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Abstract 
To have a constant power level in a subcritical system an external source is required to compensate for 
the difference between neutron loss and production. In an accelerator driven system (ADS) the 
external source is provided by coupling an accelerator to a subcritical assembly. The shape of the 
neutron flux in an ADS is different from a conventional critical reactor due to this external source. The 
time-dependent behavior of an ADS is also different as the importance of the delayed neutrons is 
reduced with increasing subcriticality. The analysis of transients in accelerator driven systems is an 
important aspect to assess the safety of the reactor. 

Transients inside an ADS can be analyzed numerically by solving the time-dependent neutron 
transport equation directly, but this is an expensive method. Alternative methods to describe the time-
dependent neutron flux are provided by modal expansion techniques. In modal expansion techniques 
the neutron flux is expressed as a summation over the product of spatial modes and time-dependent 
coefficients. The main interest of this thesis is found in the use of alpha modes as the spatial modes of 
a modal expansion technique. The alpha modes lead to an uncoupled set of ODEs to describe the time-
dependency of the expansion coefficients. Also lambda modes and a set of basis functions obtained by 
proper orthogonal decomposition were investigated as alternative spatial modes for the modal 
expansion technique. The PHANTOM code package was used in this work to calculate the alpha and 
lambda modes used in the modal expansion and to calculate reference solutions by solving the time-
dependent neutron transport equation directly. 

The alpha mode expansion technique was applied to a 1D-model and two 2D-models. The modal 
expansion was used to reconstruct the steady-state flux and the time-dependent flux during different 
transients. When the results are compared with the reference solutions it was found that the alpha 
modes can reconstruct the time-dependent neutron flux of an ADS quite accurately during a transient. 
There are however some problems in reconstructing the flux contributions associated with the very 
fast time scales due to difficulties in the determination of the higher alpha modes, which is 
computationally expensive and often less accurate for the higher modes. Improvements in the 
calculation of the alpha modes should improve the accuracy of the modal expansion technique. 

During the thesis also a geometrical model was made of the GUINEVERE facility, located at 
SCK in Mol, to perform calculations of keff. The value obtained for keff was consistent with other 
reference calculations. Two transient scenarios were studied for this realistic 3D ADS model by 
solving the time-dependent transport equation directly. The calculation of the alpha modes in 3D was 
too expensive making it impossible to use alpha modes to reconstruct the transients of this 3D-model. 

The lambda mode expansion technique was used to reconstruct the neutron flux in the same 1D 
ADS model. The reconstruction of the time-dependent flux by the lambda mode expansion led to quite 
inaccurate results, especially in the multi-group case. It is concluded that despite the short calculation 
time of the lambda modes the alpha modes are a much better option to describe the time-dependent 
neutron flux in an ADS accurately. 

Finally the proper orthogonal decomposition was investigated as a possibility to provide the 
spatial modes for the modal expansion technique. It was possible to reconstruct the steady-state flux of 
the 1D ADS accurately with only a few POD basis functions. The POD has not been applied to time-
dependent problems since application of the transport operator is required to calculate the expansion 
coefficients and the implementation would have been outside the scope of this thesis. 



 



List of symbols 
 
a  extrapolated boundary [cm] 

( )nA t  alpha mode expansion coefficient [-] 

( )lB t  lambda mode expansion coefficient [-] 

1B  geometric buckling [cm-1] 

( ),iC r t  (time-dependent) precursor concentrations [cm-3] 

D  diffusion coefficient [cm] 
E  neutron energy [eV] 

,f g  inner product of f and g 

F  fission operator 
( )e

nh x  FEM basis functions corresponding to node n on element e 

h  mesh size used in the finite difference method [cm] 
effk  effective multiplication factor [-] 

k∞  multiplication factor in an infinite system [-] 
l∞  average neutron lifetime in an infinite system [s] 

L  transport operator (including scattering) 
L  diffusion length [cm] 
( )L t  neutron loss rate [s-1] 

( )P t  neutron production rate [s-1]; also used as reactor power in section 2.2.5 

( )ˆ, , ,Q r E tΩ  external neutron source [cm-3·s-1·eV-1] 

( )Ω̂Q  vector containing the spherical harmonics polynomials 

r  neutron position vector ( ), ,x y z  

[ ]R ψ  least squares functional 

t  /  time [s]; size of time-step during time-integration [s] tΔ
V  / gV  neutron velocity / group velocity [cm·s-1] 

( ),
ˆ

l mY Ω  spherical harmonics polynomials [-] 

( ),k kZ x t  snapshot k used in the proper orthogonal decomposition 

 
nα  time-eigenvalues [s-1] 

β  delayed neutron fraction [-] 

iλ  decay constant of precursor i [s-1] 

nλ  lambda-eigenvalues [-] 

ν  average number of neutrons released per fission [-] 

aΣ  absorption cross section [cm-1] 

fΣ  fission cross section [cm-1] 

sΣ  scattering cross section [cm-1] 



tΣ  total cross section [cm-1] 

( )ˆ
jΦ x  POD basis functions 

( ), ,r E tφ  / gφ  scalar neutron flux [cm-2·s-1·eV-1] / group flux [cm-2·s-1] 

( )Eχ  fission spectrum [-] 

( )ˆ, , ,r E tψ Ω  / gψ  angular neutron flux [cm-2·s-1·eV-1] / group flux [cm-2·s-1] 
†ψ  adjoint neutron flux [cm-2·s-1·eV-1] 

( )ˆ, ,r Eαψ Ω  alpha mode flux [cm-2·s-1·eV-1] 

( )ˆ, ,r Eλψ Ω  lambda mode flux [cm-2·s-1·eV-1] 

Ω̂  neutron direction vector [-] 
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1 Introduction 
Equation Chapter (Next) Section 1 
 
1.1 General introduction 
In a conventional critical nuclear reactor the production rate of neutrons by fission is equal to the loss 
rate by absorption and neutron leakage making the nuclear chain reaction self-sustaining. In a 
subcritical reactor the fission chain reaction cannot sustain itself since more neutrons are lost, due to 
absorption and leakage, than produced. To have a constant power level in a subcritical system an 
external neutron source is required to compensate for the difference between neutron loss and 
production. In an accelerator driven system the external source is provided by coupling an accelerator 
to a subcritical assembly. The accelerator produces a beam of high-energy particles which cause the 
production of spallation neutrons in a target somewhere in the center of the subcritical assembly. 

The neutrons produced by the spallation source have a very high energy and are therefore capable 
of incinerating actinides and transmuting long-lived radionuclides. The capability of reducing the 
lifetime of nuclear waste is one of the interesting features of the ADS. 

Due to the subcriticality of the assembly the fission chain reaction cannot sustain itself any longer 
inside an ADS when the accelerator is turned off. In case of emergency this is an interesting benefit of 
the ADS. An important safety issue on the other hand is that the time scale on which the flux changes 
inside an ADS after a change of reactivity, for instance due to a variation in source intensity, can be 
much faster than in a critical assembly. In a critical assembly this time scale is associated with the 
delayed neutrons. For a subcritical configuration the role of the delayed neutrons is much smaller and 
the system will react faster to a reactivity change. So the analysis of transients of accelerator driven 
systems is very important with respect to the actual safety of the reactor. 

The transients in an ADS can be analyzed numerically by solving the time-dependent neutron 
transport equation directly. From a computational point of view this is an expensive method since a 
high-dimensional partial differential equation must be solved to describe the time-dependent neutron 
flux. The time-dependent neutron flux can also be described by expressing the neutron flux as a 
summation over the product of spatial modes and time-dependent coefficients. These are modal 
expansion techniques. The so-called alpha modes are the most interesting option to use as the spatial 
modes. Using the alpha modes the time-dependent expansion coefficients can be described by an 
uncoupled set of ODEs and the time dependent part of the calculation is computationally cheap to 
perform. But also alternatives such as the lambda modes or a set of basis function obtained by proper 
orthogonal decomposition can be considered. For a critical system the neutron flux can be described 
by using only the fundamental mode, while the steady-state neutron flux of an ADS also requires the 
use of higher modes due to the subcriticality of the system and the influence of the source neutrons 
upon the flux shape. 

 
1.2 The GUINEVERE project 
An important example of an accelerator driven system is found in the GUINEVERE project. The 
GUINEVERE (GEneration of Uninterrupted Intense NEutrons pulses at the lead VEnus REactor) 
project is a major experiment with the main goal to develop and qualify different techniques for the 
reactivity monitoring of subcritical accelerator driven systems. Another goal of GUINEVERE is to 
create representative conditions of a lead-cooled ADS by a lead matrix core. The lay-out of the 
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VENUS critical facility, located at the SCK-CEN site in Mol, was modified into a lead-matrix core, 
the so-called VENUS-F core, to accommodate the GUINEVERE project. 

The experimental set-up is made by coupling a fast lead simulated cooled reactor with the 
GENEPI-3C neutron generator. The GENEPI neutron generator consists of a 250 KeV deuteron 
accelerator producing 2,5 MeV-neutrons by the D(d,n)3He or 14 MeV-neutrons by the T(d,n)4He 
nuclear fusion reactions in a target. A drawing of the reactor building is shown in Figure 1.1. 

 
Figure 1.1 Schematic drawing of the GUINEVERE facility 

The accelerator can be operated both in continuous mode and pulsed mode. Both are needed to 
validate different techniques for reactivity monitoring. In the predecessor of the GUINEVERE project, 
the MUSE project, the GENEPI-2 accelerator could only be operated in a pulsed mode. In the first 
stage of the project the reactor is operated in a critical configuration without the accelerator and later 
on in a subcritical configuration driven by the GENEPI-3C neutron generator. 
 
1.3 The work in this thesis 

This thesis work was performed as a Masters End Project (MEP) of the applied physics education 
at Delft University of Technology in the group Physics of Nuclear Reactors (PNR). The central 
question of the thesis is whether the flux expansion technique using alpha modes can accurately 
reconstruct the time-dependent neutron flux of an ADS during a transient. Important subquestions are 
related to the number of modes required to accurately describe the neutron flux and the influence of 
the delayed neutrons. Another question is whether the lambda modes and the POD basis functions can 
be used as an alternative basis for the modal expansion technique to describe the time-dependent 
neutron flux. 

The influence of the delayed neutrons in an ADS is investigated in chapter 2. During the thesis the 
alpha and lambda modes are determined with the PHANTOM code package. The fixed-source or 
reference time-dependent calculations are also performed with PHANTOM. PHANTOM is an 
unstructured finite element neutron transport tool and the subject of the third chapter. 

Ideally the alpha modal expansion technique should have been applied to the 3D model of the 
subcritical configuration of the GUINEVERE facility. Unfortunately it was computationally too 
demanding to calculate the alpha modes for this 3D model. Nevertheless calculations were performed 
of two different transients, turning on and off the source, to study the time-dependent behaviour of a 
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realistic 3D ADS-model. The results are presented in chapter 4 along with calculations of keff for the 
critical configuration. 

The alpha mode expansion technique was applied to a 1D-model and two 2D-models in chapter 5. 
The models resemble the basic physical properties of a real ADS. The neutron flux is constructed by 
the alpha mode expansion for the steady-state problem and transient scenarios, such as turning off the 
source after operating at a constant power or switching on the source with zero initial flux. To check 
the accuracy of the alpha mode reconstructed flux reference solutions were calculated by performing 
the full time-dependent transport calculation with PHANTOM. 

Two alternative bases for a modal expansion technique are investigated in chapter 6. The lambda 
modes are used in a modal expansion and the results are compared for the 1D ADS-model with the 
reference solution and the alpha mode expansion. As a second alternative the basis functions obtained 
by the proper orthogonal decomposition were used to reconstruct the steady-state flux of the 1D ADS. 
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2 Kinetics of accelerator driven systems 
Equation Chapter (Next) Section 1 
 
2.1 ADS physics in literature 
The physics of subcritical source driven systems can be quite different compared with the critical core 
configurations normally studied in reactor physics. This section aims to discuss some important 
aspects of the physical behavior of accelerator driven systems. Also some of the important 
computational methods used in literature to determine the transient behavior of accelerator driven 
systems are discussed. 
 
2.1.1 Source dominance 
In critical reactors the neutron distribution is governed by one fundamental eigenstate of the system. 
Without an external source all higher modes die out after a sufficient amount of time. For an ADS the 
presence of a source and the subcriticality of the system causes the neutron flux shape to deviate from 
the fundamental eigenfunction as subcriticality increases. 

Ravetto [2000] states that the stationary neutron distribution in a source driven strongly subcritical 
multiplying system is dominated by the presence of the source and can be very different from the 
fundamental critical eigenstate. According to Ravetto [2000] the neutron distribution approaches the 
fundamental eigenstate for a system approaching criticality. Ravetto [2003] also states this in other 
words: for subcritical systems the importance of higher-order harmonics increases with increasing 
subcriticality. This relationship between the subcriticality level and the source dominance of the 
system is also recognized by Dulla [2003] and Saracco & Ricco [2009]. 

With respect to the safety of accelerator driven system, Ravetto [2000] also makes a few 
interesting remarks. Subcriticality makes accelerator driven systems safer than conventional reactors 
with respect to sudden insertions of positive reactivity since it is not possible for the nuclear chain 
reaction to grow out of control. For subcritical systems a (large) localized fixed perturbation only 
results in slight changes of the flux nearby the perturbed region of the system, while the distortion 
sharply increases for a system approaching criticality. Or in the words of Dulla [2003]: Source driven 
systems are more resistant to spatial neutron distribution distortions. An important safety issue 
however is raised by the rapidity of the power responses due to external or accident perturbations. This 
is strongly connected to the role of the delayed neutrons, which is expected to be much smaller in 
subcritical systems. 
 
2.1.2 Delayed neutrons 
In the operation of nuclear reactors very different time scales have to be considered [Ravetto et al. 
2003]. On the one hand the very fast scale of the prompt neutrons (10-4 ~ 10-6 s) and on the other hand 
a much slower scale associated with the delayed neutrons (10-1 ~ 101 s). These delayed neutrons are 
vital for effective control of the nuclear chain reaction in a critical nuclear reactor. 

According to Ravetto [2000] it appears that the relative weight of the delayed neutron source is 
significantly reduced with the subcriticality level. As a consequence the power response to sudden 
perturbations is almost instantaneous for highly subcritical systems. For systems devoted to actinide 
transmutation the low delayed neutron fraction of the actinides can even worsen this situation. 
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Ravetto [2000] shows for a point reactor model that the weight of the delayed source with respect to 
the effective external neutron source reduces as subcriticality increases. This feature is also observed 
in more realistic space-energy models. 

Saracco & Ricco [2009] presented a model for a subcritical neutron multiplying sphere coupled to 
an external time-dependent neutron source, within one group diffusion theory. The problem was 
solved without any other approximation. Saracco & Ricco [2009] also showed with their model that 
the importance of the delayed neutrons decreases as the subcriticality of the system increases. 

Saracco & Ricco [2009] distinguish three different operating regimes for a subcritical assembly.  
Very far from criticality (keff  < 0.8 to 0.9) the system almost immediately responds to a variation of 
the source, only a fraction β of the power evolves with the time scale of the delayed neutrons. In this 
case time and space behavior of the system practically factorize. According to Ravetto [2000] this 
property makes so-called quasi-static methods very useful for time-dependent calculations of 
subcritical systems. 
Close to criticality (keff > 0.95 to 0.97) the fundamental mode becomes more and more relevant and a 
simple time behavior (such as point-kinetics) of the system with one dominant fundamental mode is 
recovered. 
In the intermediate region (0.8 to 0.9 < keff < 0.95 to 0.97) the behavior of the system is more 
complicated to describe. 
 
2.1.3 Computational methods 
Direct methods are a straightforward way to solve the time-dependent neutron transport (or diffusion) 
equations. But they are often computationally expensive and to solve time-dependent problems with 
precursors a very large number of small time-steps is needed to accurately describe the behavior of the 
prompt neutrons and still capture the evolution of the delayed neutrons [Cao, 2008]. To save 
computational effort other methods are often preferred. 

The time-dependent behavior of a conventional critical reactor is often described by the point-
kinetics approximation. The classical point-kinetic model is based upon the factorization of the 
neutron flux into the product of a time-constant shape function for the whole reactor and a time-
dependent amplitude function. A system of equations in the time-domain can then be constructed to 
describe the evolution of the bulk of the neutron population [Bosio et al., 2001]. Obviously the point-
kinetics model greatly reduces the computational effort required to determine the time-dependent 
behavior of a reactor. 

In point kinetics only the fundamental eigenfunction of the operator appears in the neutron 
distribution at all instants. The neutron distribution of source driven systems may however involve a 
superposition of many eigenfunctions. As a consequence the eigenfunction interpretation of the point-
kinetics model fails for subcritical source driven systems [Ravetto et al., 2003]. In general this makes 
the point-kinetics model inapplicable to describe the transient behavior of accelerator driven systems. 

A natural extension of the point-kinetics model is the quasi-static scheme [Bosio et al., 2001]. In 
the quasistatic method the neutron flux is factorized as the product of a rapidly varying amplitude and 
a slowly varying shape vector. Knowing the shape, the evolution of the amplitude can be solved on a 
fast time scale and then the shape function can be solved on a much slower time scale, still 
significantly reducing the required computational effort with respect to direct methods. In the end the 
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amplitude is solved for each time-step and the shape is only recalculated a few times. Using only one 
shape calculation the quasi-static method reduces to the point-kinetics model [Ravetto, 2000]. 

Ravetto [2000] shows for a source-driven system three-dimensional system with hexagonal fuel 
elements that a correct representation of the power evolution requires several shape recalculations over 
the time interval. Using only one shape calculation (point-kinetics) the calculated power after some 
time is significantly smaller than the actual power.  

For decoupled systems (e.g. accelerator driven systems with a fast and thermal region) the quasi-
static method may require many shape recalculations. For these cases Bosio [2001] advises the use of 
a quasi-static scheme using multipoint equations. In multipoint methods, as described by Dulla & 
Picca [2006], the system is divided into a smaller number of macro-regions in phase-space and the 
neutron flux is factorized in the product of shape and amplitude functions on each subdomain. 

Another group of methods for performing space-time kinetics are the modal expansion methods. 
In modal expansion methods the time-dependent neutron flux is expanded into known eigenfunctions, 
often called modes, describing the spatial dependence of the flux and unknown expansion coefficients 
describing the temporal dependence of the flux. Modal methods are used to obtain an economical, but 
accurate approximation of the time-dependent neutron flux. 

The most common modes used in the modal expansion method, according to De Lima [2009], are 
the natural modes, also known as alpha modes, and the lambda modes. The alpha modes and lambda 
modes will be investigated during this thesis. The alpha modes are the eigenfunctions associated with 
the neutron balance and time-dependent precursor operators. The alpha mode expansion leads to a 
system of uncoupled modal equations describing the time-dependency of the system [De Lima et al., 
2009]. Solving the system of uncoupled modal equations itself requires almost negligible 
computational effort. 

The basic theory for the modal expansion method using alpha modes has been derived for the 
space-time neutron diffusion equation by Cao [2008]. Cao states that the modal expansion method is 
not very popular anymore because a large number of modes are required in order to obtain a 
sufficiently accurate solution, especially in regions with large perturbations. Cao [2008] mainly uses 
the modal expansion technique as a useful tool for analyzing the spatial effects in pulsed-neutron 
experiments. Verdu [2010] recommends the use of prompt alpha modes, when compared to lambda 
modes, to solve time-dependent source problems in subcritical configurations. 

The Implicitly Restarted Arnoldi Method (IRAM) has been used by Lathouwers [2003] to 
calculate alpha modes in neutron transport. The IRAM offers the possibility to calculate a substantial 
number of alpha modes. An important objective of this thesis is to investigate the possibilities of using 
these alpha modes as a basis for a modal expansion method to perform space-time neutron kinetics for 
accelerator driven systems. 

The lambda modes are the eigenfunctions associated with the steady-state neutron balance 
operator. The lambda eigenfunctions are relatively easy to calculate but also in this case complex 
eigenfunctions might occur [De Lima et al., 2009]. The modal expansion method based upon the 
lambda modes does not lead to an uncoupled system of equations. This is shown by González [2010] 
for a critical core configuration with perturbed fission and transport operators. The lambda modes are 
also investigated in this thesis as a possible basis for a modal expansion method. 
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2.2 The importance of delayed neutrons 
In this section a reactor model based upon the one speed 1D diffusion equation with precursors is 
developed. The main purpose of this model is to study the role of the delayed neutrons in an ADS and 
to make a simple study of the influence of the level of subcriticality of an ADS upon the neutron flux 
shape. 

The transient calculations performed later in this thesis take place on very short time scales (  
ms). Upon this time scale it is assumed that the contribution of delayed neutrons to the neutron flux 
can more or less be considered as a constant background. For this reason all calculations in this thesis 
work, except for this chapter, are performed with only prompt neutrons. 

1

For two reasons it is however important to obtain more knowledge about the influence of delayed 
neutrons in the transient behavior of accelerator driven systems. The first reason is to check whether it 
is really a reasonable assumption to neglect the precursors during the calculations of these short-term 
transients. Secondly it is also relevant to have some idea what will happen on a longer time scale. The 
question is how the influence of the delayed neutrons in the power production of a reactor will vary as 
a function of the subcriticality of the system. In the end the 1D diffusion reactor model, which 
includes delayed neutrons, should give more knowledge about the time scales involved in an ADS. 

Another reason to construct the 1D diffusion reactor model is to study the neutron flux shape as 
the subcriticality level of the ADS varies. According to literature discussed in section 2.1.1 the neutron 
flux becomes more source dominated as the subcriticality of the system increases. In the 1D-difussion 
model this behavior should also occur. 
 
2.2.1 One dimensional homogeneous slab reactor model 
To study the influence of the delayed neutrons and the effects of the source dominance with increasing 
subcriticality a simple 1-dimensional homogeneous slab reactor with a source in the center region was 
chosen and this case was studied in one-speed diffusion theory. The spatial discretization was 
performed by the finite difference method. A scheme of the spatial discretization of the homogeneous 
slab is given in Figure 2.1. 

 
Figure 2.1 Spatial discretization scheme of the 1D ADS model 

The neutron flux in one speed diffusion theory (with I precursor groups) is defined by 
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When the extrapolated length is neglected the boundary conditions are  and 

, where a is the thickness of the slab reactor. When the source is turned on it is 

described as 

( )/ 2, 0a tφ − =

( )/ 2, 0a tφ =

 ( )
2 21

20
x

q x
x

− ≤ ≤⎧
= ⎨ >⎩

. (2.2) 

The effective multiplication factor for such a system is, according to Duderstadt & Hamilton [1976], 
determined as 

 
( )2 2

11
f

eff
a

k
L B

νΣ
=
Σ +

, (2.3) 

where the diffusion length 
a

DL =
Σ

and 1B
a
π⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

The six precursor groups given in Table 2.1 are used in the calculations. These numbers are based 
upon values given by Duderstadt & Hamilton [1976] for U-235 with 2.5v = . 

Table 2.1 Delayed neutron fractions and decay constants of U-235 
Group i 

iβ  ( )1
i sλ −  

1 0.000254 0.0127 
2 0.001421 0.0317 
3 0.001254 0.1155 
4 0.002716 0.3108 
5 0.000854 1.3975 
6 0.000173 3.8723 

The values of some important constants in the calculations have to be chosen or determined. For the 
neutron yield  a typical value of 2.5 is chosen. Scattering is assumed to be isotropic, so v 1 3 tD = Σ . 

The total delayed neutron fraction is given by i
i

β β=∑ . The neutron velocity V  is set at 108 cm·s-1. 

For the diffusion approximation to be valid it is desirable that aΣ  is small compared to . To ensure 

this  and  was chosen during the calculations. In practice  is a bit 
smaller for uranium (

tΣ
11 t cm−Σ = 10.2 a cm−Σ = tΣ

tΣ = 0.765 cm-1, according to Duderstadt & Hamilton [1976]), but for 

computational simplicity 1 is a practical value to work with. It is also important to notice that the 
extrapolated distance ( 1 tΣ ) is small compared to the width of the whole slab reactor and can 
therefore be neglected. fΣ  will be varied during the calculation to obtain different subcriticality levels. 

