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Abstract

The Molten Salt Fast Reactor (MSFR) is one of the new Generation-IV type reactors which
are according to the Energy Road Map 2050 of the European Union important contributors
to the decarbonisation of the energy supply. The SAMOSAFER (Severe Accident MOdeling
and Safety Assessment for Fluid-fuel Energy Reactors) project aims to develop and demon-
strate new safety barriers for molten salt reactors based on new simulation models and tools
validated with experiments. In order to predict and study the behaviour of this fuel salt in
the MSFR properties such as the density and rheology have to be known to predict the flow
and neutronic behaviour of the fuel. Due to practical limitations inflicted by the molten salt,
its high temperature and radioactivity, to determine the rheology of the fuel an ultrasonic
instrument using a shear-wave and waveguide is used to overcome these limitations. Since the
molten salt is suspected to be a non-Newtonian fluid, the fluid type that will be investigated is
the Power-law fluid type. This research will focus on the development of measurement meth-
ods to retrieve the rheological properties, the flow index m and the consistency index Km, of
Power-law fluids with amplitude measurements of the ultrasonic shear-wave viscometer using
a numerical model. To develop such methods the analytical expression of the shear-rate in a
Power-law fluid is necessary, but unknown. In this research three analytical expression of the
shear-rate in a Power-law fluid are proposed and six methods developed. The fluids used in
this research are ketchup (shear-thinning), soybean oil (shear-thinning) and ethylene-glycol
(shear-thickening).
The methods I, II, III and IV are used to find the rheological properties m and Km with an
expression of the shear-rate based on the result of Ai & Vafai [13], first proposed by Rohde
[11]. The shear-rate used in methods I, II, III, IV turned out to be incorrect, but the ex-
pression used to determine the flow index m in method IV remains valid and experimentally
usable. Method V uses a different expression of the shear-rate in a Power-law fluid compared
to methods I, II, III and IV. The results of this method for the flow index m are unchanged
compared to results of method IV and the values for the consistency indices Km deviated
from the literature values of the used fluids. Method VI uses an alternative expression of the
shear-rate in a Power-law fluid compared to methods I, II, III, IV and V. Within method VI
two approaches are used to determine the rheological properties m, Km, namely: Approach
A and Approach B. Approach A can only be used numerically, but Approach B can be used
experimentally. Both Approach A and Approach B of method VI gave accurate results for the
flow index m and the results of the consistency indices Km have the same order of magnitude
as the literature values of the used fluids.
In future studies the shear-rate on the boundary of Power-law fluids needs to be studied more
extensively to obtain more accurate results for the consistency indices. Also, the numerical
viscometer needs to be extended for other types of fluids such as Bingham and Casson fluids.
This will eventually contribute to the final goal of SAMOSAFER to ensure that the MSFR
can comply with all expected regulations in 30 years’ time.
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Chapter 1

Introduction

The increasing clean energy demand is one of the most important issues of the world of to-
day. Oil, gas and coal are a cheap and immediate energy source, but they will eventually
finish and can have a negative effect on the climate of this planet. Solar and wind energy are
good alternatives for reducing the carbon emission but cannot produce the same amount of
energy as the before-mentioned fossil fuels. Although nuclear energy can yield an enormous
amount of energy, is sustainable and reliable, controversial arguments exist because of the
safety concerns and historic accidents, for instance Chernobyl (1986) and Fukushima (2011).
These crises have changed the look on nuclear power generation and its advantages and dis-
advantages.

In the year 2000, during the Generation IV International Forum, six new types of nuclear
reactors were proposed [1] to deal with the significant safety concerns. These new generation
of reactors were designed to excel in the area of safety. The Molten Salt Fast Reactor
(MSFR) is one of this new generation reactors. According to the Energy Road Map 2050
of the European Union nuclear energy is an important contributor to the decarbonisation
of the energy supply [2]. In order to stimulate the feasibility of implementation of these
new type of reactors the SAMOSAFER project as part of the Horizon 2020 program was
initiated. SAMOSAFER (Severe Accident MOdeling and Safety Assessment for Fluid-fuel
Energy Reactors) aims to develop and demonstrate new safety barriers for more controlled
behaviour of molten salt reactors in severe accidents, based on new simulation models and
tools validated with experiments. The grand objective is to ensure that the molten salt
reactor can comply with all expected regulations in 30 years time [3]. This research is part
of the SAMOSAFER project.

1.1 The Molten Salt Fast Reactor

Most nuclear reactor which are in operation today use solid fuel, such as uranium rods, in
a water-filled vessel, sometimes pressurised. The Molten Salt Fast Reactor (MSFR) uses a
liquid fuel salt in a cylindrical vessel under ambient pressure at an operating temperature
of 750 ◦C [4]. This new type of nuclear reactor design allows the flexibility of adapting the
fuel salt composition during reactor operation. Also, the MSFR is intrinsically safer than the
nuclear reactors which are currently operated around the world. In case of loss of power, it
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CHAPTER 1. INTRODUCTION

uses a freeze plug system in order to drain the liquid fuel salt in safe tanks under the reactor.
Other advantages are that the fuel salt serves both the function of being the heat transfer
medium and the coolant and since the liquid expands when heated there is negative feedback
on the rate of nuclear reaction [4].

Figure 1.1: Schematic layout of MSFR [3]

For the MSFR to reach SAMOSAFER’s goal still a significant amount of research is needed.
One part of this research investigates the molten salt itself. Part of the research being done
at the Reactor Institute Delft (RID) is about the fundamental behaviour and properties of
the used fuel salt. It uses a fluoride salt with the composition of LiF-ThF4-UF4-PuF3 [5].
In order to predict and study the behaviour of this fuel salt in the MSFR certain properties
have to be known, such as the density and rheology. This research will focus mainly on the
development of a measurement method of the rheology using ultrasonic waves.

1.2 The ultrasonic viscometer

A wide range of viscometers exists to determine the viscosity of various different types of
fluids. However, due to the particular nature of the molten fuel salt there are some practical
limitations that need to be overcome. The most significant of these limitations are the high
temperature of 750 ◦C, its radioactivity and highly corrosive nature. Also, previous research
estimated that the viscosity of this fuel salt will be between 3-13 [mPa·s] [6] which requires
a sensitive measuring technique. In order to overcome these limitation a measurement setup
is proposed using ultrasonic shear-waves through a waveguide partially immersed in the fluid
of interest for the determination of the rheology.
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CHAPTER 1. INTRODUCTION

The method of using ultrasonic waves for the determination of viscosity was originally pro-
posed by Mason [7] which used an ultrasonic pulse send directly through the fluid by a
transducer in contact with the fluid. The idea behind this method is that the returned signal
has lost a certain amount of energy, attenuation of the wave energy, which can be related to
properties of the fluid such as the viscosity.

In research done by Vogt [8] techniques using a waveguide were developed and investigated.
Waveguides can have a multitude of shapes and be made of different materials which can
have an impact on the properties of the wave that needs to be guided. It should be noted
however that the waveguide also has a second function of separating the transducer from the
fluid itself since its very high temperature would increase the transducer’s temperature above
the Curie temperature, which causes the loss of piezoelectric activity [9].

Research done by Cegla [10] investigated fluid characterisation and non-destructive testing in
harsh environments using guided ultrasonic waves. It showed that a variety of guided com-
pressional, flexural and shear horizontal wave modes can exist in a steel plate as waveguide
depending on the product between the thickness of the plate and the frequency of the wave
mode. This makes that one can tweak their waveguide and frequency to their advantage.
Therefore, in this research the waveguide selected will be a very thin rectangular plate in
combination with a transducer producing a shear-wave, see figure 1.2.

Figure 1.2: Schematic setup of the ultrasonic shear-wave viscometer [11]. The transducer at
the top produces a shear-wave travelling in the z-direction and polarised in the x-direction
with U(z, t) the amplitude at time t and position z in a partially immersed waveguide, where
l is the immersion depth, cs the shear-wave speed, h and W are the waveguide’s thickness
and width respectively.
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CHAPTER 1. INTRODUCTION

The advantages of a shear-wave in combination with a very thin plate as waveguide is that
there is no energy loss at the end of the waveguide and it is a non-dispersive wave, resulting
in an attenuated signal solely due to viscous effect. The benefit of using a non-dispersive
wave is that the shape of the wave will be conserved over the propagation path.

1.3 Rheology of a fluid

In the proposed viscometer setup the attenuation of the signal can be linked to the viscosity of
the fluid. One can imagine that the more viscous a fluid, the larger the resulting attenuation
of the signal. However, one can also imagine that the viscosity of a fluid may not always have
a constant value. The velocity gradient in the fluid due to a shear-wave, also known as the
shear-rate, plays a major role in this viscous behaviour. The study that deals with how ma-
terials flow as a function of the shear-rate is called rheology. It roughly divides fluids in two
distinct groups: fluids which viscosities are independent of the shear-rate, Newtonian fluids,
and fluids which viscosities dependent on the shear-rate, Non-Newtonian fluids. There are
several different types non-Newtonian fluids such as but not limited to Power-law, Bingham
and Casson fluids which all respond differently to the shear-rate.

In this research the fluid type that will be investigated is the Power-law fluid since the
molten salt in MSFR is suspected to be a non-Newtonian fluid. The focus of this research
will therefore be to develop experimental methods to retrieve the rheological properties of
known Power-law fluids. To find these properties an expression of the shear-stress in a Power-
law fluid is needed. This shear-stress as a function of the shear-rate is given by the following
equation (the Ostwald-de Waele relationship):

τPL(γ̇) = −µapp(γ̇) · γ̇ (1.1)

µapp(γ̇) = Km · |γ̇|m−1 (1.2)

where γ̇ [s−1] is the shear-rate or velocity gradient perpendicular to the shear plane, Km

[Pa·sm] is called the consistency index and m [-] the flow index. These two constants together
are called the rheological properties and they characterise the type of Power-law fluid. Note
that viscosity in this type of fluids is called the apparent viscosity.

1.4 Previous research

This proposed ultrasonic waveguide viscometer has been investigated experimentally by Rook
[12] in case of a Newtonian fluid. Rook showed that at room temperature good viscosity mea-
surements for low viscosity Newtonian fluids can be obtained. One of the reasons this method
is possible is because there exists an analytical solution to the velocity profile for a Newtonian
fluid to find the shear-rate. By using this expression a solution can be provided to find the
viscosity of this fluid. In case of non-Newtonian fluids such as Power-law fluids there does not
exist such an analytical expression and therefore the rheological properties for a Power-law
fluid cannot be determined in the same way as in the case of Rook.
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CHAPTER 1. INTRODUCTION

In order to find the rheological properties of a Power-law fluid, Rohde [11] proposed a solution
to the shear-rate based on the results of Ai & Vafai [13]. Making using of a numerical model
to mimic the ultrasonic viscometer setup, Borstlap [14] investigated this proposed solution to
find the rheological properties m and Km. One of the conclusions of this research is that the
used solution of Rohde was suitable for determination of the flow index m, but measurements
on the consistency index Km asks for a more accurate method.

1.5 Research goals and thesis outline

The ultimate goal of this research would be that there can be concluded that the rheology
of any fluid can be determined by using this ultrasonic waveguide viscometer. In order to
reach this goal questions need answering. One of the more general research questions is the
following:

∗ How can the rheological properties of power-law fluids be accurately retrieved from the
amplitude measurements of the ultrasonic shear-wave waveguide viscometer?

This question is taken as a starting point of this research since it is not fully answered
by previous research. It was found by Borstlap that the flow index m could be retrieved
accurately by using a linear fitting method, but the determination of the consistency index
Km was inaccurate since Km had a high sensitivity for small variations of m. In this research
the obtained amplitude measurements for different immersion depths, is fitted to a linear
function, but it is possible that other functions are more desirable for the measurement of
Km and m. Although it is interesting to find out where this sensitivity comes from another
question also comes to mind:

∗ Is the linear fitting method proposed by Rohde ideal for the determination of the flow
and consistency index?

This method also relies on measuring the attenuated amplitude signal with the immersion
depth as only parameter, but the frequency of the signal can also be used. Therefore:

∗ Can the rheological properties m and Km be determined by using the immersion depth
of the waveguide in the fluid and the frequency as variables?

Now, if the rheological properties of known power-law fluids can be determined numerically
accurately, it would be an insightful addition to the research if for the same power-law fluids
these properties would be determined with an actual measuring setup in order to compare
results.

This master’s thesis is divided in multiple chapters to retain clarity. In chapter 2 the
necessary theory will be discussed after which chapter 3 is used to set out the used methods.
This research will make use of a numerical simulation model made in Python, rather than
make use of large simulation programs such as COMSOL Multiphysics. In chapter 4 the re-
sults of this research are shown and in chapter 5 conclusions are drawn and recommendations
are made.
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Chapter 2

Theory

In this chapter the theoretical background of the ultrasonic waveguide viscometer is covered
and the difference between immersion in a Newtonian fluid and a Power-law fluid will be
discussed. The goal of this chapter is to make clear how the solution to the energy equation
of the ultrasonic wave in the waveguide immersed in a Power-law fluid can be obtained since
this expression is needed to investigate the rheology. In order to do this, the expression of
the shear-rate on the boundary in a Power-law fluid needs to be known and because this
expression is not known analytically, three different expressions for the shear-rate on the
boundary in a Power-law fluid are proposed in this chapter.

2.1 The wave and waveguide

In this research two different waves are discussed, namely (I) the wave in the waveguide
created by the transducer and (II) the wave in the fluid created by wave in the waveguide
due to friction. Wave (I) is depicted in figure 1.2 in the partially immersed waveguide and it
loses its energy by the creation of a secondary wave (II), described in section 2.2. Obviously,
the shape of the waveguide and the type of wave created by the transducer have an influence
on energy loss of wave (I) when partially immersed. Therefore, the question is: what type of
wave and what shape of the waveguide should be used?

In this research there is made use of shear ultrasonic waves in combination with a thin rect-
angular steel plate as waveguide. These shear-waves travel in z-direction and are polarised in
the x-direction, see figure 1.2. According to a result obtained by Cegla [10] which can be seen
in figure 2.1, for a certain range of the frequency thickness product, namely between 0 - 1.5
[MHz·mm], the only shear-wave mode that can exist is the fundamental shear-wave (SH0).
Also, the phase velocity of this fundamental shear-wave is constant in this range, meaning it
is a non-dispersive wave.

Therefore, by creating a shear-wave at the top of the ultrasonic viscometer setup and with
the appropriate dimensions for the waveguide such that the frequency thickness product is
between 0 - 1.5 [MHz·mm], the attenuation of the shear-wave in the waveguide will be solely
due to the viscosity of the fluid in which it is immersed.

6



CHAPTER 2. THEORY

Figure 2.1: Phase velocity dispersion curves as a function of the frequency-thickness product
for a steel plate with SH’s describing the shear-wave modes, the A’s describing the flexural
wave modes and the S’s the compressional wave modes [10].

