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Abstract

In neutron transport problems one is often interested imigiog an accurate detector response, which does not
necessarily requires an accurate solution in the whole tdoaighe problem. In this work the possibilities of a
goal-oriented adaptive algorithm for the one speed, stetadg, isotropic scatter neutron transport equation are
investigated. This method can be expanded to incorporatgedependency, time dependency and anisotropic
scatter.

Three methods are examined on their ability to handle adgptind their feasibility of implementation.
The discrete ordinates method is included, as this is a wisstd method to solve the transport equation. This
method allows for quick convergence with source iteratind a sweep algorithm, however it does not allow
for adaptivity well. The second method consists of usingeles as basis functions with the discontinuous
Galerkin discretization method. Adaptivity is easily amhéd, as wavelets are naturally hierarchical. However,
this comes at a price, as the matrix equations that need tolbedsare large and not sparse. Also the sweep
algorithm cannot be applied to the discrete system of egusibbtained with this method. The third and last
method is using polynomials as basis functions for the diicoous Galerkin discretization method. Adap-
tivity is possible as angular elements (patches) can beedkfivithout altering neighbour patches. The source
iteration and sweep algorithm can be applied, which meassrtathod yields discrete equations that are cheap
to solve.

A comparison is made between the discrete ordinates metithdtive Gauss Legendre quadrature and
the polynomial discontinuous Galerkin method with linepat&al elements and constant angular elements for
one-dimensional problems. For thin scattering matertasdiscontinuous Galerkin method provides a larger
error reduction than discrete ordinates, while for othetamials discrete ordinates outperforms discontinuous
Galerkin.

Using the adjoint equation we can derive an error estimaiotHe detector response that is a sum of
contributions to the error of each patch. The patches wighldigest contribution are refined in an adaptive
algorithm. This estimator can be computed with a local orabal approximation of the adjoint solution.
This criterion is tested against a traditional refinemeitedon that bases its decision on the change in the
solution of the angular flux when a patch is refined. The goaihted adaptive methods provide a better
detector response, while the traditional method providesoee accurate global solution. The estimator that
uses the global adjoint approximation is generally a goditator of the error, while the estimator using the
local adjoint approximation is not. They do, however, refine same patches, so they can both be used as
refinement criterion.

The convergence of the uniform and goal-oriented adaptihads is second order for all test cases in this
work. This leads us to expect forth order convergence whealibasis functions are used on the patches.
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1 INTRODUCTION

1 Introduction

In the area of nuclear physics many kind of reactions betve¢ems and other particles are investigated. One
of these reactions is the collapse of an unstable atom, wisighlly results in smaller atoms and various kinds
of radiation. Such a collapse can be induced when a neutrcapisired by an atom, it is then called a fission

reaction. In the collapse of certain atoms free neutronprréuced, which can induce new fission reactions.
Under the right circumstances this can lead to a fission afeaiction.

The first self sustaining nuclear chain reaction produceadnay was on December 2 1942 in Chicago.
Enrico Fermi and his colleagues built this first reactor figocks of graphite and three inch wide cylinders of
uranium oxide. Shortly after these experiments the UnitetieS would invest in research on using atoms for
the production of electricity, for medical treatment, a®al for scientific research and for the production of
nuclear weapons. Investments in research in other cosrtilewed shortly after this. In all applications it is
important to understand the movement of neutrons, as nmeuinduce the reactions with which the energy and
radiation is released.

Electricity is often produced by a steam powered gener&idferent kind of heat sources can be used to
boil the water needed to make steam. A number of sources edagagay, including fossil fuels, solar radiation
and nuclear fission reactions. The fission reactions takee piaa nuclear reactor.

Present day nuclear reactors are designed very diffe@mttiie early day experiments. Instead of graphite,
water is commonly used as moderator. This water can alsdifumas the coolant of the reactor core. The
uranium fuel is stored in pellets, which are stacked to foyfinders. One would like to accurately compute
the neutron density in such a geometry to be able to predattgreduction and fuel burn-up rates.

Another application of nuclear technology is in medicaatneents. Radioactive isotopes that are produced
in a nuclear reactor can be used as tracers that are injecdduliman body. The particles will travel through the
veins with the blood, allowing a radiation detector aroumel patient to see the blood flow. These radioactive
isotopes should be short living, as the patient should veaaily a minimal dosis. In this and other medical
imaging techniques the neutral particles that stream girdgbe patient are used to construct an image of the
patient.

Besides using imaging techniques in medical treatmengy, ¢an also be used for research on material
properties. The structure of material on the smallest stabebe visualized using neutral or charged particles.
By irradiating materials with high neutron fluxes we can stigate other properties, like the rate of corrosion
of materials in nuclear reactors.

In the examples above the movement, or streaming, and seaatif neutrons are very important. An
equation that describes this behaviour was found by adafiim Boltzmann equation, which was used in the
nineteenth century to study the kinetic theory of gasess Htailled the neutron transport equation and can
only be solved analytically for specific geometries. Thisa@pn has become an area of active research in the
twentieth century, as the research on nuclear applicatiaaecome increasingly important since then.

Two different methods of solving the transport equationlwadiscerned. Monte Carlo methods use random
sampling to solve the equation. This can, for example, beraptished by following single neutrons along their
path in the geometry. By sampling many of these neutron figst@ne can derive properties of the solution of
the transport equation. However, different and more stiphied ways of using random sampling exist.

The other class of methods are the deterministic methodar@nithe focus of this report. Here the solution
to the equation is found by solving the equation with nunsnmethods. To this end a discretization method
must be chosen. Many discretization methods are availableach has its own advantages and disadvantages.

In deterministic numerical methods a mesh is usually deforethe phase space of the equation that is
to be solved. The phase space of the transport equationsimeport consists of a spatial coordinate and an
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angular coordinate. In order to obtain an accurate solatiermesh must be fine, however a very fine mesh will
introduce large numerical costs. Numerical cost can bediin computational aspect or in memory aspect.

A way to minimize the cost for an algorithm is to make it adegti Adaptivity means that during the
computation some parts of the mesh are refined. This refineshenild take place in the regions of phase
space where the error contribution is largest. In other gjowthen using an adaptive method one needs a
criterion for determining what parts of the solution intooe the largest error.

Traditionally this criterion is based on a change in the smtuupon refinement. This means a local refine-
ment is made and the effect on the total solution is evalualéis procedure is repeated for all elements. A
pre set number of percentage of patches will be refined, thidsiee the patches that caused the most change
in the solution with the local refinement.

Such a refinement criterion does not always work well whengtbed is not an accurate global solution,
but for example an accurate detector response. The refinemigenion should incorporate that the goal of the
refinement is to obtain a detector response. Recently sitehi@rhave been formulated and were tested for
different equations . The focus of this work is an algorithrattis adaptive in the angular component of the
neutron transport equation.

The amount of neutrons that are travelling in a certain divaccan vary a lot with that direction. An
example of such a situation is a pencil beam, where neutrmg$oaussed in a small beam. An accurate
representation of the flux can only be found when the reswiudf the mesh around the beam is large. However,
it is not necessary to use a high resolution mesh in othectibres, which will save us on computational cost.
An adaptive algorithm should be able to efficiently compbe=golution of these situations.

In pencil beam problems where the direction and locatiomefiteam are known, it is not necessary to use
an adaptive algorithm to produce a mesh with the right réiemiu However, when we cannot predict direction
and location of such a beam, an adaptive method is neededy Iprablem an efficient adaptive method will
ensure that the resolution of the mesh is adequate to obtanairate solution.

Besides a criterion for refinement we also need a way of digirg the transport equation into a set of
equations that can be solved numerically. A widely used otkflor angular discretization is the discrete
ordinates method, where one demands the transport equatimid for a finite set of directions. This method
has very low computational costs, although the total cospedd also on the discretization that is used for the
spatial part of the problem. A quadrature approximatiorsisduto evaluate integrals for the scatter description,
which is the reason why adaptive algorithms are difficulttpliement in this method. Most quadratures require
that when a direction is added, all other directions willdéw be changed. This means all directions will have
to be solved again, making it impractical.

Another common approach for discretizing equations isgiaifinite element or Galerkin approach. In this
method basis functions are used to approximate the sojwiibare the associated coefficients will have to be
computed numerically. The basis functions can be choseltote for refinement of the mesh that makes only
local changes. Two types of basis functions that meet tigigirement are investigated in this report, wavelets
and polynomial basis functions, for their feasibility ofplamentation in numerical methods.

Before we explain the structure of this report some wordbkheilspent on the discretization method that is
used, the discontinuous Galerkin method. Galerkin methaste been around for almost a century, which are
based on the idea that a differential equation which is fdaed in the weak sense can be solved on a restricted
space, of which we have a finite basis. It is important thabts is finite, if it were an infinite basis we could
not easily use numerical methods to solve the differentijglation, as a procedure that needs to be done for
each basis vector will never be completed.

Until recently the basis that spans the restricted spacsisted of (piece wise) continuous functions. The
idea behind this is that discontinuities are not nice, bditysrally and mathematically. However, allowing for
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discontinuities in the basis leads to decoupled equatindscan give a more accurate solution. In this report
the method is only briefly discussed, for a more detailedamqtion we would like to refer to other work.

The body of this report consists of several sections, aamiith the mathematical investigation of three
possible discretization methods. Three methods are thescand investigated as to whether an adaptive algo-
rithm can be formulated based on those methods. First wetigege the discrete ordinates method, which is
widely used in deterministic methods. The second methdukisliscontinuous Galerkin discretization method
with polynomial basis functions. The final method we consades a Galerkin discretization with wavelets as
basis functions.

It turns out the discontinuous Galerkin method with polyianbasis functions seems to be the most
promising method. Therefore the next section is the fortrariaof a one dimensional test problem, using
constant basis functions as polynomials. This sectionissents an overview of the non-adaptive algorithm
and the data structure that is used in the code.

Several test cases are used to test the performance of tunfilimious Galerkin method, relative to the
discrete ordinates method. These are presented in therséudt follows the one-dimensional problem formu-
lation.

After these results, the next section starts by explainimgctriteria that are used for determining which
patches need to be refined in the adaptive algorithm. A tosdit method, which bases its decision on the
change in solution when refinement takes place, and two gyimtted methods, where the goal is to get an
accurate detector response, are used. The goal-orientbddasaised the adjoint problem, which is explained
in this section. Finally in this section an overview of theptive algorithm is presented.

The final section of the main body, is the section where alptidaresults are presented. The test consists
of comparing error reduction of all methods. The qualitytaf error estimators is also tested. As a last test we
varied the number of patches that is refined in each refineiteeation, to see the effect of this parameter.

After a section with the main conclusions and possible futuork, four appendices can be found. The first
is a list of all the test problems that are used in this repogether with all geometry and material properties of
the problems. The next appendix contains a more detailédatien of the error estimator and goal-oriented
adaptive refinement criterion. Then an appendix with a metailéd, but still brief, derivation of the discretized
wavelet equations can be found. The fourth and last appésitte derivation of the adjoint transport operator
and an explanation of the physical interpretation of thisrafor.

This report is the product of a master thesis research atabeltly of Applied Sciences of the Delft Univer-
sity of Technology. It was conducted in the group Physics oflsar Reactors at the Reactor Institute Delft. It
will be the starting point of another master thesis resesrtie Numerical Analysis group at the Mathematics
Department of the same university.






2 THE NEUTRON TRANSPORT EQUATION

2 The Neutron Transport Equation

In nuclear reactor physics neutrons are very importantesireutrons are necessary for the chain reaction of
fission to continue. In fact, since neutrons can travel thihailne reactor core and fuel is fixed, neutrons are the
main subject in reactor physics. The neutron transporttemquas the governing equation of free neutrons in
the reactor core, or, for that matter, in any geometry ortsugg. In certain geometries the transport equation
can be solved analytically, however for many real world peots numerical solutions are needed. In the
process of designing nuclear reactors or other nucleditiegiaccurate approximation of the neutron density
or neutron flux are needed to predict for example heat pramtuad the core. New numerical techniques are
still developed, which will result in more accurate reaaesigns. This section contains some basic remarks
on the neutron transport equation, which are necessarirdport. A detailed description of the properties
and derivation of the transport equation can be found in nrmaicyear engineering hand books.

2.1 General transport equation

Free neutrons are the neutrons that are important to replaysics. These neutrons can freely move through
the material and take part in reactions with the surroundiagerial. Common reactions are collisions (scatter)
and absorption. Neutrons that are captured in the nucleas atom are not important to reactor physics, as
these neutrons will not take part in any important reactidige neutron transport equation therefore considers
the free neutrons and desribes the rate of reaction as willkanovement (streaming) of the neutrons. A full
derivation of the transport equation, as well as many agfitins, can be found in [6]. The most general form
of the transport equation is

1 8¢(r,E,Q,t) A A
U(E) at +Q v¢(r7E797t)+Ut(r7E7t)¢(r7E797t)_

~

o
/ dQ'/ dE'os(r,E' — E, a - Q,t)o(r, E, Q/,t) + s(r, E, Q) (2.1)
ar 0

Some of the symbols in this equation are introduced herdlghamomenclature can be found in the front of
the report. The angular flux is the quantity of interest, it can be interpreted as the iden§the number of
neutrons that is at, has an energy¥ and travels in directio? at time¢. The total cross sectiom; and the
scattering cross sectian, tell us with what rate the reactions occur.

We will now shortly discuss the physical meaning of each eftdrms. The first term on the left hand side
is the change in neutron density over time. The next termeistfteaming term of the equation, it follows from
applying Gauss’ theorem on the expression describing th&ores travelling into a control volume. Finally on
the left hand side we have the total removal of neutrons,@timmal to the total removal cross section The
right hand side contains two terms, the second term is amnatteource, which can be arbitrarily specified.
Scattering is described by the first term of the right haneé.sitihis can be considered a source as neutrons
with other energies and travelling in other directions carsbattered into the part of phase space considered.
Therefore the term contains an integral both over all divestand all energies. Please note that this general
form of the transport equation does not describe fissiontiree Fission reactions result in an extra source
term that has the same form as the scatter term.



2 THE NEUTRON TRANSPORT EQUATION

2.2 Common approximations of the transport equation

To test the performance of numerical techniques it is noagéanecessary to consider the general transport
equation. Some approximations or simplifications can beermathout altering the behaviour or the complexity
of the equation. A number of these adjustments is used imgpisrt, which are discussed in this section.

The time dependence is eliminated in most proofs of priecipVhen solving a time dependent problem
one usually approximates a certain state of the problemretitias a steady-state problem. To solve a time
dependent problem a number of steady-state problems iscssquentially. Therefore we can equate the first
term of the general transport equation to Z%W =0.

Another common discretization in most solvers is that thergy dependence is discretized into groups.
All neutrons are put into energy ‘bins’ and cross sectiorsiaed to determine the number of neutrons that
switch bins or stay in the same bin. The driving force of shiitg bins is scatter, since in scatter reactions
neutrons may lose or gain energy. The simplest case is tadewrjsst one bin, this effectively eliminates
energy dependence from the problem. This report uses thig@up approach.

The scatter source term is further simplified by considersagropic scatter only. This means the angular
dependency of the scatter cross sectigris neglected. To account for anisotropic scatter multipdnhiques
exist, the most common being the expansion of the scattes @ection in spherical harmonics or Legendre
polynomials. In this report there is no background inforiorabn this.

When applying all these simplifications the transport eiquabecomes:

Q- Vo(r, ) +ou(r)o(r, ) = T 8(r) + s(r, Q) (2.2)
where the scalar flugp is defined as(r) = [, _¢(r, Q)d<2.

Some properties of the equation are noteworthy, as theygptale in the performance of numeric solvers.
First there is the difference between an optically thick #ma medium. A thick medium means the mean free
path A of neutrons is small. The mean free path compared to the sibe dlomain determines the probability
of neutrons to leak out of the problem. When the domain is ntargfer than the mean free path the problem is
optically thick. The mean free path is determined by therswef the total cross section,

A= — (2.3)

Ot
A thick medium in a small domain can however result in an @tichin problem. Conversely a thin medium,
with a large mean free pathmay result in optically thin and optically thick medium. Hewver the size of the
domain will be much larger for a thin medium to make a thickiybeon.
Besides the thickness of the material, one can also varyatiewith which the two most important reac-
tions, absorption and scatter, occur. This ratio is cathedscatter ratie, and is

Os
c=—

(2.4)

Ot
The largerc the more diffusive the material will be. In diffusive magds the transport equation can be approx-
imated by the diffusion equation. In the results it will shttvat the scatter ratio of the material influences the
performance of numerical methods.
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3 Discretization of the Neutron Transport Equation

Discretizing the neutron transport equation is usuallyediontwo steps, an angular and a spatial discretization.
The focus of this report is the angular discretization, h@veve cannot test the angular discretization in
practice without a spatial discretization. Thereforerate some words will be spent on spatial discretization.
Angular discretization is the focus because we are intedeist constructing an angular adaptive method for
the transport equation. This means we want a discretizdtiah can handle on the fly refinements of the
numerical solutions. This section describes three metfaydsgular discretization which were investigated to
find the method that is best suitable for this goal. The thiferdnt methods of angular discretization are the
discrete ordinates method, wavelets as basis functiorsd@continuous Galerkin method and polynomials as
basis functions for a discontinuous Galerkin method. Tiserdie ordinates method is the oldest of the three
methods, it has its origin in the nineteen fifties and is wjideded in numerical codes ever since. Both remaining
methods use the discontinuous Galerkin discretizatiorhoakt This method can be used with different basis
functions, for example wavelets. Wavelets are a speciabadhfunctions with a hierarchical structure, which
could be useful in refinement. The other discontinuous ®alenethod in this report uses polynomials as basis
functions. Polynomials have been used in many discretizatiethods, however to use them on the sphere with
the discontinuous Galerkin method has not been done before.