 
2.2.2 Solving the steady state flux with the 1D diffusive model 

If the system is in a steady state ( 0
t
φ∂
=

∂
, 0iC

t
∂

=
∂

) eq. (2.1) reduces to 
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i
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D q
x

C i

φ ν φ
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φ

λ

∂
= Σ − Σ −

∂
Σ

= = I
, (2.4) 

where the steady-state neutron flux and the steady-state precursor concentrations are denoted by φ  
and . The steady state neutron flux obviously does not depend on the precursor density. iC
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The space dependence of the steady-state diffusion equation is discretized by finite differences. The x-
domain is divided into K subintervals with length h, which leads to 

 
( ) ( ) ( ) ( ) ( )1 1

2
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kx x x q x
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h D D
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Since the extrapolated distance is neglected the boundary conditions are given by 
 ( ) ( )1 0kx xφ φ= =  (2.6) 

This can be written in matrix vector notation by writing 
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φ
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φ
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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( )
( )

( )

1
2

2

K

q x
q xhq

D
q x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Now MATLAB can solve the following system 
 qφ =A . (2.7) 

Once the flux φ  is known the steady state precursor concentrations iC  can easily be calculated. 

 
2.2.3 The steady state flux of the diffusive slab reactor 
Calculations of the steady state neutron flux were performed for keff ranging from 0.9 to 0.9999. keff 
was varied by choosing the appropriate fission cross section fΣ . The steady state neutron flux is 

normalized and plotted in Figure 2.2 for the different values of . effk
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Figure 2.2 Normalized steady state neutron flux of the 1D diffusion problem for different keff 
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Interesting to notice is that shape of the neutron flux becomes more and more dominated by the source 
region as subcriticality increases. Only if the system is very close to criticality (keff  = 0.9999) the 
cosine shape of the fundamental mode is recovered. The dominance of the source as subcriticality 
increases was already described in literature by Saracco & Ricco [2009], Dulla [2003] and Ravetto 
[2000]. The change in the shape of the neutron flux as subcriticality increases also illustrates that 
higher harmonics are needed to describe the neutron flux, and this is exactly why, according to 
Ravetto [2003], the point-kinetics model fails for (largely) subcritical systems. 
 
2.2.4 Time dependent solution of the 1D diffusion problem 
Now the steady state flux of the one-dimensional diffusive slab reactor can be determined. It is more 
interesting to determine the time-dependent solution of the problem since this should reveal the 
influence of the delayed neutrons during a transient in the system. By simply writing ( ),k kx tφ φ=  

and  the time dependent diffusion equation with finite difference discretization in the 

x-domain can be written as 

(, ,i k i kC C x t= )

 
( )1 1

,2

,
,

21 1k k k k
a k f k i i k k

i

i k
i i k i f k

D C
V t h

C
C i

t

Qφ φ φ φ φ β ν φ λ

λ βν φ

− +∂ − +
= −Σ + − Σ + +

∂
∂

= − + Σ ∀
∂

∑
. (2.8) 

Now the time-integration is performed for each time-step n by means of implicit Euler, which leads to 

 
( )

1 1 1 1
1 11 1

,2

1
, , 1 1

,

21 1
n n n n n

n n nk k k k k
a k f k i i k k

i

n n
i k i k n n

i i k i f k

D C
V t h
C C

C i
t

φ φ φ φ φ φ β ν φ λ

λ βν φ

+ + + +
1 1nQ+ + +− +

+
+ +

− − +
= −Σ + − Σ +

Δ

−
= − + Σ ∀

Δ

∑ ++
, (2.9) 

and upon rewriting 

( ) ( )

( )

1 1 1 1
1 1 ,2 2

1
,1

,

1 1 2

1

n n n n n
a f k k k k i i k

i

n n
i k i f kn

i k
i

D DV t V t V t C V tQ
h h

C t
C i

t

β ν φ φ φ φ λ

βν φ
λ

1n
k

+ + + +
− +

+
+

⎛ ⎞⎡ ⎤+ Δ Σ − − Σ + − Δ + = + Δ + Δ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
+ Σ Δ

= ∀
+ Δ

∑ +

. 

  (2.10) 
Now fill in  into the upper equation of 1

,
n
i kC + (2.10) to find 

 
( ) ( ) ( )1 1

1 12 2

, 1

1 1 2
1

1

i i f n n
a f k k k

i i

n
i i kn n

k k
i i

tD DV t V t
h t h

C
V t V tQ

t

λ βν
β ν φ φ φ

λ

λ
φ

λ

+ +
− +

+

⎛ ⎞⎡ ⎤Σ Δ
+ Δ Σ − − Σ + − − Δ + =⎜ ⎟⎢ ⎥⎜ ⎟+ Δ⎣ ⎦⎝ ⎠

+ Δ + Δ
+ Δ

∑

∑

1n+

. (2.11) 

This equation can also be written in matrix form 

 1

1

n
n n ni i

i i

CV t Q
t

λφ φ
λ

+ ⎛ ⎞
= + Δ +⎜ + Δ⎝ ⎠

∑B 1+
⎟ , (2.12) 

where the diagonal elements of are given by  kkb B

 ( ) 21 1 2
1
i i f

kk a f
i i

tDb V t
h t

λ βν
β ν

λ
Σ Δ⎡ ⎤

= + Δ Σ − − Σ + −⎢ ⎥+ Δ⎣ ⎦
∑  
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and is then given by B

2 2

2 2

2

2

1 0 0 0 0 0

0 0 0

0 0

0 0

0 0 0

0 0 0 0 1

kk

kk

kk

D D
V t b V t

h h

D D
V t b V t

h h

D
V t

h

D
b V t

h

− Δ − Δ

− Δ − Δ

− Δ

− Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B
0

. 

Note that it might be necessary to use another value than 1 in the first and last coefficient on the 
diagonal to ensure numerical stability. The matrix B  might otherwise become ill-conditioned since 
the other values in the matrix are of another order of magnitude. The matrix-vector equation can be 
solved easily by MATLAB and the resulting vector 1nφ +  is used to compute 1n

iC +  

 
( )

1
1

1

n n
i i fn

i
i

C t
C

t
βν φ

λ

+
+ + Σ Δ
=

+ Δ
. (2.13) 

This procedure is repeated for each time step. 
There are two basic time-dependent scenarios for this problem. In the first the solution of the 

steady state equations ( 1
steady stateφ φ −= ) is used as an initial condition combined with a shutdown of 

the source: ( )1 0nQ > = . The second scenario starts with zero flux ( 1 0φ = ) and the source is turned on: 
( )1nQ q> = . 

 
2.2.5 Shutdown of the slab reactor 
For the scenario of a shutdown of the source ( 1

steady stateφ φ −=  and ( )1 0nQ > = ) the time-dependent 

neutron flux was calculated for different values of , ranging from 0.9 to 0.997. The ratio between 

the instantaneous power production in the reactor and the steady-state power 

(

effk

( ) ( )

( )

50

50
50

50

,
x

x
s

steady state
x

x t dx
P t

P
x dx

φ

φ

+

=−
=

−
=−

=
∫

∫
) has been plotted as a function of time. The spatial integration was 

performed with a simple middle Riemann sum, characterized by ( ) ( ) ( )1

1 2

xn
i i

ix

f x f x
f x dx x+

=

+
= Δ∑∫ . 

The time is given on a logarithmic scale to be able to capture the important events of the prompt 
neutrons and the delayed neutrons in one graph. To capture the time scales of both the prompt and the 
delayed neutrons  was increased after each time step of the calculation. As a consequence smaller 
steps were made in the prompt regime and larger steps in the delayed regime. 

tΔ
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Figure 2.3 Fraction of steady-state power production after source shutdown for different keff 

After the shutdown of the source the neutron flux will rapidly decrease. After a couple of 
microseconds (3~30 sμ ) the neutron flux in the system is almost stable. After 20  the neutron flux 

slowly starts to decrease again due to precursor decay. The largest decrease takes place on the 
timescale of seconds. On short time scales (

ms

1 ms< ) the decay of precursors can be treated as a 
constant background in the neutron flux. From the plot it also becomes clear that the delayed neutrons 
play a much larger role when  approaches criticality. A similar relationship of reducing importance 

of delayed neutrons as subcriticality increases was also discovered by Ravetto [2000] and Saracco & 
Ricco [2009]. 

effk

 
2.2.6 Start-up of the slab reactor 
Also for the start-up of the reactor ( 1 0φ = and 1nQ > q= ) the fraction of the total power production as 

a function of time has been plotted in Figure 2.4. In this case a similar observation as with the 
shutdown of the source can be made: the delayed neutrons play a greater role as  approaches 

criticality. 
effk

The prompt neutrons are responsible for a steep rise of the neutron flux in the first few sμ after 

the source is switched on. Then the neutron flux remains at a stable level until the concentration of the 
precursors has built up significantly and the resulting delayed neutrons start contributing to the total 
neutron flux. In the end the neutron flux becomes equal to the flux of the steady-state problem. 

In this case it can be noted again that the transient behaviour of the system during the early stages 
( ) can be analysed by considering only the prompt neutrons. Since the initial flux and initial 
precursor concentrations are zero there is also no background due to the delayed neutrons. 

1 ms<
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Figure 2.4 Fraction of steady-state power production after source startup for different keff 

 
2.2.7 Conclusions 
In section 2.1 about ADS literature three important characteristics of the transient behaviour of an 
ADS were mentioned. First of all the source dominates the neutron flux shape for highly subcritical 
systems. Secondly the prompt neutrons act on a very fast time scale and the delayed neutrons on a 
much slower time scale. Thirdly the weight of delayed neutrons in the total power production is 
significantly reduced as subcriticality of a system increases. These three characteristics encountered in 
literature were also discovered in the results of the relatively simple 1D-diffusion model. 

This study also shows that the delayed neutrons can be considered as a constant background 
during a transient on a short-time scale (< 1 ms). Since the transients in the remainder of this thesis are 
only studied upon short time scales it seems reasonable to neglect the delayed neutrons during the 
transient calculations in this thesis. For highly subcritical systems the reduced weight of the delayed 
neutrons in the total power production can be considered as an additional justification to neglect the 
delayed neutrons. The reduced weight of the delayed neutrons can be an important issue with respect 
to the safety of an ADS during a transient. 
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3 Fixed source and mode calculations with PHANTOM 
Equation Chapter (Next) Section 1 
 
3.1 The neutron transport equation 
The central problem in nuclear reactor theory is the determination of the distribution of the neutrons in 
the reactor. The neutron distribution determines the rate at which various nuclear reactions occur. In 
order to predict for instance the power production of a nuclear reactor the neutron flux must be 
calculated. The neutron flux, ( )ˆ, , ,r E tψ Ω , in a nuclear reactor is described by the neutron transport 

equation 

 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) (

4 0

4 0

ˆ, , ,1 ˆ ˆ, , , , , , , ,

ˆ ˆ ˆ ˆ, ' , ' , , ', ', ' '

ˆ ˆ ˆ, ', , ', ', ' ' , , ,
4

t

s

f

r E t
r E t r E t r E t

V t

r E E t r E t dE d

E
r E t r E t dE d Q r E t

π

π

ψ
ψ ψ

ψ

χ
ν ψ

π

∞

∞

∂ Ω
= −Ω⋅∇ Ω −Σ Ω

∂

+ Σ → Ω →Ω Ω Ω

+ Σ Ω Ω + Ω

∫ ∫

∫ ∫ )

ˆ

, (3.1) 

where V represents the neutron speed, tΣ  the macroscopic total cross section , 1cm−⎡ ⎤⎣ ⎦ sΣ  the 

scattering cross section, fΣ  the fission cross section, ( )Eχ  the fission spectrum, ν  the average 

number of neutrons released per fission and ( )ˆ, , ,Q r E tΩ  the external source. 

The transport equation can also be written in a shorter notation 

 [ ]1 Q
V t

ψ ψ∂
= − +

∂
F L . (3.2) 

The transport operator L  contains the effects of neutron leakage, neutron collisions and the 
contribution of neutrons scattered into . The operator F  describes the fission process. The 
notation of eq. 

ˆd dEΩ
(3.2) is used most throughout this thesis. 

If the appropriate cross sections are used the neutron transport equation provides an essentially 
exact description of the neutron distribution within the reactor. The angular neutron flux 

( )ˆ, , ,r E tψ Ω  contains all essential information about the neutronics of a nuclear reactor. In general 

the transport equation is difficult to solve since the neutron flux depends on space, angle, energy and 
time. Direct numerical methods to solve the transport equation are often computationally expensive, 
especially when delayed neutrons are included in time-dependent problems. In practice often 
simplified models are used. An extensive treatment of possible computational methods to solve the 
neutron transport problem was already given in section 2.1.3. During the thesis the transport equation 
was also solved by means of direct methods to obtain reference solutions to check the accuracy of the 
modal expansion methods. 
 
3.2 Basic principles of PHANTOM 
During the thesis the PHANTOM code package is used to solve the neutron transport equation. 
PHANTOM is an unstructured finite element neutron transport tool that can be used to solve fixed 
source problems, perform time-dependent calculations and to calculate α -modes or λ -modes. 
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In this section the least squares functional used by PHANTOM is introduced and the discretization of 
the space, angle and energy variables used in PHANTOM is treated. The same discretizations will also 
be used in the modal expansion methods in chapter 5 and 6. 
 
3.2.1 First order least squares system 
PHANTOM uses a least squares approach to discretize the neutron transport equation. Lathouwers 
[2007] gives a detailed treatment of the least squares approach. Here a short description will be 
sufficient. The one group neutron transport equation can be written as 
 ( ) ( ) ( )ˆ ˆ, ,r M r S rψ ψΩ⋅∇ Ω + Ω = Ω̂, , (3.3) 

where the operator M accounts for scattering and removal and the source ( )ˆ,S r Ω  includes both the 

fission source and the external source. Vacuum boundary conditions are assumed, so at the boundary 

( )ˆ,r 0ψ Ω =  for all inward directions ( ˆ ˆ 0nΩ⋅ < ). The one group transport equation (3.3) can simply 

be written as 
 L Sψ = . (3.4) 

To obtain the neutron flux PHANTOM minimizes a least squares functional 
 [ ] 2

ˆ ˆ 0

ˆ ˆ, 2
V n

R L S L S d Vd nψ ψ ψ
∂ Ω⋅ <

= − − + ∂ Ω Ω⋅∫ ∫ ψ . (3.5) 

The least squares approach can be extended to describe multi-group transport. PHANTOM then solves 
the least-squares function in an inner iteration loop for each energy group and the multi-group problem 
is solved in an outer iteration loop by means of a block Gauss-Seidel procedure. This block Gauss-
Seidel procedure is briefly described in section 3.3.1. 
 
3.2.2 Spherical harmonics expansion of the angular dependence 
In order to solve the neutron transport equation the angle, energy and spatial variables must be 
discretized in some fashion. PHANTOM treats the angular dependence of the neutron flux by 
expanding the flux in terms of spherical harmonics. Any function ( )ˆ,f r Ω  can be written as an 

infinite expansion in terms of spherical harmonics 

 . (3.6) ( ) ( ) ( ), ,
0

ˆ,
l

l m l m
l m l

f r f r Y
∞

= =−

Ω = Ω∑ ∑ ˆ

In practice the function ( )ˆ,f r Ω  will be approximated by truncating the series after l . This 

approximation is called the -expansion. An overview of the (real) -functions used by 

PHANTOM and their orthonormality relations can be found in appendix A. 

N=

NP lmY

For convenience the indices l and m can also be ordered into one vector, with index i describing 
all the spherical harmonics functions. Doing so the spherical harmonics expansion of the function 

( )ˆ,f r Ω  becomes 

 ( ) ( ) ( )
1

ˆ,
M

i i
i

f r f r Q
=

ˆΩ =∑ Ω . (3.7) 

This expansion can conveniently be written in vector notation 
 ( ) ( ) ( ) ( ) ( )ˆ ˆ, T Tf r r rΩ = Ω = ΩQ f f Q ˆ  (3.8) 
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where the vector  contains the set of all spherical harmonics polynomials used in the expansion. 

The orthonormality relation is given by 

( )Ω̂Q

 ( ) ( ) ,
4

i jQ Q d
π

i jδΩ Ω Ω =∫  (3.9) 

or in vector notation . This orthonormality relation of the spherical 

harmonics will be useful in the alpha mode expansion theory. 

( ) ( )
4

T d
π

Ω Ω Ω =∫ Q Q I

 
3.2.3 Spatial finite elements 
The neutron flux is to be determined by means of minimizing the functional [ ]R ψ  defined by eq. 

(3.5). The neutron flux can be expressed as a linear combination of previously chosen basis functions. 
The finite element method (FEM) originates from a clever choice of these basis functions. The FEM is 
well suited for unstructured grids and has a strict local character. All information on one element is 
used, without considering neighbors, making the method very attractive for computer implementation. 
Van Kan [2005] gives an introduction of the basics of the Finite Element Method. 

The spatial dependence of the function ,l mf  can be written as a linear combination of basis 

functions 

 ( ) ( ), ,
1

N
n

l m l m n
n

f r f h
=

= ∑ r  (3.10) 

where  represents the number of nodes defining the FEM grid, N ,
n

l mf  is the value of the function 

,l mf  at the node n and  are the basis functions corresponding to the node n. In one dimension 

the basis functions can be represented by the so-called tent functions. An example of these tent 
functions and how they can reconstruct an original function is shown in 

( )nh r

Figure 3.1. The spatial interval 
is divided into 5 linear elements and as a consequence 6 nodes. 

 

Figure 3.1 1D linear basis functions and example of reconstruction of original function 
The linear basis functions  are defined as ( )nh x
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Another possibility is the use of elements with quadratic interpolation polynomials, simply called 
quadratic elements. Solving problems in terms of quadratic elements is more expensive, but also leads 
to very accurate results. In general the use of quadratic elements of a larger dimension can improve the 
ccuracy of the calculation, without significantly increasing the comp

the maximum size of the elements is prescribed by the geometry of the system under consideration. 
Because of this only elements of a limited size could be used making quadratic elements too expensive 
for most of the calculations during this thesis. So, unless stated otherwise, the reader may assume that 

a utational time. During the thesis 

linear elements were used throughout the thesis. 
The part of the basis functions ( )nh x  that runs over the element e can be defined as ( )e

nh x . In 

one dimension these can be recognised as ‘half’ tent functions. Using these half tent function the 
reconstruction of ,l mf  in terms of the FEM basis functions can also be performed by summing 

element-wise over the nodes belonging to the elements and finally sum over all elements 

 ( ) ( ) ( ), , ,
1

enN E
n n e

l m l m n l m n
n 1 1e n

f x f h x f h x
=

= =∑ ∑∑ , (3.12) 
= =

where E  is the total number of elem  and en  is the number of nodes belonging to an element. 

PHANTOM performs the FEM-discretization in this way. It is very convenient for programming since 
a code just has to s  contributions from separate elements. It also shows the local character of the 
FEM: only the nodes belonging to the element e give a non-zero contribution in the sum
FEM-discretization of the neutron flux can be extended towards two- and three-dimensional case

ents

um
mation. The 

s in a 
imilar manner. In 2D the most common elements are the triangle and ths e quadrilateral. 

 
Figure 3.2 The 4-node quadrilateral and 3-node triangular element  

The linear triangular element comprises 3 nodes and the linear quadrilateral element 4 nodes. The 
quadratic triangular element comprises 6 nodes and the quadratic quadrilateral comprises 8 nodes 
(incomplete) or 9 nodes (complete). In 3D the most used elements are the tetrahedron and the 
hexahedron depicted in Figure 3.3. 

 
Figure 3.3 The 4-node tetrahedral and 8-node hexahedral element 
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The linear tetrahedron consists of 4 nodes and the linear hexahedron of 8 nodes. Basis functions for 
the 4-node quadrilateral are given by Van Kan [2005]. Some basis functions of other elements are 
given by Zienkiewicz & Taylor [2000]. 

One can see from shapes of the 2D and 3D-elements that the FEM allows for unstructured grids to 
be built. Unstructured grids are very convenient for representing complex geometries. During the 
calculations of the thesis structured grids were used, so the 2-node linear 1-dimensional element, the 
4-node quadrilateral and the 8-node hexahedron are the most frequently used elements throughout the 
thesis. 

For the de egrals such as termination of the least-squares functional, given by eq. (3.5), int
( ) ( )

e

e e
i j

V

h r h r dV∫  , ( ) ( )
e

e e
i j

V

h r h r dV∇ ⋅∇∫  and ( )
e

e
i

V

fh r dV∫  must be evaluated. The calculation of 

those integrals is performed by means of quadrature. The quadrature rules are defined upon a reference 
line, surface or cube VR with spatial coordinate(s) ranging from -1 to 1 in all one, two or three 
dimensions. The quadrature rules are defined as 
 ( ) ( )

e

i i
iV

f s ds w f s=∑∫ , (3.13) 

where is are the quadrature weights and iw  is  the coordinates of the quadrature points. PHANTOM 

uses
equal to 1 in 1, 2 or 3 dimensions and the q ture points a

 the 2-point quadrature rules for the integration over linear elements. In that case the weights are 
uadra re given by ( )1 3± , ( )1 3, 1 3± ±  

and ( )1 3, 1 3, 1 3± ± ±  respectively. The 2-point quadrature rules yield an exact result for 

lumes than the reference volume a mapping must be 
ade. The quadrature rule is then given by 

 

polynomials of degree 3 or less. 
For the calculation of integrals over other vo

m

( ) ( ) ( ) ( ) ( )
1

R

R i R ii
iV V

det det
n

f r dr f s ds w f s= =∑J J , (3.14) 
=

∫ ∫
where ( )Rf s  follows from mapping ( )f r  upon the reference volume. The mapping can be defined 

as ( ) ( ) ( )r r s
Rf r f s=⎯⎯⎯→ . J  is the Jacobian of the coordinate transforma  

samp e point. More details about quadrature and the mapping can be found in 
Zienkiewicz & Taylor [2000] or G
 

tion, which should also be

led upon each quadratur
ockenbach [2006].  

 neutron flux by dividing the neutron flux into 
roup fluxes corresponding to several energy groups. The multi-group discret

from reactor physics. A comprehensive treatment of multi-group theory can therefore be found in 
d react ll & G

Since neutrons usuall o

lly shown in Figure 3.4. 

3.2.4 Multi-group transport 
PHANTOM handles the energy dependence of the
g ization is well-known 

standar or physics literature. [Be lasstone, 1985; Duderstadt & Hamilton, 1976]. 
y l se energy during their lifetime a backward indexing scheme is used for 

the numbering of the energy groups. As a result the lowest energy group corresponds to the group with 
the highest energies of the neutrons. This is schematica
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Figure 3.4 Discretization scheme of the continuous energy variable over the energy groups 

In multi-group theory the neutron group flux is defined as 
1gE

 ˆ ˆ, , , , ,
g

g
E

r t r E t dE( ) ( )ψ ψΩ = Ω∫  (3.15) 

and the flux-weighted neutron speed of group g is given by 

 

−

( ) ( )
11 1 1 ˆ, , ,

gE

r E t dEψ
−

= Ω∫ . (3.16) 

ed in a similar way. 

Fixed source and time-dependent problems 
ependent problems with PHANTOM are 

treated in this section. Two simple test cases will show that PHANTOM can solve time-dependent 
roblems in an accurate way. 

 

 the time dependent term of eq. (3.2) is equal to zero a steady state fixed source problem is obtained 

ˆ, ,
gg Eg

V Vr tψ Ω

The multi-group discretization of the adjoint flux is perform
 
3.3 
Some aspects of solving fixed source problems and time-d

p

3.3.1 The steady-state fixed source problem 
If
 [ ] 0Qψ− =L F . (3.17) 

til the final solution fulfils the convergence criteria of the block Gauss-
eidel procedure. In case of a multi-group problem the block Gauss-Seidel procedure consists of an 

 loop is terminated when the distribution of the 
, 

iven by eq. (3.5) is determined for all energy group

Such steady state fixed source problems are solved in PHANTOM by means of the block Gauss-Seidel 
method for the energy groups. To solve eq. (3.17) an initial guess of the flux is chosen for 0n =  and 
the flux is solved iteratively un
S
outer and an inner iteration loop. The outer iteration
neutron flux over the groups has converged. Inside the inner iteration loop the least-squares functional
g s. Exact details of how the group fluxes 
themselves are calculated are not so relevant for the aims of this thesis and are therefore omitted. More 
information about the block Gauss-Seidel procedure can be found in Greenbaum [1997]. 
 
