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Abstract

A gas core reactor (GCR) is a nuclear reactor in which the fuel is in a gaseous
state inside the core. The most important characteristic of a GCR is that
there are no constraints on the fuel temperature because the fuel is a gas and
cannot melt or vaporize. Because of this, GCRs have potentially the highest core
temperature of all existing and proposed reactor designs, with fuel temperatures
in the thousands of Kelvins, which signi�cantly increases the e�ciency of the
power conversion cycle.

The neutronics and heat transfer in a GCR were investigated using a one-
dimensional cylindrical core model with stationary fuel. The fuel gas consisted
of a mixture of uranium- and carbon-�uorides in thermal equilibrium with a
graphite re�ector wall at 2000 K. Critical densities were calculated using both
50% and 5% enriched uranium as well as reactivity coe�cients for the fuel
density, fuel temperature and re�ector temperature. To calculate the radial
temperature and density pro�les in the core a heat transfer code was developed,
including dissociation of the fuel gas and both radiative and kinetic heat transfer.
Coupled neutronics and heat transfer calculations were performed to investigate
the e�ects of changes in the fuel and temperature pro�les on the neutronics, and
of accurate calculation of the speci�c power density on the heat transfer.

The reactivity coe�cient of the fuel density and of the re�ector temperature
are both large in a GCR, but reactor control depends mostly on the �rst, as
feedback from the re�ector will be delayed due to its large mass and the low
thermal conductivity of the fuel gas near the wall. The fuel temperature reac-
tivity coe�cient will have a secondary role as it is relatively small. Due to the
large reactivity coe�cient of the fuel density, density �uctuations may cause
large reactivity insertions in a GCR. Dissociation and kinetic heat transfer both
play an important role in the heat transfer in a GCR, having a signi�cant e�ect
on the pressure, average fuel temperature, fuel redistribution towards the wall
and heat transfer near the wall. The coupled calculations show that a �at neu-
tron �ux can be used in heat transfer calculations and that the radial density
and temperature pro�les in a GCR have no e�ect on the reactivity when using
low enriched fuel.



Nomenclature

GCR Gas Core Reactor.

LWR Light Water Reactor

MHD Magnetohydrodynamic.

UCF gas Uranium-Carbon-Fluoride gas.

VCR Vapor Core Reactor.

α′n Normalized reactivity coe�cient of the fuel density.

αTf Reactivity coe�cient of the fuel temperature [pcm/K].

αTr Reactivity coe�cient of the re�ecor temperature [pcm/K].

Ai+ 1
2

Area of interface between cells i and i+ 1 [m2].

c Speed of light [m/s].

cp Heat capacity [J/kgK].

Dr Radiative di�usion constant [m2/s].

f (r) Speci�c power density [W/kg uranium].

fC Carbon atom ratio in the fuel gas.

fF Fluoride atom ratio in the fuel gas.

fU Uranium atom ratio in the fuel gas.

g Dissociation function.

k Boltzmann constant [J/K].

keff Neutron multiplication factor.

λgraph Graphite thermal conductivity [W/mK]

λint Internal thermal conductivity [W/mK].

λkin Kinetic thermal conductivity [W/mK].

λreact Reactant thermal conductivity [W/mK].

λr Radiative thermal conductivity [W/mK].
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λtot Total thermal conductivity [W/mK].

λtr Translational thermal conductivity [W/mK].

la Neutron mean-free-path length for absorption [m].

lph Photon mean-free-path length [m].

ls Neutron mean-free-path length for scattering [m].

lt Total neutron mean-free-path length [m].

m Number of �ne cells per course volume zone in the Heat Transfer code.

mU Atomic mass of uranium [kg].

n Molecular fuel gas density [molecules/m3].

N0 Number of original molecules in the system.

n0 Particle density without dissociation [molecules/m3].

nc Critical fuel gas density [atoms/barn-cm].

nf Atomic fuel gas density [atoms/barn-cm].

nU (r) Uranium atom density [atoms/m3].

P Power generated in the reactor core [W].

p Pressure [Pa].

~q Heat �ux [W/m2].

~qr Radiative heat �ux [W/m2].

Q(r) Power density [W/m3].

∆Ri Width of course volume zone i.

∆ri Width of volume cell i [m].

ρ(r) Fuel gas density [kg/m3].

ρU (r) Uranium density [kg/m3].

R Universal gas constant [J/molK].

r Radial coordinate in the core [m].

Rc GCR core cavity radius [cm].

Rr Re�ector thickness [cm].

Σ Macroscopic cross section [m−1].

σph Microscopic photon collision cross section [m2].

σSB Stefan-Boltzman constant [W/m2K4].
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T̃ E�ective temperature [K].

T (r) Fuel temperature [K].

Tf Average fuel gas temperature [K].

Tmax Maximum fuel gas temperature [K].

Tr Average re�ector temperature [K].

Twall Inner wall temperature of the graphite re�ector [K].

u Radiative density [J/m3].

V Volume [m3].

Vi Volume of volume cell i [m3].

W0 Average weight per molecule without dissociation [kg].
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Chapter 1

Introduction

1.1 General Introduction

A gas or vapor core reactor (GCR/VCR) is a nuclear �ssion reactor in which the
fuel is in a gaseous state inside the core. The core consists of a cavity, �lled with
the fuel gas, surrounded by a re�ector. The fuel gas usually consists of UF4, but
designs with higher �uoride fractions exist. At high core temperatures, above
10000 K, a high level of ionization can be realized in the fuel gas, and it becomes
a plasma. These type of reactors are sometimes called plasma core reactors.

The most important characteristic of a GCR is that, because the fuel is in a
gaseous state, there are no constraints on the fuel temperature. It cannot rup-
ture, melt, vaporize or be destroyed. The only constraints on the temperature
are those imposed by the reactor vessel, which are far less severe than the con-
straints that normally apply to the fuel. Because of this GCRs have potentially
the highest core temperature of all existing and proposed reactor designs.

The main bene�t of a GCR is its high operating temperature, which in-
creases the e�ciency of the conversion from thermal heat to electricity, and also
the e�ciency of hydrogen production methods [Brown,2002]. One of the most
interesting features of a GCR comes from the fuel ionization, which makes it
possible to convert part of the thermal energy in the fuel gas directly to elec-
tricity, for example through magnetohydrodymanic (MHD) power conversion,
further increasing the e�ciency of the electricity production.

Additional advantages of a GCR include very high maximum fuel burnup of
over 500 GWD/MTU, and very low waste production due to e�cient modera-
tion of neutrons, resulting in a lower production of higher actinides. The e�-
cient moderation of neutrons in a GCR also results in lower plutonium buildup
which, combined with e�cient �ssioning of �ssionable plutonium isotopes, re-
sults in excellent proliferation resistance [Anghaie,2005]. Furthermore the low
fuel inventory in a GCR, one or two orders lower compared to a conventional
light water reactor (LWR), means a lower safety risk in the case of accidents,
because less radioactive material is present. Due to the large power density
inside a GCR core, possible utilization besides normal power production is in
space crafts, both as part of the propulsion system and as (electrical) power
source [Diaz,1993, Dugan,1989, Dugan,1993].

