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Abstract

Performance assessments of deep geological waste repositories need to be carried out in order to demonstrate
the safety of a particular repository site. Radionuclide transport models are usually used for this purpose to
mimic the transport of radionuclide’s through the biosphere.

Uncertainty is an intrinsic part in these radionuclide transport models and in the presence of these uncertain-
ties probabilistic safety assessments will need to be carried out in order to calculate an expected risk to the
human population.
Commonly this is done by applying techniques such as Monte Carlo simulation or perturbation methods.
Unfortunately for complex models (as these transport models) the computational costs when using Monte
Carlo can be very high whereas perturbation methods are less reliable when there are large uncertainties
involved.

In this work we present the application of a spectral technique based on a Polynomial Chaos Expansion
(PCE) in order to quantify the uncertainties in stochastic radionuclide transport codes. The method is ap-
plied non-intrusively which means that the transport codes are sampled as a black-box in a deterministic set
of points and sparse grids were used to reduce the number of deterministic sample points.
Firstly, the method is applied to an artificial compartment model for radionuclide release into the biosphere
in which the retardation factor is considered to be uncertain. Secondly, PCE is applied to the EMOS code
maintained by NRG. This code models the physics of a repository design in a salt rock formation and uncer-
tainties in parameters modeling the salt plug, which is an engineered barrier, were considered.
In both cases the results obtained with PCE were compared with the results obtained with Monte Carlo
simulations.

For the compartment model is shown that the Monte Carlo technique is roughly 2 to 4 times faster than
the PCE technique when one is only interested in numerical results such as a mean value and variance of a
certain quantity. If one is interested in a almost noise free pdf of this quantify then PCE is approximately 25
to 55 times faster.
For the EMOS case is it shown that with the PCE technique the central tendencies and statistical estimators
are within 1% agreement of the Monte Carlo results and produces an almost noise free pdf and is approxi-
mately 12 times faster than Monte Carlo.
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1 INTRODUCTION

1 Introduction

Radioactive or nuclear waste can be described as a material containing concentrations of radioactive isotopes
which are higher than the minimum measurable concentration and for which there are no known applications
available. A well know producer of nuclear waste are nuclear reactors, but also medical applications such
as radiotherapy and nuclear medicine produce large quantities of radioactive waste. An other producer of
nuclear waste is the oil and gas industry where the waste is produced during the mining process. This is
due to the fact that radioisotopes are (naturally) mixed with the product to be mined, this is also known as a
Natural Occurring Radioactive Material (NORM).
Nuclear waste can be categorized into;

• Low and intermediate level waste, of which the measurable activity is higher than the background
activity and produces no more than 2 kW/m3 of radiative heat. This group can be divided into two
subgroups;

– short lived waste with an averaged maximum activity of 400 Bq/g.

– long lived waste with an activity exceeding the averaged maximum of 400 Bg/g for the short
lived waste.

• High level waste, which mostly consists of long lived isotopes and produce more than 2 kW/m3 of
radiative heat.

In the Netherlands, COVRA (central organisation for radioactive waste) is responsible for the management
of radioactive waste. The owners or producers of nuclear waste do not only pay COVRA for processing and
storage of nuclear waste, but also for research into long-term solutions for handling, processing and storing
of the nuclear waste.
Nowadays, nuclear waste is stored in bunkers owned by COVRA. These bunkers are situated at ground level
and are designed to prevent leakage of radionuclides into the geosphere and biosphere under various threat
conditions such as floodings, storms and air-plane crashes. COVRA expects that is has a sufficient storage
capacity to store all nuclear waste produced within the coming one hundred years, before a long-term solu-
tion has been found.
One of the possible solutions is a underground waste repository situated in a salt rock or clay formation.
Those types of rock or soil are know to be plastic which means that cracks (due to for example construction
of the repository) in these formations are self-healed. Furthermore there is no, to almost no transport of
fluids in those formations due to the fact that there are no cracks in the formations due to the self-healing
effect. This way a very stable and robust natural barrier to encapsulate nuclear waste is obtained. So if the
engineered barriers have failed, there is a large natural barrier left in which there is almost no transport of
radionuclides possible.

To define which locations are suitable for such a repository, a performance assessment of all possible repos-
itories including site-specific natural barriers needs to be carried out. In this way a quantification and a
demonstration of the safety of the total repository (engineered and natural barriers) performance can be
specified. Such an assessment can be carried out by modelling the properties of the repository with a mathe-

10



1 INTRODUCTION

matical model which describes the transport of radionuclides through the barriers into the biosphere.

In order to perform a site-specific calculation, site-specific model parameter values are necessary. These pa-
rameter values are usually obtained through measurements, and limitations during these measurements can
cause difference between the measured value and the actual value. The properties of the quantity are said to
be uncertain and in general this is the case for every measurable quantity. Uncertain quantifies are usually
expressed by a best estimate and an associated range. The influence of the uncertain properties on the final
performance assessment can be estimated with the use of Uncertainty Quantification (UQ).
There are various methods available to perform UQ such as Monte Carlo and Perturbation techniques. A
relatively new method used for UQ is Polynomial Chaos expansion and it has already been applied to appli-
cations including stochastic fluid dynamics, stochastic finite elements, solid mechanics, nonlinear estimation,
and probabilistic robust control. In the presented work the implementation of this method on performance
assessment codes of repository designs is the main topic of this thesis.

In Chapter 2 we introduce the notion of Uncertainty Quantification and briefly discuss the techniques which
can be used for this. We continue in Chapter 3 with the introduction of Polynomial Chaos and how the
technique can be used to find a solution for stochastic models. A stochastic model for radionuclide release
into the biosphere is introduced in Chapter 4 and a Polynomial Chaos expansion is compared with Monte
Carlo approach to quantify the uncertainty related to this model. In Chapter 5 we apply a Polynomial Chaos
expansion for the analysis of a repository design in a salt rock formation and compare the results with the
results of a Monte Carlo approach.
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2 UNCERTAINTY QUANTIFICATION

2 Uncertainty Quantification

2.1 What is UQ

Throughout the research and design process numerical modelling and simulations are essential tools for
scientists and engineers, especially when dealing with complex systems.
The reliability of a simulation is a main concern when interpreting and analysing its results. In order to
yield reliable information regarding the system under investigation, these numerical simulations have to be
carefully designed, performed and verified. Nevertheless, differences between simulations and the actual
real world system can occur. It is therefore critical to understand what the origin of these differences are, if
one wants to quantify the reliability of the simulation. In general the errors in the simulations, which lead
to discrepancies between model predictions and the actual system can be grouped into; 1. Model errors, 2.
Numerical errors and 3. Data errors.

1. Model errors
Simulations rely on the fact that the process or system under investigation can be cast in a mathematical
model. Simplifications are often made in such a way that the mathematical model only consists of the
essential physical principles and characteristics of the system. This means that physical phenomena
which may occur in the real process or system are left out of the mathematical model because of their
negligible contribution to the process or system. Therefore, it is impossible that the behaviour of the
real system will be exactly reproduced by the mathematical model.
In this case, the validity of the assumptions made have to be verified beforehand to make sure that the
predictions will remain sufficiently accurate for interpretation and analysis.

2. Numerical errors
As discussed before, a simulation consists of a mathematical model, which has to be solved by using
a numerical method. The numerical method to be chosen usually depends on the type (differential, in-
tegral, algebraic,...) of equations to be solved. Furthermore, one needs to keep in mind in what kind of
phenomena one is interested and the length-scales associated to these phenomena. The resolution with
which the problem is solved should be such that the smallest length-scales of interest can be captured.
In order the meet this resolution criteria an appropriate discretization method should be chosen.
Theoretically, the numerical error can be reduced to any arbitrary (low) level by using finer discretiza-
tions and more computational resources. However, in general the numerical error will always be
nonzero because of the finite representation of numbers in computers.

3. Data errors
Usually a large set of data is necessary to run a simulation. This data is used for example to define the
system’s geometry, boundary and initial conditions, where parameters are used for physical or model
constants. Most of the data is specified through experiments. And since a quantity can not be measured
with infinite precision, an error is induced on the measured quantity. Also limitation in experiments
can affect the precision so that the quantity is only known in a (broad) range. And so using data, which
not fully covers the physics of the real system, also will induces simulation errors.

12



2 UNCERTAINTY QUANTIFICATION

The present work considers only errors associated with variabilities in the data and methods to analyse the
impact of these variabilities on the model predictions are considered. Such an analysis can be done for the
purpose of, e.g.; (1) Validation, (2) Variance Analysis, (3) Risk Analysis and (4) Uncertainty Management.

1. Validation
A simulation must be validated, this can be done by comparing simulation results with results obtained
by measurements performed on the real system. One has to keep in mind that there are also uncertain-
ties affecting the measurement. So during validation, simulation errors as well as measurement errors
have to be considered.

2. Variance Analysis
Usually the best-estimate of a certain quantity will be calculated during a simulation run. With the
use of variance analysis it is possible to specify a confidence measure in this best-estimate and the
controllability of the system.

3. Risk Analysis
It is often desired to conduct reliability or risk assessment analysis. For such an analysis one needs to
define probabilities that the system will exceed certain critical values or thresholds.

4. Uncertainty Management
In order to effectively observe, manage and ultimately reduce sources of uncertainty, it is necessary to
quantify the relative impact of these sources on the response of the system.

2.2 Techniques for UQ

Suppose a mass is attached to a spring which exerts an attractive force on the mass proportional to the
extension or compression of the spring. We are interested in the extension of the spring over time and
using Newton’s second law we can write an equations which models our problem and ignore friction and
gravity.

m
∂2x(t)

∂t2 + kx(t) = 0 (2.1)

In Eq. 2.1 the extension over time is expressed with x(t), the mass attached to the spring by m and the spring
constant by k.

The model displayed in Eq.2.1 is a second order linear differential equation. For this particular type of
differential equation a analytical solution can be found, however this is not the case for every differential
equation.
In Eq. 2.1 is is assumed that the extension of the spring is only depending on the mass attached to it and
the spring constant and that these quantities are exactly known. In real-life physics this is never the case,
take for example the spring constant. During manufacturing of this spring there could be a number of things
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2 UNCERTAINTY QUANTIFICATION

which have a influence on the spring constant, or perhaps the temperature of the spring has an effect on the
spring constant. We can thus assume that the spring constant is uncertain and usually is expressed with a
probability law or a range.
Since the the spring constant is dependent on for example manufacturing errors we can say that the spring
constant is depending on some random variables (RV’s) ξ̄ = {ξ1,ξ2,ξ3, · · ·} and thus k ≡ k

(
ξ̄
)
. Now we

would like to know how the extension of the spring is influenced by these dependencies, in other words what
is the influence of ξ̄ on x(t) (or x(t, ξ̄)). For this we can now right the following,

m
∂2x(t, ξ̄)

∂t2 + k(ξ̄)x(t, ξ̄) = 0. (2.2)

Eq. 2.2 is a stochastic differential equation and in general a analytical solution of such an equation is hard to
find, and instead of analytical solutions numerical approximations are used.
If the probability laws of k(ξ̄) are known, then it is possible to find the probability law of x

(
ξ̄
)
. This can be

done for example by using a Monte-Carlo approach or by using a Spectral Method.

