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Abstract

Numerical solving a full order model can be computationally and time expensive. For real time
control problems, it may be infeasible to solve full order models. Reduced order models can be used
in order to reduce the time and computational cost while maintaining a high enough accuracy.
In this thesis, it will be researched if a convolutional autoencoder based reduced order model
is a feasible reduced order modelling method. Reduced order models will be constructed and
applied for three different steady state neutron diffusion problems. Every autoencoder receives
full order model solutions at its input. Convolutional layers are employed to process the high
dimensional input to lower layers. The encoder will map the input data to the low dimensional
latent space. The decoder will subsequently reconstruct the high dimensional input at its output
from the low dimensional latent space. The latent space between the encoder and decoder forces
the autoencoder to capture all necessary information in the few latent variables in such a way
that the decoder can reconstruct the full order solution as good as possible. In order to find
the optimal values for the model parameters, the autoencoder is trained on a set of full order
solutions via gradient descent. After the training, the decoder can be used separately to map from
the latent variables to the full order solutions. By joining the decoder with a regression model
from the full order model parameters to the latent variables, one can find the full order solution
without having to use a full order model solution method, like the finite element approach. In this
thesis, a multivariate polynomial regression model is used for the regression from the full order
model parameters to the latent variables. The convolutional autoencoder based reduced order
model which incorporates residual blocks and parallel residual blocks in its structure, managed
to outperform its proper orthogonal decomposition based counterpart by having an approx. 2.5
smaller mean squared error and a 1.4 times smaller mean absolute error. This shows that the
proposed method is feasible in terms of prediction performance. Research should be done on the
feasibility in terms of the computational costs and time costs. Additional recommendations are
the extension of the proposed method to time dependent problems and the application to problems
which are harder to capture with proper orthogonal decomposition based models.
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1 Introduction

Physics problems can often be described by a set of partial or ordinary differential equations. Some
of those differential equations can be solved analytically, but most have to be solved by numerical
methods. An accurate and reliable method of solving is done with a finite element method. The
solution of a finite element method is called a full order model (FOM) solution. Many disciplines
utilise the finite element method including, fluid dynamics, structural analysis, thermodynamics,
electrodynamics and reactor physics.

Unfortunately, solving a FOM can be expensive in terms of time and computational power. Re-
duced order models (ROMs) are used to lower those costs while maintaining a certain accuracy.
A common ROM method is the proper orthogonal decomposition (POD). This linear operation
requires FOM solutions, which it will decompose in POD modes. The most dominant modes will
be saved. All FOM solutions will be approximated by a linear combination of those saved modes.
The POD coefficients plus the modes are enough to accurately describe a FOM solution. The
coefficients can be used for further calculations, e.g., the time evolution of a FOM solution can
be approached by the time solution for the POD coefficients. Since the number of used POD
coefficients is usually much lower than the number of elements of a finite element FOM, one could
speak of a ROM.

An alternative way of reducing a FOM to a small number of variables / coefficients is done with
autoencoders (AEs). AEs are a type neural network and are already used for data compression.
With the right settings, the reduction will be a nonlinear operation, allowing the AE to map to
and from nonlinear variables which are called the latent variables. In this thesis, research will be
done on the use of convolutional autoencoders (CAEs), which are AEs that make use of convo-
lutional layers. Is a CAE based ROM able to outperform a POD based ROM in terms of accuracy?

This question and the goal of the thesis will be further specified in Section 2. Subsequently,
some related work will be mentioned in Section 3. The necessary theory is given in Section 4.
This is followed by methodology in Section 5 and the results in Section 6. The results will be
discussed in Section 7 and the thesis will be concluded in Section 8.

2 Goal

The goal of the thesis is described as follows: Construct a CAE based ROM for physics problems.
This can be further specified in two parts, where firstly a CAE needs to be constructed in such
a way that its decoder can reconstruct the input for a limited latent space dimension, and where
secondly, a regression model needs to be constructed to directly find the latent variables from
the FOM parameters. The main focus will be on the construction of the CAE and less on the
regression model from the FOM parameters to the latent variables. Time dependent problems are
not covered.
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3 Related Work

Autoencoders have been used in similar applications before. E.g., [1] has created a shallow,
sparsly connected AE to reduce the dimensions of a 1D and 2D Burger’s problem solutions to a
nonlinear subspace, i.e., the latent space of the AE. The latent variables are used as coordinates for
the time integration performed with the Galerkin method and the Least-Squares Petrov Galerkin
method. They numerically show that for the two applied Burger’s problems the nonlinear subspace
representation (found with the encoder from the AE) outperforms its linear subspace counterpart
(found with a POD variant). In a similar fashion, [2] used a fully connected AE to reduce the order
of a compressible Navier-Stokes problem, namely 2D flow around a cylinder, as well as a shallow
water problem to model the tides in the bay of San Diego. They predicted the time evolution
of the latent variables of both problems by a NODE, which is a neural network used for solving
ODEs. The ROMs of both applied problems were compared with o.a. POD based ROMs, which
used a POD instead of a encoder to map to a low dimensional subspace. The time evolution was
still done via a NODE. They found that the AE reduced subspace would yield better results for
both problems. Another way of reducing the dimensions of a problem was proposed by [3], who
used a Jacobian / derivative information to reduce the dimension of a problem and used a POD
projection for the outputs. In between those two models is a neural network which aims to further
reduce the dimensionality. But by already applying dimensionality reduction before the input of
the neural network, only layers for small dimensionality need to be trained. A sparsly connected
dense AE was used by [4] with the goal of finding a coordinate transformation such that the new
coordinates would be a linear representation of nonlinear dynamics. The new coordinates are the
latent variables of the AE and the coordinate transformation is done by the encoder. This is not a
ROM, but shows that the encoder can be used to find lower dimensional representations. A CAE
was used by [5] to reduce a 1D Burger’s problem and a 2D inviscid shallow water problem into
small latent spaces. For both problems, a Long Short-Term Memory (type of recurrent neural
network, has backward connections) was constructed and trained to predict the time evolution of
the latent variables. The results were compared to a POD combined with Galerkin projection.
Another CAE based ROM was proposed by [6] where the high dimensional input was reduced to
the low dimensional latent space via a convolutional encoder as well, but the time evolution of
the latent variables was determined with Galerkin projection and Least-Squares Petrov Galerkin
projection. They numerically showed that both ROMs outperformed its POD based counterparts
on a 1D Burger’s problem and a chemical reacting flow problem (model of H2-air flame).

5



4 Theory

In this section the necessary theory will be presented. It starts with Subsection 4.1 about re-
duced order modelling, followed by large Subsection 4.2 about neural networks, their heuristics
(Subsection 4.3) and some architectures of neural networks (Subsection 4.4). The Theory will be
concluded with Subsection 4.5 about a specific physics problem, namely neutron diffusion.

4.1 Reduced order modelling
Almost all disciplines in science and engineering require some (physical) problem to be solved.
Those problems often come in the form of a partial differential equation. Some partial differential
equations can be solved analytically, but most have to be solved by numerical methods. An
accurate and reliable method of solving is done with a finite elements method. This solution
method yields the FOM solution. Many disciplines utilise this method, including fluid dynamics,
structural analysis, thermodynamics, electrodynamics and reactor physics.
Solving a FOM is time and computationally expensive. ROM can be used to drastically downscale
the time and computational burden while not reducing the accuracy too much. In cases where
multiple FOM evaluations are simply infeasible, ROM can enable model evaluations. This makes
ROM a powerful tool and it can be applied in many different fields, ranging from real time control
systems to design optimisation and data assimilation. For example, in design optimisation, with
reduced computation time, more model realisations can be calculated within a set time frame,
yielding better optima in a given time.

4.1.1 Proper orthogonal decomposition

A common method of reducing the dimensionality of the FOM is by performing a POD. This
method adds snapshots of FOM solution data in a matrix S. Every FOM solution is flattened
to be of dimension Rm×1 and added to a column of the snapshot matrix. This means that if
there are β different FOM solutions, the snapshot matrix will have the dimension of S ∈ Rm×β .
Subtracting the mean of every row yields matrix S̃. This matrix will be decomposed by singular
value decomposition as:

S̃ = UΣBT , (1)

where U ∈ Rm×m and B ∈ Rβ×β consists of the eigenvectors of S̃S̃
T

and S̃T S̃ respectively.
Σ ∈ Rm×β is zero everywhere, except at the diagonal where the singular values σi are represented.
According to [7], the basis functions ϕi can be constructed as:

ϕi = S̃Bi/
√
σi, (2)

where Bi ∈ Rβ×1 is the i-th column of matrix B. The basis vectors span the solution space and
a linear combination of all of them will perfectly reconstruct any FOM solution of the snapshot
matrix. In order to reduce the dimensionality, the first p number of most dominant basis functions
are used, i.e., the first p eigenvectors that correspond to the p biggest singular values. All other
basis functions are discarded. The first p POD modes are put together in the truncated basis
matrix Φp. The truncated set of basis functions can still be used to reconstructed FOM solutions
from the snapshot matrix, but since a lot of modes (with the smaller energies) are discarded, not
all information is present and the reconstruction is not perfect. The fraction of the total system
energy contained in the selected basis, η, is given by [7] as:

η =

∑p
i=1 σi∑P
j=1 σj

, (3)

where σ1 ≥ σ2 ≥ ... ≥ σP ≥ 0 and where P is the total number of basis functions. The contained
fraction of energy is a measure of how good truncated basis matrix was able to capture the char-
acteristics of a system.
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POD can be used in two ways: intrusive and non-intrusive. In intrusive methods the system
equations are solved for the reduced POD basis. This requires modification of the FOM code, and
thus the method is called intrusive. Methods that modify the code are called intrusive methods.
Examples of intrusive methods are POD combined with Galerkin projection or with least squares
Petrov Galerkin projection [7], [5].
Typical non-intrusive ROM methods utilize POD combined with interpolation in order to predict
new solutions [7]. A disadvantage of POD based ROMs is that they fail to properly capture non-
linear complex behaviour, e.g., advection dominated flow problems [8], [9], [5]. Neural networks
could possibly solve this problem, for neural networks are able to approximate nonlinearities. This
is a relatively new area of research. More can be read about ROMs in [10] and [11].

4.2 Neural Networks

4.2.1 Working principle

Neural networks come in many shapes and sizes. In order to understand the more complex
networks, it is good to first take a look at the working principle of a simpler network. A simple
neural network is the feedforward neural network, also known as the multi-layer perceptron (MLP).
The general structure of a MLP is presented in Figure 1.

Figure 1: A multi-layer perceptron. The network consists of N+1 layers which all consist
of multiple neurons / elements. The number of elements determine the dimension of the
layer. x is the input layer of the network and y is the output layer. The hidden layers
are h(i) with i running from 1 to N − 1. The functions f (i) with i running from 0 to N
are mappings between layer i− 1 and i, where it is used that h(0) = x

The MLP consists of a number of layers which in their turn consist of a number of variables, the
so-called neurons. The layer x is the input layer. The layer y is the output layer. All layers
between the input and the output are hidden layers. The number of neurons per layer equal the
dimensionality of that layer, e.g., in MLP of Figure 1, the input has a dimensionality of five,
hidden layer one a dimensionality of five and the output a dimensionality of two.

The goal of the MLP (or any neural network) is to estimate a certain function f∗(x). A net-
work does so by mapping the input x ∈ Rm to output y ∈ Rn via a function f(x), which is
actually a composite function from the different mappings between every layer. For the example
of Figure 1, the total function is given as follows:

f(x) =
(
f (N) ◦ f (N−1) ◦ . . . ◦ f (2) ◦ f (1)

)
(x), (4)

where f (i) is the mapping from layer i to i + 1 with i = 1, . . . , N , with N + 1 being the total
number of layers where the first one is the input layer, the second one the first hidden layer and
the last one being the output layer.
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4.2.2 Layers

The mapping from layer to layer can be done in several ways. A classic method of layer mapping is
done by the fully connected layer. The fully connected layer, a.k.a. dense layer, has a mapping
which can be described as follows:
Suppose that a single fully connected layer, i.e., a MLP with no hidden layers, has input x ∈ Rm

and output y ∈ Rn. The mapping between input and output is then given as:

y = g
(
WTx+ b

)
, (5)

where the matrix W ∈ Rm×n is the weight matrix, where vector b ∈ Rn is the bias vector
and where the function g is the activation function. The value of a single output neuron yj is
determined by the activation and its input, which is the sum of every input neuron times an unique
weight. For example, the value of the first output neuron is given as:

yj = g (Wi,j xi + bj) , i = 1, ...,m. (6)

Notice that the first column of the weight matrix contains all the weights on which the first
output neuron depends. This is the same for every other output neuron, except they use the
row corresponding to their position. The second output neuron depends on the second row, the
third output on the third row and so on. In other words, there is an unique weight for every
multiplication in the fully connected layer. Note that the activation function g can either be
visualised as being contained in the same layer as the linear mapping (as in Figure 2) or be
visualised in a separate layer (as in Figure 5). A fully connected layer is visualised in Figure 2:

Figure 2: A simple fully connected layer, or dense layer. This is a typical way of visual-
izing such a layer. The input x is made up by 3 neurons and thus has a dimensionality
of 3. The output y consists of 2 elements and thus has a dimensionality of 2. The
neuron b1 is the bias. Each output element is fed every input element plus the bias, all
multiplied with an unique weight.