A conceptual design of a GCR power plant is shown in �gure 1.1. In this
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Figure 1.1: Gas core reactor (GCR) design with direct energy conversion using
an MHD convertor and a closed fuel loop.

design the GCR core consists of a cavity surrounded by a graphite re�ector. The
fuel is circulated through a closed loop. Inside the core the fuel is heated up,
and is then lead through an MHD device to convert part of its energy directly to
electricity. The remaining heat is extracted in a heat exchanger and converted
to electricity using conventional methods. A fuel re�nery is included in the loop,
which allows online refuelling of the reactor and in which �ssion products can
be removed from the fuel gas.

In a Gen IV roadmap presentation regarding non-classical systems it was
stated that: "Gas/vapor core reactors set the upper performance potential in
sustainability and safety with no insurmountable technology challenge". This
'no insurmountable challenge' is in reality 'nearly insurmountable' though. Us-
ing fuel in a gaseous state means density �uctuations could arise inside the
core, which could cause stability problems for the reactor power. Futhermore,
to attain a high enough level of ionization to make direct energy convergence
e�cient, high temperatures are needed, combined with a high neutron �ux to
increase the ionization of the fuel [Bitteker,1993]. This means the MHD power
convertor, a complicated electromagnetic device, needs to be capable of han-
dling extremely high temperatures as well as a high radiation level. Finally,
not only need the walls of a GCR reactor core to be able to withstand high
temperatures of over 2000 K, they also need to be resistant to radiation and to
corrosion due to the �uoride in the fuel gas.
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1.2 Overview of the work

In most research on gas core reactors, either the neutronics in a GCR are calcu-
lated, assuming uniform temperature and density distributions [Dugan,1993], or
the heat transfer is investigated, assuming a uniform �ux distribution [Diaz,1993].
The motivation to these assumptions is that the fuel density inside the core is
low, and therefore the neutron mean-free-path length is large compared to the
geometry. Thus, �uctuations in space are assumed to be negligible, as neutrons
only see the `average' value inside the core. Because of these large neutron
mean-free-path lengths, the �ux is also assumed �at, and the power density is
taken to be directly proportional to the uranium density inside the core. The
error made in making these assumptions is expected to be small, but rarely
quanti�ed.

This research was performed as a master end project (MEP) in the �eld of
applied physics at the technical university of Delft, in the physics of nuclear re-
actors (PNR) department. Research was performed on a graphite-walled GCR
with the fuel gas consisting of a mixture of uranium- and carbon-�uorides in
thermochemical equilibrium with the graphite wall. This design was �rst pro-
posed by Kistemaker [1978] as a solution to the incompatibility of most wall ma-
terials with the high temperatures and corrosive e�ects of the uranium-�uoride
fuel gas, and was later the subject of PhD researches by Klein [1987] and Kui-
jper [1992]. A one-dimensional core design was used of an in�nite cylinder,
and fuel �ow was ignored to keep the project manageable inside the allocated
timeframe. The main goal of this research is quantifying the e�ect of coupled
neutronics and heat transfer calculations, as opposed to doing uncoupled calcu-
lations, assuming �at temperature, density and �ux distributions. This was also
done as preparation for transient calculations in a GCR, where the interaction
of the fuel density and temperature with the neutronics is of importance. To
further investigate the transient behaviour, and to be able to put the e�ect of
the density and temperature distribution on the reactivity in perspective, other
reactivity e�ects in a GCR were also calculated.

The research followed the same lines as a paper by van Dam and Hoogen-
boom [1983] dealing with one-dimensional GCR core designs. In this paper the
main parameters governing the neutronics and heat transfer were investigated,
dealing �rst with the neutronics and heat transfer separately, followed by a syn-
thesis that investigated the e�ects of the fuel redistribution inside the core on
the reactivity.

This thesis starts with detailing the investigated core models in the �rst sec-
tion of chapter 2. The �rst core model is identical to the cylindrical core design
from van Dam and Hoogenboom and is used as a reference case to verify the
calculations. In this model high enriched (50%) uranium was used. Such a high
enrichment is no longer realistic due to the high cost of high enriched uranium.
Using two other models the reference case was altered in two steps to a core
model fuelled with low enriched (5%) uranium. The rest of the chapter describes
the neutronic calculations, assuming a �at temperature and density distribution
inside the core. For each core case �rst the critical density was calculated, and
next the important reactivity coe�cients near criticality were calculated as well
as the neutron mean-free-path length and speci�c power density. The chapter
concludes with a discussion on the possible impact of the calculated reactivity
coe�cients on the stability of the three GCR core cases.
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In chapter 3 a heat transfer model was developed including both radia-
tive and kinetic (conductive) heat transfer. Dissociation of the large fuel gas
molecules into smaller ones at higher temperatures was included, as it was
expected to have a major e�ect on the density distribution inside a GCR.
Again calculations were validated against previous calculations by van Dam
and Hoogenboom [1983], which did not include dissociation and kinetic heat
transfer. With the heat transfer model tested and validated, it could be used
to calculate the temperature and density pro�les inside the three core cases, as
well as several other parameters like core pressure, maximum temperature and
heat loss through the graphite wall. The only coupling with the neutronics in
this chapter was the use of the average fuel gas density at criticality, calculated
in chapter 2.

In the fourth chapter, neutronics and heat transfer calculations were com-
bined. The e�ect of the neutron �ux distribution on the heat production and on
the temperature and density distribution was investigated, and the e�ect of fuel
redistribution and the temperature distribution inside a GCR on the reactivity
was determined. Results were compared with results in [van Dam,1983] for the
reference core model, and with results from the uncoupled calculations from
chapters 2 and 3.

Finally, chapter 5 gives the conclusions drawn on the important parameters
for the neutronics and heat transfer inside a GCR, the e�ect of the temper-
ature and density pro�les on the neutronics and the other way around, and
the transient behaviour of a GCR. The conclusions are followed by a discus-
sion on the validity of the results, including limitations of the models used, and
recommendations for future work.
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Chapter 2

Neutronics analysis with

uniform temperature and

density distribution

Models using uniform temperature and mass distributions inside the core are
often used in studies of the neutronics of a GCR [Anghaie,2005, Dugan,1989,
Dugan,1993]. The e�ects of spatial fuel density and temperature variations on
the neutronics are expected to be minor, due to the large neutron mean-free-
path lengths inside a GCR core. To investigate the validity of these assumptions,
results on the neutronics for uniform temperature and density distributions are
needed as a reference. For comparison of the possible e�ects of fuel redistribu-
tion, and as a preliminary investigation in the transient behaviour of a GCR,
reactivity coe�cients of various properties of a GCR are also calculated.