At the end of this section a comparison will be made betweeselthree methods before choosing which
method is best suitable for an adaptive algorithm. As itgwmat discontinuous Galerkin with polynomial basis
functions is chosen. The remaining report will be on thegrenfince of this method.

3.1 Discrete ordinates method
3.1.1 Discrete ordinates description

The discrete ordinates method, simply put, consists ofireguthat the transport equation (equation 2.2) holds
for a finite size set of directions. L€}, denote such a direction, whete=1,2,..., N. The discrete ordinates
equation is then

g

Q, - Vo(r, Qn) + oy(r)o(r, Qn) = 4;@(7“) + s(r, Qn) (3.1)

The scalar fluxp can then be computed using a quadrature in the following erann

A~

N
| o, Q)dQ = wa(r)o(r, Q) (3.2)

In this equation the weights should add uptioas this is the surface of the sphere. To illustrate this,idens
the angular flux to be unity, the the integral equals. The directions2,, and the distribution of the weights
w, are not specified by the discretization. For an accuraterigéisn of the scatter source term the choice of
guadrature set needs to meet a number of conditions.

For a two dimensional case there are physical symmetridwiproblem, the quadrature set must preserve
these. In a two dimensional problem we can save a lot of coatiputl resources by preserving the symmetry
in the plane of the problem. Every direction has a mirroraéadion which physical meaning is the same.
When the plane is in they directions, the direction§; = (Q,,Q,,Q.) andQ; = (Q,,Q,, —.) have the
same influence on the problem. This means we can simplifyddlarsflux to an integral over the half sphere

Os Os

EQ)(T) = % /27T (b(’f‘, Q)dQ = %

~

Q) (3.3)

)
V)
=)=
g
3
2
=
uﬁ
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Figure 1:Set of directions of the level symmetric quadratureSgr

where the weights,, add up todr.

The quadrature should approximate the flux moments wellstadar flux being the simplest moment,
in order to have an accurate scatter source representafibis. comes down to being able to approximate
polynomials of increasing order on the sphere, the largeotider one can approximate the more accurate the
source term.

Also in the diffusion limit of the transport equation the duature approximation should work. The dif-
fusion limit is the case where the scatter ratigoes to unity, in other words neutrons are only scatteretd, no
absorbed. When assuming the angular flux is linear, isome requirements must be met to be consistent with
the neutron current.

The final property of a discrete ordinate set is that all gogftould have a positive weight associated with
them. This is to prevent the scalar flux from becoming negatihich is not physical. A few basic and new
guadrature sets are discussed in Section 3.1.2.

3.1.2 Choice of ordinate sets

For three dimensional problems the most common quadraguhe ilevel symmetric set, which is illustrated in
Figure 1. This set has only one degree of freedom, all doestand weights are determined by choosing the
first direction.

The most common choice for the ordinate set in the one diroeaktase is a Gauss-Legendre quadrature.
This quadrature integrates polynomials of or2latr— 1 exactly, whereV is the number of quadrature points and
weights. These points are the fifstzero’s of theNth order Legendre polynomial. However, this quadrature



3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

set does not work with points with a ‘compact support’, tisatiach quadrature point represents functions that
live on the whole sphere. Therefore it will not handle didoarities in the angular flux well. This is best
illustrated using an example.

In a one dimensional problem with vacuum boundary conditighere is a discontinuity in the angular
flux. Since there are no neutrons entering the problem, hutroves leaking out of the problem, there is a
discontinuity atu = 0. The ordinary Gauss-Legendre quadrature set does notentmsliwell. A solution to
this is to use what is called a double Gauss-Legendre quadrdiVhere the intervdl-1, 0] is approximated
separately from the intervdl, 1], i.e. two separate Gauss-Legendre quadratures are useckvelpit is not
a solution to introduce discontinuities in quadrature $ethree dimensions, since the discontinuities are in
general not regular. Other quadrature sets have been gapossolve this issue. For example quadrature
points and weights based on a discontinuous finite elemethiauig7].

The discrete ordinates method is not an adaptive methodusinally chooses a quadrature set for the
complete calculation. However, quadrature sets that cansbd for adaptive discrete ordinates have been
proposed [11]. To construct these sets one has to overcangréblem of adding and removing directions
from the quadrature set, which for example cannot be donemalGauss-Legendre quadrature.

3.1.3 Spatial solution method and source iteration

The source term of the equation has two contributions, thereal source and the scatter source. The left hand
side of the dicrete ordinates discretized transport egugtquation 3.1) is the transport operator. In the first
iteration one considers only the external source and stiheeansport problem. The obtained flux is the flux
of all neutrons that have not scattered. The next iteratges he scatter source obtained by substituting the
not scattered flux in the scatter operator and solving thspart problem with this new source. The flux that
is now obtained is the flux of all neutrons that have scatterex or not. This procedure can be formalized as

~

[s‘zn Y+ at} A (e, ) = ¢ (r, ) (3.4)

where¢! ™! is the flux ofl + 1 times scattered neutrons agids the source obtained from tiiéimes scattered
neutron flux, that is

) = 2] @0 1 s @5
a4 4
() S
= Z wnp@' (r, Q) + s(r) (3.6)
n=1

This source iteration procedure will converge quickly fiasarbing problems, that is, problems where
o >> o,. For diffusive problemsd; is almost equal te) this will converge very slowly. In these cases it can
be sped up by using Diffusion Synthetic Acceleration (DS#)jch means another equation is to be solved in
each iteration, which approximates the diffusive behawsfdhe equation.

When using source iteration, solving the transport parhefgroblem can be done by a ‘sweeping’ algo-
rithm. Consider neutrons travelling in directiéh,, they take information through space only in the direction
of travel (downwind). Assume that we have discretized thaiappart of the problem by defining a grid, or
elements, and solving each element separately from otbaregits. (This is discussed in the section about
Discontinuous Galerkin 3.2.4). Now consider one spatiaimgnt, this element has upwind and downwind
neighbours, upwind and downwind being definedhy. This element can be solved when all inflowing infor-
mation is already computed, that is, when the flux in the upvelements is already computed. An ordering in
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the elements (for directiof2,,) can then be determined. Solving the spatial part of thelgnolin this order-
ing ensures that elements are not computed before all upiivinels are computed [9]. An illustration of this
algorithm can be found in Figure 3.1.3.

[] already computed
\ | | putinqueue
0, |  notyetcomputed

Figure 2:lllustration of the sweeping algorithm. The rectangulamuin is divided into triangular elements.
The solution on an element can be computed (the elementépt3when all upwind neighbours are already
updated. It takes three steps to compute all elements iret@mple. In each step the elements that can be
qomputed are marked and put in a queue. Upwind neighbours element are determined by the direction
Q,.

The discrete ordinates method provides an algorithm thatbeaimplemented very cheaply, since only
a finite number of directions (usually up to about 100) is @ered and spatial discretization cost are not
high when using the Discontinuous Galerkin method. Thedpdéehe algorithm lies in the source iteration
combined with so called ‘sweeps’ to solve the transport pkithe problem.

3.2 Polynomials with discontinuous Galerkin

The Discontinuous Galerkin method is like a Galerkin methmgd with discontinuous basis functions. The
theory is almost identical to the regular Galerkin methodchloriginated in the first half of the twentieth
century. By using polymials on elements we can give a desonipf the angular flux on the whole sphere,
not just on a discrete set of points like in the discrete @tdim method. The discrete ordinates method does
not provide us with a description of the angular flux on the Mehgphere, which could result in problems for
geometries where specific directions are important. Thizé&come by using a finite element method on the
sphere.

10
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3.2.1 Galerkin method

The Galerkin method basically requires that the equati@olged in its weak form. This weak form is solved
by a function from a constrained space, i.e. the basis fomgti Discontinuous Galerkin differs from regular
Galerkin method in the choice of basis functions. As the naoggests the composite solution of the basis
functions can be discontinuous. It can however only be disicoous on element boundaries, not inside an
element.

The weak formulation of an equation in general is

find ueV st YveV: B(u,v)=I1v) (3.7)

whereu is the solution to the differential equation. In the coniebransport theory, would be the angular flux
¢. Now we can apply the Galerkin discretization, which catssig putting a constraint on the spake giving

us the spac#},. This constraint could be that we take only polynomials onahosen elements as functions in
V. When allowing these functions to be discontinuous betvatements we have the Discontinuous Galerkin
method. This results in the following formulation

find up, € Vs, st Vo, € Vit B(up,vp) = (vp) (3.8)

Discretization by the Galerkin method results in an errat ties not in the chosen spatg, this property
is called the Galerkin orthogonality. Suppose we have antes@utionu and a Galerkin solutiomy,. Since
Vi, C V we can usey, as a test function for the spage Let the error be;, = u — uy. It then follows that

B(en,vn) = B(u,vn) — B(un, va) = l(va) — l(vp) =0 (3.9)

which means the error lies outside the spaces or in othersitbederror depends on the choice of spaces.

Discontinuous Galerkin gives a better approximation th&waéerkin method with a continuous solution,
even though non-physical discontinuities are introducéthen the grid on which the basis functions live is
small enough the discontinuities will almost vanish.

3.2.2 Galerkin methods on the sphere

The Galerkin method uses functions defined on an elemeris fioastion with compact support). In this report
the word ‘element’ is used for spatial elements and the wpadich’ is used for angular elements. Patches on
a sphere can be constructed in many ways, one of the easigsaiprojection from another body. Place such
a body in the center of a sphere and let the extremities of ddg bxactly touch the sphere. Now each point
on the sphere can be identified with a point on the body by argwailine from the point on the sphere to the
center of the sphere. The line will intersect the surfacénefttody, this is the point on the body with which the
point on sphere is to be identified. This is illustrated inufey3.

The body used for the projection should preferably have sproperties that help the adaptivity of the
algorithm, in other words it must be possible to cut the pedcimto smaller patches while still keeping a
smooth distribution of patches on the sphere. Exampleshiobbdies that can be used for this procedure
are the octahedron and the hexahedron. lllustrations ofvtbebodies can be found in Figure 4. In these
illustrations it is also shown how the patches can be cutsmaller patches. The mathematical derivation of
the Galerkin method on the sphere can be found in Sectio8,3t2nakes use of the patch structure presented
here.

11
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Figure 3: The blue lines form an octant of the octahedron, which isdeiiinto four smaller triangles, or
patches. A projection of the octant to the sphere is made &yidg a line from the origin through the octahe-
dron to the sphere. The points of intersection on the octaimeaind sphere are then associated. The projection
of the blue lines on the sphere is then the set of black linkighwlefine a patch structure on the sphere.

A

Y .
Q4 T

N

(a) Division of a octahedron (b) Division of a hexahedron

Figure 4: Divisions of two bodies that can be mapped onto the spherehand a flexible and hierarchical
distribution of patches.

3.2.3 Angular discretization

The simplified Boltzmann transport equations reads (Eqn&i2)

12
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Os
E@ (3.10)
where€ is the angular vector) is the angular flux an@ is the scalar flux. Now we will apply the Galerkin
method to this equation, therefore we first define the spade which the solution will lie. This is done by
splitting the angular flux in a spatial and an angular parte $patial party; () will be approximated by first
order polynomials in this report, but can in principle be aofynomial. Analogously, the angular part will be
approximated by zeroth order polynomials (constant fansij in this report, but can also be other polynomials.
This can be formulated as the following sum

Q- Vo+o0=s+

M
d(r, Q) = Y 6;(r)G;(€) (3.11)
j=1

where M is the number of patches in a spatial element, or on a spatiatibn. We can now multiply the
equation from the left by an angular test functiGp in our spacé/,. Then integrate over the whole angular
domain to obtain

M
i G, () (Q-v+at)2¢jc:j—s—z—;¢> 1 =0 (3.12)
T j=1

For the scalar fluxp in this equation we can obtain the following expressiongsithe patch functioi; is
unity on the patch and zero elsewhere.

P = d$ 3.13
/o (3.13)
M A
_ /4 S ;G (3.14)
T iq
M ’ R
= > ¢ : G;dQ (3.15)
— " i
]M
= ) ¢jArea(G)) (3.16)
j=1

Let from now onAG; denote the area of patch;. Please note thdt; is just an indicator of that patcky; is
unity on the patch and zero outside the patch. The value dfik@n that patch is in the parameigy.
Let us now work out the integral of Equation 3.12. Plug in thpression of the scalar flux to obtain

Gp(€)
47

A1 =0 (3.17)

M M M

N O

QV E ¢jGj+0't E gZSjGj—S—E E ¢jAGj
j=1 j=1 j=1

Now we can simplify the streaming term and distributing thieegral over the terms, including over all the
terms in the sums

13
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M M M
2/4 GpGjQ-v¢de+atZ/4 ¢ijdoQ—Z—;A GdeZ¢jAGj—/4 GpsdQ =0 (3.18)
Jj=1 4 7=1 ™ ™ j=1 u

Since the patches all have compact support we know that

M
> ¢ / G,G;dQ = ¢,AG, (3.19)
j=1 A
Using this we get the following expression
o M
Q- V,dQ + 0,0,AG, — —=AG, Z AGjp; — / Gpsd2 =0 (3.20)
AG, 4m = dn
This equation can be written more compactly as follows
N Os
Q, - Vo, + o1y = E@ + sp (3.21)
In this equation we have:
o - . Qs (3.22)
p AGp AG) .
M
o = ) AG;4 (3.23)
j=1
M
= > wie; (3.24)
7j=1
! GpsdQ (3.25)
S = S .
P AGy Jur ¥

Note that this equation looks very similar to the Discreteli@ates discretized equation. There are two dif-
ferences with the Discrete Ordinates description, firstta/direction{l; are defined differently. They follow
from the patch structure, which also means the Iengﬁ;pfs not necessarily equal to unity. The other differ-

ence is that there is no freedom in chosing the quadratueesuim describing the scalar flux follows naturally
from the discretization procedure.

3.2.4 Spatial discretization

Several researches have been done on the spatial distioetindth Discontinuous Galerkin in the field of
neutron transport. This report does not focus on the behaf¥ithe spatial part of the transport equation, but
on the angular part. For more on the spatial properties afdbisnuous Galerkin see [13] [14].

We start with the equation we obtained in the previous sectio

Al Os
Q, Vo, + orpp = E@ + 5p (3.26)

14
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In the spatial part of the problem we use linear basis funstid@he spatial domain is cut up into elements and
each element has basis functions linear in the Cartesianioates. From these basis functions we can define

the total solution as a sum of the basis functions. The sum&eavritten as

¢p(r) =~ ©T(r)g,
d(r)~ 0T (r)®

(3.27)
(3.28)

where the vectoep holds the angular flux values associated with the basisifurgtin the same wa$ holds
the scalar flux values® holds the basis functions, that is, eaghis a linear function on the spatial element.
Suppose we hav& spatial elements, then depending on the dimension of thaemo(1, 2 or 3)Px basis

functions are needed to span our space.

T

S (1(7), - P (7)) (3.29)
Gp = (D1 Pl (3.30)
® = [D,.,0p ] (3.31)

We can now apply the Galerkin discretization by multiplymgh a test function® and integrating over the
spatial domain. Using the divergence theorem to rewritestteaming term we obtain

P

PK PK
~ R ~ Og
/(S § 0,70 oh ,(r)doV — /V (2,9 01)0chrpdV + / 0.y [at@kqsk,p — 1Oy — sp(r)| AV =0
e k=1 e k=1 k=1

(3.32)

In this equationqbf;j is the angular flux at the boundary of a cell. Now we will assigreach element face
its angular fluxe is the element indexf is the element face index. To do this we need to compose thk tot
element boundary out of the individual element faces. E&those individual faces is a plane or line, in order
to be able to define an outward normal vector. This gives ufotleving expression

Nfaces

Ve= Ve
=1

(3.33)

The flux on this boundary is chosen to be the upwind flux. Thiamseve have to make a distinction between

directions as

oAl
b ) Pep if Q,-7;>0
Pepl = { Lejg)wind int Q; Sy <0 (3.34)

Plugging this into the equation we arrive at a matrix equmatimat has the final discretized form. The
matrices are square and have the size of the number of basiofus that are in one spatial element. The
matrix equation that is to be solved for each patch on eachegieis then

Nfaces

g
Z Q;U€7P7l¢lé,p,l + (_Q;)Ke + UtM€)¢e,p - ﬁMeée + Se,p
=1

where

15
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Uepi = / n,0.07dsV (3.36)
oV
K, = / (Ve.)eldv (3.37)
M, = 0.054v (3.38)
Ve
Sep = O,s,(r)dV (3.39)
Ve
= / ©.Gps(r, Q)dQ2dV (3.40)
Ve J4m

3.2.5 Continuity relations between spatial elements

Two neighbouring elements do not necessarily have the sagdaa distribution of patches. There are two
cases that can be discerned, (a) neutrons flowing from aectmesfine element and (b) from a fine to a coarse
element. In general neutron conservation for neutronssgcrgs plane can be formulated as

/ €0 - pUPWInd yupwind(y) 1y — €2 - fpdownwind downwind( ¢y ) 1) (3.41)
Q.ﬁupwind<0

Q. 7;Ldownwind>0

[12]. In this equations'P¥"d is the flux in the upwind element angf®¥™ind js the flux in the downwind
element. Similar notation is used for the outward normatamsa:. This condition should be met in all points
r along the boundary of the two elements, as this insuresragtytiof the neutron current. When the patches
on the sphere are constant this will result in some simplérmaity relations, they are derived here.

