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Abstract

In neutron transport problems one is often interested in acquiring an accurate detector response, which does not
necessarily requires an accurate solution in the whole domain of the problem. In this work the possibilities of a
goal-oriented adaptive algorithm for the one speed, steadystate, isotropic scatter neutron transport equation are
investigated. This method can be expanded to incorporate energy dependency, time dependency and anisotropic
scatter.

Three methods are examined on their ability to handle adaptivity and their feasibility of implementation.
The discrete ordinates method is included, as this is a widely used method to solve the transport equation. This
method allows for quick convergence with source iteration and a sweep algorithm, however it does not allow
for adaptivity well. The second method consists of using wavelets as basis functions with the discontinuous
Galerkin discretization method. Adaptivity is easily achieved, as wavelets are naturally hierarchical. However,
this comes at a price, as the matrix equations that need to be solved are large and not sparse. Also the sweep
algorithm cannot be applied to the discrete system of equations obtained with this method. The third and last
method is using polynomials as basis functions for the discontinuous Galerkin discretization method. Adap-
tivity is possible as angular elements (patches) can be refined without altering neighbour patches. The source
iteration and sweep algorithm can be applied, which means this method yields discrete equations that are cheap
to solve.

A comparison is made between the discrete ordinates method with the Gauss Legendre quadrature and
the polynomial discontinuous Galerkin method with linear spatial elements and constant angular elements for
one-dimensional problems. For thin scattering materials the discontinuous Galerkin method provides a larger
error reduction than discrete ordinates, while for other materials discrete ordinates outperforms discontinuous
Galerkin.

Using the adjoint equation we can derive an error estimator for the detector response that is a sum of
contributions to the error of each patch. The patches with the largest contribution are refined in an adaptive
algorithm. This estimator can be computed with a local or a global approximation of the adjoint solution.
This criterion is tested against a traditional refinement criterion that bases its decision on the change in the
solution of the angular flux when a patch is refined. The goal-oriented adaptive methods provide a better
detector response, while the traditional method provides amore accurate global solution. The estimator that
uses the global adjoint approximation is generally a good indicator of the error, while the estimator using the
local adjoint approximation is not. They do, however, refinethe same patches, so they can both be used as
refinement criterion.

The convergence of the uniform and goal-oriented adaptive methods is second order for all test cases in this
work. This leads us to expect forth order convergence when linear basis functions are used on the patches.
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1 INTRODUCTION

1 Introduction

In the area of nuclear physics many kind of reactions betweenatoms and other particles are investigated. One
of these reactions is the collapse of an unstable atom, whichusually results in smaller atoms and various kinds
of radiation. Such a collapse can be induced when a neutron iscaptured by an atom, it is then called a fission
reaction. In the collapse of certain atoms free neutrons areproduced, which can induce new fission reactions.
Under the right circumstances this can lead to a fission chainreaction.

The first self sustaining nuclear chain reaction produced byman was on December 2 1942 in Chicago.
Enrico Fermi and his colleagues built this first reactor fromblocks of graphite and three inch wide cylinders of
uranium oxide. Shortly after these experiments the United States would invest in research on using atoms for
the production of electricity, for medical treatment, as a tool for scientific research and for the production of
nuclear weapons. Investments in research in other countries followed shortly after this. In all applications it is
important to understand the movement of neutrons, as neutrons induce the reactions with which the energy and
radiation is released.

Electricity is often produced by a steam powered generator.Different kind of heat sources can be used to
boil the water needed to make steam. A number of sources are used today, including fossil fuels, solar radiation
and nuclear fission reactions. The fission reactions take place in a nuclear reactor.

Present day nuclear reactors are designed very different from the early day experiments. Instead of graphite,
water is commonly used as moderator. This water can also function as the coolant of the reactor core. The
uranium fuel is stored in pellets, which are stacked to form cylinders. One would like to accurately compute
the neutron density in such a geometry to be able to predict heat production and fuel burn-up rates.

Another application of nuclear technology is in medical treatments. Radioactive isotopes that are produced
in a nuclear reactor can be used as tracers that are injected in a human body. The particles will travel through the
veins with the blood, allowing a radiation detector around the patient to see the blood flow. These radioactive
isotopes should be short living, as the patient should receive only a minimal dosis. In this and other medical
imaging techniques the neutral particles that stream through the patient are used to construct an image of the
patient.

Besides using imaging techniques in medical treatments, they can also be used for research on material
properties. The structure of material on the smallest scalecan be visualized using neutral or charged particles.
By irradiating materials with high neutron fluxes we can investigate other properties, like the rate of corrosion
of materials in nuclear reactors.

In the examples above the movement, or streaming, and reactions of neutrons are very important. An
equation that describes this behaviour was found by adapting the Boltzmann equation, which was used in the
nineteenth century to study the kinetic theory of gases. It is called the neutron transport equation and can
only be solved analytically for specific geometries. This equation has become an area of active research in the
twentieth century, as the research on nuclear applicationshas become increasingly important since then.

Two different methods of solving the transport equation canbe discerned. Monte Carlo methods use random
sampling to solve the equation. This can, for example, be accomplished by following single neutrons along their
path in the geometry. By sampling many of these neutron histories one can derive properties of the solution of
the transport equation. However, different and more sophisticated ways of using random sampling exist.

The other class of methods are the deterministic methods andare the focus of this report. Here the solution
to the equation is found by solving the equation with numerical methods. To this end a discretization method
must be chosen. Many discretization methods are available and each has its own advantages and disadvantages.

In deterministic numerical methods a mesh is usually definedon the phase space of the equation that is
to be solved. The phase space of the transport equation in this report consists of a spatial coordinate and an
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1 INTRODUCTION

angular coordinate. In order to obtain an accurate solutionthe mesh must be fine, however a very fine mesh will
introduce large numerical costs. Numerical cost can be limited in computational aspect or in memory aspect.

A way to minimize the cost for an algorithm is to make it adaptive. Adaptivity means that during the
computation some parts of the mesh are refined. This refinement should take place in the regions of phase
space where the error contribution is largest. In other words, when using an adaptive method one needs a
criterion for determining what parts of the solution introduce the largest error.

Traditionally this criterion is based on a change in the solution upon refinement. This means a local refine-
ment is made and the effect on the total solution is evaluated. This procedure is repeated for all elements. A
pre set number of percentage of patches will be refined, thesewill be the patches that caused the most change
in the solution with the local refinement.

Such a refinement criterion does not always work well when thegoal is not an accurate global solution,
but for example an accurate detector response. The refinement criterion should incorporate that the goal of the
refinement is to obtain a detector response. Recently such criteria have been formulated and were tested for
different equations . The focus of this work is an algorithm that is adaptive in the angular component of the
neutron transport equation.

The amount of neutrons that are travelling in a certain direction can vary a lot with that direction. An
example of such a situation is a pencil beam, where neutrons are focussed in a small beam. An accurate
representation of the flux can only be found when the resolution of the mesh around the beam is large. However,
it is not necessary to use a high resolution mesh in other directions, which will save us on computational cost.
An adaptive algorithm should be able to efficiently compute the solution of these situations.

In pencil beam problems where the direction and location of the beam are known, it is not necessary to use
an adaptive algorithm to produce a mesh with the right resolution. However, when we cannot predict direction
and location of such a beam, an adaptive method is needed. In any problem an efficient adaptive method will
ensure that the resolution of the mesh is adequate to obtain an accurate solution.

Besides a criterion for refinement we also need a way of discretizing the transport equation into a set of
equations that can be solved numerically. A widely used method for angular discretization is the discrete
ordinates method, where one demands the transport equationto hold for a finite set of directions. This method
has very low computational costs, although the total costs depend also on the discretization that is used for the
spatial part of the problem. A quadrature approximation is used to evaluate integrals for the scatter description,
which is the reason why adaptive algorithms are difficult to implement in this method. Most quadratures require
that when a direction is added, all other directions will have to be changed. This means all directions will have
to be solved again, making it impractical.

Another common approach for discretizing equations is using a finite element or Galerkin approach. In this
method basis functions are used to approximate the solution, where the associated coefficients will have to be
computed numerically. The basis functions can be chosen to allow for refinement of the mesh that makes only
local changes. Two types of basis functions that meet this requirement are investigated in this report, wavelets
and polynomial basis functions, for their feasibility of implementation in numerical methods.

Before we explain the structure of this report some words will be spent on the discretization method that is
used, the discontinuous Galerkin method. Galerkin methodshave been around for almost a century, which are
based on the idea that a differential equation which is formulated in the weak sense can be solved on a restricted
space, of which we have a finite basis. It is important that thebasis is finite, if it were an infinite basis we could
not easily use numerical methods to solve the differential equation, as a procedure that needs to be done for
each basis vector will never be completed.

Until recently the basis that spans the restricted space consisted of (piece wise) continuous functions. The
idea behind this is that discontinuities are not nice, both physically and mathematically. However, allowing for
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discontinuities in the basis leads to decoupled equations and can give a more accurate solution. In this report
the method is only briefly discussed, for a more detailed explanation we would like to refer to other work.

The body of this report consists of several sections, starting with the mathematical investigation of three
possible discretization methods. Three methods are described and investigated as to whether an adaptive algo-
rithm can be formulated based on those methods. First we investigate the discrete ordinates method, which is
widely used in deterministic methods. The second method is the discontinuous Galerkin discretization method
with polynomial basis functions. The final method we considered is a Galerkin discretization with wavelets as
basis functions.

It turns out the discontinuous Galerkin method with polynomial basis functions seems to be the most
promising method. Therefore the next section is the formulation of a one dimensional test problem, using
constant basis functions as polynomials. This section alsopresents an overview of the non-adaptive algorithm
and the data structure that is used in the code.

Several test cases are used to test the performance of the discontinuous Galerkin method, relative to the
discrete ordinates method. These are presented in the section that follows the one-dimensional problem formu-
lation.

After these results, the next section starts by explaining the criteria that are used for determining which
patches need to be refined in the adaptive algorithm. A traditional method, which bases its decision on the
change in solution when refinement takes place, and two goal-oriented methods, where the goal is to get an
accurate detector response, are used. The goal-oriented methods used the adjoint problem, which is explained
in this section. Finally in this section an overview of the adaptive algorithm is presented.

The final section of the main body, is the section where all adaptive results are presented. The test consists
of comparing error reduction of all methods. The quality of the error estimators is also tested. As a last test we
varied the number of patches that is refined in each refinementiteration, to see the effect of this parameter.

After a section with the main conclusions and possible future work, four appendices can be found. The first
is a list of all the test problems that are used in this report,together with all geometry and material properties of
the problems. The next appendix contains a more detailed derivation of the error estimator and goal-oriented
adaptive refinement criterion. Then an appendix with a more detailed, but still brief, derivation of the discretized
wavelet equations can be found. The fourth and last appendixis the derivation of the adjoint transport operator
and an explanation of the physical interpretation of this operator.

This report is the product of a master thesis research at the Faculty of Applied Sciences of the Delft Univer-
sity of Technology. It was conducted in the group Physics of Nuclear Reactors at the Reactor Institute Delft. It
will be the starting point of another master thesis researchin the Numerical Analysis group at the Mathematics
Department of the same university.
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2 THE NEUTRON TRANSPORT EQUATION

2 The Neutron Transport Equation

In nuclear reactor physics neutrons are very important, since neutrons are necessary for the chain reaction of
fission to continue. In fact, since neutrons can travel through the reactor core and fuel is fixed, neutrons are the
main subject in reactor physics. The neutron transport equation is the governing equation of free neutrons in
the reactor core, or, for that matter, in any geometry or substance. In certain geometries the transport equation
can be solved analytically, however for many real world problems numerical solutions are needed. In the
process of designing nuclear reactors or other nuclear facilities accurate approximation of the neutron density
or neutron flux are needed to predict for example heat production in the core. New numerical techniques are
still developed, which will result in more accurate reactordesigns. This section contains some basic remarks
on the neutron transport equation, which are necessary for this report. A detailed description of the properties
and derivation of the transport equation can be found in manynuclear engineering hand books.

2.1 General transport equation

Free neutrons are the neutrons that are important to reactorphysics. These neutrons can freely move through
the material and take part in reactions with the surroundingmaterial. Common reactions are collisions (scatter)
and absorption. Neutrons that are captured in the nucleus ofan atom are not important to reactor physics, as
these neutrons will not take part in any important reactions. The neutron transport equation therefore considers
the free neutrons and desribes the rate of reaction as well asthe movement (streaming) of the neutrons. A full
derivation of the transport equation, as well as many applications, can be found in [6]. The most general form
of the transport equation is

1

v(E)

∂φ(r, E, Ω̂, t)

∂t
+ Ω̂ · ∇φ(r, E, Ω̂, t) + σt(r, E, t)φ(r, E, Ω̂, t) =

∫

4π
dΩ′

∫ ∞

0
dE′σs(r, E

′ → E, Ω̂
′
→ Ω̂, t)φ(r, E′, Ω̂

′
, t) + s(r, E, Ω̂, t) (2.1)

Some of the symbols in this equation are introduced here shortly, a nomenclature can be found in the front of
the report. The angular fluxφ is the quantity of interest, it can be interpreted as the density of the number of
neutrons that is atr, has an energyE and travels in direction̂Ω at timet. The total cross sectionσt and the
scattering cross sectionσs tell us with what rate the reactions occur.

We will now shortly discuss the physical meaning of each of the terms. The first term on the left hand side
is the change in neutron density over time. The next term is the streaming term of the equation, it follows from
applying Gauss’ theorem on the expression describing the neutrons travelling into a control volume. Finally on
the left hand side we have the total removal of neutrons, proportional to the total removal cross sectionσt. The
right hand side contains two terms, the second term is an external source, which can be arbitrarily specified.
Scattering is described by the first term of the right hand side. This can be considered a source as neutrons
with other energies and travelling in other directions can be scattered into the part of phase space considered.
Therefore the term contains an integral both over all directions and all energies. Please note that this general
form of the transport equation does not describe fission reactions. Fission reactions result in an extra source
term that has the same form as the scatter term.
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2.2 Common approximations of the transport equation

To test the performance of numerical techniques it is not always necessary to consider the general transport
equation. Some approximations or simplifications can be made without altering the behaviour or the complexity
of the equation. A number of these adjustments is used in thisreport, which are discussed in this section.

The time dependence is eliminated in most proofs of principle. When solving a time dependent problem
one usually approximates a certain state of the problem at time t as a steady-state problem. To solve a time
dependent problem a number of steady-state problems is solved sequentially. Therefore we can equate the first

term of the general transport equation to zero:1v(E)
∂φ(r,E,Ω̂,t)

∂t = 0.
Another common discretization in most solvers is that the energy dependence is discretized into groups.

All neutrons are put into energy ‘bins’ and cross sections are used to determine the number of neutrons that
switch bins or stay in the same bin. The driving force of switching bins is scatter, since in scatter reactions
neutrons may lose or gain energy. The simplest case is to consider just one bin, this effectively eliminates
energy dependence from the problem. This report uses this one group approach.

The scatter source term is further simplified by consideringisotropic scatter only. This means the angular
dependency of the scatter cross sectionσs is neglected. To account for anisotropic scatter multiple techniques
exist, the most common being the expansion of the scatter cross section in spherical harmonics or Legendre
polynomials. In this report there is no background information on this.

When applying all these simplifications the transport equation becomes:

Ω̂ · ∇φ(r, Ω̂) + σt(r)φ(r, Ω̂) =
σs
4π

Φ(r) + s(r, Ω̂) (2.2)

where the scalar fluxΦ is defined asΦ(r) =
∫

4π φ(r, Ω̂)dΩ̂.
Some properties of the equation are noteworthy, as they playa role in the performance of numeric solvers.

First there is the difference between an optically thick andthin medium. A thick medium means the mean free
pathλ of neutrons is small. The mean free path compared to the size of the domain determines the probability
of neutrons to leak out of the problem. When the domain is muchlarger than the mean free path the problem is
optically thick. The mean free path is determined by the inverse of the total cross section,

λ =
1

σt
(2.3)

A thick medium in a small domain can however result in an optically thin problem. Conversely a thin medium,
with a large mean free pathλ may result in optically thin and optically thick medium. However the size of the
domain will be much larger for a thin medium to make a thick problem.

Besides the thickness of the material, one can also vary the ratio with which the two most important reac-
tions, absorption and scatter, occur. This ratio is called the scatter ratioc, and is

c =
σs
σt

(2.4)

The largerc the more diffusive the material will be. In diffusive materials the transport equation can be approx-
imated by the diffusion equation. In the results it will showthat the scatter ratioc of the material influences the
performance of numerical methods.
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

3 Discretization of the Neutron Transport Equation

Discretizing the neutron transport equation is usually done in two steps, an angular and a spatial discretization.
The focus of this report is the angular discretization, however we cannot test the angular discretization in
practice without a spatial discretization. Therefore later on some words will be spent on spatial discretization.
Angular discretization is the focus because we are interested in constructing an angular adaptive method for
the transport equation. This means we want a discretizationthat can handle on the fly refinements of the
numerical solutions. This section describes three methodsfor angular discretization which were investigated to
find the method that is best suitable for this goal. The three different methods of angular discretization are the
discrete ordinates method, wavelets as basis functions fora discontinuous Galerkin method and polynomials as
basis functions for a discontinuous Galerkin method. The discrete ordinates method is the oldest of the three
methods, it has its origin in the nineteen fifties and is widely used in numerical codes ever since. Both remaining
methods use the discontinuous Galerkin discretization method. This method can be used with different basis
functions, for example wavelets. Wavelets are a special class of functions with a hierarchical structure, which
could be useful in refinement. The other discontinuous Galerkin method in this report uses polynomials as basis
functions. Polynomials have been used in many discretization methods, however to use them on the sphere with
the discontinuous Galerkin method has not been done before.

At the end of this section a comparison will be made between these three methods before choosing which
method is best suitable for an adaptive algorithm. As it turns out discontinuous Galerkin with polynomial basis
functions is chosen. The remaining report will be on the performance of this method.