The neutronics of a gas core reactor are investigated using a one-dimensional
cylindrical core model, detailed in section 2.1, with uniform mass and tempera-
ture distribution of the fuel inside the core, and a uniform re�ector temperature.
Three di�erent core setups are investigated; a reference case with high enriched
uranium (50%) from van Dam and Hoogenboom [1983], a second high enriched
case with lower fuel temperature, and one with low enriched uranium (5%).
With MCNP [Los Alamos,2003] �rst the critical fuel density is calculated for
each core, and for this critical density the neutron mean-free-path lengths are
calculated and the speci�c power density inside the cores is determined. Also,
reactivity coe�cients near criticality for the fuel temperature, the re�ector tem-
perature, and the fuel density are calculated in paragraphs 2.3.4 to 2.3.6. All
results are compared with values from van Dam and Hoogenboom, and with
each other. In the �nal section a discussion is held on possible stability issues
for GCRs, given the calculated feedbacks.

2.1 Investigated Core Models

In this section the geometry and properties of the three di�erent GCR core
models investigated in this thesis are detailed. For all three core cases a one-
dimensional model was used of an in�nite cylinder, without axial or tangential
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Figure 2.1: Geometry of the GCR model, consisting of an in�nite cylinder with a
core cavity with radius Rc �lled with UCF gas, encircled by a graphite re�ector
with thickness Rr = 100 cm.

dependence, consisting of a cylindrical cavity �lled with a fuel gas mixture of
uranium- and carbon-�uorides (UCF gas), surrounded by a cylindrical graphite
re�ector. Both the fuel gas and the graphite re�ector had a uniform density
and temperature. A cross-section of this model is depicted in �gure 2.1. For all
three cases, the graphite of the re�ector has a density of 0.0855 atoms/barn-cm,
or 1705 kg/m3 [Kuijper,1992], and is 100 cm thick (Rr = 100 cm).

The three di�erent core setups, labelled cases 1 to 3, listed in table 2.1,
di�er in their inner core radius Rc, fuel gas mixture, uranium enrichment, fuel
temperature Tf and re�ector temperature Tr. Altough the re�ector inner wall
temperature was assumed to be always 2000 K, the actual re�ector temperature
Tr refers to the average bulk temperature of the re�ector. Since the thermal
neutron di�usion length in graphite is large (∼ 60 cm), the neutron temperature
is assumed to be mainly determined by the bulk of the graphite.

The �rst case is identical to the cylindrical core model in van Dam and
Hoogenboom [1983], in which the neutronics of several one dimensional GCR
models were investigated. To test the calculation methods against results re-
ported in van Dam and Hoogenboom, calculations were performed on a cylin-
drical GCR with properties identical to those in van Dam and Hoogenboom.
This reference core has an inner radius of Rc = 118 cm and the fuel gas consists
of 70% UF4 and 30% CF4 molar fractions with 50% enriched uranium. The fuel
has a uniform temperature of Tf = 10000 K and the re�ector temperature is
Tr = 1000 K.

The two other cases have a uniform fuel temperature of Tf = 4400 K, a
uniform re�ector temperature of Tr = 1900 K and an inner core radius of
Rc = 150 cm. Case 2 uses fuel with 50% enriched uranium, and case 3 5%
enriched uranium. There properties were chosen such that case 2 could serve as
a link between the reference case 1 and case 3, with a more realistic uranium
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Table 2.1: The three di�erent investigated core setups. For each case the atom
ratios U:C:F of the fuel mixture, the uranium enrichment percentage, the inner
core radius Rc, core temperature Tf and re�ector temperature Tr is given. The
re�ector thickness Rr = 100 cm in all cases.

Fuel mixture Fuel Enrichment Rc Tf Tr
[U:C:F] [% 235U] [cm] [K] [K]

Case 1 0.70 : 0.30 : 4.00 50% 118 10000 1000
Case 2 0.70 : 0.18 : 4.00 50% 150 4400 1900
Case 3 0.70 : 0.18 : 4.00 5% 150 4400 1900

enrichment for modern reactors. For case 2 and 3 the fuel gas consists of a
mixture of U:C:F atoms with atom ratios U:C:F of 0.70 : 0.18 : 4.00. The
mixture was chosen such that at a temperature of 2000 K at the wall and a gas
pressure of 25 bar it would be in chemical equilibrium with the graphite wall, as
described in Klein [1991a]. The fuel temperature was limited to 4400 K because
calculations using the heat tranfer model desribed in chapter 3 showed higher
average fuel temperatures would result in pressures above 100 bars for the low
enriched fuel at critical fuel density, beyond the boundaries of the validity of
the data used in the heat transfer model. For the same reason the core radius
was enlarged to 150 cm. A slightly di�erent fuel mixture than for case 1 was
chosen because for this fuel mixture detailed thermodynamical data was avaiable
from Klein [1991a, 1991b]. The re�ector temperature was chosen based on heat
transfer calculations for a critical core, which resulted in an average re�ector
temperature of around 1900 K, based on an inner re�ector wall temperature of
2000 K. See table 2.1 for an overview of the three core setups.

2.2 Calculation Method

All neutronics calculations were performed using the MCNP5 Monte Carlo
transport code [Los Alamos,2003]. MCNP is a Monte Carlo code, and as such
results depend on statistics of random events. A bene�t of using MCNP is that
it describes very accurately the physics of the problem, and reports a standard
deviation with all calculated values, which can be di�cult to estimate when
using a deterministic method. MCNP is continuous in space and energy, using
point-wise cross section data. Also, no cross section libraries have to be evalu-
ated as MCNP can internally evaluate cross sections at di�erent temperatures.
A drawback of using MCNP is that the statistical error in the results makes the
calculation of small changes in the system di�cult, like the calculation of reac-
tivity coe�cients. At the start of this project, it was not clear that feedbacks
on the reactivity would be included, and as such MCNP was chosen in favor of
a deterministic code, because of its ease of use and precision.