(a) Streaming from coarse to fine element

A B C D
G G
Ge —+ —+ G,
Gra G2
(a) Coarse to fine (b) Fine to coarse

Figure 5: Two cases of different angular distribution of patches ilghbouring elements. To ensure neutron
conservation relations between the discrete patches reld terived.
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Take two elements A and B and consider the angles such thabnedlow from A to B. Suppose element A
has one patclir. and element B has two patch@g; andG 4, this is illustrated in Figure 5(a). The continuity
relation in Equation 3.41 can be expressed as follows

/ n-Q(Q)dY = / 71 - Qp()d + / 7 - Qp()d (3.42)
AG. AG AGyo
/ n - QpGedQ = / n-Q¢f1Gf1dQ+/ - Q212G p2d (3.43)
AG. AGyy AG o
¢c/ n- QA = ¢f1/ ﬁ-fzdfz+¢f2/ f - QO (3.44)
AG. AG AG o

Since the union of the support of patch@sl andG/2 is equal to the support @ (G1|J G2 = G.) we
can simplify this to

(3.45)

¢6/ n-QdY = op [/ ﬁ-QdQJr/ fr - QO
AG. AG AG o

¢c/ n-Qd) = ¢f1/ L -
AG. AGfluAGfg

¢c = Qbfl (3-47)

by assuming thab sy = ¢o. It is natural to assume this, as the two patctigs and Gy, are equally as
important. This result is also what one intuitively wouldoext. Even though the downwind element B can
handle a more accurate solution of the flux, that informaitsomot available. So the two patch€s; andG/ s,

will represent the exact same angular flux as in the upwinahexfe.

>
QU
>

(3.46)

(b) Streaming from fine to coarse element

Now suppose we have refined element C and a coarser element®we have two patche&; 1 andG g,
and on element D there is only one pateéh This is illustrated in Figure 5(b). We will use the same aauity
condition as for the former case, which can be found in Equadi41. Applying this condition yields

/ f- Qo dQ = / fz-fl¢f1dﬂ+/ - Qb pod$ (3.48)

AG. AG AGys

¢>c/ n-QdY = ¢f1/ R fzdfz+¢>f2/ 7 - QO (3.49)
AG. AG AGyo

Note that since) is constant on a patch we can pull out this variable. Rewgitiis equation brings us to the
final expression
_ br1 fAGfl n - QdQ + ¢ fAsz 7 - QdQ
‘ Jac, 7 Q2

This result can be interpreted as a weighted sum of the dullmesugh the two refined patch€s;; andG g,
which will be clear after rewriting the equation as follows

(3.50)
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ot [ag,, QL+ dpn - [5q,, QA0

c = ~ A 3.51
i A [ag, Q02 (3:59)
~/ ~ /
A n - ) A n - )
_ onaGnn S+ opAtpn Q. (3.52)
AGen - €]

The sum of the fluxeg s, and¢ - is weighted by the patch size and component of the averagetidin in the
outward normal of the element. Please note that by Equatkihnge haveAGcQ} = AGﬂQ; + AGfQQ;.

3.2.6 Spatial solution methods in discontinuous Galerkin

The source iteration of the equation, which is describedDigcrete Ordinates in Section 3.1.3, can still be
applied when the angular part of the equation is discretisdag Discontinuous Galerkin. The transport part
of the equation (left hand side) and the source and scatteofthe equation (right hand side) can be computed
sequentially in each iteration, with the newest availabferimation.

In Section 3.1.3 the sweeping algorithm is also describédks i§ an algorithm used for solving the transport
part of the problem. The idea of the algorithm is that all umvheighbours of an element must have been
updated before the element itself can be updated. Theravarevays of applying this in the Discontinuous
Galerkin method.

First is the easily implemented, but less accurate methothestart of the algorithm there is a certain dis-
tribution of patches on the sphere. These patches haveatrerimge direction, which can be used to determine
an ordering in the elements for neutrons travelling in threaion of that patch. This ordering is determined
only at the beginning and is then used throughout the alguritwhen refinement would take place there is no
update to the ordering. Using this method it could happetnbgrall upwind patches are updated before the
fluxes are used for the downwind element update.

The other method consists of counting all upwind dependsnai all patches, in other words counting the
patches that stream in to a patch. When a patch is updatecfiemdency to the patch it streams in to can be
removed. One can then use the criterion that when no morendipddpendencies are left the patch is ready to
be updated. Itis not yet clear whether this algorithm carstyetk, by a ring of dependencies (or how to prevent
this).

3.3 Wavelets

The first theories on specific wavelets date from the earlyntieth century by Alfréd Haar, although the
concept of a general wavelet was developed much later. Initteteen seventies and eighties much progress
has been made in constructing more families of waveletsceSimen wavelets have been used in a number of
fields of research. Its main application is in storing andcpssing image and sound data.

3.3.1 Mathematics of wavelets

A family of wavelets (in multiresolution analysis) consigif a mother wavelet, which is a function with some
special properties, and all its descendants. In this seet®will illustrate everything in the one dimensional
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

case. The mother wavelét has to fulfil the following requirements:

+oo
/ W(t)dt = 0 (3.53)
/+OO [T (t)|%dt = 1 (3.54)

furthermore it is a function if.%(R).

All translations by integer increments of this mother watébrm the set}. In the same way dilatation of
the mother wavelet witB’ and taking all translations form the sét These set¥, with j = ..., —1,0,1,...,
are ordered by inclusion and the closure of the infinite isicln spans up the whole spaté(R).

wCWhcacVicVycVcVoyC..cL?R) (3.55)

Also the infinite intersection is the zero function. Theseparties are needed to use these functions as a one-
to-one representation of a functigh< L?(R). In other words we can represefitby a set of coefficients

cjk, Which belong to the wavelek ;. (t) = 279/2¥(L — k). Various algorithms that use these properties to
efficiently store and process image and sound data are irQiséarly, this can be used to give a description
of the angular fluxp in the transport equation. More information on wavelets adtiresolution analysis can

be found in [2] [5] [10].

3.3.2 Wavelets in neutron transport

There are two ways to implement wavelets in neutron trangpeory. The first is by defining spherical
wavelets and applying the multiresolution analysis as ritesg above. This is more involved than a mul-
tiresolution analysis in carthesian coordinates. Thigrewill not explain such a multiresolution analysis in
depth, as it is not practical to implement in a productionecod lot of computational power is spent on de-
termining the coefficients of wavelets that are not needeagbt@n accurate solution. The full multiresolution
analysis is not needed to obtain an accurate solution.

The other method uses patches on the sphere, in the same Weaydiscontinuous Galerkin method uses
patches, see Section 3.2. Defining a tesselation of the esphker patches one can define wavelets on the
patches. Each vertex of the tesselation is the center pbantvavelet, which is identical (neglecting rotation)
in each patch. An illustration of such a wavelet can be foumigure 6.

The wavelets are the basis functions with which the transpgquation is solved, by cutting the patches
into smaller patches the solution will become more accurblewever all wavelets remain necessary to de-
scribe the angular flux, once a patch is refined it does not nteaassociated wavelet can be neglected [3].
Other wavelets can also be used to discretize the angulapawent of the transport equation, for example
Daubechies’ wavelets [4].

In the end, the algorithm one obtains is a Finite Element ptkethat uses wavelets as basis functions. This
means the angular flux can be written as

N
$(r, ) =) W, Uy (r, ) (3.56)
n=1

where thel,, is a certain wavelet on the sphere. Plugging this expregsithie transport equation and following
the Galerkin discretization procedure yields the wavelgtrétized transport equation. This is just an angular
discretization, the wavelet method still needs to be comtbinith a spatial discretization. The discontinuous
Galerkin method could also be used for the spatial discdia.
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

Figure 6:Spherical wavelet defined on patches, each vertex is thercehsuch a wavelet. The patches show
on the far side.

3.3.3 Cost of wavelet algorithm

Since wavelets are not independent of each other the nmmiricthe discretized transport equation become
rather large. In fact, say the number of waveletdiand the number of spatial basis functions in an element is
M, then the matrices will b& M x N M.

To illustrate the sparseness of the matrices we will showntlest sparse matrices that are used in the
wavelets method [3]. These matrices consist of the entfless(a component of2, with i = z, y, 2)

aij:/ QZGZ(Q)G](Q)C[Q (357)
4

For this example the octahedron is used as body to detertheadtch distribution. In this example it is
assumed the octants are independent of each other, so inllhddpendent case the matrices would be less
sparse. A schematic overview of the refinement used can be faurigure 7. There are three large wavelets, on
the red nodes. There are also three first order waveletsyélem godes represent those wavelets. Furthermore
there are nine second order wavelets and seven third ordetets, respectively the blue and the yellow nodes.
The fill of the matrix with the entries in Equation 3.57 is shemlin Figure 8. The matrix is not at all sparse,
therefore solving and storing it will not be very efficientdgoractical.

Besides the problems with large matrices the sweepingitiigoiis difficult to implement in the wavelet
method (see Section 3.1.3 for the sweeping and sourcedter@gorithm). The interdepency of the wavelets
also troubles application of the sweep method. All waveletan element must be solved at the same time,
because of the interdependency. This means an orderingsfoedfic direction cannot be made, i.e. elements
of which the upwind flux are not yet determined must sometibeesomputed. This means a lot more compu-
tational power will go into solving the transport part of theblem. However, the source iteration algorithm
can in principle be applied.

3.4 Comparison of three discretization methods

The remainder of this research focusses on one of the thré®dsedescribed above. The goal is to make an
angular adaptive algorithm. Of the three methods, the muitgtlde for this end is the Discontinuous Galerkin
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Figure 7:Wavelets used in the example of the sparseness of the msatribe wavelets method. Every coloured
square is the location of the peak of a wavelet, so every squean be associated with the coefficient the needs
to be computed.
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Figure 8:The matrix with only angular variables that needs to be sblwéen using the wavelet method. Gray
squares indicate a hon-zero entry.

method. Table 1 shows in short the advantages and disadesntdé the methods. A more detailed discussion
can be found below.

Discrete Ordinates Discrete Ordinates has been widely used because it is a ilegpcalgorithm. Only a
relatively small number of angular variables is used andtice iteration combined with sweeping algorithms
make it very fast. The lack of difficult integrals that needocomputed also contribute to the speed of the
algorithm.

There still is a choice of the quadrature set that is used pooxpnate the scalar flux. In terms of speed it
does not matter much which quadrature is used, as this iswiatd by the number of directions.The accuracy,
however, can be greatly improved by using an appropriatelratiare. Active research is still being done in
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\ | Sn | DG | Wavelet]

Hierarchical -
Flexible basis functiong
Storage

Computational cost
Easy to refine -
1D cost
3D cost
Pencil beams -
Overall 0

+ + +

+ +

++ 0o+ +00 + +
+ o

Table 1:Short overview of the advantages and disadvantages of tbe thethods.

this area. However there are not many quadrature sets tbatlacal refinement. When one wants to refine
a certain direction in most sets all directions and weightsbe changed. So this method is quick for one
calculation, but does not allow for local refinement well.

Another problem, related to the difficulty of refining, are o called ray effects. When the directions are
not chosen properly rays may occur in the solution that atgohgsical. This is due to an insufficient angular
resolution in absorption dominated problems.

Discontinuous Galerkin The Discontinuous Galerkin method is a relatively cheaphagbt albeit a little
more expensive than the Discrete Ordinates method. Itigaly, as cheap aSy when using constant basis
functions on the patches. For higher order basis functiarexa&ta matrix equation needs to be solved.

Local angular refinement is very easy to perform and hae liftinsequences on the cost, in comparison
with the Wavelets method. The sweeping algorithm will stiirk, which makes this method not much more
expensive than Discrete Ordinates.

The scalar flux in this method is also approximated with soind kf quadrature. However, it cannot be
arbitrarily specified. This quadrature follows naturalfgrh the discretization procedure. It depends on the
order of the basis functions that are used on the patches.

Spatial adaptivity can be easily combined with this methagipoth the spatial and angular parts of the
problem are discretized using the same procedure. One saylthat the whole ‘phase space’ of the spatial
and angular parts combined is discretized by that procedure

Wavelets Wavelets naturally have a hierarchical structure, thahésway they are constructed. This can
be easily used for refinement, however it also introducestians with large matrices that are not sparse.
Therefore the wavelets method is expensive both in compuottpower and storage.

The method does provide accurate results, in the same waisegarifinuous Galerkin does. In quality of
the solution wavelets are to be preferred over Discreter@atdi

Another problem is the sweeping algorithm, since waveletgehoverlapping support. This means all
angular variables must be computed at the same time, byngohrn equation with large matrices. Therefore
one cannot make an ordering of the spatial elements suclelgments are only updated when all upwind
elements are already updated.

22



3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

3.4.1 Similarity of the three methods

In certain conditions the three methods have a strikinglaiity, in fact they are almost the same. When using
constant basis functions on patches in Discontinuous @alend Haar wavelets in the wavelets method, all
three methods have constant basis functions in the angafaofthe problem.

Discontinuous Galerkin with constant patches can havehpatwith an average direction which length is
not equal to unity, while the Discrete Ordinates method génaas unit length directions. However they can
point in the same direction, when also the quadrature inrBisdrdinates is chosen with weights equal to the
surface area of the patch, the methods are almost the same.

The wavelets method still has the dependency between viswiehe sphere. This results in more compu-
tational cost in this method. However the space of functiowtliich the solution lives is the same as the space
of the constant basis functions in Discontinuous Galegioyided the same distribution of patches is used.

Still Discontinuous Galerkin is to be preferred. This meth®the most flexible (in choice of basis func-
tions), most accurate (in three dimensions it is likely maceurate than Discrete Ordinates and as accurate
as Wavelets) and is the simplest method to implement whempamd to the Wavelets method. Therefore the
remainder of this report is on the Discontinuous Galerkirthoe.
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4 FORMULATION OF ONE-DIMENSIONAL PROBLEM

4 Formulation of One-Dimensional Problem

The research presented in this report focusses on one-giomah problems. With only one spatial dimension
the transport equation is simplified and the code of the dhguaris less complex. The behaviour of the method,
however, does not change.

To get to the one dimensional problem we assume the geonadig/iomogeneous in two dimensions, say
in z andy. The only variation in material properties are in thdirection. A consequence of this is that the
solution of the transport equation is constant in:trendy directions. So we can discard these components of
the equation. We can write the three-dimensional trangmpration as

Qm%+ﬁz%+ﬁz%+at¢: Z_;(I)+S (4.2)
where the streaming term is expanded. The assumption of ¢remedy described above can be formulated as
settinngg—f andeg—Z equal to zero. Usually thedirection is taken to be the non homogeneous direction, as
this results in the easiest component of the directionsovef, = n.. The transport equation then becomes

9¢
Moz
The other terms in the equation do not change due to this gdgEum They are invariant along theandy
directions.
First the patch distribution for the one dimensional casdissussed, which is different from the general
three dimensional case. After that an overview of the naptide algorithm used in this report is presented.
This section concludes with the data structure used foingtdhe patch structure and the solution.

+ o4 = Z—;@ +s (4.2)

4.1 Patch structure in one dimension

In the one dimensional case we only need to look at the depeada the polar angle, so we can write the
problem in terms ofu. The azimuthal anglew can be integrated out due to the symmetry in thandy
directions. This is easily done since the value of the amdlu& will not change whem is running. Letu run
from —1 to 1 andw from 0 to 27. The scalar flux can be computed by

P = Pd$2 (4.3)
47
1 27
= /_1/0 odwdp (4.4)
1
= o / 1¢du (4.5)

Another consequence of integrating out thelependence is that we can create patches with a ring shape,
since the flux only varies along the polar angle This patch structure is illustrated in Figure 4.1. A good
choice for the division of: is to have no patches that are exactly centered arpuad0, which is then also
the average direction. This means the average directiohi®patch does not have any component in zhe
direction, so it has no influence on the one dimensional preami€quation.

The coarsest patch distribution used in this report caneidivo patchesu € [—1,0] andu € [0, 1]. Every
time a patch is refined, is divided into two equal parts. This is shown in Figure 4.1.
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Coarse patches. Refined patches.

Figure 9: Ring shaped patch structure in the one dimensional trarispquation. There is always a patch
boundary atu = 0. When a patch is refined the ring is divided into two rings weitjual length intervals ip.

4.2 Discretization of one-dimensional equation

Each spatial cell is simple, since it is only a line segmemictzcell has two faces, left and right, at which the
solution can be discontinuous. The basis functions arediidgr polynomials, or linear functions. In general in

this report the word ‘element’ is used to denote the spaéilé cised with the discontinuous Galerkin method,
while the word ‘patch’ is used for the angular cells. An elairigas two basis functions and lives between the
left most and right most values of the element:

0 T < Zleft

7= % Tieft <z < Tright (46)
0 Tright < T
0 T < Zleft

Y2 = % Tieft <z < Tright (47)
0 Tright < T

This is illustrated in Figure 10.
The transport equation 3.21 becomes:

g
+ (—p, K + o M), = —=

=—M®P 4.
e +5, (4.8)

[y Mo,] left T (1= M b, ] right

where
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4 FORMULATION OF ONE-DIMENSIONAL PROBLEM

Tleft Lright

Figure 10:lllustration of the basis functions used in the one dimemsiproblem. Cell boundaries are dashed,
basis functions multiplied with their coefficient are thimeds and the solution is the thick line.