3.3.2 Time-dependent calculations 
Starting from the time-dependent neutron transport equation 

 [ ]1 Q
V t

ψ ψ∂
+ − =

∂
L F , (3.18) 

an Euler implicit scheme is used to discretize the time dependence in the equation 

 [ ]
1

1 1
i i

i iQ
ψ ψ

ψ
+

V t
+ +−

+ − =
Δ

L F . (3.19) 

After rewriting 

 1 1i iQ
i

V t V t
ψ

ψ + +⎡ ⎤− + = +⎢ ⎥Δ Δ⎣ ⎦
, (3.20) 

IL F
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the time-absorption term 
V tΔ

I
 on the left hand side of the equation can be implemented into the 

transport operator *

V t
= +

Δ
IL L

ction tΣ

. In practice this time-absorption term can be added to the total 

macroscopic cross se . After doing so a fixed source problem is obtained 

 * 1 1
i

i iQ
V t
ψ

ψ + +⎡ ⎤− = +⎣ ⎦ Δ
L F , (3.21) 

where in the formulation of eq. (3.17) the fixed source is given by 1
0

i

V t
iQ Q

ψ+= + . This fixed source 

An important advantage of the implicit Euler scheme is that, in contrast to an explicit Euler 
cheme, it is numerically stable for each step size 

Δ
problem can now be solved for each time step by the Gauss-Seidel method described in the previous 
subsection. 

s tΔ . But one 
scheme is only a first order approximation of the time-derivative. As a consequence sufficiently small 

egration.  

should realize that the implicit Euler 

time-steps should be used to obtain accurate results for the time int
Using a smaller time-step size tΔ  in eq. (3.21) makes the problem easier to solve. Using a smaller 

time-step the 
V tΔ

I
 will become larger and * −L F  becomes more diagonally dominant. This leads to 

PHANTOM must be correct, since they will be used as reference solutions to verify the results of the 
on m

The

a faster convergence of the calculation. So a reduction of the time-step with a factor two does not 
automatically lead to an increase of the computational time by a factor two. 

Since PHANTOM has not been used very often for time-dependent calculations several simple 
test cases are used to check if PHANTOM produces accurate solutions. Time-dependent results from 

modal expansi ethods developed later in this thesis. 
 
3.3.3 Test case 1: Time-dependent calculations in an infinite system 

 first test case is that of an infinite homogeneous system with prompt neutrons only and one energy 
group. For such a system the evolution of the neutron population over time is described by 

 ( ) ( ) ( ) ( )1d V P t L t V k L t
dt
φ
= − = −⎡ ⎤⎣ ⎦ , (3.22) 

here (w )P t  is the production rate and ( )L t  the loss rate. For an infinite system k k∞=  and 

( ) ( )tL t
φ

= . As a consequence eq. (3.22) reduces to 
l V∞

 
( ) ( )1kd tφ φ∞ −= . (3.23) 

dt l∞
tWith the initial condition 0( )φ φ=

 

 the following solution is found 

( )
1

0

k

t eφ φ
t

l
∞

∞

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦ . (3.24) 

The neutron flux is found to vary exponentially in time. Further it is known that 

=
1

aVΣ
l∞ =  and 

f

a

k
ν

∞ = Σ
. 

Σ
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Calculations were performed with PHANTOM for a 1-dimensional homogeneous slab reactor with 
flective boundary conditions. This is physically equivalen

 -50 cm to
re t to an infinite system due to the reflective 
boundary conditions. The slab is divided into 100 first order elements ranging from x =  x = 
+50 cm. The neutron speed is set to be 1 cm/s, aΣ  is 1 cm-1 and there is no scattering. For fνΣ  four 

different values between 0.98 cm-1 and 1.02 cm-1 were used. A value of 1 was chosen for  and 50 

time-steps of one second each were taken. The exact analytical solutions and the ones found by 

( )0φ

PHANTOM for different values of effk  are plotted in Figure 3.5. 
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Figure 3.5 Time-dependent flux (PHANTOM vs analytical) for a reflective slab for different keff 

The solution calculated by PHANTOM obviously corresponds very well to the exact solution. In order 
to check the influence of the magnitude of time-step tΔ  used in the PHANTOM calculation the time-
dependent calculation for was also performed for different sizes of the time step . The 

results are plotted in Figure 3.6.  
The size of the time step apparently has a significant influence upon the accuracy of the final

re the i t p 

endent PH
 since the error in the reference solution may only be small. The next 

0.98effk =   tΔ

tΔ   
sult due to mplicit Euler time-integration scheme of PHANTOM. The use of a large time s e

can lead to significant errors at the end of the time domain of the calculation. Using 50 smaller time 
steps (1 s) an error of less than 1% compared to the analytical solution of the flux at t = 50 s was 
obtained. If the time-dep ANTOM-calculations are used as a reference solution it is 
important to use small time-steps,
step is to check the results of time-dependent calculations for a more complex system. 
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Figure 3.6 Time-dependent flux by PHANTOM for different time step Δt (keff = 0.98) 

 
3.3.4 Test case 2: Time-dependent calculations for a bare slab geometry 
For the  case m 

oundary conditions are used making it harder to predict the outcome of the calculation. However in a 
 it is valid to use 

he 

 second test  a similar slab reactor as in the previous test case is used. This time vacuu
b
weakly absorbing medium with isotropic scattering and considering one energy group 
the one-speed diffusion approximation. According to eq. (5-198) of Duderstadt & Hamilton [1976] t
neutron flux is given for such a system by 

 ( ), cosn

odd

t
n

n

n xx t A e
a

α πφ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ , (3.25) 

with 

 
2

n f a
nV V VD
a
πα ν ⎛ ⎞= Σ − Σ − ⎜ ⎟

⎝ ⎠
 for 1,3,5,...n = . (3.26) 

One might recognise these nα  as the time-eigenvalues or α-eigenvalues of the system. The values of 

e coefficients depend on the shape of the initial fluxth   nA  ( )0φ  of isotropic scattering the , t . In case

 bdiffusion coefficient is given y
1

3 t

D =
Σ

 and the extrapolation distance must be taken into account 

 
0.7104

2 2 t

a L
Σ

= + . (3.27) 

The neutron speed is set at 1 cm/s, aΣ  is 0.2 cm-1, sΣ  is 0.8 cm  and -1
fνΣ  is 0.22 cm . Obviously 

cattering is much more important than absorption. Thi
approximation to be used. For this system with scattering and neutron leakage the PHANTOM 
calc he tanc

-1

s s is necessary to allow for the diffusion 

ulation gave a value of 1.0982 for . Including t  extrapolated dis e the buckling becomes effk

1B
a
π⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Now using eq. (2.3), also a value of 1.0982 is found for effk . Time dependent calculations 

were performed for two initial fluxes, characterized by 

( ) 1 ,0 cos xx
a
πφ ⎛ ⎞= ⎜ ⎟  (3.28) 
⎝ ⎠
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and 

 ( )2
1 3 1 5,0 cos cos cos
3 5

x x xx
a a a
π πφ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (3.29) 

ms of the coefficients  of eq. (3.25) the first initial condition is described by
other coefficients are zero, while the second initial condition is described by A

π⎛ ⎞

In ter  1 1A =  and the  nA
 1 1= , 3 1 3A = , 

5 1 5A =  and the other coefficients are zero. 

The progress of the flux in time at x = 0 cm and the solution at t = 50 s are plotte Figure 3.7 f 
)

d in  i
eq. (3.28 ere also plotted in Figure 3.8 when eq. (3.29) was used 
as th

 is used as the initial flux. Results w
e initial flux. 
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Figure 3.7 Flux as a function of time (x=0) and position (t=50 s) for the first initial condition 
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Figure 3.8 Flux as a function of time (x=0) and position (t=50 s) for the second initial condition 

It is clear that the results for the time-dependent calculation obtained by PHANTOM agree very well 
wi retica d 

dent calculations were performed with PHANTOM for a reflective slab reactor and a bare slab 
reac

th the theo l solution. Also after a larger number of time-steps the solutions still correspon
well. 

After performing two simple time-dependent test cases a short recapitulation can be made. Time 
depen

tor. The result of the reflective slab reactor was compared with the analytical solution and the 
result of the bare slab reactor was compared with an analytical expression obtained by the diffusion 
approximation. For both the reflective and the bare slab reactor the calculations in PHANTOM show 
similar results as the analytical expressions. As a result it can be concluded that time dependent 
calculations in PHANTOM lead to correct results. This is important since PHANTOM will be used to 
create reference transient solutions to check the correctness of the time-dependent alpha mode 
expansion, treated in chapter 5. 
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3.4 Solving the alpha eigenvalue problem 

 
he so called alpha modes can be used as a basis for modal expansion techniques to describe the time-

ll transport calculation. The alpha modes are 

 
3.4.1 The alpha eigenvalue equation 
T
dependent neutron flux without performing a fu
determined by solving the alpha eigenvalue problem, which will be derived from the transport 
equation. Only prompt neutrons are taken into account and the external source is neglected in eq. (3.2). 
The neutron flux is assumed to vary exponentially in time 
 ( ) ( )ˆ ˆ, , , , , tr E t r E eαψ ψΩ = Ω . (3.30) 

d into eq. (3.2)If this expression is plugge blem is obtained  the alpha eigenvalue pro

 [ ]
V α α
αψ ψ= −F L . (3.31) 

he eigenfunctions following from this problem are the alph
If the neutron flux in a (subcritical) system without a source

e with the alpha eigenvalue of 
the 

usef

echnique. The modal expansion technique is used to approximate the neutron flux for time-
depe

lue problem, which is defined 
as 

T a modes. 
 has exactly the same shape as a 

certain alpha mode the neutron flux will decay exponentially over tim
alpha mode as decay constant. This is the physical interpretation of the alpha modes. 
One use of the alpha modes is found in the field of detector positioning in subcritical systems. It is 

important to continuously monitor the level of subcriticality of an ADS. The alpha modes can be a 
ul help to include effects of higher order harmonics into the problem of detector positioning in 

subcritical systems. The use of alpha modes for detector positioning has not been investigated during 
the thesis. 

The main interest in the use of alpha modes during this thesis lies in the application of the modal 
expansion t

ndent problems without performing a full time-dependent transport calculation. The alpha modes 
will be used as a basis for the modal expansion technique in chapter 5.  

For the modal expansion method in chapter 5 also the adjoint alpha modes will be required. The 
adjoint alpha modes are determined by solving the adjoint alpha eigenva

 [ ]
†

†† †

V α α
α ψ ψ= −F L . (3.32) 

In r 5 the adjoint alpha eigenfunctions are 
used as a weighting

 the alpha mode expansion technique developed in chapte
 function. The eigenfunctions †

αψ  are a m

nd

rnoldi Method is used. 
 

he alpha eigenvalue problem can be solved for the fundamental eigenmode in PHANTOM by means 
r method can be found in Isaacson 

& Keller [1994]. 
 

easure of the importance of a neutron in 

establishing the contribution of a certain mode in the modal expansion of the neutron flux. A more 
extensive treatment of the adjoint neutron flux a  adjoint operators is given by Williams [1988], 
Duderstadt & Hamilton [1976] or Bell & Glasstone [1985]. 

PHANTOM can determine the fundamental alpha mode numerically by the Power method. To 
obtain more dominant alpha modes the Implicitly Restarted A

3.4.2 The Power Method for alpha mode determination 
T
of the Power method. A more mathematical treatment of the Powe
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A simple scheme of the power method for the calculation of the α -modes is the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The calculation has converged when the relative change of 1

0α
−  and the relative change of the vector 

ψ  between two iteration steps are smaller than user defined values. The rate of convergence of the 

ower method depends on the dominance ratio of the eigenvalues. If the fundamental eigenvalue and 
e next dominant eigenvalue are close to each other the calculation will only converge slowly. 

ca

p
th

It is important to notice that the calculation of each single power iteration step is a fixed source 
lculation in itself (requiring several Gauss-Seidel iterations). For each power-iteration step eq. (3.17) 

is solved using 0

k

Q
V
ψ

= − . 

 

r more dominant eigenmodes of the alpha eigenvalue problem PHANTOM uses the 
RAM). A practical description of the Arnoldi method is found 

 Hogben [2007]. The IRAM has been implemented by means of the ARPACK package [Lehoucq et 
rd eigenvalue problem

3.4.3 The Arnoldi Method for alpha mode determination 
To obtain one o
Implicitly Restarted Arnoldi Method (I
in
al., 1997]. The alpha eigenvalue equation can be written as a standa  x bx=A  

by writing 

 [ ] 1 11
V α αψ α ψ− −− − =L F , (3.33) 

so [ ] 11
V

−= − −A L F  and 1b α −= . 

The standard eigenvalue problem can be solved using ARPACK and the eigenvalues α  follow 
from a simple inversion of the dom 1inant reciprocal eigenvalues α − . More details about the procedure 
are ers [20
method requi

given by Lathouw 03]. The calculation of the alpha modes in both the Power and the Arnoldi 
res solving a fixed source problem making both methods inapplicable for calculating 

alpha modes of (super)critical systems. Singh [2009] proposed the addition of a shift to the left and 
right-hand side of the alpha eigenvalue equation to make the system artificially subcritical during the 
calculation. In this way the eigenvalues can also be calculated for supercritical systems by doing the 
inverse shift when the calculation has finished. ARPACK has an option to include such a shift in the 

Choose initial oldψ  with 1oldψ =  
For k = 1,….. do 

[ ] old
new V

ψ
ψ− = −L F  

1
old0 newα ψ ψ− = ⋅  

new
new

new

ψ
ψ

ψ
=  

old newψ ψ=  
1

0new newψ α ψ−=   this step gives a good initial guess for the next iteration 

End 

0 1
0

1α
α −=  
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eigenvalue calculation. This method has not been tested during the thesis since accelerator driven 
systems ought to be subcritical anyway. 
 
3.4.4 Test case 3: Fundamental alpha mode of an infinite homogeneous system 
PHANTOM has not been used often to calculate alpha modes. An accurate determination of the alpha 
modes is a necessity for a successful realisation of the alpha mode expansion method. The best way to 
heck the correctness of the calculation of the alpha modes by PHANTOM is to compare the alpha 

the alpha 
c
eigenvalues with analytical solutions of simple problems. Three simple test cases to check 
mode computation are performed in the coming three subsections. 

The neutron population of an infinite homogeneous system with prompt neutrons and one energy 
group is determined by eq. (3.24). The α-modes describe the neutron population by assuming 
( ) 0

tt eαφ φ= . For an infinite system an analytical expression for 0α  is then given by 

 ( ) ( )0 1 a f ak V V
l

α ν∞
∞

= = − Σ = Σ −Σ . (3.34) 

By choosing the velocity and cross sections in the PHANTOM calculation the value of 0

1k∞ −

α  can be 

. The fundamental alpha eigenvalue has been ined with PHANTOM by the determined exactly determ
rnoldi method and the power method for a 1D-system with reflecti

results are given in Table 3.1. 
ite

 [

A ve boundary conditions. The 

Table 3.1 Comparison of analytical and numerical fundamental α-eigenvalue for an infin  system 
cm/s] 

aΣ  [cm-1] v
fνΣ  [cm-1] 0,exactα [s-1] 0,arnoldiα [s-1] CPU-t [s] 

0, powerα  [s-1] CPU-t [s] 

1 0.1 0.09 -0.01 -0.010000002 22.46 -0.010000008 1.53 
100 -2 -2.000000410 404.17 -2.000114338 2.17  1.0 0.98 
100 1.0 0.99 -1.0 -1.000322326 271.89 -1.000116002  2.52 

PHANTOM can clearly calculate the alpha eigenvalues in rre  this very  pr a co ct way for simple oblem. 
For system d requires 

ore po  iteration e Arnoldi od requ d alcul re Gauss-
eidel i ions to so e proble cause of ge th th d a e 

his case semi-
nalytically in 1983 and Lathouwers [2003] calculated the dominant time-eigenvalues with a similar 

s close to criticality the solution converges at a slower rate. The power metho
m wer s. Th  meth ires more fixe source c ations and mo
S terat lve th m be slower conver nce. Bo e Power metho nd th
Arnoldi method give accurate results for the determination of the fundamental alpha eigenvalue. The 
accuracy can be improved further by choosing stricter convergence criteria. Since stricter criteria lead 
to an increasing number of iterations the computational cost of the calculation will also increase. It is 
obvious from Table 3.1 that the Power method is much faster than the Arnoldi method. 
 
3.4.5 Test case 4: Alpha modes of a purely scattering homogeneous slab 
Another slightly more complicated case to verify the calculation of the time-eigenvalues by 
PHANTOM is the case of a purely scattering homogenous slab. Dahl [1983] studied t
a
1D transport code. 

In this case tΣ  and sΣ  were set to 1 cm-1 and the neutron speed was set at a value of 1 cm/s. 

Calculations were performed with PHANTOM for different thicknesses of the slab with a P15-
expansion in angle and a discretization in space of 200 linear elements. Now a comparison between 
the dimensionless time envalues (-eig / sVα Σ ) found by Dahl [1983] and the calculations in 

PHA deNTOM is ma  in Table 3.2. 
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Table 3.2 Numerical and analytical dimensionless time eigenvalues for a slab of varying thickness 
d (cm) Mode Dahl et. al. (1983) P15 
1 1st even 3·10-1 -6.08072·10-1  -6.161
2 1st even -2.9739·10-1 -2.96738·10-1 
5 1st even -8.1139·10-2 

-1 
-8.10933·10-2 

-1 1st odd 
en 

-3.4149·10
.3959·10-1 (*) 

-3.41216·10
-12nd ev -8 -8.34837·10  

10 1st even 
1st odd 
2nd even 
2nd odd 

-2.5357·10
-1.0301·10-1 

-2 

-2.3806·10-1 

-4.4022·10-1 

-2.53520·10
-1.02978·10-1 

-2 

-2.37942·10-1 

-4.39814·10-1 
15 

 

1st even 
1st odd 
2nd even 
2nd odd 
3rd even 
3rd odd 
4th even 
4th odd 

-1.2233·10-2 

-4.9299·10-2 

-1.1234·10-1 

-2.0340·10-1 

-3.2563·10-1 

-4.8369·10-1 

-6.8622·10-1 

-8.4408·10-1 (*)

-1.22306·10-2 

-4.92855·10-2 

-1.12291·10-1 

-2.03251·10-1 

-3.25261·10-1 

-4.82830·10-1 

-6.82265·10-1 

-9.31260·10-1 

* These s a l imag ents 
The eigenvalues calculated by P M 1983], 
especially for neutronically thic n genva reat similarity with the P15-
expansion calculated by Lathou 03] an

The time-eigenvalu ted for two relatively 

3.4.

 and one energy 
roup were given by eq. (3.26). The first 15 dominant forward and adjoint alpha eigenvalues were 

eigenvalue lso have smal inary compon
HANTO  correspond quite well to the values found by Dahl [

k media, a d the time-ei lues show a g
wers [20  with a similar tr sport code. 

es calculated by PHANTOM have now been valida
simple examples with theoretical results. This is important because the time-eigenvalues found by 
PHANTOM must be reliable to obtain useful results from the alpha mode expansion. 
 

6 Test case 5: Alpha modes of a diffusive bare slab reactor 
Using a diffusion approximation the alpha eigenvalues in a bare slab reactor consisting of a weakly 
absorbing medium with a thickness of 100 cm considering isotropic scattering only
g
computed by PHANTOM using -10.196 f cmνΣ = , -11 t cmΣ =  and Σ -10.8 s cm= . The diffusion 

approximation is valid in case of a weakly absorbing medium. For this reason the scattering cross 
section is large compared to the absorption cross section to ensure that the medium is weakly 
absorbing. fνΣ  was chosen to be a bit smaller than aΣ  to obtain a slightly subcritical system. The 

eigenvalues obtained by PHANTOM it tical a ues of eq.  are compared w h the theore lpha eigenval

odes the eigenvalues are almost equal. Of course the analytical 
valu

(3.26) 
in Table 3.3. 

First of all the forward and adjoint calculation agree very well with each other, except for the 15th 
eigenvalue. Apparently the Arnoldi method has skipped one eigenvalue in the forward calculation. As 
the mode number n increases the deviation of the time-eigenvalues by PHANTOM and the analytical 
values increases, but for the first m

es are just a simplification of reality due to the diffusion approximation. But again PHANTOM at 
least appears to calculate the correct alpha eigenvalues for the first few modes. 
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Table 3.3 Comparison of numerical forward/adjoint and theoretical eigenvalues of a diffusive slab 
Mode - n  1

n sα −⎡ ⎤⎣ ⎦  - PHANTOM † 1

n sα −⎡ ⎤⎣ ⎦  - PHANTOM 1

n sα −⎡ ⎤⎣ ⎦  - diffusion theory 

1 -0.004321844 -0.004321844 -0.0043198 
2 -0.005288607 -0.005288606 -0.0052793 
3 -0.006905131 -0.006905131 -0.0068785 
4 -0.009179201 -0.009179208 -0.0091173 
5 -0.012121955 -0.012121956 -0.0119958 
6 -0.015748081 -0.015748081 -0.0155140 
7 -0.020076078 -0.020076078 -0.0196719 
8 -0.025128635 -0.025128635 -0.0244694 
9 -0.030933110 -0.030933110 -0.0299065 

10 -0.037522146 -0.037522145 -0.0359834 
11 -0.044934461 -0.044934461 -0.0426999 
12 -0.053215880 -0.053215880 -0.0500561 
13 -0.062420641 -0.062420641 -0.0580519 
14 -0.072613143 -0.072613143 -0.0666874 
15 -0.096284409 -0.083870249 -0.0759626 

 
3.5 The lambda-eigenvalue problem 
 
3.5.1 The lambda eigenvalue equation 
In this paragraph the lambda eigenvalue problem is introduced. The neutron transport equation, given 
by eq. (3.2), is used as the starting point. The source is neglected and the fission operator is scaled by 

 to make the reactor artificially critical. In that case the time-derivative of the flux is zero and 

writing 
effk

λ  instead of  the lambda eigenvalue problem is obtained effk

 l
l

lψ ψ
λ

=
FL . (3.35) 

The eigenfunctions of this problem are called λ -modes or k -modes. The largest eigenvalue 0λ  is 
equal to  and its eigenfunction is the fundamental lambda mode. The shape of the fundamental 

lambda mode does not represent any real flux distribution except when the reactor is critical. In that 
case the fundamental lambda mode is the same as the fundamental 

effk

α -mode. 
The lambda modes are used widely in modal approaches to study different transients in nuclear 

reactors, such as the Boiling Water Reactor. According to Verdu [2010] the lambda modes can 
reproduce the time evolution of a critical system adequately in the majority of transients using a small 
number of modes. For subcritical systems the alpha modes are expected to be a more natural basis for 
a modal expansion method than the lambda modes. 

Equivalently to the alpha eigenvalue problem also an adjoint form of the lambda eigenvalue 
problem can be formulated. The adjoint lambda eigenvalue problem is defined as 

 
†

† † †
†m
m

mψ ψ
λ

=
FL . (3.36) 

The adjoint lambda modes will be used as weighting functions in the lambda mode expansion method 
treated in chapter 6. 



3.5.2 The Power Method for lambda mode determination 
The fundamental lambda mode can be solved in PHANTOM by means of the Power method in a quite 
similar way as the fundamental alpha mode. 
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For k = 1,….. do 

new oldψ ψ=L F  

eff new oldk ψ ψ= ⋅  

new
new

new

ψ
ψ

ψ
=  

old newψ ψ=  

new eff newkψ ψ=   this step gives a good initial guess for the next iteration 

End 

 
Each single power iteration step is a fixed source calculation in itself. In the formulation chosen by eq. 
(3.17) the fission operator disappears from the left-hand side and appears in the right-hand side: 

0 oldQ ψ= F . The fact that the fission operator appears in the right hand side of the equation causes the 

calculation of lambda mode(s) to converge much quicker than the calculation of the alpha mode(s). It 
also allows the calculation of lambda modes for (super)critical systems. 
 