In all neutronics calculations in this research the multiplication factor keff
was calculated using a KCODE card in the MCNP input deck, and sometimes
tallies were included to evaluate other neutronics related quantities. Neutron
energies were split up into 4 groups with upper energy bounds of 2.38 eV, 4.3
keV, 111 keV and 20 MeV, equal to the groups used in van Dam and Hoogenboom
[1983]. A sample MCNP input deck is given in appendix A.
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2.3 Calculation Results

2.3.1 Critical Density

For each core case, the critical fuel gas density nc (the density for which keff =
1) had to be evaluated before other calculations could be performed. The critical
densities are given in total atom densities of the fuel gas, and are the sum
of the atom densities of the seperate components, with units in atoms/barn-
cm, equal to the input format in MCNP. The atom densities of the seperate
components of the fuel gas can be evaluated from this total density using their
atomic ratios given in table 2.1. With fU , fC and fF the atom ratios of the fuel
gas components, the uranium atom density nU in atoms/m3 can be calculated
from the critical density nc by

nU =
fU

fU + fC + fF
nc × 1030 (2.1)

where multiplication by the factor 1030 is needed to convert the densities from
(barn-cm)−1

to m−3.
Without dissociation, it is assumed all �uoride atoms are bound to uranium

or carbon atoms, forming UF4, UF5 or UC4 molecules. The molecular fuel
density or particle density n in molecules/m3, needed to calculate the pressure,
can be evaluated, ignoring dissociation, from the critical density by

n = nU + nC =
fU + fC

fU + fC + fF
nc × 1030 (2.2)

From the molecular fuel density n, the core pressure p, ignoring dissociation,
for the critical fuel density and fuel temperature Tf , can be calculated using the
ideal gas law by

p = nkTf (2.3)

with k the Boltzmann constant.
For case 1, nc could be directly evaluated from results in van Dam and

Hoogenboom [1983] calculated with the ANISN deterministic Sn code, which
used cross section libraries created for the fuel gas mixture at the fuel gas
temperature of 10000 K. The critical inventory was given as 7.65 kg uranium
per meter length of the cylinder, translating to a UCF fuel gas density of
nc = 3.18×10−5 atoms/barn-cm, using data from Lide [2001] for atomic weights
and physical constants. For the other two core cases, the critical density nc was
determined from several MCNP criticality calculations for a range of fuel gas
densities. After making a linear �t on the calculated data points, nc was de-
termined from the intersection of the �t with keff = 1. For plots of these
calculations and the linear �ts see �gure 2.3.

For all cases, using the calculated critical fuel gas density nc as input, a long
MCNP run was done of 1000 cycles with 75000 source particles, to calculate the
keff belonging to this fuel density with high precision, since this keff value will
be used as a reference case for various perturbations in the rest of this research.
The calculated keff values has a standard deviation of 9 pcm (10−5). Results
are given in table 2.2.

Results for the reference case, case 1, are in accordance with van Dam and
Hoogenboom. Using the critical inventory reported in van Dam and Hoogen-
boom, the calculated multiplication factor was within one standard deviation of
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Table 2.2: Critical fuel densities nc for each case. Using this nc as input, keff
was calculated with MCNP, with a standard deviation of 9 pcm. Also given
is the total mass of uranium in kg per meter length of the cylinder and the
resulting gas pressure p, ignoring dissociation of the fuel gas, given the critical
fuel gas density and fuel temperature.

nc keff Critical Inventory p
[atoms/b-cm] [U kg/m] [bar]

Case 1 3.180× 10−5 1.00009 7.65 8.78
Case 2 2.833× 10−5 0.99994 11.3 3.10
Case 3 4.370× 10−4 1.00019 175 47.9

criticality. The pressure di�erence of 0.07 bar between van Dam and Hoogen-
boom and the calculated value is due to rounding errors of various numbers.
This result gives con�dence in the correct sampling of cross sections by MCNP
for temperatures in the thousands of Kelvin.

The second case, with the same uranium enrichment as case 1, has a larger
critical inventory due to a higher re�ector temperature. This results in a harder
thermal neutron spectrum, reducing the e�ective absorption cross section in the
fuel, which has to be compensated for by adding more fuel. The critical density
nc is still lower than for case 1, because of the larger core radius. Finally, the
critical density for the low enriched fuel, case 3, is over ten times as high as for
the high enriched fuel, to compensate for the lower �ssile 235U fraction and the
additional absorption in 238U due to an increase in the 238U density.

2.3.2 Neutron Mean-Free-Path Lengths

The neutron mean-free-path length inside a GCR core is an important property
to understand its neutronic behaviour. It is usually assumed that the mean-free-
path of neutrons inside a GCR core is much larger than the core diameter, and
that neutrons have a higher probability to be absorbed than to scatter in the
fuel, and as a result neutrons can be assumed to travel in straight, uninterrupted
lines through the core. To be able to test the validity of certain assumptions
regarding the mean-free-path lengths and the ratio between neutron absorption
and scattering, the mean-free-path lengths for scattering ls, absorption (includ-
ing �ssion) la, and total lt for thermal neutrons inside the three GCR core were
calculated for each core case using MCNP.

In MCNP, reaction rate tallies in the fuel were calculated for the scattering,
absorption and total cross-sections, and for the �ux, for the four neutron energy
groups described in section 2.2. Since we were only interested in the thermal
neutron mean-free-path lengths, we only looked at the results for the thermal
energy group with neutron energy E < 2.38 eV. The macroscopic cross section
Σi for each reaction i can be calculated from the thermal group reaction rates
RRi and thermal �ux φ by

Σi =
RRi
φ

(2.4)

where i indicates the type of reaction (a for absorption, s for scattering and t for
total). From Σi the thermal neutron mean-free-path lengths li are calculated
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Table 2.3: Thermal (E < 2.38 eV) neutron mean-free-path lengths inside the
GCR reactor cores. For each core case the mean-free-path length for absorption
(including �ssion) la, scattering ls, and the total mean-free-path length lt is
given.

nc la ls lt
[atoms/b-cm] [m] [m] [m]

Case 1 3.180× 10−5 17.0 56.9 13.1
Case 2 2.833× 10−5 26.7 70.5 19.3
Case 3 4.370× 10−4 16.7 4.9 3.8

by

li =
1
Σi

(2.5)

Results for the scattering, absorption and total mean-free-path lengths ls, la
and lt for thermal neutrons with neutron energy E < 2.38 eV are given in table
2.3 for each case.

The calculated mean-free-path for absorption la = 17.0 m for case 1 is equal
to the value given in van Dam and Hoogenboom of la ∼ 17 m, for a spherical
GCR with identical fuel and the same re�ector temperature. The calculated
mean-free-path lengths for core case 1 are smaller than for case 2. In part this
is because of the higher fuel gas density in case 1, but another important reason
is the lower re�ector temperature for case 1. As discussed before this results in a
shift of the thermal neutron peak towards a slightly lower energy, where both the
absorption and scattering cross sections have higher values. Since the calculated
mean-free-path lengths are for thermal neutrons, the fuel temperature Tf has no
signi�cant e�ect on them, because there are no resonances in the cross sections
in the thermal energy region. When comparing the l's for case 1 and case 2
with the core diameters, they both have comparable mfp lengths compared to
their core diameters Rc. Since lt � Rc for case 1 and 2, and since la � ls, the
assumption of neutrons traveling through the core in straight, uninterrupted
lines is reasonable for these cases.