. -1
I g psin(cos™ (1)) a.
o W/AG’,) AG, dp (4.9)
M M
j=1 j=1
x - [ PCory (4.11)
Ve 32
M = ee’dv (4.12)
Ve
1
s(z) = 277/ Gps(z, i) sin(cos™ ! (u))du (4.13)
-1
S, = Os(z)dV (4.14)
Vi

4.3 Overview of algorithm

A schematic overview of the algorithm is given in Figure 11nd® the algorithm is started we arrive at the
initialization of the finite element matrices (Set up FEMheEe matrices are defined in equations 4.9 through
4.14. In this stage all necessary arrays for storing materigerties and flux values are allocated. In the next
section the data structure used for storage of the flux vadudesscribed. By allocating these arrays one chooses
the patch distribution that will be used throughout the athm.

The next stage is updating the source, which, in the firstitam, is only computing the external source. We
then perform the first sweep, solving for all angular fluxestighout the domain. A transport sweep consists
two sweeps, one left going and one right going. The order doésnatter, as long as Dirichlet boundary
conditions are used. In this stage the matrices defined iseh@&p are used. After the sweep we arrive at
‘Update scalar flux’, where the scalar fldxfor each element will be determined. The scalar flux is alsedf
discontinuous, therefore two scalar flux values per eleraentomputed.

We then arrive at the stage where the source is updated afjiw, however, the latest scalar flux is
available so we can add the scatter source. This is the onjlicg between directions in the algorithm. The
last three steps will be repeated until a preset number mattioes is reached. The total number of iterations is
based on a manual convergence test.
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Update source

Update scalar flux

number of time
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Figure 11:Schematic overview of the solution methodology used wéthigtontinuous Galerkin discretization
with polynomial basis functions.

4.4 Data structure

A number of requirements must be met by the data structutéstbaed in this program. All material properties
need to be stored for easy reference. Since the patcheskaredfined the data structure must allow for changes
in the mesh during computation. A final requirement is théitgtid look up neighbouring flux values, that is,
flux values of patches in the element next to the current elemihis is needed to add the streaming term to
the equation.

In the data structure we can take advantage of the hieraitctizcicture of the patches. The patches in the
one dimensional case form a binary tree, in other words eatithghas two children and one parent. Figure
12 is an example of a binary tree. In this figure one can alstheetD numbers given to the patches. At the
end of the parent ID number a ‘1’ is appended for the left ¢lalthlogously at the end of the ID number of the
right child a ‘2’ is appended. Not all patches in the tree aedufor the calculation of the scalar fldx The
patches that are used are called ‘active’, the others aaetlire’. When the tree is refined to a deeper level than
the two initial patches, the parent patches are not deld@tieely can be used to navigate through the tree. Since
patches are stored in an array there are two ways to navigategh this tree. First is by parents and children
and second by the array structure.

The information that is stored in a tree entry can be foundigufe 13. Every patch has a unique ID
number, which is at the same time the route in the tree to thahp With this ID number similar patches in
different spatial elements can be found. Also, the locatiothe sphere is stored, as an interval of the variable
1, which can be used for quick reference. One can also navigadagh the tree by looking up the locations
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1 p— 1

Figure 12:Binary tree of patches in the one dimensional case. Theegi@iches are blue, the inactive are
green. ID numbers of patches are also shown, the ID numbdredeft child has a ‘1’ appended to the parent
ID, while for the right child this is a ‘2. Below the patch don of the tree on the line segment is shown.

of the parent of the current patch, or the locations of the ¢hitdren of the current patch. The last piece of
information that is stored is whether this patch is activeinoother words, whether the patch is used in the
solution. In this way the tree structure is maintained, e/hibt all patches are used in the calculations.

[Patch ;1D ,urangey, [ pdp , parent, children , acti\]e

Figure 13:For each patch the information in this figure is stored. Anagrof patches makes a tree, through
which one can navigate by parent children relations or byahay structure.

29
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5 Performance of Angular Discontinuous Galerkin

Some results on the Discontinuous Galerkin Discretizatimthod are presented in this section. The results
here are all based on a uniform refinement of all patches.hier atords we can compare the DG method to the
discrete ordinates method.

The discrete ordinates method and discontinuous Galerkihad will be compared using two error mea-
sures. The error is then plotted against the number of unkadw the discrete problem. For the discrete
ordinates method this comes down to twice the number of elesrienes the number of directions. The num-
ber of unknowns for the discontinuous Galerkin method istiuie the total number of patches. In such a plot
one can see the efficiency of the method, as the number of umeis a crude measure of the computational
power that is used in solving the problem. The data pointeenésults of this section are obtained by running
the program with finer initial meshes, no refinement takeseptiuring calculation.

The first error measure is that of the detector response, fiiwhawe first have to define the detector re-
sponse. Many kinds of detector configurations are posdiblepnly a limited amount is physically relevant.
Two detector configurations are used in this report, a vottimdetector and a boundary detector. The volu-
metric detector response can be formulated as

J(¢) = /V A opé(r, 2)dQdV (5.1)

In this expression, the cross sectiop determines the rate at which neutrons are being measureddiften-
sions of the detector are contained in this cross sectiomedions where the detector is not present we take
the cross section to be zero. Since we integrate over theevdedector region without discrimination in angle,
neutrons in each direction have the same contribution tdébector.

As the name suggests, the boundary detector measures tihenafmeutrons that cross a boundary. This
detector response can be expressed as

J(¢) = /5 § /ﬂ _ﬂ>0ﬁ-ﬂ¢(r,n)dﬂd5v (5.2)

There is no detector cross sectidp in this expression, as it simply counts the neutrons thatscaogplane. The
location of the plane is determined by the 8&. The outward normal of the plane is In the expression
above only angles that point outward respective to the pi@aaéncluded in the integral.

With these detector responses we can define an absolutareresure, which is

Eget = ‘Jref - Jh‘ (53)

whereJ,.; is the ‘exact’ detector response aifiglis the detector response calculated with the current descre
solution.

The other error measure with which we can compare method® isobt mean square error of the scalar
flux ®. This error is taken node wise, instead of integral wise:

Erms = \/((I’ref - ‘I’d) : (‘I’ref - (I’d) (54)

In this equation®;, is the vector of scalar fluxes on the nodes of the currentetissolution.®,..; is again the
‘exact’ solution, however, it is now a vector quantity.

When there is a comparison to the exact error in this repodaveot use the exact error. A reference error
is computed using a very fine angular mesh and this is takea égjbal to the exact error. The spatial elements
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are small, in the sense that the spatial part of the probleonigerged. There will not be any spatial component
in the error.

Two sections can be found below, one on the homogeneousthialmther on separate source detector
problems. The test cases in these sections are used to gagngemeral insight in the Discontinuous Galerkin
method in the angular component of the transport equatiom.overview of all tests cases, with geometry,
material properties and solution, used in this report cafobed in Appendix A.

5.1 Homogeneous slab (cases A and B)

Test case A is optically thick and highly scattering, thettstaatio and total cross section is 0.99. Figure 14
shows a plot of the error decrease of the detector respomsasvine total number of patches of both DO and
DG. Every data point in the plot holds twice as many patcheleprevious data point, since each patch is cut
into two new patches.

One can observe that both the uniform DG as the DO (Discretin@tes) converge second order. In fact,
DO outperforms DG in this case, which is due to the scattemreglium. DG with constant basis functions
on patches has trouble with diffusive materials, more os ithithe section with the adaptive results, Section
7. This is in contrast with the optically thin slab (test c&e which is less scattering. A similar plot of
the error reduction versus the total number of patches islio Figure 17. The rate of convergence is still
second order, but DO performs slightly less than DG. DG haaantage here because the slab is thin, which
means the effects of leakage at the edges propagate thioeigihble domain of the problem. Leakage at the
boundaries results in discontinuities in the angular @ugince there are neutrons leaking out, but no neutrons
are entering from the vacuum. DO handles this discontimoiyrly, as the quadrature, the Gauss-Legendre set,
handles discontinuities poorly. The quadrature set iytesi to integrate spherical harmonics well, which are
not discontinuous. DG can handle these discontinuitie§ siace all patches are discontinuous by definition.

Figures 16 and 17 show the rms error reduction of respegtiest case A and B. In these plots the rms
error is plotted versus the total number of patches. The dahaviour can be seen in these plots as in the
plots of the error in the detector response. This is mainky tuthe geometry being homogeneous. In a sense
the two error measures are the same when source and detettt@plan the whole domain of the problem. To
illustrate this consider the detector response, whichleutated as an integral over the whole angular domain.
The scalar flux is is also an integral over the whole angulanaip, the only difference is the detector cross
sectionop. However, the detector response is computed by then takimgntegral over the whole spatial
domain, while the root mean square error is obtained by ge&iminner product of the scalar flux values.

It is remarkable that the convergence is second order fdr thwd detector response error and the root
mean square error. When a mix of polynomials with differenttess is used one cannot a priori say what the
convergence rate will be. However, since constant basitifums are used for the patches, we can expect fourth
order convergence with linear patches.

5.2 Source detector (cases C, D, E and F)

Four test cases with a separate source and detector arenubesl ieport. A volumetric source is positioned

on the left hand side of the domain, one tenth of the width efdbmain. On the opposite side, the right hand
side, a volumetric detector can be found, also one tentheofrildth of the domain. The cross sections are
homogeneous throughout the domain, and different for ezgthchise. C is thick and diffusive, D is thin and

scattering, E is somewhat thick and lightly scattering ansl&so somewhat thick, but purely absorbing. The
complete description of the test cases can be found in Appénd
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Error in detector response, test case A
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Figure 14:Error in detector response of test case A, the thick slabciete ordinates outperforms the discon-
tinuous Galerkin method, both converge second order.

In Figure 18 a plot of the error in the detector response geta total number of patches of all four
separate source detector test cases can be found. Notedlsainhe behaviour as in the homogeneous slab case
can be found. In diffusive materials DO outperforms DG, segeife 18(a), while in optically thin problems DG
outperforms DO, see Figure 18(b). In optically thin caseth \iftle scatter, see Figure 18(c) DO outperforms
DG by a large amount, which is also the case for the purelyrabsptest case shown in Figure 18(d).

In diffusive materials DO outperforms DG, but in thinnerdegattering materials DG slightly outperforms
DO. However, once the scatter becomes unimportant for ttectde response, DO again outperforms DG. In
all four cases the rate of convergence is second order. Ecatime reason as in the homogeneous test cases DO
outperforms DG in thick diffusive materials, while DG outfsgms DO in thin less scattering materials. When
the material is not scattering at all, DO again outperforn® @hich is due to the fact that there is no coupling
between directions without scatter. The set of directidnsioed from the Gauss Legendre set gives a better
approximation than the set of directions obtained from D@ Gauss Legendre directions are not uniformly
distributed, but are more numerous ngat= —1 and neay = 1. These directions are more important for an
accurate detector response than directions pear0. DG provides us with uniformly distributed directions,
which will therefore perform worse. In other words, whenrtéhare no discontinuities in the angular flux, the
set of directions in discrete ordinates performs better.

DG with constant patches (constant basis functions on pajdhmas trouble representing the linear flux
profile in the thick highly scattering medium of test case €e(figure 18(a)). Many piece wise constant
functions are needed to approximate a linear function Wdlat is why the discrete ordinates method performs
much better. However when the material is thin the constatthgs are better able to describe the angular flux
well, as can be seen in Figure 18(b). The flux profile becompser@ntial in the angular variable Constant
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Error in detector response, test case B
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Figure 15:Error in detector response of test case B, the thin slab. Tieodtinuous Galerkin method outper-
forms discrete ordinates, both converge second order.

patches can describe the tail of the exponent well, whiceggavbetter description than a linear profile.

Another thick case is test case E, Figure 18(c), where desowlinates outperforms the discontinuous
Galerkin method. This case is mostly absorbing, so the floklprwill be mostly exponential, which should
be in the benefit of discontinuous Galerkin. However singe tést case is optically thick, DO does not have
the disadvantage of leakage effects propagating througtdmain, therefore DO still outperforms DG.

A concluding remark about the error in the volumetric datemtsponse is that for a source detector problem
the angular flux in the detector region is most important ttaimban accurate detector response. To obtain an
accurate angular flux at that end of the domain one needs amaéeacepresentation of the angular flux in the
middle of the domain, as the neutrons will have to travergeghart of the domain to get to the detector from
the source. The edge effects at the end of the source, foraadirial properties, are in that respect not very
important. It is however important to get an accurate dptori of the leakage at the detector end, as the
leakage will effect the detector response.

The rms error versus the total number of patches of the faincealetector test cases is shown in Figure 19.
Please note that in the rms error measure DG outperforms RIDdases except for the diffusive source detector
problem. So DG provides a better overall solution than DGsdadnich is likely due to the discontinuity in
the angular flux at the boundaries of the geometry. For aleri@tproperties and domain sizes the leakage
has effect on the rms error, which is not necessarily the wdthea small volumetric detector. The Discrete
Ordinates method with a Gauss Legendre quadrature settdaaimdle such a discontinuity well, it is however
in the nature of DG to handle discontinuities well. Also ntitat the rate of convergence is still second order.
As will become clear later, for each test case the rate ofergence is second order. This is not necessarily
what one would expect for constant basis functions.
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RMS Error of test case A
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Figure 16: Node wise root mean square error of scalar flux, test case AeSaehaviour as with the error

in the detector response, discrete ordinates outperfoimsdtscontinuous Galerkin method. Remarkably the
convergence is still second order.

35



5 PERFORMANCE OF ANGULAR DISCONTINUOUS GALERKIN

RMS Error of test case B
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Figure 17: Node wise root mean square error of scalar flux, test case BieSaehaviour as with the error
in the detector response, the discontinuous Galerkin ntethuperforms discrete ordinates. Remarkably the
convergence is still second order.
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(c) Test case E, absorbing medium.
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(d) Test case F, purely absorbing medium.

Figure 18:Error of all source detector test cases.
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Figure 19:RMS Error of all source detector test cases.
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6 Refinement Strategies

An adaptive method is a method where refinement in the meghaké place during calculation, that is the
mesh is not stationary. The advantage of such a method iswitata good refinement strategy, the compu-
tational power can be used in regions of the domain that iboér most to the error. Which leads to a more
efficient method. The efficiency of an adaptive method depéoda large part on the refinement strategy that
is used.

A refinement strategy is a method of selecting the locationere/refinement will take place. In this case
that will be selecting the patches that are cut into two, lbyjgized, refined patches. Two classes of strategies
are tested in this report, traditional and goal-orientedhods. Within the class of the goal-oriented methods
two different ‘flavours’ are tested, using the full adjoirdiition and a local adjoint solution. More on the
adjoint problem and the goal-oriented refinement strasecim be found in Section 6.2.

Traditional methods are based on the change in solution &hecal refinement in the mesh is performed.
The local refinements with the largest decrease in error @nsidered to be useful. The traditional method
used in this report can be found in Section 6.1.

In Section 7 the comparison between the different refinersiategies is made. They are also compared
to the performance of the discrete ordinates method. Thressdts will also tell us whether this method of
discretization combined with a goal-oriented refinemeratey proves to be a useful method.

The final part of this section is an overview of the adaptigoathm that is used in this report. This is an
expansion of the algorithm that can be found in Section 4t dlgorithm as described in that section is used
to calculate the solution after patches are refined.

6.1 Traditional refinement

Traditional refinement methods can be found in many areasattiematics and physics, however the method
described here does not necessarily apply to all these. alteiashowever widely used in numerical neutron
transport and other fields. All traditional methods are Hasethe same idea. A local refinement and solution
is computed and compared to the original non-refined salufiche elements or patches that have the largest
change in solution will keep the refinement, the other eldmeiill go back to their original distribution.

We now need to quantify ‘change in the solution’. The sohuti this case is the angular fluxand the
change will be looked at in phase space. In other words, wédomik at the square of the change in the angular
flux integrated over phase space of a pajctvhich reads

n = /A $ /G (2 — o (6.1)
- /G @ /. (Onja = on)Pdo (6.2)
= 21AG; /Ax(th/z — ¢p)%dz (6.3)

Since the integrand of the angular integral is a constarttiimm, we can pull it out. That leaves us with the
spatial integral, which can be formulated in terms of therioas in Equation 4.12:

n= /M /Gi(ébh/z — ¢p)%dSddz = 2 AGi(¢p ) — ¢h)TM(¢h/2 — &y) (6.4)
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The change can be determined in different ways, for exangfieer the whole domain and select the el-
ements where the solution changed most. Or, another examefilee each element locally and determine its
solution. The change in solution of this local refinemenhentused as criterion.

One specifies a fixed percentage of patches that is to be r@fieadh iteration. That percentage of patches
with the largest change, as in the above definition, will eneel. In this reportpy,, is determined in the
local approximation. A patch is locally refined and the newon is computed on this patch. This means the
upwind flux values that are used in the computation of thistpate of the coarse level and are not updated.
Also the scalar fluxp is not updated before computing the solution on the finerestcAfter the change has
been computed that patch is coarsened again, before goitagtioa next patch.