2.2 Shear-wave in fluid

The second wave (II) used in this research is a shear-wave in a fluid resulting from the oscillat-
ing boundary of the waveguide. To describe the motion of a viscous fluid, the Navier-Stokes
momentum equations can be used. By using the constraints and boundary conditions specific
to a periodically oscillatory wall in the presence of a Power-law fluids, a specific governing
momentum equation can be found. This equation is necessary since it provides a solution
for the velocity profile in the specified fluid and thus the energy loss due to that fluid at
a specific location. In this way the energy loss of the shear-wave propagating through the
waveguide immersed in a fluid can be coupled to the fluid characteristics. So, by solving the
governing momentum equation using a numerical model the actual experimental setup can
be mimicked and experiments can be performed.

In this research a waveguide with length L in the z-direction, thickness h in the y-direction
and width W in the x-direction is immersed in a Power-law fluid, figure 1.2. The shear-wave
initiated at the top of the waveguide propagates in the z-direction and oscillates with velocity
vx in the x-direction. The velocity profiles in vy and vz are zero and there is no convection.
By assuming there are no pressure gradients and no gravitational effects in the x-direction
the problem specific governing momentum equation becomes:

7



CHAPTER 2. THEORY

ρf
∂vx
∂t

= −∂τyx
∂y

(2.1)

where ρf is the density of the fluid and the term on the right hand side is the gradient in the
y-direction of the shear-stress on the yx-plane. The initial and boundary conditions of this
problem are:

I.C. : vx(y, 0) = 0

B.C. : vx(0, t) = B(z) sin(ωt) ; vx(∞, t) = 0
(2.2)

It is good to realise that this obtained reduced incompressible governing momentum equation
is very similar to the momentum equation used in Stokes Second Problem.

As mentioned in section 2.1, by using a shear-wave through in a thin steel waveguide the
attenuation of this wave will be solely due to the viscosity (shear friction) of the fluid the
waveguide is immersed in. The theory behind this is treated in the next section.

2.3 Wave energy in waveguide

The next step is to relate the attenuation of the shear-wave to the rheology of the fluid
theoretically, first given by Rohde [11]. Since this shear-wave is travelling on the surface of
the waveguide the wave energy is lost by the shear friction at the solid/liquid interface. The
amount of friction is determined by the material at this interface, in this case the fluid in
which the waveguide is immersed. If the waveguide, see figure 1.2, has a width of W [m] along
the x-axis and an infinitesimal length dz, then the energy loss ∆P (z, t) [W] at the surface is:

∆Pτ (z, t) = −2 · τ0(z, t) · Vx(z, t) ·W · dz (2.3)

where there is a minus sign since its energy loss, a 2 because energy is lost at the both sides
of the waveguide, the τ0(z, t) [Pa] is the shear-stress at the solid/liquid interface which is
determined by the type of fluid and Vx [m/s] is the local velocity of the shear-wave on the
boundary polarised in the x-direction. The energy loss due the ”immersion” in air can be
neglected since the viscosity of air is much smaller than of a fluid. Also, the energy loss at
the bottom of the waveguide where the shear-wave is reflected is neglected since this area
is much smaller than the area at the sides of the plate W · h << W · l. This same argu-
ment is true in case of the surfaces at the side of the waveguide, if the amplitude would be
big enough. Lastly, the internal friction is neglected because of the elasticity of the waveguide.

Now, by using the energy loss term in equation 2.3 the energy balance in the waveguide
can be constructed and it looks as follows:

h ·W · dz · dEw(z, t)

dt
= P (z, t)− P (z + dz, t) + ∆Pτ (z, t) (2.4)

8



CHAPTER 2. THEORY

where the left hand side of this energy balance gives the time rate of change of the wave
energy density Ew(z, t) [J/m3], the first and second term on the right hand side give the
energy difference over a distance dz in the waveguide and the last term on the right hand side
gives energy loss due to friction. This equation is developed in order to relate the attenuation
of the shear-wave in the waveguide to the rheology of the fluid of interest and this attenuation
is a time-averaged value of the energy loss of the shear wave travelling through the immersed
waveguide. Therefore, the time-average is taken of the energy balance equation, which gives
the following expression:

1

T

∫
T
h · dEw(z, t)

dt
dt′ =

1

T

∫
T

P (z, t)− P (z + dz, t)

W · dz
dt′ +

1

T

∫
T

∆Pτ (z, t)

W · dz
dt′ (2.5)

By realising that the energy dissipation per wave period is very small, there is assumed that
the system is quasi-stationary. This implies that the integral over one period of the time rate
of change of the wave energy density is zero. This results in:

1

T

∫
T

P (z + dz, t)− P (z, t)

W · dz
dt′ =

1

T

∫
T

∆Pτ (z, t)

W · dz
dt′ (2.6)

The left hand side of this equation can be written as the time-averaged integral over the spatial
derivative of the wave energy in the waveguide. According to Leibniz’s Integral Rule because
the integration boundaries are constants, differentiation and integration are interchangeable:

1

T

∫
T

P (z + dz, t)− P (z, t)

W · dz
dt′ =

1

T

∫
T

dP (z, t)

W · dz
dt′ =

d

dz

(
1

T

∫
T

P (z, t)

W
dt′
)

(2.7)

The resulting integral describes the time-averaged power of a sinusoidal wave per unit length
and this can be expressed in its amplitude A(z) [m] in the following way:

d

dz

(
1

T

∫
T

P (z, t)

W
dt′
)

=
d

dz

(
1

2
ρscsh · ω2A2(z)

)
=

d

dz

(
1

2
ρscsh ·B2(z)

)
(2.8)

where B(z) ≡ −A(z) ·ω is the velocity amplitude [m/s], ω [s−1] is the frequency of the wave,
ρs [kg/m3] is the density of the waveguide and cs [m/s] is shear-wave speed in the waveguide.
By combining the result of equation 2.8 with equations 2.3 and 2.6, the quasi-stationary
energy equation looks like:

d

dz

(
1

2
ρscshB

2(z)

)
=

1

T

∫
T
−2 · τ0(z, t) · Vx(z, t)dt′ (2.9)

After rewriting, the general energy wave equation of the ultrasonic waveguide viscometer is
obtained:

B(z)
dB(z)

dz
=

1

ρscsh
· 1

T

∫
T
−2 · τ0(z, t) · Vx(z, t)dt′ (2.10)
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To solve this equation an expression needs to be found for the local velocity of the shear-wave
on the boundary Vx and the shear-stress on the boundary τ0.

The velocity of the shear-wave on the boundary Vx is initiated by the transducer at the
top of the waveguide. This transducer creates the following deformation in the waveguide:

Ux(z, t) = A(z) · sin(kz − ωt) (2.11)

where A(z) is the amplitude of the shear-wave [m], z is the position along the waveguide [m],
k the wavenumber [m−1] and ω the frequency [s−1]. By taking the time derivative of equation
2.11 the local velocity is obtain:

dUx(z, t)

dt
= Vx(z, t) = −A(z) · ω · cos(kz − ωt) = B(z) · cos(kz − ωt) (2.12)

where, again, B(z) ≡ −A(z) · ω is the velocity amplitude [m/s].

Lastly, an expression of the shear-stress on the boundary τ0 needs to be found. This is
not trivial, since τ0 reacts differently to a changing shear-rate on the boundary for different
types of fluids. The two types of fluids that will be used in this research are Newtonian fluids
and Power-law fluids. The differences in shear-stress will be treated in the following section
with the goal of using this result for further evaluation of obtained energy wave equation
2.10.

2.4 Fluid rheology

As discussed in the previous section, the τ0 in the energy wave equation 2.10 refers to the
shear-stress due to viscous forces which cause energy loss of the shear-waves on the interface
of the waveguide. This energy loss is transferred to the shear-wave in the fluid perpendicular
to the waveguide, see figure 2.2. One can image that the magnitude of this new shear-wave
depends on the properties of fluid; the more viscous the fluid, the larger the shear-stress and
thus the more energy is lost in the fluid. However, in some fluids the shear-stress is also
influenced by the time rate of change of the shear deformation in the fluid, the local velocity
gradient, also known as the shear-rate, defined as: γ̇ = ∂ui

∂xj
+

∂uj
∂xi

[m−1].

The change in flow characteristics of a fluid caused by applied force is called the rheology
of a fluid. If the viscosity of a fluid is independent of the shear-rate, the fluid is called
Newtonian. The expression of the shear-stress in a Newtonian fluid is given by:

τN = −µ0 · γ̇ (2.13)

where µ0 [Pa·s] is the constant dynamic viscosity. However, there are also fluids of which the
viscosity is affected by the applied force, such fluids are called non-Newtonian. There are
various different types of non-Newtonian fluids such as: Power-Law, Bingham and Casson

10
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Figure 2.2: Schematic figure [12] of absolute velocity amplitude v attenuation of shear-wave
in a fluid where δ represents the wave penetration depth, also known as the viscous skin
depth. Note that this figure is not to scale, since δ � v.

fluids. In this research the Power-law fluid is investigated. In case of Power-law fluids one
does not have an absolute constant viscosity, but an apparent viscosity, defined as [15]:

µapp(γ̇) = Km · |γ̇|m−1 (2.14)

where m [-] is called the flow index and Km is called the consistency index [Pa·sm]. These two
parameters are called the rheological properties of a fluid and they characterise the behaviour
of Power-law fluids. The full shear-stress expression of Power-law fluids, also known as the
Ostwald-De Waele model, is:

τPL = −µapp(γ̇) · γ̇ = −Km · |γ̇|m−1 · γ̇ (2.15)

If m = 1 is used in this expression the Newtonian solution for viscosity is retrieved since
K1 = µ0, which means that Newtonian fluids are a special case of Power-law fluids. In
the situation where m < 1 the fluids are called shear-thinning fluids because if the shear-
rate increases the apparent viscosity decreases. The other way around, when m > 1, is
called shear-thickening where the viscosity increases with increasing shear-rate. Figure 2.3
depicts the shear-stress/shear-rate relation for a Newtonian fluid and for an assembly of non-
Newtonian fluids.

Looking back at the general energy equation 2.10 the corresponding shear-stress relations
will be used in order to solve this equation in case of a Newtonian fluid and a Power-law
fluid. An expression needs to be found for the shear-rate of different fluids. In the next sec-
tions the solution of the energy equation for Newtonian and Power-law fluids will be treated.

11
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Figure 2.3: A shear-rate versus shear-stress plot for Newtonian and non-Newtonian fluids.
Note that in this figure n is used as flow index parameter [16].

2.5 Energy equation for Newtonian fluid

In this section a solution is given to the general energy equation 2.10 for Newtonian fluids, first
given by Rohde [11]. In this solution the Newtonian expression for the shear-stress, equation
2.13, will be used, but an expression for the shear-rate in a Newtonian fluid is still needed.
Note that the shear-stress on the boundary needs is to be used in this solution, therefore
also the shear-rate on the boundary needs to be used, thus γ̇0. As mentioned earlier in this
chapter the shear-rate is the local velocity gradient in the fluid. This means that the shear-
stress of a Newtonian fluid can be solved if the velocity profile of the shear-wave can be found.

This velocity profile is found analytically as a part of Stokes Second Problem [17]. The
Stokes Second Problem describes an infinitely long boundary layer, a plate, which oscillates
periodically and creates a velocity profile in the fluid. In the viscometer setup used in this
research, see figure 1.2, the waveguide oscillates periodically in the x-direction at y = 0 (at
a position z) since the fluid domain is y > 0. According to the solution to Stokes Second
Problem the velocity profile can be written as:

vx(y, t) = A · exp

(
− y

δN

)
· cos

(
ωt− y

δN

)
(2.16)

12
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where A is the initial amplitude of the wave, δN ≡
√

2µ0
ρfω

[m] is the viscous skin depth of

the shear-wave in the fluid with µ0 and ρf the viscosity and density of the fluid. If this
velocity profile will be used in the determination of the shear-rate, there needs to be adjusted
for the fact that in this research not the entire plate is oscillating and that there should be
a dependency on z in the velocity profile, since A(z). Looking at the order of magnitude
difference between the change in vx in the y-direction (dvxdy ≈

vx
δN

) and the change in vx in

the z-direction (dvxdz ≈
vx
λ ), where λ is the wavelength of shear-wave in the waveguide, it is

noticed that:

dvx
dy
� dvx

dz
(2.17)

since δN is O(10−6) (in case of water) and λ is O(10−3) because the frequency is in the
MHz-range. More descriptively, equation 2.17 entails that at a position z the change in vx
is much more significant in the y-direction than the change in vx in the z-direction in this
setup. Therefore, the velocity profile of the shear-wave can be written as:

vx(y, z, t) = A(z) · exp

(
− y

δN

)
· cos

(
kz − ωt− y

δN

)
(2.18)

where k is the wavenumber [m−1]. By taking the gradient of this shear-wave velocity at the
boundary, y = 0:

dvx
dy

∣∣∣
y=0

=
B(z)

δN
cos(kz − ωt) +

B(z)

δN
sin(kz − ωt) =

√
2
B(z)

δN
cos(kz − ωt− π/4) (2.19)

the shear-rate on the boundary of a Newtonian fluid is obtained:

γ̇0,N =
√

2
B(z)

δN
cos(kz − ωt− π/4) (2.20)

This shear-rate on the boundary can now be used to solve the shear-stress on the boundary
in a Newtonian fluid, equation 2.13. The expression for shear-stress becomes:

τ0(z, t) = −µ0 · γ̇|y=0= −µ0 ·
dvx
dy
|y=0= −µ0 ·

√
2
B(z)

δN
· cos

(
kz − ωt− π

4

)
(2.21)

Finally, by using this expression for the shear-stress and the velocity profile on the boundary,
equation 2.12, a solution to the energy equation 2.10 for a Newtonian fluid can be given:

B(z)
B(z)

dz
=

1

ρscsh
· 1

T

∫
T
−µ0 · 2 ·

√
2
B(z)

δN
· cos

(
kz − ωt− π

4

)
·B(z) · cos(kz − ωt)dt′ (2.22)

All the terms, except for cosines, can be taken out of the integral since they do not depend
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on time, after which the integral can be solved by again using the identity: sin(x) + cos(x) =√
2 cos(x− π/4), giving:

1

T

∫
T

cos
(
kz − ωt− π

4

)
· cos(kz − ωt)dt′ = 1

2
√

2
(2.23)

The resulting expression can be rewritten to obtain the following differential equation:

dB(z)

dz
= − µ0

δNρscsh
B(z) (2.24)

This makes the solution of the wave energy in the ultrasonic waveguide in a Newtonian fluid :

B(z) = B(0) · exp(−α · z) with α =
µ0

δNρscsh
=

1

ρscsh

√
ρfωµ0

2
(2.25)

where α is called the attenuation coefficient [1/m] and B0 = B(0) is the initial velocity am-
plitude [m/s]. Lastly, by combining two solutions of this equation for two different immersion
depths l1 and l2, note that z − z0 = 2l, an expression is obtained to find the attenuation
coefficient experimentally:

B(l1)

B(l2)
= exp(−α(2l1 − 2l2)) (2.26)

giving the expression of finding the attenuation coefficient experimentally:

α = −1

2
· 1

l1 − l2
ln

(
B(l1)

B(l2)

)
(2.27)

2.6 Energy equation for Power-law fluid

Similar to the previous section where a theoretical and an experimental solution to the
attenuation coefficient can be found to determine the viscosity of the Newtonian fluid, the
same approach is used to determine the rheological properties, namely the flow index and
consistency index, of a Power-law fluid, first given by Rohde [11]. Therefore the shear-stress
on the boundary in the general energy equation 2.10 needs to be solved for a Power-law fluid:

τ0,PL = −Km · |γ̇0,PL|m−1 · γ̇0,PL (2.28)

This shear-stress can be solved if an expression of the shear-rate on the boundary γ̇0,PL is
known and therefore the velocity profile in a Power-law fluid needs to be known analytically
to find the velocity gradient on the boundary:

γ̇0,PL =
d

dy
(vx,PL)|y=0 (2.29)
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However, an analytical expression of the velocity profile of a shear-wave in a Power-law fluid
does not exist in the same way as in the Newtonian situation where Stokes solution exists.
This leads to following question:

∗ Can a solution be found of the shear-rate on the boundary between a oscillating plate
and a Power-law fluid without a solution to the velocity profile?