Case 3 shows a smaller la than case 2, mostly due to a slightly higher 235U
density. The much higher 238U density has only a small e�ect on la, because
the �ssion cross-section of 235U is several orders larger than the absorption cross
section of 238U in the thermal region. Thus la is dominated by �ssion of 235U.
ls is much smaller for case 3 than for the other cases, because of the higher fuel
density. As a result, in case 3 ls > la , and the total mean-free-path length lt is
comparable to the core diameter instead of being several orders larger. Thus for
case 3 the assumptions of neutrons traveling through the core in straight lines
is no longer accurate.

2.3.3 Speci�c Power Density

For the calculation of the heat generation inside the core in chapter 3, a quantity
was needed that described the power production per kg uranium as a function
of the radial position r inside the core. Based on the defenition of the speci�c
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Figure 2.2: Normalized speci�c power density f(r) of the three cases. The r-
coordinate of case 1 is depicted on the top x-axis, the values on the bottom
x-axis refer to the r-coordinates of cases 2 and 3.

power of a nuclear reactor [Duderstadt,1976]

Specific power [kW/kg] =
Reactor thermal power

Total mass of �ssionable material
(2.6)

the speci�c power density f (r) was de�ned as

Specific power density f (r) [W/kg] =
Fisson power density at r

Uranium density at r
(2.7)

For each case the speci�c power density f(r) was calculated using a type 7
volume tally in MCNP, which calculates the �ssion energy deposition averaged
over a cell, per gram fuel in that cell. The core in the MCNP model was split in
10 radial zones, with smaller zones closer to the re�ector. The distribution of the
zone widths is explained in section 3.5. The speci�c power density was calculated
for each volume cell and the resulting values were normalized to an average

speci�c power density of 1 for the entire core, such that
´
V
f(r)ρU (r)dV´
V
ρU (r)dV

= 1, with
ρU (r) the uranium density at r. The calculated speci�c power densities for all
three core cases are plotted in �gure 2.2.

Because the �ux shape is almost �at inside a GCR due to the large mean-free-
path length of neutrons compared to the core radius (see appendix C and table
2.3), the power production inside a GCR core can almost always be assumed
proportional to the uranium density [van Dam,1983, Kuijper,1992], which means
a �at speci�c power density is assumed. Figure 2.2 shows that this, especially
for case 3, is not entirely correct. The di�erence in speci�c power density at the
centre of the core and near the wall is between 2% (case 2) and 6% (case 3).
This indicates a higher �ssion probability and thus a higher neutron �ux near
the wall, for which there are two reasons.

First, inside a GCR, due to the large mean-free-path length for neutrons in
the fuel, moderation in the fuel is almost absent, and almost all fast neutrons
will reach the graphite re�ector. Thus, the re�ector can be seen as the source of
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thermal neutrons. With thermal neutrons entering the core from the re�ector,
absorption and scattering by the fuel will cause a slight drop of the thermal �ux
further away from the wall, and thus a slight drop in the speci�c power density.

Second, as was mentioned in van Dam and Hoogenboom, if we assume neu-
trons to move in straight, uninterrupted lines through the core, which is a good
approximation for cases 1 and 2, where lt � Rc and la � ls, it can be shown that
for neutrons leaving the re�ector at random angles, this will result in a larger
neutron �ux near the wall than near the centre of the core. See appendix B.

When comparing the speci�c power density of the three cases, case 3 has a
greater di�erence between f(r) at the centre and near the wall than the other two
cases. Main reason is the higher fuel gas density (over 10 times higher), resulting
in a shorter neutron mean-free-path length, causing less thermal neutrons to
reach the centre of the core due to scattering near the wall.

Case 1 and 2 have a nearly identical speci�c power density, with a slightly
larger slope for case 1, due to a higher absorption probability for case 1. This
is in part because of the slightly higher fuel density, but the most important
factor is that the lower re�ector temperature causes a slight shift in the thermal
neutron peak towards lower neutron energies. As discussed before, this shift in
the thermal neutron energies results in a higher neutron absorption probability
in the fuel.

2.3.4 Fuel Density Reactivity Coe�cient

Since the fuel is in a gaseous state in a GCR, density �uctuations can easily arise
from changes in either the pressure or the temperature. As such, the reactivity
coe�cient of the fuel is an important property for transients and control of
a GCR. The feedback on the reactivity from changes in the fuel density was
calculated for the three cases from table 2.1. For each case the multiplication
factor keff was calculated for several fuel densities around the critical density,
and a linear �t was made on the calculated data points. For cases 2 and 3
these linear �ts were also used to determine the critical fuel density nc in table
2.2. The slope of the linear �ts gave the fuel density feedbacks. Plots of the
calculated data points and the linear �ts are given in �gure 2.3.

The resulting feedbacks are given in table 2.4 and are expressed as the nor-
malized reactivity coe�cient of the fuel near criticality, de�ned by α′n = nf

k
∂k
∂nf

,

with nf the atomic fuel density in atoms/barn-cm. The normalized reactivity
coe�cient of the fuel gives the relative change of keff (which, near criticality,
is equal to the absolute change), per relative change of the fuel density nf .
The main reason for using the normalized reactivity coe�cient instead of the
(absolute) reactivity coe�cient αn = ∂k

∂nf
, is that trying to express the abso-

lute reactivity coe�cient of the fuel in easily readable numbers would result in
strange units, and would not be very insightful to the behaviour of the reactor.

In van Dam and Hoogenboom the normalized reactivity coe�cient of the fuel
was calculated for a spherical GCR of 2 meter radius, with otherwise identical
properties as case 1. The calculated normalized reactivity coe�cient was α′n '
0.28, which is equal to α′n calculated for case 1, a cylindrical GCR. Although the
geometry of the two cores is di�erent, the rest of the parameters are the same.
Given the large mean-free-paths of neutrons inside the core, much larger than
the core diameter (see table 2.3), neutrons will enter and exit the re�ector several
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Table 2.4: Normalized reactivity coe�cient of the fuel α′n = n
k
∂k
∂n near criticality

and the critical fuel density nc for each case.
nc α′n

[atoms/b-cm] -
Case 1 3.180× 10−5 0.28
Case 2 2.833× 10−5 0.31
Case 3 4.370× 10−4 0.18

times before being absorbed by the fuel, and the neutron energy spectrum will
depend only on the re�ector properties and be the same for the two geometries.
Since the fuel has identical properties, the macroscopic cross sections must also
be equal, and the average neutron path length through the core will be equal
for the two di�erent geometries (although the distribution between path lengths
might be di�erent). Small changes in density would result in equal changes in
absorption probabilities for neutrons traveling through the core, resulting in
equal reactivity coe�cients. Thus the results compare well with literature.