In this example, the input is of dimension m = 3 and the output is of dimension n = 2. The
input to the activation function of every neuron is the sum of all incoming arrows. Every incoming
arrow carries the value of the neuron or bias it originates from times a unique weight. This is a
visualisation of the matrix multiplication from Equation (5).

If one chooses the activation function to be an identity function, i.e., g(x) = x, Equation (5)
becomes a simple matrix multiplication and vector addition. This is a linear mapping. By adding
multiple fully connected layers in series, all with an identity function or a similar linear function,
the composite function of all layers together will be a linear one. That is, the total network func-
tion will be multiple matrix multiplications and vector additions, which are all linear operations.
If however, one or more layers use a nonlinear activation function, the network will be able to
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create a nonlinear composite function which enables a better estimation of nonlinear functions.

Another way of mapping between two layers can be done with a convolution [12]. Layers whose
output is created by a discrete convolution operation are called convolutional layers. In such a
layer, one or more small weight matrices are slid across the input, multiplying their weights with
the corresponding input values of the input map, outputting one or more output maps, referred to
as feature maps. A mathematical description of the convolutional operation1 (in two dimensions)
is as follows:

S (i, j) =
∑
p

∑
q

I (i+ p, j + q)K (p, q) , (7)

where S ∈ Rnx×ny is a (output) feature map, where I ∈ Rnx×ny is the input tensor, or input
feature map, and where K ∈ Rkx×ky is the weight tensor, also known as the convolutional kernel
or filter. Its dimension is given by k. i, j, p and q are indices. Note the Equation (7) is two
dimensional and that the underscores of m, n and k indicate the size in a specific dimension. If
the maps were to be flattened, the total size would be the product of the size of every dimension,
i.e., m = mx ·my. The two dimensional convolutional operation can easily be extended to three
dimensions (by adding a third sum over the third dimension) or reduced to one dimension. In
theory, the operation can be for whatever finite dimension one likes. The sums over p and q are
performed over the elements of the kernel, i.e., they range from one to kx and ky respectively.
For a common choice of convolutional kernel, a (3 × 3) sized one, p and q will run from one to
three. The range of the indices i and j should only include the values for which there is an input
value. This depends on the input tensor size alone. In order to show this, let a two dimensional
convolutional kernel be of size kx by ky and let the input dimensions range from 1 to mx and 1
to my, with mx and my being positive. This means that the value of i + p and j + q should be
between 1 and mx and 1 and my respectively. Since pmax = kx and qmax = ky, the output map S
will be of size (mx − kx + 1)× (my − ky + 1).

Whenever the convolutional kernel is not of size (1× 1), the dimensions of the output feature
map will be different to the dimensions of the input map. In order to preserve the input di-
mension, padding can be used. This mean that the input is extended during the convolutional
operation. That is, the input dimensions will be increased from mx×my to (mx + lx)× (my + ly)
where the padding sizes lx and ly should satisfy lx = kx−1 and ly = ky−1. The extra elements in
the input tensor are appended around the tensor. They form a boundary layer around it. In the
case of a one dimensional input of size nx this means that lx/2 elements are appended at start of
the tensor and that lx/2 elements are appended at the end of the tensor. The appended elements
which are not part of the original input map are called the padding. The value of the padding
can be set to anything, although the common choice is to set every padded element to zero, which
is called zero padding. Another choice is to mirror the padding with the input map. In the one
dimensional case, that would mean that the first right padding element will copy the value of the
last element from the original input and the second right padding element will copy the second
last element from the original input and so on.

The convolution operation can be extended by introducing an extra parameter called the stride,
s. The stride is the step size of the convolutional kernel. By default, the stride is one, meaning
a normal sliding of the kernel over the input map. In other words, every weight of the kernel is
multiplied with an input element that is directly next to the element used in the previous slide
step. In a strided convolution however, the two subsequent input elements that are multiplied
with the same kernel weight in subsequent sliding steps, are a stride distance apart. That is, input

1An observant reader may notice that Equation (7) is actual the formula for calculating the 2D discrete cross-
correlation of real signals and not the one for discrete convolution. The cross-correlation lacks the commutative
property which convolution does have. However, this is not real important for a neural network and in order to be
consistent with machine learning literature, the operation of Equation (7) will be referred to as a convolution.
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element i and element i+ 2 instead of the default input element i and element i+ 1.

The use of strides means that a smaller number of total slide steps can be made over the in-
put map since the slide steps are bigger. This in turn results in a reduced dimension of the output
map, because the total number of slides determines the dimension of the output map:

n =
m− k + l

s
+ 1. (8)

Equation (8) holds for every dimension, and hence, the subscripts indicating the dimension are
omitted for brevity reasons. If one uses padding in order to get output dimensions equal to the
input dimensions n = m, the padding is called ’same’.

Another extension to the convolutional layer is the use of dilated kernels, yielding a dilated con-
volution operation [13]. This simply means that elements which used to be directly next to each
other in a default kernel, are now a distance ddil away from each other. The distance ddil is called
the dilation rate and is one for a non-dilated kernel. The effective kernel size k now changes to
kd = ddil (k − 1) + 1, where k is still the kernel size, but only in terms of the number of elements.
The size of the field in the input map that is needed to determine a single output element has
increased to a dimension of kb for the input elements are now further apart. In other words, the
receptive field of the kernel has increased due to the dilation. One could also choose to use a
non-dilated filter of bigger size, e.g., a (7× 7) kernel to achieve an increase in the receptive field,
but that would require an increase in the number of weights.

Figure 4 shows the different type of convolutional operations for an one dimensional case. Com-
binations can be made. I.e., one could choose to use stride and padding or dilation and padding.
In theory, a combination of dilation and stride could be possible, but is not supported by the
Tensorflow framework.

If the mapping between two subsequent layers is done by a convolutional operation, one can
have as many feature maps as one likes. The number of used kernels will scale with the desired
number of output maps No. For a tensor with only one input map, the number of output feature
maps is equal to the number of kernels. If however the input consists of Ni input feature maps,
e.g., the input being the output of a previous hidden convolutional layer, the number of kernels
will be the product of the number of input maps times the desired number of output maps. That
is, a single output map is the sum of convolution operations over every input map, all convoluted
with an unique kernel.

An advantage which a convolutional layer has over a dense layer is the reduced number of unique
weights which need to be stored and optimized, i.e., a dense layer requires m× n weights whereas
a convolutional layer requires k ×Ni ×No parameters. Since m and n are usually quite big com-
pared to k, a convolutional layer in general needs less parameters. For example, an input gray
scale image of size 256 × 256 (m = 65536) to an output of 128 × 128 (n = 16384) will result
in more than one billion parameters for a dense layer, where a convolutional layer with typical
(3× 3) kernels will only need 9 ·Ni ·No weight parameters. Here Ni equals one. If the input image
were to be RGB, there would be three different input feature maps and hence Ni would be three.
No is typically in a scale between ten and thousand. For hidden layers this means that Ni of the
subsequent layer would be in that scale as well. This could still result in a big amount of weight
parameter. In order to combat this, one could implement a convolutional layer where the number
of output maps is lower than the number of input maps and use (1 × 1) kernels, as proposed in
[14]. This layer serves as a reduction and should capture all necessary features from the input
feature maps in a reduced number of output maps.
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Figure 3: Visualisation of 4 different types of convolution operations with the same input
map of dimensionality 5 and the same sized kernel with weights w1, w2 and w3. (a) -
Default convolutional operation. the kernel can make 2 slides across the input meaning 3
different positions. This yields an output with a dimensionality of 3. (b) - Convolutional
operation with zero padding. The kernel can calculate a value for 5 different positions,
yielding an output dimensionality of 5. (c) - Strided convolution with a stride of 2.
The kernel can slide only once before having at least one of its weights above a non
existing input element. The two positions result in a output with a dimension of 2.
(d) - Dilated convolutional operation. The kernel itself is dilated to a dimension of 5,
meaning that there is only one possible position to calculate a value. This results in a
output dimension of 1. In order to have an output dimension of 5, the input should be
padded with 2 extra elements on both sides. Note that all output values have not yet
gone through the activation function (i.e., not an identity function).

Another variant on the convolutional layer is the transposed convolutional layer. This layer
is similar to the convolutional layer, except that the kernel works in the opposite direction. I.e.,
it takes only one input element to add a value to k different elements. The arrows in Figure 4 are
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reversed. Padding is now used to remove boundary elements from the output instead of adding
boundary elements to the input. If ’same’ padding is used, boundary elements will be removed
such that the output dimensions are equal to the input dimensions instead of being increased. The
transposed convolutional layers can be used as upsampling layers, which means that the output
maps will have an increased dimension compared to the input maps.
Besides the dense layer and the convolutional based layers, there are other types of layers which can
be used as well, such as bilinear interpolation layers, pooling layers, batch normalization layers and
layer normalization layers. Those will now be discussed, starting with bilinear interpolation layers.

A bilinear interpolation layer is an alternative layer used for upsampling a feature map to
a higher dimension. It uses bilinear interpolation to find the value for the new neurons. It will
first use linear interpolation to find the value in between two subsequent neurons in one direction
of a feature map. This is also done for the two neurons directly above the other two. With
the two interpolated values, one can perform another interpolation, but this time in the other
direction. The found value did require linear interpolation on linear interpolated values, hence
the name bilinear interpolation. The output is a smoothed out feature map with increased di-
mensions. This upsampling method does not require any additional model parameters to be saved.

A pooling layer should reduce the dimensionality. To this end, the input tensor will be di-
vided into a grid with each grid point consisting of a number of elements. This grid point is called
a pool. The amount of elements in the pool is determined by the pool size. An operation will be
performed over all elements in one pool and the returned value will be the value of one output
element. The most common operation is max pooling, which means that the maximum value in
the pool will be returned. Another common one is average pooling where the average value of all
elements in one pool will be returned. Pooling layers can be seen as a special type of convolutional
layer where the kernel has unit weights and its size is equal to the pool size. In the case of max
pooling, the activation function would be g (x) = max (x) and in the case of average pooling it
would be g (x) = 1/ (poolsize)×

∑
i∈pool (xi).

Batch normalization layers perform a translation and a scaling operation on their input. To
be more precise, every input feature map is translated to have a zero mean and is divided by its
variance to have unit variance:

x̂i,c =
xi,c − µB,c

σ2
B,c + ϵ

. (9)

The intermediate output x̂i,c is a result of the standardization of a feature map of the original
input. The i is an index indicating a single input of the total input batch. A batch is a set of
multiple instances of inputs. i runs from 1 to B, the total number of instances in the batch. The
second index, index c, runs from 1 to Ni and indicates which feature map is being standardized.
µB,c is the average value of feature map c of all instances in the batch and σB,c is the variance
of the same set. ϵ is just a small positive scalar used for numerical stability. The real output is
another translation and scaling:

yi,c = γcx̂i,c + βc (10)

Here γc and βc are learned scalar values. The translation and scaling are necessary for the opti-
mization of a neural network. More about this in the Section 4.2.3. The recommended location
of the batch normalization layer is after a linear operation (performed by either a dense layer or a
convolution type of layer). This is recommended by the authors of the paper that proposed batch
normalization layers [15]. Technically speaking, the term ’normalization’ should be replaced with
the term ’standardization’, since a normalization operation will scale the inputs to be between 0
and 1 instead of being mean centered with unit variance.