This question seems a better starting point since only the solution of the shear-rate on the
boundary needs to known, which already puts a constraint on an otherwise more general
problem. In this section three different expressions of the shear-rate on the boundary in a
Power-law fluid (γ̇0,PL) are proposed. Section 2.6.2 and 2.6.3 treat the theory behind two
shear-rates on the boundary based on a paper of Ai & Vafai [13], which is discussed in
section 2.6.1. Section 2.6.4 proposes an alternative expression of the shear-rate not based on
the result of Ai & Vafai.

2.6.1 Dimensionless velocity profiles of Ai & Vafai

There exists a result of Ai & Vafai [13] which gives an insight in what the shear-rate on the
boundary in Power-law fluid created by an oscillating boundary layer might look like. Figure
2.4 shows the dimensionless velocity profiles at various times τ created by an oscillating wall
with velocity uw = u0 sin(τ) at η = 0. In this study the following definitions are used:
τ = t̂, uw = vx, u0 = v0 and η = ŷ, where the hats denote non-dimensionality. The velocity
profiles for three flow indices, m = 0.5, m = 1, m = 1.5, in figure 2.4 are created by
using a dimensionless governing momentum equation, obtained by combining the momentum
equation 2.1 with the dimensionless parameters from Ai & Vafai [13]:

t̂ = ωt, ŷ = y

√
ρfω

µ0
and v̂x =

vx
v0

(2.30)

where t̂ is the dimensionless time, ŷ the dimensionless y and v̂x the dimensionless velocity,
and v0, ω, ρf and µ0 are the reference parameters of velocity, frequency, density and viscosity
respectively [13]. The dimensionless LHS of momentum equation 2.1 is given as [13]:

∂vx
∂t

= v0 · ω ·
∂v̂x

∂t̂
(2.31)

The next step is to make the RHS of momentum equation 2.1 dimensionless. The shear-stress
term is evaluated separately for the sake of clarity before combining it with the dimensionless
gradient [13]:

τyx = −Km ·
∣∣∣∣∂vx∂y

∣∣∣∣m−1 · ∂vx∂y = −Km ·

[(
ωρf
µ0

)1/2

· v0

]m
·
∣∣∣∣∂v̂x∂ŷ

∣∣∣∣m−1 · ∂v̂x∂ŷ (2.32)

∂τyx
∂y

= −Km ·

[(
ωρf
µ0

)1/2

· v0

]m
·
(
ωρf
µ0

)1/2

· ∂τ̂yx
∂ŷ

(2.33)
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Figure 2.4: Dimensionless velocity profiles in a Power-law model for three different flow
indices at four time intervals created by an oscillating wall at η = 0 from research of Ai &
Vafai [13].

Combining the result of equation 2.31 and equation 2.33 in equation 2.1, the dimensionless
governing momentum equation is obtained [13]:

∂v̂x

∂t̂
= −κ · ∂τ̂yx

∂ŷ
with κ =

Km

µ0
·
(
ωρf
µ0

)m−1
2

· vm−10 (2.34)

with κ [-] being a dimensionless constant defined by the reference parameters of equation 2.30.
Note that the flow index m = 1, which implies Km=1 = µ0, gives the Newtonian solution
where κ = 1[−].

2.6.2 Proposed shear-rate I

The proposed shear-rate on the boundary of a Power-law fluid (γ̇0,PL) in this section is based
on the result of figure 2.4, first suggested by Rohde [11]. The importance of this figure re-
sides in the fact that it shows the dimensionless velocity profiles for different flow indices,
m = 0.5 (shear-thinning), m = 1 (Newtonian) and m = 1.5 (shear-thickening) very close
to the boundary with the oscillating interface. Therefore, this figure also gives information
about the shear-rate very close to the boundary for different flow indices and it seems that
the shear-rates for the flow indices m = 0.5, m = 1 and m = 1.5 very close to the boundary
are equal. The idea by Rohde [11] is:

If the shear-rate very close to the boundary of an oscillating plate in a Power-law fluid
(m 6= 1) is independent of flow index m, is it possible to use the solution of the shear-
rate on the boundary in a Newtonian fluid (m = 1) instead, since this is known analytically?
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Furthermore, this independence of the flow index m would imply that the condition on the
consistency index becomes: Km = K1 = µ0. Mathematically, this idea proposed by Rohde
[11] is given as:

d

dŷ
(v̂x,PL)|ŷ=0=

d

dŷ
(v̂x,N )|ŷ=0 (2.35)

where the LHS of this equation gives the dimensionless shear-rate on the boundary in a Power-
law fluid and the RHS gives the dimensionless shear-rate on the boundary in a Newtonian
fluid. Equation 2.35 is valid in the dimensionless case since the result of Ai & Vafai is
dimensionless, but the dimensional expression of the shear-rate on the boundary is needed
in equation 2.29. By using the dimensionless definitions for ŷ and v̂x of equation 2.30 in
equation 2.35 it can be transformed to the dimensional expression. Since ŷ and v̂x are not a
function of m, the dimensional expression of equation 2.35 is:

d

dy
(vx,PL)|y=0=

d

dy
(vx,N )|y=0 (2.36)

where the LHS is the shear-rate on the boundary in a Power-law fluid (γ0,PL) and the RHS
of this equation is equal to Newtonian shear-rate on the boundary (γ0,N ) given by equation
2.20 with the condition that Km = µ0. This results in the first proposed shear-rate on the
boundary of a Power-law fluid :

γ̇0,PL =
√

2
B(z)

δPL
cos(kz − ωt− π/4) with δPL =

√
2Km

ρfω
(2.37)

By using this expression of the shear-rate, the shear-stress of equation 2.28 can be found in
order to solve the general energy equation 2.10 for a Power-law fluid. This results in the
following expression for the energy equation:

B(z)
B(z)

dz
=
−2Km

ρscsh

(√
2
B(z)

δPL

)m
B(z) · P3(m) (2.38)

where the term P3(m) containing the integral is written as:

P3(m) =
1

T

∫
T

∣∣∣cos
(
kz − ωt− π

4

)∣∣∣m−1 · cos
(
kz − ωt− π

4

)
· cos(kz − ωt)dt′ (2.39)

By realising that the identity in the integral is periodic over a period π and by using the
substitution ξ = kz − ωt, this integral can be solved by using polynomial approximation:
P3(m) ≈ 0.00630863m3 + 0.0399466m2 − 0.129211m + 0.448619 which only depends on the
flow index m. This results in the following differential equation:

dB(z)

dz
=
−2KmP3(m)

ρscsh

( √
2

δPL

)m
B(z)m (2.40)

17



CHAPTER 2. THEORY

This equation can be solved for m 6= 1 which gives the final solution:

B(l) =
(
B1−m

0 + 2 · (1−m) · αm · l
)(1/1−m)

(2.41)

αm(ω) = −2
KmP3(m)

ρscsh
·

( √
2

δPL

)m
= −2

P3(m)

ρscsh
· (ρfω)m/2 ·K

2−m
2

m (2.42)

Note that (z−z0) is the entire distance travelled by the shear-wave in the waveguide, therefore

the immersion depth l is defined as: l = (z−z0)
2 . The challenge that still remains is how to

find the rheological properties m and Km experimentally using this solution. The methods
used to find these properties using equation 2.41 are discussed in the next chapter.

2.6.3 Proposed shear-rate II

This section treats the theory of a newly proposed shear-rate on the boundary in a Power-law
fluid, different from equation 2.37, and the solution to the energy equation 2.10. In figure
2.4 it can be seen that the dimensionless velocity profiles for the flow indices m = 0.5, m = 1
and m = 1.5 very close to the boundary are almost equal and the corresponding shear-rates
very close to the boundary also appear to be equal to each other. The new suggested reason
behind this is that the shear-rates on the boundary for different flow indices are equal if
their corresponding values for dimensionless constant κ are equal, given in equation 2.34.
Therefore, the idea is:

If the shear-rates on the boundary of a Power-law fluid (m 6= 1, Km) are equal if their
corresponding dimensionless constants κ are equal, is it possible to use the solution of the
shear-rate on the boundary in a Newtonian fluid (m = 1, Km=1 = µ0) instead, since this is
known analytically, under the condition of constant κ?

Expressing this idea mathematically results in the following equation:

d

dŷ
(v̂x,m1)|ŷ=0=

d

dŷ
(v̂x,m2)|ŷ=0 if κm1 = κm2 (2.43)

where the dimensionless shear-rates for different flow indices m1 and m2 are equal only if the
condition of constant κ is met. The condition of constant κ is expressed as:

Km1

µ0
·
(
ωρf
µ0

)m1−1
2

· vm1−1
0 = κ =

Km2

µ0
·
(
ωρf
µ0

)m2−1
2

· vm2−1
0 (2.44)

thereby using equation 2.34 and two sets of rheological properties, namely (m1, Km1) and
(m2, Km2). The terms v0, ω, ρf and µ0 are the reference parameters from equation 2.30. In
case of a Newtonian fluid with the rheological properties (m2 = 1, Km2 = µ0) in equation
2.44, giving value of κ = 1, and with a Power-law fluid (m1 = m, Km1 = Km), equation 2.44
is rewritten as:
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Km

µ0
·
(
ωρf
µ0

)m−1
2

· vm−10 = κ = 1 → µ0 = K
2

m+1
m ·

(
ω · ρf · v20

)m−1
m+1 (2.45)

such that the condition of constant κ between a Newtonian fluid and a Power-law fluid is given
to the Newtonian viscosity µ0. The resulting expression for equal dimensionless shear-rate
on the boundary in a Power-law fluid and Newtonian fluid is given by:

d

dŷ
(v̂x,PL)|ŷ=0=

d

dŷ
(v̂x,N )|ŷ=0 if µ0 = K

2
m+1
m ·

(
ω · ρf · v20

)m−1
m+1 (2.46)

This equation 2.46 is valid for dimensionless shear-rates on the boundary, but the dimensional
expression of the shear-rate on the boundary is needed to find a solution to the energy
equation 2.10. By using the reference parameters for ŷ and v̂x of equation 2.30 in equation
2.46 it can be transformed to the dimensional expression. Since ŷ and v̂x are not a function
of m, the dimensional expression of equation 2.46 becomes:

d

dy
(vx,PL)|y=0=

d

dy
(vx,N )|y=0 if µ0 = K

2
m+1
m ·

(
ω · ρf · v20

)m−1
m+1 (2.47)

where the LHS is the shear-rate on the boundary in a Power-law fluid (γ̇0,PL) and the RHS
of this equation is equal to Newtonian shear-rate on the boundary (γ̇0,N ) given by equation
2.20. This results in the second proposed shear-rate on the boundary of a Power-law fluid :

γ̇0,PL =
√

2
B(z)√

2µ0
ρfω

cos(kz − ωt− π/4) with µ0 = K
2

m+1
m ·

(
ω · ρf · v20

)m−1
m+1 (2.48)

This solution to the shear-rate on the boundary in a Power-law fluid is used to find the
shear-stress of equation 2.28 in order to solve the general energy equation 2.10. This results
in the following expression for the energy equation:

B(z)
B(z)

dz
=
−2Km

ρscsh

√2
B(z)√

2µ0
ρfω

m

B(z) · P3(m) with µ0 = K
2

m+1
m ·

(
ω · ρf · v20

)m−1
m+1

(2.49)

where the term P3(m) is given by equation 2.39. Equation 2.49 can be solved for m 6= 1
which gives the final solution:

B(l) =
(
B1−m

0 + 2 · (1−m) · αs · l
)(1/1−m)

(2.50)

αs(ω) = −2
P3(m)

ρscsh
· (ρfω)

m
m+1 ·B

−m2+m
m+1

0 (ω) ·K
1

m+1
m (2.51)

using that v0 = B0 are the same initial velocity amplitude and l = (z−z0)
2 . The methods used

to find these properties using equation 2.50 are discussed in the next chapter.
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2.6.4 Alternative expression of the shear-rate

This section treats the theory proposing a new expression of the shear-rate on the boundary
in a Power-law fluid (γ̇0,PL) not based on the result of figure 2.4 of Ai & Vafai.

Since the solution to the shear-rate in a Newtonian fluid (γ̇0,N ) is known analytically, equa-
tion 2.20, the earlier mentioned suggestion to use this Newtonian expression as a solution to
the shear-rate in a Power-law fluid remains. However, (γ̇0,N ) contains the constant dynamic
viscosity term µ0, but Power-law fluids do not have a constant viscosity, these fluids have an
apparent viscosity µapp(γ̇), equation 2.14. This results in the following idea:

Is it possible to use the solution of the shear-rate on the boundary in a Newtonian fluid
(m = 1) as solution to the shear-rate on the boundary in a Power-law fluid (m 6= 1) if the
constant dynamic viscosity term µ0 is replaced with the apparent viscosity term µapp(γ̇)?

The apparent viscosity µapp(γ̇) is a function of the shear-rate, which needs to be obtained in
the first place. Therefore, the used solution to the apparent viscosity µapp(γ̇) will be found
numerically (Approach A) and an analytical suggestion of the apparent viscosity will be made
(Approach B), both approaches are described in section 3.2.6 of the next chapter.

By having a solution to apparent viscosity, an expression of the shear-rate can be found.
Using this newly proposed idea and by replacing the constant viscosity in equation 2.20
with the (now known) apparent viscosity µapp(γ̇), the following proposed shear-rate on the
boundary of a Power-law fluid is obtained:

γ̇0,PL =
√

2
B(z)

δPL
cos(kz − ωt− π/4) with δPL =

√
2 · µapp(γ̇)

ρf · ω
(2.52)

This shear-rate on the boundary in a Power-law fluid is used to find the shear-stress of
equation 2.28 in order to solve the general energy equation 2.10. This results in the following
expression for the energy equation:

B(z)

dz
= −2

Km

ρscsh

(
ρf · ω
µapp(γ̇)

)m/2
· P3(m) ·B(z)m (2.53)

where the term P3(m) is given by equation 2.39. Equation 2.53 can be solved for m 6= 1
which gives the final solution:

B(l) =
(
B1−m

0 + 2 · (1−m) · αr · l
)(1/1−m)

(2.54)

αr(ω) = −2
Km

ρscsh

(
ρf · ω
µapp(γ̇)

)m/2
· P3(m) (2.55)

where the immersion depth l is defined as: l = (z−z0)
2 . The methods used to find these

properties using equation 2.54 are discussed in the next chapter.
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Chapter 3

Methods

The grand objective of this study is to find the rheological properties of Power-law fluids
using a shear-wave through a waveguide plate dipped in that fluid. This chapter describes
all the methods used to obtain the results provided in chapter 4.