3.5.3 The Arnoldi Method for lambda mode determination 
Similar to the alpha modes the determination of more dominant eigenmodes of the lambda eigenvalue 
problem is performed by the Implicitly Restarted Arnoldi Method. The lambda eigenvalue equation is 
written into form of a standard eigenvalue problem x xλ=A  by writing: 

 1
λ λψ λψ−⎡ ⎤ =⎣ ⎦L F  (3.37) 

This standard eigenvalue problem can be solved by ARPACK and this gives the eigenvalues λ  and 
the eigenfunctions λψ . 

Since PHANTOM has been used already in a much more extensive way to calculate lambda 
modes and the results of lambda mode calculations during the thesis gave accurate results there is no 
reason to elaborate analytical test cases concerning the lambda mode computation in this thesis report. 
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3.6 Practical application of PHANTOM 
For practical use of the PHANTOM code package the user must first of all create a mesh file 
describing the geometry of the system and link it for use in PHANTOM. For 2D and 3D geometries 
the mesh can be created with a program such as GMSH, but also a relatively simple fortran-script will 
work. Properties of a 1D-Mesh can be specified in a simple scriptfile. Secondly an ASCII or AMPX 
library must be used as an input of the cross sections. Finally the user has to specify several properties 
of the calculation in an input-file. An overview of the important input parameters and their options or 
relevant considerations is given in Table 3.4. 

Table 3.4 Overview of important input properties for PHANTOM calculations 
Property Options 
Cross section library Asci, AMPX 
Geometry X, XY, XYZ, RZ, 1D Cylindrical, 1D Spherical 
# Materials Linking of the cross sections to the material numbers in the mesh 
# Sources Strength of sources 
PN-expansion N > 0 
Order of scattering 0 sN N≤ ≤  
Type of calculation Fixed source, Lambda modes, Alpha modes, Time-dependent 
Eigenvalue solver Power method / Arnoldi Method (incl. # Arnoldi vectors) 
Convergence criteria Concerning the Arnoldi Method and Gauss-Seidel iterations 
If time dependent: 
Time-dependent scenario 

 
Source startup, Source shutdown, Pulsed mode 

Time-dependent block # time steps, size of time steps 
After specifying the mesh, the cross sections and the relevant properties from Table 3.4, the 
calculation can be performed by PHANTOM. The results can be used afterward for post-processing, 
such as plotting fixed source and time-dependent solutions or eigenmodes of the system. Also the 
alpha modes and lambda modes can be used in the modal expansion theories to be developed in 
chapter 5 and 6. This procedure is schematically shown in Figure 3.9. 
 

input

mesh

cross sections

phantom Post-processing

 
Figure 3.9 Practical scheme of the use of the PHANTOM code package 
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4 Steady state and transients of 3D GUINEVERE 
In this chapter the results from several calculations of the GUINEVERE configurations are presented 
and the geometrical models used to perform the calculations are introduced. A short introduction of 
the GUINEVERE project was given in section 1.2. One can recall that the GUINEVERE reactor is 
first operated in a critical configuration and later during the GUINEVERE project in a subcritical 
configuration driven by the GENEPI-3C accelerator. 

The first aim of this chapter is to determine and analyze the fundamental lambda mode of the 
critical GUINEVERE configuration with PHANTOM and to compare keff obtained by PHANTOM 
with values from MCNP and ERANOS calculations. The second aim is to study the time-dependent 
behaviour of a realistic 3D ADS-model by analyzing two transients of the subcritical configuration of 
GUINEVERE with PHANTOM. 

If it would have been possible to calculate a sufficient number of alpha modes within reasonable 
time the subcritical configuration would also have been very interesting for application of the alpha 
mode expansion theory, developed in chapter 5. Unfortunately the calculation of several alpha modes 
in 3D simply takes too much time at the present moment. 
 
Equation Chapter (Next) Section 1 
4.1 The 3D-model of GUINEVERE 
An introduction of the geometry of the GUINEVERE reactor and a short treatment of the generation 
of cross sections by SCALE is given in this section. Finally the mesh of both the critical configuration 
and the subcritical configuration is shown. 
 
4.1.1 The geometry of the GUINEVERE reactor 
The geometry of the critical configuration of the GUINEVERE reactor will be described briefly in this 
subsection to obtain a general impression of the dimension and lay-out of the facility. An extensive 
treatment of the geometry is given by Bianchini [2010] and Uyttenhove & Baeten [2008]. 

The boundary of the GUINEVERE reactor is a cylinder with a diameter of 160.8 cm and a height 
of 202.7 cm. Within the cylindrical vessel the GUINEVERE reactor consists of a square core lattice, 
surrounded by a stainless steel shaft and top and bottom support plates. The core is surrounded by a 
radial lead reflector around the core and lead reflectors above and below the core. The core itself is 
defined by a 12x12-lattice filled with fuel assemblies, lead assemblies, safety rods and air gaps for the 
2 control rods. Above the core the 6 safety and 2 control rods consist of B4C. The safety rods are equal 
to the fuel assemblies inside the core and below the core there are 6 air gaps to drop the safety rods in 
case of emergency. This creates a double safety effect due to the insertion of boron, which has a high 
absorption cross section, into the core and the extraction of fuel from the core. During the calculations 
it is assumed that the control and safety rods are in top position. 

Each assembly in the core has a square section with a width of 8 cm and an active height of the 
fuel is 60.96 cm. The fuel assembly is subdivided into a 5x5-sublattice and contains 9 cylindrical fuel 
elements, 12 lead elements with cladding and 4 lead elements without cladding. The fuel elements 
consist of metallic uranium rodlets, which are enriched 30 w% in U-235. The cross sections used in 
the calculations by PHANTOM have been homogenized upon the level of the whole fuel assemblies 
and lead assemblies. 

A schematic view of the GUINEVERE core and a fuel assembly is given in Figure 4.1. 
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Figure 4.1 Horizontal cut of the critical GUINEVERE core (left) and a fuel assembly (right) 

(cyan = fuel, blue = lead, green = air, orange = stainless steel) 
 
4.1.2 Cross sections 
For the calculations of the GUINEVERE core a set of cross sections was generated with the SCALE 
package. The script used for the generation of the cross sections by SCALE can be found in appendix 
C. Cross sections were created for three different material mixtures: the fuel assemblies, lead and the 
B4C in the control and safety rods. The air and void regions, associated with the control and safety 
rods and the central beamline of the subcritical configuration, are modeled by taking cross sections 
equal to zero. 

The cross sections were determined by SCALE by performing a calculation over a cylindrical pin 
with a height of 60.96 cm consisting of an inner cylinder with fuel, surrounded by a small nickel layer 
and an outer cylinder to include the lead, stainless steel and air gaps inside the fuel assemblies. The 
nickel layer is added because in practice there is a small nickel paint layer around the fuel rodlets. The 
diameters of the pin for the SCALE calculation were determined by taking the area of the different 
materials in one fuel assembly and dividing them by 9 (fuel rodlets). The following radii were used for 
the pin: 
r < 0.6282 cm  Fuel: U-235/U-238 mixture 
r < 0.635 cm  Nickel layer 
r < 1.5045 cm  Lead mixture, stainless steel of fuel assemblies, air inside assemblies 

To obtain cross sections for the B4C of the control and safety rods, without disturbing the 
calculation of the cross sections of the homogenized fuel assembly, a very small layer of the B4C was 
added around the pin and these cross sections were extracted separately. In the end one set of cross 
sections is obtained for the homogenization over the whole fuel assembly, one set of cross sections for 
the lead and stainless steel mixture, used for the lead assemblies and a set of cross sections to describe 
the B4C. 

The energy variable was discretized by using 10 energy groups. The distribution of the groups is 
shown in Table 4.1. Inside the group distribution emphasis lies on the higher neutron energies since 
GUINEVERE is a system without a moderator and a fast neutron spectrum is expected. 
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Table 4.1 Distribution of the energy variable over 10 energy groups 
Group Energy range 
1 1.01 MeV – 20 MeV 
2 670 KeV – 1.01 MeV 
3 330 KeV – 670 KeV 
4 100 KeV – 330 KeV 
5 50 KeV – 100 KeV 
6 9.5 KeV – 50 KeV 
7 950 eV – 9.5 KeV 
8 100 eV – 950 eV 
9 1 eV – 100 eV 
10 10 μeV – 1 eV 

 
4.1.3 The grid used for the GUINEVERE calculations 
During the GUINEVERE project the reactor is operated in both a critical configuration, without 
source, and a subcritical configuration driven by the accelerator. A geometrical model has been made 
for both configurations. The structured XYZ-grids used for both configurations are plotted in the XY-
plane and XZ-plane in Figure 4.2. 

 
Figure 4.2 The grid of the (sub)critical GUINEVERE mesh in the XY and XZ-plane, dim. in cm, 

coordinates between parentheses are only used for the subcritical mesh 
The mesh of the GUINEVERE model consists of 8-node hexahedral inner elements and 4-node 
quadrilateral boundary elements. The coordinates between parentheses are used only in the subcritical 
configuration to model the source and the accelerator beam. The mesh of the critical configuration 
comprises 9200 nodes, 7920 inner elements and 2436 boundary elements and the subcritical 
configuration comprises 11475 nodes, 9984 inner elements and 2848 boundary elements. 
 
4.1.4 The mesh of the critical configuration 
The geometrical model of a critical configuration without source of the GUINEVERE core is 
presented in this subsection. The XYZ-grid presented in Figure 4.2 is the basis of the mesh and the 
material regions are defined upon the elements of this XYZ-grid. The geometrical model of the critical 
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configuration is used to compare the values of keff obtained by PHANTOM using SCALE generated 
cross sections with other reference calculations. 

The geometrical model of the critical GUINEVERE core is shown in the XY-plane for different 
heights in Figure 4.3. The red regions represent the fuel assemblies, grey regions lead, green regions 
the B4C of the control and safety rods and the blue regions are void regions. The cylindrical reflector is 
modeled in an approximate way by the rectangular lead elements surrounded by void elements. The 
use of the void elements to describe the cylindrical reflector is necessary to ensure that a neutron 
streaming out through a boundary surface will not reenter the system at another point. Only such non-
reentrant surfaces are allowed in neutron transport calculations.  

In most calculations the reflector is modeled as a big square lead reflector to decrease the time to 
complete the calculation. Then the void regions at the borders of the mesh are replaced by lead. Using 
the void regions at the boundary causes the calculation by PHANTOM to converge only slowly and 
quite some inner iterations, see section 3.3.1, are required to solve the least-squares functional. A 
calculation of keff took over 7 hours using the cylindrical reflector with the void regions and less than 3 
hours with the big square lead reflector. Values of keff will be compared later on for the cylindrical 
reflector and the square lead reflector. 

a) 0 < z < 50.3 [cm] b) 50.3 < z < 53.0 [cm] c) 53.0 < z < 113.96 [cm] 

d) 113.96 < z < 116.66 [cm] e) 121.66 < z < 161.66 [cm] 
Figure 4.3 XY-view of the critical GUINEVERE mesh with cylindrical reflector at different heights, 

grey = lead, red = fuel ass. , blue = void, green = B4C 
 
A 3D side view of the core of the critical GUINEVERE mesh, without lead and reflector, is given in 
Figure 4.4 to get a better impression of the model. 
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Figure 4.4 3D side view (without lead) of the critical GUINEVERE mesh 

 
4.1.5 The mesh of the subcritical configuration 
The subcritical configuration will be used to calculate the multiplication factor and to perform time-
dependent calculations of the source-driven system. The subcritical system is modeled with a square 
lead reflector to decrease the computational time of the time-dependent calculations. 

To implement the beam of the accelerator in the GUINEVERE model the 4 central fuel 
assemblies are replaced by a void region surrounded by lead in the upper half of the reactor. In the 
lower half of the core the central fuel assemblies are completely replaced by lead. In the z-direction 
one small layer (83.48 cm < z < 88.0 cm) is added to include the source in the subcritical model. The 
source is defined as the 4 central elements, which consist of lead, of this layer. The geometrical model 
of the GUINEVERE core has been plotted in the XY-plane for different heights in Figure 4.5. 

a) 0 < z < 50.3 [cm] b) 50.3 < z < 53.0 [cm] c) 53.0 < z < 88.0 [cm] 
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d) 88.0 < z < 116.66 [cm] e) 113.96 < z < 121.66 [cm] f) 121.66 < z < 161.66 [cm] 
Figure 4.5 XY-view of the subcritical GUINEVERE mesh with square reflector at different heights, 

grey = lead, red = fuel ass. , blue = void, green = B4C 
 
4.2 Calculations on the critical configuration 
 
4.2.1 The fundamental lambda mode 
Calculations of the fundamental λ-mode were performed for the critical configuration with a square 
lead reflector using a P1 and a P3-expansion of the angular flux. keff was calculated with the P1-
expansion using isotropic scattering and linear anisotropic scattering. For the P3-expansion also third 
order scattering was evaluated. The values of keff  for the different calculation are given in Table 4.2. 

Table 4.2 keff of the critical configuration using different angular expansions in PHANTOM 
PN-expansion Scatter-order keff CPU-time [s] 
1 0 1.05755 1415 
1 1 1.00145 1338 
3 0 1.08003 6337 
3 1 1.02706 5957 
3 3 1.02821 5931 

The choice of a P1 or a P3-expansion has a quite significant effect on the result. The difference in keff 
between P1 and P3 is 0.02248 (isotropic scatter) and 0.02561 (linear anisotropic scatter). The order of 
scattering is also quite important. Using the P3-expansion the difference between isotropic and linear 
anisotropic scattering of keff is 0.05297. The difference between 1st and 3rd order scattering is however 
small ∆keff = 0.00115. 

The value of keff obtained by PHANTOM (keff = 1.02821) is somewhat higher than values 
obtained by Uyttenhove & Baeten [2008] with MCNP (keff = 1.01031) and by Bianchini [2010] with 
ERANOS (keff= 1.01365). When the GUINEVERE reactor is modeled with the cylindrical reflector 
and void region outside of the cylinder a value of keff of 1.01621 is found for a P3-expansion with 3rd 
order scattering. The latter value is close to the other reference values for keff. The relative differences 
are 0.58% (MCNP) and 0.29% (ERANOS) respectively. These differences can be explained by the 
differences in the cross section data used during the calculation. In the MCNP and the ERANOS 
model also more material mixtures, such as stainless steel, are taken into account than the 4 used in the 
PHANTOM calculation. 

The fundamental lambda mode of the critical configuration with square lead reflector calculated 
by PHANTOM, using the P3-expansion with 3rd order scattering, is used for visualization of the scalar 
neutron flux. The scalar flux has been plotted in the XY-plane at central height (z = 83.48 cm) of the 
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active fuel zone in the core for all 10 energy groups in Figure 4.6. The material composition of the 
mesh at central height of the core was shown in Figure 4.3c. 

 
Figure 4.6 Scalar flux of fundamental λ-mode of critical configuration in XY-plane at z = 83.48 cm 

For high energies the lambda mode at central height is dominated by the fuel region, where high 
energy neutrons are created during the fission process. In the 6th group the flux in the lead becomes of 
equal magnitude as in the fuel region. For the lower neutron energies (group 7 and higher) the lead 
reflector becomes the dominant region of the scalar flux. Due to the uranium the absorption cross 
section in the fuel region is much higher than in the lead reflector. As the neutrons are slowed down by 
scattering more and more neutrons are absorbed in the fuel region and consequently for the lower 
neutron energies the highest fluxes are found in the lead reflector. 

A more detailed look at the graphs shows the effect of the air gaps, implemented for movement of 
the control rods, upon the scalar neutron flux. The neutron flux over a void region is completely 
determined by the flux at the elements surrounding it. 

The scalar flux has also been plotted in the XY-plane above the core (z = 134.99 cm) for all 10 
energy groups in Figure 4.7. The mesh at this height was plotted in Figure 4.3e. 

A comparison of the color bars below the graphs shows that the scalar group fluxes in the region 
above the core is much lower for the groups containing high neutron energies than inside the fuel 
region at central height. The high energy neutrons are created inside the fuel region by the fission 
process and thus a higher neutron flux at central height in the core was to be expected. For lower 
energies (group 6 and higher) the group fluxes are of a similar magnitude since the flux is dominated 
by the lead regions around, above and below the core.  

The B4C of the control and safety rods has a significant effect on the neutron flux, especially for 
low energies, at which boron has a large absorption cross section. In the thermal region (group 10) 
basically all neutrons inside the control or safety rod region are absorbed. Due to the absorption by the 
control rods the flux inside the lead region above the core is slightly lower in the groups containing the 
lowest neutron energies than in the lead region around (or below) the core. 
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Figure 4.7 Scalar flux of fundamental λ-mode of critical configuration in XY-plane at z = 134.99 cm 
The a-symmetric positioning of the control and safety rods also leads to an asymmetric flux profile. 
For the highest energy groups (with the lowest neutron energies) the neutron flux above the core is 
higher in the left half of the reactor. A small a-symmetry can also be observed at central height, plotted 
in Figure 4.6, of the GUINEVERE reactor for the lower neutron energies. 

The scalar flux is plotted in the XY-plane below the core (z = 31.86 cm) for all 10 energy groups 
in Figure 4.8. The mesh at this height was plotted in Figure 4.3a. 

 
Figure 4.8 Scalar flux of fundamental λ-mode of critical configuration in XY-plane at z = 31.86 cm 

Below the core the effect of the voids, due to the air gaps for movement of the safety rods, is visible 
for all 10 energy groups. In general the neutron flux over a void region is determined by the flux at the 
elements surrounding it. In the first group the flux at 31.86 cm height is higher in the void regions than 
in the material regions surrounding it in the XY-plane. In the first group the highest fluxes are found in 
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the active fuel region of the core (z > 53.0 cm). Below a height of 50.3 cm neutrons can travel through 
the void regions without being scattered or absorbed. So the void regions have become a streaming 
path for high energy neutrons moving away from the core and for this reason the flux at z = 31.86 cm 
is higher in the void regions for the first energy group.  

At z = 31.86 cm the flux in the XY-plane tends to be lower inside the void regions than in the 
surrounding material regions for the lower neutron energies (group 6-10). At different height the flux 
is low inside the active fuel region and of course below the bottom of the reactor for the lower neutron 
energies. In this case the void regions act as a streaming path for the neutrons in the bottom lead 
reflector to travel out of the reflector in the direction of the core or to leak out of the bottom of the 
reactor. 

It is interesting to notice that PHANTOM has no problem with handling such void regions. For 
diffusion codes the use of zero cross sections leads to more difficulties due to the division by tΣ  

during the determination of the diffusion constant. 
From the color bars below the graphs it is seen that the flux at low neutron energies is slightly 

higher below the core than above the core (at an almost equal distance from the center of the core). 
This is mainly caused by the strong absorption of low energy neutrons due to the control and safety 
rods above the core. 
 
4.2.2 The energy spectrum 
The energy spectrum of GUINEVERE can be determined at the central node of the active fuel region 
and at a node at central height inside the lead reflector. Inside the lead reflector the node with the 
highest flux in the 10th energy group was chosen. The group fluxes for the 10 groups at the two nodes 
are divided by the width of the energy group, gEΔ . The result is shown in Figure 4.9 (left) and 

compared with an MCNP calculation performed by Uyttenhove [2010] at SCK (right). To compare 
both results the calculations are normalized by dividing by the flux values at an energy of 20 KeV. 
Since only 10 energy groups are used the spectrum by PHANTOM is only a coarse indication of the 
actual spectrum inside the GUINEVERE core. 
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Figure 4.9 Plot of normalized energy spectrum central in the fuel (left) and in the lead reflector 

(right) as calculated by PHANTOM and by SCK using MCNP 
The GUINEVERE reactor core has a fast spectrum since there is no moderator in the system and this 
can also be clearly observed from the energy spectrum by PHANTOM. The neutron flux inside the 
fuel region has its peak at an energy between 10 and 100 KeV. For low energies (< 100 eV) the flux 
inside the central fuel region is almost negligible. For the lead reflector the flux has its peak at an 
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energy between 1 and 10 KeV and for the high neutron energies (> 100 KeV) the flux is significantly 
smaller in the lead reflector compared to the fuel region. 

Comparing the PHANTOM calculation with the MCNP calculation it is found that both 
calculations show great similarity for higher neutron energies (> 103 eV) and are quite different for the 
lower neutron energies (< 103 eV). The fluxes are much lower in the PHANTOM calculation for the 
lower neutron energies. The difference between the two calculations is mainly caused by differences in 
the SCALE generated cross sections and the cross sections used during the MCNP calculations. The 
SCALE generated cross sections used by PHANTOM were determined under simple assumptions. 
 
4.2.3 Conclusions 
Some general conclusions can be drawn from the results for the critical configuration. There is a 
significant difference in the values calculated for keff by PHANTOM when different orders of angular 
expansion and scattering are used. Using a P3-expansion with third order scattering a value for keff of 
1.01621 was calculated by PHANTOM for the critical configuration with cylindrical reflector. This 
value was close (< 0.6%) to values found by calculations with ERANOS and MCNP. When the 
cylindrical reflector was replaced by a large square reflector the computation finished roughly 2.5 
times as fast at the price of a higher value for keff (1.02821). Due to the addition of the void regions for 
the description of the cylindrical reflector more iterations are required and the calculation converges 
much slower. 

From plotting the scalar neutron flux of the fundamental lambda mode it became clear that the 
flux profile is dominated by the fuel region for high energies and by the lead reflector region for low 
energies. Further it was noticed that the boron carbide of the control and safety rods led to a large 
absorption of neutrons for the low neutron energies. The a-symmetric positioning of the safety and 
control rods leads to an a-symmetric flux profile. The void regions below the core were handled well 
by PHANTOM and also had a significant influence upon the flux shape. 

From a plot of the energy spectrum at the central point of the fuel region it could be concluded 
that the highest neutron flux inside the fuel region occurs around 10 to 100 KeV. Inside the lead 
reflector the flux peaks between 1 and 10 KeV. The energy spectrum compared well to a MCNP 
calculation for high neutron energies (> 103 eV) but shows big differences for low energies (< 103 eV) 
 
4.3 Calculations on the subcritical configuration 
For the subcritical configuration of GUINEVERE the multiplication factor was calculated by 
PHANTOM. A value for keff of 0.98733 was obtained when a P3-expansion with 3th order scattering 
was used and keff was found to be 0.93876 when a P1-expansion with 1st order scattering is used. The 
difference between the two expansions upon the value of keff is large. Calculations of the transients in 
this subsection were performed with the P1-expansion and 1st order scattering to be able to perform 
the calculations within a few days. An important remark before the interpretation of the results is that, 
due to the differences between the angular expansions for the value of keff, there might be some 
difference in the time scale of the transient when higher angular expansion orders are used. But the 
results are likely to be a good indication of the general properties of the evolution of the neutron flux 
over time in the GUINEVERE core. 

Two transient scenarios have been studied. In the first scenario the ADS is operating under 
steady-state conditions and at t = 0 the source is turned off. In the second scenario the source is 
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switched on at t = 0 with a zero initial flux. The source of unit strength is chosen to be in the first 
energy group (1.01 MeV < E < 20 MeV).  

To obtain accurate results from the Euler implicit time-integration scheme used by PHANTOM 
the time-step must be chosen small enough. To capture the most important events of the transient 
during the calculation the time-domain must be long enough. With respect to the computational time 
the number of time-steps should however not be too many. During both calculations 100 time steps of 
2·10-7 s were used to meet these three criteria. 
 
4.3.1 Reactor shutdown 
For the scenario of a source shutdown after operating under steady-state conditions the steady-state 
flux is solved first and used as an initial condition for the time-dependent calculation. The steady-state 
scalar flux is shown for the XY-plane at central height of GUINEVERE (z = 83.48 cm) in Figure 4.10 
for all 10 energy groups. 

 
Figure 4.10 Steady state scalar flux in the XY-plane at central height in the core (z = 83.48 cm) 

For the higher neutron energies the flux is high in the fuel region of the core and at lower neutron 
energies the flux is low inside the fuel region and high inside the lead reflector. A similar observation 
was made for the fundamental lambda mode of the critical configuration in the previous subsection. 
While the shape of the group fluxes of the steady-state problem is at first sight not so much different 
from the fundamental lambda mode of the critical configuration, the contribution of the source 
neutrons results in a sharp peak in the source region of the first energy group flux. In section 2.2.3 it 
was already shown for a 1D diffusion ADS model with one energy group that the source influences 
the flux shape significantly. For increasing subcriticality the flux of a source-driven system deviated 
more and more from the fundamental mode. 