3.1 Discrete ordinates method

3.1.1 Discrete ordinates description

The discrete ordinates method, simply put, consists of requiring that the transport equation (equation 2.2) holds
for a finite size set of directions. Let̂Ωn denote such a direction, wheren = 1, 2, . . . , N . The discrete ordinates
equation is then

Ω̂n · ∇φ(r, Ω̂n) + σt(r)φ(r, Ω̂n) =
σs
4π

Φ(r) + s(r, Ω̂n) (3.1)

The scalar fluxΦ can then be computed using a quadrature in the following manner

∫

4π
φ(r, Ω̂)dΩ̂ =

N
∑

n

wn(r)φ(r, Ω̂n) (3.2)

In this equation the weights should add up to4π as this is the surface of the sphere. To illustrate this, consider
the angular fluxφ to be unity, the the integral equals4π. The directionŝΩn and the distribution of the weights
wn are not specified by the discretization. For an accurate description of the scatter source term the choice of
quadrature set needs to meet a number of conditions.

For a two dimensional case there are physical symmetries in the problem, the quadrature set must preserve
these. In a two dimensional problem we can save a lot of computational resources by preserving the symmetry
in the plane of the problem. Every direction has a mirrored direction which physical meaning is the same.
When the plane is in thexy directions, the directionŝΩ1 = (Ωx,Ωy,Ωz) andΩ̂1 = (Ωx,Ωy,−Ωz) have the
same influence on the problem. This means we can simplify the scalar flux to an integral over the half sphere

σs
4π

Φ(r) =
σs
2π

∫

2π
φ(r, Ω̂)dΩ̂ =

σs
2π

N
∑

n

wn(r)φ(r, Ω̂n) (3.3)
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b b

b

bb

b

Figure 1:Set of directions of the level symmetric quadrature forS6.

where the weightswn add up to4π.
The quadrature should approximate the flux moments well, thescalar flux being the simplest moment,

in order to have an accurate scatter source representation.This comes down to being able to approximate
polynomials of increasing order on the sphere, the larger the order one can approximate the more accurate the
source term.

Also in the diffusion limit of the transport equation the quadrature approximation should work. The dif-
fusion limit is the case where the scatter ratioc goes to unity, in other words neutrons are only scattered, not
absorbed. When assuming the angular flux is linear inµ, some requirements must be met to be consistent with
the neutron current.

The final property of a discrete ordinate set is that all points should have a positive weight associated with
them. This is to prevent the scalar flux from becoming negative, which is not physical. A few basic and new
quadrature sets are discussed in Section 3.1.2.

3.1.2 Choice of ordinate sets

For three dimensional problems the most common quadrature is the level symmetric set, which is illustrated in
Figure 1. This set has only one degree of freedom, all directions and weights are determined by choosing the
first direction.

The most common choice for the ordinate set in the one dimensional case is a Gauss-Legendre quadrature.
This quadrature integrates polynomials of order2N−1 exactly, whereN is the number of quadrature points and
weights. These points are the firstN zero’s of theN th order Legendre polynomial. However, this quadrature
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set does not work with points with a ‘compact support’, that is, each quadrature point represents functions that
live on the whole sphere. Therefore it will not handle discontinuities in the angular flux well. This is best
illustrated using an example.

In a one dimensional problem with vacuum boundary conditions, there is a discontinuity in the angular
flux. Since there are no neutrons entering the problem, but neutrons leaking out of the problem, there is a
discontinuity atµ = 0. The ordinary Gauss-Legendre quadrature set does not handle this well. A solution to
this is to use what is called a double Gauss-Legendre quadrature. Where the interval[−1, 0] is approximated
separately from the interval[0, 1], i.e. two separate Gauss-Legendre quadratures are used. However, it is not
a solution to introduce discontinuities in quadrature setsin three dimensions, since the discontinuities are in
general not regular. Other quadrature sets have been proposed to solve this issue. For example quadrature
points and weights based on a discontinuous finite element method [7].

The discrete ordinates method is not an adaptive method, oneusually chooses a quadrature set for the
complete calculation. However, quadrature sets that can beused for adaptive discrete ordinates have been
proposed [11]. To construct these sets one has to overcome the problem of adding and removing directions
from the quadrature set, which for example cannot be done well in a Gauss-Legendre quadrature.

3.1.3 Spatial solution method and source iteration

The source term of the equation has two contributions, the external source and the scatter source. The left hand
side of the dicrete ordinates discretized transport equation (Equation 3.1) is the transport operator. In the first
iteration one considers only the external source and solvesthe transport problem. The obtained flux is the flux
of all neutrons that have not scattered. The next iteration uses the scatter source obtained by substituting the
not scattered flux in the scatter operator and solving the transport problem with this new source. The flux that
is now obtained is the flux of all neutrons that have scatteredonce or not. This procedure can be formalized as

[

Ω̂n · ∇+ σt

]

φl+1(r, Ω̂n) = ql(r, Ω̂n) (3.4)

whereφl+1 is the flux ofl + 1 times scattered neutrons andql is the source obtained from thel times scattered
neutron flux, that is

ql(r, Ω̂) =
σs(r)

4π

∫

4π
φl(r, Ω̂

′
)dΩ̂

′
+ s(r) (3.5)

=
σs(r)

4π

N
∑

n=1

wnφ
l(r, Ω̂n) + s(r) (3.6)

This source iteration procedure will converge quickly for absorbing problems, that is, problems where
σt >> σs. For diffusive problems (σs is almost equal toσt) this will converge very slowly. In these cases it can
be sped up by using Diffusion Synthetic Acceleration (DSA),which means another equation is to be solved in
each iteration, which approximates the diffusive behaviorof the equation.

When using source iteration, solving the transport part of the problem can be done by a ‘sweeping’ algo-
rithm. Consider neutrons travelling in direction̂Ωn, they take information through space only in the direction
of travel (downwind). Assume that we have discretized the spatial part of the problem by defining a grid, or
elements, and solving each element separately from other elements. (This is discussed in the section about
Discontinuous Galerkin 3.2.4). Now consider one spatial element, this element has upwind and downwind
neighbours, upwind and downwind being defined byΩ̂n. This element can be solved when all inflowing infor-
mation is already computed, that is, when the flux in the upwind elements is already computed. An ordering in
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

the elements (for direction̂Ωn) can then be determined. Solving the spatial part of the problem in this order-
ing ensures that elements are not computed before all upwindfluxes are computed [9]. An illustration of this
algorithm can be found in Figure 3.1.3.

Ω̂n

1 2 3

already computed
put in queue
not yet computed

Figure 2: Illustration of the sweeping algorithm. The rectangular domain is divided into triangular elements.
The solution on an element can be computed (the element is ‘swept’) when all upwind neighbours are already
updated. It takes three steps to compute all elements in thisexample. In each step the elements that can be
computed are marked and put in a queue. Upwind neighbours of an element are determined by the direction
Ω̂n.

The discrete ordinates method provides an algorithm that can be implemented very cheaply, since only
a finite number of directions (usually up to about 100) is considered and spatial discretization cost are not
high when using the Discontinuous Galerkin method. The speed of the algorithm lies in the source iteration
combined with so called ‘sweeps’ to solve the transport partof the problem.

3.2 Polynomials with discontinuous Galerkin

The Discontinuous Galerkin method is like a Galerkin method, but with discontinuous basis functions. The
theory is almost identical to the regular Galerkin method which originated in the first half of the twentieth
century. By using polymials on elements we can give a description of the angular flux on the whole sphere,
not just on a discrete set of points like in the discrete ordinates method. The discrete ordinates method does
not provide us with a description of the angular flux on the whole sphere, which could result in problems for
geometries where specific directions are important. This isovercome by using a finite element method on the
sphere.
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3.2.1 Galerkin method

The Galerkin method basically requires that the equation issolved in its weak form. This weak form is solved
by a function from a constrained space, i.e. the basis functions. Discontinuous Galerkin differs from regular
Galerkin method in the choice of basis functions. As the namesuggests the composite solution of the basis
functions can be discontinuous. It can however only be discontinuous on element boundaries, not inside an
element.

The weak formulation of an equation in general is

find u ∈ V s.t. ∀v ∈ V : B(u, v) = l(v) (3.7)

whereu is the solution to the differential equation. In the contextof transport theoryu would be the angular flux
φ. Now we can apply the Galerkin discretization, which consists of putting a constraint on the spaceV , giving
us the spaceVh. This constraint could be that we take only polynomials on our chosen elements as functions in
Vh. When allowing these functions to be discontinuous betweenelements we have the Discontinuous Galerkin
method. This results in the following formulation

find uh ∈ Vh s.t. ∀vh ∈ Vh : B(uh, vh) = l(vh) (3.8)

Discretization by the Galerkin method results in an error that lies not in the chosen spaceVh, this property
is called the Galerkin orthogonality. Suppose we have an exact solutionu and a Galerkin solutionuh. Since
Vh ⊂ V we can usevh as a test function for the spaceV . Let the error beǫh = u− uh. It then follows that

B(ǫh, vh) = B(u, vh)−B(uh, vh) = l(vh)− l(vh) = 0 (3.9)

which means the error lies outside the spaces or in other words the error depends on the choice of spaces.
Discontinuous Galerkin gives a better approximation than aGalerkin method with a continuous solution,

even though non-physical discontinuities are introduced.When the grid on which the basis functions live is
small enough the discontinuities will almost vanish.

3.2.2 Galerkin methods on the sphere

The Galerkin method uses functions defined on an element (basis function with compact support). In this report
the word ‘element’ is used for spatial elements and the word ‘patch’ is used for angular elements. Patches on
a sphere can be constructed in many ways, one of the easiest isby a projection from another body. Place such
a body in the center of a sphere and let the extremities of the body exactly touch the sphere. Now each point
on the sphere can be identified with a point on the body by drawing a line from the point on the sphere to the
center of the sphere. The line will intersect the surface of the body, this is the point on the body with which the
point on sphere is to be identified. This is illustrated in Figure 3.

The body used for the projection should preferably have someproperties that help the adaptivity of the
algorithm, in other words it must be possible to cut the patches into smaller patches while still keeping a
smooth distribution of patches on the sphere. Examples for the bodies that can be used for this procedure
are the octahedron and the hexahedron. Illustrations of thetwo bodies can be found in Figure 4. In these
illustrations it is also shown how the patches can be cut intosmaller patches. The mathematical derivation of
the Galerkin method on the sphere can be found in Section 3.2.3, it makes use of the patch structure presented
here.
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Figure 3: The blue lines form an octant of the octahedron, which is divided into four smaller triangles, or
patches. A projection of the octant to the sphere is made by drawing a line from the origin through the octahe-
dron to the sphere. The points of intersection on the octahedron and sphere are then associated. The projection
of the blue lines on the sphere is then the set of black lines, which define a patch structure on the sphere.

(a) Division of a octahedron (b) Division of a hexahedron

Figure 4: Divisions of two bodies that can be mapped onto the sphere andhave a flexible and hierarchical
distribution of patches.

3.2.3 Angular discretization

The simplified Boltzmann transport equations reads (Equation 2.2)
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Ω̂ · ∇φ+ σtφ = s+
σs
4π

Φ (3.10)

whereΩ̂ is the angular vector,φ is the angular flux andΦ is the scalar flux. Now we will apply the Galerkin
method to this equation, therefore we first define the spaceVh in which the solution will lie. This is done by
splitting the angular flux in a spatial and an angular part. The spatial partφj(r) will be approximated by first
order polynomials in this report, but can in principle be anypolynomial. Analogously, the angular part will be
approximated by zeroth order polynomials (constant functions) in this report, but can also be other polynomials.
This can be formulated as the following sum

φ(r, Ω̂) ≈

M
∑

j=1

φj(r)Gj(Ω̂) (3.11)

whereM is the number of patches in a spatial element, or on a spatial location. We can now multiply the
equation from the left by an angular test functionGp in our spaceVh. Then integrate over the whole angular
domain to obtain

∫

4π
Gp(Ω̂)



(Ω̂ · ∇+ σt)

M
∑

j=1

φjGj − s−
σs
4π

Φ



 dΩ̂ = 0 (3.12)

For the scalar fluxΦ in this equation we can obtain the following expression, since the patch functionGj is
unity on the patch and zero elsewhere.

Φ =

∫

4π
φdΩ̂ (3.13)

=

∫

4π

M
∑

j=1

φjGjdΩ̂ (3.14)

=
M
∑

j=1

φj

∫

4π
GjdΩ̂ (3.15)

=

M
∑

j=1

φjArea(Gj) (3.16)

Let from now on∆Gj denote the area of patchGj . Please note thatGj is just an indicator of that patch,Gj is
unity on the patch and zero outside the patch. The value of theflux on that patch is in the parameterφj .

Let us now work out the integral of Equation 3.12. Plug in the expression of the scalar flux to obtain

∫

4π
Gp(Ω̂)



Ω̂ · ∇

M
∑

j=1

φjGj + σt

M
∑

j=1

φjGj − s−
σs
4π

M
∑

j=1

φj∆Gj



 dΩ̂ = 0 (3.17)

Now we can simplify the streaming term and distributing the integral over the terms, including over all the
terms in the sums
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M
∑

j=1

∫

4π
GpGjΩ̂ · ∇φjdΩ̂+ σt

M
∑

j=1

∫

4π
φjGpGjdΩ̂−

σs
4π

∫

4π
GpdΩ̂

M
∑

j=1

φj∆Gj −

∫

4π
GpsdΩ̂ = 0 (3.18)

Since the patches all have compact support we know that

M
∑

j=1

φj

∫

4π
GpGjdΩ̂ = φp∆Gp (3.19)

Using this we get the following expression

∫

∆Gp

Ω̂ · ∇φpdΩ̂+ σtφp∆Gp −
σs
4π

∆Gp

M
∑

j=1

∆Gjφj −

∫

4π
GpsdΩ̂ = 0 (3.20)

This equation can be written more compactly as follows

Ω̂
′
p · ∇φp + σtφp =

σs
4π

Φ+ sp (3.21)

In this equation we have:

Ω̂
′
p =

1

∆Gp

∫

∆Gp

Ω̂dΩ̂ (3.22)

Φ =
M
∑

j=1

∆Gjφj (3.23)

=

M
∑

j=1

wjφj (3.24)

sp =
1

∆Gp

∫

4π
GpsdΩ̂ (3.25)

Note that this equation looks very similar to the Discrete Ordinates discretized equation. There are two dif-
ferences with the Discrete Ordinates description, firstly the directionsΩ̂

′
p are defined differently. They follow

from the patch structure, which also means the length ofΩ̂
′
p is not necessarily equal to unity. The other differ-

ence is that there is no freedom in chosing the quadrature, the sum describing the scalar flux follows naturally
from the discretization procedure.

3.2.4 Spatial discretization

Several researches have been done on the spatial discretization with Discontinuous Galerkin in the field of
neutron transport. This report does not focus on the behavior of the spatial part of the transport equation, but
on the angular part. For more on the spatial properties of Discontinuous Galerkin see [13] [14].

We start with the equation we obtained in the previous section:

Ω̂
′
p · ∇φp + σtφp =

σs
4π

Φ+ sp (3.26)
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

In the spatial part of the problem we use linear basis functions. The spatial domain is cut up into elements and
each element has basis functions linear in the Cartesian coordinates. From these basis functions we can define
the total solution as a sum of the basis functions. The sums can be written as

φp(r) ≈ Θ
T (r)φp (3.27)

Φ(r) ≈ Θ
T (r)Φ (3.28)

where the vectorφ holds the angular flux values associated with the basis functions, in the same wayΦ holds
the scalar flux values.Θ holds the basis functions, that is, eachγn is a linear function on the spatial element.
Suppose we haveK spatial elements, then depending on the dimension of the problem (1, 2 or 3)PK basis
functions are needed to span our space.

Θ = [γ1(r), ..., γPK
(r)]T (3.29)

φp = [φ1,j, ..., φPK ,p]
T (3.30)

Φ = [Φ1, ...,ΦPK
]T (3.31)

We can now apply the Galerkin discretization by multiplyingwith a test functionΘ and integrating over the
spatial domain. Using the divergence theorem to rewrite thestreaming term we obtain

∫

δVe

Ω̂
′
p·n̂Θe

PK
∑

k=1

φb
k,p(r)dδV −

∫

Ve

(Ω̂
′
p∇·

PK
∑

k=1

Θk)Θeφk,pdV+

∫

Ve

Θe

PK
∑

k=1

[

σtΘkφk,p −
σs
4π

Θkφk,p − sp(r)
]

dV = 0

(3.32)
In this equationφb

e,j is the angular flux at the boundary of a cell. Now we will assignto each element face
its angular flux,e is the element index,f is the element face index. To do this we need to compose the total
element boundary out of the individual element faces. Each of those individual faces is a plane or line, in order
to be able to define an outward normal vector. This gives us thefollowing expression

δVe =

Nfaces
∑

l=1

δVe,l (3.33)

The flux on this boundary is chosen to be the upwind flux. This means we have to make a distinction between
directions as

φb
e,p,l =

{

φe,p if Ω̂
′
p · n̂l > 0

φ
upwind in l
e,p if Ω̂

′
p · n̂l < 0

(3.34)

Plugging this into the equation we arrive at a matrix equation that has the final discretized form. The
matrices are square and have the size of the number of basis functions that are in one spatial element. The
matrix equation that is to be solved for each patch on each element is then

Nfaces
∑

l=1

Ω′
pU e,p,lφ

b
e,p,l + (−Ω′

pKe + σtM e)φe,p =
σs
4π

M eΦe + se,p (3.35)

where

15



3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

U e,p,l =

∫

δVe,l

nlΘeΘ
T
e dδV (3.36)

Ke =

∫

Ve

(∇Θe)Θ
T
e dV (3.37)

M e =

∫

Ve

ΘeΘ
T
e dV (3.38)

se,p =

∫

Ve

Θesp(r)dV (3.39)

=

∫

Ve

∫

4π
ΘeGps(r, Ω̂)dΩ̂dV (3.40)

3.2.5 Continuity relations between spatial elements

Two neighbouring elements do not necessarily have the same angular distribution of patches. There are two
cases that can be discerned, (a) neutrons flowing from a coarse to a fine element and (b) from a fine to a coarse
element. In general neutron conservation for neutrons crossing a plane can be formulated as

∫

Ω̂·n̂upwind<0
Ω̂ · n̂upwindφupwind(Ω̂)dΩ̂ =

∫

Ω̂·n̂downwind>0
Ω̂ · n̂downwindφdownwind(Ω̂)dΩ̂ (3.41)

[12]. In this equationφupwind is the flux in the upwind element andφdownwind is the flux in the downwind
element. Similar notation is used for the outward normal vectors n̂.This condition should be met in all points
r along the boundary of the two elements, as this insures continuity of the neutron current. When the patches
on the sphere are constant this will result in some simple continuity relations, they are derived here.