For case 2 the normalized reactivity coe�cient of the fuel is slightly larger
than for case 1, because of the larger mean-free-path length compared to the
core diameter for case 2. Each time neutrons enter the re�ector there is a chance
they will be absorbed or escape. A relative change in density will cause a relative
change in la and in the average number of times neutrons will pass the core and
enter the re�ector. Because la/Rc is larger for case 2 than for case 1, an equal
relative change in the fuel density for case 2 compared to case 1 will cause a
higher absolute change in la/Rc and in the average number of times neutrons
enter the re�ector, and thus will cause a bigger change in keff . Because of this
the reactivity coe�cient for the fuel for case 2 is higher than for case 1.

Case 3 has a signi�cantly lower α′n, which is mainly due to the lower fuel
enrichtment, resulting in a competition between absorption in 238U and �ssion
of 235U for thermal neutrons. Because of these two opposite e�ects on the reac-
tivity a change in the fuel density results in a relative low change of reactivity.
Another factor is that at these higher 238U densities, resonance absorption of
neutrons in 238U before being moderated is no longer insigni�cant. Enlarging
the fuel density will enlarge the probability of neutrons being absorbed in 238U
before being moderated, lowering the e�ciency of adding more and more fuel.
This e�ect was also noted in Dugan [1989].

The high reactivity coe�cient of the fuel might be a perfect feedback mecha-
nism to control the reactor, as suggested in Dugan, since a temperature rise will
cause a pressure rise and thus a density drop. But it might also be the cause of
instabilities. For the high enriched cases density changes of only 2% will already
result in reactivity changes of 600 pcm, around 1$ worth of reactivity. For case
3, a density change of 4% will result in such a change in reactivity. A lot of
scenarios can be imagined which can cause density �uctuations in the fuel gas
of several percent, for example a blockage of the fuel �ow upstream of the core,
or a fuel pump malfunction. Without proper design, these density changes can
cause unstable power �uctuations due to the strong feedback.
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Figure 2.3: Multiplication factor keff as a function of the fuel gas density nf for
the three core cases. Included are error bars showing the standard deviations
from the MCNP keff calculations. The linear �ts were used to evaluate the
critical density nc and normalized reactivity coe�cient of the fuel α′n.
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Figure 2.4: Plots of the multiplication factor keff as a function of fuel tempera-
ture Tf for the three core cases. The error bars show the standard deviation for
the keff calculations. The resulting linear �ts are shown as straight lines, their
gradient representing the reactivity coe�cient of the fuel temperature αTf .

2.3.5 Fuel Temperature Reactivity Coe�cient

In most reactors one of the main stabilizing factors is the fuel temperature
feedback on the reactivity. The reactivity coe�cient of the fuel temperature,
αTf = ∂k

∂Tf
, was calculated for the three GCR cases. Criticality calculations

were performed with the fuel temperature Tf perturbed by 250 K and 500 K
respectively, and on the data points a linear �t was made. Plots of the calcu-
lated keff versus Tf and the linear �ts are in �gure 2.4. Calculated reactivity
coe�cient of the fuel temperature for all three cases are given in table 2.5 in
pcm (10−5) per Kelvin.

In van Dam and Hoogenboom reactivity coe�cients for the fuel temperature
were not calculated, but it was mentioned the nuclear Doppler e�ect of the fuel
will be enough to compensate for small reactivity changes (∼ 100 pcm). As
can be seen from table 2.5 this is not the case for cases 1 and 2 with high
enriched fuel. For these cases αTf is in the order of −0.01 pcm/K or smaller,
as was also mentioned in other research [Dugan,1989]. For the high enriched
cores, the uranium density is very low, and the neutron mean-free-path length of
absorption for non-thermal neutrons is so large (> 100 m), neutrons have almost
negligible chance of being captured in resonances before being moderated in the
re�ector. Because of this a widening of the resonances due to a rise of fuel
temperature will have almost no e�ect on the criticality. For case 3, with low
enriched fuel, the uranium density is much higher, over 10 times, and the 238U
density, which has the largest resonances, is more then 20 times higher. As
a result, the mean-free-path length for absorption of non-thermal neutrons is
no longer extremely large compared to the core radius, and there is signi�cant
absorption of neutrons in the resonances. Thus αTf for case 3 is much larger
than for case 1 and 2 and might be an important factor for reactor control.
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Table 2.5: Reactivity coe�ents of the fuel temperature αTf at criticality for the
three core cases in pcm/K (10−5/K). Also given is the fuel temperature Tf at
criticality. αTf for case 1 and 2 was too small to evaluate.

Tf αTf
[K] [pcm/K]

Case 1 10000 |αTf | ≤ 0.01
Case 2 4400 |αTf | ≤ 0.01
Case 3 4400 −0.3

2.3.6 Re�ector Temperature Reactivity Coe�cient

Another important reactivity coe�cient for reactor stability is the reactivity
coe�cient of the re�ector (moderator) temperature αTr = ∂k

∂Tr
. As mentioned

before an increase in the re�ector temperature Tr will result in a hardening of
the thermal neutron spectrum, which will lower the absorption probability of
neutrons in the fuel. The absorption of neutrons in the graphite however also
lowers with increased neutron energy, thus lowering the probability of neutrons
being absorbed in the re�ector. The �rst e�ect is usually more important than
the second one, and thus an increase in re�ector temperature results in a lower
reactivity. The e�ect of changes of the re�ector temperature on the reactivity
was calculated for the three GCR core cases.

The graphite re�ector was represented in MCNP using thermal S(α, β) cross-
section libraries for solid graphite. These data sets include the e�ects of the
graphite bonds in solid graphite on the cross sections, which are not included in
the normal free-gas treatment of nuclides by MCNP. For the graphite re�ector,
the free-gas treatment is used down to the neutron energy where S(α, β) data
is available, typically below 4 eV. At that point, the S(α, β) data automatically
overrides the free-gas treatment. In general, S(α, β) e�ects are most signi�cant
for neutron energies below 2 eV. Since in a GCR the neutron �ux is mostly
thermal, especially inside the re�ector (see appendix C), the S(α, β) data set is
much more important for the neutron behaviour inside the re�ector than the
free-gas treatment. In MCNP thermal S(α, β) cross-section libraries are only
available for certain temperature values, while the free-gas treatment can deal
with any user-de�ned temperature. Since the free-gas treatment is of only minor
importance inside the re�ector, calculations were performed only for re�ector
temperatures for which S(α, β) data was available.

Plots of the MCNP criticality calculations for the di�erent re�ector temper-
atures for each of the three cases are given in �gure 2.5. From these plots αTr
was evaluated by a linear �t around the critical re�ector temperature (Tr = 1000
K for case 1, and Tr = 1900 K for case 2 and 3). The calculated αTr are given
in table 2.6 for all three cases.

For case 1 αTr = −7.9 pcm/K, which is comparable with αTr = −9 pcm/K
given in van Dam and Hoogenboom for a spherical GCR with otherwise identical
properties. Since that αTr was evaluated using a parametric relation between
the fuel gas density nc, re�ector temperature Tr and core radius Rc, the value
from van Dam and Hoogenboom can be considered to have a large uncertainty,
and thus not be signi�cantly di�erent from the calculated value of αTr = −7.9
pcm/K.
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Table 2.6: Reactivity coe�cients of the re�ector temperature αTr near criticality
for the three GCR core cases in pcm/K (10−5/K). Also given is the re�ector
temperature Tr at criticality.