2.2.1 Monte-Carlo

The Monte-Carlo method relies on a random sampling of the RV’s in order to construct a sample of inde-
pendent input data, this can be written as: k

(
ξ̄
)
= k (ξ1,ξ2,ξ3, · · ·). Consequently, multiple of these input

data samples can be constructed such that a set of input samples can be defined: {k1,k2,k3, · · ·}. For each
individual data sample the system will be solved, giving a set of unique solutions {x1,x2,x3, · · ·}. This col-
lection is called the sample solution set. The statistics of this sample solution set can be used to estimate for
example the mathematical expectation, the variance or a probability law of a particular observable.
The mathematical expectation for example, can be calculated according to:

〈x〉= lim
N→∞

1
N

N

∑
i=1

xi, (2.3)

Usually it is impossible to sample an infinite amount of times and instead a sufficiently large number of
samples (N) is used. Eq. 2.3 now becomes,

〈x〉 ≈ 1
N

N

∑
i=1

xi. (2.4)

The variance in x can also be calculated,

σ
2 =

1
N

N

∑
i=1

(xi−〈x〉)2 . (2.5)
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2 UNCERTAINTY QUANTIFICATION

Furthermore is is also possible to estimate the accuracy of the approximation of the mathematical expectation
by calculating the standard deviation of the mean,

σ〈x〉 =
σ√
N
. (2.6)

Based on the standard deviation of the mean we can determine if the number of samples is chosen sufficiently
large enough.
In Eq.2.6 we see that relative accuracy in 〈x〉 scales with 1√

N
. So if one want to determine 〈x〉 with a relative

accuracy of 1% than N should be 10.000 or larger. This low convergence rate is the main drawback of Monte
Carlo, since the computation time scales with N.
The main advantages of the method is that it is quit straightforward to use and it can be used for both stochas-
tic problems, which involve probability, and deterministic problems which are without probability.

2.2.2 Spectral Methods

Spectral Methods are based on the construction of the functional dependence of the solution on the RV’s.
Typically this functional is expressed in terms of a series:

x
(
ξ̄
)
=

∞

∑
i=0

ciΨi
(
ξ̄
)
. (2.7)

Here the functionals depending on the RV’s are represented by Ψi and the deterministic coefficients by
ci. The functionals should be selected beforehand according to the problem, whereas the deterministic
coefficients need to be found by solving a mathematical problem.
When the coefficients are available, it is possible to determine the statistics of x analytically or by sampling
the RV’s.
A Polynomial Chaos Expansion is an example of a spectral expansion where an expansion is used to represent
a process in a stochastic-space. It is similar to a Fourier Expansion where a expansion is usually used to
represent a process in a frequency-space.
In the following section the polynomial chaos expansion will be introduced and a method is given how to
find the deterministic coefficients.
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3 POLYNOMIAL CHAOS

3 Polynomial Chaos

3.1 Introduction

The polynomial chaos technique originates from the homogeneous chaos, which has been defined by Wiener
[2]. This homogeneous chaos was introduced to describe a Gaussian process by Hermite polynomial func-
tionals. This functional describing a Gaussian process can be written in a Fourier-Hermite series. For any
process with finite second order moments, the expansion will converges to this process. And so, a stochastic
process can be represented with an expansion of orthogonal Hermite polynomials.
The generalized Polynomial Chaos (gPC) was proposed in [3] to supply an optimal basis, in terms of con-
vergence for stochastic processes represented by random variables of commonly used distributions. For this
the Askey scheme was used [4], and within this light the homogeneous chaos can be seen as a subset of the
gPC.
Providing these properties, PC gives the possibility to reduce a stochastic differential equation to a high-
dimensional deterministic problem.

3.2 Orthogonal Polynomials of the Askey scheme

The orthogonal polynomials belonging to the Askey scheme are so-called hypergeometric orthogonal poly-
nomials. They satisfy a specific type of differential or difference equation. Each of these orthogonal polyno-
mials is a subset of the Askey-scheme and has different weight functions in their orthogonal relationship.
For some of these orthogonal polynomials their weight function correspond or is identical to the probability
function of a certain random distribution [3]. These polynomials are used to describe a stochastic process
and for this an expansion of polynomials (usually of the same kind) is used. It has been shown that the
rate of convergence is optimal, if the orthogonal polynomial corresponding to the stochastic processes has
been chosen [3]. Furthermore, if the optimal orthogonal polynomial has not been chosen than the solution
will still converges, but the rate of convergence is much lower. In other words, the expansion consists of is
less terms when the correct polynomials have been chosen than when polynomials are chosen of which the
weighting function does not correspond with the distribution of the stochastic process.
Further on in this section an example is given why only two terms in an expansion are needed to represent a
Gaussian process when Hermite polynomials are used.
In table 3.1 the Askey-scheme is depicted, we see that for the commonly used continuous and discrete dis-
tributions associated families of orthogonal polynomials exist. In the remainder of this monograph we will
only focus on the PC based on continuous distributions, and therefore discrete distributions and polynomials
are not discussed in the following.
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Table 3.1: Families of probability laws and corresponding families of orthogonal polynomials

Distribution Polynomials Support
ξ ψp(ξ)

Continuous RV Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Beta Jacobi [a,b]
Uniform Legendre [a,b]

Discrete RV Poisson Charlier {0,1,2, ...}
Binomial Krawtchouk {0,1,2, ...n}
Negative binomial Meixner {0,1,2, ...}
Hypergeometric Hahn {0,1,2, ...n}

3.3 Properties of orthognal Polynomials

A system of polynomials can be defined as {Pn(x),n ∈ N }. Where Pn(x) is a polynomial of degree n, and
the dimension of the system can be infinite, N = {0,1,2...} or finite, N = {0,1, ..N}. The inner product is
defined as,

< Pn(x),Pm(x)>=
∫

S
Pn(x)Pm(x)dφ(x) = h2

nδn,m. (3.1)

Where S is the support of the measure φ, h2
n is a nonzero constant and δn,m is the Kronecker delta. The set of

polynomials is called orthonormal if h2
n = 1.

The measure φ often has a density w(x), so the inner product becomes,

< Pn(x),Pm(x)>=
∫

S
Pn(x)Pm(x)w(x)dx = h2

nδn,m (3.2)

The density w(x) needs to be a positive and continuous function and the integral
∫

S w(x)dx must exist.

3.4 Definitions and Notations

Before we can discuss the PC expansion of a random process, we first need to introduce some definitions
and notation. Only R-valued random processes U , defined on a complete probability space (Θ, Σ, P) are
considered. The distribution of U is the probability measure induced by the mapping as in (3.3).

U : Θ 7→ R (3.3)
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3 POLYNOMIAL CHAOS

These R-valued random processes, also denoted as U(θ), live in a Hilbert space, denoted by L2(Θ,Σ,P).
This vector space is equipped with an inner product < ., . > and a mathematical expectation E[.]. The
mathematical expectation of E[UY ] is expressed as,

E[UY ] =<U,Y >=
∫

Θ

U(θ)Y (θ)dP(θ), (3.4)

the mathematical expectation of E[U2] is expressed as,

E[U2] =<U2 >=<U,U >=
∫

Θ

U(θ)U(θ)dP(θ), (3.5)

and the mathematical expectation of E[U] is expressed as,

E[U ] =<U >=< 1,U >=
∫

Θ

U(θ)dP(θ). (3.6)

As said earlier, it has been shown in [2] and [5] that any random process in can be represented by a series
expansion of orthogonal polynomials in the random space Θ. This can be written as:

U(θ) =
∞

∑
i=0

ciΨi(ξ(θ)) (3.7)

The deterministic expansion coefficients ci are the PC coefficients and the orthogonal polynomials are ex-
pressed as Ψ.

The following example shows that there are only two terms needed if Legendre polynomials are used to
represent a uniform process U(ξ).
We leave from the point that the process to be represented is uniform distributed and that we would like to
represent this process with ψ0 = 1,ψ1 = ξ}, so the expansion will look like,

U(ξ) = c0 ·ψ0 + c1 ·ψ1

= c0 ·1+ c1 ·ξ,
(3.8)

where ξ is uniform distributed.

It is known that any uniform distribution, or process, can be represented by an expectation value µ and a
standard deviation σ. And thus we may also write,

U(ξ) = µ+σξ, (3.9)
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From Eq.3.8 and Eq.3.9 we may conclude that c0 is the expectation value of U(ξ) and c1 the associated
standard deviation. This shows that any uniform distribution can be expressed using only 2 polynomials.
This example also hold for normal, beta and gamma distributed process.
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3.4.1 One Dimensional PC Basis

When a stochastic process depends on a single random variable ξ we speak of one dimensional chaos. Recall
that a weight function is involved in the orthogonality of the polynomials. We define the functional pξ(θ) as
the probability density of the random variable ξ. This functional then can be used as a weight function under
the condition that this functional corresponds to a weight function belonging to an orthogonality relationship
listed in the Askey-scheme. In the one dimensional PC case, ξ(θ) as well as the weight function are scalar
functions and the orthogonality relationship can be expressed as:

< ψi,ψ j >=
∫
R

ψi(θ)ψ j(θ)pξ(θ)dθ = δi j < ψ
2
i > . (3.10)

Where ψp is the one dimensional chaos of order p.

3.4.2 Multidimensional PC Basis

We can speak of a multi dimensional PC if the stochastic process is depending on multiple RV’s. These
RV’s can be defined as ξ̄ = {ξ1, . . . ,ξN}. Due to the fact that the RV’s are independent of each other, the
probability of ξ̄ is given by,

p
ξ̄
(θ̄) =

N

∏
i=1

pξ(θi). (3.11)

Now we can also define multivariate polynomials, for this we first need to define a multi-index, γ= {γ1, · · · ,γN},

λ(p) =

{
λ :

N

∑
i=1

γi = p

}
, (3.12)

λ(p) denotes the set of multi-indices. When the multi-index γ is known we can construct the kth multidimen-
sional polynomial Ψk using the following expression,

Ψk(ξ1,ξ1, · · · ,ξN) =

 ⋃
γ∈λ(p)

N

∏
i=1

ψγi(ξi)

 , (3.13)

where ψγi is the univarite polynomial of order γi depending on ξi. In the case of 2D (N = 2) polynomials
based on one dimensional polynomials up to p = 2 the multi-index will look like:
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λ(0) : γ = (0,0)→ Ψ0 = ψ0(ξ1)ψ0(ξ2)
λ(1) : γ = (1,0)→ Ψ1 = ψ1(ξ1)ψ0(ξ2)

: γ = (0,1)→ Ψ2 = ψ0(ξ1)ψ1(ξ2)
λ(2) : γ = (2,0)→ Ψ3 = ψ2(ξ1)ψ0(ξ2)

: γ = (1,1)→ Ψ4 = ψ1(ξ1)ψ1(ξ2)
: γ = (0,2)→ Ψ5 = ψ0(ξ1)ψ2(ξ2)

3.5 Truncation of the PC Expansion

The dimension of the set of RV’s and of the PC expansion is usually finite, as can be seen in (3.11). For
computational purposes is it also necessary to describe the process by a finite number of polynomials, this
leads to a PC expansion of finite dimension. This means that {ψk}∞

k=0 has to be truncated down to {ψk}p
k=0

where p is the maximum order. If on chooses truncation order p and a N dimensional stochastic space, the
number of terms in the multidimensional expansion is equal to:

P+1 =
(N + p)!

N!p!
. (3.14)

The truncated PC expansion can now be expressed as:

U =
P

∑
i=0

ciΨi(ξ̄)+ ε(N, p). (3.15)

Where ε(N, p) is the truncation error. It has been shown in [6] that the truncated expansion converges in the
mean square sense as N and p go to infinity.

3.6 First- and Second-Order Estimates

Prevously it has been shown that a second order random variable can be represented by an expansion of
orthogonal polynomials as:

U ≈
P

∑
i=0

ciΨi(ξ̄). (3.16)

We assume that the orthogonal polynomial basis has the indexing such that Ψ0(ξ̄) = 1. Now the orthogonal
basis helps us by calculating the expectation of the random variable U :

E[U ] =<U(ξ̄)>=< Ψ0(ξ̄),U(ξ̄)>=
P

∑
k=0

ci < Ψ0(ξ̄),Ψk(ξ̄)>= c0. (3.17)
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Furthermore it is possible to obtain the variance of U from the definition of random variable variance:

σ
2
U = E[(U−E[U ])2] = E[(

P

∑
k=1

ckΨk)
2] =

P

∑
k,l=1

ckcl < Ψk,Ψl >=
P

∑
k=1

c2
k < Ψ

2
k > . (3.18)

So the variance of U can be expressed as a weighted sum of the squared PC coefficients. The expressions
for higher order moments of U can be derived similarly, but those expressions are not as simple as for the
first and second order ones. It is therefore much easier to obtain the higher order moments via a sampling
strategy of the realization of U . Once the PC coefficients are known, it is possible to build the stochastic
solution by using Eq. (3.16) by sampling the stochastic quantity ξ̄. Consequently the statistics of U , such
as densities, cumulative density functions and probabilities can be estimated when necessary. This Monte
Carlo procedure is basically the same procedure as discussed in 2.2.1, the only difference here is that not
mathematical model describing U but the right side of Eq.(3.16) is sampled. Generally sampling the right
side of Eq.(3.16) requires much less computational resources compared to sampling the mathematical model.
Sampling the right side of Eq.(3.16) is relatively cheap because it is in fact only the evaluation of of the term
Ψ(ξ̄).