(a) Streaming from coarse to fine element

Gc

Gf1

Gf2

A B

(a) Coarse to fine

Gc

Gf1

Gf2

C D

(b) Fine to coarse

Figure 5:Two cases of different angular distribution of patches in neighbouring elements. To ensure neutron
conservation relations between the discrete patches need to be derived.
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

Take two elements A and B and consider the angles such that neutrons flow from A to B. Suppose element A
has one patchGc and element B has two patchesGf1 andGf1, this is illustrated in Figure 5(a). The continuity
relation in Equation 3.41 can be expressed as follows

∫

∆Gc

n̂ · Ω̂φ(Ω̂)dΩ̂ =

∫

∆Gf1

n̂ · Ω̂φ(Ω̂)dΩ̂+

∫

∆Gf2

n̂ · Ω̂φ(Ω̂)dΩ̂ (3.42)

∫

∆Gc

n̂ · Ω̂φcGcdΩ̂ =

∫

∆Gf1

n̂ · Ω̂φf1Gf1dΩ̂+

∫

∆Gf2

n̂ · Ω̂φf2Gf2dΩ̂ (3.43)

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

∫

∆Gf1

n̂ · Ω̂dΩ̂+ φf2

∫

∆Gf2

n̂ · Ω̂dΩ̂ (3.44)

Since the union of the support of patchesGf1 andGf2 is equal to the support ofGc (Gf1
⋃

Gf2 = Gc) we
can simplify this to

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

[

∫

∆Gf1

n̂ · Ω̂dΩ̂+

∫

∆Gf2

n̂ · Ω̂dΩ̂

]

(3.45)

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

∫

∆Gf1

⋃
∆Gf2

n̂ · Ω̂dΩ̂ (3.46)

φc = φf1 (3.47)

by assuming thatφf1 = φf2. It is natural to assume this, as the two patchesGf1 andGf2 are equally as
important. This result is also what one intuitively would expect. Even though the downwind element B can
handle a more accurate solution of the flux, that informationis not available. So the two patchesGf1 andGf2

will represent the exact same angular flux as in the upwind element.

(b) Streaming from fine to coarse element
Now suppose we have refined element C and a coarser element D. On C we have two patches,Gf1 andGf2,

and on element D there is only one patchGc. This is illustrated in Figure 5(b). We will use the same continuity
condition as for the former case, which can be found in Equation 3.41. Applying this condition yields

∫

∆Gc

n̂ · Ω̂φcdΩ̂ =

∫

∆Gf1

n̂ · Ω̂φf1dΩ̂+

∫

∆Gf2

n̂ · Ω̂φf2dΩ̂ (3.48)

φc

∫

∆Gc

n̂ · Ω̂dΩ̂ = φf1

∫

∆Gf1

n̂ · Ω̂dΩ̂+ φf2

∫

∆Gf2

n̂ · Ω̂dΩ̂ (3.49)

Note that sinceφ is constant on a patch we can pull out this variable. Rewriting this equation brings us to the
final expression

φc =
φf1

∫

∆Gf1
n̂ · Ω̂dΩ̂+ φf2

∫

∆Gf2
n̂ · Ω̂dΩ̂

∫

∆Gc
n̂ · Ω̂dΩ̂

(3.50)

This result can be interpreted as a weighted sum of the current through the two refined patchesGf1 andGf2,
which will be clear after rewriting the equation as follows
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

φc =
φf1n̂ ·

∫

∆Gf1
Ω̂dΩ̂+ φf2n̂ ·

∫

∆Gf2
Ω̂dΩ̂

n̂ ·
∫

∆Gc
Ω̂dΩ̂

(3.51)

=
φf1∆Gf1n̂ · Ω̂

′
d + φf2∆Gf2n̂ · Ω̂

′
e

∆Gcn̂ · Ω̂
′
f

(3.52)

The sum of the fluxesφf1 andφf2 is weighted by the patch size and component of the average direction in the

outward normal of the element. Please note that by Equation 3.22 we have∆GcΩ̂
′
f = ∆Gf1Ω̂

′
d +∆Gf2Ω̂

′
e.

3.2.6 Spatial solution methods in discontinuous Galerkin

The source iteration of the equation, which is described forDiscrete Ordinates in Section 3.1.3, can still be
applied when the angular part of the equation is discretizedusing Discontinuous Galerkin. The transport part
of the equation (left hand side) and the source and scatter part of the equation (right hand side) can be computed
sequentially in each iteration, with the newest available information.

In Section 3.1.3 the sweeping algorithm is also described. This is an algorithm used for solving the transport
part of the problem. The idea of the algorithm is that all upwind neighbours of an element must have been
updated before the element itself can be updated. There are two ways of applying this in the Discontinuous
Galerkin method.

First is the easily implemented, but less accurate method. At the start of the algorithm there is a certain dis-
tribution of patches on the sphere. These patches have theiraverage direction, which can be used to determine
an ordering in the elements for neutrons travelling in the direction of that patch. This ordering is determined
only at the beginning and is then used throughout the algorithm. When refinement would take place there is no
update to the ordering. Using this method it could happen that not all upwind patches are updated before the
fluxes are used for the downwind element update.

The other method consists of counting all upwind dependencies of all patches, in other words counting the
patches that stream in to a patch. When a patch is updated the dependency to the patch it streams in to can be
removed. One can then use the criterion that when no more upwind dependencies are left the patch is ready to
be updated. It is not yet clear whether this algorithm can getstuck, by a ring of dependencies (or how to prevent
this).

3.3 Wavelets

The first theories on specific wavelets date from the early twentieth century by Alfréd Haar, although the
concept of a general wavelet was developed much later. In thenineteen seventies and eighties much progress
has been made in constructing more families of wavelets. Since then wavelets have been used in a number of
fields of research. Its main application is in storing and processing image and sound data.

3.3.1 Mathematics of wavelets

A family of wavelets (in multiresolution analysis) consists of a mother wavelet, which is a function with some
special properties, and all its descendants. In this section we will illustrate everything in the one dimensional
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3 DISCRETIZATION OF THE NEUTRON TRANSPORT EQUATION

case. The mother waveletΨ has to fulfil the following requirements:
∫ +∞

−∞
Ψ(t)dt = 0 (3.53)

∫ +∞

−∞
|Ψ(t)|2dt = 1 (3.54)

furthermore it is a function inL2(R).
All translations by integer increments of this mother wavelet form the setV0. In the same way dilatation of

the mother wavelet with2j and taking all translations form the setVj. These setsVj , with j = ...,−1, 0, 1, ...,
are ordered by inclusion and the closure of the infinite inclusion spans up the whole spaceL2(R).

... ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ ... ⊂ L2(R) (3.55)

Also the infinite intersection is the zero function. These properties are needed to use these functions as a one-
to-one representation of a functionf ∈ L2(R). In other words we can representf by a set of coefficients
cjk, which belong to the waveletΨjk(t) = 2−j/2Ψ( t

2j
− k). Various algorithms that use these properties to

efficiently store and process image and sound data are in use.Similarly, this can be used to give a description
of the angular fluxφ in the transport equation. More information on wavelets andmultiresolution analysis can
be found in [2] [5] [10].

3.3.2 Wavelets in neutron transport

There are two ways to implement wavelets in neutron transport theory. The first is by defining spherical
wavelets and applying the multiresolution analysis as described above. This is more involved than a mul-
tiresolution analysis in carthesian coordinates. This report will not explain such a multiresolution analysis in
depth, as it is not practical to implement in a production code. A lot of computational power is spent on de-
termining the coefficients of wavelets that are not needed toget an accurate solution. The full multiresolution
analysis is not needed to obtain an accurate solution.

The other method uses patches on the sphere, in the same way asthe discontinuous Galerkin method uses
patches, see Section 3.2. Defining a tesselation of the sphere into patches one can define wavelets on the
patches. Each vertex of the tesselation is the center point of a wavelet, which is identical (neglecting rotation)
in each patch. An illustration of such a wavelet can be found in Figure 6.

The wavelets are the basis functions with which the transport equation is solved, by cutting the patches
into smaller patches the solution will become more accurate. However all wavelets remain necessary to de-
scribe the angular flux, once a patch is refined it does not meanthe associated wavelet can be neglected [3].
Other wavelets can also be used to discretize the angular component of the transport equation, for example
Daubechies’ wavelets [4].

In the end, the algorithm one obtains is a Finite Element method that uses wavelets as basis functions. This
means the angular fluxφ can be written as

φ(r, Ω̂) =
N
∑

n=1

WnΨn(r, Ω̂n) (3.56)

where theΨn is a certain wavelet on the sphere. Plugging this expressionin the transport equation and following
the Galerkin discretization procedure yields the wavelet discretized transport equation. This is just an angular
discretization, the wavelet method still needs to be combined with a spatial discretization. The discontinuous
Galerkin method could also be used for the spatial discretization.
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Figure 6:Spherical wavelet defined on patches, each vertex is the center of such a wavelet. The patches show
on the far side.

3.3.3 Cost of wavelet algorithm

Since wavelets are not independent of each other the matrices in the discretized transport equation become
rather large. In fact, say the number of wavelets isN and the number of spatial basis functions in an element is
M , then the matrices will beNM ×NM .

To illustrate the sparseness of the matrices we will show themost sparse matrices that are used in the
wavelets method [3]. These matrices consist of the entries (Ωi is a component of̂Ω, with i = x, y, z)

aij =

∫

4π
ΩiGi(Ω̂)Gj(Ω̂)dΩ̂ (3.57)

For this example the octahedron is used as body to determine the patch distribution. In this example it is
assumed the octants are independent of each other, so in the fully dependent case the matrices would be less
sparse. A schematic overview of the refinement used can be found in Figure 7. There are three large wavelets, on
the red nodes. There are also three first order wavelets, the green nodes represent those wavelets. Furthermore
there are nine second order wavelets and seven third order wavelets, respectively the blue and the yellow nodes.
The fill of the matrix with the entries in Equation 3.57 is showed in Figure 8. The matrix is not at all sparse,
therefore solving and storing it will not be very efficient and practical.

Besides the problems with large matrices the sweeping algorithm is difficult to implement in the wavelet
method (see Section 3.1.3 for the sweeping and source iteration algorithm). The interdepency of the wavelets
also troubles application of the sweep method. All waveletsin an element must be solved at the same time,
because of the interdependency. This means an ordering for aspecific direction cannot be made, i.e. elements
of which the upwind flux are not yet determined must sometimesbe computed. This means a lot more compu-
tational power will go into solving the transport part of theproblem. However, the source iteration algorithm
can in principle be applied.

3.4 Comparison of three discretization methods

The remainder of this research focusses on one of the three methods described above. The goal is to make an
angular adaptive algorithm. Of the three methods, the most suitable for this end is the Discontinuous Galerkin
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Figure 7:Wavelets used in the example of the sparseness of the matrices in the wavelets method. Every coloured
square is the location of the peak of a wavelet, so every square can be associated with the coefficient the needs
to be computed.

Figure 8:The matrix with only angular variables that needs to be solved when using the wavelet method. Gray
squares indicate a non-zero entry.

method. Table 1 shows in short the advantages and disadvantages of the methods. A more detailed discussion
can be found below.

Discrete Ordinates Discrete Ordinates has been widely used because it is a very cheap algorithm. Only a
relatively small number of angular variables is used and thesource iteration combined with sweeping algorithms
make it very fast. The lack of difficult integrals that need tobe computed also contribute to the speed of the
algorithm.

There still is a choice of the quadrature set that is used to approximate the scalar flux. In terms of speed it
does not matter much which quadrature is used, as this is determined by the number of directions.The accuracy,
however, can be greatly improved by using an appropriate quadrature. Active research is still being done in
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SN DG Wavelet

Hierarchical - + +
Flexible basis functions + + 0
Storage + 0 -
Computational cost + 0 -
Easy to refine - + 0
1D cost + + +
3D cost + 0 -
Pencil beams - + +
Overall 0 + -

Table 1:Short overview of the advantages and disadvantages of the three methods.

this area. However there are not many quadrature sets that allow local refinement. When one wants to refine
a certain direction in most sets all directions and weights will be changed. So this method is quick for one
calculation, but does not allow for local refinement well.

Another problem, related to the difficulty of refining, are the so called ray effects. When the directions are
not chosen properly rays may occur in the solution that are not physical. This is due to an insufficient angular
resolution in absorption dominated problems.

Discontinuous Galerkin The Discontinuous Galerkin method is a relatively cheap method, albeit a little
more expensive than the Discrete Ordinates method. It is, actually, as cheap asSN when using constant basis
functions on the patches. For higher order basis functions an extra matrix equation needs to be solved.

Local angular refinement is very easy to perform and has little consequences on the cost, in comparison
with the Wavelets method. The sweeping algorithm will stillwork, which makes this method not much more
expensive than Discrete Ordinates.

The scalar flux in this method is also approximated with some kind of quadrature. However, it cannot be
arbitrarily specified. This quadrature follows naturally from the discretization procedure. It depends on the
order of the basis functions that are used on the patches.

Spatial adaptivity can be easily combined with this method,as both the spatial and angular parts of the
problem are discretized using the same procedure. One couldsay that the whole ‘phase space’ of the spatial
and angular parts combined is discretized by that procedure.

Wavelets Wavelets naturally have a hierarchical structure, that is the way they are constructed. This can
be easily used for refinement, however it also introduces equations with large matrices that are not sparse.
Therefore the wavelets method is expensive both in computational power and storage.

The method does provide accurate results, in the same way as Discontinuous Galerkin does. In quality of
the solution wavelets are to be preferred over Discrete Ordinate.

Another problem is the sweeping algorithm, since wavelets have overlapping support. This means all
angular variables must be computed at the same time, by solving an equation with large matrices. Therefore
one cannot make an ordering of the spatial elements such thatelements are only updated when all upwind
elements are already updated.
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3.4.1 Similarity of the three methods

In certain conditions the three methods have a striking similarity, in fact they are almost the same. When using
constant basis functions on patches in Discontinuous Galerkin and Haar wavelets in the wavelets method, all
three methods have constant basis functions in the angular part of the problem.

Discontinuous Galerkin with constant patches can have patches with an average direction which length is
not equal to unity, while the Discrete Ordinates method always has unit length directions. However they can
point in the same direction, when also the quadrature in Discrete Ordinates is chosen with weights equal to the
surface area of the patch, the methods are almost the same.

The wavelets method still has the dependency between wavelets on the sphere. This results in more compu-
tational cost in this method. However the space of function in which the solution lives is the same as the space
of the constant basis functions in Discontinuous Galerkin,provided the same distribution of patches is used.

Still Discontinuous Galerkin is to be preferred. This method is the most flexible (in choice of basis func-
tions), most accurate (in three dimensions it is likely moreaccurate than Discrete Ordinates and as accurate
as Wavelets) and is the simplest method to implement when compared to the Wavelets method. Therefore the
remainder of this report is on the Discontinuous Galerkin method.
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4 Formulation of One-Dimensional Problem

The research presented in this report focusses on one-dimensional problems. With only one spatial dimension
the transport equation is simplified and the code of the algorithm is less complex. The behaviour of the method,
however, does not change.

To get to the one dimensional problem we assume the geometry to be homogeneous in two dimensions, say
in x andy. The only variation in material properties are in thez direction. A consequence of this is that the
solution of the transport equation is constant in thex andy directions. So we can discard these components of
the equation. We can write the three-dimensional transportequation as

Ωx
∂φ

∂x
+Ωz

∂φ

∂z
+Ωz

∂φ

∂z
+ σtφ =

σs
4π

Φ+ s (4.1)

where the streaming term is expanded. The assumption of homogeneity described above can be formulated as
settingΩx

∂φ
∂x andΩy

∂φ
∂y equal to zero. Usually thez direction is taken to be the non homogeneous direction, as

this results in the easiest component of the directions vector: Ωz = µ. The transport equation then becomes

µ
∂φ

∂z
+ σtφ =

σs
4π

Φ+ s (4.2)

The other terms in the equation do not change due to this assumption. They are invariant along thex andy
directions.

First the patch distribution for the one dimensional case isdiscussed, which is different from the general
three dimensional case. After that an overview of the non-adaptive algorithm used in this report is presented.
This section concludes with the data structure used for storing the patch structure and the solution.

4.1 Patch structure in one dimension

In the one dimensional case we only need to look at the dependence in the polar angle, so we can write the
problem in terms ofµ. The azimuthal angleω can be integrated out due to the symmetry in thex and y
directions. This is easily done since the value of the angular flux will not change whenω is running. Letµ run
from −1 to 1 andω from 0 to 2π. The scalar flux can be computed by

Φ =

∫

4π
φdΩ̂ (4.3)

=

∫ 1

−1

∫ 2π

0
φdωdµ (4.4)

= 2π

∫ 1

−1
φdµ (4.5)

Another consequence of integrating out theω dependence is that we can create patches with a ring shape,
since the flux only varies along the polar angleµ. This patch structure is illustrated in Figure 4.1. A good
choice for the division ofµ is to have no patches that are exactly centered aroundµ = 0, which is then also
the average direction. This means the average direction of this patch does not have any component in thez
direction, so it has no influence on the one dimensional transport equation.

The coarsest patch distribution used in this report consists of two patches:µ ∈ [−1, 0] andµ ∈ [0, 1]. Every
time a patch is refined,µ is divided into two equal parts. This is shown in Figure 4.1.
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Coarse patches. Refined patches.

Figure 9: Ring shaped patch structure in the one dimensional transport equation. There is always a patch
boundary atµ = 0. When a patch is refined the ring is divided into two rings withequal length intervals inµ.