Layer normalization layers are very similar to batch normalization layers as they too subtract
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the mean and divide by the variance. The major difference is that the mean and the variance
are calculated on only the single input instance and not on the whole batch. I.e., the mean and
variance in Equation (9) become µc and the variance σc respectively. Another smaller difference
is the fact that the Equation (10) is not used and hence the intermediate output from Equation
(9) is actually the final output. The layer normalization layer is invariant to scaling and shifting
of the incoming weight matrix as long as the normalization layer is used after the dense layer (its
linear part and before its activation function, if its a nonlinear one). The normalization layer was
proposed by [16].

4.2.3 Optimization

Recall from Subsection 4.2.1 that the task of a neural network is to estimate a function f∗(x).
This function can be anything. It could be a classification function, that classifies whether emails
are spam or not. The input are emails and the output is a likelihood. Another classification task
could be an input image and an output returning a label for every pixel indicating of what object
the pixel is a part of. Examples of these are the classification of each pixels from a ct-scan to
the right class of tissue they represent. Or pixels from an image obtained by a self driving car
which need to be classified to the type of vehicle or environment they represent. Another function
type could be a regression task, e.g., the temperature prediction based on data from last week’s
weather. Classification tasks output discrete classes and regression tasks output continuous values.
The function f∗(x) is always correct. That is, it always returns the ground truth for any given
input. The function is also often unknown. One can get close to the function f∗(x) by estimating
it with the composite function of a neural network. With the different types of layers discussed
in Subsection 4.2.1, one can create a network whose composite function comes close to desired
function. For the example of an object recognition function, a neural network can be constructed
which is able to recognise the object present in the input image and correctly classify it with an
accuracy of 99%. But here comes the tricky part. The neural network its composite function is
determined by all its layer functions which in turn are all depended on their weights and biases.
Hence, the composite function should be written as:

fθ (x) ,

where the values of all the layer parameters are captured in the variable θ. There is an optimal
value for θ where the network is as close to the desired function f∗(x) as possible. However, find-
ing the optimal value for θ is rather difficult. Namely, it is practically impossible to find the best
performing values for the parameters by checking the performance of the composite function for
every possible combination of values of θ. A viable approach is to optimize the model parameters
via gradient descent.
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Figure 4: Gradient descent in a two dimensional loss landscape from three different
starting points. The value of the loss J(x, y|θ1, θ2) depends on the value of the two
model parameters θ1 and θ2. The gradient descent algorithm steps downward through
parameter space in the direction of the steepest decline till a local minimum is reached.
The initial starting point influences the finish point.

Gradient descent is an algorithm which aims to find the minimum of a function by making small
steps through the parameter space in the direction of the steepest downward gradient at each
position till a (local) minimum is reached [12]. In order to use this algorithm for neural network
optimization, one needs to define a function of which the minimum should be found. Since the
aim is to create a composite function which is as close to the desired function as possible, an error
function which quantifies and penalizes the difference between the two should work:

J (θ|x) = L (f (x|θ) , f∗(x)) . (11)

The function J is called the loss function or cost function. L can be a selection of functions who
are desired to be continuous and differentiable. Two common choices are the mean squared error
and the mean absolute error (although the mean absolute error is not-differentiable in zero) in
regression and generative tasks. Unfortunately, Equation (11) will not work for gradient descent,
for f∗(x) is unknown and thus not enough input argument can be fed to the loss function. What
one can do however, is gather multiple instances of known input and output, i.e.,

{
x(i),y

(i)
true

}
of

the black box f∗(x) and put those instances together in a batch, so y
(i)
true = f∗(x(i)). If B number

of x(i) and y(i) sets are gathered and put in a batch, it can be used as a substitute for the unknown
function, changing Equation (11) into:

J (θ|x,ytrue) =
1

B

B∑
i=1

L
(
fθ

(
x(i)

)
,y

(i)
true

)
, (12)

where fθ
(
x(i)

)
can also be written as y(i) and where the term 1/B is used to calculate the mean

value of L. If a smaller set of data points is, the upper limit of the sum is changed and so
should the 1/B term, in order to steal determine the mean. The cost function in Equation (12)
has known inputs and can be minimized with gradient descent. Several variants on the gradient
descent algorithm exist, but the most straight forward one is the stochastic gradient descent (SGD)
algorithm, shown in Algorithm 1.
The algorithm calculates an update for the model parameters for every mini-batch. A mini-batch
is a subset of size b taken from the total batch of data of size B. It estimates the gradient numeri-
cally and updates the weights by stepping in the opposite direction of the gradient. The size of the
step is determined by the gradient estimate as well as the learning rate αt. This hyper parameter
could be a constant value, but it is better if it follows a custom scheme. The descent stops when a
proper low loss has been found or when it seems that the model is not learning anything anymore.
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Algorithm 1 Stochastic gradient descent
Require: initial value θ
Require: learning rate schedule αt

t← 1
while stopping criteria not met do

Set learning rate αt according to the schedule
Sample mini-batch of sets of

{
x(1),y(1), . . . ,x(b),y(b)

}
from the total batch of size B

Compute the gradient estimate ĝ← 1
b∇θ

∑
i L

(
fθ

(
x(i)

)
,y(i)

)
Update the parameters θ ← θ − αtĝ
t← t+ 1

end while

This requirement is quantified in the stopping criteria. More about the schemes and the stopping
criteria in Subsection 4.3. Note that algorithm 1 should be called mini-batch gradient descent if
b > 1 and gradient descent if b = B.

SGD updates the parameters every step with only the values of the gradient estimate at that
specific point. If the next position in parameter space is situated on a saddle point or in a local
minimum, the estimated gradient of that new point will be close to zero which results in a very
small step in parameter space. During the next iteration, the estimated gradient will again be close
to zero since the position in parameter space has hardly changed and is still in a small gradient
area. This yields another small step which in turn results in another small gradient estimate for
the next iteration. The loss does not decrease anymore and is said to be stuck in a local minimum.
Luckily, the fact that every iteration is performed on another mini-batch, will lessen this effect,
for the loss landscape will not look exactly the same for new data. I.e., every mini-batch yields a
slightly different loss landscape and thus different gradients for the same value θ. Still, improved
gradient descent algorithms exist to prevent these effects from happening and help to improve the
overall learning speed.

Several variants exist. They extend the SGD algorithm with a momentum term, an adaptive
term or a combination of both. A momentum term takes the previous gradient estimates into
account when updating the parameters. That is, the gradient estimate in algorithm 1 does update
a momentum variable which in turns updates the parameters. If the gradient descent has been
stepping downward in one direction for some time, the momentum variable has increased for that
direction and hence, encountering a gradient estimate which is in a completely different direction
will not cause the parameter update to be exactly in that direction since the momentum still con-
tains the value for the original direction it was travelling in. Also, the momentum term prevents
the gradient descent algorithm to stall when it encounters near zero gradients. Several options
exist for the momentum. SGD with momentum updates the momentum variable in each step with
the gradient descent. The momentum can depend in different ways on the gradient step. One can
add up all gradient estimates or let the influence of older gradient estimates fade away to zero.
The adaptive term means that learning rate of every parameter is unique and has its own calcu-
lation. The Adam optimizer [17] is adaptive and has a exponentially decreasing momentum term
and even a second momentum term. It has proven to be a successful gradient descent variant and
is often used for training.

One thing all gradient descent based algorithms have in common is the need for the estimate
of the gradient. The gradient is computed numerically by the so-called back-propagation algo-
rithm. The back-propagation algorithm [18] returns the derivatives of the parameters at their
current position. It does this efficiently by making use of the chain rule. Recall that the overall
function of a neural network, y = fθ (x) is a composite function build up by all functions between
the layers. Suppose that one wants to determine the derivatives of all parameters of a simple
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MLP network. The network consists of sequence of layers, namely the input x, (N − 1) hidden
layers h(i) and the output layer y. The hidden layers are split up into a linear mapping from h(i)

to the intermediate layer z(i) and the mapping from the intermediate layer with the activation
function to the next layer h(i+1). The linear mapping of layer i is done with function f

(i)

θ(i)(x) and
the activation function of the same layer is done with g(i). The parameters of every linear layer
function, θ(i), are put together in the total parameter tensor θ. See Figure 5 for a more visualised
presentation of the network.

Figure 5: A neural network with only forward connections with one input layer, one
output layer and N − 1 hidden layers. The numbering of the hidden layers starts with 2
up to N instead of 1 to N − 1 in order to make the back-propagation more intuitively.
Every layer is split into the linear operation from h(i) to z(i) with f (i) and the activation
from z(i) to h(i+1) with g(i).

The total composite function of the network can written as follows:

y = g(N)
(
f (N)

(
g(N−1)

(
f (N−1)

(
g(N−2)

(
. . . f (2)

(
g(1)

(
f (1) (x)

)
. . .

))))))
,

which itself is used in the cost function given in Equation (12). The notation of the composite
function is not a very concise notation, but it does show the dependencies of every function. The
partial derivatives of the cost function with respect to the parameters of the last hidden layer can
be found via the chain rule. To illustrate: The value of element i of the output is given as

yi = g(N)
(
z
(N)
i

)
, (13)

where the input to the activation function is only element z
(N)
i since the activation function

operates element wise. The value of z(N)
i depends on the linear mapping of the last hidden layer

its input h(N) and the parameters θ(N):

z
(N)
j = f

(N)

θ(N)

(
h(N)

)
. (14)

The influence of the change in a single weight θ(N)
k on the cost function is the partial derivative of

the cost function to this weight. Here, the index k steps from 1 to the total number of parameters
used by function f (N). By using Equation (13) and Equation (14) together with the chain rule,
the obtained partial derivative is as follows,

∂J

∂θ
(N)
k

=
∂J

∂L

∑
j

∂L

∂yj

dyj

dz
(N)
j

∂z
(N)
j

∂θ
(N)
k

, j = 1, . . . ,dim(y), (15)

where ∂J
∂L is found via Equation (12) and where dyj

dz
(N)
j

is equal to
dg(N)(z

(N)
j )

dz
(N)
j

= g(N)′(z
(N)
i ). In

order to find the partial derivative of the cost function of any parameter k of any arbitrary layer
l, one needs to know how a change in the parameter influences every output element h

(l+1)
j . This

is done via the chain rule in similar fashion as in Equation (15) and is as follows,

∂h
(l+1)
j

∂θ
(l)
k

= g(l)′
(
zj(l)

) ∂zj(l)

θ
(l)
k

, j = 1, . . . ,dim(h(l+1)). (16)

In order to know how the change in layer l+1 will influence the cost function, the partial derivative
of the cost function with respect to the layer l + 1 should be known. This too can be found with
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the chain rule for the partial derivative of a layer with respect to its previous layer is simply a
multiplication of the derivative of the activation function at with values zl and the derivative of
the linear mapping in the previous layer with respect to its input values:

∂h
(l+1)
j

∂h
(l)
k

= g(l)
′
(
z
(l)
k

) ∂z
(l)
k

∂h
(l)
k

. (17)

The gradient can now be obtained. One inputs a single data instance, a mini-batch or the total
batch to the network. With this input, the linear operation of layer 1 can be calculated. The results
yield the value for z(1). Those values can be passed forward into the activation function of layer 1
yielding the input of layer 2. This process of forwarding the input data all the way to the output is
called the forward pass. After the forward pass, all layer inputs h(l) and intermediate layer inputs
z(l) are known. The cost function and its derivative with respect to the model parameters can be
calculated with the values of the right-hand side of Equation (16) and Equation (17), for they are
known. That is, the derivative of every activation function is known, and after the forward pass,
all values of the intermediate layers are known as well. The derivative of an intermediate layer to
its parameters, ∂zj(l)

θ
(l)
k

, depends solely on the values of the input layer, h(l), whose values have been

found during the forward pass. The derivative of the intermediate layer to its input, ∂z
(l)
k

∂h
(l)
k

, depends

solely on the layer parameters, θ(l). Those values have been found during the forward pass as well.
It can easily be shown why an output derivative with respect to the input values depends on the
layer parameters and why the output derivative with respect to the layer parameters depends on
the layer input. Let the output of Equation (6) be a single element and let the activation function
be an identity mapping. Then, the derivative of the output with respect to its input values are
the weights Wi and the derivative of the output to the weights are the inputs xi. For the very first
step of the learning process, i.e., the first step of a gradient descent variant, the model parameters
should have a initial value and those can be chosen more or less arbitrarily.

4.3 Heuristics of neural networks
Subsection 4.2.1 and Subsection 4.2.3 give the basics about the working principle and the learning
process of neural networks. Unfortunately, the actual practice of creating and training a network
is not a total exact process, but involves a lot of trial and error. Luckily, there are several known
heuristics for several decision that need to be made during the process. This subsection provides
an overview on those heuristics.