3.7 Spectral Projection

In general it is possible to simulate a process by a mathematical model for which there usually exists a so-
lution. There are many methods available to find a solution of a particular mathematical problem, but in
general most methods are not suitable or comprehensive enough when dealing with models of stochastic
processes.
These stochastic models can be seen as a mathematical problem concerning the process and a mathematical
problem covering the uncertainies on the process. As it has been shown in Eq. (3.16), the solution of such
a model can be cast in the form of an expansion. The solution can now be found by solving for the PC
coefficients. There are mainly two approaches for solving stochastic models using spectral methods, namely
intrusive and non-intrusive.
Intrusive methods basically solve the solution of a model by directly searching the PC coefficients, a Galerkin
Projection Method is usually used for this method.

The main advantage of this method is that it can be fast, depending on the number of unknown coefficients
and the type of system to be solved. Disadvantages are that it can not be applied to a model of which
the numerical source code is not accessible or implementation is difficult because of the complexity of the
model. Furthermore when the number of unknown coefficients is too large (O(106)), an intrusive method is
usually slow. A description and examples of how Intrusive PC can be used can be found here [3, 7, 8] and
will further on in this chapter be no more discussed.
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3.8 Non-Intrusive Spectral Projection

A Non-Intrusive Spectral Projecction (NISP) method works in two or more stages, first the model is solved
in specific points of the stochastic domain and subsequently the PC coefficients are determined. For finding
the solution in these specific points a deterministic solver can be used, so no particular adaptation of existing
codes is necessary. This is in contrast with a Galerkin Projection Method, where a reformulation of the
problem is required.
Advantages of NISP methods are that the model can be used as a black-box, so it can be applied to complex
models, industrial applications and situations where only deterministic codes are available [8]. And since
the model needs to be solved in a deterministic set of sample points, it is possible to perform this process in
parallel.

3.8.1 Orthogonal Projection

As mentioned in ??, NISP aims at determining the PC coefficients. Again, the Polynomial Chaos expansion
of the output variable U is given by:

U ≈
P

∑
i=0

ciΨi(ξ̄). (3.19)

Now the orthogonal relationship of the polynomials can be used to compute the expansion coefficients. If
we multiply both sides of Eq. (3.19) by the qth polynomial of the set {Ψi}P

i=0 and we integrate over the
stochastic domain ξ̄, we get the following expression of the qth coefficient.

〈
Ψq,U

〉
=

〈
Ψq,

P

∑
i=0

ciΨi

〉
=

〈
Ψqcq,Ψq

〉
= cq

〈
Ψq,Ψq

〉
,

(3.20)

or, rewriting,

cq =

〈
Ψq,U

〉〈
Ψq,Ψq

〉 , (3.21)

where q = 0,1,2 · · · p. It is important to note that the normalisation factor
〈
Ψq,Ψq

〉
is depending only on the

chosen basis and that this factor is analytically known. The numerator of the right hand side of Eq. (3.21) is
the only term that needs to be computed. Furthermore it is clear to see that the coefficients are independent
of each other. While the same coefficients would be coupled in case of a Galerkin method.
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There are a couple of existing techniques to compute the numerator of the right hand side of Eq. (3.21) In
the next paragraphs some of these methods will be discussed.

3.8.2 Monte Carlo Integration

One of the simplest techniques to perform numerical integration is the Monte Carlo Method. It is based on
a sample set of independent realizations of the RV, in this case ξ̄, which is normally generated by using a
random number generator. Consequently the solution Ui depending on a certain ξ̄i is sought, this is done by
solving the model for U

(
ξ̄i
)
. Once all the solutions corresponding to the sample set

{
ξ̄i
}M

i=1 are known, the
integral can be computed by;

〈
Ψq,U

〉
=

1
M

M

∑
i=1

UiΨq (ξi)+ εM, (3.22)

where M is the dimension of the sample set and εM the sampling error. According to the law of large numbers
it can be shown that the expectation and variance of the sampling error go to zero if M is sufficiently large.
The rate of convergence of the sampling error is 1√

M
and this rather slow convergence is the main limitation of

using Monte Carlo Integration for NISP techniques. On the other side the convergence rate is not depending
on the dimensionality of the problem and the smoothness of the term U (ξ)Ψq (ξ). This suggest a robust
behaviour in case that the solution lives in a high dimensional space and or is non-smooth. Nevertheless,
because of the slow rate of convergence it is worth looking in to alternative methods such as deterministic
integration techniques.

3.8.3 Deterministic Integration

A deterministic integration method is a method which can be used to numerically compute a definite integral,
such as

∫ b

a
f (x)dx < ∞. (3.23)

If the function which has to be integrated, (in this case f (x)) is smooth and lies in a small dimensional space,
then a deterministic method can be used.
Generally all deterministic integration methods are based on a finite sum of evaluations of the function
to be integrated. These evaluations are defined in a set of deterministic points of the integration domain.
Usually a numerical integration over a one dimensional space (e.g. univariate integration) is called numerical
quadrature, whereas a integration over more than one dimension (e.g. multivariate integration) is sometimes
described as cubature.
An univariate integration can be approximated by the following quadrature,
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∫ b

a
f (x)dx≈

NQ

∑
i=1

f (xi)wi, (3.24)

where the quadrature approximation can be written in operator-form by Q,

∫ b

a
f (x)dx≈ Q f (x) =

NQ

∑
i=1

f (xi)wi. (3.25)

3.8.3.1 Gauss Quadrature Over the time, various quadrature methods have been invented such as the
rectangle rule, trapezoidal rule and the Gaussian quadrature. The latter has a high order of accuracy, and is
very efficient, especially when integrating polynomials.
Every polynomial belonging to the Askey scheme has an associated Gaussian quadrature with which the
integral can be exactly computed up to p = 2nl−1, where nl is the number of points used and p the order of
the polynomial. For a comprehensive introduction to Gaussian quadratures, see [8, p. 499].

3.8.3.2 Tensor Product Formulas When performing an multivariate integration of an N-dimensional
function the associated cubature belonging to this integral can be built using a one-dimensional quadrature
formalism. If the same type of quadrature can be used for each integration variable, then the cubature can be
written as:

Q(N) f (x̄) =
(

Q(1)
l ⊗·· ·⊗Q(1)

l

)
f (x̄) . (3.26)

If each integration variable needs a different type of quadrature, then the previous definition can be extended
by using different quadrature rules in each integration direction, being l1 up to lN . This gives,

Q(N) f (x̄) =
(

Q(1)
l1 ⊗·· ·⊗Q(1)

lN

)
f (x̄) , (3.27)

As discussed, to numerically integrate a function f (x), it is necessary to know the outcome of the function
in a finite set of points. This set of points can be seen as a grid, especially when dealing with multivariate
integrals. In Fig. 3.1 three two-dimensional grids constructed using Eq. (3.26) are displayed. These grids
are based on a one-dimensional Gauss-Legendre quadrature rule, where for (a) this rule gives 5 points, (b)
10 points and (c) 15 points. The figure shows clearly that the number of grid point increase exponentially
with increasing number of quadrature points for the one-dimensional rule. And in fact the number of points
in the grid can be computed by ; NQ = (nl)

N , where NQ is the number of cubature points, nl the number of
points in the underlying 1D quadrature rule and N the dimension of the integration space.
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The number of grid points can be slightly optimized by using Eq. (3.27), where Nq = ∏i nli , nevertheless
in both cases NQ increases exponentially with N. This exponential increase is also known as the curse of
dimensionality and shows that a Gaussian quadrature is not optimal for high-dimensional models and models
which need a moderate to high order of stochastic basis functions.
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Figure 3.1: Two dimensional cubature grids for (a)the underlying 1D rule consists of 3 points whereas for
(b) consists of 7 points and (c) of 15 points. For (a) NQ = 9, (b) NQ = 49 and (c) NQ = 225.

Clearly the selection of NQ is an important issue for NISP. The Gaussian quadrature is exact for polynomials
up to degree 2nl−1, unfortunately this is only valid when the integrand is a polynomial and this is not nec-
essarily the case for every integrand. The difficulty lies in

〈
Ψq
(
ξ̄
)
,U
(
., ξ̄
)〉

, since U
(
., ξ̄
)

is not necessarily
polynomial in ξ. And thus there is no clear rule for the selection of NQ, except that in general nl > pmax,
where pmax is the maximum order of the 1D-polynomials. [8, p. 149].

3.8.3.3 Sparse Grids As discussed in the previous paragraph the large number of grid points generated
when using tensorized quadrature formulas of high dimensional spaces can cause serious computational
issues, known as the curse of dimensionality.
An efficient way to reduce or temper this issue can be achieved by using a sparse grid instead of a grid based
on the tensorized formula. The sparse grid method is a numerical discretization technique which was first
introduce by Smolyak [9].
Cubature formulas involve O

(
(nl)

N
)

, where sparse grids only involve O
(

nllog(nl)
N−1
)

number of nodes
to achieve the same degree of exactness. So to a certain extent the exponential dependence on the dimension
of the problem can be overcome by using a sparse grid.
Nevertheless there is still no general method to chose the optimal number of nodes, which is also the case
when using a cubature formula.
A lot of research has been done on sparse grids, mainly to further reduce the number of nodes providing the
same degree of exactness especially for high dimensional grids. An introduction and additional information
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regarding sparse grids and the underlying theory can be found here [8, p. 56] and [10, 11].
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Figure 3.2: Two dimensional sparse grids for (a)the underlying 1D rule consist out of 3 points whereas for
(b) consist of 7 points and (c) of 15 points. For (a) NQ = 4, (b) NQ = 17 and (c) NQ = 49.

Table 3.2: 2 Dimensional shifted-Legendre polynomials of maxmum order 2 (constructed from the 1 dimen-
sional polynomials of order p≤ 2)

Ψn ψiψ j

Ψ0 ψ0ψ0 = 1
Ψ1 ψ1ψ0 = 2x−1
Ψ2 ψ0ψ1 = 2y−1
Ψ3 ψ2ψ0 = 6x2−6x+1
Ψ4 ψ1ψ1 = 4xy−2(x+ y)+1
Ψ5 ψ0ψ2 = 6y2−6y+1
Ψ6 ψ1ψ2 = 12xy2−12xy+2x−6y2 +6y−1
Ψ7 ψ2ψ1 = 12yx2−12xy+2y−6x2 +6x−1
Ψ8 ψ2ψ2 = 36x2y2−36yx2 +6x2−36xy2 +36xy−6x+6y2−6y+1

In Fig. 3.2 three 2D sparse grids are shown. The underlying rule with which these sparse grids where con-
structed consists of (a) 3 nodes, (b) 7 nodes and (c) 15 nodes. For the construction of the sparse grids shown
in fig. 3.1, the same rules where used.
In Table 3.2 the 2 dimensional polynomials, constructed from the 1 dimensional shifted Legendre polynomi-
als up to order p = 2, are listed. The first six polynomials from Table 3.2 form a set which can be used for
a polynomial chaos expansion of order 2 (in the other polynomials 3th and 4th order terms are involved and
can therefore not be used). For the integration of < Ψp,Ψq > a tensorized grid as in Fig. 3.1a can be used.
With the use of this grid we can integrate all possible inner products including inner products which consists
of the 6th, 7th and 8th order polynomials, but we are only interested in the polynomials up to order five. In
other words, the grid in Fig. 3.1a contains more points, or information than needed. So some of the point
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in the grid are not necessarily needed to integrate the polynomials used in the expansion. If this is the case,
we can then remove those points from the grid and only use the computational power there where needed.
When we compare Fig. 3.1a with Fig. 3.2a we can see that the four outer points of the tensorized grid have
been removed in the sparse grid but have the same degree of exactness for the inner products associated to
the first six polynomials of Table 3.2.
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4 Compartment Model for radionuclide release into the Biosphere

4.1 Introduction

A number of countries are currently considering deep geological storage of nuclear waste as a disposal
option. For the selection of suitable sites, a performance assessment needs to be carried out in order to
demonstrate the safety of the sites and usually mathematical models are used for this.
In general the behaviour of radionuclide concentrations in specific areas over long time scales is of main
concern. A qualitative indication of the behaviour of these radionuclide concentrations can be obtained
through the construction of mathematical models for radionuclide transport through the biosphere.
In the following paragraphs we will discuss the physical processes which will affect the behaviour of the
radionuclide concentrations in the biosphere and introduce the radionuclide transport equations and show
how a compartment model is derived from this transport equation.