4.2 Discretization of one-dimensional equation

Each spatial cell is simple, since it is only a line segment. Each cell has two faces, left and right, at which the
solution can be discontinuous. The basis functions are firstorder polynomials, or linear functions. In general in
this report the word ‘element’ is used to denote the spatial cells used with the discontinuous Galerkin method,
while the word ‘patch’ is used for the angular cells. An element has two basis functions and lives between the
left most and right mostx values of the element:

γ1 =











0 x < xleft
xright−x

xright−xleft
xleft < x < xright

0 xright < x

(4.6)

γ2 =











0 x < xleft
x−xleft

xright−xleft
xleft < x < xright

0 xright < x

(4.7)

This is illustrated in Figure 10.
The transport equation 3.21 becomes:

[

µ′
pn̂zMφp

]

left
+

[

µ′
pn̂zMφp

]

right
+ (−µ′

pK + σtM)φp =
σs
4π

MΦ+ Sp (4.8)

where
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φ1 φ2

xleft xright

Figure 10:Illustration of the basis functions used in the one dimensional problem. Cell boundaries are dashed,
basis functions multiplied with their coefficient are thin lines and the solution is the thick line.

µ′
p = 2π

∫

∆Gp

µ sin(cos−1(µ))

∆Gp
dµ (4.9)

Φ =

M
∑

j=1

∆Gjφj =

M
∑

j=1

wjφj (4.10)

K =

∫

Ve

∂Θ

∂z
Θ

TdV (4.11)

M =

∫

Ve

ΘΘ
TdV (4.12)

s(z) = 2π

∫ 1

−1
Gps(z, µ) sin(cos

−1(µ))dµ (4.13)

Sp =

∫

Vm

Θs(z)dV (4.14)

4.3 Overview of algorithm

A schematic overview of the algorithm is given in Figure 11. Once the algorithm is started we arrive at the
initialization of the finite element matrices (Set up FEM). These matrices are defined in equations 4.9 through
4.14. In this stage all necessary arrays for storing material properties and flux values are allocated. In the next
section the data structure used for storage of the flux valuesis described. By allocating these arrays one chooses
the patch distribution that will be used throughout the algorithm.

The next stage is updating the source, which, in the first iteration, is only computing the external source. We
then perform the first sweep, solving for all angular fluxes throughout the domain. A transport sweep consists
two sweeps, one left going and one right going. The order doesnot matter, as long as Dirichlet boundary
conditions are used. In this stage the matrices defined in theset up are used. After the sweep we arrive at
‘Update scalar flux’, where the scalar fluxΦ for each element will be determined. The scalar flux is also linear
discontinuous, therefore two scalar flux values per elementare computed.

We then arrive at the stage where the source is updated again.Now, however, the latest scalar flux is
available so we can add the scatter source. This is the only coupling between directions in the algorithm. The
last three steps will be repeated until a preset number of iterations is reached. The total number of iterations is
based on a manual convergence test.
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Start

End

Set up FEM

Update source

Perform sweep

Update scalar flux

Compute det. response

Repeat fixed

number of times

Source Iteration

Figure 11:Schematic overview of the solution methodology used with the discontinuous Galerkin discretization
with polynomial basis functions.

4.4 Data structure

A number of requirements must be met by the data structure that is used in this program. All material properties
need to be stored for easy reference. Since the patches are tobe refined the data structure must allow for changes
in the mesh during computation. A final requirement is the ability to look up neighbouring flux values, that is,
flux values of patches in the element next to the current element. This is needed to add the streaming term to
the equation.

In the data structure we can take advantage of the hierarchical structure of the patches. The patches in the
one dimensional case form a binary tree, in other words each patch has two children and one parent. Figure
12 is an example of a binary tree. In this figure one can also seethe ID numbers given to the patches. At the
end of the parent ID number a ‘1’ is appended for the left child, analogously at the end of the ID number of the
right child a ‘2’ is appended. Not all patches in the tree are used for the calculation of the scalar fluxΦ. The
patches that are used are called ‘active’, the others are ‘inactive’. When the tree is refined to a deeper level than
the two initial patches, the parent patches are not deleted.They can be used to navigate through the tree. Since
patches are stored in an array there are two ways to navigate through this tree. First is by parents and children
and second by the array structure.

The information that is stored in a tree entry can be found in Figure 13. Every patch has a unique ID
number, which is at the same time the route in the tree to that patch. With this ID number similar patches in
different spatial elements can be found. Also, the locationon the sphere is stored, as an interval of the variable
µ, which can be used for quick reference. One can also navigatethrough the tree by looking up the locations
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Patch 1 Patch 2

Patch 11 Patch 12 Patch 21 Patch 22

Patch 121 Patch 122

µ−1 1

Figure 12:Binary tree of patches in the one dimensional case. The active patches are blue, the inactive are
green. ID numbers of patches are also shown, the ID number of the left child has a ‘1’ appended to the parent
ID, while for the right child this is a ‘2’. Below the patch division of the tree on the line segment is shown.

of the parent of the current patch, or the locations of the twochildren of the current patch. The last piece of
information that is stored is whether this patch is active, or in other words, whether the patch is used in the
solution. In this way the tree structure is maintained, while not all patches are used in the calculations.

Patch ; ID ,µ range,µ′ ,
∫

µdµ , parent , children , active

Figure 13:For each patch the information in this figure is stored. An array of patches makes a tree, through
which one can navigate by parent children relations or by thearray structure.
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5 Performance of Angular Discontinuous Galerkin

Some results on the Discontinuous Galerkin Discretizationmethod are presented in this section. The results
here are all based on a uniform refinement of all patches. In other words we can compare the DG method to the
discrete ordinates method.

The discrete ordinates method and discontinuous Galerkin method will be compared using two error mea-
sures. The error is then plotted against the number of unknowns in the discrete problem. For the discrete
ordinates method this comes down to twice the number of elements times the number of directions. The num-
ber of unknowns for the discontinuous Galerkin method is just twice the total number of patches. In such a plot
one can see the efficiency of the method, as the number of unknowns is a crude measure of the computational
power that is used in solving the problem. The data points in the results of this section are obtained by running
the program with finer initial meshes, no refinement takes place during calculation.

The first error measure is that of the detector response, for which we first have to define the detector re-
sponse. Many kinds of detector configurations are possible,but only a limited amount is physically relevant.
Two detector configurations are used in this report, a volumetric detector and a boundary detector. The volu-
metric detector response can be formulated as

J(φ) =

∫

V

∫

4π
σDφ(r, Ω̂)dΩ̂dV (5.1)

In this expression, the cross sectionσD determines the rate at which neutrons are being measured. The dimen-
sions of the detector are contained in this cross section. Inregions where the detector is not present we take
the cross section to be zero. Since we integrate over the whole detector region without discrimination in angle,
neutrons in each direction have the same contribution to thedetector.

As the name suggests, the boundary detector measures the number of neutrons that cross a boundary. This
detector response can be expressed as

J(φ) =

∫

δV

∫

Ω̂·n̂>0
n̂ · Ω̂φ(r, Ω̂)dΩ̂dδV (5.2)

There is no detector cross sectionσD in this expression, as it simply counts the neutrons that cross a plane. The
location of the plane is determined by the set∂V . The outward normal of the plane iŝn. In the expression
above only angles that point outward respective to the planeare included in the integral.

With these detector responses we can define an absolute errormeasure, which is

Edet = |Jref − Jh| (5.3)

whereJref is the ‘exact’ detector response andJh is the detector response calculated with the current discrete
solution.

The other error measure with which we can compare methods is the root mean square error of the scalar
flux Φ. This error is taken node wise, instead of integral wise:

Erms =
√

(Φref −Φd) · (Φref −Φd) (5.4)

In this equationΦh is the vector of scalar fluxes on the nodes of the current discrete solution.Φref is again the
‘exact’ solution, however, it is now a vector quantity.

When there is a comparison to the exact error in this report wedo not use the exact error. A reference error
is computed using a very fine angular mesh and this is taken to be equal to the exact error. The spatial elements
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5 PERFORMANCE OF ANGULAR DISCONTINUOUS GALERKIN

are small, in the sense that the spatial part of the problem isconverged. There will not be any spatial component
in the error.

Two sections can be found below, one on the homogeneous slab,the other on separate source detector
problems. The test cases in these sections are used to gain some general insight in the Discontinuous Galerkin
method in the angular component of the transport equation. An overview of all tests cases, with geometry,
material properties and solution, used in this report can befound in Appendix A.

5.1 Homogeneous slab (cases A and B)

Test case A is optically thick and highly scattering, the scatter ratio and total cross section is 0.99. Figure 14
shows a plot of the error decrease of the detector response versus the total number of patches of both DO and
DG. Every data point in the plot holds twice as many patches asthe previous data point, since each patch is cut
into two new patches.

One can observe that both the uniform DG as the DO (Discrete Ordinates) converge second order. In fact,
DO outperforms DG in this case, which is due to the scatteringmedium. DG with constant basis functions
on patches has trouble with diffusive materials, more on this in the section with the adaptive results, Section
7. This is in contrast with the optically thin slab (test caseB), which is less scattering. A similar plot of
the error reduction versus the total number of patches is shown in Figure 17. The rate of convergence is still
second order, but DO performs slightly less than DG. DG has anadvantage here because the slab is thin, which
means the effects of leakage at the edges propagate through the whole domain of the problem. Leakage at the
boundaries results in discontinuities in the angular fluxφ, since there are neutrons leaking out, but no neutrons
are entering from the vacuum. DO handles this discontinuitypoorly, as the quadrature, the Gauss-Legendre set,
handles discontinuities poorly. The quadrature set is designed to integrate spherical harmonics well, which are
not discontinuous. DG can handle these discontinuities well, since all patches are discontinuous by definition.

Figures 16 and 17 show the rms error reduction of respectively test case A and B. In these plots the rms
error is plotted versus the total number of patches. The samebehaviour can be seen in these plots as in the
plots of the error in the detector response. This is mainly due to the geometry being homogeneous. In a sense
the two error measures are the same when source and detector both span the whole domain of the problem. To
illustrate this consider the detector response, which is calculated as an integral over the whole angular domain.
The scalar flux is is also an integral over the whole angular domain, the only difference is the detector cross
sectionσD. However, the detector response is computed by then taking the integral over the whole spatial
domain, while the root mean square error is obtained by taking an inner product of the scalar flux values.

It is remarkable that the convergence is second order for both the detector response error and the root
mean square error. When a mix of polynomials with different orders is used one cannot a priori say what the
convergence rate will be. However, since constant basis functions are used for the patches, we can expect fourth
order convergence with linear patches.

5.2 Source detector (cases C, D, E and F)

Four test cases with a separate source and detector are used in this report. A volumetric source is positioned
on the left hand side of the domain, one tenth of the width of the domain. On the opposite side, the right hand
side, a volumetric detector can be found, also one tenth of the width of the domain. The cross sections are
homogeneous throughout the domain, and different for each test case. C is thick and diffusive, D is thin and
scattering, E is somewhat thick and lightly scattering and Fis also somewhat thick, but purely absorbing. The
complete description of the test cases can be found in Appendix A.
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Figure 14:Error in detector response of test case A, the thick slab. Discrete ordinates outperforms the discon-
tinuous Galerkin method, both converge second order.

In Figure 18 a plot of the error in the detector response versus the total number of patches of all four
separate source detector test cases can be found. Note that the same behaviour as in the homogeneous slab case
can be found. In diffusive materials DO outperforms DG, see Figure 18(a), while in optically thin problems DG
outperforms DO, see Figure 18(b). In optically thin cases with little scatter, see Figure 18(c) DO outperforms
DG by a large amount, which is also the case for the purely absorbing test case shown in Figure 18(d).

In diffusive materials DO outperforms DG, but in thinner less scattering materials DG slightly outperforms
DO. However, once the scatter becomes unimportant for the detector response, DO again outperforms DG. In
all four cases the rate of convergence is second order. For the same reason as in the homogeneous test cases DO
outperforms DG in thick diffusive materials, while DG outperforms DO in thin less scattering materials. When
the material is not scattering at all, DO again outperforms DG, which is due to the fact that there is no coupling
between directions without scatter. The set of directions obtained from the Gauss Legendre set gives a better
approximation than the set of directions obtained from DG. The Gauss Legendre directions are not uniformly
distributed, but are more numerous nearµ = −1 and nearµ = 1. These directions are more important for an
accurate detector response than directions nearµ = 0. DG provides us with uniformly distributed directions,
which will therefore perform worse. In other words, when there are no discontinuities in the angular flux, the
set of directions in discrete ordinates performs better.

DG with constant patches (constant basis functions on patches) has trouble representing the linear flux
profile in the thick highly scattering medium of test case C (see Figure 18(a)). Many piece wise constant
functions are needed to approximate a linear function well.That is why the discrete ordinates method performs
much better. However when the material is thin the constant patches are better able to describe the angular flux
well, as can be seen in Figure 18(b). The flux profile becomes exponential in the angular variableµ. Constant
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Figure 15:Error in detector response of test case B, the thin slab. The discontinuous Galerkin method outper-
forms discrete ordinates, both converge second order.

patches can describe the tail of the exponent well, which gives a better description than a linear profile.
Another thick case is test case E, Figure 18(c), where discrete ordinates outperforms the discontinuous

Galerkin method. This case is mostly absorbing, so the flux profile will be mostly exponential, which should
be in the benefit of discontinuous Galerkin. However since this test case is optically thick, DO does not have
the disadvantage of leakage effects propagating through the domain, therefore DO still outperforms DG.

A concluding remark about the error in the volumetric detector response is that for a source detector problem
the angular flux in the detector region is most important to obtain an accurate detector response. To obtain an
accurate angular flux at that end of the domain one needs an accurate representation of the angular flux in the
middle of the domain, as the neutrons will have to traverse this part of the domain to get to the detector from
the source. The edge effects at the end of the source, for all material properties, are in that respect not very
important. It is however important to get an accurate description of the leakage at the detector end, as the
leakage will effect the detector response.

The rms error versus the total number of patches of the four source detector test cases is shown in Figure 19.
Please note that in the rms error measure DG outperforms DO inall cases except for the diffusive source detector
problem. So DG provides a better overall solution than DO does, which is likely due to the discontinuity in
the angular flux at the boundaries of the geometry. For all material properties and domain sizes the leakage
has effect on the rms error, which is not necessarily the casewith a small volumetric detector. The Discrete
Ordinates method with a Gauss Legendre quadrature set cannot handle such a discontinuity well, it is however
in the nature of DG to handle discontinuities well. Also notethat the rate of convergence is still second order.
As will become clear later, for each test case the rate of convergence is second order. This is not necessarily
what one would expect for constant basis functions.
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Figure 16: Node wise root mean square error of scalar flux, test case A. Same behaviour as with the error
in the detector response, discrete ordinates outperforms the discontinuous Galerkin method. Remarkably the
convergence is still second order.
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Figure 17: Node wise root mean square error of scalar flux, test case B. Same behaviour as with the error
in the detector response, the discontinuous Galerkin method outperforms discrete ordinates. Remarkably the
convergence is still second order.
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(a) Test case C, thick highly scattering medium.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 100  1000  10000  100000

E
rr

or

Total number of unknowns

Error in detector response, test case D

uniform
discrete ordinates

2nd order

(b) Test case D, thin scattering medium.
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(c) Test case E, absorbing medium.
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(d) Test case F, purely absorbing medium.

Figure 18:Error of all source detector test cases.
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(a) Test case C, thick highly scattering medium.
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(b) Test case D, thin scattering medium.
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(c) Test case E, absorbing medium.
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(d) Test case F, purely absorbing medium.

Figure 19:RMS Error of all source detector test cases.
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6 Refinement Strategies

An adaptive method is a method where refinement in the mesh will take place during calculation, that is the
mesh is not stationary. The advantage of such a method is that, with a good refinement strategy, the compu-
tational power can be used in regions of the domain that contribute most to the error. Which leads to a more
efficient method. The efficiency of an adaptive method depends for a large part on the refinement strategy that
is used.

A refinement strategy is a method of selecting the locations where refinement will take place. In this case
that will be selecting the patches that are cut into two, equally sized, refined patches. Two classes of strategies
are tested in this report, traditional and goal-oriented methods. Within the class of the goal-oriented methods
two different ‘flavours’ are tested, using the full adjoint solution and a local adjoint solution. More on the
adjoint problem and the goal-oriented refinement strategies can be found in Section 6.2.

Traditional methods are based on the change in solution whena local refinement in the mesh is performed.
The local refinements with the largest decrease in error are considered to be useful. The traditional method
used in this report can be found in Section 6.1.

In Section 7 the comparison between the different refinementstrategies is made. They are also compared
to the performance of the discrete ordinates method. These results will also tell us whether this method of
discretization combined with a goal-oriented refinement strategy proves to be a useful method.

The final part of this section is an overview of the adaptive algorithm that is used in this report. This is an
expansion of the algorithm that can be found in Section 4.3. The algorithm as described in that section is used
to calculate the solution after patches are refined.

6.1 Traditional refinement

Traditional refinement methods can be found in many areas of mathematics and physics, however the method
described here does not necessarily apply to all these areas. It is however widely used in numerical neutron
transport and other fields. All traditional methods are based on the same idea. A local refinement and solution
is computed and compared to the original non-refined solution. The elements or patches that have the largest
change in solution will keep the refinement, the other elements will go back to their original distribution.

We now need to quantify ‘change in the solution’. The solution in this case is the angular fluxφ and the
change will be looked at in phase space. In other words, we will look at the square of the change in the angular
flux integrated over phase space of a patchη, which reads

η =

∫

∆x

∫

Gi

(φh/2 − φh)
2dΩ̂dx (6.1)

=

∫

Gi

dΩ̂

∫

∆x
(φh/2 − φh)

2dx (6.2)

= 2π∆Gi

∫

∆x
(φh/2 − φh)

2dx (6.3)

Since the integrand of the angular integral is a constant function, we can pull it out. That leaves us with the
spatial integral, which can be formulated in terms of the matrices in Equation 4.12:

η =

∫

∆x

∫

Gi

(φh/2 − φh)
2dΩ̂dx = 2π∆Gi(φh/2 − φh)

TM(φh/2 − φh) (6.4)
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The change can be determined in different ways, for example refine the whole domain and select the el-
ements where the solution changed most. Or, another example, refine each element locally and determine its
solution. The change in solution of this local refinement is then used as criterion.

One specifies a fixed percentage of patches that is to be refinedin each iteration. That percentage of patches
with the largest change, as in the above definition, will be refined. In this reportφh/2 is determined in the
local approximation. A patch is locally refined and the new solution is computed on this patch. This means the
upwind flux values that are used in the computation of this patch are of the coarse level and are not updated.
Also the scalar fluxΦ is not updated before computing the solution on the finer patches. After the change has
been computed that patch is coarsened again, before going onto the next patch.