It can also be noticed that for the lower energies (group 7-10) the flux is slightly higher inside the 
source region compared to the fuel assemblies surrounding it. In the subcritical configuration the four 
central fuel assemblies were replaced completely by lead in the lower half of the core and by lead and 
void in the upper half of the reactor. Since lead has a much lower absorption cross section than the fuel 
assemblies surrounding the lead in the center of the core, the flux is a bit higher in the source region. 
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Another possible cause is that low energy neutrons can travel from the top reflector to the source 
region trough the void of the accelerator beam. The increase of the flux at low energies inside the 
source region is not observed in the fundamental lambda mode of the critical configuration. 

The steady-state flux is now used as an initial condition for a time-dependent calculation of the 
neutron flux. At t = 0 the source is turned off and the neutron flux in the subcritical system will 
decrease. The scalar flux has been plotted in Figure 4.11 for all 10 energy groups over a line in the x-
direction (y = 80 cm, z = 83.48 cm). 

 
Figure 4.11 Scalar flux after source shutdown as a function of x and t at y = 80 cm, z = 83.48 cm 

In the steady-state neutron flux a peak could be observed in the first energy group inside the source 
region. After turning of the source this peak almost immediately, within one time-step, disappears and 
the highest flux is found in the fissile fuel region. The decay of the source peak of the source turn-off 
can be described approximately by ( )1 ,1exp tV t− Σ , where the first group velocity V1 is equal to 

1.797·109 cm/s and the total group cross section ,1tΣ  is 1.938·10-1 [cm-1]. Filling in these numbers it is 

found that 2·10-9 s after shutdown of the source only half of the amplitude of the source peak is left 
and after 2·10-7 s the flux peak has completely disappeared. 

A very interesting observation is that the shutdown transient appears to be described by a similar 
time scale for at least the first six energy groups. For the low neutron energies, especially the 9th and 
10th group, the decay of the flux takes place on a much slower time scale. Meanwhile the fluxes in the 
9th and 10th energy group are also very small. 
 
4.3.2 Reactor start-up 
The second transient scenario studied was the start-up of the reactor. Initially all group fluxes are zero 
and at t = 0 the source is switched on instantaneously. The build-up of the scalar neutron flux over 
time is plotted for all 10 energy groups in Figure 4.12 over a line in the x-direction (y = 80 cm, z = 
83.48 cm). 
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Figure 4.12 Scalar flux after source start-up as a function of x and t at y = 80 cm, z = 83.48 cm 

In the first energy group a large peak in the source region occurs almost instantaneously (in the period 
of one time-step) after switching on the source. After this a slow additional build-up of the neutron 
flux takes place over the whole reactor volume, especially inside the fuel assemblies. For the lower 
energies the build-up of the flux takes place on a slower scale. In the 2nd till 5th energy group the flux 
increases in the fuel region during the transient. For the 6th till 9th energy group the flux initially 
increases faster in the source region but after a longer time the flux is much larger in the lead reflector 
region. In the 10th energy group only the increase of the flux in the source region is clearly visible. In 
the upper left and right corner the start of the flux build-up in the lead reflector can be seen vaguely, 
but it appears that the evolution of the neutron flux in the 10th energy group is too slow to capture the 
build-up of the flux in the lead reflector during the time-domain of the PHANTOM calculation. From 
the 10th-group flux of the steady-state calculation, plotted in Figure 4.10, it is known that over time 
the flux will become much larger in the lead reflector than in the center region. 

After studying the startup of the ADS and a shutdown of the source it can be concluded that a big 
difference between the time scale of the physical process in the 9th and 10th energy group and the 
other 8 energy group exists. The fundamental time-eigenvalue for this system will be in accordance 
with the slow time scale of the 10th group and the fundamental alpha mode will describe the shape of 
the neutron flux associated with this slow time scale. The most important processes during the 
transient in the GUINEVERE core occur in the first 8 energy groups on a much faster time scale. For 
the determination of the relevant alpha modes for use in the modal expansion technique, treated in 
chapter 5, this raises an important issue. To determine the relevant alpha modes for the time-dependent 
flux expansion in an efficient and accurate way it is desirable that only alpha modes associated with 
these faster time scales are determined and that the slower time scale of the 9th and 10th energy group 
can be excluded from the calculation. This can be done by using a shift in the ARPACK routine to 
skip the calculation of the lower (and unimportant) alpha modes in order to calculate the alpha modes 
of interest or most likely also by combining the highest energy groups (group 8-10), containing the 
lowest neutron energies, into one group. 
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4.4 Conclusions 
In this chapter a geometrical model of the GUINEVERE facility was made for both a critical core 
configuration and a subcritical core configuration. For the critical core configuration keff was 
determined with PHANTOM. It was found that the order of the angular expansion and the scattering 
order have a significant influence upon the value of keff. Using a P3-expansion with third order 
scattering and modeling the lead reflector in a cylindrical shape the calculated keff was close to 
reference calculations with ERANOS and MCNP. 

The flux profile of the fundamental lambda mode is dominated by the fuel region for high 
energies and by the lead reflector region for low energies. The highest neutron flux inside the fuel 
region occurs in the range from 10 to 100 KeV. Inside the lead reflector the flux peaks between 1 and 
10 KeV. Further the effects of the control and safety rods were analyzed. The control and safety rods 
led to a large absorption of neutrons for the low neutron energies and the a-symmetric positioning of 
the safety and control rods leads to an a-symmetric flux profile in the system. 

For the subcritical configuration of GUINEVERE the steady-state solution of the fixed source 
problem was determined first. In the first energy group the external neutron source has a significant 
influence on the flux shape. In the lower energy groups a small peak in the flux could be observed in 
the source region due to the replacement of the four central fuel assemblies by lead and some void in 
the upper half of the reactor. The steady-state flux was used as an initial condition for a calculation of 
a shutdown of the source. The peak inside the source region of the flux in the first energy group 
disappears almost instantaneously after turning off the source. 

A second transient scenario considered was switching on the source with zero initial flux. It was 
found that the source neutrons caused the flux to peak inside the source region in the first energy 
group almost instantaneously. For both transient scenarios it was found that the neutron flux in the 
lower energy groups evolves on a slower time scale. The time scale of 9th and 10th energy group is 
much slower than the other energy groups. This may cause difficulties for the determination of the 
relevant alpha modes to apply the modal expansion technique describing the time-dependent neutron 
flux. 
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5 The alpha mode expansion 
Equation Chapter (Next) Section 1 
 
5.1 Alpha mode expansion theory 
The evolution of the neutron flux over time inside an ADS after switching on the source or turning off 
the source can be determined by a direct calculation solving a fixed source problem originating from 
the transport equation after each time-step. This procedure was described in section 3.3.2. The time-
dependent neutron flux can also be described by expressing the neutron flux as a summation over the 
product of time-independent spatial modes and time-dependent coefficients. A convenient choice for 
these modes are the ones obtained by solving the alpha eigenvalue problem defined in section 3.4.1. 
The alpha mode expansion technique can describe the time evolution of the neutron flux by an 
uncoupled set of ODEs once the alpha modes of a system have been determined. In this section the 
theory of the alpha mode expansion technique is derived. 
 
5.1.1 Orthogonality of the alpha modes 
The orthogonality relations of the alpha modes will be used to describe the time evolution of the 
modal expansion coefficients by an uncoupled set of ODEs. A derivation of the orthogonality relation 
of the alpha modes is given in appendix B. The orthogonality relation of the alpha modes is given by 
 ( )† 1 † ,n m m nVα α ψ ψ− 0− = , (5.1) 

where the inner product of two functions f and g is defined by integration over the whole range of 
space, energy and angle of the product of the two functions 
 ( ) ( )ˆ ˆ ˆ, , , , ,

V E

f g f r E g r E d dEdV
Ω

= Ω Ω Ω∫ ∫ ∫ . (5.2) 

The orthogonality relation implies that either the inner product 1 † ,m nV ψ ψ−  is equal to zero or nα  

must be equal to †
mα  or both. 1 †

mV ψ−  and nψ  are orthogonal in case of non-degenerate eigenvalues. 

 
5.1.2 The alpha mode expansion 
The time-dependent neutron flux can be approximated by superposition of the alpha modes 
 ( ) ( ) ( )ˆ, , , , ,n n

n

r E t A t r E ˆψ ψΩ = Ω∑ , (5.3) 

where ( )nA t  is the expansion coefficient for the n-th α-mode. The alpha modes are shape-functions 

and the expansion coefficients contain the time-dependent information of the flux expansion. It will be 
shown that the eigenvalue nα  play an important role in the determination of the expansion coefficients 

( )nA t . An expression for the expansion coefficients is derived for a general source-driven neutron 

transport problem. Substituting eq. (5.3) into the transport equation, given by eq. (3.2), an expression 
for the coefficients ( )nA t  is obtained 

 
( ) ( )[ ] ( )n n

n n
n n

dA t
A t

dt V
ψ ψ= − +∑ ∑ F L Q t . (5.4) 

The inner product with the adjoint α-eigenfunction, as defined in eq. (5.2), is taken 

 
( ) ( )[ ] ( )† †

, ,

, ,n n
m m n n

m n m n m

dA t † ,mA t
dt V

ψψ ψ ψ= − +∑ ∑ ∑F L Q tψ . (5.5) 
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Use (3.31) and take terms independent of ,r E  or Ω̂  out of the brackets 

 
( ) ( ) ( )† 1 † 1 †

, ,

, ,n
m n n n m n m

m n m n m

dA t
V A t V Q

dt
ψ ψ α ψ ψ ψ− −= +∑ ∑ ∑ , t . (5.6) 

If the alpha eigenvalues are non-degenerate the orthogonality of †
mψ  and nψ  is used to obtain an 

ordinary differential equation for each expansion coefficient ( )nA t  

 
( ) ( ) ( )† 1 † 1 †, ,n

n n n n n n n

dA t
V A t V Q

dt
ψ ψ α ψ ψ ψ− −= + , t . (5.7) 

The right-hand side of the equation is divided by the inner product on the left hand side and finally a 
relatively simple expression is obtained for ( )nA t  

 
( ) ( )

( )†

† 1

,

,
nn

n n
n n

Q tdA t
A t

dt V

ψ
α

ψ ψ−
= + . (5.8) 

This expression is similar to the one found by Cao [2008]. 
By definition of the alpha eigenvalue problem the operators F  and L  have been eleminated in 

the determination of the coefficients ( )nA t . Due to the biorthogonality relation of the alpha modes the 

coefficients ( )nA t  can be described by a set of uncoupled ordinary differential equations. This is very 

convenient because computation of ( )nA t  is now fairly easy and computationally cheap. For some 

simple cases the time-integration can even be done analytically. 
If sufficient alpha modes are known a time-dependent calculation can be done without performing 

a full time-dependent transport calculation. Practical limitations in the use of the alpha modal 
expansion technique are i) the number of modes required before the modal flux reconstruction 
converges to the actual neutron flux and ii) the number of alpha modes that can be determined for a 
system with sufficient accuracy within a reasonable amount of computational time. 

The alpha modes can also be used to reconstruct the steady state flux for a problem with a 
constant source . In this case  is determined by 0Q nA

 
†

0

† 1

,1
,
n

n
n n n

Q
A

V

ψ
α ψ ψ−

= − . (5.9) 

 
5.2 Practical implementation of inner products 
Inner products have to be evaluated during the calculation of the modal expansion coefficients, given 
by eq. (5.8) and eq. (5.9). Since the alpha modes used in the expansion theory are determined by the 
PHANTOM code the angular discretization has to be performed by spherical harmonics, the spatial 
discretization by finite elements and the energy discretization by multi-group theory. Important issues 
of the numerical integration over the phase-space originating from these discretizations are dealt with 
in this section. 
 
5.2.1 Spatial and angular integration 
Recall from eq. (3.8) that a function ( )ˆ,f r Ω  can be split up in an angular (spherical harmonics) and 

spatial dependent part as follows 

 ( ) ( ) ( )ˆ,
T

f r r ˆΩ = f Q Ω , (5.10) 
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where  contains the spherical harmonics polynomials and ( )Ω̂Q ( )rf  the spatial dependence of 

( )ˆ,f r Ω  for each angular moment. The inner product (excluding integration over energy) of two 

functions ( )ˆ,f r Ω and  is then given by ( ˆ,g r Ω)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

,
4 4

ˆ ˆ ˆ ˆ, , , , , T T

r
V V

f r g r f r g r d dV r r d d
π π

Ω
Ω Ω = Ω Ω Ω = Ω Ω Ω∫ ∫ ∫ ∫ f Q g Q V . 

  (5.11) 

The product Tg Q  is a scalar. For this reason the product Tg Q  can be rewritten into ( )TTg Q  and this 

is equal to TQ g . Only the vector Q  and  depend on TQ Ω  reducing eq. (5.11) to 

 ( ) ( ) ( ) ( ) ( ) ( )
,

4

ˆ ˆ, , , T T

r
V

f r g r r d r d
π

Ω

⎡ ⎤
Ω Ω = Ω Ω Ω⎢ ⎥

⎣ ⎦
∫ ∫f Q Q g V . (5.12) 

Using the orthogonality relations, given by eq. (3.9), of the spherical harmonics the inner product 
reduces to 

 ( ) ( ) ( ) ( )
,

ˆ ˆ, , , T

r
V

f r g r r r d
Ω

Ω Ω = ∫ f g V . (5.13) 

Now ( )rf  and  are expanded with the ‘half’ FEM basis functions introduced in section 3.2 ( )rg

 ( ) ( )
1 1

enE
e

n n
e n

r h
= =

=∑∑f f r , (5.14) 

where E  was the total number of elements and  the number of nodes of element e. Using the FEM 

expansion the volume-integral can be written as a summation of the integral over the volume of each 
element 

en

( ) ( ) ( ) ( ) ( ) ( )
, 1 1 1 1

ˆ ˆ, , ,
e e e en n n n

T e e T e e
i j i j i j i j

r e i j e i je e

f r g r h r h r dV h r h r dV
Ω = = = =

Ω Ω = =∑ ∑∑ ∑∑∑∫ ∫f g f g . 

  (5.15) 
The indexes i and j range from one to the number of nodes on the element e. The spatial integral over 
the basis functions on the element is evaluated by means of the (Gaussian) quadrature introduced in 
section 3.2. 
 
5.2.2 Energy dependence 
In order to evaluate the inner products of the α -mode expansion, also integration over energy is 
required. The integral over energy can be split up into a sum of integrals over the energy groups 

 

( ) ( ) ( )

( ) ( ) ( )
1

† 1 †
ˆ, ,

ˆ,

†

ˆ,

1ˆ ˆ, , , , , ,

1ˆ ˆ                                 , , , , ,
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r E
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E
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V r E r E dE
V E

r E r E dE
V E

ψ ψ ψ ψ

ψ ψ
−

−

Ω
Ω

Ω

= Ω Ω

= Ω Ω

∫

∑ ∫
. (5.16) 

In the multigroup discretization one would intuitively write the integration over energy in terms of the 
group fluxes and group velocities as follows 

 ( ) ( )† 1 †
ˆ, , ˆ,

1 ˆ ˆ, , ,g gr E rg g

V r
V

ψ ψ ψ ψ−

Ω
,r

Ω
= Ω∑ Ω . (5.17) 



The integration over the energy domain is treated as a summation of the contributions of each separate 

group. The product ( ) ( )†

ˆ,
ˆ ˆ, , ,g g

r
r rψ ψ

Ω
Ω Ω  is evaluated for each group by the method of the 

previous subsection. 
 
5.3 Transient scenarios 
For many practical applications it seems reasonable to assume that the amplitude of the neutron source 
varies in time but the shape of the source remains the same. In this case the source can be written as 
the product of a shape function and a time-dependent amplitude 
 ( ) ( ) ( )0

ˆ ˆ, , , , ,Q r E t Q r E T tΩ = Ω . (5.18) 

The coefficients ( )nA t  are now described by 

 
( ) ( ) ( )

†
0

† 1

,

,
nn

n n
n n

QdA t
A t T t

dt V

ψ
α

ψ ψ−
= + . (5.19) 

This expression can be used to obtain analytical expressions describing the time integration of the 
alpha mode expansion technique for some basic transient scenarios of an ADS. 
 
5.3.1 Reactor shutdown 
One realistic scenario to consider would be to turn off the accelerator after operating the reactor at a 
constant power level. First of all this is an important transient in the actual use of an ADS. In practice 
the accelerator will be turned off either on purpose or it happens unintended due to some excursion of 
the accelerator. Secondly this is an interesting scenario for studies of the modal expansion since it 
reveals the (prompt) time scales involved in an ADS. At the beginning of the transient both the 
fundamental and first few dominant modes as well as the higher modes are important for the modal 
flux approximation. During the transient the importance of the higher modes in the flux 
reconstructions reduces and at the end of the transient the flux can be described by only a few modes. 

In this case first the coefficient ( )0nA  is determined by solving the steady state problem as 

described by eq. (5.9). The coefficients ( )0nA  are used as initial condition to solve 

 
( ) ( )n

n n

dA t
A t

dt
α= , (5.20) 

which leads to the following result 
 ( ) ( )0 nt

n nA t A eα= . (5.21) 

In a system without a source the contribution of alpha mode n to the flux expansion decays over time 
with constant nα . This follows from the physical interpretation of the alpha mode, stated in section 

3.4.1. The contribution of the modes with a large (negative) time-eigenvalue will die out quickly in the 
solution and after a longer period of time the solution will depend on a limited number of dominant 
alpha modes. 
 
5.3.2 Reactor start-up 
Another realistic scenario would be to turn on the accelerator in continuous mode. During the early 
stage of the transient the higher modes are most important. At later stages both the lower dominant 
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modes as well as the higher modes are relevant. After sufficient time the time-dependent neutron flux 
of the ADS stabilizes and converges towards the steady-state flux. 

The initial condition is . Eq. ( )0nA = 0 (5.19) has to be solved to obtain the coefficients ( )nA t . 

Taking ( )n nA tα  to the left hand side and using the product rule this can be rewritten as 

 ( )( ) ( )
†

0

† 1

,

,
n

nt
n

n n

Qd e A t T t e
dt V

ntα α
ψ

ψ ψ
−

−
= − . (5.22) 

After performing the integration with respect to time it is found that 

 ( ) ( )
†

0

† 1

,

,
n

t
n t

n
on n

Q
A t e T t e dt

V
α

ψ

ψ ψ
−

−
= ∫ ntα . (5.23) 

If ( )T t is a step-function so  for  it is found that ( ) 1T t = 0t ≥

 ( ) (
†

0

† 1

,1 1
,

n
n t

n
n n n

Q
A t e

V
α

ψ
α ψ ψ−

= − − ) . (5.24) 

After sufficient time the expansion coefficients ( )nA t  converge to the coefficients of the steady-state 

problem, given by eq. (5.9), and logically the time-dependent modal flux reconstruction converges 
towards the steady-state neutron flux. 

For large negative values of nα  the coefficient ( )A t  will converge rapidly towards the 

coefficient of the steady-state situation. As a result the time needed for the flux of the ADS to 
converge to the steady state situation is dominated by the time-eigenvalue of the fundamental mode.  
 
5.3.3 Pulsed source 
Another important time-dependent scenario for accelerator driven system is an accelerator working in 
a pulsed mode. The GENEPI-3C accelerator used in the GUINEVERE experiment can be used in both 
a continuous and a pulsed mode. Initially the neutron flux is zero in the ADS. At  the accelerator 
is switched on during a pulse length . After this the accelerator is turned off again and after one 

pulse period  it switches on again till 

0t =
pt

pT pt T tp= + . A schematic plot is given in Figure 5.1. 

 
Figure 5.1 Time-dependent amplitude of the pulsed neutron source 

In terms of reactor physics this case is obviously more complex than the scenarios of starting up and 
turning off the reactor. The solution of this problem does in a certain sense consist of combining 
solutions of those two scenarios. 

First a parameter ( )pn t  can be defined: 

 ( ) ( ) if -1p pn t p p T t pT= < p≤ . (5.25) 

The parameter  describes the number of pulses the accelerator has transmitted to the system, 

including the pulse it may be transmitting at t. The parameter 

( )pn t

( )pn t  is needed in an analytical 

expression describing ( )nA t . 
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If the initial flux of the ADS is zero the coefficients ( )nA t  for an ADS working in pulsed mode can 

be calculated. If ( ) ( )-1 1p P pp T t p T t< ≤ − +  they are given by 

 ( ) ( )( )( ) ( ) ( )(
( )† 1

1 10

† 1
1

,1 1 1
,

p
n p p n p pn p

n t
t n t T t t p Tn t

n
pn n n

Q
A t e e e

V
α ααψ

α ψ ψ

−
− − − − −

−
=

⎡ ⎤
= − − + −⎢ ⎥
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∑ )

P

 (5.26) 

and if ( )-1 p pp T t t pT+ < ≤  by 

 ( ) ( ) ( )( )
( )†
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† 1
1

,1 1
,

p
n p pn p

n t
t t p Tn t

n
pn n n

Q
A t e e

V
ααψ

α ψ ψ
− − −

−
=

= − − ∑   (5.27) 

One can see that these expressions consist of combinations of the start-up and shutdown scenarios 
accompanied by appropriate time shifts for the contributions of the different pulses of the source.  
 
5.3.4 Implicit Euler time-integration 
If also the shape of the source ( )ˆ, , ,Q r E tΩ  is time-dependent numerical time integration might be 

necessary. The time-integration of ( )nA t  in eq. (5.8) can be solved numerically by means of an 

implicit Euler time integration scheme. The biggest advantage of an implicit scheme is its numerical 
stability. Knowing  as an initial condition and discretizing the time-dependence in eq. ( )0nA (5.8), it 

follows that 
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where i denotes the time-step of the time integration scheme. This can be rewritten to obtain 
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This expression can easily be implemented in a computer code. 
 
5.4 Application to a 1-dimensional ADS Model 
 
5.4.1 The 1-dimensional ADS Model 
The alpha mode expansion technique has been applied to a 1-dimensional accelerator driven system 
model. A 1D ADS model is of course only a limited approximation of a real ADS-system. It does 
however contain much of the basic characteristics of source driven subcritical systems and is expected 
to reveal most of the important properties of the alpha mode expansion technique. For the alpha mode 
expansion technique itself it makes no difference if a 1-dimensional or 3-dimensional problem is 
studied and a significant amount of alpha modes can be calculated for a 1-dimensional problem within 
a reasonable amount of time. 

The 1D ADS-model chosen to apply the alpha mode expansion technique is similar to the ADS 
model used by Lathouwers [2003]. The ADS is a symmetric one dimensional system of 240 cm width. 
It contains a lead-bismuth (at 10 kg/m3) zone of 40 cm width in the center region, fuel zones (10%-
enriched UO2 at 5 kg/m3) on the left and the right of 27 cm and reflector regions on the left and right of 
73 cm width (iron at 7 kg/m3). The system is spatially discretized by 240 uniformly sized elements and 



has vacuum boundary conditions. Cross sections for the three different material zones in the system 
were generated with the SCALE package for a one- and three energy group discretization. The 
external neutron source is defined to have a width of 20 cm and is located at the center of the 
spallation zone (-10 cm ≤ xsource ≤ 10 cm). A schematic drawing of the ADS is given in Figure 5.2. 

 
Figure 5.2 Schematic drawing of the 1D ADS model with vacuum boundary conditions 

Numerical results of the steady state flux reconstruction with the alpha mode expansion and the 
different transient scenarios, discussed in section 5.3, will be presented for the 1D ADS-model in this 
section. A comparison will be made with results obtained by performing full time-dependent transport 
calculations with PHANTOM. 

If the modal expansion technique can be used to approximate the transient behaviour of the 1D 
ADS model the technique itself should be easily expandable towards more complex systems as the 
principle behind the determination of the expansion coefficients ( )nA t  remains the same. The 

determination of a sufficient number of alpha modes is however computationally quite demanding at 
this moment making the applicability of the alpha mode expansion for complex multi-dimensional 
systems limited at the present moment. 
 