In this study a numerical model is used to mimic a real experimental ultrasonic waveg-
uide setup. Therefore, the first part of this chapter treats the details of this model and its
validation by comparing it with benchmark cases.

The second part of this chapter focuses on developing methods to obtain the rheological
properties m and Km using the numerically created amplitude measurements of the numeri-
cal model and the three analytical solutions to the energy equation 2.42, 2.50 and 2.54, and
their corresponding attenuation coefficients α, equations 2.42, 2.51 and 2.55.

3.1 The numerical viscometer

In the previous chapter the research specific governing momentum equation 2.1 is derived.
The velocity profiles in specified Power-law fluids need to be solved for in order to correctly
model the attenuated wave in the waveguide. To evaluate this equation computationally a
finite difference scheme will be utilised which discretises this momentum equation. By making
use of a coupling constant the energy loss related to the created velocity profile will be linked
to the loss of energy in the waveguide.

3.1.1 Discrete notation

Discretisation is the approach to divide a continuous function in discrete parts in order to
solve that function computationally. There are various different methods to discretise a
problem and the choice of the used method is a balance between the characteristics of that
problem, the amount of processing power available and accuracy. Although, it is good to
realise that a numerical solution essentially should not influence the final established solution
of a system of equations, it can only influence the trajectory on how this solution is found
from an initial guess.
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In the numerical model used in this study the functions that need to be discretised depend
on the parameters t, y, z, which are time, the y-direction and the z-direction respectively.
Recall that the y-direction is the domain of the fluid and the z-direction is along the surface
of the waveguide. The following notation will be chosen:

fni,k = f(yi, zk, tn) with yi = i∆y, zk = k∆z, tn = n∆t (3.1)

where ∆y, ∆z, ∆t are the discrete step sizes and i, k, n are the number of steps. Depending
on which approximation technique will be used conditions must be placed on the size of some
step sizes and the number of steps needed. The used numerical methods will be discussed
next.

3.1.2 Finite difference methods

A broadly used numerical technique of approximating a derivative, in time (t) or space (x),
is by using the Finite Difference Method (FDM), of which the most basic techniques are the
Forward, Backward and Centered approximations [18]. These methods rely on the fact that
the derivative of a function at a certain position is defined as the limit [19]:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(3.2)

This approximation of the derivative becomes better the smaller h gets. In this case h is the
distance between between two consecutive point of the function f(x). However, h can never
be zero so there always is a certain error when using this approximation. To say anything
about this error the order of convergence of this approximation is investigated, therefore a
Taylor expansion is performed on f(x+ h):

f(x+ h) = f(x) + h · f ′(x) +
h2

2!
· f ′′(x) + h.o.t. (3.3)

where the large part of the higher order terms (h.o.t.) are neglected since the power of h
keeps increasing with these terms and thus its contribution to the solution almost completely
vanishes when h is sufficiently small. If the Taylor expansion is rewritten into an expression
for the derivative, it results in:

f ′(x) =
f(x+ h)− f(x)

h
− h

2
· f ′′(x) (3.4)

This equation is known as the Forward Finite Difference Method [18] with first order con-
vergence, since the error in this approximation drops by h. So the smaller h, the better the
approximation. The first order Backward Finite Difference Method is similar to this result
but instead the difference is taken between f(x) and f(x − h). By combining the Forward
and Backward approach a new method of approximating a derivative is obtain:
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f ′(x) =
f(x+ h)− f(x− h)

2h
− h2 · (h.o.t.). (3.5)

This equation is known as the Centered Finite Difference Method [18] and contrary to the
Forward and Backward method it has a second order of convergence. This is desirable since
faster convergence means one can choose a larger h resulting in less points that need to
be solved and thus less computation time to have an accurate result. This second order
convergence is a feature which one wants to have in case of the Forward method as well. It
is given by:

f ′(x) =
−3f(x) + 4f(x+ h)− f(x+ 2h)

2h
(3.6)

and this equation is known as the second order Forward Finite Difference Method [19].

3.1.3 Discrete governing momentum equation

The governing momentum equation from equation 2.1 consists of the time derivative of the
velocity profile polarised in the x-direction and of the spatial y-derivative of the shear-stress.
Now, since the shear-stress of a Power-law fluid, described by equation 2.15, depends on the
local velocity gradient, the governing momentum equation is a partial differential equation:

ρf
∂vx
∂t

= −∂τyx
∂y

= − ∂

∂y

(
−Km ·

∣∣∣∣∂vx∂y
∣∣∣∣m−1 · ∂vx∂y

)
(3.7)

In order to solve the governing momentum using finite difference methods it is necessary to
know the initial and boundary conditions of the system. These conditions give insight in
which methods are most suitable for which derivatives. The initial and boundary conditions
of the velocity profile vx(y, t) in the fluid caused by the shear-wave on the waveguide are:

I.C. : vx(y, 0) = 0

B.C. : vx(0, t) = B0 sin(ωt) ; vx(∞, t) = 0
(3.8)

The boundary condition gives the solution of velocity profile for every time step and the initial
condition causes that the shear-stress is zero everywhere. Therefore, the time-derivative of the
velocity profile will be approximated with the first order Forward Finite Difference method
and the shear-stress will be approximated with the Centered Finite Difference method, as
proposed by Borstlap [14]:

ρf

(
vn+1
i,k − v

n
i,k

∆t

)
= −

(
τni+1,k − τni−1,k

2∆y

)
(3.9)

and rewriting this equation gives an expression for the solution of the velocity profile in the
next time step n+ 1:
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vn+1
i,k = vni,k −

∆t

2ρf∆y
·
(
τni+1,k − τni−1,k

)
(3.10)

This expression is also known as the Forward Time Centered Space (FTCS) method and is
often used with parabolic partial differential equations [20]. The FTCS method has a first
order convergence in time and a second order convergence in space. So to maintain this
second order convergence when expressing the spatial derivatives of the velocity profile in the
shear-stress, the second order Forward Finite Difference Method of equation (3.6) is used.
This results in:

τni,k = −Km

∣∣∣∣−3vni,k + 4vni+1,k − vni+2,k

2∆y

∣∣∣∣m−1 · −3vni,k + 4vni+1,k − vni+2,k

2∆y
(3.11)

The shear-rate is of importance for the investigation of finding the rheological properties and
can be numerically expressed as:

γ̇ni,k =
−3vni,k + 4vni+1,k − vni+2,k

2∆y
(3.12)

Lastly, to solve equation 3.11, and thus equation 3.10, it must be checked if the shear-rate is
larger than zero or smaller than zero to give a correct sign to the expression of the shear-stress.
Therefore the following two equations are obtained:

If γ̇ni,k > 0 : τni,k = −Km ·
(
γ̇ni,k
)m

= −Km ·
(−3vni,k + 4vni+1,k − vni+2,k

2∆y

)m

If γ̇ni,k < 0 : τni,k = Km ·
(
−γ̇ni,k

)m
= Km ·

(
−
−3vni,k + 4vni+1,k − vni+2,k

2∆y

)m (3.13)

3.1.4 Coupling to wave in waveguide

The final step in mimicking the ultrasonic waveguide viscometer setup computationally is to
link the energy loss in the fluid to the energy loss in the wave in the waveguide. Based on
previous research [14] a constant IX can be used that couples the energy loss due to viscous
shear-stresses to the energy loss at a position z in the waveguide, which is given by:

IX(z) =
2

T

∫
T
X(z, t)dt with X(z, t) =

1

B(z)m+1
· τ0(z, t) · vx,0(z, t) (3.14)

The idea behind this coupling constant is that by treating B(z), the velocity amplitude at
position z, as a scaling factor for the shear-stress on the boundary τ0(z, t) ∼ B(z)m and the
velocity on boundary vx,0(z, t) ∼ B(z), one obtains a periodic relation X(z, t) which is inde-
pendent of the velocity amplitude. It is important to note that the remaining z-dependency
in X(z, t) refers to a shift in the periodic signal and not to the amplitude reduction as func-
tion of z, since has just been scaled out. Then, integrating X(z, t) over one period gives
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the same result independent of z, making IX(z) = constant for every value of z for a fixed
frequency. This leads to the following simplification of energy equation 2.10:

dB(z)

dz
= −B(z)m · IX

ρscsh
(3.15)

This result is then used in the numerical model to link the energy loss due to viscous shear-
stress to the energy loss in the waveguide. By approximating equation 3.15 using the Forward
Finite Difference method, the equation becomes:

Bn
i,k+1 = Bn

i,k −
∆z

ρscsh
· IX · (Bn

i,k)
m (3.16)

The big advantage of using IX is that it has to be calculated only once for one value of z
which saves a considerable amount of computation time.

3.1.5 Dimensionless numerical model

In this research the discrete governing momentum equation 3.10 is also utilised in a dimen-
sionless scenario. By using the dimensionless parameters described in equation 2.30 on the
equations 3.10, 3.12 and 3.13, the dimensionless discrete governing momentum, the dimen-
sionless numerical expression of the shear-rate and the dimensionless numerical expression of
the shear-stress are obtained. The dimensionless discrete governing momentum is:

v̂n+1
i,k = v̂ni,k − κ ·

∆t̂

2 ·∆ŷ
·
(
τ̂ni+1,k − τ̂ni−1,k

)
(3.17)

where n, i and k are corresponding to the time, y and z respectively, ∆t̂ is the dimensionless
time step and ∆ŷ the dimensionless step size in y. The dimensionless numerical expression
of the shear-rate and the dimensionless numerical expression of the shear-stress are given by:

ˆ̇γni,k =
−3v̂ni,k + 4v̂ni+1,k − v̂ni+2,k

2∆ŷ
(3.18)

If ˆ̇γni,k > 0 : τ̂ni,k = −
(

ˆ̇γni,k

)m
If ˆ̇γni,k < 0 : τ̂ni,k =

(
−ˆ̇γni,k

)m (3.19)

The dimensionless constant κ shown in equation 3.17 is given by equation 2.34. The reference
parameters for the density, viscosity frequency and amplitude used determine κ are given in
table 3.1.

ρf = 1000 [kg/m3] µ0 = 0.001 [Pa·s] ω = 2π·3.7 [MHz] A(0) = 80 [mm]

Table 3.1: Reference parameters used in dimensionless model. Note that v0 = A(0) · ω.
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3.1.6 Experimental setup waveguide and fluids

In this part the constants and parameters that will be used in the computations are shown.
Table 3.2 shows the material properties of the stainless steel waveguide, the used range of
frequencies and initial amplitude of the shear-wave in the waveguide. The material properties
and initial amplitude are taken from the previous research of Rook [12]. The frequency range
is chosen such that the frequency thickness product is smaller than 1.5 [MHz·mm], see section
2.1, and because this frequency range has the least power-loss in the waveguide as a function
of the frequency according Rook [12].

In table 3.3 the rheological properties and densities of the Newtonian fluid water and the
Power-law fluids Ketchup, Soybean oil and Ethylene-Glycol are shown.

ρs [kg/m3] cs [m/s] h [mm] W [m] L [m] f [MHz] A(0) [mm]

7876 3083 0.202 0.0802 0.2035 3.3-4.3 80

Table 3.2: Waveguide parameters used in numerical model with ρs, cs, h, W and L being the
density, shear-wave speed, thickness, width and length of the steel waveguide respectively.
Note that initial velocity amplitude v0 = A(0) · ω is a function of frequency ω = 2πf .

Fluid Flow index Consistency index Density

type m [-] Km [Pa·sm] ρf [kg/m3]

Water 1 0.001 997

Ketchup 0.3 6.47 1136

Soybean oil 0.51 2.18 930

Ethylene-Glycol 1.29 0.0011 1110

Table 3.3: Rheological properties and densities of water (Newtonian, Km=1 = µ0) [21],
Ketchup (shear-thinning) [22], Soybean oil (shear-thinning) [23] and Ethylene-Glycol (shear-
thickening) [24].
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3.1.7 Stability, convergence and benchmark

In the proposed numerical model the Forward Time Centered Space (FTCS) method is
utilised to solve the governing momentum equation, 3.7. It uses discrete step sizes in time
and space in order to obtain a physical result. It is important that if small errors occur in
the model these errors die out rather than magnify, also known as numerical stability. The
FTCS method for Newtonian fluids is stable this model if [19]:

µ0
ρf
· ∆t

(∆y)2
≤ 1

2
(3.20)

where µ0 is the dynamic viscosity, ρf the density, ∆t the step size in time and ∆y the step
size in space. In case of Power-law fluids it is tempting to state that the stability condition
can be defined as:

Km

ρf
· ∆t

(∆y)1+m
≤ 1

2
(3.21)

where m and Km are the rheological properties of the Power-law liquid. Note that if m = 1,
the Newtonian stability condition is retrieved since K1 = µ0. However, equation 3.21 did
not prove to be a strict stability condition since in some Power-law calculations stability
was achieved even though the value of equation 3.21 was larger than 1/2. Therefore, for
every individual set of step sizes (∆t,∆y) used to obtain results it is verified that the solu-
tion of the velocity profile of Power-law fluids is stable, i.e. errors die out rather than magnify.

On top of stability one wants that if smaller and smaller step sizes are taken, the solu-
tion of the system converges to a constant value (if known, the theoretical value). For all
models that will be used convergence of the velocity profile will be checked and the set of
step sizes (∆t,∆y) with the best characteristics, i.e. not too small because of computation
time and not too large because of accuracy, will be used in the numerical experiments. Thus
small changes occur in the velocity profile for smaller ∆t which eventually vanish.

The step sizes ∆y, in the fluid, and ∆z, in the waveguide, depend heavily on the rheologi-
cal properties since in case of a strong shear-thickening fluid the viscous skin depth will be
larger and the attenuation will be higher than in shear-thinning cases. Therefore for each fluid
a combination of ∆y and ∆z is chosen such that it matches their physical order of magnitude.

To check if the numerical model that will be used gives an accurate result a benchmark
case is investigated. The goal of this benchmark case is to obtain the attenuation coefficient
of water, m = 1, by using the amplitude measurements created by the numerical model. By
making use of the result of equation 2.27 the attenuation coefficient for water can be deter-
mined experimentally and its validity can be checked by comparing it with the analytical
solution of the attenuation coefficient given by equation 2.25.