This method clearly tries to get an accurate solution ofφ on the whole domain, it’s goal is to letφ vary as
little as possible. However, we are interested in an accurate calculation of the detector response. The goal of
the traditional refinement strategy does not necessarily result in an accurate detector response. As opposed to
traditional methods goal-oriented methods take into account the quantity one wants to accurately determine, in
this case the detector response.

6.2 Goal-oriented refinement

The goal in this report is obtaining an accurate detector response, to incorporate this in a method of selecting
patches that are to be refined one needs a way of determining the importance of a patch to the detector response.
This importance can be obtained by using the adjoint or dual problem [1].

This section starts by deriving the adjoint transport problem and examining its physical interpretation.
Using this adjoint problem we can then formulate an error estimator, which is derived in the following section.
From this estimator we can also obtain a criterion for selecting patches that will be refined. This criterion will,
as opposed to traditional methods, take into account our goal of obtaining an accurate detector response. Finally
some words are spent on the approximations of the exact adjoint solution one can use.

6.2.1 Adjoint or dual neutron transport problem

The fields of mathematics and physics do not agree on the name of the expression used for the error estimation
in this report. Mathematicians say it is the dual problem, however nuclear physicists call it the adjoint problem.
From now on it will be called the adjoint problem.

The simplified neutron transport equation, Equation 2.2, can be written as an operator equation

Lφ = S (6.5)

In this equation the operatorL is the transport operator, which deals with the transport, removal and scatter
term of the transport equation. The right hand sideS is the external source.

Using the operators we can define the adjoint operatorL∗ as

< φ∗, Lφ >=< φ∗, S > ⇐⇒ < L∗φ∗, φ >=< φ∗, S > (6.6)

The binary operator< •, • > denotes an inner product of functions, computed as the integral over phase space
of the product of the two functions. We are free to chose the right hand side of the adjoint transport equation,
or in other words which equation we solve. A useful choice of the right hand side is

L∗φ∗ = σD (6.7)

as this results in a detector response that can be written as
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J =< σD, φ >=< φ∗, S > (6.8)

After a tedious derivation, which is included in Appendix D,it follows that the adjoint transport operator
L∗ differs only in the streaming term from the transport operator L. This term has changed sign, resulting in
the following adjoint transport equation

−Ω̂
′
i · ∇φ∗

i + σtφ
∗
i =

σs
4π

Φ∗ + σD (6.9)

The difference with the normal transport equation, Equation 3.21, is the sign of the streaming term and a
different external source.

Above, the adjoint neutron transport equation was derived on purely mathematical reasoning. This equation
does, however, also have a physical interpretation. There are two differences with the normal transport equation,
which we will examine.

Instead of the physical sourcesi we now have the detector cross sectionσD as the source. Apperently the
‘adjoint neutrons’ originate from the detector. Keeping that in mined we can also see that a change of sign in the
transport equation can be understood as a change in direction. All directions are effectively reversed, meaning
the ‘adjoint neutrons’ stream in the opposite direction of the physical neutrons. Combining these observations
we can interprete the ‘adjoint neutrons’ as the the importance of that location in phase space to the detector.
The larger the adjoint angular fluxφ∗ the larger the probability that neutrons in that location inphase space are
detected.

Solving the adjoint transport equation is actually solvingthe importance that is ‘flowing’ out of the detector
into the geometry of the problem. As we will see later in this section, this importance can be used for refining
specific directions that contribute a lot to the error in the detector response.

In the complete derivation of the adjoint transport operator one needs to assume boundary conditions for
the adjoint problem in order to obtain the formulation above, Equation 6.6. At the boundaries, when using
Dirichlet boundary conditions, there is no in flow of neutrons in the normal or forward transport problem.
For the boundary terms to cancel out we need to assume that theout flow of importance of neutrons in the
adjoint transport problem is zero. A more detailed derivation of the adjoint transport problem and its physical
interpretation can be found in Appendix D.

6.2.2 Error estimation

An error estimate can now be formulated, using the forward and adjoint transport equation. The complete
derivation of this error estimate can be found in Appendix B,in this section only the important steps and results
are presented.

During the discretization of the transport equation using the discontinuous Galerkin method the equation is
multiplied by a basis function and integrated over phase space. This can be found in Sections 3.2.3 and 3.2.4.
We can write that equation in the following form [8], which isthe weak form

B(φ, v) = l(v) ∀v ∈ V (6.10)

In that equationv is the test function andφ is the angular flux that is to be solved.V is the space of all basis
functions used in the Discontinuous Galerkin discretization. Please note that the linear forml contains only the
source terms, the bilinear fromB contains all other terms.

Using the detector response in Equation 5.1 we can define the error in the detector response as
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∆J = J(φ) − J(φh) (6.11)

whereφ is the exact solution andφh is the discrete solution. The detector response operatorJ(φ) is linear, so
we can simplify this to

∆J = J(φ− φh) (6.12)

We can rewrite this using the adjoint problem

∆J = B(φ− φh, φ
∗) (6.13)

In Section 3.2 the orthogonality property of the Galerkin method was derived. In short this property states that
the error lies outside the spaceV , which allows us to rewrite the former equation as

∆J = B(φ− φh, φ
∗ − φ∗

h) (6.14)

Finally we can use Equation 6.10, in other words consistency, to obtain

∆J = l(φ∗ − φ∗
h)−B(φh, φ

∗ − φ∗
h) (6.15)

When we plug in the expressions forl andB we obtain a sum over all patches, which we can write as

∆J =
∑

e

∑

p

ηe,p (6.16)

The indicese andp are, respectively, the sum over the elements and over the patches. In this sum we see that
the quantityη of each patch is weighted by the surface area of that patch.η itself follows from the derivation
and can be written as

ηe,p = ∆Ge,p

∫

e
Rh(φ

∗ − φ∗
h)dr +∆Ge,p1p∈Ω−

U

∫

∂e−\{∂VD∪∂VR}
(Ω′

e,p · n̂)rh,U (φ
∗ − φ∗

h)
intdr

+∆Ge,p1p∈Ω−

D

∫

∂e−∩∂VD

(Ω′

e,p · n̂)rh,D(φ
∗ − φ∗

h)
intdr

+∆Ge,p1p∈Ω−

R

∫

∂e−∩∂VR

(Ω′

e,p · n̂)rh,R(φ
∗ − φ∗

h)
intdr (6.17)

Please note that theη of a patch is an integral of the residual of a patch, weighed bythe importance that one
obtains from solving the adjoint equation.

The error is expressed as a sum over the patches, where each patch has a contribution proportional to its
size, its residual and the importance of the patch to the detector response. This seems to be a very natural way
to express the error in the detector response. Since the patches have individual contributions to the error we
can use this to decide which patches to refine. A fixed percentage of patches with the largest contributions
will be refined. This is the goal oriented adaptive criterionused in this report. For a detailed derivation of this
expression we refer to Appendix B.
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6.2.3 Approximation of exact adjoint solution

In the expression for the error estimator we see that we need the exact adjoint solutionφ∗. As the adjoint prob-
lem cannot always be solved analytically, it will be solved in the same discretized way as the forward transport
problem. This means the exact adjoint solutionφ∗ is not available and must be obtained or approximated in a
different way.

For clarity we will use the symbolφ∗ for the exact adjoint solution, the symbolφ∗
aprx for the approximation

of the exact adjoint solution andφ∗
h as the discrete adjoint solution. We can takeφ∗

aprx then to be the adjoint
solution on a finer patch distribution thanφ∗

h. It would be best to take this on a deep as possible level, however
for practical reasons in this report we takeφ∗

aprx to be refined to one level deeper thanφ∗
h. This means each patch

that is part of the solution ofφ∗
h is refined once to obtain the patch distribution on whichφ∗

aprx is computed.
With this choice of approximatingφ∗ with φ∗

aprx that lives on a patch distribution one level deeper one is
still left with the choice of how to computeφ∗

aprx. There are two distinct ways of computing this solution,
globally or locally. Global means one solves the adjoint problem completely on the finer patch distribution.
Locally means one solves the adjoint problem on the same patch distribution as the forward level and refines
the adjoint patch locally when the error needs to be computed. After refining and before computing the error
one will solve the adjoint fluxφ∗

h on this patch using the non refined neighbour flux values and non updated
adjoint scalar fluxΦ∗

h.
With these two methods the same difference between levels ofrefinement is used, however the cost of the

locally computed adjoint solution is much lower than the globally computed adjoint solution. This is due to
the fact that in the global computation the adjoint solutionwill need to be converged on a deeper level, using
more unknowns, than when using the local computation. In theresults in Section 7 we will examine the effect
of both methods.

6.3 Overview of adaptive algorithm

An overview of the fully adaptive algorithm is presented here. This algorithm can be used for both the traditional
and goal oriented criteria.

The adaptive algorithm is actually an expansion of the non-adaptive algorithm presented earlier, see Section
4.3. This non-adaptive algorithm is used between refinementiterations to compute the solution. In each refine-
ment iteration the error per patchη for all elements is computed, which are then sorted in descending order. The
error can be computed using different methods. The three methods examined in this report are the traditional
refinement and two types of goal-oriented refinement, using the globally or locally refined approximation of
the exact adjoint solution. A fixed percentage of patches that are on top of the list will then be refined. The
effect of different percentages will be examined in Section7.5.

We will now explain the flow of the algorithm and what needs to be done in each step. The algorithm starts
again with setting up the matrices needed for the spatial finite element method, also the arrays that store material
properties and patches are allocated. This is the patch distribution that is used at the start of the algorithm and
will change during the algorithm.

As in the uniform case the source in first iteration consists of just the external source term. After updating
the source term the transport sweep can be performed. The matrices are needed at this stage. With the newly
available angular flux we can update the scalar flux. From thisstage the algorithm can go to two directions.
Until the fixed number of inner iterations is reached the algorithm will continue with updating the source. In
this way the transport problem is solved until convergence with the current patch distribution. These steps in
the inner iteration are performed for both the adjoint and forward problems.

Once the preset number of inner iterations is reached the algorithm continues by calculating the error for

43



6 REFINEMENT STRATEGIES

each patch. To this end the adjoint transport problem has to be solved first. This is done in similar fashion as
the inner iteration of the forward problem. However the patch distribution can be different. After calculating
the error contribution per patch we can order the patches to find out which have the largest contribution. A fixed
percentage of patches is then refined.

After refining the inner iteration will start again, with thenew finer patch distribution. The inner iteration
will again loop until the preset number of iterations is used. The number of times the outer iteration is repeated
is also fixed and preset.

Start

End

Set up FEM

Update source

Perform sweep

Update scalar flux

Compute det. response

Calculate error per patch

Refine patches
Repeat fixed number of times

Repeat fixed number of times

Figure 20:Schematic overview of the adaptive algorithm.
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7 Results of Adaptive Methods

In this section the results of the various adaptive algorithms are presented. Ten cases are used to illustrate the
performance of the algorithm, these test cases can be found in Appendix A. Each of the cases will test different
aspects of the adaptive methods. In all test cases the adaptive algorithms refine 30 per cent of the patches in
each refinement iteration, unless stated otherwise.

For the tests in this section we will use the same error measures as in Section 5, the error in the detector
responseEdet and the node wise root mean square error of the scalar fluxErms. The errors are again computed
using a reference value for the detector response and the scalar flux. This reference value is computed at a much
deeper level of refinement.

For all test cases a figure with the error plotted against the total number of patches. This shows how the
refinement in each step improves the solution. In this way different adaptive methods can be compared on
performance. The discrete ordinates method is also included in these plots, although it is not an adaptive
method. However, one can compare the cost in number of unknowns of the discrete ordinates method and the
adaptive methods.

The quality of the error estimator for the two goal-orientedmethods is also examined. To this end we
compare the estimated error with the reference error, whichis computed at a much deeper level. We examine
the quality to find out whether we can use the error estimator as a trustworthy representation of the error. This
would mean that in future work the reference error does not necessarily have to be computed.

A final comparison between the adaptive methods is an investigation into the effect of the refinement ratio,
that is the percentage of patches that is refined in each refinement iteration. The adaptive algorithm is run
several times with different percentages. The error versusthe total number of patches for all methods is then
plotted in one figure, which shows the most effective refinement ratio.

The first test cases have a homogeneous slab geometry, with different materials. The next test cases have
a separate source and detector in a homogeneous material. A volumetric detector is mostly used, however a
boundary source is also investigated. Thereafter the source detector test case is extended by placing a shielding
region in the middle of the domain, between the source and detector. The final tests are on the effect of the
refinement ratio on the convergence.

A final remark has to be made on all plots that are shown in this section, the legend holds names for
the different method that are presented in this work. ‘Uniform’ is the discontinuous Galerkin method with
uniform refinement, i.e. in each refinement iteration all patches are refined. ‘Traditional’ refers to the traditional
refinement criterion that can be used with the discontinuousGalerkin method. The two goal-oriented adaptive
methods are referred to as ‘full adjoint’ and ‘local adjoint’. The full adjoint is the criterion that bases its decision
for which patches to refine on the adjoint solution of patchesthat are one level deeper (they are refined once
more) than the patches of the forward solution. The other criterion bases its decision on a local refinement of
the adjoint solution and is therefore called local adjoint.We also have the discrete ordinates method which
is referred to as ‘discrete ordinates’. Finally a line that represents second order convergence is plotted for
convenience, this line is referred to as ‘2nd order’.

7.1 Homogeneous slab (cases A and B)

The first test case is the homogeneous slab, both optically thick and thin. The exact specifications of these
test cases are presented in Appendix A. In Figure 21(a) one can find the plot of the detector response error
versus the total number of patches of test case A, the thick scattering slab. In this plot we note that convergence
is eventually second order for all methods that are presented. The error with uniform refinement of patches
decreases constantly, while the error of all other methods decreases faster in the beginning, i.e. with few

45



7 RESULTS OF ADAPTIVE METHODS

patches. Therefore the traditional, full and local adjointand discrete ordinates methods eventually have an
advantage of an estimated factor of two, measured in the number of patches needed to get a certain error. The
similarity in error decrease of the different methods is probably due to the homogeneity of the problem.

Turning to the plot of detector response error decrease versus the total number of patches in case B, Figure
21(b), we see that all methods again perform somewhat similar. This time the uniform method (all patches are
refined in each refinement iteration) performs slightly better than the other methods. The error decrease for all
methods is again about second order.

In both cases the adaptive algorithms perform about the same, also the Discrete Ordinates method performs
about the same as the adaptive algorithms. The uniform refinement performs, however, different in case A and
B. In case A the adaptive algorithms perform slightly better, while in case B the uniform refinement performs
slightly better. An answer to this can be found in the spatialpatch distribution, which is shown in Figure 22. In
these plots the number of patches in an element is plotted against the x position of that element.

Case B has quite a uniform patch distribution in space. Therefore one would expect the uniform and
adaptive methods to work similarly. However in case A the patch distribution is far from uniform, more patches
are used near the edge of the domain. Near the edges the angular flux is more difficult to compute, because of
the leakage. In the middle of the domain there is little effect of the leakage, because the material is optically
thick. Therefore the adaptive algorithms can provide a better solution.

Another remarkable result is the steps in the patch distribution of test case A. These are an artefact of the
refinement algorithm, when a smaller fraction of patches is refined these steps disappear and the distribution
becomes exponential. The exponential behaviour might be due to the fact that effects of leakage decrease
exponentially when propagating through the domain, because a ray of neutrons also decreases exponentially.

The lack of difference between the three adaptive methods can be explained by the homogeneity of the
problem. Since the volumetric detector is in the whole domain there is little difference between the traditional
and goal oriented criteria. One could say that a refinement that changes the solution of the angular fluxφ most
will probably also result in a better detector response and vice versa. Therefore we will turn to other test cases.
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(a) Test case A, thick highly scattering medium.
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(b) Test case B, thin scattering medium.

Figure 21:Error in the detector response of the two homogeneous slab test cases. In the optically thick case
all methods perform better than the uniform method, becausethe optimal distribution of patches is not flat.
However in the optically thin case the optimal distributionis almost flat, therefore the uniform refinement
works well.
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(a) Test case A, thick highly scattering medium.
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(b) Test case B, thin scattering medium.

Figure 22:Spatial patch distribution, in one spatial element all patches are counted and plotted at its position.
The steps in the optically thick case disappear when a smaller refinement ratio is used. The optimal distribution
of patches in the optically thin case is almost uniform.

7.2 Source detector (cases C, D, E and F)

In these test cases a geometry with a separate source and detector for different materials is presented. The four
materials are thick scattering, thin scattering, thin absorbing and a material with medium thickness and some
scattering. For each of the test cases the material properties are listed in Appendix A.

Figure 23 shows the error in the detector response versus thetotal number of patches of all source detector
test cases. We see for all four test cases the same second order convergence of the uniform method. For test
cases C, E and F we see somewhat the same behaviour. The discrete ordinates method outperforms all other
methods, while the traditional refinement criterion with discontinuous Galerkin performs the worst of all, since
there is almost no error decrease. The two goal-oriented adaptive methods, full and local adjoint, converge
second order and perform at least as good as the uniform method. In case D the full adjoint goal-oriented
method performs best, while all other methods perform comparably.

An explanation for this behaviour can be found looking at theangular flux profile. In the thick and diffusive
cases the flux profile is almost linear while in the absorptioncase it is exponential. Since we’re using constant
basic functions (patches) different behaviour can be expected when the solution has a different angular flux
profile. A linear function is harder to approximate with constant patches, as it needs a fine representation for
all directions. An accurate approximation of exponential functions with constant functions only needs a fine
representation where the derivative of the exponential function is largest.

When comparing the uniform and adaptive methods one finds that the goal-oriented adaptive methods
are at least as good as the uniform method. The traditional adaptive method does a very poor job. These
differences between the methods can be explained by the patch distributions, which are shown in Figure 24. In
this figure we will take a closer look at the spatial patch distribution of cases C and E. In case C we saw that the
goal-orientated methods have an equal error reduction as the uniform method, which can be explained by the
diffusivity of the problem. Constant patches cannot approximate diffusive problems well, because the angular
flux profile is linear. Since we need a fine mesh to approximate alinear function by constant basis functions,
this means the whole domain of the problem will be refined. Figure 24(a) shows the flat spatial distribution
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(a) Test case C, thick highly scattering medium.
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(b) Test case D, thin scattering medium.
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(c) Test case E, absorbing medium.
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(d) Test case F, purely absorbing medium.