Tr αTr
[K] [pcm/K]

Case 1 1000 −7.9
Case 2 1900 −6.7
Case 3 1900 −3.9

As mentioned before, case 2 has a larger la/Rc value than case 1, thus
neutrons will enter the re�ector more often before being absorbed in the fuel.
Because of this, the positive reactivity e�ect of lowering the absorption in the
re�ector with increasing Tr is more important in case 2 than in case 1. This
results in a slightly lower αTr for case 2. For case 3 αTr is signi�cantly lower
than for case 1 and 2. Main reason is the higher absorption of thermal neutrons
in 238U due to the larger 238U density. Lowering the re�ector temperature will
increase the absorption in the fuel by 235U, but also the absorption by 238U.
Since the 238U density is much larger in case 3, this increase in absorption in
238U has a signi�cant e�ect on the reactivity, resulting in a lower increase in
reactivity.

In case 3, it can be seen in �gure 2.5 that αTr changes sign at re�ector
temperatures below 600 K. The cause of this might be the much higher 238U
density. The 235U(n, f) cross section has a small �uctuation around 10−7 eV,
which means a shift in the neutron energy peak in this region could result in a
smaller change on the absorption in 235U, resulting in a lower αTr. This can be
observed in the data for cases 1 and 2 at Tr < 600 K. In case 3 however, this
would cause the change in the absorption in 238U to become dominant in this
Tr region, resulting in a positive αTr. Since this change of sign is at re�ector
temperatures well below normal operating temperatures of a GCR, this will not
have any major e�ects on the reactor control.

In general, the reactivity coe�cients of the re�ector temperature show a
strong negative feedback. This is an important safety mechanism in case of
an accident resulting in a loss of coolant of the re�ector. A rise in re�ector
temperature of even a few hundred K will result in a signi�cant reduction in
reactivity, resulting in a shutting down of the �ssion chain reaction. For control
purposes of the core temperature, αTr is less suitable, due to the delay between
a rise of power and a rise in re�ector temperature, because of the large re�ector
bulk.

2.4 Conclusions

In the previous sections several properties of the neutronics of a gas core reactor
were calculated using MCNP and evaluated for three di�erent core setups. All
calculated values for the reference case, case 1, were in accordance with values
found in literature, giving us con�dence in the validity of the results for the
other core cases.

The slightly higher speci�c power density near the core wall might indicate
a change in the fuel density distribution towards a distribution with higher den-
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Figure 2.5: Plots of the multiplication factor keff as a function of the re�ector
temperature Tr for the three core cases. The resulting linear �ts are shown as
straight lines, their gradient represents the reactivity coe�cient of the re�ector
temperature αTr.

sities near the wall will lead to an increase in �ssion, and thus an increase in
reactivity. Although the densities inside a GCR are low, and even doubling or
tripling the density near the wall would still result in mean-free-path lengths
in the order of meters in that zone, the di�erences in f(r) itself are also small.
Thus, due to increased absorption and scattering near the wall, such a fuel re-
distribution could possibly e�ect f(r) enough to negate the positive e�ect of
redistributing fuel towards that region. An e�ort was made to calculate the
reactivity coe�cient of the fuel for each radial zone inside the core. Unfortu-
nately, the statistical nature of MCNP did not permit to calculate such small
perturbations with su�cient precision to draw any conclusions. The e�ect of
fuel redistribution on the neutronics is further investigated in chapter 4.

Comparing the various feedbacks a possible source of instabilities of the GCR
cores can be identi�ed. The reactivity coe�cient of the fuel α′n is such, that
a change in pressure of a few percent could insert 1$ of reactivity in the core.
The low enriched core has a lower reactivity coe�cient of the fuel, but still
pressure changes of a few percent would result in making the reactor prompt
critical. These pressure changes can easily occur due to numerous malfunctions,
for example a blockage upstream of the core exit, or a malfunction in the fuel
pump. The instantaneous reactivity feedback of the fuel temperature is for
the high enriched cores almost absent. For low enriched cores, the reactivity
coe�cient of the fuel is still insu�cient to counter such a reactivity insertion,
as this would require fuel temperature changes in the thousands of Kelvin.

Reactor control also depends on delayed feedbacks of the re�ector tempera-
ture, and of the fuel density through a pressure change due to a change in fuel
gas temperature. The bulk of the graphite is quite large, thus the time scale
of this feedback would be insu�cient to counter a sudden reactivity insertion.
The time scale of a pressure change resulting in a lower density depends on
the speed of sound in the fuel gas, and on the reactor size. Typical core sizes
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are in the order of 3 m [Anghaie,2005], and the speed of sound inside a GCR
is ∼ 1000 m/s [Dugan,1993], resulting in a time scale of 0.003 seconds. The
neutron prompt removal life time of the GCR was calculated by MCNP to be
the same, 0.003 s. Thus a complicated system of feedbacks on the reactivity
exists, with an instant fuel temperature feedback, a delayed but fast feedback
through the density change due to a temperature and pressure change, and a
delayed feedback from the re�ector temperature, all with comparable orders of
magnitude for case 3. Whether these feedbacks have a stabilizing e�ect on the
reactor or result in power �uctuations growing out of control will depend on
their respective values and time-scales. Thus a detailed, time-dependent model
of the �ow-�eld inside a GCR and of the heat transfer would be needed to
evaluate the stability of a GCR.

Several other GCR designs based on oscillating systems subvert this problem,
and even depend on the large reactivity coe�cient of the fuel and the delay on
the reactivity feedback through a change in fuel pressure due to a rise of fuel
temperature [Panicker,1990, Kuijper,1992].

25



Chapter 3

Heat Transfer Model

The subject of this chapter is the development of a model describing the heat
transfer inside the core of a gas core reactor, and the calculation of the radial
temperature and density pro�les inside the GCR model. The fuel gas consists of
a gas mixture of uranium- and carbon-�uorides, in thermochemical equilibrium
with the inner wall of the graphite re�ector. As in chapter 2, a one-dimensional
model of an in�nite cylinder is used for the core, with no axial or tangential
dependencies. For this model, a computational tool is developed to calculate
the radial temperature and fuel density distribution inside the core. In a GCR
core, due to the high temperatures, the large molecules forming the UCF gas
fall apart into multiple smaller molecules, a process called dissociation. This
dissociation e�ect is included in the heat transfer model, as well as the e�ects
of radiative and kinetic (di�usive) heat transfer.