In the figures 3.1a and 3.1b the analytical and numerical solutions to the velocity profiles
of an ultrasonic shear-wave in water are shown for two different time periods, namely for
t1 = 1T and t2 = 16T where T is one full period. In table 3.4 the experimentally determined
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attenuation coefficients are depicted with their corresponding deviation from the analytical
value.

The numerical velocity profile during the first period, 1T , deviates from the analytical ve-
locity profile whereas the velocity profile of the sixteenth period, 16T , coincides with the
analytical solution. This is due to the fact that during the first period the wave still has to
reach steady periodic flow. According to Ai [13] the time it takes before the velocity profile
reaching steady flow depends on the flow index m. This results in that the more periods are
taken, the more overlap between the numerical solution and the analytical solution and thus
more accurate results for the experimentally found attenuation coefficients.

Figure 3.2 shows the deviation between the theoretical and experimentally obtained vis-
cosity as a function of the number of periods taken. Even though a larger number of periods
taken makes for a smaller deviation from the theoretical value, the model is limited by com-
putation power. Therefore in this study a standard number of periods taken is: 8T , as a
balance between accuracy and computation time.

(a) Velocity profiles first period, 1T . (b) Velocity profiles sixteenth period, 16T .

Figure 3.1: Velocity profiles for two time periods of benchmark case (water). The step sizes
used: ∆t = 9.009 · 10−12 [s], ∆y = 5.875 · 10−9 [m], ∆z = 0.0025 [m] and used frequency:
f = 3.7 [MHz]. The dashed lines (- -) are the analytical solutions of the velocity profile
whereas the solid line (-) depicts the numerical solutions of the velocity profile.

# of periods αexp [m−1] Deviation from theory [%]

1T 0.6442 7.17

16T 0.6911 0.409

Table 3.4: Benchmark case (water). Obtained attenuation coefficients compared to the the-
oretical solution to the attenuation coefficient: αth = 0.6940 [m−1]. The step sizes used:
∆t = 9.009 · 10−12 [s] and ∆y = 5.875 · 10−9 [m]. Immersion depths l1,2 = nl1,2 · ∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 0.0025 [m]. Frequency used: f = 3.7 [MHz].
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Figure 3.2: Deviation between the theoretical and experimentally obtained viscosity of water
as a function of the number of periods taken using the ultrasonic waveguide viscometer model;
frequency used: f = 3.7 [MHz].

3.2 Methods of retrieving the rheological properties

This section focuses on developing methods to obtain the rheological properties m and Km of
the Power-law fluid ketchup (shear-thinning), soybean oil (shear-thinning) and ethylene-glycol
(shear-thickening) using the numerically created amplitude measurements of the numerical
viscometer. There are six different methods developed. These methods are numbered with
roman numerals for clarity when comparing the results in chapter 4.

Methods I, II, III and IV make use of equations 2.41 and 2.42, which are based on the
shear-rate of equation 2.37, as solution to the energy equation 2.10.

Method V uses equations 2.50 and 2.51, which are based on the shear-rate of equation 2.48,
as solution to the energy equation 2.10.

Methods VI and VII use equations 2.54 and 2.55, which are based on the shear-rate of
equation 2.52, as solution to the energy equation 2.10.
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3.2.1 Method I

The idea of this method is that the solution of the energy equation of a Power-law fluid,
equation 2.41, can be linearised such that the rheological property Km can be isolated as
constant and the created variable contains all the other parameters such as the flow index
m, the immersion depth l and the frequency ω. By varying the immersion depth and fre-
quency separately, two linear fitting methods are proposed: Method I using immersion depth
as variable and Method II using frequency as variable.

Method I is proposed by Rohde [11] and investigated by Borstlap [14]. By rewriting the
solution to the energy equation 2.41 in a linear form such that it goes through the origin,
given in equation 3.24, the flow index m needs to be iterated to find the corresponding Km.
The only physical variable that is changed is the immersion depth l, the frequency ω = 2π ·3.7
[MHz] is fixed. The initial velocity amplitude is given by: B0 = −ω · A(0). The proposed
method is given by the following set of equations:

∆B∗ω(l) ≡
(
B(ω, l)1−m −B0(ω, 0)1−m

)2/(2−m)
(3.22)

∆l∗ ≡
(

4
P3(m)

ρscsh
|1−m| · (ρfω)m/2 · l

)2/(2−m)

(3.23)

∆B∗ω(l) = Km ·∆l∗ (3.24)

To find the values for m and Km, as described by Borstlap [14], the data set [∆l∗,∆B∗ω(l)] is
created by using equations 3.22 and 3.23 and the measured signals B(ω, l) from the numerical
viscometer for each fluid, equation 3.16. These data sets are determined for a range of flow
indices m. The range of the m-values used are mfit:[0.1, 0.995] with step size ∆m = 0.0045
for ketchup and soybean oil and mfit:[1.005, 1.9] with step size ∆m = 0.0045 for ethylene-
glycol. The created data sets are then fitted to a linear equation yfit = a ·∆l∗ + b using the
POLYFIT function of NumPy [25]. By minimising the following equation the value for m
and Km can found:

ε(mfit) =

Nl∑
k=1

√
(yfit(lk,mfit)−∆B∗ω(lk,mfit))2 (3.25)

with immersion depth: lk = k ·∆z, where k is the number of steps with maximum Nl = 200.
If ε(mfit)→ 0 the corresponding flow index mfit is the flow index of the used Power-law fluid
and the value of (a) is the same as the consistency index Km of the used Power-law fluid.

3.2.2 Method II

Method II is based on method I which linearises the energy equation of a Power-law fluid,
equation 2.41. However, in this method the frequency ω is used as variable and not the
immersion depth l. The set of equations used in this method come from the equations of
Borstlap [14], equations 3.22, 3.23 and 3.24. To clarify that the immersion depth is fixed
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in this method l is put as a subscript in ∆B∗l (ω). The fixed immersion depth is given by:
l = nl ·∆z, where nl is the number of step taken and ∆z is the step size per fluid. The initial
velocity amplitude is given by: B0 = −ω ·A(0). By fitting the created data set [∆l∗,∆B∗l (ω)]
to a linear function, m and Km can be found.

∆B∗l (ω) ≡
(
B(ω, l)1−m −B0(ω, 0)1−m

)2/(2−m)
(3.26)

∆l∗ ≡
(

4
P3(m)

ρscsh
|1−m| · (ρfω)m/2 · l

)2/(2−m)

(3.27)

∆B∗l (ω) = Km ·∆l∗ (3.28)

The measured data sets [ω,B(ω, l)] per fluid, calculated using equation 3.16, are used to find
expression of ∆l∗ and ∆B∗l (ω), determined by equations 3.26 and 3.27, and can be written
as linear equation 3.28. These data sets are determined for a range of flow indices m. The
range of the m-values used are mfit:[0.1, 0.995] with step size ∆m = 0.0045 for ketchup and
soybean oil and mfit:[1.005, 1.9] with step size ∆m = 0.0045 for ethylene-glycol. The created
data sets are then fitted to a linear equation yfit = a · ∆l∗ + b using the POLYFIT func-
tion of NumPy [25]. By minimising the following equation the value for m and Km can found:

ε(mfit) =
∑
ωn

√
(yfit(ωn,mfit)−∆B∗l (ωn,mfit))2 (3.29)

The range of frequencies that will be used is ωn:[3.3-4.3] [MHz] with step sizes of 0.1 [MHz].
If ε(mfit)→ 0 the corresponding flow index mfit is the flow index of the used Power-law fluid
and the value of (a) found by the linear fit is equal to the consistency index Km of the used
Power-law fluid.

3.2.3 Method III

The methods I and II from sections 3.2.1 and 3.2.2 need a solution to the initial velocity am-
plitude at zero immersion depth B0(ω) to be able to work. This initial velocity amplitude can
also be seen as the energy transfer from the transducer to the waveguide, but since this en-
ergy transfer is practically not ideal and frequency dependent, it is not known experimentally.
Method III and IV are developed to find a way of eliminating the initial velocity amplitude
B0(ω) and retrieving the rheological properties m and Km subsequently, making these meth-
ods experimentally possible. The difference between these methods is due to the usage of
two different conditions on B0(ω) in order to eliminate this term. Method III is discussed first.

Method III makes use of equations 2.41 and 2.42, which are based on the shear-rate of
equation 2.37, as solution to the energy equation 2.10. The two physical variables that can
be controlled experimentally and appear in the solution of the energy equation are the im-
mersion depth l and the frequency ω. By using two different immersion depths, l1 and l2,
and two different frequencies, ω1 and ω2, four sets of solutions to equation 2.41 can be found:
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ω1, l1 : B(ω1, l1)
1−m −B0(ω1, l1)

1−m = 2 · l1 · (1−m) · αm(ω1) (3.30)

ω1, l2 : B(ω1, l2)
1−m −B0(ω1, l2)

1−m = 2 · l2 · (1−m) · αm(ω1) (3.31)

ω2, l1 : B(ω2, l1)
1−m −B0(ω2, l1)

1−m = 2 · l1 · (1−m) · αm(ω2) (3.32)

ω2, l2 : B(ω2, l2)
1−m −B0(ω2, l2)

1−m = 2 · l2 · (1−m) · αm(ω2) (3.33)

As can be seen four different velocity amplitudes B(ω, l) are produced, but also four initial
velocity amplitudes. Although the initial amplitude B0(ω) can differ per frequency it is the
same for fixed frequency and different immersion depths since B0(ω) = −ω ·A(0), leading to:

B0(ω1, l1) = B0(ω1, l2) = B0(ω1) and B0(ω2, l1) = B0(ω2, l2) = B0(ω2) (3.34)

By using the result of equation 3.34 and taking the difference between equations 3.30 and
3.31 and between equations 3.32 and 3.33, these unknown initial velocity amplitude terms
drop out. What remains are two equations with two unknowns, namely the flow index m
and the consistency index Km which is hidden in αm (equation 2.42).

B(ω1, l1)
1−m −B(ω1, l2)

1−m = 2 · (1−m) · αm(ω1) · (l1 − l2) (3.35)

B(ω2, l1)
1−m −B(ω2, l2)

1−m = 2 · (1−m) · αm(ω2) · (l1 − l2) (3.36)

The next step is to create two expressions to determine the rheological properties m and Km

separately. To do so, equation 3.35 is divided by equation 3.36. Since the only difference
between the αm(ω)’s are the frequency terms, see equation 2.42, what remains is:

B(ω1, l1)
1−m −B(ω1, l2)

1−m

B(ω2, l1)1−m −B(ω2, l2)1−m
=

(
ω1

ω2

)m/2
(3.37)

This equation does not contain Km as it has been divided out. Therefore, equation 3.37
will be used to determine the flow index m. This is done by using the measured velocity
amplitudes of the fluids and the corresponding two immersion depths l1, l2 and frequencies
ω1, ω2. The immersion depths and frequencies which are used in the calculations of m per
fluid are given in the corresponding result section. The flow index m is found using the
fsolve-function from NumPy [25].
In order to find an expression to calculate the consistency index Km, equation 3.35 (or 3.36
can also be used) is rewritten such that the following expression for Km is obtained:

Km =

[
− B(ω1, l1)

1−m −B(ω1, l2)
1−m

4 · |1−m| · (l1 − l2) · P3(m) · (ρfω1)
m/2
· ρscsh

]2/(2−m)

(3.38)

This equation is used to find the consistency index Km. This is done by using the measured
velocity amplitudes of the fluids and the corresponding two immersion depths l1, l2 and
frequencies ω1, ω2. Furthermore, the value for the flow index m found by equation 3.37 and
the constant from table 3.2 are used in the calculation of Km.
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3.2.4 Method IV

This method makes use of equations 2.41 and 2.42, which are based on the shear-rate of equa-
tion 2.37, as solution to the energy equation 2.10. This method is developed to find a way of
eliminating the initial velocity amplitude B0(ω) and retrieving the rheological properties m
and Km subsequently, same as method III. The difference between method III and IV comes
from a different condition on the experimentally unknown initial velocity amplitude B0(ω).

As stated before, the initial velocity amplitude from the transducer to the waveguide is
defined as: B0(ω) = −ω · A(0). This implies that the initial velocity amplitude terms for
different frequencies ω1, ω2 at a fixed immersion depths l1, l2 are equal if:

B0(ω1, l1)

ω1
=
B0(ω2, l1)

ω2
and

B0(ω1, l2)

ω1
=
B0(ω2, l2)

ω2
(3.39)

Consider again the equations 3.30, 3.31, 3.32, 3.33. In order to remove the unknown B0(ω)’s
by using the result in equation 3.39, these four equation need to be divided by their corre-
sponding frequency (ω1−m

1,2 ) in the following way:

ω1, l1 :
B(ω1, l1)

1−m

ω1−m
1

− B0(ω1, l1)
1−m

ω1−m
1

= 2 · l1 · (1−m) · αm(ω1)

ω1−m
1

(3.40)

ω1, l2 :
B(ω1, l2)

1−m

ω1−m
1

− B0(ω1, l2)
1−m

ω1−m
1

= 2 · l2 · (1−m) · αm(ω1)

ω1−m
1

(3.41)

ω2, l1 :
B(ω2, l1)

1−m

ω1−m
2

− B0(ω2, l1)
1−m

ω1−m
2

= 2 · l1 · (1−m) · αm(ω2)

ω1−m
2

(3.42)

ω2, l2 :
B(ω2, l2)

1−m

ω1−m
2

− B0(ω2, l2)
1−m

ω1−m
2

= 2 · l2 · (1−m) · αm(ω2)

ω1−m
2

(3.43)

By using the result of equation 3.39 and taking the difference between equations 3.40 and
3.42 and between equations 3.41 and 3.43, the unknown initial velocity amplitude terms drop
out. What remains are two equations with two unknowns, namely the flow index m and the
consistency index Km which is hidden in αm(ω) (equation 2.42).

[
B(ω1, l1)

ω1

]1−m
−
[
B(ω2, l1)

ω2

]1−m
= 2 · l1 · (1−m) ·

[
αm(ω1)

ω1−m
1

− αm(ω2)

ω1−m
2

]
(3.44)

[
B(ω1, l2)

ω1

]1−m
−
[
B(ω2, l2)

ω2

]1−m
= 2 · l2 · (1−m) ·

[
αm(ω1)

ω1−m
1

− αm(ω2)

ω1−m
2

]
(3.45)

Similar to method III, the next step is to create two separate expressions to determine the
rheological properties m and Km. The expression to find the flow index m equation 3.44 is
divided by equation 3.45. Since the only difference between the RHS’s of the equations is the
immersion depth, what remains is:
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[
B(ω1,l1)

ω1

]1−m
−
[
B(ω2,l1)

ω2

]1−m
[
B(ω1,l2)

ω1

]1−m
−
[
B(ω2,l2)

ω2

]1−m =
l1
l2

(3.46)

The only unknown of this equation is the flow index m and can therefore be found. This
is done by using the measured velocity amplitudes of the fluids and the corresponding two
immersion depths l1, l2 and frequencies ω1, ω2. The immersion depths and frequencies which
are used in the calculations of m per fluid are given in the corresponding result section. The
flow index m is found using the fsolve-function from NumPy [25].
To find the expression to calculate the consistency index Km, equation 3.44 (or 3.45) is
rewritten such that:

Km =

 B(ω1,l1)1−m

ω1−m
1

− B(ω2,l1)1−m

ω1−m
2

ω
m/2
1 − ωm/22

· ρscsh

4 · |1−m| · l1 · P3(m) · ρm/2f

2/2−m

(3.47)

This equation is used to find the consistency index Km. This is done by using the measured
velocity amplitudes of the fluids and the corresponding two immersion depths l1, l2 and
frequencies ω1, ω2. Furthermore, the value for the flow index m found by equation 3.46, the
fluid’s density ρf and the constant from table 3.2 are used in the calculation of Km.

