However, putting the sensor close
behind the sample does induce an uncertainty due to scattered neutrons that still hit the
sensor. As shown in section 4.2 this uncertainty can be compensated for by an iterative
algorithm if the probability function for the scatter angles is known. As shown in section
4.3 finding this probability function has been proven to be a challenging task. In section
5 a few ideas to improve the measurement of the probability function are proposed.
Looking at the main objective of this thesis: investigating the possibility of measuring
the density profile of super-critical fluids with the use of neutron radiography, it can be
concluded that, based on the results obtained in this work, this objective seems plausible.
Although this thesis did not quantify the total uncertainty of a measurement, looking
at the huge density differences of super critical water, measuring a clear trend in the
density profile can be expected.
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A Removing scatter blur example

In section 4.2 a method was introduced to remove the scatter blur from an image. In
this appendix this process is explained on the basis of just 3 pixels. A measurement on
a slab with the following densities is assumed:

0.3 0.4 0.5

When there is only absorption in the slabs and no scattering the neutron intensity can
be easily calculated with the following equation:

I = I0e−ΣxD (47)

Where I0 is intensity of the incoming beam, Σx the macroscopic cross section, being
dependent on the thickness and material of the slab and D the density.
If assumed that I0 and Σx are both 1 in this fictitious example, the intensity on the sensor
can be calculated. When equation (47) is reversed the density field can be reconstructed
from the intensity:

density

0.3 0.4 0.5 ↔
intensity

0.74 0.67 0.61

If scattering is included, the calculation becomes a bit more difficult: To calculate the
contribution of scattering to the intensity, one needs to know which fraction of the incom-
ing neutrons is scattered and how these scattered neutrons are radially distributed. For
this example a linear dependency is assumed for the scatter fraction, the normalization
factor NF(D):

NF (D) = 0.05D + 0.1 (48)

Since, in this example, only three pixels are used, the radial intensity distribution, RI(R),
can only take two values, because there are only two distinct distances. The following
values are assumed in this example:

RI(R) =

{
0.25 for R = 1

0.15 for R = 2
(49)

With the two formula‘s above, the intensity can be calculated with the effect of scattering
taken into account, as also shown in equation (30):

Si,j = I0
i,je
−Σt(x)Di,j +

∑
k,l

I0
k,l ∗NF (Dk,l) ∗RI

(√
(k − i)2 + (l − j)2

)
(50)

For example for the first pixel in our example this becomes:

I1 = I0
1e
−ΣxD1 + I0

2 ∗NF (D2) ∗RI(1) + I0
3 ∗NF (D3) ∗RI(2) (51)

Doing this calculation for all pixels the following result can be obtained:
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density

0.3 0.4 0.5 →
intensity

0.868 0.820 0.719

Because the complete density field needs to be known for each point, it is not possible
to directly reconstruct the density field from the intensity. It is possible, however, to
iterate towards the correct answer. When, for example, the density is guessed to be the
following:

density

0.4 0.4 0.4 →
intensity

0.790 0.820 0.790

It can be seen that the intensity on the first pixel is lower and on the last pixel is
higher than the previous result: so the density is overestimated in the first pixel and
underestimated in the last. To update the density field equation (31) can be used:

Dnew
i,j = Dold

i,j + (Si,j −Mi,j)/I
0
i,jΣte

−ΣtDoldi,j (52)

Which in this example means for the first pixel:

Dnew
1 = 0.4 + (0.790− 0.868)/e−0.4 = 0.284 (53)

Because only the direct effect of equation (47) was taken into account, the density change
was overestimated a bit, but the new density field is much closer to the original value.
This is because the direct effect has a much bigger influence. Iterating to the final result
now gives:

density

0.400 0.400 0.400 →
intensity

0.790 0.820 0.790

↙

0.284 0.400 0.506 → 0.881 0.819 0.714

↙

0.300 0.398 0.498 → 0.868 0.821 0.720

↙

0.300 0.400 0.500 → 0.868 0.820 0.719

As can be seen, the iteration converges quite rapidly.
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Figure 29: Schematic of the budget equation for neutron intensity.

B Fitting the normalization factor

In section 4.2 a method was introduced to remove the scatter blur from a measurement.
One of the requirements for this method was a function for the normalization factor as
a function of density. By measuring with a few known densities the normalization factor
can be calculated for these densities and a fit can be made. This appendix will explain
the analytical procedure of acquiring that fit.
Because equation 6 showed that changing the density has the same effect as changing
the thickness, the following thought experiment will assume a different thickness instead
of density:
Assumed is a very narrow bundle is going through a slab of material. The intensity of
the bundle can be calculated by the following budget equation:

AIx −AIx+∆x = ΣtIxA∆x (54)

Where A is the frontal area of the bundle.
Taking the limit of ∆x to zero, the following differential equation can be obtained:

dI(x)

dx
= −ΣtI(x) (55)

I is the intensity only of neutrons that did not interact with the slab.
If the intensity of the incoming neutron bundle is known this equation can be solved. As
mentioned above the variable x, can be interchanged with the density. In that case only
the value of Σt will change. The same balance can also be made for the intensity of the
neutrons that have scattered but are still on a collision course with the sensor:

AIcax −AIcax+∆x = Σt,caAI
ca
x ∆x− ΣcaIxA∆x (56)

Where Ica is the intensity of scattered neutrons that will still hit the sensor, Σt,ca the
microscopic cross section for neutrons that are either absorbed or scattered to a course
that will no longer hit the sensor and Σca the microscopic cross sections for neutrons
that scatter for the first time to an angle that still hits the sensor.
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Similar to equation (54), equation (56) can also be rewritten to a differential equation
when taking the limit of ∆x to zero:

dIca(x)

dx
= −Σt,caI

ca(x) + Σcae
−Σtx (57)

For the above equation to hold it is assumed that the range of angles that a neutron can
scatter to, to still hit the sensor, is not changing significantly between the front and the
back of the slab. Furthermore it is also assumed that only a very small fraction of the
neutrons scatter more than twice. Because the intensity of Ica is 0 at x = 0 the equation
above can be solved:

Ica(x) =
Σca

Σt − Σt,ca

(
1− e−(Σt−Σt,ca)x

)
e−Σt,cax (58)

This equation is fitted in figure 30 with the blue line. The following values for the cross
sections were fitted:

Σt 2.01146725

Σca 1.23213268

Σt,ca 0.55130798
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Figure 30: The intensities calculated with Serpent and their fits. The intensities are
normalized with the strength of the incoming bundle.
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