4.3.1 Over-fitting and under-fitting

The task of a neural network is to approximate a unknown function from data. The datasets are
used in the training process during which the model parameters are adjusted such that the error
between the true and predicted output data is minimized. In other words, the model is trained to
optimally fit the training data and not to optimally approach the unknown, but desired function.
Luckily, since the data is related to the unknown function, there is a good possibility that the fit
which the network makes for the training data is a close approximation of the unknown desired
function. One can check this by splitting the data in a training and a test set. The model should
not see the test data before the training has finished. If the error of the test set is approximately
equal to the error of the training set at the end of the training (slight deviation is possible, but at
least the same order of magnitude), one can say that the model generalizes well. If however, the
error on the test set is much worse than the error on the training set, the model overfits the train-
ing data. That is, it fits the data so accurate that it fails to generalize. Two possible solutions are
to increase the size of the training data batch or to add a regularization term to the loss function.
Adding a regularization term to the loss function enforces uniqueness to the weights. That is,
where there were several possible sets of parameters at a local minimum, there is now a smaller
set, namely those with a smaller norm. The activation functions which follow the linear mappings
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are now more likely to receive an input closer to zero since small weights are preferred. Increasing
the training batch comes with the cost of gathering data which is often costly. Another possible
solution is to reduce the complexity of the model. A reduction in complexity means that the
network will have a harder time to specify its function to a degree where it starts over-fitting by
estimating every data point of the training set correctly, but that it will rather find a more general
function. The big drawback to this approach is that the network may become to simple where
it can no longer make a good enough of a fit. This effect is called under-fitting. To determine if
one’s model is under-fitting, the predictions should be plotted and checked or an upper bound for
the error should be set, which has to be satisfied by the model on both the training and test set.
A validation set can be used during the training itself to monitor if over-fitting occurs. This is
done by checking the losses of both the training and validation set every certain amount of gra-
dient descent steps. The model only adjusts its parameters with data from the training set. If
one observes that the training loss goes down but that the loss of the validation data starts to
go up, the model has passed its optimum and is starting to overfit. A stopping criteria for the
training can be made by monitoring the training and validation losses. This can be done via a
learning curve, which is a plot showing both the training and validation loss as a function of the
training process. The process can be quantified by the number of gradient descent iteration or
the number of data epochs. A data epoch is a single pass through the all data of the training batch.

A good practice is to standardize the input data, that is, the mean value should be subtracted
and that result should be divided by the variance. This standardization operation is given in Equa-
tion (9), and is the key operation in batch normalization layers. The batch of which the mean
and variance should be calculated is the training batch. The validation and test batches should
be transformed with those values and not their own mean and variance values. Standardization is
strongly recommended since data which is close to zero (which is the case for standardized data)
usually results in faster convergence [18]. Also, it is better to have inputs of the activation of a
output to be of both signs. That is, some outputs should be positive and some negative. If they
all have the same sign, the parameters will all be updated into the same direction, all will either
increase or decrease. This will result in a fluctuating motion during the optimization.

4.3.2 Weight initialization and batch sizes

The initial step of the gradient descent algorithm requires an initial value for the model parame-
ters. This is done during the weight initialization. The starting point does matter in the gradient
descent algorithm. To see this, imagine a two dimensional loss landscape with a peak in the middle
and a local minimum on opposite sides (left and right) of the peak. If the starting position is on
the left slope of the peak, gradient descent will ascent further downwards on the left side of the
peak and find the local minimum on the left, but it will find the right local minimum if the starting
point is on the right side of the peak. In other words, starting at different points in parameter
space will most likely result in different end points. However, this does not have to be a problem, if
both local minimum yield a similar composite function. In practice, this seems to be the case [12].
There may exist several combinations of parameter values which all result in a similar composite
function. The real task is to initialize the weights in such a way that the network will converges to
a sufficient low local minimum and that the process is as fast as possible. There is no best way of
doing this, but symmetric weights (e.g., all with the same starting value) should always be avoided
for those weights result in a symmetric parameter update which makes training impossible or will
at least slow down the progress significantly. Setting the weights to large values isn’t a good thing
either for the computed gradient by the back propagation will scale with the weight value which
can result in exploding gradients, where the gradient steps accumulate to bigger and bigger steps.
The training will become divergent. A common way of initializing the weights is to set their value
with a random distribution around zero.

The mini-batch size is the hyper-parameter indicating the number of data points used for a single
parameter update during the gradient descent progress. If a single data point is used, the back
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propagation will return the gradient of the current position on the loss landscape which is de-
pended on only the values of the single data point. For the next gradient descent step, another
single data point will determine the shape of the loss landscape. One can imagine that the shape of
the landscape will fluctuate a lot between different data points. This will also result in fluctuations
in the gradient which in turn will translate in a noisy training. Another disadvantage of SGD is the
fact that batch normalization layers will estimate the mean and the variance incorrectly (for the
subset is too small), which will greatly reduce their effectiveness. In the other extreme case, where
the whole batch is used to determine the loss, the back propagation will always determine the
gradient in the same loss landscape, and thus the convergence will be smoother. The disadvantage
of this approach is that the network needs to forward pass the whole training batch for only one
gradient descent step. The optimum is found in the mini-batch approach where the batch size is
not too small in order to get a noisy descent, nor is it too big that unnecessary extra data points
are forward passed. For small mini-batch sizes the batch normalization layers will still perform
rather poorly. One could consider using layer normalization layers or group normalization layers
instead in that case.

4.3.3 Activation functions

Activation functions are responsible for the nonlinear mapping ability of a neural network. Im-
portant properties of activation functions are if they are bounded or unbounded and if they are
differentiable. A bounded activation function has the advantage that the outputs are always within
the bounds and so will be the activations. This means that the total bias shift is bounded which is
good for the learning progress, since smaller bias shift results in faster learning. The disadvantage
of bounded activations however is the fact that the gradient goes to zero the closer it gets to its
bounds. A very small gradient translates into a very slow learning. A popular zero-mean bounded
activation function is the hyperbolic tangent function.
A popular choice for an unbounded (or rather, only bounded below) nonlinear activation function
is the rectified linear unit (ReLU) [19]. This function returns zero for all negative inputs and is
identity for all positive inputs.

g(z) = max {0, z} . (18)

The derivative of the ReLU is a straightforward, but non-differentiable in zero:

dg(z)

dz
=

{
1, z > 0

0, z ≤ 0.
(19)

Technically speaking, the derivative does not exist in zero, but one can chose to set it to the left-
hand limit, the right-hand limit or the average of those two. The computation of both the ReLU
function and its derivative is not as heavy as other common activation functions, since it does
not require computations of any exponentials, logarithms or powers, but only needs to perform a
single max comparison for the ReLU and a multiplication for the derivative. Another advantage
of the ReLU is the fact that it promotes sparsity. That is, if the inputs are less than zero, the
output neuron will be a true zero.
A big additional advantage of ReLU is the fact that it does not have the problem of vanishing
gradients since its gradient is always one for positive inputs. The zero gradient of negative inputs
has the disadvantage that it could cause dead neurons. Those are neurons which are never used
during the training. This can happen since a negative input to the ReLU yields a zero gradient,
which can result in the gradient descent algorithm not updating the associated parameters. Since
ReLU is zero or positive, the mean of the output of every subsequent layer is more prone to a
positive mean shift. This mean shift, or internal covariate shift [15], slows down training and hence
it is suggested by [15] to use their proposed batch normalization layers after every linear mapping
layer in order to shift the mean back to zero and the variance back to one. This enhances the
training of models and is often used. The only downside to this layer is the fact that it is sensitive
for small mini-batch sizes for it cannot estimate the mean and variance of the whole batch very
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well and the found values may vary too much between two mini-batches. A possible solution would
be the use of layer normalization layers, as proposed by [16]. However, the authors found that
the layer normalization does not seem to improve the performance for convolutional layers and
suggest that more research should be done on that topic.

There exist proposed variants on ReLU which do not have the problem of dead neurons, but
they all sacrifice the sparsity advantage ReLU does have. One of the proposed variants is the
leaky ReLU (LReLU) [20], which has the same linear mapping as ReLU for positive inputs, but
has a negative mapping of g(z) = αz where 0 < α < 1. By not having α = 1, the LReLU will be
nonlinear like the ReLU, but it will have a gradient of α instead of zero for negative inputs.
Another variation on the ReLU is the ELU, or Exponential Linear Unit [21]. This activation
function as defined as

g(z) =

{
z, z > 0

α (ex − 1) , z < 0.
(20)

with its derivative being as follows

g(z) =

{
1, z > 0

αex, z < 0,
(21)

where in the case of α = 1, the derivative is continuous. The ELU has the advantage that its
mean output is closer to shifted closer to zero than the ReLU. According to [21], ELU performs
better than ReLU and LReLU for networks deeper than five layers. Also, they found that batch
normalization did not enhance the performance of ELU, whereas it does for ReLU.
The popular choice for activation function has shifted from the sigmoid to the tanh to the ReLU
function. It is suggested by [12] that activation functions which are close to linear have a faster
convergence than activation functions which are less linear. This is confirmed by experiments done
by [22] where ReLU outperformed the tanh activation functions.

4.3.4 Learning Rate

Selecting the right learning rate is crucial for the training progress of a neural network. If the
learning rate is too big, the training becomes unstable and the optimization progress could di-
verge. This is easy to see by recalling that step size of the parameter update is proportional to
the learning rate. A big learning rate results in a bigger step through the loss landscape in pa-
rameter space. The bigger the step, the bigger the chance of overstepping into a different regime
with a totally different gradient. The updates will fluctuate more through parameter space with
increasingly bigger steps for the weights are more likely to become bigger during every update,
which results in bigger steps, and so on. Consequently, the loss will grow instead of decrease and
the training fails.

Choosing an extra small learning rate will prevent those problems, but comes with the disad-
vantage of having a higher chance of getting stuck in a critical point, far above an acceptable loss
value. That is, when the gradient descent algorithm steps onto a critical point, the gradient will
approach zero and the parameter update will be a rather small one. If the learning rate has a big
enough value, it may counter this small multiplication and the gradient descent can escape the
critical point. If the critical point is a plateau where the gradients are just very low, a low learning
rate will escape just like an optimal learning rate, but it will take more steps, and hence more
computational steps. Also, depending on the stopping criteria, the training may stop prematurely.
The slowed down learning effect actually applies not only the plateau phenomena, but to any place
in the loss landscape. The overall learning process of a lower than optimal value learning rate will
take more time.
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Learning with the optimal learning rate is preferred, but finding the optimal learning rate is hard,
especially for every different location in parameter space. A good heuristic is to start the training
with a bigger learning rate (order of magnitude of 10e-3) and to gradually decrease its value as the
training proceeds. Two ways of doing this are by a custom schedule or by reducing the learning
rate based on the loss improvement. That is, by monitoring the validation and training loss, one
can see when the loss stagnates for a certain learning rate. When the stagnation occurs, the learn-
ing rate should be decreased. A typical decrease is the halving of the learning rate. Stagnation is
measured by the number of steps or epochs in which no better loss has been found, where a better
loss may only be considered better when its value is a certain percentage or absolute value below
the current best loss instead of just being lower. If no better value is found for a set amount of
steps, the learning rate will decrease. The amount of steps is called the patience. By setting the
patience too low, it could happen that the learning rate is reduced while it is slowly learning on
a loss plateau. The last thing that would benefit the learning on such a plateau is the decrease
in learning rate. Determining the right value for the patience is a case of trail and error and is
problem specific.

If one has trained a network multiple times for different minor adjustments in the network and/or
the hyper parameters, one has more experience and can write a custom schedule for the learning
rate which indicates after how many steps the learning rate should decrease. Reducing the learning
rate via a predetermined schedule learns faster but is less robust.

4.3.5 Regularization

A common practice in neural networks is the incorporation of regularization of the activations
or the biases or the weights or a combination of those. The regularized cost function will be as
follows,

J̃(θ) = J(θ) +
λ

dim(θ)
Ω(θ), (22)

where λ is a positive scalar and Ω(θ) is a function penalizing the value of the weights. The biases
should not be penalized. It is common to penalize the value of the weights by the the L1 or L2
norm, which is the sum of the absolute values and the sum of the squared values respectively. By
optimizing the regularized cost function, low values for the weights are preferred. This helps to
prevent the over-fitting of noise in the training set, which would result in the failure the generalize.