3.2.5 Method V

Method V uses equations 2.50 and 2.51, which are based on the shear-rate of equation 2.48,
as solution to the energy equation 2.10. Notice that the shear-rate used in this method differs
from the shear-rate, equation 2.37, used in methods I, II, III and IV. However, the approach
to find the solutions of the flow index m and the consistency index Km in method V by
eliminating the initial velocity amplitude B0(ω) is similar to the approach used in method
IV, section 3.2.4.

The immersion depth l and the frequency ω are the two variables that can be controlled
experimentally and appear in the solution to the energy equation 2.50. Using two different
immersion depths, l1 and l2, and two different frequencies, ω1 and ω2, four sets of solutions
to equation 2.50 can be found. By dividing these four equation by a specific power of the
corresponding frequency (ω1−m

1,2 ), the four obtained equations are:

ω1, l1 :
B(ω1, l1)

1−m

ω1−m
1

− B0(ω1, l1)
1−m

ω1−m
1

= 2 · l1 · (1−m) · αs(ω1)

ω1−m
1

(3.48)

ω1, l2 :
B(ω1, l2)

1−m

ω1−m
1

− B0(ω1, l2)
1−m

ω1−m
1

= 2 · l2 · (1−m) · αs(ω1)

ω1−m
1

(3.49)

ω2, l1 :
B(ω2, l1)

1−m

ω1−m
2

− B0(ω2, l1)
1−m

ω1−m
2

= 2 · l1 · (1−m) · αs(ω2)

ω1−m
2

(3.50)

ω2, l2 :
B(ω2, l2)

1−m

ω1−m
2

− B0(ω2, l2)
1−m

ω1−m
2

= 2 · l2 · (1−m) · αs(ω2)

ω1−m
2

(3.51)
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By using the result of equation 3.39 and taking the difference between equations 3.48 and
3.50 and between equations 3.49 and 3.51, the unknown initial velocity amplitude terms
dropout. What remains are two equations with two unknowns, namely the flow index m and
the consistency index Km which is hidden in αs(ω) (equation 2.51):

[
B(ω1, l1)

ω1

]1−m
−
[
B(ω2, l1)

ω2

]1−m
= 2 · l1 · (1−m) ·

[
αs(ω1)

ω1−m
1

− αs(ω2)

ω1−m
2

]
(3.52)

[
B(ω1, l2)

ω1

]1−m
−
[
B(ω2, l2)

ω2

]1−m
= 2 · l2 · (1−m) ·

[
αs(ω1)

ω1−m
1

− αs(ω2)

ω1−m
2

]
(3.53)

To create two separate expressions to determine the rheological propertiesm andKm equation
3.52 is divided by equation 3.53. Since the only difference between the RHS’s of these
equations is the difference in immersion depth, what remains is:[

B(ω1,l1)
ω1

]1−m
−
[
B(ω2,l1)

ω2

]1−m
[
B(ω1,l2)

ω1

]1−m
−
[
B(ω2,l2)

ω2

]1−m =
l1
l2

(3.54)

Notice that this equation is equal to equation 3.46 in method IV. Equation 3.54 is used to
calculated the flow index m. This is done by using the measured velocity amplitudes of
the fluids and the corresponding two immersion depths l1, l2 and frequencies ω1, ω2. The
immersion depths and frequencies which are used in the calculations of m per fluid are given
in the corresponding result section. The flow index m is found using the fsolve-function from
NumPy [25].

To find the expression to calculate the consistency index Km, equation 3.52 (or 3.53) is
rewritten such that:

Km =


B(ω1,l1)1−m

ω1−m
1

− B(ω2,l1)1−m

ω1−m
2(

ωm2+m−1
1

Bm2−m
0 (ω1)

) 1
m+1

−
(

ωm2+m−1
2

Bm2−m
0 (ω2)

) 1
m+1

· ρscsh

4 · |1−m| · l1 · P3(m) · ρ
m

m+1

f


m+1

(3.55)

This equation is used to calculated the consistency index Km. This is done by using the
measured velocity amplitudes of the fluids and the corresponding two immersion depths l1, l2
and frequencies ω1, ω2. Furthermore, the value for the flow index m found by equation 3.54,
the fluid’s density ρf and the constant from table 3.2 are used in the calculation of Km.

However, in equation 3.55 terms of the initial velocity amplitude are still present, mak-
ing this method undesirable experimentally. If B0(ω) would be known, this method would be
usable experimentally. Numerically, the values are calculated by using B0(ω) = −ω ·A(0).
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3.2.6 Method VI

This method uses equations 2.54 and 2.55 as solution to the energy equation 2.10, which are
based on the shear-rate of equation 2.52. Notice that the shear-rate used in this method
differs from the shear-rates used in methods I, II, III, IV and V, which use equation 2.37
and equation 2.48 for the shear-rate respectively. The approach to find the solutions of the
flow index m and the consistency index Km in method VI by eliminating the initial velocity
amplitude B0(ω) is similar to the approach used in method IV, section 3.2.4.

The immersion depth l and the frequency ω are the two variables that can be controlled
experimentally and appear in the solution to the energy equation 2.54. Using two different
immersion depths, l1 and l2, and two different frequencies, ω1 and ω2, four sets of solutions
to equation 2.54 can be found. By dividing these four equation by a specific power of the
corresponding frequency (ω1−m

1,2 ), the four obtained equations are:

ω1, l1 :
B(ω1, l1)

1−m

ω1−m
1

− B0(ω1, l1)
1−m

ω1−m
1

= 2 · l1 · (1−m) · αr(ω1)

ω1−m
1

(3.56)

ω1, l2 :
B(ω1, l2)

1−m

ω1−m
1

− B0(ω1, l2)
1−m

ω1−m
1

= 2 · l2 · (1−m) · αr(ω1)

ω1−m
1

(3.57)

ω2, l1 :
B(ω2, l1)

1−m

ω1−m
2

− B0(ω2, l1)
1−m

ω1−m
2

= 2 · l1 · (1−m) · αr(ω2)

ω1−m
2

(3.58)

ω2, l2 :
B(ω2, l2)

1−m

ω1−m
2

− B0(ω2, l2)
1−m

ω1−m
2

= 2 · l2 · (1−m) · αr(ω2)

ω1−m
2

(3.59)

By using the result of equation 3.39 and taking the difference between equations 3.56 and
3.58 and between equations 3.57 and 3.59, the unknown initial velocity amplitude terms
dropout. What remains are two equations with two unknowns, namely the flow index m and
the consistency index Km which is hidden in αr(ω) (equation 2.55):

[
B(ω1, l1)

ω1

]1−m
−
[
B(ω2, l1)

ω2

]1−m
= 2 · l1 · (1−m) ·

[
αr(ω1)

ω1−m
1

− αr(ω2)

ω1−m
2

]
(3.60)

[
B(ω1, l2)

ω1

]1−m
−
[
B(ω2, l2)

ω2

]1−m
= 2 · l2 · (1−m) ·

[
αr(ω1)

ω1−m
1

− αr(ω2)

ω1−m
2

]
(3.61)

In order to create two separate expressions to determine the rheological properties m and
Km equation 3.60 is divided by equation 3.61. Since the only difference between the RHS’s
of these equations is the difference in immersion depth, what remains is:

[
B(ω1,l1)

ω1

]1−m
−
[
B(ω2,l1)

ω2

]1−m
[
B(ω1,l2)

ω1

]1−m
−
[
B(ω2,l2)

ω2

]1−m =
l1
l2

(3.62)
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Notice that this equation is equal to equation 3.46 in method IV and equation 3.54 in method
V. Equation 3.62 is used to calculated the flow index m. This is done by using the measured
velocity amplitudes of the fluids and the corresponding two immersion depths l1, l2 and fre-
quencies ω1, ω2. The immersion depths and frequencies which are used in the calculations of
m per fluid are given in the corresponding result section. The flow index m is found using
the fsolve-function from NumPy [25].

To find the expression to calculate the consistency index Km, equation 3.60 (or 3.61) is
rewritten such that:

Km = ρscsh ·
B(ω1,l1)1−m

ω1−m
1

− B(ω2,l1)1−m

ω1−m
2

4 · |1−m| · l1 · P3(m) · ρm/2f

·

 ω
3m−2

2
1

[µapp(ω1)]m/2
− ω

3m−2
2

2

[µapp(ω2)]m/2

−1 (3.63)

This equation is used to calculate the consistency index Km by using measured velocity
amplitudes of the fluids and the corresponding two immersion depths l1, l2 and frequencies
ω1, ω2. Furthermore, the value for the flow index m found by equation 3.62, the fluid’s density
ρf and the constant from table 3.2 are used in the calculation of Km. Lastly, two solutions
to the apparent viscosity term µapp(ω) need to be obtained to find Km using equation 3.63.
Two different approaches to find these values are used: Approach A uses a numerical solution
and Approach B uses a analytical solution.

Approach A

By using the solution to shear-rate on the boundary (i = 0) of equation 3.12 in combination
with the theoretical expression of the apparent viscosity in Power-law fluids, equation 2.14,
the numerical solution of the apparent viscosity is obtained:

µapp(ω) = Km · |γ̇i=0|m−1 (3.64)

To obtain a single value for µapp(ω), the average value of equation 3.64 is taken since γ̇i=0 is
a function of time, equation 3.12. The rheological properties per fluid used in calculation of
γ̇i=0 and 3.64 are given in table 3.3.

Since the solution of µapp(ω) is calculated numerically, this approach cannot be used ex-
perimentally for the calculation of the consistency index Km in equation 3.63. Therefore, in
order to find Km using equation 3.63 experimentally, Approach B is proposed.

Approach B

In this approach an analytical expression of the apparent viscosity µapp(ω) is proposed to find
the consistency index Km in equation 3.63 experimentally. By using theoretical expression
2.14 of the apparent viscosity, the following equation is obtained:

µapp(ω) ∼ Km · ωm−1 (3.65)
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where the assumption has been made that γ̇PL ∼ ω, which most certainly needs revision
in follow-up studies. This proposed apparent viscosity has the correct units [Pa·s], contains
the rheological properties m, Km and frequency term ω. Substituting expression 3.65 of the
apparent viscosity in equation 3.63 results in a new expression to find the consistency index
Km. Rewriting yields the following equation:

Km =

ρscsh · B(ω1,l1)1−m

ω1−m
1

− B(ω2,l1)1−m

ω1−m
2

4 · |1−m| · l1 · P3(m) · ρm/2f

·

ω−m2+2m
2

1

ω1−m
1

− ω
−m2+2m

2
2

ω1−m
2

−1


2
2−m

(3.66)

This equation is used to calculate the consistency index Km with Approach B by using the
measured velocity amplitudes of the fluids and the corresponding two immersion depths l1,
l2 and frequencies ω1, ω2. The value for the flow index m calculated by equation 3.62, the
fluid’s density ρf and the constant from table 3.2 are used in this calculation of Km.
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Results and discussion

This chapter displays and discusses the obtained results of the proposed methods I, II, III,
IV, V and VI by using the numerical viscometer described in chapter 3. All the parameters
necessary in the determination of the results are given in that chapter, otherwise it will be
mentioned accordingly. The goal of these experimental methods is to retrieve the rheological
properties of known Power-law fluids accurately using the amplitude measurements of the
ultrasonic waveguide viscometer.

First the solutions to the dimensional velocity profiles and attenuation of the shear-wave
amplitudes are shown for fluids ketchup (shear-thinning), soybean oil (shear-thinning) and
ethylene-glycol (shear-thickening) by using equations 3.10 and 3.16. Subsequently, the di-
mensionless velocity profiles and dimensionless shear-rates are shown.

4.1 Velocity profile and amplitude attenuation

The dimensional velocity profiles of the used fluids and their amplitude attenuation of the
shear-wave with a frequency of f = 3.7 [MHz] in the waveguide are displayed in this section.
The dimensional velocity profile plots for ketchup, soybean oil and ethylene-glycol are shown
in the figures 4.1a, 4.2a and 4.3a. It is important to note the difference in the order of mag-
nitude of the y-axes between the three fluids. It shows that the penetration depth (viscous
skin depth) of the shear-wave in ethylene-glycol is larger than the shear-wave in ketchup or
soybean oil. The shape of the velocity profiles also differs for each of the fluids.

The figures 4.1b, 4.2b and 4.3b show the amplitude attenuation of the shear-wave in the
waveguide as a function of z, the travelled distance of the wave in the immersed waveguide.
The plots show a large difference in length travelled until the velocity amplitude reaches
zero value. This difference in total travelled length until it vanishes relates to the amount
of attenuation of the shear-wave in the waveguide due to the rheological properties of the
fluid in which it is immersed. The more viscous a fluid, the more energy is dissipated in that
fluid and thus the higher the attenuation of the shear-wave in the waveguide. Therefore, the
steeper attenuation of the velocity amplitude of ethylene-glycol in comparison with ketchup
was expected.
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Since the actual waveguide has a length of about 20 [cm] the attenuation distance of ethylene-
glycol is too short to give measurable amplitude attenuation in the physical setup. For
ketchup the attenuation distance seems too large for the signal in the physical setup to be
measurably attenuated. It would be interesting to verify the experimental possibility of
measurable amplitude differences for fluids like ketchup and ethylene-glycol to check if the
methods described in chapter 3 are feasible experimentally.

(a) Velocity profile (b) Amplitude attenuation

Figure 4.1: Ketchup (m = 0.3, Km = 6.47 [Pa·sm]): Developed dimensional velocity profile
and amplitude attenuation plot. The step sizes used are: ∆t = 9.009 · 10−12 [s], ∆y =
4.677 · 10−9 [m], ∆z = 158.5 [m] and used frequency: f = 3.7 [MHz].

(a) Velocity amplitude (b) Amplitude attenuation

Figure 4.2: Soybean oil (m = 0.51, Km = 2.18 [Pa·sm]): Developed dimensional velocity
profile and amplitude attenuation plot. The step sizes used are: ∆t = 9.009 · 10−12 [s],
∆y = 2.226 · 10−8 [m], ∆z = 2.507 [m] and used frequency: f = 3.7 [MHz].
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(a) Velocity profile (b) Amplitude attenuation

Figure 4.3: Ethylene-Glycol (m = 1.29, Km = 0.0011 [Pa·sm]): Developed dimensional
velocity profile and amplitude attenuation plot. The step sizes used are: ∆t = 9.009 · 10−12

[s], ∆y = 6.831 · 10−8 [m], ∆z = 3.433 · 10−5 [m] and used frequency: f = 3.7 [MHz].