4.2 The Transport Equation

Given the assumption that the motion of a fluid through porous media can be described by advection-
dispersion model [12], the equations for radionuclide migration in porous media can be written as:

∂

∂ t
εCk(r, t) =−∇ ·Jk(r, t)−λ

k
εCk(r, t)+λ

k−1
εCk−1(r, t)− f (Fk,Ck)+Sk(r, t) (4.1)

∂

∂ t
(1− ε)Fk(r, t) =−λ

k(1− ε)Fk(r, t)+λ
k−1(1− ε)Fk−1(r, t)− f (Fk,Ck) (4.2)

with:

Jk(r, t) =−D(r, t)∇Ck(r, t)+U(r, t)Ck(r, t) (4.3)

Where

Where :
ε Porosity of the rock.
Ck (r, t) Molar concentration in water of radionuclide k at position r and time t.
Jk (r, t) Current of the fluid at position r and time t.
λk Decay constant of radionuclide k.
Fk (r, t) Molar concentration of adsorbed radionuclide k on solids at position r and time t.
D(r, t) Dispersion coefficient of water in the media at position r and time t.
U(r, t) Advective flow velocity of water in the media at position r and time t.
f (F,C) Adsorption isotherm.
Sk (r, t) External source of radionuclide k.
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The physics behind Eq. (4.1) and Eq. (4.2) is as follows. The left hand side of Eq. (4.1) describes the rate
of change over time of the concentration of radionuclide species k dissolved in water. The first term on the
right hand side describes the movement due to dispersion and advection. The second term is a sink due to
radioactive decay and the third term is a in-growth due to decay of the preceding radionuclide in the decay
chain. If k is the first radionuclide in the chain than the third term is zero. Radionuclides can also be removed
from the solution by adsorption on the surface of the host rock. The inverse process, desorption can also take
place and so there is a relationship between the concentration in solution and that being adsorbed on the rock.
This is called the adsorption isotherm relation. The concentration of radionuclides that is being absorbed by
the host rock is described by Eq. (4.2). The left hand side of this equation describes the rate of change over
time of the concentration of radionuclide species k adsorbed on the rock. There has not been accounted for
an advection-dispersion process in this equation because the rock, on which the radionuclides are adsorbed,
do not move or hardly move. The other terms in Eq. (4.2) are analogous to those in Eq. (4.1).
It has been shown in [13] that, under the condition that Ck and Fk are proportional, (4.2) can be subtracted
from (4.1) and we will obtain,

∂

∂ t
(Rk

εCk) =−∇ ·Jk−λ
kRk

εCk +λ
k−1Rk−1

εCk−1 +Sk. (4.4)

Where Rk is the retardation factor of radionuclide species k, which is defined as:

Rk = 1+
1− ε

ε
Kk

dρs. (4.5)

And Kk
d the distribution coefficient of radionuclide species k. The retardation coefficient is equal to the

fraction of radionuclides which is in the mobile phase, e.g. diluted in water and is a dimensionless number.
The distribution coefficient is equal to the ratio of concentration of radionuclides in solution phase over
concentration of radionuclides in solid phase.

4.3 Derivation of the Compartment Model

Equation (4.4), which is a second order partial differential equation, can in principal be solved with the use of
a number of numerical methods. Unfortunately there is not enough detailed knowledge about how dispersion
coefficient (D) and the advective flow (U) of water behave in the domain of interest and so those numerical
mehods are difficult to implement.
What can be done is splitting up the domain in a convenient number of volumes or compartments and
consequently average equation (4.4) over these volumes. And so it is possible to define the concentration in
a certain compartment Vi by integrating over the volume of Vi.

∫
Vi

drRk
εCk (r, t) = Rk

i C
k
i (t) (4.6)
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Furthermore it is possible to express the transport from compartment i to j, therefore the average transport
in a volume Vi can be written as:

∫
Vi

dr∇ ·Jk (r, t) =
∫

Si

dS ·Jk (rs, t) (4.7)

The Gauss’ Theorem is used to rewrite the volume integral into a surface integral and consequently this
surface integral can be written as:

−
∫

Si

dS ·Jk (rs, t)≈∑
j

r jiCk
j (t)−Ck

i (t)∑
j

ri j (4.8)

The rate transfer coefficients ri, j in Eq. (4.8) can be obtained from separate measurements and calculation
of earth processes. They describe the rate at which a radionuclide is transported into and out compartment
i over a boundary which compartment i shares with compartment j. It is convenient to redefine the rate
transport coefficient as:

ai, j = r j,i i 6= j

ai, j =−
Nc

∑
j=1

r j,i =−
Nc

∑
j=1

a j,i i 6= j

Where Nc is the number of compartments. To cover conservation of mass, it is necessary to set:

Nc

∑
i=1

ai, j = 0 (4.9)

Equation (4.7) can be written as: ∫
Si

dS ·Jk (rs, t)≈−∑
j

ai, jCk
j (t) (4.10)

Substituting the relations of Eq. (4.6) and Eq. (4.10) into Eq. (4.4) gives use the compartment model:

∂

∂ t
Rk

i C
k
i =

Nc

∑
j=1

ai, jCk
j −λ

kRk
i C

k
i +λ

k−1Rk−1
i Ck−1

i +Sk
i (4.11)

The left-hand side of Eq. (4.11) describes the rate of change of the concentration of radionuclide k in com-
partment i over time. the first term in the right-hand side describes the flux of concentration of radionuclide
k from compartment i into compartment k. The second term describes the decay of radionuclide k, whereas
the third term describes the in-grow of concentration of radionuclides from the preceding radionuclide in the
decay chain. The last term in Eq. (4.11) describes the source of radionuclides.
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4.4 Solving the Compartment Model

Equation (4.11), which has been derived from (4.4) is a set of Nc ·Nr coupled first order, Ordinary Differential
Equations. This system has been solved in [13] by using parameters which do not correspond to a physical
element or a real case scenario. According to [13] the presented case was used for illustrative purposes. In
the presented work we decided to use the model presented in [13] as a benchmark.

The ’illustrative case’ in [13] uses a decay chain containing 8 radionuclides and 31 compartments which
gives a system of 248 coupled first order differential equations. Furthermore, due to large variations in
rate transfer coefficients the set of equations is stiff. This requires a solver that can handle a moderately
large set of couple and stiff equations. The time-span over which the concentrations should be calculated
reaches from 0 to 100,000 years. In figures 4.1a and 4.1b the results of the compartment model are plotted
for compartments 4 and 31. The plots clearly indicate that the concentration will saturate after about 10.000
years. This because, in this illustrative case, the source terms has been assumed to be constant with time,
e.g. there is a constant influx of radionuclides into the total domain.
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Figure 4.1: The radionuclide concentration in compartment 4 and 31 as a function of time.

4.5 Uncertainties in the Compartment Model

In Chapter 4.3 it has been shown how to tackle the problem of having limited data available for the dispersion
coefficient and the velocity field of the advective flow of the underground water. This problem, the limited
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amount of available data, is unfortunately not only bounded to the dispersion and advection terms but also
counts for the distribution coefficient. This is due to the fact that the physical and chemical processes behind
the absorption-desorption processes are not fully understood yet. The distribution coefficient is furthermore
depending on a variety of parameters such as, but not limited to; temperature, soil texture, pH and the solute.
Due to these dependencies it can be assumed that the distribution coefficient is a function of a random
variable, ξ. The concentration of radionuclides, which is depending on the distribution coefficient through
the retardation coefficient, becomes a functional depending on ξ. Equation (4.11) will now become:

∂

∂ t
Rk

i (ξ)Ck
i (t,ξ) =

Nc

∑
j=1

ai, jCk
j (t,ξ)−λ

kRk
i (ξ)Ck

i (t,ξ)+λ
k−1Rk−1 (ξ)iC

k−1
i (t,ξ)+Sk

i (4.12)

Where the retardation coefficient is now be expressed as:

Rk
i (ξ) = 1+

1− ε

ε
Kk

d (ξ)ρs. (4.13)

We assume that ξ= (ξ1,ξ2, · · · ,ξM) are independent identically distributed random variables and M indicates
the number of dimensions in random space. The uncertainties in the distribution coefficient have been already
investigated in [7], where it has been chosen to vary Kk

d according to a log-uniform distribution.
We decided to use the same log-uniform distribution for Kk

d , so that [7] can be used as a reference. Moreover,
a log-uniform distribution of the distribution coefficient also mimics the physical reality since the values of
Kk

d can span over several orders of magnitude [14]. This allows us to write a probability density function
(pdf) for the values of Kk

d :

p
(

Kk
d (ξ)

)
=

1

Kk
d (ξ) ln

(
Kk

d,max

Kk
d,min

) , (4.14)

where Kk
d,min the minimum value and Kk

d,min the maximum value is of the distribution coefficient for radionu-
clide species k. With the use of the cumulative distribution function, it is possible to define an analytical
expression for the distribution coefficient (Kk

d) as function of the RV ξ:

ξn =
∫ Kk

d(ξ)

Kk
d,min

p
(

Kk′
d (ξ)

)
dKk′

d (ξ) =
ln Kk

d(ξ)

Kk,min
d

ln
Kk

d,max

Kk,min
d

, (4.15)

isolating Kk
d (ξ) out of Eq.(4.15) gives:

Kk
d (ξ) = Kk

d,min

(
Kk

d,max

Kk
d,min

)ξn

. (4.16)
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Since Eq. (4.12) is depending on a random variable ξ, this equation can be viewed as a stochastic differential
equation. As said earlier, there are a couple of methods available to deal with stochastic differential equations
with which the stochastic behaviour of the solution of such equations can be quantified.

4.6 UQ of the Compartment Model with Monte Carlo

As said before, the Monte Carlo method is a computational algorithm which can be used to quantify the
uncertainty of stochastic differential equations. A description of how MC is implemented can be found in
Appendix A.1.

4.6.1 Results of UQ with Monte Carlo

In Table 4.1 the calculated mean value, standard deviation and the standard deviation of the mean of the
concentration of radionuclides k = 1 and k = 6 in compartement i = 4 at time 100 years are depicted. Both
(k = 1 and k = 6) have been calculated with 103 and 105 samples (N). The calculation for 103 samples
took about 12 minutes, where as the 105 samples took about 19 hours. The results of all the radionuclide
concentrations in compartment 4 and 31 at time 100 years and 100.000 years and calculated with 103 and
105 number of samples can be found in tables A.1 until A.4.