Figure 23:Error in the detector response of all source detector test cases.

of the two goal-oriented adaptive methods. This figure also shows why the traditional method performs so
poorly. Most refinement is on the left hand side of the problem, while the detector is on the right hand side
of the problem, which results in a bad detector response. Thetraditional criterion refines patches of which the
solution changes most when they are refined, which will be around the source region in the domain and not
around the detector region, as the solution is much larger inthe source region.

The patch distribution of test case E shows why the goal orientated adaptive methods outperform the uni-
form method. Even though the spatial distribution is still quite flat, more refinement took place on the border
of the source region and the detector region. Since this problem is less scattering the patch distribution is less
flat. Also in this case the traditional method refines locallyaround the source and not at all around the detector.

It is also worth looking at the node wise root mean square error (rms error) of the flux. Since this error
measure looks at the whole domain of the problem instead of just the detector region. Figure 25 shows a plot
with the rms error versus the total number of patches. The traditional adaptive method provides us with the
smallest error of all methods and discrete while the goal oriented adaptive methods show almost no decrease in
error. This behaviour can be expected since the goal of the goal-oriented methods is to get the detector response
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(a) Test case C, thick highly scattering medium.
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(b) Test case E, absorbing medium.

Figure 24:Spatial patch distribution, in one spatial element all patches are counted and plotted at its position.
The traditional adaptive method mostly refines around the source, not around the detector. The absorbing
medium has a larger refinement near source and detector for the goal oriented adaptive methods, while the
thick case has an almost flat distribution. This is needed foran accurate representation of a diffusive problem.

as accurate as possible, which not necessarily needs an accurate description of the solution in the whole domain.
We furthermore note that the uniform method converges aboutsecond order and that the discrete ordinates
method performs similar to the uniform method.

We also present a comparison between a source detector problem with a volumetric detector and a boundary
detector. The two cases with a boundary detector are G, with athick scattering medium, and H, with a thin
scattering medium. In Appendix A the test cases are described and the material properties are listed. Figure 26
shows the error reduction versus the total number of patchesof cases G and H. We see a similarity between cases
G and C, and between H and D. To start with G and C, in both cases the discrete ordinates method performs
best and the traditional method worst. The uniform method and the two goal-oriented adaptive methods show
similar error reduction. In cases H and D we see a uniform method that converges second order and all other
methods perform similar, albeit with a spread around the uniform error reduction. This shows that using a
boundary detector instead of a volumetric detector does notchange much in the behaviour of the methods.

Some differences in behaviour can however be found when examining the spatial patch distribution of the
two cases. Figure 27 shows a plot of the number of patches in anelement versus the spatial position of that
element for both cases. Comparing the plot for case G with that for C we see that betweenx = 0.9 andx = 1
the number of patches increases slightly near the boundary of the domain for case G, while in case C we see
a dimple in that region. In both cases we see a slight increasein number of patches near the boundary of the
detector, that is for case Cx = 0.9 and for Gx = 1. This is probably to have an accurate description of the
angular flux that enters the detector. The same behaviour canbe seen for case H and D, although the full adjoint
actually shows a slight decrease in number of patches near the right boundary. In all cases the full and local
adjoint differ slightly from each other both in error decrease and in patch distribution, therefore we conclude
this is not a fundamental difference between the methods.

The traditional refinement criterion results in a slightly different spatial patch distribution in the cases G
and H, as well as in the case C and E. In cases E and H the patch distribution has a relative larger peak around
the source region. This can be explained by looking at the solution of the flux, as this also has a larger peak for
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Figure 25:Node wise root mean square error of scalar flux of test case F. In the root mean square error measure
we see the traditional adaptive method being more effectivethan the goal oriented adaptive methods. The goal
of the goal oriented adaptive methods, an accurate detectorresponse, is therefore not the same as an accurate
overall solution.

cases E and H. This shows that the traditional refinement criterion is sensitive to regions where the angular flux
is largest.

Finally we remark that the goal oriented adaptive and uniform methods all converge second order in the
both error measures, as we would expect from the previous test case. This leads us to believe that using linear
basis functions on patches will result in fourth order convergence of these error measures.

7.3 Shielding (cases I and J)

This test case is similar to the previous test case but with anextra shielding region in the middle of the domain.
Two types of material are tested which are both optically thick, one is scattering and the other is purely ab-
sorbing. So far we have not tested different material properties in one domain, which is done with these tests.
The boundaries between the different materials are of interest, as an accurate description of the angular flux
is needed at these points for an accurate detector response.For this test case a good performance of the goal
oriented adaptive methods was expected. The exact materialproperties can be found in Appendix A.

Figure 28 holds plots of the detector response error versus the total number of patches. The discrete or-
dinates method provides us with the largest decrease in error, and again the traditional refinement criterion
provides us with the least decrease. The uniform and both goal-oriented methods perform similarly, all re-
sulting in second order convergence. In case J these three methods also result in second order convergence,
however the error decrease is slightly larger with the goal-oriented methods. Also in this case the discrete
ordinates results in the largest error decrease and the traditional refinement criterion in the least decrease.
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(a) Thick source boundary detector, test case G.
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(b) Thin source boundary detector, test case H.

Figure 26:Error in the detector response of the source boundary detector test cases. The behaviour is similar
to that of the source volumetric detector test cases.
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(a) Thick source boundary detector, test case G.
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(b) Thin source boundary detector, test case H.

Figure 27:Spatial patch distribution of the source boundary detectortest cases. Where in the source volumetric
detector test cases the detector is located, no extra refinement takes place in the source boundary detector test
cases.
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For the diffusive case I the performance is not as good as expected because the constant patches cannot
approximate the linear profile of the angular flux very well. That is, it can approximate it well only by refining
many patches. Using linear basis functions on the patches could overcome this, since it will take few basis func-
tions to approximate the linear profile of the angular flux. Wehave seen this before in other highly scattering
cases.

The other case, the fully absorbing shielding test case, hasan exponential angular flux profile, which per-
forms better than the scattering case. This is probably due to the fact that constant patches have a problem with
the part of the profile with a large derivative. The directions where the angular flux is almost constant do not
pose a problem. This is also a recurring observation throughout the test cases.
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(a) Test case I, thick highly scattering medium.
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(b) Test case J, thick absorbing medium.

Figure 28:Error in the detector response of the two shielding test cases. Discrete ordinates performs better in
diffusive problems, therefore also in this thick scattering case. In the thick absorbing case the set of directions
of discrete ordinates give a better approximation of the detector response than that of discontinuous Galerkin.

It is useful to examine the node wise root mean square error ofthese test cases. The plots of the decrease
of the rms error versus the total number of patches are shown in Figure 29. First of all we see that the uniform
refinement strategy converges second order, as is the case inall test cases. We see again that the traditional
adaptive method gives a more accurate solution in this errormeasure, while the goal oriented adaptive methods
give a better approximation of the detector response. This fact is also seen in the angular patch distribution,
which is shown in Figure 30. This figure shows a plot of the inverse patch size (1/∆µ) versus the direction
of that patch (µ). Looking at the traditional method we see that directions that are important for getting an
accurate scalar flux are refined, which are the directions with positive smallµ (there are no negativeµ with non
zero flux since there is no scatter). The solution of the angular flux improves most when a finer patch structure
is used to determine which patches to refine. However, the goal oriented methods mostly refine directions that
are important for the detector response, which are directions with a large positiveµ are refined, since neutrons
travelling in these directions cover the least ground to getto the detector and therefore contribute most to the
detector response.

The spatial distribution of patches is shown in Figure 31, where the number of patches in a spatial element
is plotted versus the location of that element. In Figure 31(a) one can see that the goal-oriented adaptive
methods refine extra near the boundaries of the shielding regions. However, the increase is only small, since
many patches are already needed to accurately describe the diffusive behaviour of the medium around the
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(a) Test case I, thick highly scattering medium.
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(b) Test case J, thick absorbing medium.

Figure 29:Node wise root mean square error of the scalar flux of the two shielding test cases. The traditional
adaptive method provides the most accurate overall solution, in both cases. The goal oriented adaptive methods
perform well in the thick scattering case, since all directions are important for an accurate detector response,
so the overall solution will be accurate. However in the thick absorbing case only directions toward the detector
are important, therefore these methods do not provide an accurate overall solution.

shielding region. The material of the shielding region can actually be accurately computed with a less fine
patch distribution than the medium around it, as this material is mostly absorbing.

Figure 31(b) in contrast has a larger difference between thenumber patches inside and outside the shielding
region. A more coarse patch distribution outside the shielding region suffices to accurately describe the angular
flux, however inside the shielding region more patches are needed. An accurate detector response depends on
an accurate description of the neutrons that pass through the shielding region, therefore this regions is refined
most.

In both shielding test cases we see that the traditional refinement criterion does not help in computing an
accurate detector response, as the patches on the right handside, the detector side of the domain, are not refined
at all. The angular flux is very small in this region, which results in only small changes in the angular flux
when a patch is refined, as opposed to the left hand side of the domain. Therefore most refinement is around
the source region.

7.4 Quality of error estimator

Besides using the error estimate as a criterion for refinement we can also use it as an estimator for the error in
the detector response. In many cases the exact error is not available, as we do not have an exact solution to the
neutron transport problem. To reliably use the estimator aserror indicator we first need to test its performance.
This test consists of examining the error ratio, that is the ratio between the estimated and exact error. Since the
exact error is not available we will use a reference error, which is computed on a much finer patch distribution.
In this section we will look at three test cases (A, E and G) where the estimator behaves differently.

In each of the figures presented here three data sets are plotted, ‘uniform’, ‘full adjoint’ and ‘local adjoint’.
We will treat them in reverse order, starting with the local adjoint. The local adjoint criterion consists of the
goal-oriented error estimator (see Section 6.2), where theexact adjoint solution is approximated by a local
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Figure 30:Angular patch distribution of test case J, thick absorbing shielding problem. This is the distribution
at x = 0.3. Goal oriented methods refine the directoins toward the detector, since those are important for an
accurate detector response. The traditional adaptive method refines mostly in other directions, which leads to
a more accurate overall soluton. The directions toward the left are not refined since there is no scatter.

refinement of the associated adjoint patch. That is, to compute the error contribution of a certain patch in the
forward patch distribution, we refine the associated adjoint patch once locally, resulting in a representation on
one level deeper. Besides using the error estimator the refinement criterion based on the error contribution is
also used. Turning to the full adjoint criterion, this method uses the same criterion as the local adjoint, only
the exact adjoint solution is now approximated by computingthe adjoint solution on a patch distribution that
is refined to one level deeper than the forward patch distribution. This results in an adjoint that is computed
on a distribution that is globally one level deeper than the forward distribution. The last data set is obtained by
using the full adjoint error estimator on a uniform refined patch distribution. This means in each refinement
iteration all patches are refined, so the adaptive criterionfor refinement is not used. However, we can test the
error estimator that is obtained from the adaptive criterion using this patch distribution.

The error ratio’s for the thick homogeneous slab, test case A, are shown in Figure 32(a), where the ratio of
the error estimator and the reference error is plotted against the total number of patches. We expect the error
estimator to asymptotically go to the reference error, thismeans the ratio should tend to unity. We can see that
for case A the ratio tends to unity for the uniform method, however not asymptotically. It is expected that this
will happen when linear patches are used, as constant patches cannot approximate linear flux profiles well. The
same criterion but with adaptive refinement, the full adjoint case, has somewhat the same behaviour. It has
some wiggles, but the trend is the same as the uniform case. Incontrast to this, the local adjoint case has a very
different behaviour. The ratio lies significantly below thereference error and it even becomes a worse estimator
when more patches are used. For this case it cannot be used as an error indicator.
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(a) Spatial patch distribution of test case I, the thick scattering shield-
ing case.
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(b) Spatial patch distribution of test case J, the thick absorbing
shielding case.

Figure 31:Spatial patch distribution of the shielding test cases. Thethick scattering case does not have a large
increase in patches in the shielding region, because many patches are already needed to describe the flux in the
whole domain, due to the diffusivity. The absorbing case hasa large increase in patches, since the shielding
region absorbs many more neutrons an accurate solution for the neutrons that travel through is needed to obtain
an accurate detector response.

Turning to test case E, the absorption source detector problem, we see in Figure 32(b) that the full adjoint
case does not always provide an accurate error estimator. The error ratio does not tend to unity as patches are
refined, which means we cannot use it as a reliable indicator for the error in this case. The uniform refined
method still tends to unity, but again not asymptotically. The local adjoint estimator performs even worse in
this case, compared to case A. We can certainly not use this asan indicator for the error.

The final case in this section is test case G, the thick boundary detector case. The error ratio’s are shown
in Figure 32(c). In this case the full adjoint the uniform methods give almost the same error estimator, which
tends to unity. However, the local adjoint estimator is still off. In all cases the local adjoint estimator seems to
provide us with an underestimate of the error, which cannot be used as an indicator for the error.

An interesting fact is that the local and full adjoint error estimators do not agree on the error estimator, the
full adjoint provides us with a reasonably good estimator, while the local adjoint estimator is too much off. The
two methods do, however, refine almost the same patches, resulting in similar patch distributions. This can be
seen in the patch distribution plots shown earlier. This means that when the error estimator is not important,
the local adjoint method, which is cheaper than the full adjoint method, can be used to decide which patches to
refine.

7.5 Effects of ratio of refined patches

Usually one takes a ratio of patches to be refined instead of a set number, as the set number gets relatively
smaller every refinement iteration. All results in the previous sections were generated with the ratio set to
0.3, in other words30% of the total number of patches was refined. Every patch that isrefined results in
two new patches, a net increase of one patch per refined patch.In this section some results on the ratio of
patches that is refined in each iteration are presented. Thisis done for two test cases, the thick homogeneous
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(b) Ratio of error estimator and reference error of test case E, the
absorption source volumetric detector problem. In this case the full
adjoint estimator gives an accurate estimator when refinement takes
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tively. The local adjoint estimator does not provide an accurate esti-
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(c) Ratio of error estimator and reference error of test caseG, the
thick source boundary detector problem. The full adjoint refinement
criterion gives us an accurate estimator, in contrast to thelocal adjoint
estimator.

Figure 32:Ratio’s of error estimators and reference error. The reference error is computed using a very deep
refinement, much deeper than where the tests took place.

slab case A (called RA) and the thin source detector case D (called RD). The figures here show plots of the
detector response error versus the total number of patches for different methods. The effects of the ratio of
refined patches is investigated for the following percentages,1%, 5%, 10%, 20%, 30% and40%. For reference
purposes we included the data sets of the uniform and discrete ordinates method, as well as a line representing
second order convergence.

For the thick scattering homogeneous slab test case (case RA), there is little difference to be seen in Figure
33. The symmetry and homogeneity of the problem are the likely cause of this. This means we can best choose
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a large refinement ratio in this case, as this takes least timeto be computed. We can, so to speak, get away with
a large ratio of patches refined in each iteration. This is dueto the fact that we saw that large regions in the
domain are refined, it is not very concentrated (see Figure 22(a)).
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(a) Full adjoint estimator.
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(b) Local adjoint estimator.
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(c) Traditional estimator.

Figure 33:Error of test case A, for different refinement ratio’s, per refinement method. All methods perform the
same, which is probably due to the uniformity and homogeneity of the problem.

Turning to test case RD, the source detector with a thin scattering material, we see that the refinement ratio
affects the accuracy. There is much variation of the error decrease within each method, however we can see that
a ratio of refinement between five and thirty per cent generally seems to result in the largest error decrease for
the two goal-oriented adaptive methods. In the traditionalmethod we see that the forty per cent method results
in the largest decrease, however the variability of this method is large. In the previous data points it does not
perform better than other methods.

Furthermore note the dip in the error around three hundred patches, this is due to a sign change in the
difference between the computed and the reference detectorresponse. Since we defined the detector response
error measure as the absolute value of that difference, we see it as a dip in the error.
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(a) Full adjoint estimator.
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(b) Local adjoint estimator.
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Figure 34:Error of test case D, for different refinement ratio’s, per refinement method. In most cases refining
between 5% and 30% is most effective. However, a smaller percentage needs more iterations which takes more
time. In the full adjoint error there is a sign change around 300 patches, which explains the dip in the error.
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8 Discussion

In this discussion section we will first present the main conclusions of this work, roughly in order of occurrence.
The first part will be on the theoretical results we obtained in Section 3, the discretization of the neutron
transport equation. Thereafter the conclusions of the uniform tests will be presented, these conclusions are on
the behaviour of the uniform discontinuous Galerkin methodcompared to the widely used discrete ordinates
method. Finally the results of the various adaptive algorithms is presented, where the comparison is made
between traditional and goal-oriented refinement criteria. The second part of this chapter is a short elaboration
of future work that can be done to further investigate the possibilities of the discontinuous Galerkin method.

8.1 Main conclusions

8.1.1 Theoretical results

Three different discretization methods were investigatedon their ability to handle adaptivity and their feasibility
of implementation in this work: the widely used discrete ordinates method, a discontinuous Galerkin method
with wavelets as basis functions (wavelet method) and a discontinuous Galerkin method with polynomial basis
functions (discontinuous Galerkin method).

The discrete ordinates method cannot handle adaptivity well, as most quadrature sets do not allow for
directions to be added without altering the complete set of directions. The wavelet and discontinuous Galerkin
method were therefore investigated as alternatives that doallow for adaptive algorithms, since both methods
have a hierarchical structure of basis functions. For several reasons we preferred the discontinuous Galerkin
method to the wavelet method. First of all the wavelet methodresulted in a large non-sparse matrix equation
that needs to be solved for each spatial element. This means that for fine wavelet distributions large filled
matrices will have to be solved, which comes at high computational cost.

In the discrete ordinates description we showed that a cheapalgorithm to solve the equation an be used,
source iteration combined with a sweep algorithm. Since this algorithm is so cheap, we investigated the possi-
bilities of using this algorithm in the adaptive algorithm,which is only partly possible in the wavelet method.
Source iteration is still possible, but since the wavelets are not independent of each other we cannot apply the
sweep algorithm. However, we found that both source iteration and the sweep algorithm can be applied in the
discontinuous Galerkin method.