5.4.2 One group results 
In the simplest possible case the energy dependence of the problem is discretized by using only one 
energy group. Cross sections were generated with the SCALE package. A P7-angular discretization 
with third order scatter is used during the calculations. In the 1-group case  was determined with 

PHANTOM to be 0.93416. For the 1-group discretization 20 alpha modes were determined. The first 
three eigenvalues were found to be -23269 s-1, -149296 s-1 and -315384 s-1 and correspond well to the 
ones found by Lathouwers [2003] with a similar 1D neutron transport code. The 19th 

effk

α -eigenvalue is 
given by -7397735 s-1, so a significant difference between the eigenvalues exists. The scalar flux of the 
first 6 alpha modes are plotted as an illustration of the shape of the alpha modes in Figure 5.3. 
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Figure 5.3 Scalar fluxes of the six dominant alpha modes of the 1-group 1D ADS model 
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The scalar flux of the fundamental alpha mode is positive and symmetric around . It can be seen 
that the n-th alpha mode contains  zero crossings. Symmetric and asymmetric modes are found. 
The shape of the adjoint alpha modes is identical to the forward alpha modes. This will not be the case 
if more energy groups are used since the transport problem is not self-adjoint anymore due to the 
down-scattering operator. 

0x =
1n−

The alpha modes have been used to reconstruct the steady-state flux of the 1D ADS model driven 
by a continuous isotropic source with unit strength. For this steady state problem the coefficients of 
the modal expansion are determined by eq. (5.9) and used in the modal expansion, represented in eq. 
(5.3). The summation of the modal approximation was truncated after a different number of modes (1, 
5, 9 and 19) and the results are compared with a reference solution in Figure 5.4. The reference 
solution was generated by a fixed source calculation with PHANTOM. 
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Figure 5.4 Comparison of the steady-state scalar flux reconstruction of the 1D ADS using different 

numbers of alpha modes and the reference solution by PHANTOM 
In this 1-group case the fundamental alpha mode already gives a quite correct approximation of the 
flux, except for the source region. The addition of more modes into the modal expansion improves the 
result further and further. Using 19 modes the reference flux is accurately represented. 

Now the source is turned off after operating the reactor at a constant power level.  The solution of 
the steady state problem of the previous paragraph is used as an initial condition for the calculation of 
this transient. Again a reference solution is calculated in PHANTOM. The time-evolution of the 
coefficients in the modal expansion is calculated as prescribed by eq. (5.21). 

The summation of the modal expansion is again truncated after 1, 5, 9 or 19 alpha modes and 
results are plotted in Figure 5.5 for the time-evolution of the scalar flux at x = 0 cm. For the steady-
state problem the largest deviations between the modal expansion and the reference solution occurred 
at this position inside the source region. 
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Figure 5.5 Scalar flux (x=0) of the 1D ADS after source shutdown using different numbers of modes 
From the graphs in Figure 5.5 it can be concluded that the higher alpha modes play an important role 
in the steady state solution and during the beginning of the transient. After 10 μs the neutron flux can 
be accurately reconstructed by only the fundamental alpha mode. Using a sufficient number of alpha 
modes the scalar neutron flux can be very well represented for this transient with the discretization in 
one energy group. 
 
5.4.3 Three group results 
The 1D ADS model has also been investigated with a three-group energy discretization. The energy 
range of each group is given in Table 5.1. 

Table 5.1 Energy range of the three energy groups 
Group Energy range 
1 247.24 KeV – 19.64 MeV 
2 27.394 KeV – 247.24 KeV 
3 10 μeV – 27.394 KeV 

Since the neutrons generated by the accelerator in an ADS have a high energy the continuous isotropic 
source with unit strength was placed into the first energy group. So the first energy group, with the 
highest neutron energies, contains the neutrons from the source and the neutrons from fission. The 
second group is chosen such that the highest flux still occurs in the central region of the ADS, which 
includes the fuel zone and the spallation zone. The third energy group is chosen such that the flux is 
lower in the fuel region than in the spallation zone and the reflector. 
A P7-angular discretization is used with third order scatter. 80 forward and adjoint alpha 
eigenfunctions were determined for the system and 76 of them are used for the reconstructions. For the 
other 4 modes the eigenvalues of the forward and the adjoint calculation did not match. The 
fundamental alpha eigenvalue is -38003 s-1 and the 72th eigenvalue is -10167897 s-1. The 72th 
eigenvalue is the highest calculated alpha eigenvalue without an imaginary component. In total 13 
complex eigenfunction pairs were determined, so the total number of (real) alpha modes used in the 
expansion is 63. 
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The steady-state neutron flux was reconstructed with the alpha modes and the scalar neutron flux is 
compared with the reference fixed source calculation by PHANTOM. The expansion coefficients 

 were determined with eq ( )0nA (5.9) and the superposition of the alpha modes, given by eq. (5.3), 

was taken. The scalar neutron flux is plotted in Figure 5.6. 
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Figure 5.6 Steady state scalar flux reconstruction of the 1D ADS for the 3 different groups 

The alpha mode reconstruction can describe the steady-state neutron flux quite well, but especially the 
reconstruction of the group flux in the first energy group is difficult inside the source region. 

The transient scenario of turning off the source after operating under steady state conditions is 
investigated next. The steady-state flux is used as an initial condition of the time-dependent reference 
calculation. The coefficients  obtained for the steady-state alpha mode expansion are used to 
describe the time-evolution of the system by means of eq 

( )0nA
(5.21). The time-dependent neutron flux is 

plotted at x = 0 in Figure 5.7 for both the alpha mode expansion and the reference solution. The point x 
= 0 is chosen because this is obviously the most difficult point to represent by the steady-state alpha 
mode expansion. 
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Figure 5.7 Time dependent scalar flux (x=0) of the 1D ADS for the 3 groups after source shutdown 

The time-dependent neutron flux is very well represented by the alpha mode reconstruction in all three 
energy groups. Only during the early stage of the transient there is a small difference between the 
alpha mode reconstruction and the reference flux inside the source region in the first energy group. 
The flux at the end of the transient (t = 10-5 s) is plotted in Figure 5.8. 
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Figure 5.8 Scalar neutron flux reconstruction at the end of the transient for the 3 groups 

Obviously the representation of the neutron flux is very accurate, also in the first energy group. 
Apparently the influence of the higher alpha modes has damped out and the flux is accurately 
described by only the lower alpha modes. It appears that for a correct representation of the steady state 
flux more alpha modes than the 63 used in the expansion will be required. It is however 
computationally difficult to determine these, since it requires a lot of computational time. The 
calculated higher alpha modes are sometimes inaccurate and a higher mode from the forward 
calculation cannot always be coupled to an eigenfunction from the adjoint calculation. This coupling is 
more difficult for higher alpha modes since sometimes eigenvalues are skipped during the forward or 
adjoint calculation. Eigenvalues of two different modes can also be close to each other or the 
eigenvalues calculated for the same mode are slightly different in the forward and adjoint calculation. 
The relative error in the scalar neutron flux has also been determined in a more quantative way for 
each energy group 

 
, _ , , _ ,

, ,

,
. 

,
g rec g ref g rec g ref r

g ref g ref r

rel error α αφ φ φ φ

φ φ

− −
= , (5.30) 

where the brackets denote integration over space of the scalar fluxes. The error is a measure of the 
average deviation over space of the reconstructed flux with respect to the reference flux. 
In Figure 5.9 the error in the scalar steady-state neutron flux is plotted for each energy group as a 
function of the number of modes used in the reconstruction. Also the error in the scalar neutron flux as 
a function of time is plotted when all 63 alpha modes are used. 
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Figure 5.9 Error in the scalar flux as a function of modes (steady state) and time (63 modes) 
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The higher angular moments can also be included in the determination of the error. In that case the 
angular dependent fluxes, ( )ˆ, , ,r E tψ Ω , are used instead of the scalar flux and integration takes place 
over space and angle. It was found that the addition of the higher moments into the determination of 
the error basically made no difference for the magnitude of the relative error and plotted in a graph the 
relative error would look just the same as in Figure 5.9. 

The reconstruction of the steady-state neutron flux requires the use of many modes. Using 63 
modes there is still an error of around 6% in the first energy group flux due to the problems of 
reconstructing the flux in the source region. After a small time period the error in the first group drops 
rapidly. For the largest part of the transient the error in the alpha mode reconstruction is much smaller 
than 1% for all three energy groups. Except for the very early stage of the transient the alpha mode 
expansion is a very accurate way of describing the transient behaviour of the 1D ADS model in case of 
a source shutdown. 

In the scenario of a startup of the source the time-evolution of the expansion coefficients is 
determined by eq. (5.24). The neutron flux at x = 0 obtained by the alpha modes expansion is 
compared to a reference solution by PHANTOM in Figure 5.10. 
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Figure 5.10 Time dependent flux (x=0) of the 1D ADS after source start-up for three groups. 

The solution in the second and third energy group is quite accurate. In the first energy group there are 
more difficulties with the reconstruction inside the source region. After sufficient time the neutron flux 
will become equal to the steady-state neutron flux, plotted in Figure 5.6. At the end of the transient the 
error at x = 0 is of the same magnitude as the error in the reconstruction of the first group steady-state 
flux. One can also notice from Figure 5.10 that the largest part of the error in the first energy group 
flux already arises during the very early stage of the transient. This error can again be attributed to the 
missing higher alpha modes. 
 
The final scenario to investigate is the case of the accelerator operating in a pulsed mode. This 
scenario was investigated for a pulse length  of 0.5 μs. The period  between the start of two 

pulses is 5 μs. In the end 8 pulses are emitted during the time domain of the calculation. The system 
was assumed to have a zero initial flux. 

pt pT

The expansion coefficients for this problem were determined with eq. (5.26) and eq. (5.27) . The 
reference and reconstructed scalar flux is plotted for the three energy groups in Figure 5.11 as a 
function of time at x = 0, where the greatest error in the flux reconstruction is expected. 
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Figure 5.11 Time dependent flux (x=0) of the 1D ADS operating in pulsed mode for the three groups 

At first it is interesting to focus on some properties of the physical behavior of the system for the 
different energy groups. In the first energy group there is a very rapid response to the power insertion 
by the source followed by a rapid decay after the end of the pulse. There is also a slow rise of the 
average flux in the first group as the number of pulses increases. In the second energy group the flux 
responds a bit slower to the power insertion, but also the decay takes place on a slower scale. In the 
third energy group the reaction to the power insertion is really slow. Most of the rise of the neutron 
flux in the third group takes place after the pulse has ended. This can be understood by realizing that it 
will take time before the neutrons, which are added in the first energy group by the source pulse and 
its consequential fission processes, are slowed down towards these lower energies. The lower energy 
neutrons also cause new fission reactions and are therefore responsible for the rise of the average flux 
in the first energy group with the very slow time scale of the third energy group. 

If the alpha mode reconstruction is examined one sees that the main difficulty is encountered in 
the description of the neutron flux in the first energy group during the neutron insertion via the source 
pulse. Equivalently to the shutdown and start-up of the source scenarios the cause of this difficulty can 
again be found in the missing higher alpha modes. For the rest of the time domain and the other energy 
groups the description of the flux is very accurate. 

An interesting result is the evaluation of the neutron flux at the end of a source pulse. The scalar 
flux is plotted for the three energy groups at the end of the eighth pulse at t = 35.5 μs in Figure 5.12. 
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Figure 5.12 Flux of the 1D ADS operating in pulsed mode at the end of the eighth pulse (t = 35.5 μs) 

The flux reconstruction by the alpha modes clearly deviates from the reference solution in the first 
group. In the second group the reconstruction also does not match perfectly with the reference flux. In 
the third group the reconstruction leads to quite an accurate result. It appears that more modes are 
needed to improve the accuracy of the reconstruction at the moment the ADS is driven by the source 
or shortly after turning off the source. As mentioned before the higher alpha modes are difficult to 
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determine due to the computational time required and the inaccuracies in the determination of the 
higher forward and adjoint α-eigenfunctions. 

A few general conclusions of the study of the 1-dimensional model with a 3 energy group 
discretization can be drawn. The reconstruction of the steady-state neutron flux with the alpha mode 
expansion technique is quite accurate with respect to the reference steady-state solution except for 
especially the source region of the first group flux. In case of a source shutdown the time-dependent 
neutron flux is well described by the alpha modes expansion except for the first energy group during 
the very early stages of a transient. The steady state solution and these early stages of the transient are 
hard to reconstruct due to the missing higher alpha modes, which describe the faster time scales 
involved in the decay of the neutron flux during the transient. The problems in reconstructing the 
rapidly varying neutron flux components also show up in case of the source start-up scenario and an 
ADS operating in a pulsed mode. The cause of this is again found in the lacking higher alpha modes. 
So a large number of modes is needed for a correct representation of the steady-state flux or flux 
calculations when the source is turned on. 
 
 
5.5 Application to a 2D ADS model 
 
5.5.1 The 2D ADS model 
The 1D ADS model used in section 5.4 has been extended towards a 2D geometry. The same materials 
and cross sections are used as in the 1D ADS model of section 5.4. A schematic picture of the mesh of 
the 2D ADS model is given in Figure 5.13. The 2D model ADS covers 100 cm in the x-direction and 
90 cm in the y-direction. Since the size of the ADS in the x-direction differs from the size in the y-
direction no degenerate eigenmodes exist. If degenerate eigenmodes exist the alpha mode expansion 
technique can also be applied but then a coupled system of ODEs must be solved to describe the time-
evolution of the expansion coefficients. 

The ADS model consists of a lead-bismuth zone (blue) in the center region, a fuel zone (red) 
around it and an iron reflector (gray) surrounds the reactor core. The source region is defined as the 
lower left element (5x5 cm) of Figure 5.13, so its area amounts one quarter of the total area (10x10 cm) 
of the lead-bismuth zone. 

Because of the symmetry of the 2D ADS, reflective boundary conditions are used in the x-
direction and y-direction. This has two main advantages. First of all it reduces the mesh size of the 
computation by a factor 4. Secondly only the symmetric modes are calculated. If the source is 
positioned symmetrically with respect to the reflective boundaries only the symmetric modes will be 
required and the a-symmetric modes are not calculated unnecessarily. The calculations of the 2D 
model were performed using a P3-expansion with third order scattering. 
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Figure 5.13 Mesh of the 2D ADS Model with boundary conditions and dimensions in cm 

 
5.5.2 2D ADS model: 1-group results 
A fixed source calculation was performed with PHANTOM to obtain the steady-state flux of the 2D 
ADS model with a source of unit strength using a 1 energy group discretization. PHANTOM was also 
used to perform a time-dependent calculation in case of a shutdown of the source after operating under 
steady-state conditions. The time-dependent calculation will later on be compared with the time-
dependent alpha mode reconstruction. The scalar flux of the fixed source problem by PHANTOM is 
plotted in Figure 5.14. 

 
Figure 5.14 Steady state scalar flux of the 2D ADS model as calculated by PHANTOM 

One should notice that the solution has been mirrored around the reflective boundaries to obtain a 
clear graphical interpretation of the physical process inside the ADS. So the solution is plotted over 
the full core instead of the quarter core defined in the mesh. The steady-state flux has a sharp peak in 
the center region due to the addition of the source neutrons. The flux is relatively high due to fission in 
the fuel zone around the source region and the flux is low inside the reflector at the boundaries of the 
ADS. 
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The alpha modes of the 2D ADS model were calculated by PHANTOM with the Arnoldi method, 
introduced in section 3.5.3. 90 eigenfunctions were calculated containing 14 complex eigenvalue pairs. 
Including the 42nd alpha mode into the expansion leads to a distortion of the flux profile by a noisy 
contribution to the neutron flux. The Arnoldi method will not always determine the higher alpha 
modes with sufficient accuracy and, as mentioned before, the calculated forward eigenfunctions do not 
always coincide with the adjoint eigenfunctions. One possible cause for the problems with the 
determination of the higher alpha modes may be that the mesh is quite coarse making it difficult to 
represent a (spatially) rapidly varying mode correctly upon the limited number of nodes. In the end the 
first 41 of the 90 alpha modes were used for an optimal result. 

Figure 5.15 shows the steady-state scalar flux reconstruction using 1, 11, 21 or 41 alpha modes. 

 
Figure 5.15 Steady state flux reconstruction of the 2D ADS using different number of alpha modes 

Comparing these results with Figure 5.14 it is found that addition of more and more alpha modes 
improves the reconstruction significantly. The use of 41 alpha modes leads to a quite correct 
reconstruction of the steady-state flux in Figure 5.14. Only the peak in the source region is a bit 
sharper and higher in the reference flux. Using 41 modes the relative error in the scalar steady-state 
flux, by definition of eq. (5.30) is 2,81%. To improve the reconstruction of the neutron flux in the 
source region even more alpha modes are required. Unfortunately there were some issues with the 
accuracy of the determination of these higher alpha modes. 

In Figure 5.16 an overview is given of the weights of the different modes in the alpha mode 
reconstruction. As one can also observe from Figure 5.15 the fundamental mode is of great importance, 
but also a lot of the higher modes give small, but relevant, contributions to the reconstructed flux. The 
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expansion coefficients  apart from the first few modes show no real decay in magnitude for the 

higher alpha modes. This also indicates that the solution of the model expansion has most likely not 
fully converged yet and also higher (> 41) modes can give relevant contributions to approximate the 
reference steady-state flux. 
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Figure 5.16 Importance of alpha modes in 2D- Figure 5.17 Reconstruction of scalar flux (x,y = 0) 
 ADS steady-state flux expansion  of the 2D ADS after source shutdown 
The time-dependent neutron flux after a shutdown of the source was reconstructed using the 41 alpha 
modes. Equivalent to the 1D cases studied earlier the steady-state flux reconstruction shows the largest 
deviation from the reference solution in the center of the source region. So the time-dependent alpha 
mode reconstruction in case of a source shutdown has been compared to the reference solution by 
PHANTOM at the central position of the reactor (x=0, y=0) in Figure 5.17. In the PHANTOM 
reference calculation 100 time steps of 10-7 s each were used. 
 Apart from the very first stages of the transient the alpha mode reconstruction gives a very 
accurate result for the time-dependent neutron flux in the center of the reactor. At other positions in 
the reactor results with a similar accuracy can be found. Using 41 modes the relative error in the scalar 
flux, as defined by eq. (5.30), is only 0.33% after 5 time steps (t = 5·10-7 s) and after 100 time-steps (t 
= 10-5 s) the relative error has reduced to 0.24% 
 
5.5.3 2D ADS model: 3 group results 
The 2D ADS model was also studied in a multi-group case. The three energy groups in Table 5.1 are 
used and the neutron source of unit strength is placed into the first energy group. The reference steady-
state solution calculated with PHANTOM is plotted in Figure 5.18.  

One first observation is that the source neutrons cause a sharp peak in the first group flux and 
secondly it is interesting to notice that for lower neutron energies (group 3) most neutrons are found in 
the iron reflector with its low absorption cross section and in the lead-bismuth center region, but the 
neutron intensity is much lower inside the fuel region due to the absorption of neutrons by the 
uranium-oxide. The absorption cross section of the uranium-oxide (Σa,3 = 1.14371·10-2 cm-1) is 
relatively large in the third energy group compared to the iron reflector (Σa,3 = 2.55270·10-3 cm-1) and 
the lead-bismuth region (Σa,3 = 3.36129·10-4 cm-1). 
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Figure 5.18 Steady state scalar flux of the 2D ADS model for three energy groups by PHANTOM 

The alpha mode reconstruction can be compared with the reference steady-state group fluxes to check 
the correctness of the modal expansion. 90 alpha eigenvectors were calculated with the Arnoldi-
method for a forward and an adjoint calculation. 81 (real) alpha modes remained after leaving out the 
forward eigenvectors that could not be linked to one of the adjoint eigenvectors, due to skipping of 
eigenvalues or simply a too large difference in eigenvalue, and after taking the complex eigenvalue 
pairs together into real modes. For each complex eigenvalue pair two complex vectors are regarded as 
one real mode. 

The alpha mode reconstruction was in the end performed using only 31 alpha modes. The addition 
of the 32nd mode into the expansion led to a significant disturbance of the third energy group flux by 
some noisy contribution, similar as the problem encountered in the one-group case. Perhaps the 
coarseness of the mesh might be a possible cause for this behaviour. The first alpha eigenvalue was 
determined to be -66690 s-1 and the 31th alpha eigenvalue is -1873834 s-1. 

The alpha mode reconstruction of the steady-state flux is plotted in Figure 5.19. 

 
Figure 5.19 Steady state scalar flux reconstruction using 31 alpha modes for the three energy groups 
The alpha mode reconstruction is unable to reconstruct the peak in the source region of the first group 
flux and this causes the relative error, defined by eq. (5.30), in the scalar flux reconstruction to be 
27.93%. For the second group flux the shape of the reconstructed flux is similar to the reference flux 
but the amplitude is too low. The relative error of the 2nd group flux reconstruction is 16.25%. For the 
third group the reconstructed flux shows similarity to the reference flux with a relative error of 3.94%. 
 The shutdown of the neutron source has also been studied for the 2D ADS model using a three 
group energy discretization. In the PHANTOM reference calculation time steps of 10-7 s each were 
used. The alpha mode reconstruction in the center of the source region (x=0, y=0) is compared to the 
reference solution in Figure 5.20. 
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Figure 5.20 Reconstruction of time dependent scalar flux (x=0, y=0) after source shutdown 

As observed before in the other cases the alpha modes can reconstruct the time-dependent behavior of 
the neutron flux in the center of the source region correctly after the source is turned off, except for the 
very early stages (the first 1 or 2 μs) of the transient. At other locations in the reactor the time-
dependent neutron flux is also correctly described by the alpha mode expansion after the very early 
stages of the transient. 

In Figure 5.21 the error in the scalar flux, determined by means of eq. (5.30), is plotted as a 
function of time for the three energy groups. 
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Figure 5.21 Relative error in the scalar flux reconstruction for three groups as a function of time. 

The graph clearly visualizes that the solution of the alpha mode expansion is accurate with respect to 
the reference solution after the very early stages of the transient. After 4 μs the relative errors for the 
three different groups are respectively 0.0941% (1), 0,0687% (2) and 0,54% (3). 

It can be concluded that using both a one energy and a three energy group discretization the alpha 
modes can correctly represent the time-dependent neutron flux, except for the very early stages, after a 
source shutdown. For a correct representation of the very early stages of the transients more alpha 
modes, than the 31 or 41 used now, are required. For the 2D model it is however difficult to determine 
these higher alpha modes in an accurate way with the Arnoldi package. Errors in the calculation of the 
higher modes regularly occur due to skipping of eigenvalues in either the forward or the adjoint 
calculation. Also the numerical accuracy seems to decrease during the calculation of the higher modes. 
The coarseness of the mesh might be an additional cause of the problems with the higher alpha modes. 
If a mode varies rapidly over the spatial domain it becomes hard to represent upon a mesh with a 
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limited number of nodes. Unfortunately it is not always possible to refine the mesh considering the 
computational time required for the determination of the alpha modes. 

It is however promising that the alpha mode expansion theory in itself can be used in a multi-
group discretization on a multi-dimensional reactor geometry. 
 
5.6 A 2D simplified GUINEVERE model 
The α -mode expansion technique has also been used to describe the time-dependent neutron flux 
after a shutdown of the source in a 2D-system with more similarity to the GUINEVERE reactor. The 
most important differences with respect to the ADS studied in the previous section are the use of lead 
in the reflector, a different material composition of the fuel region (fuel pins with a 30w%-enrichment 
mixed with lead) and the use of a 10 energy group discretization. 

The same cross sections, produced by the SCALE package, of the GUINEVERE calculations in 
chapter 4 were used with the 10-energy group discretization, given by Table 4.1. A similar grid was 
used in the XY-plane as in the 3D model of GUINEVERE. The homogenised fuel assemblies and the 
lead assemblies were used as the two materials of this simplified 2D model of the GUINEVERE 
facility. 

Initially also a void region was added for the beam in the source region and in one element 
outside the fuel region to resemble the effect of the control rod voids. The use of void regions led to 
some deviation (~1%) between the fundamental alpha eigenvalues of the forward and the adjoint 
calculation by PHANTOM with both the Arnoldi and Power method. It is not completely understood 
where this difference originates from. The deviation in the forward and adjoint eigenvalue leads to 
small errors in the time-dependent reconstruction of the neutron flux. Using a model without void 
regions this problem did not occur. Important fact is that this is a problem in the calculation of the 
alpha modes and not a problem of the modal expansion technique itself. 