This method clearly tries to get an accurate solution oh the whole domain, it's goal is to lgtvary as
little as possible. However, we are interested in an acewralculation of the detector response. The goal of
the traditional refinement strategy does not necessaslyitran an accurate detector response. As opposed to
traditional methods goal-oriented methods take into actcthe quantity one wants to accurately determine, in
this case the detector response.

6.2 Goal-oriented refinement

The goal in this report is obtaining an accurate detectgyamse, to incorporate this in a method of selecting
patches that are to be refined one needs a way of determimnignfortance of a patch to the detector response.
This importance can be obtained by using the adjoint or digddlpm [1].

This section starts by deriving the adjoint transport peobland examining its physical interpretation.
Using this adjoint problem we can then formulate an erranegbr, which is derived in the following section.
From this estimator we can also obtain a criterion for seiggbatches that will be refined. This criterion will,
as opposed to traditional methods, take into account ododohtaining an accurate detector response. Finally
some words are spent on the approximations of the exacnagjalution one can use.

6.2.1 Adjoint or dual neutron transport problem

The fields of mathematics and physics do not agree on the nfithe expression used for the error estimation
in this report. Mathematicians say it is the dual problenmyéner nuclear physicists call it the adjoint problem.
From now on it will be called the adjoint problem.

The simplified neutron transport equation, Equation 2.8,lmawritten as an operator equation

Lp=S (6.5)
In this equation the operatdr is the transport operator, which deals with the transperfjaval and scatter
term of the transport equation. The right hand sSde the external source.
Using the operators we can define the adjoint operatas
<@ Lo >=<¢*, 8 > = <L*¢* ¢ >=<¢", 8 > (6.6)

The binary operatok e, ¢ > denotes an inner product of functions, computed as theraiteger phase space
of the product of the two functions. We are free to chose thlat thand side of the adjoint transport equation,
or in other words which equation we solve. A useful choicehefright hand side is

L*¢* = op (6.7)

as this results in a detector response that can be written as
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J=<op,p>=<¢*, S > (6.8)

After a tedious derivation, which is included in Appendix iDfollows that the adjoint transport operator
L* differs only in the streaming term from the transport opardt. This term has changed sign, resulting in
the following adjoint transport equation

—Q V¢! + oyt = Z—i@* +op (6.9)

The difference with the normal transport equation, EquaBd1, is the sign of the streaming term and a
different external source.

Above, the adjoint neutron transport equation was derivegurely mathematical reasoning. This equation
does, however, also have a physical interpretation. Therswa differences with the normal transport equation,
which we will examine.

Instead of the physical souree we now have the detector cross sectign as the source. Apperently the
‘adjoint neutrons’ originate from the detector. Keepingttim mined we can also see that a change of sign in the
transport equation can be understood as a change in direélbdirections are effectively reversed, meaning
the ‘adjoint neutrons’ stream in the opposite directionhaf physical neutrons. Combining these observations
we can interprete the ‘adjoint neutrons’ as the the imperant that location in phase space to the detector.
The larger the adjoint angular fluxX® the larger the probability that neutrons in that locatioplimse space are
detected.

Solving the adjoint transport equation is actually soluving importance that is ‘flowing’ out of the detector
into the geometry of the problem. As we will see later in thdstion, this importance can be used for refining
specific directions that contribute a lot to the error in tleéedtor response.

In the complete derivation of the adjoint transport opearatee needs to assume boundary conditions for
the adjoint problem in order to obtain the formulation ahdZquation 6.6. At the boundaries, when using
Dirichlet boundary conditions, there is no in flow of neusan the normal or forward transport problem.
For the boundary terms to cancel out we need to assume thautHfeow of importance of neutrons in the
adjoint transport problem is zero. A more detailed deroratf the adjoint transport problem and its physical
interpretation can be found in Appendix D.

6.2.2 Error estimation

An error estimate can now be formulated, using the forwamdl adjoint transport equation. The complete
derivation of this error estimate can be found in AppendixBhis section only the important steps and results
are presented.

During the discretization of the transport equation usigdiscontinuous Galerkin method the equation is
multiplied by a basis function and integrated over phaseepahis can be found in Sections 3.2.3 and 3.2.4.
We can write that equation in the following form [8], whichtie weak form

B(¢,v) = 1(v) YveV (6.10)

In that equationv is the test function ane is the angular flux that is to be solvel. is the space of all basis
functions used in the Discontinuous Galerkin discretiratiPlease note that the linear fotrmontains only the
source terms, the bilinear frofd contains all other terms.

Using the detector response in Equation 5.1 we can definethieie the detector response as

41



6 REFINEMENT STRATEGIES

AT = J(9) — J(dn) (6.11)

where¢ is the exact solution angl, is the discrete solution. The detector response opesdioy is linear, so
we can simplify this to

AT =J(¢— ¢n) (6.12)

We can rewrite this using the adjoint problem

AJ = B(6 — ép. 6°) (6.13)

In Section 3.2 the orthogonality property of the Galerkirtimoel was derived. In short this property states that
the error lies outside the spate which allows us to rewrite the former equation as

AJ =B(¢— ¢n. ¢" — ¢3) (6.14)

Finally we can use Equation 6.10, in other words consisteiaybtain

AJ =U¢" = ¢p) — B(dn, ¢ = ¢3) (6.15)

When we plug in the expressions floand B we obtain a sum over all patches, which we can write as

AT=3" "nep (6.16)
e p

The indicese andp are, respectively, the sum over the elements and over tkkbgmtIn this sum we see that
the quantityn of each patch is weighted by the surface area of that patétself follows from the derivation
and can be written as

Nep = AGep | Ru(¢" — ¢p)dr + AG, p1 (e )rny(o* — ¢5) ™ dr

o
PR Joe—\{ovpuave)

HAGeplyeny [ (@ A6 - ) ar
de—NOVp

+AG.,1 / (- A)rn (6" — )™ dr (6.17)
Je~NOVR

pEQy
Please note that theof a patch is an integral of the residual of a patch, weighethbyimportance that one
obtains from solving the adjoint equation.

The error is expressed as a sum over the patches, where é¢abhhpa a contribution proportional to its
size, its residual and the importance of the patch to thectteteesponse. This seems to be a very natural way
to express the error in the detector response. Since thkegzal@ave individual contributions to the error we
can use this to decide which patches to refine. A fixed pergenté patches with the largest contributions
will be refined. This is the goal oriented adaptive criteriged in this report. For a detailed derivation of this

expression we refer to Appendix B.
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6.2.3 Approximation of exact adjoint solution

In the expression for the error estimator we see that we rieeeXact adjoint solution*. As the adjoint prob-
lem cannot always be solved analytically, it will be solvadhie same discretized way as the forward transport
problem. This means the exact adjoint solutiginis not available and must be obtained or approximated in a
different way.

For clarity we will use the symba}* for the exact adjoint solution, the symhgj,,,.,. for the approximation
of the exact adjoint solution ang}; as the discrete adjoint solution. We can take, , then to be the adjoint
solution on a finer patch distribution thayj. It would be best to take this on a deep as possible level, Vewe
for practical reasons in this report we takg,.,. to be refined to one level deeper thgp This means each patch
that is part of the solution af;, is refined once to obtain the patch distribution on whigy,, is computed.

With this choice of approximating™ with ¢7 ., that lives on a patch distribution one level deeper one is
still left with the choice of how to compute; ... There are two distinct ways of computing this solution,
globally or locally. Global means one solves the adjointem completely on the finer patch distribution.
Locally means one solves the adjoint problem on the samé plidtribution as the forward level and refines
the adjoint patch locally when the error needs to be compuidigr refining and before computing the error
one will solve the adjoint fluxy; on this patch using the non refined neighbour flux values amdupadlated
adjoint scalar flux®; .

With these two methods the same difference between levetfioEment is used, however the cost of the
locally computed adjoint solution is much lower than thebgldy computed adjoint solution. This is due to
the fact that in the global computation the adjoint solutidgh need to be converged on a deeper level, using
more unknowns, than when using the local computation. Imghelts in Section 7 we will examine the effect
of both methods.

6.3 Overview of adaptive algorithm

An overview of the fully adaptive algorithm is presentedéhérhis algorithm can be used for both the traditional
and goal oriented criteria.

The adaptive algorithm is actually an expansion of the rdeptive algorithm presented earlier, see Section
4.3. This non-adaptive algorithm is used between refineitenations to compute the solution. In each refine-
ment iteration the error per patgtfor all elements is computed, which are then sorted in deliogrorder. The
error can be computed using different methods. The threbadstexamined in this report are the traditional
refinement and two types of goal-oriented refinement, usieggtobally or locally refined approximation of
the exact adjoint solution. A fixed percentage of patchesat@aon top of the list will then be refined. The
effect of different percentages will be examined in Seciidn

We will now explain the flow of the algorithm and what needséadone in each step. The algorithm starts
again with setting up the matrices needed for the spatiafadement method, also the arrays that store material
properties and patches are allocated. This is the patdfibdison that is used at the start of the algorithm and
will change during the algorithm.

As in the uniform case the source in first iteration consiéjsisi the external source term. After updating
the source term the transport sweep can be performed. Thizesatre needed at this stage. With the newly
available angular flux we can update the scalar flux. Fromgtaige the algorithm can go to two directions.
Until the fixed number of inner iterations is reached the algm will continue with updating the source. In
this way the transport problem is solved until convergenit the current patch distribution. These steps in
the inner iteration are performed for both the adjoint armavéwd problems.

Once the preset number of inner iterations is reached tlogitdon continues by calculating the error for
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each patch. To this end the adjoint transport problem has solved first. This is done in similar fashion as
the inner iteration of the forward problem. However the palcstribution can be different. After calculating
the error contribution per patch we can order the patcheadafit which have the largest contribution. A fixed
percentage of patches is then refined.

After refining the inner iteration will start again, with timew finer patch distribution. The inner iteration
will again loop until the preset number of iterations is us€de number of times the outer iteration is repeated
is also fixed and preset.

(Stard———>Setup FEWD

Repeat fixed number of times

Refine patches> W W @ oo N ——

Update source

Update scalar flux

Perform sweep

Compute det. response

Figure 20:Schematic overview of the adaptive algorithm.
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7 Results of Adaptive Methods

In this section the results of the various adaptive algorittare presented. Ten cases are used to illustrate the
performance of the algorithm, these test cases can be faulpgendix A. Each of the cases will test different
aspects of the adaptive methods. In all test cases the aglagbgiorithms refine 30 per cent of the patches in
each refinement iteration, unless stated otherwise.

For the tests in this section we will use the same error measas in Section 5, the error in the detector
responser,.; and the node wise root mean square error of the scalaffls. The errors are again computed
using a reference value for the detector response and tlae 8ua. This reference value is computed at a much
deeper level of refinement.

For all test cases a figure with the error plotted againstdtad humber of patches. This shows how the
refinement in each step improves the solution. In this wafeminht adaptive methods can be compared on
performance. The discrete ordinates method is also indludl¢hese plots, although it is not an adaptive
method. However, one can compare the cost in number of unkhofthe discrete ordinates method and the
adaptive methods.

The quality of the error estimator for the two goal-orientedthods is also examined. To this end we
compare the estimated error with the reference error, wisichmputed at a much deeper level. We examine
the quality to find out whether we can use the error estimatar taustworthy representation of the error. This
would mean that in future work the reference error does nogésearily have to be computed.

A final comparison between the adaptive methods is an imatgin into the effect of the refinement ratio,
that is the percentage of patches that is refined in each mefimeiteration. The adaptive algorithm is run
several times with different percentages. The error vettseigotal number of patches for all methods is then
plotted in one figure, which shows the most effective refinetnatio.

The first test cases have a homogeneous slab geometry, ¥fittedt materials. The next test cases have
a separate source and detector in a homogeneous materialudetric detector is mostly used, however a
boundary source is also investigated. Thereafter the eae@tector test case is extended by placing a shielding
region in the middle of the domain, between the source anectiat The final tests are on the effect of the
refinement ratio on the convergence.

A final remark has to be made on all plots that are shown in thisian, the legend holds names for
the different method that are presented in this work. ‘Umifois the discontinuous Galerkin method with
uniform refinement, i.e. in each refinement iteration althes are refined. ‘Traditional’ refers to the traditional
refinement criterion that can be used with the discontinu®alerkin method. The two goal-oriented adaptive
methods are referred to as ‘full adjoint’ and ‘local adjaifithe full adjoint is the criterion that bases its decision
for which patches to refine on the adjoint solution of patdines are one level deeper (they are refined once
more) than the patches of the forward solution. The othéer@on bases its decision on a local refinement of
the adjoint solution and is therefore called local adjoivife also have the discrete ordinates method which
is referred to as ‘discrete ordinates’. Finally a line theypresents second order convergence is plotted for
convenience, this line is referred to as ‘2nd order’.

7.1 Homogeneous slab (cases A and B)

The first test case is the homogeneous slab, both opticatliy #nd thin. The exact specifications of these
test cases are presented in Appendix A. In Figure 21(a) ondimd the plot of the detector response error
versus the total number of patches of test case A, the thatkesing slab. In this plot we note that convergence
is eventually second order for all methods that are prederi@e error with uniform refinement of patches
decreases constantly, while the error of all other methatsedses faster in the beginning, i.e. with few
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patches. Therefore the traditional, full and local adj@nd discrete ordinates methods eventually have an
advantage of an estimated factor of two, measured in the auoflpatches needed to get a certain error. The
similarity in error decrease of the different methods isyatady due to the homogeneity of the problem.

Turning to the plot of detector response error decreaseis¢he total number of patches in case B, Figure
21(b), we see that all methods again perform somewhat sirfiikas time the uniform method (all patches are
refined in each refinement iteration) performs slightly dretihan the other methods. The error decrease for all
methods is again about second order.

In both cases the adaptive algorithms perform about the salswethe Discrete Ordinates method performs
about the same as the adaptive algorithms. The uniform reéineperforms, however, different in case A and
B. In case A the adaptive algorithms perform slightly bettdrile in case B the uniform refinement performs
slightly better. An answer to this can be found in the spat#th distribution, which is shown in Figure 22. In
these plots the number of patches in an element is plottddsadhe x position of that element.

Case B has quite a uniform patch distribution in space. Thmreone would expect the uniform and
adaptive methods to work similarly. However in case A thelpalstribution is far from uniform, more patches
are used near the edge of the domain. Near the edges the raffigixila more difficult to compute, because of
the leakage. In the middle of the domain there is little a@fffche leakage, because the material is optically
thick. Therefore the adaptive algorithms can provide agbatblution.

Another remarkable result is the steps in the patch digtabuof test case A. These are an artefact of the
refinement algorithm, when a smaller fraction of patchegimed these steps disappear and the distribution
becomes exponential. The exponential behaviour might leetduhe fact that effects of leakage decrease
exponentially when propagating through the domain, bexausy of neutrons also decreases exponentially.

The lack of difference between the three adaptive methodseaexplained by the homogeneity of the
problem. Since the volumetric detector is in the whole dontlaére is little difference between the traditional
and goal oriented criteria. One could say that a refinementtianges the solution of the angular flurost
will probably also result in a better detector response acel versa. Therefore we will turn to other test cases.

Error in detector response, test case A Error in detector response, test case B
1 T T 3 10 T T -
uniform —&— uniform —a—
full adjoint full adjoint
[ § local adjoint ----a--- 1F ey local adjoint ----4--- i
01F N traditional v NG traditional v
W a discrete ordinates NG - discrete ordinates
2nd order -----:- 01 N 2nd order -----
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(a) Test case A, thick highly scattering medium. (b) Test case B, thin scattering medium.

Figure 21:Error in the detector response of the two homogeneous skilréses. In the optically thick case
all methods perform better than the uniform method, bec#iuseptimal distribution of patches is not flat.
However in the optically thin case the optimal distributienalmost flat, therefore the uniform refinement
works well.
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(a) Test case A, thick highly scattering medium. (b) Test case B, thin scattering medium.

Figure 22:Spatial patch distribution, in one spatial element all gas are counted and plotted at its position.
The steps in the optically thick case disappear when a snrefieement ratio is used. The optimal distribution
of patches in the optically thin case is almost uniform.

7.2 Source detector (cases C, D, Eand F)

In these test cases a geometry with a separate source antbdéte different materials is presented. The four
materials are thick scattering, thin scattering, thin abisg and a material with medium thickness and some
scattering. For each of the test cases the material prepente listed in Appendix A.

Figure 23 shows the error in the detector response versustdienumber of patches of all source detector
test cases. We see for all four test cases the same secomacondtergence of the uniform method. For test
cases C, E and F we see somewhat the same behaviour. Theed@mclieates method outperforms all other
methods, while the traditional refinement criterion witeatintinuous Galerkin performs the worst of all, since
there is almost no error decrease. The two goal-orientedti@damethods, full and local adjoint, converge
second order and perform at least as good as the uniform thetimocase D the full adjoint goal-oriented
method performs best, while all other methods perform coaipga

An explanation for this behaviour can be found looking atahgular flux profile. In the thick and diffusive
cases the flux profile is almost linear while in the absorptiase it is exponential. Since we're using constant
basic functions (patches) different behaviour can be d@rpeahen the solution has a different angular flux
profile. A linear function is harder to approximate with ctamg patches, as it needs a fine representation for
all directions. An accurate approximation of exponentiaidtions with constant functions only needs a fine
representation where the derivative of the exponentiaitfan is largest.