4.2 Velocity profiles and shear-rates constant κ condition

In this section results are shown of dimensionless velocity profiles, dimensionless shear-rates
and dimensional shear-rates using the constant κ condition of equation 2.44. These results are
obtained by using equations 3.17, 3.18 and 3.12 respectively. Using the reference parameters
of table 3.1, the dimensionless constant κ, equation 2.34, can be calculated.

4.2.1 Dimensionless velocity profile

Using the following combinations of rheological properties two different values for κ are cal-
culated, namely: m = 0.5 with Km = 2.5 · 103 [Pa·sm] result in κ = 0.83, and m = 1.5
with Km = 4.1 · 10−10 [Pa·sm] results in κ = 1.23. The figure 4.4a shows the dimensionless
velocity profile for κ = 0.83 and 4.4b shows the dimensionless velocity profile for κ = 1.23.
The dotted lines in both figures represent the dimensionless result of the velocity profiles for
m = 0.5 and m = 1.5 shown in figure 2.4 from Ai & Vafai.

In section 2.6.3 the idea is proposed that the dimensionless shear-rates on the boundary
for different combinations of rheological properties are equal if their corresponding κ’s are
equal. This idea was deduced from the result of figure 2.4 from Ai & Vafai [13] and expressed
in equation 2.43. In the next section the dimensionless velocity profiles for combinations of
rheological properties (m,Km) and constant κ are shown.

4.2.2 Dimensionless velocity profiles and shear-rates constant κ

In this section dimensionless velocity profile plots are shown using a constant value for κ at
four different time intervals created by two different sets of rheological properties (m,Km).
The used κ’s are κ = 0.83 and κ = 1.23 which are also used in figure 4.4. In the figures 4.5
and 4.6 the dimensionless velocity profiles are shown for these values of κ. The two sets of
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(a) m = 0.5, Km = 2.5 · 103 [Pa·sm], κ = 0.83

(b) m = 1.5, Km = 4.1 · 10−10 [Pa·sm], κ = 1.23

Figure 4.4: Dimensionless velocity profiles for κ = 0.83 and κ = 1.23 at four time intervals
(solid lines) compared to dimensionless result of the velocity profiles for m = 0.5 and m = 1.5
(dashed lines) shown in figure 2.4 [13]. The reference constants used to determine κ are given
in table 3.1. The non-dimensional step size are: ∆t̂ = 2.094 · 10−4 and ∆ŷ = 3.000 · 10−2.

rheological properties (m,Km) used to calculated the constant κ are given in the captions
of the figures. The flow profile of the velocity needs time to develop, about one full period,
which causes that the developing velocity profiles are different from the developed velocity
profiles. Therefore, the result are shown for both developing flow and developed flow. The
dimensionless step sizes ∆t̂ and ∆ŷ are the same as the step sizes used in figure 4.4.
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In figure 4.5a and 4.5b, for developing flow and fully developed flow, it can be seen that the
dimensionless velocity profiles near the boundary almost overlap for different flow indices,
for constant κ = 0.83. This is a promising result for finding dimensionless equal shear-rates
on the boundary. The same result is obtain if constant κ = 1.23 is used, see figure 4.6a and
4.6b.

(a) Developing flow (b) Fully developed flow

Figure 4.5: Dimensionless velocity profile plots for different flow index m at constant κ. Using
κ = 0.83 with the used rheological properties sets: m1 = 0.5, Km1 = 2.5 · 103 [Pa·sm] and
m2 = 1.5, Km2 = 2.79 · 10−10 [Pa·sm].

(a) Developing flow (b) Fully developed flow

Figure 4.6: Dimensionless velocity profile plots for different flow index m at constant κ. Using
κ = 1.23 with the used rheological properties sets: m1 = 0.5, Km1 = 3.68 · 102 [Pa·sm] and
m2 = 1.5, Km2 = 4.1 · 10−10 [Pa·sm].
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(a) κ = 0.83 (b) κ = 1.23

Figure 4.7: Dimensionless shear-rate on the boundary plots as function of dimensionless time
for different flow index m at constant κ.

The dimensionless shear-rate on the boundary as a function of dimensionless time t̂ of
figures 4.5 and 4.6 can be determined numerically using equation 3.18. The result for using
constant κ = 0.83 and κ = 1.23 for the dimensionless shear-rate are shown in the figures 4.7a
and 4.7b. The two sets of rheological properties (m,Km) used to calculated the constant κ
are given in the captions of the figures 4.5 and 4.6. The results are shown for four periods to
account for the development of the flow. In the calculation of the dimensionless shear-rates
of figures 4.7a 4.7b the dimensionless time step ∆t̂ that was used is twice as small as the
previously used ∆t̂ = 2.094 · 10−4. The reason for this is that fluctuations can occur in the
dimensionless shear-rate if its value is around zero and if m = 0.5 and Km is large. Reducing
the dimensionless time step reduce these fluctuations.

In figures 4.7a and 4.7b the overlap of the dimensionless shear-rates on the boundary for
different flow indices m for equal κ is significant, especially in case of κ = 1.23. The dimen-
sionless shear-rates show deviant behaviour during the first full period t̂ =[0-2π], a result from
the development of the flow and after this first period it shows developed behaviour. Also,
notice the difference in the shape of the shear-rate around zero for m = 0.5 and m = 1.5 what
seems to arise from the difference between shear-thinning and shear-thickening properties.

4.2.3 Dimensional shear-rates constant κ

The dimensional shear-rate on the boundary as a function of dimensional time for κ = 0.83
with the rheological properties (m = 0.5, Km = 2.5 · 103 [Pa·sm]) and κ = 1.23 with the
rheological properties (m = 1.5, Km = 4.1 · 10−10 [Pa·sm]) are shown in the figures 4.8a and
4.8b. The step sizes used are: ∆t = 4.504 · 10−12 [s], ∆y = 6.222 · 10−9 [m]. The dimensional
shear-rates show the same behaviour and overlap as their corresponding dimensionless results
from figures 4.7a and 4.7b. This result supports the idea that the constant-κ condition can
be used to find equal shear-rates on the boundary for different flow indices, equation 2.47.
Therefore, the proposed shear-rate on the boundary of equation 2.48 will be used to solve
the Power-law energy equation 2.10.
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(a) κ = 0.83 (b) κ = 1.23

Figure 4.8: Dimensional shear-rate on the boundary plots as function of dimensional time
for different flow index m at constant κ.

4.3 Methods for retrieving rheological properties

This section shows and discusses the results obtained using methods I, II, III, IV, V and VI
described in chapter 3. The Power-Law fluids used in these methods are ketchup, soybean
oil and ethylene-glycol. The objective is to retrieve the rheological properties, the flow index
m and the consistency index Km, of these fluids and compare them to their corresponding
literature values.

4.3.1 Method I

The results of the retrieved rheological properties using method I of section 3.2.1 for ketchup,
soybean oil and ethylene-glycol are displayed in tables 4.1, 4.3 and 4.2 compared to their
corresponding literature values. The found flow indices m are very close to the literature
values for all fluids but the error in the found consistency index Km of ketchup and soybean
oil is more than O(101) and for ethylene-glycol even more than O(103). It is noted that by
changing the fixed frequency between the values of 3.3-4.3 [MHz] the values of Km change
less than 1% between frequencies.
Furthermore, Km appears to be very sensitive to changes in the found m. This sensitivity
in Km due to a changing m corresponds with results of previous research investigating this
method and ideas are proposed to study this phenomenon [14].
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Ketchup Lit. value I

m [-] 0.3 0.2979

Km [Pa· sm] 6.47 70.88

Table 4.1: Literature values of Ketchup for the flow index and consistency index compared
to the retrieved values using method I. Used frequency: ω = 2π · 3.7 [MHz]. Used step size:
∆z = 158.5 [m].

Soybean oil Lit. value I

m [-] 0.51 0.5093

Km [Pa· sm] 2.18 33.32

Table 4.2: Literature values of Soybean oil for the flow index and consistency index compared
to the retrieved values using method I. Used frequency: ω = 2π · 3.7 [MHz]. Used step size:
∆z = 2.507 [m]

Ethylene-Glycol Lit. value I

m [-] 1.29 1.289

Km [Pa· sm] 0.0011 9.271·10−7

Table 4.3: Literature values of ethylene-glycol for the flow index and consistency index
compared to the retrieved values using method I. Used frequency: ω = 2π · 3.7 [MHz]. Used
step size: ∆z = 3.433 · 10−5 [m]

4.3.2 Method II

The results of the retrieved rheological properties using method II of section 3.2.2 for ketchup,
soybean oil and ethylene-glycol are displayed in tables 4.4, 4.5 and 4.6 compared to their cor-
responding literature values and to the result of method I. Since the total attenuation length
of the shear-wave in the waveguide differs significantly per fluid, the immersion depths that
will be use are different. However, by taking l = nl ·∆z where l is the immersion depth, nl
is the number of steps taken and ∆z is the step size per fluid, an immersion depth can be
selected which will be at the same position for all fluids relatively.

For all fluids it is noticed that by selecting different immersion depths l the result for the
flow index m is unchanged and for the consistency index Km the change is not more than 2%
from the obtained values. The results for the flow index m for all fluids are identical to the
results obtained by method I. However, the result for the consistency index Km worsened for
ketchup and soybean oil if using method II compared to method I.

In method I and II to obtain the values for the flow index m the error between the fit-
ted value and the signal, equations 3.25 and 3.29, needs to be minimised, which results in
two minimums instead of one, see previous research [14]. This can lead to a faulty prediction
of the flow index m. Therefore, the used ranges for m are selected such that only one mini-
mum is obtained.
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Ketchup Lit. value I II

m [-] 0.3 0.2979 0.2979

Km [Pa· sm] 6.47 70.88 111.0

Table 4.4: Literature values of ketchup for the flow index and consistency index compared to
the retrieved values using method I and II. Immersion depth: l = nl ·∆z with nl = 50 and
∆z = 158.5 [m].

Soybean oil Lit. value I II

m [-] 0.51 0.5093 0.5093

Km [Pa· sm] 2.18 33.32 44.37

Table 4.5: Literature values of soybean oil for the flow index and consistency index compared
to the retrieved values using method I and II. Immersion depth: l = nl ·∆z with nl = 50 and
∆z = 2.507 [m].

Ethylene-Glycol Lit. value I II

m [-] 1.29 1.289 1.289

Km [Pa· sm] 0.0011 9.271·10−7 8.217·10−7

Table 4.6: Literature values of ethylene-glycol for the flow index and consistency index com-
pared to the retrieved values using method I and II. Immersion depth: l = nl · ∆z with
nl = 50 and ∆z = 3.433 · 10−5 [m].

Added to this issue is the fact that the initial amplitude velocity B0(ω), the energy
transfer from the transducer to the waveguide, is known numerically but not experimentally.
Therefore, to get rid of this problem the methods III and IV are proposed, see sections 3.2.3
and 3.2.4. These methods focus on the elimination of B0(ω) and retrieving the rheological
properties separately.

4.3.3 Method III

The results of the retrieved rheological properties m and Km using method III of section 3.2.3
for ketchup, soybean oil and ethylene-glycol are displayed in tables 4.7, 4.8 and 4.9 compared
to their corresponding literature values and to the results of method I and II. The immersion
depths and frequencies which are used per fluid are shown in the captions of the tables.

Selecting different frequencies (ω1, ω2) between 3.3-4.3 [MHz] results in a 1.5% deviation
of the retrieved consistency indices Km of tables 4.7, 4.8 and 4.9. The deviation in the flow
index m due to different frequency combinations is negligible for ketchup and soybean oil,
but a deviation of about 2% is noted in case of ethylene-glycol. It is noted that by using
different combinations of immersion depths l in the calculation of m its value changes not
more than 1% from the tabulated m for ketchup and soybean oil. The calculated value for
the consistency Km appears to be very sensitive to changes in the calculated m. Also, the
results for calculated Km improve if immersion depths l < 100 ·∆z are chosen for all fluids.
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Ketchup Lit. value I II III

m [-] 0.3 0.2979 0.2979 0.3498

Km [Pa· sm] 6.47 70.88 111.0 6.842

Table 4.7: Literature values of ketchup for the flow index and consistency index compared
to the retrieved values using method I, II and III. Immersion depths l1,2 = nl1,2 · ∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 158.5 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π · 3.7 [MHz].

Soybean oil Lit. value I II III

m [-] 0.51 0.5093 0.5093 0.5636

Km [Pa· sm] 2.18 33.32 44.37 2.062

Table 4.8: Literature values of soybean oil for the flow index and consistency index compared
to the retrieved values using method I, II and III. Immersion depths l1,2 = nl1,2 · ∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 2.507 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π · 3.7 [MHz].

Ethylene-Glycol Lit. value I II III

m [-] 1.29 1.289 1.289 1.149

Km [Pa· sm] 0.0011 9.271·10−7 8.217·10−7 0.006456

Table 4.9: Literature values of ethylene-glycol for the flow index and consistency index com-
pared to the retrieved values using method I, II and III. Immersion depths l1,2 = nl1,2 ·∆z
used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 3.433 · 10−5 [m]. Frequencies used:
ω1 = 2π · 3.6 [MHz], ω2 = 2π · 3.7 [MHz].

The calculated values of the flow index m of method III in tables 4.7, 4.8 and 4.9 deviate
significantly from their literature values and the results of method I and II. The found values
for the consistency index Km using method III are of the same order of magnitude as their
literature values. However, the equation used to calculated Km for ketchup, soybean oil
and ethylene-glycol in method III, equation 3.38, uses value for m from tables 4.7, 4.8 and
4.9. Since these values for m are not equal to their literature values it is believed that the
found results of Km having the same order of magnitude as the literature values for ketchup,
soybean oil and ethylene-glycol are not accurate.

4.3.4 Method IV

The results of the retrieved rheological properties m and Km using method IV of section
3.2.4 for ketchup, soybean oil and ethylene-glycol are displayed in tables 4.10, 4.11 and 4.12
compared to their corresponding literature values and to the results of method I, II, III. The
immersion depths and frequencies which are used per fluid are shown in the captions of the
tables.
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Ketchup Lit. value I II III IV

m [-] 0.3 0.2979 0.2979 0.3498 0.2997

Km [Pa· sm] 6.47 70.88 111.0 6.842 9.854·10−5

Table 4.10: Literature values of ketchup for the flow index and consistency index compared
to the retrieved values using method I, II, III and IV. Immersion depths l1,2 = nl1,2 ·∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 158.5 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π · 3.7 [MHz].

Soybean oil Lit. value I II III IV

m [-] 0.51 0.5093 0.5093 0.5636 0.5096

Km [Pa· sm] 2.18 33.32 44.37 2.062 9.286·10−5

Table 4.11: Literature values of soybean oil for the flow index and consistency index compared
to the retrieved values using method I, II, III and IV. Immersion depths l1,2 = nl1,2 ·∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 2.507 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π · 3.7 [MHz].