Table 4.1: Mean and standard deviation of the concentrations of radionuclides k = 1 and k = 6 in compartment
4 at 100 years.

k = 1
i N time E[Ck

4] σCk
4

σE[Ck
4]

100%√
N

4 103 100 265.2288 138.4375 4.3800 3.16 %
4 105 100 260.3267 138.5777 0.4382 0.32 %

k = 6
4 103 100 11.4379 12.5557 0.3972 3.16 %
4 105 100 11.4202 12.7023 0.0402 0.32 %

In figure 4.2 the pdf’s of the concentrations in compartment 4 for the first radionuclide (4.2a) and for the sixth
radionuclide (4.2b) at 100 years are given. The MC:1000 pdf has been constructed by dividing the range
of the concentrations in 50 equidistant bins and counting the number of realizations per bin. The number
of realizations per bin have been normalised by dividing it by the total number of realizations. We see that
the pdf is not a smooth function, if less bins are used the smoothness of the function will increase. The
disadvantage of this is that information will be lost due to the averaging over larger bins. This already can
be seen if we compare MC:1000 with MC:100000. The peaks in MC:100000 are more pronounced which
can be described the the fact that more bins are used, this besides the fact that more realizations are used.
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Although the pdf’s still contain noise, they give a good description of the actual pdf’s and it can be shown
that, if the number of bins and samples go to infinity the pdf’s will converge the the actual pdf’s.
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Figure 4.2: The pdf’s of the first radionuclide in compartment 4 at 100 years (a) and the pdf of the fourth
radionuclide in compartment 4 at 100 year (b), both computed with Monte Carlo.

4.7 UQ of the Compartment Model with Polynomial Chaos

As discussed in Chapter 3, using a Polynomials Chaos expansion, a stochastic process can be written as a
weighted sum of orthogonal polynomials which span the stochastic space. In the case of the compartment
model, the concentration can be seen as a process which evolves over time in a stochastic space. The distri-
bution coefficient is log-uniform distributed and in Eq.(4.16) we have shown that the distribution coefficient
is depending on RV ξn.
From Table 3.1 it can be seen that there does not exist an associated family of orthogonal polynomials to a
log-uniform distribution. Since the distribution coefficient is a function of ξ, and ξ is uniform distributed it
is convenient to choose Legendre polynomials. Note that the RV ξ ∼U (0,1) and thus the used Legendre
polynomials are not the standard ones, but the ’shifted’ Legendre polynomials which are orthogonal on [0,1]
are used. Furthermore, the maximum order of the polynomials have been set to p = 5, so only the first
6 shifted Legendre polynomials are used. From these shifted Legendre polynomials the multidimensional
polynomials will be constructed, and since there are 8 independent random variables these polynomials are
8 dimensional functions.
The concentration of radionuclides can now be written as a PC expansion:

Ck
i
(
t, ξ̄
)
=

P

∑
n=0

Ck
i,n (t)Ψn

(
ξ̄
)

(4.17)
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,

where Ck
i,n (t) are the PC coefficients, Ψn

(
ξ̄
)

are the 8-dimensional shifted Legendre polynomials and ξ̄ an
8-dimensional random variable. Since the polynomials are known, one (only) needs to determine the PC
coefficients. This can be done by using a orthogonal projection described in paragraph 3.8.1. Since the
dimension of the stochastic space and the amount of base function per dimension are known, eq. 3.14 gives
that 1287 PC coefficients need to be determined and thus P = 1286.
For the evaluation of the PC coefficients a numerical integration is necessary. In paragraph 3.8 a few methods
have been discussed for the evaluation of the coefficients. If a regular grid based on a Gauss quadrature,
mentioned in 3.8.3.1, where to be used, than the system of differential equations needs to be solved at least
in 68 grid points. On average one evaluation of the system takes about 0.69 seconds so the total evaluation
time for 68(≈ 1.68 ·106) evaluations would be around 13 days.
If instead of a regular grid a sparse grid is used, than the number of grid points can be reduced while
maintaining the same order of accuracy. Here, two types of sparse grids were used. One sparse grid is based
on a Gauss quadrature for Legendre polynomials using Smolyak’s method to construct the grid, and is being
referred to as ’GQU’ (Gauss Quadrature with Uniform measure). The second sparse grid is based on a so
called ’delayed Kronrod-Patterson sequence Gauss-Legendre quadrature’ and is being referred to as ’KPU’
(Kronrod-Patterson with Uniform measure). This KPU sparse grid uses an optimization technique such that
the number of nodes can be decreased will maintaining the same order of accuracy compared to a normal
Smolyak sparse grid [11].
In table 4.2 the number of nodes and cputime are listed, it is clear to see that the KPU sparse grid uses the
least computational resources.

Table 4.2: Number of nodes and cputime for given underlying quadrature rules of a normal Cubature, a
GQU- and a KPU sparse grid.

Cubature GQU KPU
cputime cputime cputime

nl NQ [days] NQ [days] NQ [days]
5 390625 3.11 3905 0.03 2177 0.02
6 1679616 13.41 15153 0.12 6657 0.05
7 5764801 46.03 51713 0.41 17921 0.14
8 16777216 133.98 159425 1.27 43137 0.34

Once the PC coefficients are known a functional is obtained describing the stochastic behaviour of the con-
centration at a specific time. The mean value and variance (or standard deviation) can now be evaluated as
described in paragraph 3.6 or by sampling the obtained functional. The first method should be the fastest,
but if one is interested in higher order estimators than the sampling method is usually easier [8]. If the ran-
dom variable ξ̄ is in each stochastic dimension N times uniformly sampled over [0,1] and these N samples
are substituted into eq. (4.17) we obtain N realizations. From this set of N realizations the statics of the
concentration can be measured.
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Table 4.3: Mean value of the concentration and the associated standard deviation for the first and sixth
radionuclide in compartment 4 at time 100 years, calculated via the deterministic and via the sampling
method.

GQU KPU
deterministic sampled (N = 1.1 ·106) deterministic sampled (N = 1.1 ·106)

nl E[Ck
4] σk

4 E[Ck
4] σk

4 E[Ck
4] σk

4 E[Ck
4] σk

4
k = 1, compartment 4

5 260.5571 139.1826 260.7918 139.0733 260.5074 138.9891 260.7519 138.8833
6 260.5448 138.8723 260.6954 138.8426 260.5074 138.7798 260.6592 138.7495
7 260.4654 138.6981 260.7463 138.6986 260.5244 138.7632 260.8052 138.7633
8 260.5071 138.7487 260.3739 138.7177 260.5321 138.7717 260.3967 138.7395

k = 6, compartment 4
5 11.5285 12.8007 11.5334 12.8135 11.5225 12.7981 12.5316 2429.4092
6 11.5317 12.8066 11.5376 12.8139 11.5240 12.7985 11.5298 12.8058
7 11.5249 12.8085 11.5220 12.8018 11.5277 12.7961 11.5250 12.7895
8 11.5269 12.7967 11.5128 12.7857 11.5309 12.8062 11.5168 12.7951

Since the multidimensional polynomials where constructed using shifted Legendre polynomials up to p = 5,
the rule of thumb for choosing a suitable grid tells us that the grid should at least be based on nl = 6 (since
nl > p). Calculations have been carried out on sparse grids based on the GQU and KPU method and for both
methods nl has been chosen from nl = 5 up to nl = 8. In Table 4.3 the results of the sampling method and the
deterministic method to determine the first- and second-order moments are tabulated for the first and sixth
radionuclide in compartment 4. If we compare these results with the results in Table 4.1 it can be seen that
the results obtained by the PC method are in agreement within 1% with the Monte Carlo results.
If we look at the results for the KPU nl = 5 case and compare the deterministic and sampled standard
deviation of the sixth radionuclide (k = 6) with each other, we see that those values do not correspond at all.
This can be described to the fact the the higher order coefficients that can not be accurately be calculated
using this KPU nl = 5 grid. We see that the evaluated standard deviation for radionuclide 6 (k = 6) computed
with a KPU nl = 5 grid via the sampling method is not in agreement with the value computed via the
deterministic method. In Fig. 4.3 and Fig. 4.4 the pdf’s of the first (k = 1) (Fig.4.3) and the sixth (k = 6)
(Fig.4.4) radionuclide are plotted using those sparse grids.
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Figure 4.3: pdf’s of the first radionuclide in compartment 4 at 100 years, computed with different sparse
grids. The four left pdf’s were computed by the GQU sparse grid for nl = 5 up to nl = 8. The four pdf’s at
the right were computed by using the KPU sparse grid for nl = 5 up to nl = 8.
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Figure 4.4: pdf’s of the sixth radionuclide in compartment 4 at 100 years, computed with different sparse
grids. The four left pdf’s were computed by the GQU sparse grid for nl = 5 up to nl = 8. The four pdf’s at
the right were computed by using the KPU sparse grid for nl = 5 up to nl = 8.

From Fig.4.3 and Fig.4.4 we can see that the shapes slightly differ between different GQU calculated pdf’s
meaning that the coefficients change between the different GQU sparse grids. The pdf based on GQU5
has a smooth shape, whereas the pdf’s calculated with higher GQU grids the pdf’s become less smooth,
which means that the pdf’s are still converging. For the pdf’s computed with the use of the KPU grids we
see that the first pdf, based on KPU5 is also smooth but the pdf based on KPU6 does not has this smooth-
ness around the edges. For higher order KPU grids we see that there is no real differences between pdf’s
for different grids. We can thus say that the pdf of the first radionuclide is converged at the KPU7 calculation.
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For the pdf’s of the concentration of the sixth radionuclide we see similar behaviour for the GQU based re-
sults. This indicates that the ’low’ GQU grids are not capable of computing the higher order PC coefficients,
where as if the number of nodes in the grid is increased we see the shape changing due to a more accurate
computation of the higher order PC coefficients.
If we compare the pdf computed with the KPU5 grid with the other pdf’s we see that this pdf does not have
the same shape at all. This suggests that the KPU5 not only fails in determining the higher order PC coeffi-
cients, but also is not capable of determining the moderate to low order coefficients. From nl = 6 the KPU
grid is capable of accurately determining the PC coefficients, and again this can be seen from the plots in
4.4, since the shapes of the pdf’s between KPU6 to KPU8 hardly change. In Appendix B the pdf’s of all
radionuclides in compartment 4 at time 100 years and 100.000 years and also a brief description of how PC
is implemented can be found.

4.8 Conclusions

The non-intrusive Polynomial Chaos technique is used to analyse uncertainties corresponding to uncertain-
ties in the distribution coefficients of the compartment model for radionuclide release into the biosphere. It
has been shown that by using sparse grids the curse of dimensionality can be reduced.
The PC results (mean and standard deviation) obtained with a low level grid (nl = 5) are within 1% agree-
ment with the results obtained with Monte Carlo sampling using 1000 samples. On the other hand, the pdf’s
constructed with these low level grids are very unreliable, this due to errors in the higher order coefficients.
For all GQU as well as KPU sparse grids we see that the convergence of the mean and the standard deviation
are within 1%, compared with the Monte Carlo sampling using 105 samples.
The amount of computational resources necessary for PC are, for the low level sparse grids, roughly two to
four times the amount necessary for a Monte Carlo (MC:1000) calculation were 1000 samples are used. If
the computational resources of seven to eighteen times the MC:1000 resources are accepted we see that the
the pdf’s, computed with KPU nl = 6 and nl = 7, become much more reliable. If such pdf’s where to be
build by using Monte Carlo, around 1000 times the MC:1000 resources are necessary.
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5 Analysis of a repository design in a rock salt formation

The Netherlands currently considers a deep geological storage for nuclear waste. For the selection of suit-
able disposal sites, performance assessments need to be carried out in order to qualify and demonstrate the
safety of the engineered barriers as well as the natural barrier which are site specific. This can be done by
the means of a mathematical model which mimics the transport of the radionuclides through the barriers into
the biosphere.
The Nuclear Research and Consultancy Group (NRG) carried out such a performance assessment with the
use of EMOS (version 4 ccm2 NRG) , which is a computer program designed by GRS, NRG and ECN. This
performance assessment has been carried out within the PAMINA (Performance Assessment Methodologies
in Application to Guide the Development of the Safety Case) project.
The EMOS computer program consists of large number of modules, the three most important modules are;
The REPOS module, which models the galleries of the repository including engineered barriers and releases
from different types of waste canisters and waste forms. The MASCOT/TROUGH module which models
the radionuclide transport in the geosphere. The EXPOS module calculates the exposure in the biosphere
for which several exposure pathways have been taken into account to compute the maximum dose rate for
individuals or for population groups [1, p. 47]. In [1] NRG considered two cases to perform a safety assess-
ment of a nuclear waste repository situated in a salt rock, a so called dry scenario and a scenario where the
repository is flooded, a so called brine intrusion scenario.
The brine intrusion scenario can occur when the waste repository has been abandoned and that the surround-
ing area and repository has been flooded. In the dry scenario it has been assumed that the due to the absence
of brine no diffusion takes place.
In the brine intrusion scenario the permeability of the seal plug has not yet been converged and thus it does
not fully seal the borehole. Therefore salt water or brine can enter the borehole where this can take up ra-
dionuclides. Eventually this contaminated brine can be pressed out the borehole again due to the surrounding
pressure of the host rock and the heat produced by the waste. The radionuclides can now be dispersed not
only by a diffusion process, but also due to an advection process since they are dissolved in water.
In both scenarios it has also been assumed that not only the waste canister but also the matrix in which the
waste is stored has been compromised. This can be the result from the exposure to pressure from the host
rock, corrosion or due to heat produced by the waste. The failure of the waste canisters is a conservative
assumption since the waste canisters are designed to withstand extreme pressures.