The simplified 2D GUINEVERE model is based upon the grid of the XY-plane of the 3D 
GUINEVERE model. But in this case the model is made symmetrical with respect to the X- and Y-
axis. In this way less computational time is required and no asymmetric modes need to be calculated. 
Since the 2D model has an infinite dimension in the Z-direction the distances in the XY-plane had to 
be scaled down to obtain a subcritical system. A plot of the mesh of the 2D model with dimensions 
before scaling down is given in Figure 5.22. In the actual calculation the x and y coordinates were 
scaled with a factor of 0.66 to obtain a keff of 0.97502 (using a P3-expansion with 3rd order scattering). 
This value of keff is quite similar to the one foreseen for the subcritical accelerator driven configuration 
in the GUINEVERE project. 
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Figure 5.22 Spatial mesh of 2D GUINEVERE model with b.c. and dimensions in cm before scaling 

The calculations on the 2D simplified GUINEVERE model were performed with a P3-expansion with 
third order scattering. 

In practice the flux for the system is almost negligible in energy group 9 and 10, because 
GUINEVERE is a system with a quite fast spectrum, since there is moderator. In section 4.3 it was 
observed from the time-dependent calculations of the 3D GUINEVERE model that a big difference 
between the time scale of the physical process in the 9th and 10th energy group and the other 8 energy 
group exists. The most important processes during the transients in the 2D simplified GUINEVERE 
model as well as the full 3D model occur on a faster time scale in the first 8 energy groups. It was 
concluded in section 4.3 that it is desirable to exclude the slower time scales associated with the 9th 
and 10th energy group from the calculation to determine the relevant alpha modes for the time-
dependent flux expansion in an efficient and accurate way. 

Only the first 8 energy groups in Table 4.1 were used during the calculations to ensure the 
calculation of only the relevant modes for the flux expansion. In this way the slow time scales 
associated with the 9th and 10th energy group are excluded from the calculation. 9 alpha modes are 
calculated by PHANTOM for the 2D ADS and used in the modal expansion. The fundamental alpha 
eigenvalue is -74575 s-1 and the 9th eigenvalue is -1075828 s-1. 

The steady-state problem is solved using a source in the first energy group of unit strength. The 
steady-state neutron flux obtained by the alpha mode expansion is compared to the reference fixed-
source calculation by PHANTOM in Figure 5.23 and Figure 5.24. The solutions are compared over a 
line in the x-direction in the center of the ADS (y=0). Since the system is almost symmetrical this will 
give a correct representation of the accuracy of the reconstruction. The plotted 1D-graph has been 
mirrored around x=0 to obtain a better graphical interpretation of the flux profile in reality. 
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Figure 5.23 Steady state scalar flux reconstruction (group 1-4) of the simplified GUINEVERE model 
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Figure 5.24 Steady state scalar flux reconstruction (group 5-8) of the simplified GUINEVERE model 
The high energy source neutrons cause a small peak in the first group flux in the central region of the 
ADS. The neutrons created during fission also have a high energy (group 1). The neutrons slow down 
due to scattering. During the first stage of slowing down (group 2-5) the flux is the highest in the 
fissile fuel region. While the neutrons are slowed down due to scattering more and more neutrons are 
absorbed by the uranium in the fuel region. The neutrons have less chance of being absorbed in the 
lead reflector and the lead in the source region than in the uranium, since the absorption cross section 
of uranium is much larger than of lead. Therefore for the low energy neutrons (group 7, 8) the highest 
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scalar flux is found in the lead reflector and there is a small increase of the flux inside the source 
region. 

Looking at the alpha mode expansion it should be observed that flux reconstruction compares 
quite well to the reference steady state flux. The largest difference is not surprisingly found in the 
group flux of the first energy group at the position of the source region. Also in the other groups there 
are some small deviations between the reference solution and the alpha mode expansion. But in 
general the reconstruction of the steady-state flux is still quite accurate. The relative errors, as defined 
by eq. (5.30), are smaller than 5% for all energy groups except the first (9,09%) and the sixth group 
(6,31%). 

The time-dependent neutron flux of the 2D ADS has also been calculated by PHANTOM in case 
of turning off the source after operating the ADS under steady-state conditions. Time steps of 10-7 s 
were used in this reference calculation. The time-dependent alpha mode reconstruction at the central 
node of the ADS (x=0, y=0) using the 9 modes is compared to the reference solution in Figure 5.25 
and Figure 5.26. 

The general conclusion is that the alpha modes can again reconstruct the time-dependent neutron 
flux at x=0 accurately except for the very early stages of the transient. For most groups the time-
dependent flux reconstruction is better at other positions since x=0 is for most groups obviously 
already the most difficult position for the steady-state flux reconstruction. In the 8th energy group 
there is a small difference between the reference solution and the alpha mode reconstruction. 
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Figure 5.25 Time-dependent scalar flux reconstruction (group 1-4) of the simplified GUINEVERE 

model after source shutdown 
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Figure 5.26 Time–dependent scalar flux reconstruction (group 5-8) of the simplified GUINEVERE 

model after source shutdown 
The error in the alpha mode expansion, as defined by eq. (5.30), can be plotted as a function of time 
for each energy group. In this way the error can be quantified in a better way and the error is evaluated 
over the whole space domain, instead of one position. The error is plotted in Figure 5.27 for all eight 
energy groups. 
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Figure 5.27 Error in flux reconstruction of each group after source shutdown as a function of time 

Also from Figure 5.27 it is clear that for the very early stage of the transient there is an error in the 
group fluxes. But after a short time the solutions become very accurate. There is however a small 
increase in the error after some time. One possible cause is that a small error is introduced into the 
reference calculation by PHANTOM due to the use of the implicit time-integration scheme, while the 
time-integration of the alpha mode expansion coefficients is performed by the analytical expression of 
eq. (5.21). A small inaccuracy in the magnitude of the fundamental alpha eigenvalue could be another 
explanation of the slowly increasing error at the later stage of the transient. 

In the end it can be concluded that also a more complex 2D ADS-model using a considerable 
amount of energy groups can be described properly by the alpha mode expansion technique. Still the 
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early stage of the shutdown transient remains difficult to reconstruct since more alpha modes are 
needed and those higher alpha modes are difficult to calculate. Also a proper choice of the energy 
groups is important to calculate the relevant alpha modes for the expansion in an efficient way. 
 
5.7 Conclusions 
Alpha modes were used as a basis for a modal expansion method to reconstruct the time-dependent 
neutron flux. In the alpha mode expansion theory an uncoupled system of ODEs describes the time-
dependent behaviour of the system. If the neutron source can be expressed as the product of a constant 
shape function and a time-dependent amplitude three transient scenarios can be defined. The source 
can be turned off after operating under steady-state conditions, the source can be turned on with a zero 
initial flux condition or the reactor can be operated in a pulsed mode, which also has a zero initial 
condition. Under the assumption that the shape of the neutron source is constant over time exact 
analytical expressions describe the time-dependent behaviour of the neutron flux reconstruction in the 
alpha mode expansion theory. 

To perform the alpha mode expansion a sufficient number of alpha modes must be determined 
with sufficient accuracy. In the practical cases studied it was found that the calculation of especially 
the higher (more than 30~80 modes) alpha modes often became numerically inaccurate. In some cases 
eigenvalues are skipped during the calculation, leading to a different order of the alpha eigenvalues in 
the forward and adjoint calculation. Also the difference between the forward and adjoint eigenvalue of 
the same mode tends to become larger for the higher modes. For the calculation of the alpha modes in 
2D the coarseness of the mesh can also limit the accuracy of the higher alpha modes with rapid 
variations over space. Finally the solution of the multi-group problem only converges very slowly and 
consequently a lot of computational time is required to calculate a significant number of alpha modes. 

The alpha mode expansion theory was used to study three different ADS models. A 1D ADS 
model, a 2D ADS model and a 2D simplified model of GUINEVERE. The first two models were 
studied with a one- and three energy group discretization. The simplified GUINEVERE model was 
studied with a 10 energy group discretization. 

The general conclusion is that the alpha mode expansion technique works quite well to describe 
the time-dependent neutron flux in all three reactor models. The biggest difficulties were encountered 
during the steady-state fixed source solution and the very early stage of the shutdown transient. During 
a start-up of the source or in an ADS operating in pulsed mode the largest contribution to the error is 
created during a very short moment after starting up the source. More alpha modes are required for a 
correct reconstruction of the time-dependent neutron flux in these cases. After the very early stages of 
a shutdown transient the alpha mode expansion leads to very accurate results with errors of often far 
less than 1%. 

The alpha mode expansion method should also be usable in 3D, since extension from 2D to 3D is 
straightforward. The greatest limitation is the computational time required to calculate the alpha 
modes. 
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6 Alternative methods: Lambda modes and POD 
In this chapter two alternative bases for modal expansion methods are explored. First of all the lambda 
modes are investigated as a possible basis for the modal expansion technique describing the time-
dependent behaviour of an accelerator driven system. 

A second alternative method is the proper orthogonal decomposition (POD), in combination with 
the Galerkin projection. The POD can be used to create new basis function by sampling a known time-
dependent solution of the neutron transport problem. Theory for the use of the POD in neutron 
transport problems with a source term is derived in this chapter. The method has not been applied to 
time-dependent problems. The programming of a code to do this would have been a too 
comprehensive task for this thesis. 
 
Equation Chapter (Next) Section 1 
6.1 Lambda mode expansion theory 
Besides the alpha modes used in chapter 5 as a basis for a modal expansion method it is also possible 
to use another basis for the modal expansion method. One possible candidate is the use of lambda 
modes, introduced in section 3.5.1, as a basis for a modal expansion method to describe the time-
dependent behaviour of an accelerator driven system. In this section the theoretical background of a 
modal expansion of the flux in terms of lambda modes is treated. 
 
6.1.1 Biorthogonality of the lambda modes 
The orthogonality relation of the lambda modes will be used during the derivation of an expression 
describing the time-dependent coefficients in the modal expansion of the neutron flux. The 
orthogonality relation is derived in appendix B and it is given by 

 †
†

1 1 ,m l
l m

ψ ψ
λ λ

⎛ ⎞
0− =⎜ ⎟

⎝ ⎠
F . (6.1) 

Either the inner product † ,m lψ ψF  is equal to zero or lλ  must be equal to †
mλ  or both. In absence of 

degenerate eigenvalues the adjoint λ -mode †
mψ  is orthogonal to lψF . 

This biorthogonality relation of the lambda modes involves the fission operator F  making the 
biorthogonal properties of the lambda modes slightly more inconvenient than the biorthogonal 
properties of the alpha modes. 
 
6.1.2 The lambda mode expansion 
In the modal approximation the neutron flux is expanded as a sum of lambda modes with time-varying 
coefficients 
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The modal approximation is substituted into the transport equation, given by eq. (3.2), and the inner 
product with †

mψ  is taken resulting in 
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The definition of the lambda eigenvalue problem, given by eq. (3.35), can be used to rewrite the 
transport operator L  
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Since application of the transport operator L  is difficult to include it is very convenient that L  can 
now be excluded from the determination of ( )lB t .  

From the biorthogonal properties of the lambda modes it follows for the non-degenerate case that 
† , 0m lψ ψ =F  if m . After using this property eq. l≠ (6.4) reduces to 
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A system of equations showing great similarities was found by González [2010]. They studied the 
lambda mode expansion of an (initially) critical system with perturbed operators and without a source 
and found a similar structure of the system of equations describing the expansion coefficients. 

A system of coupled ordinary differential equations must be solved to determine the time 
dependent coefficients in the lambda mode expansion. This makes the time integration of the 
coefficients in the lambda mode expansion mathematically slightly more complicated than the alpha 
mode expansion. Calculation of the coefficients also involves applying the fission operator once for 
each lambda mode in the expansion. 

The lambda modes can also be used to reconstruct the steady state flux for a problem with a 

constant source . In this case 0Q ( ) 0ldB t
dt

= , so mB  is determined by: 
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 (6.6) 

These values mB  are used as an initial condition for a transient calculation where the source is shut 

down after operating the ADS under steady state conditions. Otherwise ( )0mB  will be equal to zero 

in case of starting up the ADS. 
 
6.2 Numerical procedure 
The numerical procedures required to perform the expansion with lambda modes are for a great part 
similar to the numerical procedures used in the alpha mode expansion technique. Most of the inner 
products are calculated in the same way. Compared to the alpha mode expansion there are two 
important differences. The first one deals with the angular and energy dependence of the inner product 
containing the fission operator. The second one arises from the time-integration of the system of 
coupled ordinary differential equations. For the three time-dependent scenarios defined in section 5.3 
an implicit Euler scheme is used to solve ( )mB t . 

 
6.2.1 Angular and energy dependence of the fission operator 
The treatment of the energy and angular dependence in the calculation of † ,ψ ψF  in the lambda 

mode expansion is slightly different from the other inner products encountered in this thesis. These 
differences are caused by the application of the fission operator F , which requires integration of the 
flux ψ  over the angle  and energy 'ˆ 'Ω E . In this subsection an evaluation of the integration over the 
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angle and energy of the inner product † ,ψ ψF  is made. The spatial integration of † ,ψ ψF  is 

performed in the same way as the spatial integration of the alpha modes in section 5.2.1. 
The fission operator is defined by 
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G
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f g g
g

d
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Without spatial integration the inner product is given by 
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The group flux is expanded in terms of the spherical harmonics polynomials  introduced in 

chapter 3 
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To solve the inner product the integral of ( )ˆ
iQ Ω  over Ω̂  must be solved. Using the fact that 

( )0 0
1ˆ

4
Q Q

π
Ω = =  is the only constant function of the spherical harmonics polynomials and 

applying the orthogonality relations of the spherical harmonics polynomials, the integral is found to be 
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F  is now rewritten in terms of the spherical harmonics polynomials  ( )ˆ

iQ Ω
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and integrated over the angle 
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So a relatively simple expression is obtained and, as mentioned before, the spatial integration can be 
performed as usual. 
 
6.2.2 Time integration of the lambda mode expansion coefficients 
The time evolution of the coefficients ( )mB t can be evaluated by an Euler implicit time-integration 

scheme if the initial conditions ( )0mB  are known. Implicit Euler time-integration is relatively easy to 

implement and it is numerically stable for each time-step size tΔ . Equation (6.5) can be written in a 
matrix-vector notation 

 
dB B Q
dt

= +A M . (6.13) 

The coefficients of the matrix are given byA † 1,ml m lA Vψ ψ−= ,  is a diagonal matrix with 

coefficients: 

M

†11 ,mm m m
m

M ψ ψ
λ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

F  and the vector Q  is given by: ( )† ,mQ Qψ= t . 

Now an implicit Euler time-integration scheme is applied to obtain 
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and upon rewriting 

 1i i 1iB B Q
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This system can be solved by MATLAB using Gaussian elimination. 
 
6.2.3 Stability issues 
In practice difficulties were encountered with the stability of the time-integration of the system of 
ODEs. If the system is studied when the source is turned off after operating under steady-state 
conditions the system of ODEs (6.13) reduces to: 

 1dB B
dt

−⎡ ⎤= ⎣ ⎦A M  (6.16) 

It is known from standard differential equation books that the system is unstable if  has one or 
more eigenvalues with a positive real part [Borrelli & Coleman., 1998]. In practice this problem arose 
for the cases studied in section 6.3 when a large number of lambda modes was used. Of course in 
theory this should not be anticipated for a subcritical system. The most plausible explanation can be 
found in numerical errors in the determination of especially the higher lambda modes leading to an 
unstable system due to the coupling between the modes. 

1−A M

For the actual transient calculations with the lambda modes this instability did not pose any real 
problems since in the cases studied most of the information of the lambda mode expansion is 
contained in the fundamental mode and perhaps a few other dominant modes. But when also the 
higher modes are used the choice of a small time step tΔ  often caused the generation of unstable 
results due to the instability of the underlying system. For systems, which also require the higher 
modes for the flux reconstruction, this instability is a serious problem. 
 
6.3 Results: Lambda mode expansion in the 1D ADS model 
The lambda modes expansion technique has been applied to the same 1D ADS model that was studied 
with the alpha modes in section 5.4. The lambda modes are used to reconstruct the steady-state 
solution and the solution during a transient using a 1-group and a 3-group energy discretization. 
Results are compared with a reference solution and the 3-groups case results are also compared with 
the alpha mode reconstruction in subsection 5.4.3. 
 
6.3.1 1-group results 
The time-evolution of the 1D ADS model has been studied for the scenario of an ADS initially 
operating under steady state conditions. At 0t =  the source is switched off. 
80 eigenvectors of the lambda eigenvalue problem were calculated by PHANTOM with the Arnoldi 
method. The first 56 of these 80 eigenvectors correspond to the actual lambda modes of the system. 
For the last 24 eigenvectors the eigenvalues were some random, practically zero, values (in the order 
of 10-16 instead of 10-3) and contained imaginary components (also in the order 10-16). Higher lambda 
modes than these 56 either do not exist or could not be calculated by PHANTOM. 

The instability of the time-integration of the system of ODEs, described in section 6.2.3, occurred 
when more than the first 16 lambda modes of the 56 lambda modes were used in the modal expansion. 



As a consequence the reconstruction of the scalar neutron flux was performed using the expansion in 
terms of the first 16 lambda modes and the reference solution have been plotted in Figure 6.1 for the 
steady state situation (at ) and the end of the time-domain of the calculation ( ). 0t = 410t s−=
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Figure 6.1 Reconstructed scalar flux and reference flux of 1D ADS at t = 0 s and t = 0.0001 s 
Except for the source-region, without any fissile material, the lambda modes expansion agrees well 
with the reference solution for the steady state situation. After 10-4 s the lambda modes expansion 
slightly deviates from the reference solution. 

Figure 6.2 shows the difference in the lambda mode reconstruction of the steady-state flux and the 
time-dependent flux when only the fundamental lambda mode is used or 16 lambda modes are used in 
the expansion. Adding more modes than the fundamental mode in the expansion only leads to small 
changes in the steady-state reconstruction. For the description of the time-dependent flux the addition 
of more modes only leads to very small changes in the amplitude of the flux, but the actual 
characteristics of the transient remain the same. 
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Figure 6.2 Steady-state and time-dependent (x=0) scalar flux reconstruction of the 1D ADS model 

using 1 or 16 λ-modes 
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The time-dependent scalar flux reconstruction using 16 lambda modes is compared with the reference 
solution in Figure 6.3 at two different positions, x = 0 cm and x = 50 cm. 
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Figure 6.3 Time evolution of reference and reconstructed scalar flux at x = 0 cm and x = 50 cm 

The time dependent neutron flux obtained by the lambda modes expansion follows the time-dependent 
reference solution closely. At x = 50 cm both solutions are basically equal to each other at . The 
relative difference between the two solutions is only 0,0294 %. It is quite remarkable that after some 
time the difference between the two solutions becomes larger. At t = 5·10-5 s the relative difference 
between the two values is a significant 4,98 %. After 10-4 s the relative difference has increased to 6,73 
%. 

0t =

For the 1-group case the lambda modes can describe the steady state solution of the problem quite 
well except for the non-fissile source region. The time-integration leads to larger errors. So for an 
exact representation of the time-evolution the lambda modes seem less useful than the alpha modes. 
As shown in chapter 5 the alpha modes can reconstruct the solution of this problem with a very high 
accuracy. However the lambda modes still give a reasonable estimate of the neutron flux and are much 
cheaper to calculate than the alpha modes. But especially the higher lambda modes sometimes lead to 
an unstable coupled system of ODEs which makes the solution physically unreliable. However in this 
particular case the higher modes were not so relevant for the lambda mode reconstruction. It will be 
interesting to check the accuracy of the lambda mode expansion technique in a multi-group problem. 
 
6.3.2 3-group results 
The transient scenario of turning off the source after operating under steady-state conditions has also 
been studied with the lambda modes expansion using 3 energy groups. For the 3-group problem also 
80 eigenvectors of the lambda eigenvalue problem were calculated, of which, equal in the 1 group-
case, 56 could be qualified as the lambda modes of the system. In the 3-group case the use of more 
than the first 14 lambda modes caused the time-integration of the system of ODEs to become unstable. 
In the end 14 lambda modes are used in the reconstruction of the flux. The flux reconstruction after 
turning off the source is compared with a reference solution by PHANTOM and with the alpha modes 
reconstruction. The steady-state neutron flux, which is equal to the neutron flux of the time-dependent 
problem at  is plotted in 0t = Figure 6.4 for the different energy groups. 
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Figure 6.4 Comparison of the α- and λ-mode expansion and the reference solution of the steady-

state scalar flux of the 1D ADS for 3 energy groups. 
The flux generated by the lambda mode expansion, using the first 14 lambda modes, for most of the 
space domain agrees very well with the reference neutron flux. Inside the non-fissile source region the 
lambda mode expansion leads to worse results. This also occurred in the 1-group case studied in the 
previous subsection.  

In the first energy group, which contains the highest neutron energies, the source neutrons are 
created. Also the alpha modes have small difficulties with a correct representation of the flux in this 
first energy group. For the higher groups the alpha modes expansion gives good results over the whole 
spatial domain. The lambda modes on the other hand still show small deviations from the reference 
calculation in the higher energy groups. 
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Figure 6.5 Modal expansion of the 3-group steady-state scalar flux of 1D ADS using 1 or 14 λ-modes 
Figure 6.5 shows the difference in the lambda modes reconstruction of the steady state flux when only 
the fundamental mode is used or all 14 modes are used. 
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Just as with the one group case the fundamental lambda mode is of great importance in the 3-groups 
case. The higher modes are not very important in the reconstruction and the difference between 14 
modes or only the fundamental mode for the time-dependent behaviour is also very small. 

Figure 6.6 shows the time-evolution of the scalar neutron flux at the center of the ADS (x = 0 cm) 
for the different energy groups. Again 14 lambda modes were used in the reconstruction. 
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Figure 6.6 Time evolution of steady state scalar neutron flux of 1D ADS for 3 groups at x = 0 cm 

The description of time evolution by the lambda mode expansion technique gives a rough estimate of 
the time dependent behaviour of the ADS. In all three energy groups it is however not really an 
accurate reconstruction of the neutron flux. Obviously the alpha mode expansion is a much better 
method to describe the time-dependent behaviour of the system. 

Figure 6.7 shows the scalar neutron flux after 10-4 s. The difference between the lambda mode 
reconstruction and the reference solution is large. The alpha mode expansion on the other hand does 
give a very accurate result and is much more suitable to describe the time-dependent behaviour in an 
accurate way. 

One big advantage of the lambda modes is that the calculation of 80 lambda modes of the system 
takes around 4 minutes, while the determination of 80 alpha modes requires a bit less than 8 hours of 
computational time. As mentioned in section 3.5.2 the large difference in computational time occurs 
because during the determination of the lambda modes the fission operator occurs in the right-hand 
side of the fixed source problem. 
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Figure 6.7 Scalar flux reconstruction of 1D ADS at 0.1 ms after source shutdown for 3 groups 

Looking at the results it is obvious that the lambda mode expansion might only be used as a very 
rough estimate of the time-dependent behaviour of the system. The fundamental lambda mode is of 
great importance in the flux reconstruction. The addition of higher modes only leads to minor changes 
in the flux reconstruction and using more than 14 modes leads to instability of the system of ODEs 
describing the time-integration of the expansion coefficients. 

Despite the larger computational effort due to the determination of the alpha modes the alpha 
mode expansion is a much better candidate for an accurate description of the time-dependent 
behaviour of the system. 
 
6.4 Proper Orthogonal Decomposition 
Proper orthogonal decomposition (POD), in combination with the Galerkin projection, has been used 
in many applications in science and engineering to represent the dynamics of large-scale systems by a 
smaller number of degrees of freedom. An interesting example of the POD combined with the 
Galerkin projection can be found in the work by Fang [2009] in the field of ocean modelling. The 
POD, combined with the Galerkin projection, might also be a way to describe the dynamic behaviour 
of an accelerator driven system. 
 
6.4.1 Basis functions 
The POD can find an optimal set of orthogonal basis functions to describe the dominant components 
of the dynamics of a large-scale system by only a finite number of these basis functions. In practice 
often only surprisingly few of the POD basis vectors are required. 