4.4 Network architectures

4.4.1 Residual blocks

A simple network is one where every layer is followed by another layer, all the way till the out-
put layer. VGG models [23] do have this type of architecture. However, the deeper the network
becomes, i.e., the more subsequent layers, the harder the optimization. An important building
block which enabled better training for deep networks residual blocks [24], which are blocks of
convolutional layers in series combined with one skip connection from the input directly to the
output of the block. The addition is followed by an activation.

Suppose one has a simple model of a few sequential layers, with input x and composite function
H (x). During the optimization process, the network has to learn the correct output of the network,
which is H (x). The difference between the input and the output is given as F (x) = H (x)−x and
is called the residual. By moving the input term to the left-hand side and subsequently mirroring
the sides, one obtains a new equation for the output,

H (x) = F (x) + x. (23)
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In order to let the proposed simple network have such a composite function like Equation (23), a
skip connection from the input to right before the output should be added. The network becomes
a residual block, whose basic structure is shown in Figure 6. The residual function can be a series
of multiple layers of different types. The original paper itself recommends using two or more linear
layers, where every linear layer, except for the last one, is followed by a batch normalization layer
and a activation layer. The final output dimensions and number of feature maps of the sequential
layers in the block should be equal to the input dimensions and number of feature maps since
those are added together. Different dimensions and number of feature maps can be compensated
for with extra padding and/or 1× 1 convolution layer.

The advantages of residual blocks is the fact that the the skip connections prevent the gradi-
ent from vanishing for deeper layers, and deeper networks with higher level of abstractions can be
trained. If the optimal output of a residual block is an identity mapping, the residual which has
to be learned, should be zero. [25] found that the learning process was more efficient for networks
with residual blocks than for similar networks without residual blocks.

Figure 6: The general structure of a residual block. The input is split into a skip
connections which immediately maps to the addition operation and into a branch which
encounters activations, batch normalization and weight layers before being input to the
addition operation. The batch normalization layers are not shown, but if used, they are
recommended to be put between the activation and the weight layer.

Note that the general residual block structure shown in Figure 6 is a variant of the original proposed
block [24], namely an improved version proposed in [26]. They empirically showed better results
for a network where the activations happen before the weight layers and where the skip connection
can stay as close to identity as possible, i.e., the skip connection does not encounter any activation
layer.

4.4.2 Inception blocks

Another block structure is the inception block [27]. A big motivation behind the inception block
was to increase the computational efficiency. I.e., increase the width and depth of a network
for a constant value of parameters. This is accomplished by running the input parallel through
different types of convolutional filters (different kernel sizes) and a pooling layer. 1×1 convolutions
are used to reduce the number of input feature maps in order to reduce the total number of
computations. They are sometimes called the ’bottleneck layer’, since they downscale the number
of feature maps to the lowest number of intermediate feature maps in the block. The outputs of all
paths are concatenated together before the output. The motivation for the use of different sized
convolutional kernels along the different parallel path is the fact that different kernels capture
different characteristics of input maps.
Variants on the inception block have been proposed where a skip-connection is incorporated in
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the block, creating a residual block variant, as in [28]. A general structure of an inception block
can be seen Figure 7.

Figure 7: The inception block as proposed in [27]. The 1× 1 bottle neck blocks output
different number of feature maps for every branch.

4.4.3 Autoencoders

Autoencoders are a special type of unsupervised neural networks. Unsupervised means that there
is no labeled output associated with the input data. An AE does not need this, since it should
recreate the input at its output. It does so by first reducing the input to a space of reduced
dimensions. This reduction is done by the encoder E(x). The encoder’s output is the reduced
space and is called the latent space with dimension d, where usually m >> d. The output has to
be reconstructed from those d latent variables by the decoder D(x). The decoder’s output is of
the same dimension as the input of the encoder. The total composite function is given as:

fθ(x) = D (E(x)) (24)

The loss function should penalize the difference between the input and the output. In this way,
the AE is really forced to find model parameters in such a way that all essential information is
saved within the latent variables. [29] suggests inserting a few linear dense layers right before
the latent space to enhance the performance of the model. The encoder and decoder can be used
separately to encode and decode to and from the latent space respectively.

AEs can be used for several applications, the most common being the reduction of the dimen-
sionality of data. If a linear decoder is together with a mean squared error loss function, the AE
is learning a similar subspace representation as the POD mentioned in Section 4.1. The strength
of AE reduced dimension representation is in the nonlinear activation functions. The AE is able
to approximate nonlinearities better.

Variants on the AE exist. One of them is the Sparse AE where the loss function is extended with
a term which penalizes the numbers of active latent variables. This way, a latent variable will only
be activated if it is really needed, which forces the sparse AE to represent the high dimensional
input in as few latent variables as possible.
Another variant on the AE is the Variational AE. The latent variables of this variant are given
as probability distribution instead of deterministic values.

A visual representation of the generic layout of an AE can be seen in Figure 8:
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Figure 8: The generic layout of an autoencoder. The input is fed forward through the
encoder till it reaches the latent layer, or the latent space. The latent variables are fed
forward through the decoder to the output. The ideal output equals the input. The
encoder and decoder can both be used separately after training.

If one or more of the linear layer operations in an AE consist of convolutional operations then the
AE can be called a convolutional autoencoder. The bigger the input to an AE, the more favourable
a CAE in terms of model parameters, since convolutions need less parameters than dense layers.

4.5 Neutron diffusion problems
For this thesis, a ROM will be created for physics problem. There are many physics problems,
but the ones to which the CAE will be applied to are all neutron diffusion problems, which form
a part of nuclear reactor physics.

To elaborate more on reactor physics [30]; In a nuclear reactor, a nuclear reaction is sustained.
This reaction is measured by the neutrons that fly around inside the reactor. If a neutron collides
with the fissile material (which is the fuel inside a reactor), there is a chance that nuclear fission
will occur in the fissile nuclide. This fission reaction yields, a.o., new neutrons. If those neutrons
happen to collide with another fissile nuclide and cause a nuclear fission, a new generation of neu-
trons will be created, which in turn can cause new fission reactions and create a new generation
of neutrons. Controlling the neutron distribution inside of a reactor is a necessary requirement
for (safely) sustaining a nuclear reaction. The neutron distribution of an arbitrary volume is de-
scribed with the neutron transport equation, which can also be expressed in the angular neutron
flux φ(r, E, Ω̂, t), which is just the angular neutron density multiplied by the neutron velocity. De-
scribing the neutron transport equation in terms of the angular neutron flux is more convenient,
and reads as:

1

v

∂φ

∂t
+ Ω̂ ·∇φ+Σt(r, E)φ

(
r, E, Ω̂, t

)
=∫

4π

dΩ̂′
∫ ∞

0

dE′Σs

(
E′ → E, Ω̂′ → Ω̂

)
φ
(
r, E′, Ω̂′, t

)
+Q

(
r, E, Ω̂, t

)
.

(25)

The first term on the left-hand side is the change of the angular neutron flux of a specific energy
E, with a specific direction Ω̂ on a specific location r at a specific time t. The second term covers
all neutrons that move away from the specific location. The third term on the left-hand side covers
the change of the angular neutron flux at a specific location, direction, energy and time due to
interactions with the medium it is in. All possible interactions with the medium are covered in
the total macroscopic cross-section Σt. The total cross-section is a summation of the following
macroscopic cross-sections:

24



• Σs, the macroscopic scatter cross-section. This indicates the probability of a neutron to
undergo a scatter collision per unit length of travel. In a scatter operation, both the direction
and the energy of the neutron can change. A further distinction can be made between elastic
and non-elastic scattering cross-sections.

• Σc, the macroscopic capture cross-section. This is the probability of being captured by an
atom nucleus per unit length of travel.

• Σf , the macroscopic fission cross-section, which quantifies the chance of a neutron to be
captured by a nuclide atom and to cause a fission of that nucleus per travelled unit length.

All cross-sections have the unit of 1/cm and depend on the material of the medium and the energy
of the neutron. The capture and the fission cross-section together add up to the total absorption
cross-section Σa.
The double integral on the right-hand side of Equation (25) quantifies the number of neutrons
from any direction and energy to undergo a scattering reaction in such a way that their new energy
and direction will be equal to the specific energy and direction on the left-hand side. The Q term
is the source term which can be further specified, depending on the problem. An external neutron
source can be described as well as the neutron generating fission reactions, which depends on the
angular flux itself.

The neutron diffusion equation can be obtained from the neutron transport equation. This is
done by integrating the transport equation over all possible angles and by subsequently using the
diffusion approximation where

∫
Ω̂ ·∇φdΩ = −∇ ·D (r, E)∇φ. The neutron diffusion equation is

as follows:

1

v

∂

∂t
φ (r, E, t) =

∇ ·D (r, E)∇φ (r, E, t)− Σt (r, E)φ (r, E, t)+

Q (r, E, t) +

∫ ∞

0

Σs (r, E
′ → E)φ (r, E′, t) dE′,

(26)

where φ (r, E, t) is the scalar neutron flux per energy. D(r) is the diffusion coefficient and is a
material constant which depends on the cross-sections of the material.

Two common variations on the neutron diffusion equation both have to do with the energy de-
pendency. The continuous energy value can be assumed to all be the same value, effectively
eliminating the energy dependency. This is called the one group diffusion equation. Equation
(26) becomes

1

v

∂

∂t
φ (r, t) = ∇ ·D (r)∇φ (r, t)− Σa (r, )φ (r, t) +Q (r, t) . (27)

The integral in Equation (26) vanishes since all neutrons have the same energy and thus no neu-
trons can enter the group of energy E from another energy value E′ by colliding with the material.
The neutron flux becomes independent from the energy.
The other common variant on the neutron diffusion equation is the multigroup neutron diffu-
sion equation. In order to obtain this multigroup form from Equation (26), one has to discretize
the continuous energy E into multiple discreet energy groups Eg. The multigroup equation be-
comes:

1

vg

∂

∂t
φg (r, t) = ∇ ·Dg (r)∇φg (r, t)− Σtg (r)φg (r, t) +

∑
g′

Σg′gφg′ (r, t) +Qg (r, t) , (28)

where φg (r, t) is the total neutron flux of energy group g. All material parameters are now with
subscript g, indicating their average value in that energy group. The summation term over all
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energy groups on the right-hand side contains the matrix element Σg′g which is the average value
for the scattering cross-section of neutrons in energy group g′ to energy group g.

As mentioned earlier, the source term Q can be further specified. An external source of neu-
trons can be added which can be at whatever position and of whatever energy one likes, at least
in theory. In practice, spontaneous fission of nuclides in a material can be used as an external
source. The neutron flux does not have influence on the activity of the external neutron flux.
A neutron source which does depend on the total neutron flux is the fission reactions of fissile
nuclide within materials, such as Uranium-235. If a fissile nuclide captures a neutron, there is
a change that a fission will occur. This will yield ν new neutrons on average, depending on the
material and the energy of the captured neutron. The chance of a fission reaction to happen is
dependent on the neutron flux and the fission cross-section of the material. Assuming that both
the external and the neutron induced source types are present within an arbitrary volume, the
source term of the one group problem reads

Q (r, t) = νΣf (r)φ (r, t) +Qext (r, t) , (29)

where Qext (r, t) quantifies the external source. The source term for the multigroup source is as
follows

Qg (r, t) = χg

∑
g′

νg′Σfg′ (r)φg′ (r, t) +Qg,ext (r, t) , (30)

where the summation over g′ describes the amount of neutrons of energy group g created by a
fission caused by neutrons from energy group g′. The energy distribution of the created neutrons
is quantified by the energy distribution χg.
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5 Methodology

5.1 Method
The goal of this master thesis project is to construct a ROM model based on a CAE (CAE based
ROM) for a physics problem with FOM parameters µ ∈ Rq. A dataset of FOM solutions of dif-
ferent values of µ will be acquired by a finite element approach in MATLAB [31]. Both the FOM
parameters and the solutions will be saved in a dataset, which will be split into a training, valida-
tion and test set in a 70%, 15% and 15% fashion respectively. The FOM solutions are used to train
a CAE. The FOM parameters are used to create a multivariate polynomial regression model from
the FOM parameters to the latent space of the CAE. The joint model of the polynomial regression
model and the decoder part of the CAE is the CAE based ROM. Its performance will be compared
to a non-intrusive POD based ROM. The POD is calculated on the same training set with which
the CAE has trained. The motivation behind comparing the CAE based ROM with a POD based
ROM is the fact that a POD is linear and a CAE is not (given that nonlinear activations are used).
Since the CAE is able to better approximate the nonlinear manifold on which the intrinsic solu-
tion lays, one would expect the CAE based ROM to outperform the POD based ROM in accuracy.