5.1 Uncertainties in model parameters

As mentioned before, a mathematical model is used to mimic the transport of radionuclides within and
around the repository. Most of the parameters used in this model have been derived from experiments and
usually a best fit is used to determine the parameter value. However for some parameters, insufficient, not
well distributed or highly varying data is only available which may lead to uncertainties in the parameter due
to the fact that this best fit procedure is not accurate enough.
For the UQ of a salt rock repository described in [1], 6 parameters related to the porosity-permeability
relation of the salt plug and the creep behaviour of the brine are considered to be uncertain not only due to
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facts described above, but also because it is assumed that these parameters will have a large influence on
the outcome. These parameters are: The recrystallization creep constant, the pressure creep constant, the
permeability, the threshold porosity the threshold permeability and a experimentally determined constant of
the salt plug. A description of these parameters can be found in [1, p. 32]. In Table 5.1 the parameters and the
associated distributions are listed. One parameter is log-normal distributed, one normal and four parameters
are log-uniform distributed.

Table 5.1: Distribution and values of the 6 random variables used

parameter distribution mean value standard deviation
permeability [m2] log-normal 1.39 ·10−10 1.65 ·10−10

experimentally determined constant [−] normal 4.18 0.258
parameter distribution minimum value maximum value

pressure creep constant [µm2K(MPa−1s−1)] log-uniform 0.22 3.11
recrystallization creep constant [µm2(MPa−5s−1)] log-uniform 16.68 2501.0

threshold porosity [−] log-uniform 7.9 ·10−4 3.16 ·10−2

threshold permeability [m2] log-uniform 1.0 ·10−26 6.31 ·10−17

5.2 Standard Techniques used for Uncertainty Quantification

NRG applied the Monte Carlo technique to quantify the uncertainty of the modelled closure behaviour of
the salt plug by calculating the porosity and permeability of the salt plug. Subsequently the amount of brine
pressed out of the disposal cell, fluxes of radiotoxicity into the geosphere and dose rates in the biosphere are
calculated. Therefore the 6 parameters have been sampled independently of each other 1000 times.
For the uncertainty analysis of the output variables it has been chosen to study the logarithm of the raw
output data. This due to large the dispersion of the results and a lack of symmetry [1, p. 37]. The following
measures of the generated outputs have been studied;

• Geometric mean µg and median m were used as central tendency.

• Geometric standard deviation to characterise the dispersion in logarithmic scale.

• Quantiles were used to characterise the dispersion of the outputs. Quantiles are points taken at (regular)
intervals from the cumulative distribution function (cdf).

• Skewness S to provide a measure of symmetry.

• Kurtosis K to provide a measure of ‘peakedness’.

Definition of the geometric mean,

µg = n

√
n

∏
i=1

xi, (5.1)

42



5 ANALYSIS OF A REPOSITORY DESIGN IN A ROCK SALT FORMATION

median,

P(X ≤ m)≥ 1
2

and P(X ≥ m)≤ 1
2
, (5.2)

geometric standard deviation,

σg = e

√
∑

n
i=1 ln( xi

µg )
2

n , (5.3)

skewness,

S = E

[(
X−E [X ]

σ

)3
]
, (5.4)

kurtosis

K =
E (X−E [X ])4(
E (X−E [X ])2

)2 (5.5)

As mentioned before, the EMOS code is capable of computing a large number of different quantities. In [1]
a description, and uncertainty analysis of a number of the computed quantities can be found. In the presented
work we only focus on the dose rate over time in the biosphere in the brine intrusion scenario.
The code calculates at different times the dose rate in the biosphere, the maximum value of this dose rate
over time is analysed. In Table 5.2 estimators of the distribution of the maximum dose rate computed by
NRG are listed.

Table 5.2: The different measures of the dose rate in the biosphere calculated by Monte Carlo sampling for
1000 realizations. Taken at the dose rate peak-time. Results have been taken from [1]

Geometric mean σgeometric Median Skewness Kurtosis
N [Sv/Year] [-] [Sv/Year] [-] [-]

1000 6.84e-13 1.13 6.79e-13 0.329 2.758

Quantiles [Sv/Year]
N 1% 5% 50% 95% 99%

1000 5.40e-13 5.74e-13 6.79e-13 8.51e-13 9.23e-13

From Table 5.2 it can be seen that the geometric mean is around 6.8 ·10−13 Sv/year, that the distribution has
a skewness of 0.33 and a kurtosis of around 2.76. This means that the distribution is asymmetric with a tail
towards the positive direction.
From the obtained results it is also possible to construct a pdf. For this purpose, a range has been defined
by finding the minimum and maximum value of the 1000 realisations and dividing it in 55 equi-distant bins.
The pdf can then be constructed by counting how many realisations fall within one specific bin and the
number of realizations per bin is normalized by dividing it by the total number of realizations. A cumulative
distribution function (cdf) can be constructed in a similar way. The pdf and cdf can be found in Fig. 5.1a,
as it can be seen the pdf contains a considerable amount of noise, this is due to the relative low number of
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realisations (1000). Furthermore it can be seen that the distribution of the realisations is asymmetric, as was
predicted by the calculated skewness.
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Figure 5.1: pdf and cdf of the maximum dose rate based on 1000 realizations.

The performance assessment of a salt-rock repository carried out by NRG is documented in [1]. In this
document (p.97) a missing value problem is discussed, this problem is explained as follows:

During the Monte Carlo sampling of the EMOS code a porosity threshold is sampled. If during a run this
threshold not has been reached within 106 years the run will be terminated and no outputs are available. The
may influence the Monte Carlo results when this problem occurs for a relative high number of simulations
compared the the total number of simulations.

For the 1000 simulations used in [1] this problem has been observed twice. Due to the robustness of the
Monte Carlo technique the results are approximately the same if a low number of simulations is missing.

5.3 Polynomial Chaos Applied to the EMOS code for UQ

The UQ performed by NRG was based on 1000 realisations. Since one realisation is relatively expensive
from a computational point of view, 1000 realisations is certainly computational expensive. If one could
lower the number of realisations then the computational resources used or the computation time can be re-
duced.

A reduction of the number of realisations could be achieved by applying the Polynomial Chaos technique.
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To this end we assume that a specific outcome or solution of the model, in this case the maximum dose rate
in the biosphere, can be cast in the following form;

ḊB
(
t, θ̄
(
ξ̄
))

=
No

∑
i=0

ci (t)Ψi
(
ξ̄
)
, (5.6)

where ḊB
(
t, θ̄
(
ξ̄
))

is the dose rate at time t which depends on the stochastic processes θ̄ whose distribution
is depending on the random variables ξ̄. The PC coefficients are expressed by ci and the multidimensional
polynomials are represented by Ψ.
The stochastic processes modelled by θ̄ are the processes listed in Table 5.1 in which the distribution of the
stochastic processes is also specified.

5.3.1 Choice of Polynomials, Truncation Order and Integration Grid

The shifted Legendre polynomials, valid on the domain [0,1], have been used to build the multidimensional
polynomials. The reason why it has been chosen to use Legendre polynomials is because four of the six
stochastic processes are log-uniform distributed and the weight function involved in the orthogonal relation-
ship of Legendre polynomials is the closest to a log-uniform distribution. Therefore the rate of convergence
would be the highest or optimal if Legendre polynomials were used [3]. Furthermore the log-uniform dis-
tributed processes are only valid on a specific bounded domain, whereas the distributions of the other dis-
tributions are valid on a infinite or semi-infinite domain. So if a different polynomial basis associated with
another distribution were used, the rate of convergence would possibly be compromised and thus more terms
in the expansion would bee needed to achieve the same results.

Usually if the polynomials are correctly chosen the rate of convergence would be optimal, i.e. a low(er) trun-
cation order is necessary. However in general one does not know the optimal order of truncation beforehand.
Furthermore it has been shown in [15] that for time dependent problems the convergence may change over
time, making it more difficult to define an appropriate truncation order.
It is also expected that the use of only one family of orthogonal polynomials deteriorates the rate of conver-
gence.

It has been decided to investigate different truncation orders (p = 3, p = 4 and p = 5), in combination with
the GQU- and KPU-sparse grid introduced in paragraph 3.8.3.3. We have seen in paragraph 4.7 that the KPU
grid performs better that the GQU grid and we would expect that the KPU grid would perform better also in
this case. With the given truncation order (p is 3,4,and 5) we can define the level (nl) on which we can build
the sparse grids. And since nl should obey nl > p, we chose for the GQU grid nl = 3 and nl = 4. For the
KPU grid we chose nl = 3 up to nl = 6, this way the convergence of the grid could be studied.
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5.3.2 UQ Results obtained by applying PC

In paragraph 5.2 we discussed the measures used to study and to quantify the uncertainty of the predicted
dose rate and in the presented work we have used the same measures. As mentioned in paragraph 3.6 it is
possible to compute statistical moments based on the PC coefficients. We have seen that this was relatively
easy for the fist and second order moments (arithmetic mean and standard deviation). Here we also need to
compute other measures such as the geometric mean and the geometric standard deviation. These estimators
can be computed by sampling ξ̄ in the right hand side of Eq. (5.6) uniformly between [0,1] and this sampling
procedure requires little computational resources.
In Table 5.3 the results for different orders of truncation and grids are shown.
In the first line of Table 5.3 the results from NRG are shown. The geometric mean calculated via PC de-
pending on different grids and truncation orders correspond with the geometric mean calculated via MC. By
the sampling of the right hand side of Eq. (5.6) 106 realizations were obtained. We see that for all truncation
orders and grid types, except GQU nl = 4, p= 3, the geometric mean calculated by means on a PC expansion
are within 3% accuracy of the geometric mean obtained with MC. For increasing truncation order it can be
seen that the geometric standard deviation increases. Furthermore the skewness and kurtosis increase for
increasing order of truncation. From this can be concluded that the distribution still changes for increasing
order of truncation. This can also be seen in Table 5.4 in which the quantiles are given.

Table 5.3: Statistics of the maximum dose rate in the Biosphere for the wet scenario, with various numerical
integration techniques.

Geometric mean σgeometric Median Skewness Kurtosis
Grid type nl p N [Sv/Year] [-] [Sv/Year] [-] [-]
NRG:MC [-] [-] 1000 6.84e-13 1.13 6.79e-13 0.329 2.758

GQU 3 3 85 6.98e-13 1.16 7.06e-13 -0.297 2.658
GQU 4 3 389 6.61e-13 1.27 6.78e-13 0.462 3.006
KPU 3 3 79 6.97e-13 1.16 7.05e-13 0.484 2.957
KPU 4 3 257 7.04e-13 1.18 7.14e-13 0.909 3.975
KPU 5 3 737 6.94e-13 1.20 6.80e-13 1.731 9.227
KPU 5 4 737 6.91e-13 1.23 6.84e-13 1.848 11.524
KPU 6 3 1889 7.01e-13 1.19 6.88e-13 1.390 6.678
KPU 6 4 1889 7.00e-13 1.20 6.89e-13 1.716 9.355
KPU 6 5 1889 6.97e-13 1.22 6.89e-13 1.989 12.781
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Table 5.4: Quantiles for the maximum dose rate in the Biosphere for the wet scenario, with various numerical
integration techniques.