The third and last reason is that the discontinuous Galerkinmethod provides us with a much more flexible
discretization than the wavelet method does. Polynomial basis functions can relatively easily be used to obtain
higher order basis functions, which should lead to higher order convergence. The order of convergence of a
certain wavelet as basis function is harder to predict. Alsowe found that the choice of wavelets largely depends
on the ability to approximate spherical integrals on the wavelets well.

8.1.2 Uniform results

We compared the performance of the discontinuous Galerkin method with discrete ordinates by refining all
patches uniformly. This test is a comparison between the setof directions obtained from the discontinuous
Galerkin method and the set of quadrature directions of discrete ordinates. In general discrete ordinates provides
us with a larger decrease in error than the discontinuous Galerkin method for the same number of unknowns
in the discrete problem. This is due to two effects: the linear angular flux profile in diffusive materials and the
performance of the set of directions when there is no coupling between the directions from scatter, which we
will elaborate below.
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The discontinuous Galerkin method was tested with constantbasis function on the patches and linear basis
functions on the spatial elements. The constant patches cannot approximate a linear flux profile well with few
patches, while discrete ordinates does not need many directions to describe this flux profile well. We expect the
discontinuous Galerkin method to perform much better in diffusive materials when linear basis functions are
used on the patches.

When the scatter cross section is zero,σs = 0, there is no coupling between the discrete directions. A
purely absorbing test problem is therefore a test of the performance of the distribution of directions on the
angular domain. The discontinuous Galerkin patches are distributed uniformly throughout this domain, while
the Gauss Legendre quadrature results in a larger density ofdirections aroundµ = 1 and µ = −1 than
aroundµ = 0. As expected this lead to an advantage of discrete ordinatesin domains with a separate source
and detector region. The neutrons that cover least ground toget to the detector are most important, as the
likelihood of absorption is the smallest. The discrete ordinates methods gives a more accurate description of
these neutrons.

In one kind of material the discontinous Galerkin method provided us with a larger decrease in error than
the discrete ordinates method, for the same number of unknowns in the discrete problem. In thin scattering
materials the effects of neutrons leaking from the domain through the vacuum boundaries propagate deeply into
that domain. The angular flux around these vacuum boundariesis discontinuous atµ = 0. The discontinuous
Galerkin method can easily describe this discontinuity, asdiscontinuities are inherent to this method. However,
the discrete ordinates method with the Gauss Legendre quadrature cannot handle discontinuities well. The
discrete ordinates method could possibly perform better than the discontinuous Galerkin method when a double
Gauss Legendre quadrature is used, which is discontinuous at µ = 0. However, when we look at three-
dimensional problems, the discontinuities in the angular flux can be anywhere on the sphere (depending on the
shape of the domain). Discontiuous Galerkin will be more accurate than a discrete ordinates method in that
case.

In all test cases (homogeneous slab and source detector geometries) and for both error measures, detector
response error and node wise root mean square error, we showed that the discontinuous Galerkin method with
constant basis functions on patches results in second orderconvergence. We therefore expect linear basis
functions on patches to result in fourth order convergence.

8.1.3 Adaptive results

Using the dual or adjoint problem of the neutron transport equation, we derived an error estimator for the
detector response error. In this derivation we expressed the estimator as a sum of contributions to the error of
individual patches. This provided us with a goal-oriented refinement criterion to decide which patches will be
refined, as the contribution of patches with the largest contribution is likeliest to decrease most when refined.
Another refinement criterion was formulated using the change in the angular flux when a local refinement is
performed. The refinement of the patches with the largest change in the angular flux are kept, the other patches
are coarsened to their original distribution. This is called the traditional refinement criterion.

In general the goal-oriented adaptive algorithms performed well and decreased the detector response error
quicker than uniform refinement, for the same number of unknowns. The largest gain from goal-oriented
adaptive methods is seen when the spatial distribution of patches of the adaptive methods is not flat. When it
is flat the uniform refinement is actually almost the optimal way of refinement. Comparing the goal-oriented
adaptive algorithms with the discrete ordinates method we showed that in diffusive problems discrete ordinates
still reduces the error more than the adaptive methods.

Two error measures were used to compare the goal-oriented and traditional adaptive methods, the error in
the detector response and the node wise root mean square error of the scalar flux. We showed that the goal-
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oriented adaptive methods result in a more accurate detector response than the traditional method does. In
the other error measure, the rms error, we showed that the traditional method provides us the smallest error.
This behaviour can be expected from the error measures, to get an accurate detector response the angular flux
needs to be accurate around the detector. The traditional method does not take that into account, while the
goal-oriented methods do. To obtain an overall accurate angular flux it suffices to look at the largest change in
angular flux as refinement criterion.

The goal-oriented adaptive methods showed second order convergence for the detector response error mea-
sure. We therefore expect the convergence to be fourth orderfor linear patches with the goal-oriented adaptive
methods.

Besides using the error estimators as a refinement criterionwe investigated their use as indicator of the
error. We can use the estimator that uses the full adjoint reliably in most cases. However, the local adjoint
estimator never provides a reliable indicator to the error.The ratio of the full adjoint error estimator and the
real error (which is approximated by a calculation on a much finer patch distribution) tends to unity, but not
asymptotically. This is likely due to the fact that constantpatches are used, using linear patches could improve
this. Although the local adjoint estimator cannot be used asa reliable error estimate, the refinement criterion
refines almost the same patches as the full adjoint estimator, making it a reliable refinement criterion.

The number of patches, given as a percentage, that is refined in each refinement iteration does not greatly
affect the performance of the adaptive methods, when the error decrease at a certain number of unknowns is
compared. In general the best results were obtained when a percentage between five and thirty is used. However,
using larger refinement ratio’s does result in a faster algorithm, as less refinement iterations are needed to reach
a large error reduction. Therefore thirty per cent seems to be around the ideal ratio.

8.2 Future work

In the conclusions above we have seen that constant basis functions on patches do not provide a good description
of the angular flux in diffusive materials. The angular flux profile is linear in these cases. Using linear basis
functions on the patches is therefore expected to greatly enhance the performance in diffusive materials. Also
in other materials the rate of convergence should be larger.

Introducing linear patches means that we need to solve more unknowns for each patch. This leads to a
matrix equation that is four by four, instead of two by two. Noother major changes will have to be made,
although the calculation of the scalar flux and error contribution will have to be altered.

As all test cases were one-dimensional problems in this project, it is interesting to investigate how the
discontinuous Galerkin method performs in two or three dimensions. In more dimensions one expects that
goal-oriented adaptive methods will be relatively more efficient, compared to the uniform refinement. In one
dimension neutrons can travel only two ways, left and right.In a source detector geometry all neutrons that
travel, for example, to the right are important for an accurate detector response. In three dimensions the relative
amount of neutrons that travel towards a small detector willbe much smaller than in these one-dimensional test
problems.

There are three main issues to be examined when expanding themodel to three dimensions. The first is the
patch distribution on the sphere, in three dimensions thereis much more freedom to chose a patch structure.
The evaluation of the angular integrals is more complicatedand will have an effect on the choice of the patch
distribution. Another issue is the sweep algorithm, which could be implemented in different ways. The easiest
is to use a set of ‘basis directions’ that determine the orderin which patches that lie in a certain octant of the
sphere are computed. A more natural way seems to be to find the patches in the problem of which the upwind
neighbouring patch is already updated. Since patches are independent of each other we can choose to update
them only when the upwind patch is already updated. The final issue is practical, as in three dimensions the
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number of unknowns grows roughly cubic with the inverse element size. It should be investigated whether it
is still feasible to let each spatial element have its own angular patch distribution. An alternative would be to
divide the domain into regions that have the same angular patch distribution.

The discontinuous Galerkin approach for both the angular and spatial dependence of the problem results in
a description of the flux on the whole sphere, as opposed to thediscrete ordinates method. This can be useful
for solving other kinds of transport equations, for examplethe Fokker Planck equation. This equation can be
used to describe charged particle transport. To get to the Fokker Planck equation from the transport equation
used in this work a term that describes diffusion in the angular variables is introduced after a derivation using
statistical physics. To get a physical interpretation of why adding this term leads to an equation for charged
particle transport, think of a pencil beam of electrons. This beam, as the electrons travel through space, will
become diffuse. The directions the electrons travel in spread slowly across the sphere, which can be described
by a diffusion term. The discontinuous Galerkin method can be useful for solving this equation.
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A Test Cases

Here we present the test cases used throughout this work, with specified geometries and material properties. For
each test case we supply a short description, expected result, geometry and material properties. In the geometry
diagram blue represents a volumetric source and green represents a volumetric detector.

A.1 Case A, Thick slab

The first test case is a uniform slab with a homogeneous sourceand detector. It is optically thick, which means
that the neutrons have a small mean free path. The dimension of the slab is1 cm. In Figure 35 a diagram of the
geometry can be found and in Table 2 the material properties are listed. The boundary conditions of the slab
are vacuum boundaries on both sides.

Since the boundary conditions are hard to satisfy properly it is expected that the mesh near the edges of the
slab will be very fine.

0 1
x

Vac. Vac.

Figure 35:Homogeneous slab geometry.

σt 100 cm−1

σs 99 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 2:Material properties for test problem A

A.2 Case B, Thin slab

Test case B is again a homogeneous slab with the same dimensions as the test cases above. However, since the
total cross section is much lower the mean free path of the neutrons is larger, which makes this an optically thin
problem. Again the geometry can be found in Figure 35, while the material properties can be found in Table 3.
This test case also has vacuum boundary conditions on both sides.

Refinement is expected to be similar to the refinement in test case A, although the effects of the edges will
propagate much further into the domain, as this is an optically thin problem.

A.3 Case C, Thick source detector

This test case has a separate source and detector region in a homogeneous material. The boundaries of this slab
geometry are again vacuum boundaries. A diagram of the geometry can be found in Figure 38. The material
properties are listed in Table 4.
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 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

S
ca

la
r 

flu
x

x coordinate

Adjoint scalar flux of test case A

adjoint profile

(b) Solution of the adjoint scalar flux of test case A

Figure 36:Forward and adjoint solution of test case A.
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(b) Solution of the adjoint scalar flux of test case B

Figure 37:Forward and adjoint solution of test case B.
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σt 1 cm−1

σs .5 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 3:Material properties for test problem B

In this test case it is important to have an accurate solutionin the source and detector regions. Since the
source is at the left hand side of the domain we also need an accurate solution of right going directions. There-
fore we expect refinement in the detector source and regions,as well as refinement of right going directions.

0 1.1 .9
x

Vac. Vac.

Figure 38:Source detector slab geometry.

σt 100 cm−1

σs 99 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 4:Material properties for test problem C

A.4 case D, Thin source detector

This test case is also a source detector problem, but now withoptically thin material. An illustration of the
geometry can be found in Figure 38. Table 5 lists the materialproperties.

The expected behaviour is similar to that of test case C. However, since this is an optically thin problem the
effects of the edges will propagate much further into the domain.

σt 1 cm−1

σs .5 cm−1

thickness 1 cm
Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 5:Material properties for test problem D
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Figure 39:Forward and adjoint solution of test case C.
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Figure 40:Forward and adjoint solution of test case D.
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Figure 41:Forward and adjoint solution of test case E.

A.5 Case E, Highly absorbing source detector

This is also a source detector geometry as shown in Figure 38.However, the homogeneous material that is used
in this problem is strongly absorbing. The material properties are listed in Table 6.

In this test case we expect the same results as for test case C,as this is also an optically thick problem.

σt 10 cm−1

σs 1 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 6:Material properties for test problem E

A.6 Case F, Purely absorbing source detector

Test case F is the last separate source detector geometry as shown in Figure 38. The material is now purely
absorbing, which means there is no scatter source in the right hand side of the transport equation. The material
properties of this test case are listed in Table 7.

In this case there is no coupling between directions throughthe scatter, which will yield results on the
choice of directions of the discontinuous Galerkin method.

σt 10 cm−1

σs 0 cm−1

Source 1 cm−1s−1rad−1

Detector 4π cm−1

Table 7:Material properties for test problem F

69



A TEST CASES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

A
ng

ul
ar

 fl
ux

x coordinate

Angular flux of test case F

forward profile

(a) Solution of the forward scalar flux of test case F

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.2  0.4  0.6  0.8  1

S
ca

la
r 

flu
x

x coordinate

Adjoint scalar flux of test case F

adjoint profile

(b) Solution of the adjoint scalar flux of test case F

Figure 42:Forward and adjoint solution of test case F.

A.7 Case G, Thick boundary detector

Test case G is similar to test cases C, D, E and F, only the volumetric detector has been removed and the right
boundary of the domain is a detector. The material properties are listed in Table 8. Also the forward and adjoint
solution of this problem can be found in Figure 44. In Figure 43 the geometry of this test case is shown.

We expect the behaviour around the source to be the same as in the source volumetric detector cases.
However, since the detector is at the boundary of the domain we do not expect much refinement to be needed at
that end of the domain. There does not need to be an accurate solution of the flux in a region, only the current
of neutrons is important near the edge of the domain.

0 1.1
x

Vac. Det.

Figure 43:Separate source and boundary detector geometry.

σt 100 cm−1

σs 99 cm−1

Source 1 cm−1s−1rad−1

Table 8:Material properties for test problem G
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Figure 44:Forward and adjoint solution of test case G.

A.8 Case H, Thin boundary detector

The geometry of this test case is the same as that of test case Gand is shown in Figure 43. However, the
material properties are different and are listed in Table 9.The forward and adjoint solution for this test case can
be found in Figure 45

σt 1 cm−1

σs 0.5 cm−1

Source 1 cm−1s−1rad−1

Table 9:Material properties for test problem H

A.9 Case I, Shielding

This test case is an extension of test case C. There is again a separate source and detector, however, the detector
is behind a shield. A region of0.05 cm in the middle of the slab has a large total cross section, making it
a neutron shield. The properties of the other regions remainthe same. A diagram of the geometry is shown
in Figure 46. The material properties are listed in Table 10,the source and detector are only present in the
specified regions.

As this test case is similar to test case C we expect the refinement to be almost the same. Only the source
region is not very important now, as only a few neutrons will traverse the shielding. Therefore it is more
important to get an accurate flux in the shielding region. It is expected that refinement takes place in the
shielding and detector region, as well as for right going directions.

A.10 Case J, Purely absorbing shielding

Test case H has the same geometry as the previous test case, shown in Figure 46. Now both the medium and
the neutron shield are purely absorbing. The material properties are listed in Table 11.

Expectations on refinement are the same as in the other shielding test case, case I.
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Figure 45:Forward and adjoint solution of test case H.
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Figure 46:Shielding slab geometry.

Property Material Shielding
σt 100 cm−1 50 cm−1

σs 99 cm−1 5 cm−1

thickness 2× .475 cm 0.05 cm
Source 1 cm−1s−1rad−1 0 cm−1s−1rad−1

Detector 4π cm−1 0 cm−1

Table 10:Material properties for test problem I.

Property Material Shielding
σt 1 cm−1 100 cm−1

σs 0 cm−1 0 cm−1

thickness 2× .475 cm 0.05 cm
Source 1 cm−1s−1rad−1 0 cm−1s−1rad−1

Detector 4π cm−1 0 cm−1

Table 11:Material properties for test problem J
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Figure 47:Forward and adjoint solution of test case I.
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Figure 48:Forward and adjoint solution of test case J.
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B Error Estimate Derivation

In this appendix the derivation of the error estimator is presented. From this derivation a criterion to decide
which patches to refine is distilled. We will start with some preparatory definitions, before applying the discon-
tinuous Galerkin method to the transport equation. After this we can write the equation in a bilinear and linear
form, which are used to derive an error estimator.

We start with the single group, steady state, radiation transport equation with only an isotropic scattering
term:

Ω̂ · ∇φ(r, Ω̂) + σtφ(r, Ω̂) =
σs
4π

∫

4π
φ(r, Ω̂)dΩ̂ + S (B.1)

In our problem we use two different kinds of boundary conditions, Dirichlet and reflective:

φ(r, Ω̂) = g, r ∈ ∂VD, Ω̂ · n̂ < 0 (B.2)

φ(r, Ω̂) = φr = φ(r, Ω̂r), r ∈ ∂VR, Ω̂ · n̂ < 0 (B.3)

First we introduce some sets that are needed for expressionslater on. The domain in phase space of one element
can be written as a set that takes care of the spatial part and one that takes care of the angular part.

e = {r ∈ element e} (B.4)

Ω = {Ω̂ ∈ 4π} (B.5)

(B.6)

We can divide the angular setΩ into two sets, one for in flowing and one for outflowing directions on an edge
δe.

Ω+ = {Ω̂ ∈ Ω|Ω̂ · n̂δe > 0} (B.7)

Ω− = {Ω̂ ∈ Ω|Ω̂ · n̂δe < 0} (B.8)

(B.9)

Furthermore we need to discern the edges and directions thatare specified by the boundary conditions of the
problem.BC in the following expression is the abbreviation for boundary condition, which can be any of the
elements of{U,R,D}, upwind, reflective and Dirichlet boundary conditions. There is an upwind ‘boundary
condition’ as a result of applying the discontinuous Galerkin method is that all patches can be solved indepen-
dently, therefore the upwind flux can be taken as a boundary condition for that patch.