A certain variable Z , for instance the neutron flux, can be described by a set of snapshots 
( ),k kZ tx  sampled at different moments in time: [ ],..., ,...,k Kt t t . Here K is the number of snapshots 

of uniform weight, x  are usually the spatial variables and in reactor physics it may also include 
energy and angle. In general snapshots might also be obtained by sampling with respect to variations 
of another variable than time. 

The average of the ensemble of snapshots is defined by 

 ( ) (
1

1 ,
K

k k
k

)Z Z t
K =

= ∑x x . (6.17) 

Now the deviation of ( ),k kZ tx  from the mean is taken 

 ( ) ( ) ( ), ,k k k kz t Z t Z= −x x x

)
. (6.18) 

Using ( ,k kz tx , the covariance matrix  can be calculated. Its coefficients  are determined by C ,k lC
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 ( ) ( ), x

1 , , ,           for  , 1.....k l k lz t z t l k K
K

=C x x = . (6.19) 

The KxK-matrix  has K real and positive eigenvalues C jλ . The eigenvectors  of C  are sorted 

in descending order with respect to 
( )jy k

jλ . Now the POD bases can be calculated as a linear combination 

of the snapshots 

 . (6.20) ( ) ( ) ( )
1

,
K

j j
k

y k z t
=

Φ =∑x kx

The orthonormal POD basis vectors ( )ˆ
jΦ x  are obtained by normalization of  ( )jΦ x

 ( ) ( )
( ) ( )

ˆ
,

j
j

j j

Φ
Φ =

Φ Φ
x

x
x

x x
. (6.21) 

The POD basis vectors  for a certain model variable( )ˆ
jΦ x Z have been constructed and can be used 

in the Galerkin projection. An alternative method to construct similar basis vectors is the singular 
value decomposition (SVD). 
 
6.4.2 Galerkin Projection of the neutron transport equation 
The neutron flux can be written in terms of the average of the ensemble of snapshots ( )ˆ, ,r Eψ Ω  plus 

a linear combination of the POD basis functions ( ),
ˆ, ,n r EψΦ Ω  

 ( ) ( ) ( ) ( ), ,
ˆ ˆ, , , , , , ,n n

n

r E t r E A t r Eψ ψψΨ Ω = Ω + Φ Ω̂∑ . (6.22) 

The expansion is substituted into the neutron transport equation to obtain 

 ( ) [ ] ( ), , , ,
1

n n n n
n n

d A t A t Q
V dt ψ ψ ψ ψψ ψ⎛ ⎞ ⎛ ⎞+ Φ = − + Φ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠
∑ ∑F L +⎟ . (6.23) 

Use 0d
dt
ψ

= , bring v to the right hand side of the equation and take the inner product (by integrating 

over energy, angle and volume) with ,m ψΦ . This is the so-called Galerkin Procedure, which consists 

of using the same basis functions of the expansion in the projection. A general treatment of the 
Galerkin procedure is given by Strang [1973]. The projections results in 

 
( ) [ ] ( ),

, , , , , ,, ,n
n m n n m m

n n

dA t
V A t VQ

dt
ψ

ψ ψ ψ ψ ψ ψψ⎛ ⎞Φ Φ = − + Φ Φ + Φ⎜ ⎟
⎝ ⎠

∑ ∑F L , . (6.24) 

Since ( ),nA tψ  does not depend on energy, angle and position it can be taken out of the integral and 

the orthonormality , ,,n mψ ψ mnδΦ Φ =  of the POD basis functions is used 

 
( ) [ ] ( ),

, , ,, ,m
n n m m

n

dA t
V A t VQ

dt
ψ

,ψ ψ ψ ψψ⎛ ⎞= − + Φ Φ + Φ⎜ ⎟
⎝ ⎠

∑F L  (6.25) 

The initial condition  is given by ( ), 0mA ψ

 ( ) ( )( ), 0 0 ,mA t ,mψ ψψ= Ψ = − Φ . (6.26) 

The time-dependent coefficients ( ),mA tψ  in the expansion of the neutron flux in terms of the POD 

basis functions are described by a set of ordinary differential equations. For the determination of the 
coefficients ( ),mA tψ  the fission and transport operators,  and , have to be applied several times. F L



6.4.3 Steady-state flux reconstruction by POD basis functions 
The POD basis functions have been determined for a source shutdown in the 1D ADS model 
introduced in section 5.4. A reference solution of the neutron flux is sampled to obtain the snapshots. 
The used reference solution of the scalar neutron flux using a three group energy discretization in case 
of a source shutdown is partially plotted in Figure 5.6, Figure 5.7 and Figure 5.8. 101 snapshots are 
used, the first one originating from the initial or steady-state flux and the other 100 are the fluxes after 
each time step. Using these 101 snapshots the POD basis functions were determined using eq. (6.17) 
till eq. (6.21). The first 5 POD basis functions are plotted in Figure 6.8. The POD basis functions were 
determined by sampling of a reference solution of the system. 
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Figure 6.8 Plots of the first 5 POD basis functions of the 1D ADS model for the three energy groups 
The POD basis functions have remarkable shapes, but these basis functions can reconstruct the 
reference steady state flux quite well. The POD basis functions are used to reconstruct the steady state 
flux of the 1D ADS model. The coefficients ( ), 0mA ψ  were calculated according to eq. (6.26) and the 

reconstruction was made as in eq. (6.22). The steady state flux using 1, 2 or 5 POD basis functions for 
the three energy groups are shown in Figure 6.9 and compared with the original steady-state flux, 
where the sampling of the basis functions was based upon. 
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Figure 6.9 Steady-state flux reconstruction for 3 groups of 1D ADS by 1, 2 or 5 POD basis functions 
It appears that the use of only five POD basis functions already leads to very accurate results. The flux 
from this POD reconstructed flux is almost indistinguishable from the reference steady-state flux. 
 
6.4.4 Concluding remarks about the POD 
The POD in combination with the Galerkin projection upon the neutron transport equation might be an 
interesting way to model the time-dependent behaviour of a system. Though it should be noted that its 
application is less general than the alpha modes expansion since one particular time-dependent 
solution with fixed source strength and position is sampled to obtain the basis functions. In the alpha 
mode expansion the user can describe varying source strengths and/or positions with the same set of 
alpha modes. 

The basis functions of the POD are more like a mathematical trick while the alpha modes and 
lambda modes originate from a more physical basis incorporating features of the reactor geometry and 
the neutron transport equation. As a result the POD requires the application of the transport operator 

. Application of the transport operator L  involves calculating the transport term, given by 
, of eq. 

L

(ˆ , , ,r E tψ−Ω⋅∇ Ω )ˆ

)
4 0

ˆ ˆ ˆ, ' , ' , , ', ' 's r E E t r E E d
π

ψ
∞

Σ → Ω →Ω Ω∫ ∫

(3.1). This is a non-trivial task but also the scattering term 

, can in case of anisotropic scattering become 

complicated. This would have made the programming of an appropriate numerical code a very 

( ) ( ˆ ', t dΩ



comprehensive task and beyond the scope of this thesis. It should also be noted that application of the 
transport operator L  can be computationally demanding. But a study of the possibilities of the POD in 
time-dependent neutron transport problems might be an interesting subject for future research. 
 
6.5 Conclusions 
The lambda modes expansion was applied to a 1D ADS model using a one group and a three group 
energy discretization. For both one and three energy groups the lambda modes reconstruction of the 
steady-state neutron flux leads to reasonable results except for the non-fissile source region.  

For the transient scenario of turning off a source after operating under steady-state conditions the 
time-integration of the lambda modes leads to some deviation from the reference flux in the one-group 
case and significant deviations in the three-group case. The alpha mode expansion leads to much more 
accurate results in the three-group case. The lambda modes are much cheaper to calculate than the 
alpha modes, but it seems that they can only be used as a very rough estimate in the description of 
time-dependent problems. 

During some of the cases studied in this chapter the use of a large number of lambda modes led to 
an unstable system of differential equations to describe the time dependence of the expansion 
coefficients. This instability is probably caused by inaccuracies in the determination of the higher 
lambda modes. Since in the cases studied the fundamental lambda mode was usually by far the most 
important component of the lambda mode reconstruction and the higher modes were only of small 
influence the instability of the system of ODEs was not such a problem. For systems requiring a large 
number of lambda modes in the expansion for an accurate reconstruction of the flux the instability will 
be a very serious issue.  

The instability of the system of ODEs and the quite inaccurate description of the time-dependency 
of the neutron flux by the lambda modes expansion makes the alpha modes expansion the preferable 
modal expansion technique for the description of space-time kinetics in accelerator driven systems. 

The proper orthogonal decomposition was investigated as a method to construct a basis for a 
modal expansion method. It was shown that the POD basis vectors can be used to reconstruct the 
steady-state reference flux of a 1D ADS model. 

A major drawback of applying the POD to time-dependent problems is its requirement to apply 
the transport operator. The transport operator is difficult to implement, since it involves the -
term and in general it can involve anisotropic scattering. The transport operator is also 
computationally demanding to calculate. This made practical implementation of this method for 
transient calculations too elaborate for this moment. It is also not completely clear what the real 
advantages of the POD in the field of neutron transport might be. But in the future it might be 
interesting to study the possibilities of applying the POD in time-dependent neutron transport 
problems. 

ˆ−Ω⋅∇
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7 Conclusions and Future work 
 
 
7.1 Conclusions 
It was shown with a 1D diffusion model in chapter 2 that the role of the delayed neutrons reduces 
significantly as the subcriticality of a system increases and that the delayed neutrons can be considered 
as a constant background upon the time scales considered during the transient calculations of this 
thesis. 

The alpha modes are used as a basis for the modal expansion technique and direct time-dependent 
calculations are performed by PHANTOM to check the accuracy of the modal expansion technique. 
Therefore it was verified with several testcases that the PHANTOM code package calculates the alpha 
eigenvalues correctly and that the time-integration during the direct time-dependent transport 
calculation is performed correctly by PHANTOM in chapter 3. 

In chapter 4, keff was calculated for the critical configuration of the GUINEVERE facility and the 
value obtained by PHANTOM was close to reference calculations with ERANOS and MCNP. It was 
unfortunately not possible to calculate a substantial number of alpha modes for the subcritical 
configuration within a reasonable time-frame, because the calculation of the alpha modes converges 
very slowly, especially for multi-group problems. The study of the influence of a start-up and a 
shutdown of the source showed that the build-up or decay of the neutron flux in the 9th and 10th 
energy group takes place on a much slower time scale than in the lower energy groups (containing the 
highest neutron energies). This difference in time scale, apart from the slow convergence of the 
calculation, would also complicate the calculations of the relevant alpha modes for the modal flux 
reconstruction, since the most important physical processes take place in the first eight energy groups 
on a faster time scale. For the calculation of the relevant alpha modes the slower time scales should be 
excluded from the calculation. 

The alpha mode expansion technique has been applied to a 1D ADS model and a 2D ADS model 
in chapter 5 using a 1 and 3-energy group discretization and to another 2D model with the cross 
sections used during the GUINEVERE calculations. The alpha mode expansion was used to describe 
the flux of the steady-state problem and the transient scenarios of starting up and turning off the source. 
The 1D ADS model was also studied using 3 energy groups for a source operating in a pulsed mode. 
For these transient scenarios the alpha mode expansion technique can describe the time-dependency of 
the modal expansion coefficients by analytical expressions. 

In general it was found that the alpha mode expansion technique has difficulties to describe the 
neutron flux correctly inside the source region for the energy group of the source at the moment the 
source is switched on or shortly afterwards. Outside the source region and for the other energy groups 
the alpha mode reconstruction was usually quite accurate. During a start-up of the source most of the 
error in reproducing the flux is created by the processes on a very fast time scale during the first 
instants of the transient. After a shutdown of the source the alpha mode expansion describes the 
neutron flux very well except for the very early stages of the transient, which are again associated with 
the very fast time scales in the system. In practical cases often more than 50 modes are required to 
describe these fast time scales. The errors in the flux reconstruction can in all cases be contributed to 
the missing higher alpha modes, associated with these faster time scales, in the modal expansion. 
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The determination of the higher alpha modes by PHANTOM with the Arnoldi method was often 
found to be difficult. In the first place the calculations are computationally expensive due to slow 
convergence of the calculation. The higher modes are also often calculated in a numerically less 
accurate way for the higher modes, the difference between the eigenvalues of the forward and adjoint 
calculation is often bigger for a higher mode. Sometimes eigenvalues are skipped during the forward 
or adjoint calculation. This also happens more often for the higher modes. In the 2D case the addition 
of a higher alpha mode sometimes deteriorates the quality of the flux reconstruction. This could be 
caused by the coarseness of the mesh used in the 2D models. The mesh is not capable of representing a 
mode that varies rapidly in the spatial domain due to the limited number of nodes. Refining the mesh 
is however also not always possible due to the computational time required for the determination of 
the alpha modes. 

It should be concluded that the alpha mode expansion technique can already reconstruct the time-
dependent neutron flux of an ADS quite accurately during a transient, except in the source region for 
the flux contributions associated with the very fast time scales. Improvements of the calculation of the 
(higher) alpha modes would significantly improve the accuracy of the modal expansion technique for 
these fast time scales. 

Lambda modes were investigated as a possible alternative basis for the modal expansion 
technique in chapter 6. The lambda mode expansion technique was applied to the same 1D ADS used 
with the alpha modes and the results were compared with the reference solution and the alpha mode 
expansion. It was discovered that the lambda mode expansion can describe the flux reasonably for the 
steady-state problem except for the non-fissile source region. The fundamental mode was by far the 
most important mode of the reconstruction. In contrast to the alpha mode expansion the time-
dependency of the lambda mode expansion coefficients is described by a coupled set of ODEs. The 
use of a large number of modes resulted in an unstable system of ODEs. The instability is probably 
caused by numerical inaccuracies in the determination of the higher modes. If only a limited number 
of modes was used this problem did not occur. The reconstruction of the time-dependent flux by the 
lambda mode expansion led to quite inaccurate results. Despite the short calculation time of the 
lambda modes the alpha modes are a much better option to describe the time-dependent neutron flux 
in an ADS in an accurate way. 

The POD basis functions were also investigated as a possible alternative basis for a modal 
expansion technique. Only a few POD basis functions were required to reconstruct the steady-state 
flux. A major drawback of applying the POD to time-dependent problems is its requirement to apply 
the transport operator, which is difficult to implement and computationally demanding to calculate. 
For this reason practical implementation of the POD for transient calculations would have been 
beyond the scope of this thesis. In the future it might be interesting to study the possibilities of 
applying the POD in time-dependent neutron transport problems. 
 
7.2 Future work 
As indicated in the conclusions of the thesis the alpha mode expansion technique itself can accurately 
describe the time-dependent neutron flux in a system, but the accuracy is limited because of 
difficulties with the determination of the alpha modes and the applicability is limited because of the 
time required to calculate the alpha modes. The most important recommendation for future research is 
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to work on a speed up of the calculation of the alpha modes by PHANTOM and to improve the 
accuracy of the determination of the higher alpha modes. 

If a significant speed up of the alpha mode calculation can be implemented in PHANTOM the 
alpha modes of the subcritical configuration of the 3D GUINEVERE model can be calculated and the 
alpha mode expansion technique can be applied to describe the transients of the 3D model of 
GUINEVERE and other 3D ADS models. 

For the short time scales of the transients considered during the thesis the delayed neutrons could 
be considered as a constant background. When the time-dependent neutron flux is studied for transient 
upon a longer time scale (> 0.1 s) it will be necessary to include delayed neutrons into the computation 
of the alpha modes. The appropriate expressions describing the modal expansion coefficients are given 
by Cao [2008]. 

An interesting idea for future research is to investigate the possibility of calculating alpha modes 
for (super)critical systems. By an appropriate shift during the calculation also the alpha modes for 
(super)critical systems can be determined. This might offer the possibility of using alpha modes for the 
description of critical systems. The possibility of a shift in the other direction can also be investigated 
to improve the accuracy and to speed up the calculation of the higher alpha modes in subcritical 
systems. 

Finally for more complex geometries it might be very interesting to investigate the possibilities of 
using the proper orthogonal decomposition in combination with the Galerkin projection to describe the 
time-dependent neutron flux during a transient. 
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A Spherical harmonics polynomials and their properties 
 
This appendix gives an overview of the real spherical harmonics polynomials used by PHANTOM for 
the discretization of the angular dependence of the neutron flux. In quantum mechanics the complex 

-functions are used [Griffiths, 2005]. The neutron flux is however a real quantity making it 
desirable to work with an alternative set of -functions compared to the complex -functions 

encountered in quantum mechanics. Before giving the definition of the real spherical harmonics 
polynomials, the Legendre polynomials and associated Legendre polynomials must be defined. The 
Legendre polynomials 
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The real spherical harmonics are also described by Weisstein [2003]. PHANTOM divides the real 
spherical harmonics into even parts  and odd parts , defined as e
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An important and very convenient property of the real spherical harmonics polynomials is their 
orthonormality, which is characterized by 
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B Orthogonality of alpha and lambda modes 
 
B.1 Orthogonality of the alpha modes 
The orthogonality relations of the α -modes are used in section 5.1.2 to obtain the uncoupled set of 
ODEs describing the expansion coefficients of the α -mode expansion. The orthogonality relations are 
derived in the following way. The forward α -eigenvalue equation, given by eq. (3.31), is multiplied 
with †

αψ , and the adjoint α -eigenvalue equation, given by eq. (3.32), is multiplied with αψ . Both 

equations are integrated over the whole phase-space and the second equation obtained is subtracted 
from the first one. The inner product is defined by integration over the whole range of space, energy 
and angle 
 ( ) ( )ˆ ˆ ˆ, , , , ,

V E

f g f r E g r E d dEdV
Ω

= Ω Ω Ω∫ ∫ ∫ . (B.1) 

The following relation is obtained 
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where mψ  and nψ  represent the m-th and the n-th α-eigenfunction. By definition of the adjoint 

operator †, ,f g g f=A A  the two terms on the right hand-side are equal. The final orthogonality 

relation is obtained 
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It is concluded that either the inner product 
†

,m
nV

ψ ψ  is equal to zero or nα  must be equal to †
mα  or 

both. 
†
m

V
ψ

 and nψ  are orthogonal in case of non-degenerate eigenvalues. The preceding derivation of 

the biorthogonality relation of the α -modes can also be found in chapter 6 of Bell & Glasstone [1985]. 
 
B.2 Orthogonality of the lambda modes 
The λ -modes, introduced in section 3.5.1, were used in chapter 6 to perform a modal expansion of the 
time-dependent neutron flux. The biorthogonality relations of the λ -modes were used to simplify the 
system of ODEs describing the evolution of the modal expansion coefficients over time. The bi-
orthogonality relations of the lambda modes are derived as follows. 

The λ -eigenvalue problem eq. (3.35) is multiplied with †
mψ  and the adjoint λ -eigenvalue 

problem eq. (3.36) with lψ . Then all terms are integrated over the whole phase-space and the second 

equation is subtracted from the first one, leading to 
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When the definition of the adjoint operator †, ,f g g f=A A  is used the terms on the left hand 

side cancel out and the inner products on the right hand side can be combined 
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Either the inner product † ,m lψ ψF  is equal to zero or lλ  must be equal to †
mλ  or both. In absence of 

degenerate eigenvalues the adjoint λ -mode †
mψ  is orthogonal to lψF . It is important to notice that 

this biorthogonality relation for the λ -modes involves the fission operator F . This makes the 
biorthogonal properties of theλ -modes slightly more inconvenient than the biorthogonal properties of 
the α -modes. 
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C Cross section processing by the SCALE package 
 
In this appendix the script that was used to generate cross sections with SCALE for the GUINEVERE 
calculations in chapter 4 and section 5.6 is given. A 238-group library is used to calculate the cross 
sections. 

=shell 
ln -fs /home/pnr/inas/scale5.1/data/scale.rev02.xn238v6 xn238 
end 
=csasi parm=centrm 
 
xn238 

 
The material compositions are defined for four materials. (1 = Uranium, 2 = Nickel cladding, 3 = Lead 
and stainless steel mixture in one fuel assembly, 4 = B4C of the control/safety rods) 

read comp 
U-235  1 0 1.4280E-2 300 END 
U-238  1 0 3.2899E-2 300 END 
NI-58  2 0 6.2170E-2 300 END 
NI-60  2 0 2.3920E-2 300 END 
NI-61  2 0 1.0400E-3 300 END 
NI-62  2 0 3.3115E-3 300 END 
NI-64  2 0 8.4841E-4 300 END 
N-14   3 0 2.8109E-5 300 END 
N-15   3 0 1.0437E-7 300 END 
O-16   3 0 6.0769E-7 300 END 
C      3 0 5.5382E-5 300 END 
PB-206 3 0 6.0235E-3 300 END 
PB-207 3 0 5.8669E-3 300 END 
PB-208 3 0 1.3082E-2 300 END 
FE-54  3 0 6.6387E-4 300 END 
FE-56  3 0 1.0421E-2 300 END 
FE-57  3 0 2.4059E-4 300 END 
FE-58  3 0 3.1775E-5 300 END 
NI-58  3 0 8.6344E-4 300 END 
NI-60  3 0 3.3253E-4 300 END 
NI-61  3 0 1.4858E-5 300 END 
NI-62  3 0 4.7311E-5 300 END 
NI-64  3 0 1.2138E-5 300 END 
CR-50  3 0 1.3645E-4 300 END 
CR-52  3 0 2.6281E-3 300 END 
CR-53  3 0 2.9797E-4 300 END 
CR-54  3 0 7.4024E-5 300 END 
SI-28  3 0 1.6297E-4 300 END 
SI-29  3 0 8.2519E-6 300 END 
SI-30  3 0 5.4774E-6 300 END 
MO-94  3 0 1.5220E-6 300 END 
MO-95  3 0 2.6196E-6 300 END 
MO-96  3 0 1.0742E-5 300 END 
MO-97  3 0 1.5715E-6 300 END 
CO-59  3 0 1.7408E-5 300 END 
CU-63  3 0 2.9207E-5 300 END 
CU-65  3 0 1.3018E-5 300 END 
MN-55  3 0 2.7221E-5 300 END 
P-31   3 0 1.4753E-5 300 END 
B-10   4   2.0330E-2 300 END 
B-11   4   8.1793E-2 300 END 
C      4   5.1059E-2 300 END 
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A self-shielding calculation is performed for a square pitch fuel pin in an infinite lattice. The square 
pitch consists of three layers: fuel (material 1), clad (material 2) and moderator (material 3). 
 

read celldata 
latticecell squarepitch 
fuelr=0.6282 1 
cladr=0.6350 2 
hpitch=1.3333 3 
cellmix=1111 end 
more data adj=0 cof=3 bal=fine icon=cell 
end more 
end celldata 
end 
=shell 
mv ft03f001 $RTNDIR/wght.out 
mv ft02f001 $RTNDIR/1.mixd 
ln -fs /home/fwols/scale/boron/1.mixd 
ft04f001 
end Figure C.1 Scheme of square pitch fuel pin 

 
Both the 238-group cross sections of the homogenized fuel pin and the separate material regions are 
extracted and used in xsdrn to collapse the 238 group cross sections into 10 energy groups for the 
materials of the homogenized fuel assembly, the lead/stainless steel mixture and the B4C of the control 
and safety rods. For the calculation one cylindrical pin with a height of 60.96 cm is used. The cross 
sections in the output contain up to 5th order scattering. 

 
=xsdrn 
collapsing 
0$$ a3 4 a5 3 e 
1$$ 2 3 17 a6 3 3 16 5 1 e 
3$$ 1 e 
4$$ -1 10 3 -2 e 
5* a7 60.96 t 
13$$     1       2  3 
14$$    1111     3  4 
15**     1       1  1 
t 
33## f1 t 
35** 14i 0.0 1.5 1.50005 1.5045e 
36$$ 15r1 2 3e 
39$$ 1 3 2e 
51$$ 22r1 8r2 9r3 5r4 7r5 6r6 13r7 15r8 
     104r9 49r10 t 
end 
=shell 
cp ft03f001 $RTNDIR/xs_10br.out 
end 

 
The set of cross sections obtained in xs_10br.out for the three materials (fuel assembly, lead and 
B4C) is used in the calculations of the GUINEVERE facility. 
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