Quantiles [Sv/Year]
Grid type nl p N 1% 5% 50% 95% 99%

NRG [-] [-] 1000 5.40e-13 5.74e-13 6.79e-13 8.51e-13 9.23e-13
GQU 3 3 85 4.57e-13 5.28e-13 7.06e-13 8.63e-13 9.03e-13
GQU 4 3 389 3.75e-13 4.46e-13 6.78e-13 9.66e-13 1.10e-12
KPU 3 3 79 5.05e-13 5.49e-13 7.05e-13 8.98e-13 9.90e-13
KPU 4 3 257 5.13e-13 5.51e-13 7.14e-13 9.49e-13 1.08e-12
KPU 5 3 737 4.76e-13 5.31e-13 6.80e-13 9.51e-13 1.21e-12
KPU 5 4 737 4.31e-13 5.08e-13 6.84e-13 9.58e-13 1.26e-12
KPU 6 3 1889 4.94e-13 5.45e-13 6.88e-13 9.45e-13 1.62e-12
KPU 6 4 1889 4.79e-13 5.35e-13 6.89e-13 9.55e-13 1.22e-12
KPU 6 5 1889 4.48e-13 5.20e-13 6.89e-13 9.74e-13 1.28e-12

Since the solution is sampled to compute the measures given in Tables 5.3 and 5.4 it is also possible to con-
struct a pdf. The pdf’s for the nine different cases are depicted in Fig. 5.2 together with the pdf computed
via MC. In Fig. 5.2a the pdf’s calculated on a GQU grid are plotted with truncation orders 3 and 4. In Fig.
5.2b, 5.2c and 5.2d the pdf’s are plotted for truncation orders 3, 4 and 5 and for each plot different KPU grids
were used.

In Fig. 5.2a we see that the computed pdf’s do not agree with the MC pdf. This can be due to the fact that
the truncation order is not high enough or the grid used is not accurate enough. In Fig. 5.2b a truncation
order of 3 was used together with various KPU grids. We see that the pdf’s do agree with the MC pdf. In
Fig. 5.2c and 5.2d we see that the shape does agree, but the maximum does not, this can be describe due to
the fact that these pdf’s have longer tails.
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Figure 5.2: (a) pdf of the maximum dose rate computed for p = 3 on a GQU nl = 3 and nl = 4 grid. (b) pdf
of the maximum dose rate computed for p = 3, p = 4, p = 5 and p = 6 on a KPU nl = 3 grid. (c) pdf of the
maximum dose rate computed for p = 5 and p = 6 on a KPU nl = 4 grid. (d) pdf of the maximum dose rate
computed for p = 6 on a KPU nl = 3 grid.

From the tabulated results in Table. 5.3 and Table. 5.4 as well as the graphs in Fig.5.1a we can conclude that
if the GQU grids are used, the method produces unreliable results. The KPU grids in contrast to the GQU
grids do produce reliable results as can be seen in 5.1a. In appendix C in C.1 the cdf’s can be found.
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As mentioned before if p = 3 is chosen we see that the obtained solution with PC suits the results obtained
with MC. If higher orders of truncation are chosen the solution changes and the distribution gets some what
longer tails. Furthermore if we look at Fig. 5.2c we see that the difference between the two PC pdf’s is
negligible, this suggests that a KPU nl = 5 grid is sufficiently accurate for a fourth order truncation. But yet
there is a large discrepancy between the MC pdf and the PC pdf’s. This discrepency can also be seen in 5.2d,
and at first there is not a clear explanation for this discrepancy.
We see that the MC pdf is bounded between approximately 0.5 ·10−12 and 1.0 ·10−12 Sv/Year. However, if
we look at the raw PC data, which is the data on which the Legendre polynomials are projected we see that
in fact there are realizations which are located outside this MC domain. This can clearly be seen in Fig. 5.7,
were we plotted a histogram of the raw PC-data computed with a KPU nl = 6 grid. Also for the other KPU
grids, there is seen that there are realizations with a value higher than approximately 1.0 ·10−12 Sv/Year, and
this explains why the PC-pdf’s do have longer tails compared to the MC-pdf. And if we look at Table 5.4 we
can see from the 95% quantile that the values which are higher than 1.0 ·10−12 represent approximately 5%
of the total data.

Assuming that the EMOS code not has been changed in between MC and PC calculations, the difference in
output can only be explained by differences in the type of sampling.
A possible explanation could be that for Monte Carlo 1000 samples are used, which is maybe to low to
capture outputs higher the 1.0 · 10−12. On the other hand, this data represents about 5% of the total data
and so for 1000 samples we would expect about 50 realizations to be higher than 1.0 · 10−12 and so this
explanation does not seems very likely.
An other possibility maybe that the input values (for example the distribution, mean values or standard
deviations) ,in the MC- or PC-case, are not properly defined, and if this is the case than it would be likely
that the distribution of the output will change.
Unfortunately we could not find a definite cause of the problem.
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(5.7)

In paragraph 5.2 we discussed that due to the robustness of Monte Carlo that (a low number of) missing
values do not influence the the the results. This is however not the case for the Polynomial Chaos technique.
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Fortunately this missing value problem did not occur during the PC calculations. But in general it is possible
that this problem may occur. If code, in this case the EMOS code, can not be fixed, for instance because it is
considered as a black-box, then one should come up with a substitution procedure for the missing value. In
general there does not exist a straightforward approach for such a substitution procedure.

5.4 Conclusion

Uncertainties in the dose rate in the biosphere due to uncertainties in closure behaviour of the salt plug have
been investigated. A computer code, developed by NRG was used for this end. The ”traditional” Monte
Carlo approach to quantify the uncertainties has been used by NRG and for this analysis 1000 calculations
were necessary to achieve an accuracy of approximately 3%. For this accuracy, which is related the the
number of calculations a relative high amount of computational resources is required.
A Polynomial Chaos expansion to model the stochastic behaviour of the dose rate has been proposed in order
to reduce the computational resources necessary.
For this expansion the shifted Legendre polynomials were used and we investigated the convergence of the
expansion for different orders of truncation.
We have seen that if polynomials up to 3rd order are used, together with a KPU nl = 3 grid, the results are in
agreement with the results of the Monte Carlo approach. For this specific case (p = 3, KPU nl = 3) only 79
grid points are necessary, which means that with less than 10% of the computational resources of the Monte
Carlo approach the same accuracy can be met.

The Monte Carlo approach failed to capture realizations which are higher than approximately 1.0 · 10−12

Sv/Year, where the PC-approach did found realizations higher than this value. And according to the PC-
approach these values represent approximately 5% of the distribution.
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6 Discussion and Recommendations

For the UQ of stochastic systems Polynomial Chaos can be applied non-intrusive. Unfortunately for high
dimensional stochastic problems the amount of computational resources increase exponentially. This expo-
nentially increase can be reduced by making use of sparse grids.

If one possesses over an effective and efficient method to find the PC-coefficient then the statistics of the
problem can be found analytically or via a sampling method. Both method are from a computational per-
spective inexpensive. This makes PC an attractive alternative for UQ compared to other techniques like
Monte Carlo or Perturbation method, this is especially the case for low dimensional stochastic problems.
Unfortunately the amount of computational resources necessary to find the PC-coefficients scales exponen-
tially with the number of random input variables.
Furthermore the amount of resources scales with the amount of terms in the Polynomial Chaos expansion,
and therefore one would like to determine beforehand the amount of terms which would be sufficient with
respect to a error margin. Unfortunately, a method to determine an optimal number of terms beforehand does
not exist, and this could lead to that one takes more terms in the expansion than needed just to be on the safe
side.

If one possesses over an adaptive method to find the optimal truncation order one could reduce the compu-
tation time. One of the problems one may find when investigating or applying such methods is the lack of
good and efficient convergence estimators.
Furthermore an adaptive method to find the optimal number of points used for the numerical integration can
reduce the amount of computational resources.
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A Monte Carlo

Monte Carlo is computation technique which can be used to perform uncertainty quantification. In this
appendix a brief description is given how the technique is implemented. Furthermore the results obtained
with the use of this technique are given. Relevant estimators of the concentration of all radionuclides in
compartment 4 and 31 for time is 100 and 100.000 year have been tabulated. Next to this pdf’s of the
concentration in compartment 4 and 31 for time is 100 and 100.000 year have been plotted.

A.1 Implementation of the Monte Carlo method

A short description of the implementation of the Monte Carlo method to solve the stochastic differential
equations concerning the compartment model.

• Do for N samples

– Draw a random number ξn.

– Plug ξn in the differential equation.

– Solve the Differential equation for Ck
i (t,ξn).

– Collect realization Ck
i (t,ξn)n.

• end do

• collect the statisics on {Ck
i (t,ξn)n}N

n=1, such as mean, standard deviation, standard deviation of the
mean, and relative standard deviation.

A.2 Results

Monte Carlo Results for the radionuclide concentration in compartment 4.
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Table A.1: Monte Carlo results for 1.000 samples at t = 100 years and t = 100,000 years for compartment 4

100 years 100,000 years
k E[Ck

4] σC σEC σREL,C E[Ck
4] σC σEC σREL,C

1 265.2288 138.4375 4.3800 0.5220 336.3776 174.5237 5.5217 0.5188
2 75.6467 79.7003 2.5216 1.0536 620.2280 632.9417 20.0254 1.0205
3 1.2359 1.4392 0.0455 1.1645 637.7993 717.0836 22.6875 1.1243
4 1.5803 1.7599 0.0557 1.1136 26.1481 29.1802 0.9232 1.1160
5 0.0911 0.1040 0.0033 1.1418 0.7973 0.9089 0.0288 1.1399
6 11.4379 12.5557 0.3972 1.0977 1294.9996 1345.6173 42.5734 1.0391
7 2.7792 3.0808 0.0975 1.1085 19.5892 21.7724 0.6888 1.1115
8 0.0103 0.0121 0.0004 1.1702 0.0371 0.0434 0.0014 1.1704

Table A.2: Monte Carlo results for 100,000 samples at t = 100 years and t = 100,000 years for compartment
4

100 years 100,000 years
k E[Ck

4] σC σEC σREL,C E[Ck
4] σC σEC σREL,C

1 260.3267 138.5777 0.4382 0.5323 330.1944 174.7105 0.5525 0.5291
2 80.0098 82.2543 0.2601 1.0281 654.9797 653.3507 2.0661 0.9975
3 1.2650 1.4550 0.0046 1.1502 651.8185 723.1592 2.2868 1.1094
4 1.6204 1.7716 0.0056 1.0933 26.7618 29.2974 0.0926 1.0947
5 0.0909 0.1053 0.0003 1.1583 0.7939 0.9209 0.0029 1.1600
6 11.4202 12.7023 0.0402 1.1123 1288.2039 1356.4362 4.2894 1.0530
7 2.7572 3.0849 0.0098 1.1189 19.4444 21.8078 0.0690 1.1215
8 0.0102 0.0118 0.0000 1.1564 0.0366 0.0424 0.0001 1.1582

Monte Carlo Results for the radionuclide concentration in compartment 31.
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Table A.3: Monte Carlo Results for 1000 samples at t = 100 years and t = 100,000 years for compartment 31

100 years 100,000 years
k E[C31k] σC σEC σREL,C E[C31k] σC σEC σREL,C

1 170.9172 98.7026 3.1228 0.5775 224.7957 127.1866 4.0240 0.5658
2 45.1812 54.2043 1.7149 1.1997 459.9982 496.5328 15.7096 1.0794
3 0.3163 0.4622 0.0146 1.4614 496.4796 581.6302 18.4020 1.1715
4 0.4967 0.8013 0.0254 1.6132 18.8652 21.3620 0.6759 1.1324
5 0.0073 0.0134 0.0004 1.8354 0.5306 0.6081 0.0192 1.1462
6 4.3592 6.7488 0.2135 1.5482 1060.0823 1172.7089 37.1029 1.1062
7 0.6218 1.0595 0.0335 1.7039 13.6123 15.5095 0.4907 1.1394
8 0.0004 0.0009 0.0000 2.0388 0.0209 0.0245 0.0008 1.1713

Table A.4: Monte Carlo results for 100,000 samples at t = 100 years and t = 100,000 years for compartment
31

100 years 100,000 years
k E[Ck

4] σC σEC σREL,C E[Ck
4] σC σEC σREL,C

1 167.4248 98.7745 0.3124 0.5900 220.2939 127.2788 0.4025 0.5778
2 48.1580 55.8911 0.1767 1.1606 486.9753 512.1187 1.6195 1.0516
3 0.3278 0.4741 0.0015 1.4463 508.2403 588.0734 1.8597 1.1571
4 0.5132 0.8062 0.0025 1.5709 19.3553 21.5056 0.0680 1.1111
5 0.0073 0.0135 0.0000 1.8576 0.5300 0.6150 0.0019 1.1605
6 4.3858 6.8387 0.0216 1.5593 1058.4408 1186.2280 3.7512 1.1207
7 0.6180 1.0604 0.0034 1.7159 13.4973 15.5210 0.0491 1.1499
8 0.0004 0.0009 0.0000 2.0613 0.0206 0.0239 0.0001 1.1578
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Figure A.1: The pdf’s of all radionuclide in compartment 4 at 100 years.
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Figure A.2: The pdf’s of all the radionuclide in compartment 31 at 100 years.