When comparing the uniform and adaptive methods one findsthieagoal-oriented adaptive methods
are at least as good as the uniform method. The traditiorgbtae method does a very poor job. These
differences between the methods can be explained by thie gestitibutions, which are shown in Figure 24. In
this figure we will take a closer look at the spatial patchritistion of cases C and E. In case C we saw that the
goal-orientated methods have an equal error reductioneasriiorm method, which can be explained by the
diffusivity of the problem. Constant patches cannot apjmnate diffusive problems well, because the angular
flux profile is linear. Since we need a fine mesh to approximditeear function by constant basis functions,
this means the whole domain of the problem will be refined.ukig24(a) shows the flat spatial distribution
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Figure 23:Error in the detector response of all source detector tesesa

of the two goal-oriented adaptive methods. This figure alsmws why the traditional method performs so
poorly. Most refinement is on the left hand side of the problerile the detector is on the right hand side
of the problem, which results in a bad detector response tréld@ional criterion refines patches of which the
solution changes most when they are refined, which will beradahe source region in the domain and not
around the detector region, as the solution is much largéreisource region.

The patch distribution of test case E shows why the goal taied adaptive methods outperform the uni-
form method. Even though the spatial distribution is stillitg flat, more refinement took place on the border
of the source region and the detector region. Since thidgmois less scattering the patch distribution is less
flat. Also in this case the traditional method refines localigund the source and not at all around the detector.

It is also worth looking at the node wise root mean squarer €rmes error) of the flux. Since this error
measure looks at the whole domain of the problem insteadsotljie detector region. Figure 25 shows a plot
with the rms error versus the total number of patches. Thiitivaal adaptive method provides us with the
smallest error of all methods and discrete while the goaimed adaptive methods show almost no decrease in
error. This behaviour can be expected since the goal of taea@nted methods is to get the detector response
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Distribution of patches, test case C Distribution of patches, test case E
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(a) Test case C, thick highly scattering medium. (b) Test case E, absorbing medium.

Figure 24:Spatial patch distribution, in one spatial element all gas are counted and plotted at its position.
The traditional adaptive method mostly refines around thercs not around the detector. The absorbing
medium has a larger refinement near source and detector fogtial oriented adaptive methods, while the
thick case has an almost flat distribution. This is neededifoaccurate representation of a diffusive problem.

as accurate as possible, which not necessarily needs aagcdascription of the solution in the whole domain.
We furthermore note that the uniform method converges abectdnd order and that the discrete ordinates
method performs similar to the uniform method.

We also present a comparison between a source detectoeprabth a volumetric detector and a boundary
detector. The two cases with a boundary detector are G, witlick scattering medium, and H, with a thin
scattering medium. In Appendix A the test cases are destehd the material properties are listed. Figure 26
shows the error reduction versus the total number of patufiesses G and H. We see a similarity between cases
G and C, and between H and D. To start with G and C, in both casediscrete ordinates method performs
best and the traditional method worst. The uniform methatithe two goal-oriented adaptive methods show
similar error reduction. In cases H and D we see a uniform atethat converges second order and all other
methods perform similar, albeit with a spread around théoumi error reduction. This shows that using a
boundary detector instead of a volumetric detector doeshanige much in the behaviour of the methods.

Some differences in behaviour can however be found when iekanthe spatial patch distribution of the
two cases. Figure 27 shows a plot of the number of patches @leament versus the spatial position of that
element for both cases. Comparing the plot for case G withfthaC we see that between= 0.9 andz = 1
the number of patches increases slightly near the boundahe @omain for case G, while in case C we see
a dimple in that region. In both cases we see a slight incrieasember of patches near the boundary of the
detector, that is for case € = 0.9 and for Gz = 1. This is probably to have an accurate description of the
angular flux that enters the detector. The same behaviousecaeen for case H and D, although the full adjoint
actually shows a slight decrease in number of patches neaigiht boundary. In all cases the full and local
adjoint differ slightly from each other both in error deeaand in patch distribution, therefore we conclude
this is not a fundamental difference between the methods.

The traditional refinement criterion results in a slightiffetent spatial patch distribution in the cases G
and H, as well as in the case C and E. In cases E and H the patdhutisn has a relative larger peak around
the source region. This can be explained by looking at thetisol of the flux, as this also has a larger peak for
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Figure 25:Node wise root mean square error of scalar flux of test case thd root mean square error measure
we see the traditional adaptive method being more effettiae the goal oriented adaptive methods. The goal
of the goal oriented adaptive methods, an accurate dete@egponse, is therefore not the same as an accurate
overall solution.

cases E and H. This shows that the traditional refinememtricnit is sensitive to regions where the angular flux
is largest.

Finally we remark that the goal oriented adaptive and unifonethods all converge second order in the
both error measures, as we would expect from the previotisdes. This leads us to believe that using linear
basis functions on patches will result in fourth order cageace of these error measures.

7.3 Shielding (cases | and J)

This test case is similar to the previous test case but wittkéna shielding region in the middle of the domain.
Two types of material are tested which are both opticallgkhbne is scattering and the other is purely ab-
sorbing. So far we have not tested different material prtigseim one domain, which is done with these tests.
The boundaries between the different materials are ofdéatens an accurate description of the angular flux
is needed at these points for an accurate detector respbosghis test case a good performance of the goal
oriented adaptive methods was expected. The exact matevjadrties can be found in Appendix A.

Figure 28 holds plots of the detector response error versusotal number of patches. The discrete or-
dinates method provides us with the largest decrease in exmd again the traditional refinement criterion
provides us with the least decrease. The uniform and bothaymanted methods perform similarly, all re-
sulting in second order convergence. In case J these thriémdsealso result in second order convergence,
however the error decrease is slightly larger with the goihted methods. Also in this case the discrete
ordinates results in the largest error decrease and thigdred refinement criterion in the least decrease.

50



7 RESULTS OF ADAPTIVE METHODS

Error in detector response, test case G

Error in detector response, test case H
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(b) Thin source boundary detector, test case H.

Figure 26:Error in the detector response of the source boundary detdest cases. The behaviour is similar

to that of the source volumetric detector test cases.
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Figure 27:Spatial patch distribution of the source boundary detet#st cases. Where in the source volumetric
detector test cases the detector is located, no extra reinetakes place in the source boundary detector test
cases.
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For the diffusive case | the performance is not as good asceegbdoecause the constant patches cannot
approximate the linear profile of the angular flux very wehaT s, it can approximate it well only by refining
many patches. Using linear basis functions on the patchdd ogercome this, since it will take few basis func-
tions to approximate the linear profile of the angular flux. N#ee seen this before in other highly scattering
cases.

The other case, the fully absorbing shielding test caseaha&xponential angular flux profile, which per-
forms better than the scattering case. This is probably altieetfact that constant patches have a problem with
the part of the profile with a large derivative. The direciamhere the angular flux is almost constant do not
pose a problem. This is also a recurring observation throuligthe test cases.

Error in detector response, test case | Error in detector response, test case J
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(a) Test case I, thick highly scattering medium. (b) Test case J, thick absorbing medium.

Figure 28:Error in the detector response of the two shielding test saBéscrete ordinates performs better in
diffusive problems, therefore also in this thick scattgraase. In the thick absorbing case the set of directions
of discrete ordinates give a better approximation of theedigtr response than that of discontinuous Galerkin.

It is useful to examine the node wise root mean square erriresk test cases. The plots of the decrease
of the rms error versus the total number of patches are showigure 29. First of all we see that the uniform
refinement strategy converges second order, as is the cadigést cases. We see again that the traditional
adaptive method gives a more accurate solution in this ereasure, while the goal oriented adaptive methods
give a better approximation of the detector response. Hubi$ also seen in the angular patch distribution,
which is shown in Figure 30. This figure shows a plot of the isgepatch sizel(/ Au) versus the direction
of that patch f). Looking at the traditional method we see that directidret are important for getting an
accurate scalar flux are refined, which are the directions pasitive small: (there are no negatiye with non
zero flux since there is no scatter). The solution of the ardilux improves most when a finer patch structure
is used to determine which patches to refine. However, theqgmmted methods mostly refine directions that
are important for the detector response, which are dinestiagith a large positive are refined, since neutrons
travelling in these directions cover the least ground totgéhe detector and therefore contribute most to the
detector response.

The spatial distribution of patches is shown in Figure 3leselthe number of patches in a spatial element
is plotted versus the location of that element. In FigureaBbhe can see that the goal-oriented adaptive
methods refine extra near the boundaries of the shieldingrmegHowever, the increase is only small, since
many patches are already needed to accurately describéffimivé behaviour of the medium around the

52



7 RESULTS OF ADAPTIVE METHODS

RMS Error of test case | RMS Error of test case J
1 T T 1 T T
uniform —=— uniform —&—
full adjoint full adjoint
R local adjoint ----a--- LY local adjoint -------
01F traditional v vIZIt8 0000020 traditional -+
v M discrete ordinates discrete ordinates
& 2nd order - 01F M 2nd order ---- 3

0.01 ¥,

0.001 0.01 N

RMS Error
RMS Error

0.0001
0.001
1le-05

1le-06 L L L 0.0001 L
100 1000 10000 100000 le+06 100 1000 10000 100000 1e+06
Total number of unknowns Total number of unknowns
(a) Test case I, thick highly scattering medium. (b) Test case J, thick absorbing medium.

Figure 29:Node wise root mean square error of the scalar flux of the tvieldihg test cases. The traditional
adaptive method provides the most accurate overall salutioboth cases. The goal oriented adaptive methods
perform well in the thick scattering case, since all direos are important for an accurate detector response,
so the overall solution will be accurate. However in the kratvsorbing case only directions toward the detector
are important, therefore these methods do not provide aorate overall solution.

shielding region. The material of the shielding region catually be accurately computed with a less fine
patch distribution than the medium around it, as this matté&imostly absorbing.

Figure 31(b) in contrast has a larger difference betweenthgber patches inside and outside the shielding
region. A more coarse patch distribution outside the shigldegion suffices to accurately describe the angular
flux, however inside the shielding region more patches agele: An accurate detector response depends on
an accurate description of the neutrons that pass throwgbhiielding region, therefore this regions is refined
most.

In both shielding test cases we see that the traditionalemfémt criterion does not help in computing an
accurate detector response, as the patches on the righsidanthe detector side of the domain, are not refined
at all. The angular flux is very small in this region, whichuks in only small changes in the angular flux
when a patch is refined, as opposed to the left hand side ofotimaid. Therefore most refinement is around
the source region.

7.4 Quality of error estimator

Besides using the error estimate as a criterion for refinémercan also use it as an estimator for the error in
the detector response. In many cases the exact error isaitattdg, as we do not have an exact solution to the
neutron transport problem. To reliably use the estimat@ras indicator we first need to test its performance.
This test consists of examining the error ratio, that is #immetween the estimated and exact error. Since the
exact error is not available we will use a reference erroichvis computed on a much finer patch distribution.
In this section we will look at three test cases (A, E and G)mtibe estimator behaves differently.

In each of the figures presented here three data sets amdplothiform’, ‘full adjoint’ and ‘local adjoint’.
We will treat them in reverse order, starting with the locdjoint. The local adjoint criterion consists of the
goal-oriented error estimator (see Section 6.2), whereelaet adjoint solution is approximated by a local
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Angular patch distribution of test case J
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Figure 30:Angular patch distribution of test case J, thick absorbihgkling problem. This is the distribution
atx = 0.3. Goal oriented methods refine the directoins toward theaetesince those are important for an
accurate detector response. The traditional adaptive oktiefines mostly in other directions, which leads to
a more accurate overall soluton. The directions toward #fedre not refined since there is no scatter.

refinement of the associated adjoint patch. That is, to céenie error contribution of a certain patch in the

forward patch distribution, we refine the associated atljo@ttch once locally, resulting in a representation on
one level deeper. Besides using the error estimator theereéint criterion based on the error contribution is
also used. Turning to the full adjoint criterion, this mathases the same criterion as the local adjoint, only
the exact adjoint solution is now approximated by computhrgadijoint solution on a patch distribution that

is refined to one level deeper than the forward patch didtabu This results in an adjoint that is computed

on a distribution that is globally one level deeper than threvard distribution. The last data set is obtained by
using the full adjoint error estimator on a uniform refinedcpadistribution. This means in each refinement
iteration all patches are refined, so the adaptive criteioomefinement is not used. However, we can test the
error estimator that is obtained from the adaptive critetising this patch distribution.

The error ratio’s for the thick homogeneous slab, test cagséshown in Figure 32(a), where the ratio of
the error estimator and the reference error is plotted ag#ie total number of patches. We expect the error
estimator to asymptotically go to the reference error, ithésins the ratio should tend to unity. We can see that
for case A the ratio tends to unity for the uniform method, Begr not asymptotically. It is expected that this
will happen when linear patches are used, as constant gataheot approximate linear flux profiles well. The
same criterion but with adaptive refinement, the full adj@ase, has somewhat the same behaviour. It has
some wiggles, but the trend is the same as the uniform casentrast to this, the local adjoint case has a very
different behaviour. The ratio lies significantly below tieéerence error and it even becomes a worse estimator
when more patches are used. For this case it cannot be useaasindicator.
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(a) Spatial patch distribution of test case I, the thick scattgshield- (b) Spatial patch distribution of test case J, the thick absogbi
ing case. shielding case.

Figure 31:Spatial patch distribution of the shielding test cases. fhiek scattering case does not have a large

increase in patches in the shielding region, because matghpa are already needed to describe the flux in the
whole domain, due to the diffusivity. The absorbing caseahi@sge increase in patches, since the shielding

region absorbs many more neutrons an accurate solutiormfneutrons that travel through is needed to obtain

an accurate detector response.

Turning to test case E, the absorption source detectorgmmble see in Figure 32(b) that the full adjoint
case does not always provide an accurate error estimatereifor ratio does not tend to unity as patches are
refined, which means we cannot use it as a reliable indicatothe error in this case. The uniform refined
method still tends to unity, but again not asymptoticalljpeTlocal adjoint estimator performs even worse in
this case, compared to case A. We can certainly not use this mslicator for the error.

The final case in this section is test case G, the thick boyrdiztector case. The error ratio’s are shown
in Figure 32(c). In this case the full adjoint the uniform hds give almost the same error estimator, which
tends to unity. However, the local adjoint estimator id sffl. In all cases the local adjoint estimator seems to
provide us with an underestimate of the error, which caneaided as an indicator for the error.

An interesting fact is that the local and full adjoint errastimators do not agree on the error estimator, the
full adjoint provides us with a reasonably good estimatdrilevthe local adjoint estimator is too much off. The
two methods do, however, refine almost the same patchedtimgsn similar patch distributions. This can be
seen in the patch distribution plots shown earlier. Thismedhat when the error estimator is not important,
the local adjoint method, which is cheaper than the full edijmethod, can be used to decide which patches to
refine.

7.5 Effects of ratio of refined patches

Usually one takes a ratio of patches to be refined instead ef awsnber, as the set number gets relatively
smaller every refinement iteration. All results in the poexs sections were generated with the ratio set to
0.3, in other words30% of the total number of patches was refined. Every patch thegfised results in
two new patches, a net increase of one patch per refined phidhis section some results on the ratio of
patches that is refined in each iteration are presented. i Hsne for two test cases, the thick homogeneous
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(a) Ratio of error estimator and reference error of test caseh®, {b) Ratio of error estimator and reference error of test caseHhe, t

thick scattering homogeneous slab problem. The full atigires an absorption source volumetric detector problem. In thisectie full

accurate error when uniformly refined, the estimator is ajs@e ac- adjoint estimator gives an accurate estimator when refingrtekes

curate when refined adaptively. However, the local adjostineator place uniformly, however not when the refinement takes [ddep-

gives an inaccurate estimator. tively. The local adjoint estimator does not provide an aatel esti-
mator.
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Figure 32:Ratio’s of error estimators and reference error. The refie error is computed using a very deep
refinement, much deeper than where the tests took place.

slab case A (called RA) and the thin source detector case lIl2qcaD). The figures here show plots of the
detector response error versus the total number of patcheatifferent methods. The effects of the ratio of
refined patches is investigated for the following percessatf, 5%, 10%, 20%, 30% and40%. For reference
purposes we included the data sets of the uniform and désordtnates method, as well as a line representing
second order convergence.

For the thick scattering homogeneous slab test case (cagdhepe is little difference to be seen in Figure
33. The symmetry and homogeneity of the problem are theylig@lise of this. This means we can best choose
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a large refinement ratio in this case, as this takes leastttirne computed. We can, so to speak, get away with
a large ratio of patches refined in each iteration. This istdube fact that we saw that large regions in the
domain are refined, it is not very concentrated (see Figufa)R2
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Figure 33:Error of test case A, for different refinement ratio’s, pefimement method. All methods perform the
same, which is probably due to the uniformity and homoggrédithe problem.

Turning to test case RD, the source detector with a thines@adgt material, we see that the refinement ratio
affects the accuracy. There is much variation of the erroradese within each method, however we can see that
a ratio of refinement between five and thirty per cent genesalems to result in the largest error decrease for
the two goal-oriented adaptive methods. In the traditionethod we see that the forty per cent method results
in the largest decrease, however the variability of thishoetis large. In the previous data points it does not
perform better than other methods.