The procedure to create a CAE based ROM for a physics problem consists of the following steps:

1. Acquire FOM solution data.
The FOM solution data is found via a finite element solver for different values of µ. The
values are drawn from a probability distribution over the range of their possible values. The
acquired solution data should be split into a train, validation and a test set.

2. Construct and train a CAE.
A CAE has to be constructed and trained on the acquired FOM solutions. The training
is done with the training set and validated with the validation set. The construction and
training is the main challenge of the master thesis.

3. Construct and train a multivariate polynomial regression model for the FOM parameters to
latent space variables.
The FOM parameters are the input to the regression model and the latent variables the
output. The FOM parameters are known and the corresponding latent space variables are
found by inputting the FOM solution into the encoder. Different regression models can be
chosen, however in this master thesis project a multivariate polynomial regression model will
be used.

4. Create the ROM by joining the linear regressor and the decoder.
The input of the ROM are FOM parameters and the output is the CAE output, which is as
close to the FOM solution as possible.

A similar procedure is used for the POD based ROM with which the CAE based ROM will be
compared:

1. Acquire FOM solution data.
This is the same data as used for the training and evaluating of the CAE based ROM

2. Perform POD and create a truncated basis.
The POD is performed on the training set, just like the CAE training. The number of
POD modes in the truncated basis matrix should be equal to the latent space dimension for
comparison.

3. Construct and train a linear regressor for the FOM parameters to POD coefficients.
Similar to the procedure of the CAE based ROM, a linear regression model to go from the
FOM parameters to the POD coefficients needs to be constructed. Here, a multivariate

27



polynomial regression model will be used of preferably the same order as the one used in the
CAE based ROM in order to have a fair comparison.

4. Create the ROM by joining the linear regressor and the decoder.
The input of the ROM are FOM parameters and the output is the POD prediction based on
the truncated number of POD modes.

The two ROMs are visualized in Figure 9. It is expected that the encoder and decoder of the
CAE will capture all nonlinearities of the physics problem they are applied on which will result
in a smooth latent space. The smoother the latent space, the better the polynomial regression
from step 3. This holds for the POD based ROM as well. One can gain insight in the (indirect)
influence of the FOM parameters on the latent variables by plotting the value of the latent space
variables as a function of FOM solutions, created by different values of one or two different FOM
parameters. All other FOM parameters should be set to a constant.
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Figure 9: The two different ROMs which will be used. (1a) - The CAE based ROM. The
CAE will be trained for FOM solutions for different values of the FOM parameters µ.
(1b) - After the training, the ROM is created by putting together a simple multivariate
polynomial regression model and the decoder of the CAE. (2) - The POD based ROM
predicts the solution for a set of FOM parameters via a multivariate polynomial regres-
sion model and the truncated POD basis. This basis is obtained with the same FOM
solutions used in the training for the CAE based ROM, but instead of training on this
set, a POD operation is performed over it.
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The main focus of the research will be the creation and training of the CAEs. A ROM will be
created for the best performing CAE. The CAE creation and training, as well as the POD operation
and ROM construction will be done in Python [32]. The library used for the machine learning is
the Tensorflow library [33]. The training is performed on GPUs provided by the web IDE ’Google
Collab’. Exact details about the GPU are unknown and during every session another GPU is given
access to which means that exact speed comparisons are not possible between different models.
The total FOM data will be distributed in 70% training set, 15% validation set and 15% test set.

5.2 Application examples
The physics problems for which a CAE will be constructed are three variants of the time-independent
neutron diffusion problem. The first problem is a one group neutron diffusion problem with cross
section perturbations, the second one a multigroup diffusion problem with cross section pertur-
bations and the third one is another one group diffusion problem but with perturbations in the
geometry. The last problem is expected to be the hardest to capture with a small truncated set
of POD modes.

5.2.1 One group neutron diffusion with cross-section perturbations

The first problem is a time independent one group neutron diffusion with cross-section and external
source perturbations. The external source is of constant value and is present in all fuel material. All
FOM parameters are listed in Table 1. Their values range from 50% to 150% of their unperturbed
values. During the data acquisition the FOM parameters are drawn from an uniform distribution
over their allowed range of values. There is a total of 8 adjustable FOM parameters for this
problem. The used geometry is shown in Figure 10. Dirichlet boundary conditions apply on the
outer edges.

Figure 10: The used geometry for the one group problem with cross-section perturba-
tions. The geometry consists of three different materials. The three rectangles forming
the thin U-shape are ’absorber’ material, which does not have a fission cross-section and
has a relatively high capture cross-section. All circles in the geometry are made up by
’fuel’ material, which have a fission cross-section and an external source. This can be
seen as a constant spontaneous decay happening inside the material. The big square in
which the circles and rectangles lay is the third material and is the ’moderator’ material.
The moderator material has a relatively high scatter cross-section and does not have a
fission cross-section. Dirichlet boundary conditions apply on the outer edges.
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’mat’
subscript
letter

Scatter
cross-section
Σs,mat

(cm−1)

Capture
cross-section
Σc,mat

(cm−1)

Fission
cross-section
Σf

(cm−1)

External
source per
unit surface
Qext,f/A
(neutrons
cm−2s−1)

Fuel f 4.08 · 10−2 9.2 · 10−3 2.70 · 10−2 10
Moderator m 8.05 · 10−2 2.0 · 10−3

Absorber a 5.20 · 10−2 0.2945

Table 1: FOM parameters that can be adjusted in the one group problem. The un-
perturbed values are shown. The perturbed values range from 50% to 150% of the
unperturbed values. Note that although neutrons cannot scatter from one energy range
to another one for this one group problem, the scatter cross-section is still perturbed
since it influences the diffusion coefficients with the elastic scattering.

5.2.2 Multigroup problem with cross-section perturbations

The second physics problem is a time independent multigroup neutron diffusion problem, where
the geometry consists of two materials, namely fuel and moderator. The FOM parameters, all of
which can be perturbed from 50% to 150% of their unperturbed value, are again the cross-sections
and the external source term, except that the cross-section are subdivided into the different energy
groups. All unperturbed values are shown in Table 2, together with the upper and lower bounds
of the different energy groups. The used geometry is shown in Figure 11.

Figure 11: The used geometry for the multigroup problem. Two different materials are
present in the geometry. All circles are made up by ’fuel’ material which has fission
cross-sections and a constant external fission source for every energy group. The square
in which the fuel pins lay is ’moderator’ material and has no fissile material or external
sources in them. Dirichlet boundary conditions are applied on the edge for the total flux
of every energy group.
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Energy
group
g

Eupper bound Scatter
cross-
section
Σsg,mat

(cm−1)

Capture
cross-
section
Σcg,mat

(cm−1)

Fission
cross-
section
Σfg,f

(cm−1)

External
source per
unit surface
Qg,ext,f/A
(neutrons
cm−2s−1)

Fuel 1 20 MeV 0.1699 8.13 · 10−4 7.20 · 10−4 1
(subscript 2 8.2 MeV 0.3261 2.90 · 10−3 8.19 · 10−4 1
mat = f) 3 1.2 MeV 0.4536 2.03 · 10−2 6.50 · 10−3 1

4 82 keV 0.4581 7.77 · 10−2 1.86 · 10−2 1
5 450 eV 0.2818 1.22 · 10−2 1.78 · 10−2 1
6 6 eV 0.2839 2.82 · 10−2 8.30 · 10−2 1
7 0.18 eV 0.2816 6.68 · 10−2 0.216 1

Moderator 1 0.1586 6.010 · 10−4

(subscript 2 0.4130 1.610 · 10−5

mat = m) 3 0.5900 3.373 · 10−4

4 0.5824 1.900 · 10−3

5 0.7123 5.700 · 10−3

6 1.239 1.500 · 10−2

7 2.613 3.720 · 10−2

Table 2: Unperturbed FOM parameters for the multigroup problem. There are 6 differ-
ent parameters for every energy, which with 7 energy groups, yields 42 FOM parameters.
All parameters can be perturbed from 50% to 150% of their unperturbed values. The
upper and lower bound of every energy group is given. Note that Σsg,f and Σsg,m are the
total scatter cross-section of an energy group g of the fuel material and the moderator
material respectively. The total scatter cross-section of a material of an energy group
Σsg is the summation of Σg′g over g′. The external source is given per unit surface
and has the same strength for every energy group within the fuel and is given per unit
surface. The total external source strength is determined by the total surface of the fuel,
A, in the geometry. The moderator material does not have any external source nor does
it have any fissile nuclides.

5.2.3 One group problem with geometric perturbations

The last physics problem for which a CAE will be created is a one group problem like the one
in Subsection 5.2.1, except instead of cross-section perturbations, the location of the fuel pins /
circles will be perturbed. The range of the x- and y-location of the fuel pins is plus and minus
the radius of its unperturbed location. The radius of the fuel pin is 1.5 cm. Figure 12 shows the
unperturbed locations and all possible locations. Since there are 9 fuel pins in total, there are
18 FOM parameters, which are the 9 x-coordinates and the 9 y-coordinates of the fuel pins. The
material cross-sections and the external neutron source are set to the constant value equal to the
unperturbed values as the proposed problem in Subsection 5.2.1.
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Figure 12: The one group problem with perturbations in the fuel locations. The left sub
figure shows the default locations together with the domain with possible locations per
fuel pin (the red squircle around every pin.) The right sub figure shows a geometry for
which all FOM parameters have a random value picked from a uniform distribution of
their possible x and y values.

5.3 Proposed network structure: parallel residual block
In order to create a CAE that can approximate the neutron diffusion problems, the following block
is proposed: The parallel residual block.
As the name suggests, the block consists of two branches of stacked convolutional layers which are
parallel to each other. Both layer stacks have their own skip connection. The first layer stack has
default 3× 3 convolutional layers. The second branch however starts its stack with a dilated con-
volutional layer. The dilated stack will pick up different characteristics than the non-dilated stack.
Due to both layer stacks having their own skip connection, the layers can be seen as two residual
blocks which operate parallel to each-other. Their outputs are added together right before the
output of the parallel residual block (or parallel resBlock). A schematic overview of the parallel
resBlock is shown in Figure 13. The motivation for this block is two-fold: Firstly, residual blocks
learn faster, and secondly, different receptive fields capture different information of the input. This
is the reason behind the dilated filter in the second branch. One could use a bigger kernel instead
of a dilated filter, but this method of increasing the receptive field comes with the cost of extra
bigger kernels and thus more weight parameters and computations. A similar block to the parallel
residual block has been proposed by [34], but it did not include the dilated filters.

The parallel residual block will be used in the encoder part. In the decoder part, a transposed
version will be used. This version uses the transposed convolutional layers instead of convolutional
layers. Also, the order of filters will be reversed for every branch. In other words, the dilated filter
which is the first convolutional layer in branch 2 will be the last (transposed) convolutional filter
of the transposed block.
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Figure 13: The structure of a parallel resBlock. The first filter in the second branch is
dilated to change the receptive field with respect to the first branch. 1× 1 convolutions
are used to change the number of output maps of both branches such that they equal the
amount of feature maps from the skipped connection. The last 1 × 1 layer changes the
number of output maps to the desired number if requested. All non 1× 1 convolutional
kernels are 3× 3 kernels. All convolutional operations are of ’same’ zero-padding.

5.3.1 Used models

For every one of the three aforementioned problems a different type of CAE will be constructed.
The first problem, the one group diffusion problem with cross-section perturbations will be ap-
proached with a VGG-like autoencoder. The second problem, the multigroup problem with cross-
section perturbations, will make use of residual blocks. The last problem, the one group problem
with geometric perturbations will use both parallel residual blocks and normal residual blocks.

Figure 14 shows the fraction of contained energies per number of POD modes used. The highest
shown number of modes is the first number of modes that together hold more than a fraction
of 0.999 of the total energy. The one group problem with cross-section perturbations only needs
two modes to cross this threshold. The solutions to this problem seem to be almost captured by
only the scaling of the first POD mode. One could say the same for the one group problem with
geometric perturbations, since the energy fraction contained in only the first mode is even bigger.
This will appear to not be the case, as can be expected, since the geometric perturbations do not
cause a big difference in the solutions magnitude, but more in the overall shape.