Ω−
i = {Ω̂ ∈ Ω−|BC = i} (B.10)

∂Vi = {r ∈ ∂e−|BC = i} (B.11)

The Galerkin procedure for spatial elements consists of multiplying the equation by a test functionve,p(r, Ω̂)
and integrating over the domain. The indicese andp are respectively the element and the patch index. This
results in
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−

∫

4π

∫

e
φΩ̂ · ∇vdrdΩ̂+

∫

4π

∫

e
σtφ

intvintdrdΩ̂−

∫

4π

∫

e

σs
4π

ΦvintdrdΩ̂

+

∫

Ω+

∫

∂e+
(Ω̂ · n̂)φintvintdrdΩ̂+

∫

Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂ · n̂)φextvintdrdΩ̂

+

∫

Ω−

R

∫

∂e−∩∂VR

(Ω̂ · n̂)φrv
intdrdΩ̂

=

∫

4π

∫

e
SvintdrdΩ̂−

∫

Ω−

D

∫

∂e−∩∂VD

(Ω̂ · n̂)gvintdrdΩ̂ (B.12)

By summing this equation over all elements we can identify a bilinear form and linear form such that we can
write the discretized transport equation as

B(φ, v) = l(v),∀v ∈ Vh (B.13)

whereVh is the space of all test functions. An explicit expression for B andl is given by

B(φ, v) =
∑

e

{

−

∫

4π

∫

e
φΩ̂ · ∇vdrdΩ̂+

∫

4π

∫

e
σtφ

intvintdrdΩ̂−

∫

4π

∫

e

σs
4π

ΦvintdrdΩ̂

+

∫

Ω+

∫

∂e+
(Ω̂ · n̂)φintvintdrdΩ̂+

∫

Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂ · n̂)φextvintdrdΩ̂

+

∫

Ω−

R

∫

∂e−∩∂VR

(Ω̂ · n̂)φrv
intdrdΩ̂

}

(B.14)

l(v) =
∑

e

{

∫

4π

∫

e
SvintdrdΩ̂−

∫

Ω−

D

∫

∂e−∩∂VD

(Ω̂ · n̂)gvintdrdΩ̂
}

(B.15)

We will now introduce patches with constant basis functions. The test functionve,p is therefore assumed to be
of the form

ve,p(r, Ω̂) = φe(r)Ge,p(Ω̂) (B.16)

The spatial part,φe(r), consists of linear functions. Each patch,Ge,p(Ω̂), has a constant basis function. The
linear form can then be written as:

l(v) =
∑

e

{

∑

p

∫

e
∆Ge,pSe,pv

int
e,pdr −

∑

p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂e,p · n̂)Ge,pv
int
e,pdr

}

(B.17)

whereΩ̂e,p denotes
∫

∆Ge,p
Ω̂dΩ̂. With this notation no approximation is made, the integralsover the directions

are exact. Since the patches have a constant basis function we can write the4π integrals as sums with the size
of the patch as weights, as stated earlier.

The bilinear form will become:
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B(φ, v) =
∑

e

{

−
∑

p

∫

e
φΩ̂e,p · ∇ve,pdr +

∑

p

∫

e
∆Ge,pσtφ

intvinte,pdr −
∑

p

∫

e
∆Ge,p

σs
4π

Φvinte,pdr

+
∑

p∈Ω+

∫

∂e+
(Ω̂e,p · n̂)φ

intvinte,pdr +
∑

p∈Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂e,p · n̂)φ

extvinte,pdr

+
∑

p∈Ω−

R

∫

∂e−∩∂VR

(Ω̂e,p · n̂)φrv
int
e,pdr

}

(B.18)

We can now turn to the quantity of which we want to minimize theerrorJ(φ)− J(φh), whereJ is the detector
response.

J(φ) =

∫

V

∫

4π
σD(r)φ(r, Ω̂)dΩ̂dr (B.19)

A short derivation shows how we can write the error as a function of the linear and bilinear form, using respec-
tively: linearity, dual problem, Galerkin orthogonality and consistency [8].

∆J = J(φ) − J(φh) (B.20)

= J(φ− φh) (B.21)

= B(φ− φh, φ
∗) (B.22)

= B(φ− φh, φ
∗ − φ∗

h) (B.23)

= l(φ∗ − φ∗
h)−B(φh, φ

∗ − φ∗
h) (B.24)

Hereφh is the computed solution andφ is the exact or reference solution. Since the exact solutionis not always
available one can use an approximation by using a solution ona very fine mesh.

Plugging in our expressions forl andB and subsequent partial integration yields

∆J =
∑

e

∑

p

{

∫

e
∆Ge,pSe,p(φ

∗ − φ∗
h)dr − 1p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂e,p · n̂)ge,p(φ
∗ − φ∗

h)dr

+

∫

e
φΩ̂e,p · ∇(φ∗ − φ∗

h)dr −

∫

e
∆Ge,pσtφ

int
h (φ∗ − φ∗

h)dr +

∫

e
∆Ge,p

σs
4π

Φ(φ∗ − φ∗
h)dr

−1p∈Ω+

∫

∂e+
(Ω̂e,p · n̂)φ

int
h (φ∗ − φ∗

h)dr − 1p∈Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂e,p · n̂)φ

ext
h (φ∗ − φ∗

h)dr

−1p∈Ω−

R

∫

∂e−∩∂VR

(Ω̂e,p · n̂)φr(φ
∗ − φ∗

h)dr
}

(B.25)

which is actually a sum over all patches. The sum is weighted by the patch size, which becomes clear when we
interpretΩ̂e,p as the ’average’ angle times the size of the patch:
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Ω̂e,p =

∫

∆Ge,p

Ω̂dΩ (B.26)

=

∫

∆Ge,p
Ω̂dΩ̂

∆Ge,p
∆Ge,p (B.27)

= Ω̂
′
e,p∆Ge,p (B.28)

The sum over all the patches then becomes

∆J =
∑

e

∑

p

∆Ge,p

{

∫

e
Se,p(φ

∗ − φ∗
h)dr − 1p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂
′
e,p · n̂)ge,p(φ

∗ − φ∗
h)dr

+

∫

e
φint

Ω̂
′
e,p · ∇(φ∗ − φ∗

h)dr −

∫

e
σtφ

int
h (φ∗ − φ∗

h)dr +

∫

e

σs
4π

Φ(φ∗ − φ∗
h)dr

−1p∈Ω+

∫

∂e+
(Ω̂

′
e,p · n̂)φ

int
h (φ∗ − φ∗

h)dr − 1p∈Ω−

U

∫

∂e−\{∂VR∪∂VD}
(Ω̂

′
e,p · n̂)φ

ext
h (φ∗ − φ∗

h)dr

−1p∈Ω−

R

∫

∂e−∩∂VR

(Ω̂
′
e,p · n̂)φr(φ

∗ − φ∗
h)dr

}

(B.29)

It is interesting to compare the weights of the sum in this expression and the weights of a quadrature set that is
used in the discrete ordinates method. In that method one chooses a set of directions and weights on which one
demands the equation to hold. The integrals over the angulardomain are then performed by computing a sum
of weighted angular fluxes. In this case the angular integrals change into weighted sums naturally, where the
weights are not free to chose, but are equal to the size of the patch.

Since the expression for∆J is a sum over all elements and all patches we can define an errorcontribution
for each patch, call itηe,p. Theηe,p’s will eventually tell us where to refine or coarsen the spatial or angular
discretization. The total error estimate then looks like:

∆J =
∑

e

∑

p

∆Ge,pηe,p (B.30)

after some manipulation and partial integration we see thatηe,p is of the form:

ηe,p =

∫

e
Rh(φ

∗ − φ∗
h)dr + 1p∈Ω−

U

∫

∂e−\{∂VD∪∂VR}
(Ω̂

′
e,p · n̂)rh,U (φ

∗ − φ∗
h)

intdr

+1p∈Ω−

D

∫

∂e−∩∂VD

(Ω̂
′
e,p · n̂)rh,D(φ

∗ − φ∗
h)

intdr

+1p∈Ω−

R

∫

∂e−∩∂VR

(Ω̂
′
e,p · n̂)rh,R(φ

∗ − φ∗
h)

intdr (B.31)

with:
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Rh = Se,p +
σs
4π

Φh − Ω̂
′
e,p · ∇φh;e,p − σtφh;e,p (B.32)

rh,U = φint
h;e,p − φext

h;e,p (B.33)

rh,D = φint
h;e,p − ge,p (B.34)

rh,R = φint
h;e,p − φr

h;e,p (B.35)

The error contribution of a patch,ηe,p, is now an integral over the domain in phase space of that patch. The
integrand is the product of the residual and the importance of the location in phase space, sinceRh, rh,U , rh,D
andrh,R turn out to be the residual of the discrete transport equation. The importance is given by the adjoint
solution, for more on the adjoint solution and the interpretation of the importance we refer to Appendix D.
Finally the contributionηe,p is multiplied by the size of the patch∆Ge,p.

Rh is the spatial and ther’s are the boundary residuals of the equation.rh,D andrh,R are the Dirichlet
and reflective boundary residuals, whilerh,U is the upwind residual. This upwind residual is non zero between
elements (it is zero on the boundary of the domain). This residual is a result of the ‘jumps’ that are allowed in
the solution in the discontinuous Galerkin method.

We can use this expression to estimate the error of the solution, without the need for an explicit expression
of the exact solution. However, we can also formulate the criterion for refinement from this expression. We
now have a contribution to the error of each patch∆Ge,pηe,p. When these contribution are sorted we find which
patches contribute most to the error. A fixed percentage of patches will be refined in each refinement iteration,
which leads to the natural choice of refining the patches thatcontribute most to the error.
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C Wavelet mathematics

Using wavelets as basis functions for the Galerkin discretization method results in large matrix systems that
need to be solved. To see what matrices are needed a derivation of the discretized equations using wavelets is
presented below. Some remarks for wavelets are made at the end of this section.

We start with the steady-state isotropic scatter neutron transport equation (see Equation 2.2)

Ω̂ · ∇φ(r, Ω̂) + σt(r)φ(r, Ω̂) =
σs
4π

Φ(r) + s(r, Ω̂) (C.1)

The expansion of the angular flux into wavelets can be writtenas a general expansion

φ(r, Ω̂) ≈
W
∑

w=1

φw(r)Gw(Ω̂) (C.2)

whereGw(Ω̂) a wavelet function. By applying the Galerkin method we obtain the following result

∫

4π
Gv

[

(Ω̂ · ∇+ σt)

W
∑

w=1

φw(r)Gw(Ω̂)− s+
σs
4π

Φ

]

= 0 (C.3)

For an easy representation of the transport equation we introduce some widely used notation for the stream-
ing term. The inner product between̂Ω and∇ becomes

Ω̂ · ∇ = Ωx
∂

∂x
+Ωy

∂

∂y
+Ωz

∂

∂z
(C.4)

where the components of the unit vectorΩ̂ are described by

Ωx =
√

1− µ2 cosω (C.5)

Ωy =
√

1− µ2 sinω (C.6)

Ωz = µ (C.7)

whereµ is the cosine of the polar angle andω is the azimuthal angle. The equation we obtain by applying the
Galerkin method, Equation C.3, can now be written as

Ax

∂φ

∂x
+Ay

∂φ

∂y
+Az

∂φ

∂z
+H(r)φ = S(r) (C.8)

The matricesAx, Ay, Az andH are of sizeW ×W and the vectorφ holds all wavelet expansion coefficients.
All matrices and vectors are specified below, except the matrix H, which is described later.

Axvw =
∫

4π ΩxGv(Ω̂)Gw(Ω̂)dΩ̂ =

∫ 2π

0

∫ 1

−1

√

1− µ2 cosωGv(Ω̂)Gw(Ω̂)dµdω (C.9)

Ayvw =
∫

4π ΩyGv(Ω̂)Gw(Ω̂)dΩ̂ =

∫ 2π

0

∫ 1

−1

√

1− µ2 sinωGv(Ω̂)Gw(Ω̂)dµdω (C.10)

Azvw =
∫

4π ΩzGv(Ω̂)Gw(Ω̂)dΩ̂ =

∫ 2π

0

∫ 1

−1
µGv(Ω̂)Gw(Ω̂)dµdω (C.11)

Sw =
∫

4π s(r)Gw(Ω̂)dΩ̂ =

∫ 2π

0

∫ 1

−1
s(r, Ω̂)Gw(Ω̂)dµdω (C.12)

81



C WAVELET MATHEMATICS

Matrix H specifies the scatter and total removal operators and can be specified in several different ways.
The most common way is using the Legendre expasion of the scattering cross section. This results in the
following expression [3]

Hvw =
∫

4π σtGvGwdΩ̂−
[

∑L
l=0 σslα

e,l,0
v αe,l,0

w + 2
∑L

l=1 σsl
∑l

m=1[α
e,l,m
v αe,l,m

w + αo,l,m
v αo,l,m

w ]
]

(C.13)

where

αe,l,m
v =

∫

4π
GvY

e
l,mdΩ̂ (C.14)

αo,l,m
v =

∫

4π
GvY

o
l,mdΩ̂ (C.15)

andY e
l,m andY o

l,m are the real and complex parts of the spherical harmonic function Yl,m.
In this report we used isotropic scatter, which simplifies the matrixH . We can then write it as

Hvw =

∫

4π
σtGvGwdΩ̂−

σs
4π

∫

4π
GvdΩ̂

∫

4π
GwdΩ̂ (C.16)

Another less common method would be to use binning, which means that the scatter cross section is de-
scribed as a ratio of neutrons that end up in a certain ‘bin’ inthe angular variable.

In Section 3.3 some properties of wavelets are mentioned, including the orthogonality relations between
wavelets. They can be expressed as

< Gv , Gw >=

{

0 if v 6= w

1 if v = w
(C.17)

However, in the case of wavelets we also have integrals with the angular coefficientsΩx, Ωy andΩz in the
integrand, which throw off the orthogonality relations. Therefore the matricesAx, Ay andAz will not be
sparse. The integrals in Equations C.9 through C.11 cannot be interpreted as inner products, since they are not
positive-definite. When the support of the waveletsGv andGw do not overlap the integral will evaluate to zero,
however these wavelets are not the zero element in the wavelet function space. One could look for wavelets that
will produce sparse matrices, however these will not be easyto find, as they will have to satisfy ‘orthogonality’
relations with respect to four different integrals.
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D ADJOINT NEUTRON TRANSPORT

D Adjoint Neutron Transport

In this section the adjoint operator of a simplified version of the transport equation is derived. This equation
reads, see Equation 2.2,

Ω̂ · ∇φ(r, Ω̂) + σt(r)φ(r, Ω̂) =
σs
4π

Φ(r) + S(r, Ω̂) (D.1)

An alternate expression for this equation is in terms of the operatorL and the external sourceS

Lφ = S (D.2)

The adjoint operator or equation can be derived using inner products. An inner product in this case is an integral
over the whole phase space of a product of two functions, or inmathematical notation

< f, g >=

∫

V

∫

4π
f(r, Ω̂)g(r, Ω̂)dΩ̂dV (D.3)

With this notation the adjoint operator can be derived as follows

< φ∗, Lφ >=< φ∗, S > ⇐⇒ < L∗φ∗, φ >=< φ∗, S > (D.4)

whereL is the forward operator andL∗ is the adjoint operator. We can chose the right hand side of the adjoint
problem equal to the detector cross section, in other wordsL∗φ∗ = σD. This leads to

< L∗φ∗, φ >=< σD, φ >=< φ∗, S >= J (D.5)

whereJ is the detector response. The relation< σD, φ >=< φ∗, S > is known as the duality relation. The
explicit expression for the forward operatorL in our case is

L = Ω̂ · ∇+ σt −
σs
4π

∫

4π
dΩ̂ (D.6)

To derive an explicit expression for the adjoint operatorL∗ we start by substituting the expression forL in
the left hand side of equation D.4

< φ∗, Lφ >=

∫

V

∫

4π
(φ∗

Ω̂ · ∇φ+ φ∗σtφ− φ∗ σs
4π

Φ)dΩ̂dV (D.7)

We will now rewrite each term to obtain the operatorL∗. Note that the operatorL∗ works onφ∗, instead of
φ. Rewriting each term must therefore result in an expressionwith an operator that works onφ∗. We will start
with the total removal, the second term on the right hand sidein Equation D.7

∫

V

∫

4π
φ∗σtφdΩ̂dV =

∫

V

∫

4π
φσtφ

∗dΩ̂dV (D.8)

The next term we consider is the scatter source, the third term in Equation D.7. By rearranging angular
integrals we can switch the two angular solutionsφ andφ∗, resulting in the operator working on the other
function.
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D ADJOINT NEUTRON TRANSPORT

∫

V

∫

4π
φ∗ σs

4π
ΦdΩ̂dV =

∫

V

∫

4π
φ∗dΩ̂

σs
4π

∫

4π
φdΩ̂dV (D.9)

=

∫

V

∫

4π
φdΩ̂

σs
4π

∫

4π
φ∗dΩ̂dV (D.10)

=

∫

V

∫

4π
φ
σs
4π

Φ∗dΩ̂dV (D.11)

The streaming term needs a bit more work than the two other terms. We start by applying the product rule
for derivatives

∫

V

∫

4π
φ∗

Ω̂ · ∇φdΩ̂dV =

∫

V

∫

4π
(Ω̂ · ∇(φ∗φ)− φΩ̂ · ∇φ∗)dΩ̂dV (D.12)

Taking a closer look at the first term on the right hand side reveils that we can get rid of this term by applying
certain boundary conditions. This becomes clear when we apply the divergence theorem to this term

∫

V

∫

4π
Ω̂ · ∇(φ∗φ)dΩ̂dV =

∫

S

∫

4π
Ω̂ · n̂φ∗φdΩ̂dS (D.13)

The boundary conditions for the forward problem (corresponding to the solutionφ) stipulate a flux on the
incoming directions. This contribution to the integral canbe cancelled by stipulating an equal flux ofφ∗ in
the opposite direction. Cancellation will take place because the inner product̂Ω · n̂ will only change sign for
opposite directions and the productφ∗φ will be the same for the two opposite directions. Therefore we stipulate
as boundary conditions a flux for outgoing directions for theadjoint problem.

Now that we showed that the first term of Equation D.12 does notcontribute, we observe that the second
term is already in the form we want it to be in. The expression in Equation D.7 now becomes

< L∗φ∗, φ >=

∫

V

∫

4π
(−φΩ̂ · ∇φ∗ + φσtφ

∗ − φ
σs
4π

Φ∗)dΩ̂dV (D.14)

from this it follows that the operatorL∗ can be expressed as

L∗ = −Ω̂ · ∇+ σt −
σs
4π

∫

4π
dΩ̂ (D.15)

The physical interpretation of this operator is that it describes the ‘importance’ of a location in phase space
to the detector response. This follows from the expression for the detector response,J =< φ∗, S >. When we
choseS = δ(r, Ω̂) we see that the inner product reduces toJ = φ∗(r, Ω̂). Therefore the contribution of that
location of phase space is given by the adjoint solution.

This importance flows oppositely to neutrons, therefore a minus sign is in front of the streaming term.
Furthermore the boundary conditions stipulate the importance flowing out of the domain, instead of neutrons
flowing into the domain. This interpretation can be used to decide which patches to refine in order to obtain a
more accurate detector response.
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