Furthermore note the dip in the error around three hundréches, this is due to a sign change in the
difference between the computed and the reference detesjoonse. Since we defined the detector response
error measure as the absolute value of that difference, it as a dip in the error.
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Figure 34:Error of test case D, for different refinement ratio’s, pefinement method. In most cases refining
between 5% and 30% is most effective. However, a smalleeptrge needs more iterations which takes more
time. In the full adjoint error there is a sign change arour@3atches, which explains the dip in the error.
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8 Discussion

In this discussion section we will first present the main ¢asions of this work, roughly in order of occurrence.
The first part will be on the theoretical results we obtainedSection 3, the discretization of the neutron
transport equation. Thereafter the conclusions of theotmiftests will be presented, these conclusions are on
the behaviour of the uniform discontinuous Galerkin methothpared to the widely used discrete ordinates
method. Finally the results of the various adaptive alpari is presented, where the comparison is made
between traditional and goal-oriented refinement critéftee second part of this chapter is a short elaboration
of future work that can be done to further investigate thesiiilties of the discontinuous Galerkin method.

8.1 Main conclusions
8.1.1 Theoretical results

Three different discretization methods were investigatetheir ability to handle adaptivity and their feasibility
of implementation in this work: the widely used discreteinates method, a discontinuous Galerkin method
with wavelets as basis functions (wavelet method) and adtswous Galerkin method with polynomial basis
functions (discontinuous Galerkin method).

The discrete ordinates method cannot handle adaptivity, welmost quadrature sets do not allow for
directions to be added without altering the complete setrettons. The wavelet and discontinuous Galerkin
method were therefore investigated as alternatives thatllde for adaptive algorithms, since both methods
have a hierarchical structure of basis functions. For s¢veasons we preferred the discontinuous Galerkin
method to the wavelet method. First of all the wavelet mettesdlted in a large non-sparse matrix equation
that needs to be solved for each spatial element. This mbandar fine wavelet distributions large filled
matrices will have to be solved, which comes at high comprtat cost.

In the discrete ordinates description we showed that a chkegpithm to solve the equation an be used,
source iteration combined with a sweep algorithm. Sincedlgorithm is so cheap, we investigated the possi-
bilities of using this algorithm in the adaptive algorithmhich is only partly possible in the wavelet method.
Source iteration is still possible, but since the waveletsret independent of each other we cannot apply the
sweep algorithm. However, we found that both source itenatind the sweep algorithm can be applied in the
discontinuous Galerkin method.

The third and last reason is that the discontinuous Galenkdthod provides us with a much more flexible
discretization than the wavelet method does. Polynomisistfanctions can relatively easily be used to obtain
higher order basis functions, which should lead to highdeoconvergence. The order of convergence of a
certain wavelet as basis function is harder to predict. Aledound that the choice of wavelets largely depends
on the ability to approximate spherical integrals on theelets well.

8.1.2 Uniform results

We compared the performance of the discontinuous Galerlkithoad with discrete ordinates by refining all
patches uniformly. This test is a comparison between thefsdirections obtained from the discontinuous
Galerkin method and the set of quadrature directions ofelisordinates. In general discrete ordinates provides
us with a larger decrease in error than the discontinuousridalmethod for the same number of unknowns
in the discrete problem. This is due to two effects: the lirmayular flux profile in diffusive materials and the
performance of the set of directions when there is no cogpdietween the directions from scatter, which we
will elaborate below.
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The discontinuous Galerkin method was tested with constasis function on the patches and linear basis
functions on the spatial elements. The constant patchemtapproximate a linear flux profile well with few
patches, while discrete ordinates does not need manyidimsdb describe this flux profile well. We expect the
discontinuous Galerkin method to perform much better ifudife materials when linear basis functions are
used on the patches.

When the scatter cross section is zerg,= 0, there is no coupling between the discrete directions. A
purely absorbing test problem is therefore a test of theopednce of the distribution of directions on the
angular domain. The discontinuous Galerkin patches atehdited uniformly throughout this domain, while
the Gauss Legendre quadrature results in a larger densityraxdtions aroung: = 1 andp = —1 than
aroundu = 0. As expected this lead to an advantage of discrete ordimai@gsmains with a separate source
and detector region. The neutrons that cover least groumgbtt@o the detector are most important, as the
likelihood of absorption is the smallest. The discrete maiths methods gives a more accurate description of
these neutrons.

In one kind of material the discontinous Galerkin methodviated us with a larger decrease in error than
the discrete ordinates method, for the same number of unkmdmvthe discrete problem. In thin scattering
materials the effects of neutrons leaking from the domaioubh the vacuum boundaries propagate deeply into
that domain. The angular flux around these vacuum boundaraiscontinuous at = 0. The discontinuous
Galerkin method can easily describe this discontinuityliasontinuities are inherent to this method. However,
the discrete ordinates method with the Gauss Legendre afuaelrcannot handle discontinuities well. The
discrete ordinates method could possibly perform bettan the discontinuous Galerkin method when a double
Gauss Legendre quadrature is used, which is discontinuops-a 0. However, when we look at three-
dimensional problems, the discontinuities in the angulas dan be anywhere on the sphere (depending on the
shape of the domain). Discontiuous Galerkin will be moreuaate than a discrete ordinates method in that
case.

In all test cases (homogeneous slab and source detectoetgr@shand for both error measures, detector
response error and node wise root mean square error, we ghioatehe discontinuous Galerkin method with
constant basis functions on patches results in second oafeergence. We therefore expect linear basis
functions on patches to result in fourth order convergence.

8.1.3 Adaptive results

Using the dual or adjoint problem of the neutron transportagign, we derived an error estimator for the

detector response error. In this derivation we expresse@gtimator as a sum of contributions to the error of
individual patches. This provided us with a goal-orientefinement criterion to decide which patches will be

refined, as the contribution of patches with the largestrdmrtton is likeliest to decrease most when refined.

Another refinement criterion was formulated using the cleaingthe angular flux when a local refinement is

performed. The refinement of the patches with the largesigihin the angular flux are kept, the other patches
are coarsened to their original distribution. This is ahHiee traditional refinement criterion.

In general the goal-oriented adaptive algorithms perfarmell and decreased the detector response error
quicker than uniform refinement, for the same number of unkiso The largest gain from goal-oriented
adaptive methods is seen when the spatial distribution tohpa of the adaptive methods is not flat. When it
is flat the uniform refinement is actually almost the optimalyvef refinement. Comparing the goal-oriented
adaptive algorithms with the discrete ordinates methodhegved that in diffusive problems discrete ordinates
still reduces the error more than the adaptive methods.

Two error measures were used to compare the goal-orientettaditional adaptive methods, the error in
the detector response and the node wise root mean squarekthe scalar flux. We showed that the goal-
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oriented adaptive methods result in a more accurate detsxtponse than the traditional method does. In
the other error measure, the rms error, we showed that tbitidreal method provides us the smallest error.
This behaviour can be expected from the error measurest smggccurate detector response the angular flux
needs to be accurate around the detector. The traditiontlooheloes not take that into account, while the
goal-oriented methods do. To obtain an overall accuratalangux it suffices to look at the largest change in
angular flux as refinement criterion.

The goal-oriented adaptive methods showed second ordeergmmce for the detector response error mea-
sure. We therefore expect the convergence to be fourth éwdénear patches with the goal-oriented adaptive
methods.

Besides using the error estimators as a refinement critev@®investigated their use as indicator of the
error. We can use the estimator that uses the full adjoirdhigl in most cases. However, the local adjoint
estimator never provides a reliable indicator to the erfidre ratio of the full adjoint error estimator and the
real error (which is approximated by a calculation on a muehrfpatch distribution) tends to unity, but not
asymptotically. This is likely due to the fact that constpatches are used, using linear patches could improve
this. Although the local adjoint estimator cannot be used ediable error estimate, the refinement criterion
refines almost the same patches as the full adjoint estimmtking it a reliable refinement criterion.

The number of patches, given as a percentage, that is refirmth refinement iteration does not greatly
affect the performance of the adaptive methods, when tlog decrease at a certain number of unknowns is
compared. In general the best results were obtained whagerpage between five and thirty is used. However,
using larger refinement ratio’s does result in a faster &lyor, as less refinement iterations are needed to reach
a large error reduction. Therefore thirty per cent seemetarbund the ideal ratio.

8.2 Future work

In the conclusions above we have seen that constant bastsfusion patches do not provide a good description
of the angular flux in diffusive materials. The angular fluxfie is linear in these cases. Using linear basis
functions on the patches is therefore expected to greatlgrare the performance in diffusive materials. Also
in other materials the rate of convergence should be larger.

Introducing linear patches means that we need to solve nmdaeowns for each patch. This leads to a
matrix equation that is four by four, instead of two by two. biher major changes will have to be made,
although the calculation of the scalar flux and error countidn will have to be altered.

As all test cases were one-dimensional problems in thiseptojt is interesting to investigate how the
discontinuous Galerkin method performs in two or three disi@ns. In more dimensions one expects that
goal-oriented adaptive methods will be relatively morecadfit, compared to the uniform refinement. In one
dimension neutrons can travel only two ways, left and righta source detector geometry all neutrons that
travel, for example, to the right are important for an actudetector response. In three dimensions the relative
amount of neutrons that travel towards a small detectorbgilinuch smaller than in these one-dimensional test
problems.

There are three main issues to be examined when expandingpithe to three dimensions. The first is the
patch distribution on the sphere, in three dimensions ttseneuch more freedom to chose a patch structure.
The evaluation of the angular integrals is more complicated will have an effect on the choice of the patch
distribution. Another issue is the sweep algorithm, whiohld be implemented in different ways. The easiest
is to use a set of ‘basis directions’ that determine the oird@rhich patches that lie in a certain octant of the
sphere are computed. A more natural way seems to be to fincathkegs in the problem of which the upwind
neighbouring patch is already updated. Since patches depémdent of each other we can choose to update
them only when the upwind patch is already updated. The fasale is practical, as in three dimensions the
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number of unknowns grows roughly cubic with the inverse elensize. It should be investigated whether it
is still feasible to let each spatial element have its owruargpatch distribution. An alternative would be to
divide the domain into regions that have the same angulahpmhstribution.

The discontinuous Galerkin approach for both the anguldrspatial dependence of the problem results in
a description of the flux on the whole sphere, as opposed tdisisecte ordinates method. This can be useful
for solving other kinds of transport equations, for exanthke Fokker Planck equation. This equation can be
used to describe charged particle transport. To get to thkdFdPlanck equation from the transport equation
used in this work a term that describes diffusion in the amguhriables is introduced after a derivation using
statistical physics. To get a physical interpretation ofywdding this term leads to an equation for charged
particle transport, think of a pencil beam of electrons. sTiteeam, as the electrons travel through space, will
become diffuse. The directions the electrons travel inapstowly across the sphere, which can be described
by a diffusion term. The discontinuous Galerkin method cam$eful for solving this equation.
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A TEST CASES

A Test Cases

Here we present the test cases used throughout this wolkspécified geometries and material properties. For
each test case we supply a short description, expected, gsoimetry and material properties. In the geometry
diagram blue represents a volumetric source and greerseyigza volumetric detector.

A.1 Case A, Thick slab

The first test case is a uniform slab with a homogeneous samateetector. It is optically thick, which means
that the neutrons have a small mean free path. The dimenkiba slab isl cm. In Figure 35 a diagram of the
geometry can be found and in Table 2 the material properte$isied. The boundary conditions of the slab
are vacuum boundaries on both sides.

Since the boundary conditions are hard to satisfy propeityaxpected that the mesh near the edges of the
slab will be very fine.

Figure 35:Homogeneous slab geometry.

oy 100 em !
Os 99 em~!
Source | 1em™ s lrad™!
Detector A em ™!

Table 2:Material properties for test problem A

A.2 Case B, Thin slab

Test case B is again a homogeneous slab with the same dimsrsidhe test cases above. However, since the
total cross section is much lower the mean free path of thixemuis larger, which makes this an optically thin
problem. Again the geometry can be found in Figure 35, whikerhaterial properties can be found in Table 3.
This test case also has vacuum boundary conditions on totgh. si

Refinement is expected to be similar to the refinement in tes# &, although the effects of the edges will
propagate much further into the domain, as this is an optitiaih problem.

A.3 Case C, Thick source detector

This test case has a separate source and detector regionnmogéneous material. The boundaries of this slab
geometry are again vacuum boundaries. A diagram of the gepiren be found in Figure 38. The material
properties are listed in Table 4.
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Angular flux
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Angular flux of test case A
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(a) Solution of the forward scalar flux of test case A

Scalar flux

Adjoint scalar flux of test case A
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(b) Solution of the adjoint scalar flux of test case A

Figure 36:Forward and adjoint solution of test case A.
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(a) Solution of the forward scalar flux of test case B
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(b) Solution of the adjoint scalar flux of test case B

Figure 37:Forward and adjoint solution of test case B.
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O lem™1t
Os Sem!
Source | 1em 's~lrad™!
Detector 47 em ™1

Table 3:Material properties for test problem B

In this test case it is important to have an accurate solutidhe source and detector regions. Since the
source is at the left hand side of the domain we also need amatecsolution of right going directions. There-
fore we expect refinement in the detector source and regisnsell as refinement of right going directions.

91
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Figure 38:Source detector slab geometry.

oy 100 em !
Os 99 em~!
Source | 1em™ s lrad™!
Detector A em ™!

Table 4:Material properties for test problem C

A.4 case D, Thin source detector

This test case is also a source detector problem, but nowogtibally thin material. An illustration of the
geometry can be found in Figure 38. Table 5 lists the matprigberties.

The expected behaviour is similar to that of test case C. Merysince this is an optically thin problem the
effects of the edges will propagate much further into the @iom

ot 1em™!

o S5em™!
thickness lem
Source 1em s lrad=!
Detector 4 em~t

Table 5:Material properties for test problem D
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Angular flux of test case C
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(a) Solution of the forward scalar flux of test case C
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Adjoint scalar flux of test case C
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(b) Solution of the adjoint scalar flux of test case C

Figure 39:Forward and adjoint solution of test case C.
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(b) Solution of the adjoint scalar flux of test case D

Figure 40:Forward and adjoint solution of test case D.
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Angular flux of test case E Adjoint scalar flux of test case E
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(a) Solution of the forward scalar flux of test case E (b) Solution of the adjoint scalar flux of test case E

Figure 41:Forward and adjoint solution of test case E.

A.5 Case E, Highly absorbing source detector

This is also a source detector geometry as shown in Figurel@8ever, the homogeneous material that is used
in this problem is strongly absorbing. The material praperare listed in Table 6.
In this test case we expect the same results as for test casaliis is also an optically thick problem.

1

Ot 10 em™

Os 1em™t
Source | 1em 's~lrad™!
Detector 47 em ™1

Table 6:Material properties for test problem E

A.6 Case F, Purely absorbing source detector

Test case F is the last separate source detector geometnpwas 81 Figure 38. The material is now purely
absorbing, which means there is no scatter source in thehégid side of the transport equation. The material
properties of this test case are listed in Table 7.

In this case there is no coupling between directions thrahghscatter, which will yield results on the
choice of directions of the discontinuous Galerkin method.

1

Ot 10 em™

Os 0cm™!
Source | 1em 's~lrad™!
Detector 47 em ™1

Table 7:Material properties for test problem F
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Angular flux of test case F Adjoint scalar flux of test case F
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(a) Solution of the forward scalar flux of test case F (b) Solution of the adjoint scalar flux of test case F

Figure 42:Forward and adjoint solution of test case F.

A.7 Case G, Thick boundary detector

Test case G is similar to test cases C, D, E and F, only the \aihiosrdetector has been removed and the right
boundary of the domain is a detector. The material propestie listed in Table 8. Also the forward and adjoint
solution of this problem can be found in Figure 44. In Figuale geometry of this test case is shown.

We expect the behaviour around the source to be the same he Botirce volumetric detector cases.
However, since the detector is at the boundary of the domaidawnot expect much refinement to be needed at
that end of the domain. There does not need to be an accutat®s®f the flux in a region, only the current
of neutrons is important near the edge of the domain.

1

Det.

r ——

Figure 43:Separate source and boundary detector geometry.

oy 100 em ™!
Os 99 em !
Source| 1 em1s~trad—1!

Table 8:Material properties for test problem G
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Angular flux of test case G Adjoint scalar flux of test case G
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(a) Solution of the forward scalar flux of test case G (b) Solution of the adjoint scalar flux of test case G

Figure 44:Forward and adjoint solution of test case G.

A.8 Case H, Thin boundary detector

The geometry of this test case is the same as that of test caswl @ shown in Figure 43. However, the
material properties are different and are listed in Tabl€He forward and adjoint solution for this test case can
be found in Figure 45

Oy lem™1t

Os 0.5 cm™!
Source| 1 em~1s trad—?!

Table 9:Material properties for test problem H

A.9 Casel, Shielding

This test case is an extension of test case C. There is agepagase source and detector, however, the detector
is behind a shield. A region di.05 ¢m in the middle of the slab has a large total cross section, mgaiti

a neutron shield. The properties of the other regions renfersame. A diagram of the geometry is shown
in Figure 46. The material properties are listed in Tableth®,source and detector are only present in the
specified regions.

As this test case is similar to test case C we expect the refineta be almost the same. Only the source
region is not very important now, as only a few neutrons walverse the shielding. Therefore it is more
important to get an accurate flux in the shielding region. slexpected that refinement takes place in the
shielding and detector region, as well as for right goingdations.

A.10 Case J, Purely absorbing shielding

Test case H has the same geometry as the previous test case, isH-igure 46. Now both the medium and
the neutron shield are purely absorbing. The material ptimseare listed in Table 11.
Expectations on refinement are the same as in the otherisigieést case, case |.
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Adjoint scalar flux of test case H
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(a) Solution of the forward scalar flux of test case H (b) Solution of the adjoint scalar flux of test case H

Figure 45:Forward and adjoint solution of test case H.
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Figure 46:Shielding slab geometry.