Figure 14: The fraction of the total energy contained within the first number of POD
modes for the three different diffusion problems. The highest number of modes in every
subplot is the first time that the fraction of total energy exceeds 0.999.
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6 Results

In this section, results on the three diffusion problems will be shown, as well as a brief mention of
some extra results with concern to the network design and optimization.

6.1 Diffusion problems
All problems have FOM solutions of 128 × 128 × nGroups, which means that a single input for
both one group problems is of dimension m = 16384 and that a single input to the multigroup
problem is of dimension m = 114688, since it consists of 7 groups. All input data is standardized
to be zero-centered and of unity variance. This is performed once for every energy group in the
multigroup problem in order to have all groups within the same scale.

6.1.1 One group problem with cross-section perturbations

A simple CAE has been created for this problem. There are only forward connections and no skip
connections. The input meets three consecutive convolutional layers with ’same’ zero padding,
before being halved in dimensions by a max pooling layer. This happens four times in total leaving
the feature maps with a dimension of 8 × 8. At this dimension level, three more convolutional
layers are encountered before two nonlinear and three more linear dense layers are met. The last
linear dense layer maps to the latent space which has a dimensionality of d = 4. This concludes
the encoder. The decoder is built in similar fashion to the encoder, except that instead of five
dense layers, only one has been used. Also, all convolutional layers are replaced with transposed
convolutional layers and the max pooling layers are replaced with bi-linear interpolation layers.
There is one extra feature to the network and that is that the first convolutional layer of the encoder
and the second-last convolutional layer of the decoder consist of two parallel convolutional filters
of which one is non-dilated and the other is dilated. The motivation behind this is that the non-
dilated filter will capture different feature than the dilated filter. The last layer of the decoder is
used for feature map reduction to the required number of output feature maps, which is one. All
nonlinear activations are ’elu’ functions. No normalization layers have been used. A schematic
overview of the used model can be seen Figure 15. In short, the encoder is 15 convolutional layers
and 5 dense layers deep, which gives the encoder a total of 1.3 million parameters. The dimension
is reduced from m = 16384 to d = 4. The decoder is 16 convolutional layer (of which one is a
feature map reduction layer) and 1 dense layer deep, giving the decoder 1.3 million parameters in
total. This brings the number of parameters used in the CAE up to a total of 2.6 million.
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Figure 15: The used CAE network for the one group problem with cross-section per-
turbations. If the kernel size of a convolutional layer is not mentioned specifically, a
3× 3 kernel has been used. Every block with convolutions (x) and transp. conv. (x) are
subsequent convolutional layers and subsequent transposed convolutional layers respec-
tively. The (x) indicates the number of subsequent layers. All nonlinear activations are
’elu’ functions.

The training is performed on 6300 samples with the Adam optimizer and the learning rate is
reduced if a stagnation in the validation loss is detected. The stopping criteria is based on stagna-
tion in the validation loss as well, except for a longer patience. After the training, a multivariate
polynomial regression model is used to approximate the latent variables from the FOM parame-
ters. In order to gain more insight in the behaviour of the latent variables, the values of the latent
variables are plotted against the perturbations of a single and of dual perturbations of FOM pa-
rameters. Such a plot of the single FOM perturbation influence can be seen in Figure 16, together
with the influence of the same FOM parameter on the POD coefficients. The performance of both
multivariate polynomial regression models is given in Table 3 and the performance of both ROMs
is shown in Table 4. The given errors are equal to the errors of the CAE and the POD projection.
In other words, the FOM parameters to latent variables regression does not add significant error
to the prediction of the decoder. Two predictions of the CAE based ROM and the POD based
ROM are shown in Figure 17, where one predictions is on the datum2 with the highest mean
squared error when predicted by the CAE based ROM and the other one is the datum with the
highest mean squared error when predicted by the POD based ROM. Two random validation
datum predictions can be found in the Appendix, Figure A.1. Note that the CAE (and the CAE
based ROM) predicts worse for data points with a lower magnitude. This can be traced back to
the use of the mean square error as loss function during the training. The same relative error in
a data point with a higher magnitude will yield a bigger contribution in the loss than the same
relative error of a data point with a lower magnitude. During training, minimization of the loss is

2Datum is the singular form of data and is an alternative word for data point.
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the goal, and hence the data points with bigger magnitude have more influence.

Training set Validation set Test set
FOM parameters to latent vars
mse ×10−3 2.9 6.1 7.1
FOM parameters to POD coef.
mse ×10−9 1.1 2.4 2.4

Table 3: Mean squared error of the multivariate polynomial regression from the FOM
parameters to the latent space and to the POD coefficients.

Training set Validation set Test set
CAE based ROM
mae ×10−2 6.6 6.9 7.1
mse ×10−2 1.0 1.1 1.3
POD based ROM
mae ×10−2 3.0 3.0 3.0
mse ×10−2 2.9 2.9 3.0

Table 4: Mean absolute error (mae) and mean squared error (mse) of both the CAE
based ROM and the POD based ROM for the one group problem with cross-section
perturbations. All errors indicate the difference between the prediction and the ground
truth values.

Figure 16: The influence of the perturbation of the fission cross-section of the fuel on
(a) - the latent variables, and (b) - the POD coefficients. The fission cross-section is
perturbed from 50% to 150% of its unperturbed value. All other FOM parameters are
kept unperturbed.
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Figure 17: Subplots of the prediction, difference and vertical intersection through the
geometry of two data points from the test set of the one group problem with cross-
section perturbations. The first data point gave the highest mse when predicted by the
AE based ROM. The second data point gave the highest mse when predicted by the
POD based ROM.

6.1.2 Multigroup problem with cross-section perturbations

For this problem, a modified version of the one group CAE is used. The main difference is that
most of the subsequent convolutional layers and subsequent transposed convolutional layers are
replaced with residual blocks and transposed residual blocks respectively. Every residual block
is two 3 × 3 convolutional layers deep, which results in residual blocks that are equal to the one
shown in Figure 6. The new CAE also needs to accept seven different input maps and output seven
different output maps, where every map is the value of an energy group. The parallel convolutional
layers with an non-dilated and a dilated layer is extended with an extra dilated layer in parallel.
The dilation rates are 17× 17 and 31× 31, resulting in receptive fields of size 35× 35 and 63× 63.
The CAE has a latent space dimension of 7 while there are 42 FOM parameters. A schematic
overview of the network can be seen in Figure 18.
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Figure 18: The used CAE network for the multigroup problem. If the kernel size of a
convolutional layer is not mentioned specifically, a 3 × 3 kernel has been used. Every
residual and transposed residual block (trans. res. block) is two 3 × 3 (transposed)
convolutional layers deep. All nonlinear activations are ’elu’ functions.

In short, the encoder is 3 convolutional layers, 4 residual block (of 2 convolutional layers) and
5 dense layers deep and maps to a latent dimension of 7. The decoder is 4 convolutional lay-
ers, 4 residual block (of 2 convolutional layers) and 5 dense layers deep, where 1 convolutional
layer, namely the very last one, is used for feature map reduction. The model needs a total of 3.7
million weights and biases, where 1.7 million are used in the encoder and 2.0 million in the decoder.

The training data consisted of 4410 FOM solutions. During the training, the learning rate was
reduced upon stagnation of the validation loss. Plots of a validation and a test result can be found
in the Appendix, Figure A.2 and Figure A.3. Although the latent space looks smooth and has low
polynomial shapes for single (e.g., Figure 19 and Figure 20) and dual perturbations (Appendix,
Figure A.4), the multivariate polynomial regression model fails to approximate the latent vari-
ables from the FOM parameters. Namely, multivariate polynomial regression is required to find
C(q + c, c) different coefficients, where C is the binomial coefficient and and c the max degree of
the polynomial. With 42 FOM parameters, the number of coefficients which need to be found
quickly grows, making approximations of degree 4 and higher computationally infeasible. So, not
the ROMs their performances, but instead, the performance of the CAE and the truncated POD
projection with p = 7 = d modes are given in Table 5.
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Training set Validation set Test set
CAE
mae 0.69 0.70 0.68
mse 2.1 2.2 2.0
POD projection
mae 0.98 0.99 0.96
mse 3.7 3.8 3.4

Table 5: Mean absolute and mean squared error of both the CAE prediction and the
truncated POD projection for the multigroup problem with cross-section perturbations.
All errors indicate the difference between the prediction and the ground truth values.

Figure 19: The influence of the perturbation of the source term of group 1 on the value of
every latent variable. The source term is perturbed from 50% to 150% of its unperturbed
value. All other FOM parameters are kept unperturbed.

Figure 20: The influence of the perturbation of the macroscopic capture cross-section of
group 6 of the fuel material on the value of every latent variable. The cross-section term
is perturbed from 50% to 150% of its unperturbed value. All other FOM parameters are
kept unperturbed.
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6.1.3 One group problem with geometric perturbations

For this problem, a CAE is constructed with both residual blocks and parallel resBlocks. All
the residual blocks have a depth of two 3 × 3 convolutional layers and the structure of the block
is the same as shown in Figure 6, except that just for the addition of the skip connection, an
extra 1 × 1 convolution layer is added to make sure that the output maps match. The used
parallel resBlocks all have the exact same structure as the parallel resBlock shown in Figure 13.
The latent space dimension is equal to the amount of possible perturbation, which is 18. That
means that the dimension is reduced from m = 16384 to d = 18. The upsampling is done with
strided transposed convolutional layers instead of the bilinear interpolation layers from the one
and multigroup diffusion problems with cross-section perturbations. The transposed convolutional
layer upsampling was found to give better results. A schematic overview the CAE network is given
in Figure 21. The CAE consists of 10.3 million weights and biases, of which 4.7 million are in the
encoder and 5.6 million in the decoder.

Figure 21: The used CAE network for the one group problem with geometric pertur-
bations. If the kernel size of a convolutional layer is not mentioned specifically, a 3× 3
kernel has been used. The parallel resBlocks have a depth of two 3 × 3 convolutional
layers. The default residual blocks have the same depth. The linear dense block in the
encoder consists of three linear dense layers all with an output dimension equal to the
latent dimension. The last dense layer maps to the latent layer. No normalization lay-
ers are used. The nonlinear activations are all ’elu’ functions. All dilated convolutions
(including those in the parallel residual blocks) have a receptive field of approx. 1/3 of
the dimension of their input feature map.
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The training was performed on a training set with 5600 FOM solutions. The Adam optimizer was
used to optimize the gradient descent on mini-batches of size 32. The global learning rate was
reduced upon encountering a stagnation in the reduction of the validation loss. The polynomial
regression model predicted the latent variables and POD coefficients with a very low error (mse <
10−10) for a polynomial degree of 5. This can be seen in Table 6. The CAE based ROM was
created and compared to a POD based ROM with the number of POD being equal to the latent
dimension, i.e., p = d = 18. The mean squared and absolute error of both ROM models for the
training, validation and test sets is shown in Table 7. The errors were the same for the CAE and
the POD projection, for the FOM parameter regression had such a low error. Predictions of both
ROMs on the training set and test set are shown in Figure 22 and Figure 24. The worst test set
predictions are shown in Figure 24.

Training set Validation set Test set
FOM parameters to latent vars
mse 1.3 ×10−23 3.3 ×10−11 3.8 ×10−11

FOM parameters to POD coef.
mse ×10−28 1.7 2.1 2.1

Table 6: Mean squared error of the multivariate polynomial regression from the FOM
parameters to the latent space and to the POD coefficients.

Training set Validation set Test set
CAE based ROM
mea ×10−2 4.4 4.5 4.5
mse ×10−2 0.73 0.77 0.79
POD based ROM
mea ×10−2 6.5 6.5 6.6
mse ×10−2 1.9 1.9 2.0

Table 7: Mean absolute and mean squared error of both the CAE based ROM and the
POD based ROM for the one group problem with geometric perturbations. The first
one slightly outperforms the latter one. All errors indicate the difference between the
prediction and the ground truth values.
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Figure 22: Two random data points from the train data set predicted by both the AE
based ROM and the POD based ROM. Apart from the predictions, the difference divided
by the max of the ground truth as well as an intersection is shown. The intersection is
vertical and runs through the middle of the geometry (indicated with the orange line in
the left difference plot. The AE based ROM returns better results than the POD based
ROM.
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Figure 23: Similar plot to the one in Figure 22, except the two data points are drawn
from the validation set. The performance of the ROMs is similar on the train and
validation sets and this can be seen in the predictions as well.
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Figure 24: Subplots of the prediction, difference and vertical intersection through the
geometry of two data points from the test set. The first data point gave the highest mse
when predicted by the AE based ROM. The second data point gave the highest mse
when predicted by the POD based ROM.