B Non Intrusive Spectral Projection Applied to the Compartment model

B.1 Implementation

A brief overview of how PC is implemented to perform UQ for the compartment model.
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• Define a a set of polynomials which represents the stochastic space: Shifted Legendre polynomials
have been chosen with a maximum order of p = 5. The multidimensional polynomials where build
accordingly.

• Define deterministic sample set {ξi}N
i=1. This sample set depends on the chosen numerical integration

procedure.

• Solve the Differential equation for Ck
i (t,ξn) for al deterministic samples.

• Project the set of deterministic solutions obtained onto the polynomial basis to determine the expansion
coefficients.

• Reconstruct the solution by means of a expansion.

• Sample the expansion to obtain the statistics of the solution in the stochastic space.

B.2 Results

Table B.1: Mean and standard deviation of the radionuclide concentrations in compartment 4 at 100 years.

GQU,NQ=5 GQU,NQ=6 GQU,NQ=7 GQU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 260.5571 139.1827 260.5448 138.8723 260.4654 138.6981 260.5071 138.7487
2 80.2344 82.7493 80.1566 82.7633 80.0344 82.5686 80.1986 82.7826
3 1.2654 1.4581 1.2662 1.4563 1.2651 1.4572 1.2653 1.4552
4 1.6258 1.7708 1.6257 1.7708 1.6256 1.7706 1.6256 1.7705
5 0.0914 0.1058 0.0914 0.1056 0.0914 0.1056 0.0914 0.1056
6 11.5285 12.8008 11.5317 12.8066 11.5249 12.8085 11.5269 12.7967
7 2.7449 3.0695 2.7448 3.0683 2.7446 3.0680 2.7447 3.0678
8 0.0102 0.0118 0.0102 0.0118 0.0102 0.0118 0.0102 0.0118
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Table B.2: Mean and standard deviation of the radionuclide concentrations in compartment 4 at 100,000
years.

GQU,NQ=5 GQU,NQ=6 GQU,NQ=7 GQU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 330.4380 175.4266 330.4369 174.9352 330.4371 174.9231 330.4370 174.9236
2 656.0483 657.4063 656.0552 656.6898 656.0545 656.6935 656.0545 656.6929
3 652.0699 723.9124 652.0715 723.7166 652.0715 723.7136 652.0715 723.7137
4 26.8511 29.2991 26.8514 29.2841 26.8514 29.2841 26.8514 29.2841
5 0.7984 0.9242 0.7984 0.9233 0.7984 0.9233 0.7984 0.9233
6 1299.2370 1367.4262 1299.2572 1365.9972 1299.2566 1366.0051 1299.2565 1366.0043
7 19.3503 21.6913 19.3505 21.6812 19.3505 21.6812 19.3505 21.6812
8 0.0365 0.0423 0.0365 0.0423 0.0365 0.0423 0.0365 0.0423

Table B.3: Mean and standard deviation of the radionuclide concentrations in compartment 31 at 100 years.

GQU,NQ=5 GQU,NQ=6 GQU,NQ=7 GQU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 167.5932 99.2142 167.5861 98.9889 167.5256 98.8598 167.5566 98.8976
2 48.3361 56.2382 48.2828 56.2575 48.1954 56.1108 48.3118 56.2636
3 0.3279 0.4867 0.3284 0.4743 0.3280 0.4751 0.3279 0.4743
4 0.5149 0.8060 0.5149 0.8055 0.5148 0.8054 0.5148 0.8053
5 0.0074 0.0139 0.0074 0.0136 0.0074 0.0136 0.0074 0.0136
6 4.4482 6.9013 4.4550 6.9005 4.4500 6.9066 4.4484 6.8987
7 0.6123 1.0639 0.6124 1.0535 0.6122 1.0534 0.6123 1.0532
8 0.0004 0.0009 0.0004 0.0009 0.0004 0.0009 0.0004 0.0009

Table B.5: Mean and standard deviation of the radionuclide concentrations in compartment 4 at 100 years.

KPU,NQ=5 KPU,NQ=6 KPU,NQ=7 KPU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 260.5074 138.9891 260.5074 138.7798 260.5244 138.7632 260.5321 138.7717
2 80.1572 82.7257 80.1572 82.6966 80.1815 82.6643 80.1913 82.7183
3 1.2646 1.4574 1.2649 1.4554 1.2655 1.4550 1.2660 1.4567
4 1.6256 1.7705 1.6256 1.7705 1.6256 1.7705 1.6257 1.7706
5 0.0914 0.1058 0.0914 0.1056 0.0914 0.1056 0.0914 0.1056
6 11.5225 12.7982 11.5240 12.7985 11.5277 12.7961 11.5309 12.8062
7 2.7445 3.0686 2.7446 3.0678 2.7447 3.0678 2.7448 3.0680
8 0.0102 0.0118 0.0102 0.0118 0.0102 0.0118 0.0102 0.0118
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Table B.4: Mean and standard deviation of the radionuclide concentrations in compartment 31 at 100,000
years.

GQU,NQ=5 GQU,NQ=6 GQU,NQ=7 GQU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 220.4761 127.8113 220.4761 127.4440 220.4761 127.4349 220.4761 127.4353
2 487.9757 515.1125 487.9818 514.8420 487.9816 514.8444 487.9816 514.8443
3 508.5077 589.6217 508.5066 588.5443 508.5066 588.5436 508.5066 588.5435
4 19.4160 21.4957 19.4160 21.4916 19.4160 21.4915 19.4160 21.4915
5 0.5329 0.6179 0.5329 0.6168 0.5329 0.6168 0.5329 0.6168
6 1068.6294 1196.3184 1068.6284 1195.7375 1068.6287 1195.7280 1068.6287 1195.7281
7 13.4332 15.4481 13.4332 15.4345 13.4332 15.4344 13.4332 15.4344
8 0.0206 0.0239 0.0206 0.0239 0.0206 0.0239 0.0206 0.0239

Table B.6: Mean and standard deviation of the radionuclide concentrations in compartment 4 at 100,000
years.

KPU,NQ=5 KPU,NQ=6 KPU,NQ=7 KPU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 330.4371 175.1592 330.4371 174.9211 330.4371 174.9236 330.4371 174.9236
2 656.0542 657.2384 656.0542 656.6948 656.0545 656.6928 656.0545 656.6928
3 652.0716 723.8277 652.0716 723.7095 652.0715 723.7136 652.0715 723.7136
4 26.8514 29.2865 26.8514 29.2840 26.8514 29.2841 26.8514 29.2841
5 0.7984 0.9248 0.7984 0.9233 0.7984 0.9233 0.7984 0.9233
6 1299.2578 1366.4662 1299.2566 1366.0070 1299.2565 1366.0041 1299.2565 1366.0042
7 19.3505 21.6892 19.3505 21.6810 19.3505 21.6812 19.3505 21.6812
8 0.0365 0.0424 0.0365 0.0423 0.0365 0.0423 0.0365 0.0423

Table B.7: Mean and standard deviation of the radionuclide concentrations in compartment 31 at 100 years.

KPU,NQ=5 KPU,NQ=6 KPU,NQ=7 KPU,NQ=8
k Mean σ Mean σ Mean σ Mean σ

1 167.5567 99.0719 167.5567 98.9188 167.5695 98.9080 167.5750 98.9141
2 48.2842 56.2226 48.2842 56.1999 48.2998 56.1756 48.3075 56.2161
3 0.3277 0.4855 0.3278 0.4743 0.3280 0.4740 0.3284 0.4748
4 0.5148 0.8055 0.5148 0.8053 0.5148 0.8053 0.5149 0.8054
5 0.0074 0.0137 0.0074 0.0136 0.0074 0.0136 0.0074 0.0136
6 4.4472 6.8978 4.4485 6.8982 4.4497 6.8968 4.4527 6.9034
7 0.6122 1.0581 0.6122 1.0532 0.6123 1.0532 0.6123 1.0533
8 0.0004 0.0009 0.0004 0.0009 0.0004 0.0009 0.0004 0.0009
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Table B.8: Mean and standard deviation of the radionuclide concentrations in compartment 31 at 100,000
years.

KPU,NQ=5 KPU,NQ=6 KPU,NQ=7 KPU,NQ=8
1 220.4761 127.6118 220.4761 127.4334 220.4761 127.4353 220.4761 127.4353
2 487.9815 515.0703 487.9815 514.8460 487.9816 514.8442 487.9816 514.8442
3 508.5065 589.3277 508.5065 588.5430 508.5066 588.5434 508.5066 588.5434
4 19.4161 21.4920 19.4160 21.4914 19.4160 21.4915 19.4160 21.4915
5 0.5329 0.6177 0.5329 0.6167 0.5329 0.6168 0.5329 0.6168
6 1068.6287 1195.9440 1068.6287 1195.7250 1068.6287 1195.7280 1068.6287 1195.7280
7 13.4332 15.4406 13.4332 15.4343 13.4332 15.4344 13.4332 15.4344
8 0.0206 0.0239 0.0206 0.0239 0.0206 0.0239 0.0206 0.0239
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Figure B.1: pdf’s of the first radionuclide in compartment 4 at 100 years.
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Figure B.2: pdf’s of the second radionuclide in compartment 4 at 100 years.
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Figure B.3: pdf’s of the third radionuclide in compartment 4 at 100 years.
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Figure B.4: pdf’s of the fourth radionuclide in compartment 4 at 100 years.

65



B NON INTRUSIVE SPECTRAL PROJECTION APPLIED TO THE COMPARTMENT MODEL

0 0.1 0.2 0.3 0.4 0.5
0

10

20

GQU
5
, p = 5

Concentration [Moles/m3]

−40 −20 0 20 40
0

0.2

0.4

KPU
5
, p = 5

Concentration [Moles/m3]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

GQU
6
, p = 5

Concentration [Moles/m3]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

KPU
6
, p = 5

Concentration [Moles/m3]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

GQU
7
, p = 5

Concentration [Moles/m3]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

KPU
7
, p = 5

Concentration [Moles/m3]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

GQU
8
, p = 5

Concentration [Moles/m3]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

KPU
8
, p = 5

Concentration [Moles/m3]

Figure B.5: pdf’s of the fifth radionuclide in compartment 4 at 100 years.
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Figure B.6: pdf’s of the sixth radionuclide in compartment 4 at 100 years.
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Figure B.7: pdf’s of the seventh radionuclide in compartment 4 at 100 years.
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Figure B.8: pdf’s of the eighth radionuclide in compartment 4 at 100 years.
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C Pamina Results

C.1 cdf’s of the maximum dose rate
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Figure C.1: PDF’s calculated for different truncation order and different grids.
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