Property Material Shielding

oy 100 em ™! 50 em ™!

Os 99 em ! 5em™t
thickness 2 x .475 em 0.05 cm
Source lem s trad=! | 0 em=ts lrad=!
Detector A em™! 0cm™!

Table 10:Material properties for test problem I.

Property Material Shielding

Ot 1em™! 100 em ™!

Os 0em™t 0cem™t
thickness| 2 x .475c¢m 0.05 cm
Source lem™ts™trad™ | 0em™ts~trad™!
Detector A em™1 0cm™!

Table 11:Material properties for test problem J
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(a) Solution of the forward scalar flux of test case |
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(b) Solution of the adjoint scalar flux of test case |

Figure 47:Forward and adjoint solution of test case I.
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Figure 48:Forward and adjoint solution of test case J.







B ERROR ESTIMATE DERIVATION

B Error Estimate Derivation

In this appendix the derivation of the error estimator isspréed. From this derivation a criterion to decide
which patches to refine is distilled. We will start with somregmratory definitions, before applying the discon-
tinuous Galerkin method to the transport equation. Afterwe can write the equation in a bilinear and linear
form, which are used to derive an error estimator.

We start with the single group, steady state, radiationspyart equation with only an isotropic scattering
term:

Q-Vo(r, ) +o0(r, ) = 7= | o(r. Q)2+ (B.1)

T Jar
In our problem we use two different kinds of boundary cordisi, Dirichlet and reflective:

o(r. Q) =g, TedVp,Q-n<0 (B.2)
o(r, Q) =, =o(r,Q,), TedVgQ-n<0 (B.3)

First we introduce some sets that are needed for expredaten®n. The domain in phase space of one element
can be written as a set that takes care of the spatial partrenthat takes care of the angular part.

e = {rcelementé (B.4)
Q = {Qec4r} (B.5)
(B.6)

We can divide the angular s@tinto two sets, one for in flowing and one for outflowing direas on an edge
de.

QO = {QeQQ- nz >0} (B.7)
Q" = {QeQng <0} (B.8)
(B.9)

Furthermore we need to discern the edges and directionathapecified by the boundary conditions of the
problem. BC' in the following expression is the abbreviation for bourydeondition, which can be any of the
elements of U, R, D}, upwind, reflective and Dirichlet boundary conditions. féhés an upwind ‘boundary
condition’ as a result of applying the discontinuous Galerkethod is that all patches can be solved indepen-
dently, therefore the upwind flux can be taken as a boundargtiton for that patch.

Q° = {QeQ|BC=1i} (B.10)

7

aV; = {rede |BC=1i} (B.11)

The Galerkin procedure for spatial elements consists ofiptyihg the equation by a test functian ,(r, Q)
and integrating over the domain. The indieceandp are respectively the element and the patch index. This
results in
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B ERROR ESTIMATE DERIVATION

/ / - VodrdQ + / / o™ drd$ — / / 75 St drd)
e 4 Je

/ / Q 'f), int mtd’l"dQ—F/ / (Q n)¢emt mtd’l"dﬂ
0e—\{0VRUOVDp }
/ / (Q - 7)o, v™ drdQY
Oe~ OBVR

= / Sv™tdrdQy — / / vt drd$ (B.12)
4 Je Oe— OBVD

By summing this equation over all elements we can identifylindar form and linear form such that we can
write the discretized transport equation as

B(g,v) =1(v),Yv € V} (B.13)

whereV/}, is the space of all test functions. An explicit expressianBoand! is given by

A A int, in A Os in A
B(p,v) = Z{_/47r eng.VvdrdQ%—/M/eatgb ty tdrdn—/h/egqm tdrd)

€

+ / / (- 7)™ drd$Y + / / (Q - 7)™ drd 2
QO+ Joet Q[_] 867\{8VRU8VD}
+ / / (Q-ﬁ)(brvi”tdrdﬂ} (B.14)
Qp de—NOVg
w = > / Sv™ drdS2 — / / (€2 2)gu™drdf2 | (B.15)
e dm Je Qp J0e~NoVp

We will now introduce patches with constant basis functicfise test function, ), is therefore assumed to be
of the form

ve,p(raﬁ) = ¢e(r)Ge,p(Q) (816)

The spatial partg,(r), consists of linear functions. Each pateh, ,(€2), has a constant basis function. The
linear form can then be written as:

I(v) = Z / AGpSepvimtdr — Z Qe - 1)Ge J,vmtdr} (B.17)

Oe~ OBVD

where€, » denotesf AG Q4. With this notation no approximation is made, the integeatsr the directions
are exact. Since the patches have a constant basis funaicamwrite thelr integrals as sums with the size
of the patch as weights, as stated earlier.

The bilinear form will become:
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B(p,v) = Z{ - Z / e p - Ve pdr +Z / AG. o™ vidr = / AGep4 v dr
P e
+ ) / ep ROV dr + Z / (Qep - 1) dr

€Q+ \{8VRU8VD}

vy

Qe 1)y mtdr} (B.18)
pe Q_ [ ﬂaVR

We can now turn to the quantity of which we want to minimize ¢her.J(¢) — J(¢y ), whereJ is the detector
response.

J(¢p) = /v AWUD(TW(T,Q)der (B.19)

A short derivation shows how we can write the error as a fonadf the linear and bilinear form, using respec-
tively: linearity, dual problem, Galerkin orthogonalitpéconsistency [8].

AJ = J(¢) = J(én) (B.20)
= J(¢o- ¢h) (B.21)
= B(¢—¢n9") (B.22)
= B(¢—n 9" — 1) (B.23)
= U(¢" — &) — B(¢n, ¢" — ¢p) (B.24)

Hereg,, is the computed solution anglis the exact or reference solution. Since the exact soligiaot always
available one can use an approximation by using a soluticaary fine mesh.
Plugging in our expressions foand B and subsequent partial integration yields

Z Z { /AGe,pSe’p((b* — ¢p)dr — Lcos /ae—mavD(Qe’p ) ge (6" — &1)dr
/ Qe - V(6" — @7 )dr — / AGe o1 0™ (¢ — ¢})dr + / AG
“Lyeor [ @y w67 = o)ar

Os * *
Q 7 s ¢emt d) ¢
M%Afwww%f e RS — g7 )

_119691?c /ae_maVR(Q&p )y (¢ — Wl)dr} (B.25)

which is actually a sum over all patches. The sum is weighyetthd patch size, which becomes clear when we
interpret§2. , as the 'average’ angle times the size of the patch:
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Q., = / QdQ (B.26)
AGe,p
Jac,, S22
_ ep A B.27
AG. Gep (B.27)
N
= Q,,AG., (B.28)

The sum over all the patches then becomes

* * A/ ~ * *
AJ = Z Z AG&P{ /Se,p(¢ - (bh)dr - 1peQB /(9 —ROV (Qe,p ’ n)g&]?((b - (bh)dr
e p e e D

+ 6, V(6 = oiar [ oot~ oiir+ [ T~ opjar

€

A/ ~ n * * A/ ~ exr * *
—1p€Q+ /a +(Qe,p ’ ’n)th t(¢ - th)d’l" - 1p€Q[; /a (Qe,p : ’n)th t(¢ - gbh)dr

e~ \{OVRUOVp }

“Lpeay, /ae_maVR(Q;,p “)pr (¢ — ¢}Z)dr} (B.29)

It is interesting to compare the weights of the sum in thisesgion and the weights of a quadrature set that is
used in the discrete ordinates method. In that method oneseka set of directions and weights on which one
demands the equation to hold. The integrals over the andalaain are then performed by computing a sum
of weighted angular fluxes. In this case the angular integrhiinge into weighted sums naturally, where the
weights are not free to chose, but are equal to the size ofatob p

Since the expression fdk.J is a sum over all elements and all patches we can define ancembtbution
for each patch, call ity ,. Then, s will eventually tell us where to refine or coarsen the spadr angular
discretization. The total error estimate then looks like:

AT =YY AGepney (B.30)
e p

after some manipulation and partial integration we seerthats of the form:

A/

ne,p = /Rh(¢* _ QS?L)d’I" + 1PEQE / (er . ﬁ)rh,U(¢* _ qbz)zntdr

e 9e~\{OVpUdVR}

N

IS / (@, - A)rap(6* — g})intdr
P Joerovy, T "
~ )

+1 _/ Q. ) r(e* — ¢f)™dr (B.31)
PER Be*ﬂavR( » ™ )

with:
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Ry = Sep+ 2% =y Voney = 0ibney (B.32)
R L i (B.33)
Tho = Oit,— Gep (B.34)
TR = B~ Ghen (B.35)

The error contribution of a patch, ,, is now an integral over the domain in phase space of thah patee
integrand is the product of the residual and the importafiteedocation in phase space, singg, vy, i, 7n.p
andry g turn out to be the residual of the discrete transport equafide importance is given by the adjoint
solution, for more on the adjoint solution and the intergtien of the importance we refer to Appendix D.
Finally the contribution,. , is multiplied by the size of the patchG., .

Ry, is the spatial and the’s are the boundary residuals of the equatief.p, andr;, r are the Dirichlet
and reflective boundary residuals, whilgy; is the upwind residual. This upwind residual is non zero leetw
elements (it is zero on the boundary of the domain). Thigltegiis a result of the ‘jumps’ that are allowed in
the solution in the discontinuous Galerkin method.

We can use this expression to estimate the error of the gplutiithout the need for an explicit expression
of the exact solution. However, we can also formulate theegoin for refinement from this expression. We
now have a contribution to the error of each pafofi. 7. ,. When these contribution are sorted we find which
patches contribute most to the error. A fixed percentage tohpa will be refined in each refinement iteration,
which leads to the natural choice of refining the patchesabiatribute most to the error.
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C Wavelet mathematics

Using wavelets as basis functions for the Galerkin diszaéittn method results in large matrix systems that
need to be solved. To see what matrices are needed a derigdtioe discretized equations using wavelets is
presented below. Some remarks for wavelets are made atdhef émnis section.

We start with the steady-state isotropic scatter neutr@msport equation (see Equation 2.2)

Q- Vo(r, Q) + o(r)o(r, Q) = Z—;(I)(T‘) + s(r, Q) (C.1)
The expansion of the angular flux into wavelets can be wridiea general expansion

W -~
~ Z ¢w(T)Gw(Q) (C.2)

whereG,, (2) a wavelet function. By applying the Galerkin method we abthie following result

Lo
4

For an easy representation of the transport equation wadinte some widely used notation for the stream-
ing term. The inner product betwe€handV becomes

w
(@-V+0) Y 0u(r)Gul(®) =5+ 20| =0 (C.3)

) 9 9 0
@V = Qo+ Q5+ 0 (C.4)

where the components of the unit vecferare described by

Q, = V1—p2cosw (C.5)
Q, = V1—p?sinw (C.6)

wherey is the cosine of the polar angle ands the azimuthal angle. The equation we obtain by applyieg th
Galerkin method, Equation C.3, can now be written as

¢ felod ¢
m(?_x+A v ay +A, M H(r)p = S(r) (C.8)

The matricesA;, Ay, A, andH are of size/ x W and the vecto holds all wavelet expansion coefficients.
All matrices and vectors are specified below, except theirm&lr, which is described later.

A

Ao = [, 0%Go(Q)GW(Q)dQ = / ” / 1 V1 — 12 cos wGy ()G () dpdw (C.9)
/ / V1 — p2sin wGy ()G () dpdw (C.10)

/ ()G () dpdw (C.11)
[

Ay = [, QG ()G (2)dQ

szw - f47r QZGU(Q)GW(

Sw = [, 5(1) G (Q)dQ () dpdw (C.12)

\\
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Matrix H specifies the scatter and total removal operators and capdoffied in several different ways.
The most common way is using the Legendre expasion of théesoagt cross section. This results in the
following expression [3]

Hyw = [, 01GyGopdQ—

|:Zl 00l Oég,l,O e,l,0+2zl 08 Zm 1[ e,l,m e,l,m_|_ao,l,m o,l,m]] (013)
where
aobm  — G Y/, dS2 (C.14)
47
aobm = G,Y,dY (C.15)
47

andY® andYO are the real and complex parts of the spherical harmonidimg; ,,,.
In thls report we used isotropic scatter, which simplifiestmatrix H. We can then write it as

Hyy = / 01GyGpdt — == | God2 [ G,d2 (C.16)
A A A
Another less common method would be to use blnnlng, whichns\tizat the scatter cross section is de-
scribed as a ratio of neutrons that end up in a certain ‘bithéangular variable.
In Section 3.3 some properties of wavelets are mention@tljding the orthogonality relations between
wavelets. They can be expressed as

< Gy, Gy >= {O !f vEw (C.17)
1 if v=w

However, in the case of wavelets we also have integrals Wwigthahgular coefficientg,, 2, and (2, in the
integrand, which throw off the orthogonality relations. eféfore the matricest,, A, and A, will not be
sparse. The integrals in Equations C.9 through C.11 caritterpreted as inner products, since they are not
positive-definite. When the support of the wavel&tsandG.,,, do not overlap the integral will evaluate to zero,
however these wavelets are not the zero element in the wéuetdion space. One could look for wavelets that
will produce sparse matrices, however these will not be &afind, as they will have to satisfy ‘orthogonality’
relations with respect to four different integrals.
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D Adjoint Neutron Transport

In this section the adjoint operator of a simplified versidrihe transport equation is derived. This equation
reads, see Equation 2.2,

Q- Vo(r, Q) + ou(r)o(r, @) = Z0(r) + S(r, Q) (D.1)
An alternate expression for this equation is in terms of theratorZ, and the external source

Lp=S (D.2)

The adjoint operator or equation can be derived using inretyets. Aninner product in this case is an integral
over the whole phase space of a product of two functions, prathematical notation

< f.g>= / f(r, Q)g(r, Q)dQ2dV (D.3)
V Jar
With this notation the adjoint operator can be derived ds\icd

< ¢* Lo >=< 9", 8 > — < L*¢*, ¢ >=< ¢*, S > (D.4)
whereL is the forward operator antl* is the adjoint operator. We can chose the right hand sideechdipint
problem equal to the detector cross section, in other wbfdg = op. This leads to

< L*¢*,¢p >=<op,¢p >=< ", S >=J (D.5)

whereJ is the detector response. The relatiarop, ¢ >=< ¢*, S > is known as the duality relation. The
explicit expression for the forward operatbiin our case is

L:Q-V—i—at—Z—s rg) (D.6)

T Jar
To derive an explicit expression for the adjoint operdidme start by substituting the expression fom
the left hand side of equation D.4

* _ To W * . *2 A
< ¢* Lo >_/V/4W(¢ Q- Vo +¢"016 — ¢ T2 @)d0dV (D.7)

We will now rewrite each term to obtain the operaicr. Note that the operatak™ works ong¢*, instead of
¢. Rewriting each term must therefore result in an expressitimnan operator that works ap*. We will start
with the total removal, the second term on the right hand isideguation D.7

/ ¢ o pdQUV = / dop*drdV (D.8)
V Jar V J4r

The next term we consider is the scatter source, the thind kerEquation D.7. By rearranging angular
integrals we can switch the two angular solutiahsnd ¢*, resulting in the operator working on the other
function.
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/ / ¢ T 0dOdV = / qsdﬂ qsdﬂdv (D.9)
47 A
— / gbdﬂgs ¢*dQ2dV (D.10)
V Jar 4T 47
- / qs 5 o*ddV (D.11)
V Jar 4m

The streaming term needs a bit more work than the two otherstewe start by applying the product rule
for derivatives

/ Q- VpddV = / (- V(¢*¢) — o2 - V§*)dQdV (D.12)
V J4ar V J4rn

Taking a closer look at the first term on the right hand sideitethat we can get rid of this term by applying
certain boundary conditions. This becomes clear when wiy déipp divergence theorem to this term

/ Q- V(¢*$)dQdV = / Q- fg*pddS (D.13)
V Jar S Jar

The boundary conditions for the forward problem (corresliog to the solutionp) stipulate a flux on the
incoming directions. This contribution to the integral daam cancelled by stipulating an equal flux &f in
the opposite direction. Cancellation will take place beeatie inner produd® - 7 will only change sign for
opposite directions and the prody¢iy will be the same for the two opposite directions. Therefoesstipulate
as boundary conditions a flux for outgoing directions foradgint problem.

Now that we showed that the first term of Equation D.12 doescantribute, we observe that the second
term is already in the form we want it to be in. The expressioBquation D.7 now becomes

< L*¢*, ¢ >= / / (=2 - Vo* + poyp* — qbZ—;cl)*)deV (D.14)
V Jar
from this it follows that the operatak* can be expressed as
~ O'S ~
L'=-Q- V4o, — = [ d (D.15)
4 A

The physical interpretation of this operator is that it digsts the ‘importance’ of a location in phase space
to the detector response. This follows from the expressiothie detector responsé,=< ¢*, S >. When we
choseS = §(r, Q) we see that the inner product reduces/te- ¢*(r, ). Therefore the contribution of that
location of phase space is given by the adjoint solution.

This importance flows oppositely to neutrons, therefore ausnisign is in front of the streaming term.
Furthermore the boundary conditions stipulate the impagdlowing out of the domain, instead of neutrons
flowing into the domain. This interpretation can be used wdiewhich patches to refine in order to obtain a
more accurate detector response.

84