6.2 Other results

6.2.1 Parallel resBlocks, residual blocks and no skip-connections

Thus far, the performance of three different CAE networks has been given by either the CAE
based ROM performance or the CAE performance. However, the three different networks cannot
be directly compared since the they are all applied to different problems and are of different sizes.
In this subsection, a fair comparison will be made between the three used architectures. The
base for the comparison is the same model as used in the one group problem with geometric
perturbations from Section 6.1.3. This is the architecture that includes parallel resBlocks and
default residual blocks. The second architecture will not use parallel resBlocks, which can be
achieved by converting every parallel resBlock into a residual block, where the number of filters
of the second branch will be added to the filters of the first branch. This way, the residual blocks
network will have the same amount of filters and convolutional layers. The third architecture
will not include skip connections and hence, all residual blocks are converted to a sequence of
consecutive convolutional layers with a depth equal to the depth of the residual block. The amount
of model parameters is approximately the same for all three architectures and not perfectly equal
due to the removal of some 1 × 1 convolutional layers. All three models are trained on the same
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data. The learning curves are plotted in Figure 25.

Figure 25: The learning curves for three different architectures with the same depth and
approximately the same number of model parameters.

6.2.2 Regularization

Since the FOM data is obtained by numerical solutions of a PDE and not by noisy measurements
of a physical unit, it is safe to say that there is no measurement noise in the data and that over-
fitting of this noise is very unlikely. This is confirmed in practice, where all validation losses seems
to follow the loss very closely. Using regularization seems unnecessary, or even counterproductive
because every gradient descent step will take a little longer since the loss function, and thus its
derivative, will need more calculations to be determined. Still, there are arguments to be made for
the use of regularization. It may slow down every gradient descent step, but it may also need less
steps to converge. Also, regularization of the latent activations, i.e., the regularization of value of
the latent variables, forces the latent variables to stay close to zero, which may result in better
polynomial regression from the FOM parameters to the latent variables. The first argument was
checked by plotting the learning curve of a model with different L2 regularization imposed on its
latent activations. The used model is a similar variant of the one showed in Figure 21, with the
main difference that all parallel resBlocks are removed. The networks needed to fit the data from
the one group problem with geometric perturbations. The learning curves of the loss is plotted in
Figure 26.
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Figure 26: The learning progression for different L2 penalties on the latent activations.
All training sessions used the same batch size. The peaks in the 0.01%, 0.001% and
the 0% L2 norm around epoch 17-20 are due to the continuation of a training. The
training stopped prematurely (due to a server disconnection) and the training needed
to be continued from where it stopped. The restart was made with the learning rate
at which the first training stopped. However, the Adam optimizer needed to relearn its
parameters again, which caused the peaks. After a few epochs, the learning is back on
the level it stopped at.

6.2.3 Data sparsity

A goal of reduced order modelling is the reduction in computation time and the ability to not
be required to calculate the FOM model. However, many FOM models need to be calculated
during the data acquisition stage of the CAE based ROM creation. Since FOM calculations are
usually expensive, one wants to acquire only the bare minimum of FOM solutions needed for the
CAE training. Although this is not the main goal of this research, it is important to know if the
used data sets are big enough. Therefor, one small experiment has been done. A simple network
with no skip-connections was trained on all 6300 samples in the training set from the one group
problem with cross-section perturbations. The network was trained again, but only on the 128
sample of the training set whose FOM parameters are furthest apart from each other in FOM
parameter space. 128 samples times 16384 points is approximately 2-3 times the number of model
parameters. During (unregularized) training, the training and validation loss converted similar to
the losses of the full dataset training, although the training loss of the 128 data point training
session started to overfit in the very end, when its validation and training loss were at the same
level as the 6300 data point training. This can been seen in Figure 27.
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Figure 27: The learning progression of two separate training sessions of the same model,
but with different dataset sizes. The 128 points from the smallest set are taken the
big set and are the 128 points which were the furthest apart in FOM parameter space.
The training sessions used the same validation set (1350 data points). The learning rate
was reduced upon stagnation in the learning. The learning rate of the 128 data point
training was reduced much earlier, resulting a faster reduction of the loss. Both training
sessions stopped learning at approximately the same validation loss, while the training
loss of the 128 data point training session started to slightly overfit.

6.2.4 Batch normalization, layer normalization and no normalization

None of the models mentioned thus far have used a form of normalization inside the network itself.
Only the input data has been normalized (or rather, standardized). In the Theory section, batch
normalization and layer normalization have been mentioned to improve the training progress and
outcome. However, batch normalization layers perform better for bigger mini-batch sizes and
layer normalization layers are not recommended for convolutional layers. This is confirmed by the
training of three different residual blocks model for the multigroup problem. One network uses
batch normalization layers after every convolutional layer, one network uses layer normalization
layers after every convolutional layer, and one model does not use any normalization layer. All
networks are equal apart from the normalization layers. The learning curve is shown in Figure 28.
The training session were performed with a mini-batch size of 16. It is recommended to train a
similar model with a group normalization layer [35] in order to see how those layers influence the
performance.

Figure 28: The learning progression for different normalization layers. The mini-batch
was of size 16.
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6.2.5 Upsampling layers

The CAE for the one group problem with cross-section perturbations and the multigroup problem
both used bilinear interpolation layers in their decoders in order to increase the dimensionality
of the feature maps. The CAE for the one group problem with geometric perturbations used
transposed convolutions. This choice seems more or less arbitrary, which can be backed up by
Figure 29.

Figure 29: The learning curves of the training loss for two models which are equal in
everything, except for their upsampling layers used in their decoders. The first model
uses bilinear interpolation layers while the second model used transposed convolutional
layers. Both models arrive at a similar lowest training loss and validation loss. The
peak around epoch 20 in the curve of the bilinear model and the peak around epoch
40 in the transposed convolutional model are due to a restart in the training which was
needed for the training stopped prematurely (reached temporarily user-limits in Google
Collab). The restart was performed with a copy of the settings from the epoch in which
the training halted, except for learn-able parameters of the Adam optimizer. Those had
to be relearned.

6.2.6 Custom activation functions

Since all used models had no normalization layers, other ways of increasing the training efficiency
were looked for. Two custom activation functions have been tried on the same model to see if they
would enhance the training. The first one being a variant on the previous often used hyperbolic
tangent functions. The disadvantage of the hyperbolic tangent is the saturation of the gradient
when moving to plus or minus infinity. In practice, the gradient is already 1e-4 before 5. A
modified version of the hyperbolic tangent was tried, were the saturated regimes of the hyperbolic
tangent function are replaced with lines. That is,

g(z) =
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1/e

(
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√
e)
)
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1/e
(
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√
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(31)

The second custom activation function is of similar fashion, but does not require any evaluation
of the hyperbolic tangent anywhere:

g(z) =


1
4 (z − 1) + 1, z > 1

z 1 ≥ z ≥ −1
1
4 (z + 1)− 1, z < −1.

(32)
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Both Equation (31) and Equation (32) are nonlinear and are symmetric around the z-axis. This
way, if the input data is zero-centered and the weights are randomly initiated around zero, the
covariate shift will be minimal. The other advantageous property which both function have, is
the fact that they cannot return near-zero gradients. This will prevent fading gradients. However,
they did not outperform the ’elu’ activations when tried as alternative activation function for a
network. They performed worse when trained on the same network as the ’elu’, as can be seen
in Figure 30. In the figure, Equation (31) will be referred to as the ’linear modified hyperbolic
tangent’, or ’lin. mod. tanh’, and Equation (32) will be referred to as the ’double linear nod’.
The network was a VGG-like network for the one group problem with cross-section perturbations.
Besides both custom activations not resulting in faster learning nor a lower final loss, they also
were found to be less stable, for the initial learning rate had to be set lower to prevent exploding
gradients. It should be noted that there was no regularization, which may could have prevented
this.

Figure 30: The training loss for the same network, but for different activation functions.
No normalization layers are present within the network. The two custom activation
functions do not outperform the ’elu’ activation.
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7 Discussion

The CAE based ROM had a hard time outperforming the POD based ROM. It only outperformed
the POD based ROM for the one group problem with geometric perturbations. This may partly be
due to the simpler models being used for the one group problem with cross-section perturbations
and the multigroup problem with cross-section perturbations.

The main focus of researching the feasibility of the CAE based ROMs was on outperforming
the POD based ROMs in terms of obtaining a lower error, i.e., have a better reconstruction of
the FOM solution. However, other important properties of a ROM are the computational costs
and time costs, and those should be researched as well. A part of researching and optimizing
the computational costs should be focused on data sparsity, for one does not want to acquire a
minimum amount of FOM solutions.

Only a multivariate polynomial regression model has been used for this regression problem. Other
forms could be tried. During the thesis, a simple neural network has been tried for this goal as
well, but only very experimentally. It however has potential, which should be checked. Also,
imposing extra restrictions on the the latent variables during the training could benefit the FOM
parameter to latent variables model.

It would be interesting to apply the best models to problems which are harder to capture with
a truncated POD basis. Advection dominated problems have shown to create a clear distinction
between nonlinear and linear subspace ROMs [6], [2], [5]. Applying the proposed method to such
problems will help to gain more insight into its performance. Extension to time dependency is also
interesting, since the effect of nonlinearities can increase in time which could be a better way of
pointing out the difference in performance between CAE based reduced order modelling and POD
based reduced order modelling. The main idea is that a CAE better approximates the nonlinear
manifold on which a solution lays than the POD. The discarded POD modes may contain valuable
information which is lost.
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8 Conclusion

It is shown to be feasible to create a CAE based ROM which outperforms its POD based coun-
terpart, at least in terms of predictions. The proposed CAE based ROM was applied to three
different steady state neutron diffusion problems. For every problem, a different CAE structure
was used. The one group problem with cross-section perturbations was approached with a VGG-
like network. The CAE constructed for the multigroup problem with cross-section perturbations
utilized residual blocks. The one group problem with geometric perturbations its CAE used both
residual blocks and parallel residual blocks. The ROM based on this CAE managed to outperform
its POD based counterpart by predicting the data points from the training, the validation and
test set with a mean squared error which was approximately 2.5x smaller than the POD based
ROM, while the mean absolute error was about 1.4x times smaller than the POD based ROM.
It was also numerically shown that for the same one group problem with geometric perturbations
a model with a combination of parallel residual blocks and residual blocks would outperform a
model with only residual blocks only which in turn would outperform a VGG-like model. All three
models had approximately the same number of weights.

Research is recommended on the computational and time cost part of the ROMs as well as ex-
tension of the CAE based ROM to time dependent problems. A small experiment was performed
where a model was trained on only a small number of data points, namely, the input dimensions
times the number of data points was only 2-3 times the number of model parameters inside the
CAE. The training resulted in similar loss compared to a training on 49 times as many data points.
This proves hopeful for future research on the data sparsity. In order to gain further insight in
the feasibility of the proposed ROM method, it is recommended to apply the ROM to problems
which are harder to be captured by a POD approach. Also, extending the proposed method to
time dependent models is something which could be done in the future, by either intrusive or
non-intrusive use of the latent variables.
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9 Appendix A

9.1 Extra figure one group problem with cross-section perturbations

Figure A.1: Subplots of the prediction, difference and vertical intersection through the
geometry of two data points from the validation data set of the one group problem with
cross-section perturbations.
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9.2 Extra figures multigroup problem with cross-section perturbations

Figure A.2: A random datum from the validation data set of the multigroup problem.
The ground truth, the CAE prediction, the POD projection and the intersection from
top to bottom through the middle is given for every energy group. Both the CAE
and the POD are able to capture the shape of the ground truth, except for the perfect
amplitudes.
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Figure A.3: A random datum from the test data set of the multigroup problem. The
ground truth, the CAE prediction, the POD projection and the intersection from top to
bottom through the middle is given for every energy group.
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Figure A.4: The value of every latent space variable of the CAE for the multigroup
problem as a function of the perturbation of the total scatter cross-section of group 2
and the capture cross-section of group 7 of the fuel. All other FOM parameters are
unperturbed. The resulting surfaces are smooth, similar to the single FOM parameter
perturbations.
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