Ethylene-Glycol Lit. value I II III IV

m [-] 1.29 1.289 1.289 1.149 1.292

Km [Pa· sm] 0.0011 9.271·10−7 8.217·10−7 0.006456 0.2529

Table 4.12: Literature values of ethylene-glycol for the flow index and consistency index
compared to the retrieved values using method I, II, III and IV. Immersion depths l1,2 =
nl1,2 ·∆z used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 3.433 ·10−5 [m]. Frequencies used:
ω1 = 2π · 3.6 [MHz], ω2 = 2π · 3.7 [MHz].

The retrieved results using method IV for the flow index m for ketchup, soybean oil and
ethylene-glycol are close to their corresponding literature values, but the results for the con-
sistency index Km deviate still significantly from the literature values. The change to m
if selecting other frequencies within the range 3.3-4.3 [MHz] in equation 3.46 is negligible
all fluid. Selecting different frequency combinations between 3.3-4.3 [MHz] in equation 3.47
results in a 1.5% deviation from the retrieved consistency indices Km for all fluids. Different
selections of immersion depths have a negligible effect on the value m in equation 3.46 and
only about 1% change in determining the value of Km in equation 3.47.

The results of method IV show that flow index m can be determined accurately using equa-
tion 3.46 without needing an exact expression for the shear-rate on the boundary since most
of its terms are divided out. The only terms necessary for the calculation are the measured
velocity amplitudes at two known frequencies and two known immersion depths.

The proposed shear-rate I

The proposed shear-rate on the boundary of equation 2.37 in section 2.6.2 is used in the
methods I, II, III and IV in order to retrieve the rheological properties of Power-law fluids.
This equation is based on the assumption that shear-rates on boundary in a Power-law fluid
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are independent of the flow index m, resulting in Km = K1 = µ0. However, by taking a
closer look at the units of Km [Pa·sm] and µ0 [Pa·s] it can see that they are not the same.
Therefore, the condition of Km = K1 = µ0 is thought to be incorrect. This results in the
conclusion that the shear-rate on the boundary proposed in equation 2.37 is wrong.

4.3.5 Method V

The results of the retrieved rheological properties m and Km using method V of section
3.2.5 for ketchup, soybean oil and ethylene-glycol are displayed in tables 4.13, 4.14 and 4.15
compared to their corresponding literature values and to the results of method I, II, III and
IV. The immersion depths and frequencies which are used per fluid are shown in the captions
of the tables.

The calculated values of the flow index m for ketchup, soybean oil and ethylene-glycol are
close to their corresponding literature values. These calculated flow indices are also equal to
the flow indices calculated with method IV. This was expected since the equations to calcu-
lated the flow index in both methods are equal, equation 3.46 and equation 3.54 respectively.
The results of the calculated consistency indices in tables 4.13, 4.14 and 4.15 deviate from
the literature values, but appear to have improved compared to method IV.

Method V uses the numerically known value of the initial velocity amplitude B0 in order
to determine Km. However, as mentioned section 3.2.3 the value of this term is unknown
experimentally. This was reason that methods III and IV were developed in the first place.
Therefore, if B0(ω) cannot be determined experimentally method V seems to be unsuitable
for experimental use.

Ketchup Lit. value I II III IV V

m [-] 0.3 0.2979 0.2979 0.3498 0.2997 0.2997

Km [Pa· sm] 6.47 70.88 111.0 6.842 9.854·10−5 0.2868

Table 4.13: Literature values of ketchup for the flow index and consistency index compared
to the retrieved values using method I, II, III, IV and V. Immersion depths l1,2 = nl1,2 ·∆z
used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 158.5 [m]. Frequencies used: ω1 = 2π · 3.6
[MHz], ω2 = 2π · 3.7 [MHz].

Soybean oil Lit. value I II III IV V

m [-] 0.51 0.5093 0.5093 0.5636 0.5096 0.5096

Km [Pa· sm] 2.18 33.32 44.37 2.062 9.286·10−5 1.056

Table 4.14: Literature values of soybean oil for the flow index and consistency index compared
to the retrieved values using method I, II, III, IV and V. Immersion depths l1,2 = nl1,2 ·∆z
used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 2.507 [m]. Frequencies used: ω1 = 2π · 3.6
[MHz], ω2 = 2π · 3.7 [MHz].
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Ethylene-Glycol Lit. value I II III IV V

m [-] 1.29 1.289 1.289 1.149 1.292 1.292

Km [Pa· sm] 0.0011 9.271·10−7 8.217·10−7 0.006456 0.2529 0.07048

Table 4.15: Literature values of ethylene-glycol for the flow index and consistency index
compared to the retrieved values using method I, II, III, IV and V. Immersion depths l1,2 =
nl1,2 ·∆z used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 3.433 ·10−5 [m]. Frequencies used:
ω1 = 2π · 3.6 [MHz], ω2 = 2π · 3.7 [MHz].

4.3.6 Method VI

In this section, the results of the retrieved rheological properties m and Km using method
VI of section 3.2.6 for ketchup, soybean oil and ethylene-glycol are shown. Method VI uses
two different approaches to calculate the value of the consistency index, namely Approach A
(numerical) and Approach B (experimental).

Approach A

Tables 4.16, 4.17 and 4.18 show the obtained results using Approach A of m and Km, cal-
culated with equations 3.62 and 3.63. The used averaged apparent viscosities for each fluid
per frequency 〈µapp(ω)〉 are calculated by averaging the result of equation 3.64 over time and
their value is given in the captions of the corresponding tables. The apparent viscosities as
a function of time per fluid for frequency ω = 2π · 3.7 [MHz] using equation 3.64 are shown
in figure 4.9. The immersion depths and frequencies which are used per fluid are also shown
in the captions of the tables.

The results of the retrieved consistency index Km using Approach A of method VI have
improved for all fluids compared to previous results shown in tables 4.13, 4.14 and 4.15. This
gives reason to believe that by changing the constant viscosity of a Newtonian fluid to a time-
averaged numerical apparent viscosity of a Power-law fluid (equation 2.52), the shear-rate of
a Power-law fluid on the boundary can be estimated reasonably.

Ketchup Lit. value VI (A)

m [-] 0.3 0.2997

Km [Pa· sm] 6.47 6.914

Table 4.16: Literature values of the rheological properties of ketchup compared to the values
retrieved using Method VI and Approach A. Immersion depths l1,2 = nl1,2 · ∆z used: l1 :
nl1 = 100 and l2 : nl2 = 200 with ∆z = 158.5 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π · 3.7 [MHz] Time-averaged apparent viscosity’s used: 〈µapp(ω1)〉 = 1.434 · 10−3 [Pa·s]
and 〈µapp(ω2)〉 = 1.417 · 10−3 [Pa·s].
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Soybean oil Lit. value VI (A)

m [-] 0.51 0.5095

Km [Pa· sm] 2.18 2.861

Table 4.17: Literature values of the rheological properties of soybean oil compared to the
values retrieved using Method VI and Approach A. Immersion depths l1,2 = nl1,2 ·∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 2.507 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π ·3.7 [MHz]. Time-averaged apparent viscosity’s used: 〈µapp(ω1)〉 = 7.317 ·10−3 [Pa·s]
and 〈µapp(ω2)〉 = 7.242 · 10−3 [Pa·s].

Ethylene-Glycol Lit. value VI (A)

m [-] 1.29 1.292

Km [Pa· sm] 0.0011 5.002·10−4

Table 4.18: Literature values of the rheological properties of ethylene-glycol compared to the
values retrieved using Method VI and Approach A. Immersion depths l1,2 = nl1,2 ·∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 3.433 · 10−5 [m]. Frequencies used: ω1 = 2π · 3.6
[MHz], ω2 = 2π·3.7 [MHz]. Time-averaged apparent viscosity’s used: 〈µapp(ω1)〉 = 3.080·10−2

[Pa·s] and 〈µapp(ω2)〉 = 3.106 · 10−2 [Pa·s].

Approach B

The results using Approach B to calculated m and Km, using equations 3.62 and 3.66 re-
spectively, are shown in tables 4.19, 4.20 and 4.21 compared to their corresponding literature
values and to the results of method VI (A). The immersion depths and frequencies which
are used per fluid are shown in the captions of the tables. In the figures 4.10, 4.11 and 4.12
the apparent viscosity and rheology calculated with the retrieved values of the rheological
properties are shown for each fluid.

The results found for the flow indices are unchanged compared to the result of method
IV (A) for all fluids since the same equation to calculate m is used, equation 3.62. The
retrieved values for the consistency indices have in all cases the same order of magnitude as
their literature values. Knowing that the proposed analytical time-averaged apparent viscos-
ity of equation 3.65 is not entirely correct by assuming γ̇PL ∼ ω, it results in similar values
as produced by method VI (A). However, the results using method VI (B) can be obtained
experimentally, unlike the results of method VI (A) which need a numerical solution to the
apparent viscosity.
The result of experimental apparent viscosity plots of ketchup and soybean oil of figures
4.10, 4.11 seem to be a reasonable estimate of the literature plot when the shear-rate is larger
than 100 [s−1]. The experimental apparent viscosity plot of ethylene-glycol, figure 4.12, seems
to be a reasonable estimate of the literature plot when the shear-rate is smaller than 100 [s−1].

The next step is to investigate what needs to be changed to the expression of the shear-
rate on the boundary of a Power-law fluid 2.52 such that by using the numerical apparent
viscosity, the results of the retrieved consistency indices correspond to their literature values.
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(a) (b)

(c)

Figure 4.9: Absolute apparent viscosity at the boundary as function of time for the fluids
ketchup (a), soybean oil (b) and ethylene-glycol (c) at a frequency ω = 2π · 3.7 [MHz]. The
results are created using the corresponding velocity profiles of the fluids, see figures 4.1a, 4.2a
and 4.3a.

Ketchup Lit. value VI (A) VI (B)

m [-] 0.3 0.2997 0.2997

Km [Pa· sm] 6.47 6.914 3.874

Table 4.19: Literature values of the rheological properties of ketchup compared to the values
retrieved by using Method VI (A) and Method (B). Immersion depths l1,2 = nl1,2 ·∆z used:
l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 158.5 [m]. Frequencies used: ω1 = 2π · 3.6 [MHz],
ω2 = 2π · 3.7 [MHz].
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Soybean oil Lit. value VI (A) VI (B)

m [-] 0.51 0.5095 0.5095

Km [Pa· sm] 2.18 2.861 1.150

Table 4.20: Literature values of the rheological properties of soybean oil compared to the
values retrieved by using Method VI (A) and Method (B). Immersion depths l1,2 = nl1,2 ·∆z
used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 2.507 [m]. Frequencies used: ω1 = 2π · 3.6
[MHz], ω2 = 2π · 3.7 [MHz].

Ethylene-Glycol Lit. value VI (A) VI (B)

m [-] 1.29 1.292 1.292

Km [Pa· sm] 0.0011 5.002·10−4 0.001302

Table 4.21: Literature values of the rheological properties of ethylene-glycol compared to the
values retrieved by using Method VI (A) and Method (B). Immersion depths l1,2 = nl1,2 ·∆z
used: l1 : nl1 = 100 and l2 : nl2 = 200 with ∆z = 3.433 · 10−5 [m]. Frequencies used:
ω1 = 2π · 3.6 [MHz], ω2 = 2π · 3.7 [MHz].

(a) Apparent viscosity (b) Rheology

Figure 4.10: Ketchup (Lit: m = 0.3, Km = 6.47), (Experiment = Method VI (B): m =
0.2997, Km = 3.874); Apparent viscosity (a) and rheology (b) plot using literature and
experimental rheological properties. The step sizes used are: ∆t = 9.009 · 10−12 [s], ∆y =
4.677 · 10−9 [m], ∆z = 158.5 [m] and used frequency: f = 3.7 [MHz].
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(a) Apparent viscosity (b) Rheology

Figure 4.11: Soybean oil (Lit: m = 0.51, Km = 2.18), (Experiment = Method VI (B):
m = 0.5095, Km = 1.150); Apparent viscosity (a) and rheology (b) plot using literature
and experimental rheological properties. The step sizes used are: ∆t = 9.009 · 10−12 [s],
∆y = 2.226 · 10−8 [m], ∆z = 2.507 [m] and used frequency: f = 3.7 [MHz].

(a) Apparent viscosity (b) Rheology

Figure 4.12: Ethylene-Glycol (m = 1.3, Km = 0.0011), (Experiment = Method VI (B):
m = 1.292, Km = 0.001302); Apparent viscosity (a) and rheology (b) plot using literature
and experimental rheological properties. The step sizes used are: ∆t = 9.009 · 10−12 [s],
∆y = 6.831 · 10−8 [m], ∆z = 3.433 · 10−5 [m] and used frequency: f = 3.7 [MHz].

55



Chapter 5

Conclusion and recommendation

The goal of this research was to develop methods of determining the rheological properties
of Power-law fluids from amplitude measurements of the ultrasonic shear-wave waveguide
viscometer using a numerical model. To achieve this goal an analytical expression of the
shear-rate in a Power-law fluid is necessary. In this research three analytical expression of
the shear-rate in a Power-law fluid are used. The fluids used in this research are ketchup
(shear-thinning), soybean oil (shear-thinning) and ethylene-glycol (shear-thickening).
The methods I, II, III and IV are used to find the rheological properties m and Km with an
expression of the shear-rate based on the result of Ai & Vafai [13], first proposed by Rohde
[11]. Methods I and II gave accurate results for the flow index m, but the results for the
consistency index Km deviated significantly from the literature values for all fluids. These
methods also make use of the experimentally unknown initial velocity amplitude which makes
them unsuitable during physical measurements. Method III gave inaccurate results for the
flow index m for all fluids, but the results for the consistency index Km are in the same order
of magnitude as their literature values. However, the results for Km are deemed incorrect.
Method IV gave accurate results for the flow index m but inaccurate result for the consistency
index Km. Although, the shear-rate used in methods I, II, III, IV turned out to be incorrect,
the expression used to determine the flow index m remains valid and experimentally usable.
Method V uses a different expression of the shear-rate in a Power-law fluid compared to
methods I, II, III and IV. The results of this method for the flow index m are unchanged
compared to results of method IV and the values for the consistency indices Km improved
compared to method IV but still deviated from the literature values.
Method VI uses an alternative expression of the shear-rate in a Power-law fluid compared to
methods I, II, III, IV and V. Within method VI two approaches are used to determine the
rheological properties m, Km, namely: Approach A and Approach B. Approach A can only
be used numerically, but Approach B can be used experimentally. Both Approach A and
Approach B of method VI gave accurate results for the flow index m and the results of the
consistency indices Km have the same order of magnitude as their literature values.
In future studies the shear-rate on the boundary of Power-law fluids needs to be studied more
extensively to obtain more accurate results for the consistency indices. Also, the numerical
viscometer needs to be extended for other types of fluids such as Bingham and Casson fluids.
This will eventually contribute to the final goal of SAMOSAFER to ensure that the MSFR
can comply with all expected regulations in 30 years’ time.
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