In the �rst section the core model and its simpli�cations are explained. Next
the heat transfer equation is derived. In the third section the thermophysical
properties of the UCF gas needed to solve the heat transfer equation are evalu-
ated. Section 3.4 details the numerical solution method used to solve the heat
transfer equation, followed by a section describing the distribution of the volume
cell grid on which the heat transfer equation was solved. Several tests on the
consistency of the developed code are detailed in the next section. In section
3.7 the code was validated by comparing calculations with the code against cal-
culations done by van Dam and Hoogenboom [1983]. The next section contains
results of heat transfer calculations on the three core cases described in the
previous chapter, giving the temperature and density distribution for a given
average fuel temperature, as well as the pressure inside the core and the thermal
power generated inside the core to sustain these temperatures. The last section
contains conclusions drawn on the important parameters for the heat transfer
inside a GCR.

3.1 Model Assumptions

For the heat transfer model, the same geometric core model as in �gure 2.1
is used consisting of a cylindrical cavity �lled with UCF gas, surrouded by a
graphite re�ector. Axial and tangential dependence is ignored, resulting in a
one-dimensional model, with only radial dependence.
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It is assumed the atomic ratios of fuel mixture stay the same throughout
the entire reactor. In reality, dissociation of the fuel gas will cause a mixture of
many di�erent elements to exist inside the core. The concentration di�erences
of these mixtures will cause transport of the various elements to regions with
di�erent dissociation levels, resulting in local changes in the atomic ratios of the
fuel mixture. Calculation of the actual atomic ratios at every location in the
fuel gas is not possible without making a model including concentrations and
reaction rates of all the di�erent molecules in the dissociating gas mixture inside
a GCR, which is beyond the scope of this research. Since resulting changes in
the fuel mixture will cause concentration di�erences in the opposite direction,
the error made in this assumption is expected to be small.

There is also assumed to be no fuel �ow through the cylinder and the pressure
is assumed uniform, so the fuel is considered to be stationary. This signi�cantly
simpli�es the calculations, since there will only be di�usive elements in the
transport equations (no convective transport). Including axial �ow or radial
pressure gradients (needed for both transient calculations and a more realistic
steady state operational core model with axial fuel �ow) was expected to be too
much work to �t inside the timescale of this project. This decision means only
steady state solutions can be calculated.

Although the resulting temperature and density pro�les will not give a real-
istic description of a GCR core during operation, approximate guesses for the
temperature and density pro�les in an operating GCR core can still be investi-
gated, as well as the e�ect of fuel dissociation on these pro�les. Also the model
will help to gain a fundamental understanding of the heat transfer in a GCR.

3.2 The Heat Transfer Equation

The heat transfer equation, in the absence of �ow, dissipation due to internal
friction and pressure gradients, can be written as [Rohsenow,1973]

ρcp
∂T

∂t
= Q+∇ · λ∇T −∇ · ~qr (3.1)

where ρ is the density of the medium, cp is the heat capacity, T is the tempera-
ture, λ is the thermal conductivity, Q is the heat production or power density,
and ~qr is the radiative heat �ux.

The radiative heat transfer was modelled using the Rosseland di�usion ap-
proximation [Modest,1993]. It is valid when the mean-free-path of photons is
small compared to the geometry. In this model, the radiative heat �ux ~qr is
described as a result from the di�usion of the radiation density u according to

~qr = −Dr∇u (3.2)

with the radiative density u given by

u =
4
c
σSBT

4 (3.3)

with c the speed of light and σSB the Stefan-Boltzman constant. The radiative
di�usion coe�cient Dr can be written as

Dr = 1
3clph (3.4)
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with lph the photon mean-free-path, which can be calculated by

lph =
1

nσph
(3.5)

where n is the molecular density of the gas and σph is the microscopic photon
collision cross section. By combining equations 3.2 to 3.5 the radiative heat �ux
can be written as a di�usion e�ect

~qr = −1
3

c

nσph
∇4
c
σSBT

4 = −16
3
σSB
nσph

T 3∇T = −λr∇T (3.6)

with λr the radiative thermal conductivity given by

λr =
16
3
σSB
nσph

T 3 (3.7)

In the rest of this thesis, the thermal conductivity of the UCF gas, λ in
equation 3.1, will be called the kinetic thermal conductivity λkin, as in Klein
[1987], to distinguish it from the radiative thermal conductivity, and is described
in paragraph 3.3.3. The kinetic thermal conductivity can be combined with the
radiative thermal conductivity into a total thermal conductivity λtot as

λtot = λr + λkin (3.8)

The particle density of the fuel gas n is assumed to follow the ideal gas law,
and is calculated by

n =
p

kT
(3.9)

with k the Boltzmann constant and p the pressure in the reactor core. n and
T are functions of the position inside the core. As the ideal gas law must
hold at every location, the pressure, which is constant throughout the core,
must satisfy the ideal gas law at every location. As explained in section 3.3.1,
the dissociation function g(p, T ) is de�ned as the relation between the original
number of molecules N0 and the actual number of molecules N . By dividing by
volume, the dissociation function can be written as

g =
n

n0
(3.10)

with n0 the local molecular density in the case there would be no dissociation.
The total number of original molecules N0 in the system must be equal to

N0 =
ˆ
V

n0dV =
ˆ
V

p

kTg
dV =

p

k

ˆ
V

1
Tg

dV (3.11)

where we have used equations 3.9 and 3.10. This can be rearranged to get an
expression for the pressure

p =
N0k´

V
1
TgdV

(3.12)

given an initial number of undissociated molecules N0 in the system.
In our GCR model the power density Q is only due to �ssion and is described

by
Q = fρU (3.13)
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where f is the speci�c power density as de�ned in equation 2.7, and ρU is the
uranium density inside the core. The total thermal power P generated inside
the core is given by

P =
ˆ
V

QdV =
ˆ
V

fρUdV (3.14)

and the speci�c power f was scaled such that equation 3.14 was satis�ed.
ρU can be calculated from the particle density n, using the assumption the

atom ratios of the fuel mixture stay equal throughout the entire reactor

ρU = nUmU = n0
fU

fU + fC
mU =

n

g

fU
fU + fC

mU (3.15)

with nU the uranium atom density, mU the atomic mass of uranium, depending
on enrichment, and fU

fU +fC
is the number of uranium atoms per undissociated

molecule in the fuel mixture.
Combining equations 3.1, 3.6, 3.8 and 3.13 results in the following form of

the heat transfer equation

ρcp
∂T

∂t
= fρU +∇ · λtot∇T (3.16)

which is used to describe the heat transfer in the fuel gas in our heat transfer
code.

Equation 3.16 was solved with boundary conditions of

r = 0 → ∇T = 0 (3.17)

r = Rc → T = Twall (3.18)

where r = 0 is at the centre of the core, and r = Rc at the interface with
the graphite re�ector, with Twall = 2000 K the inner wall temperature of the
graphite re�ector.

The temperature pro�le in the graphite re�ector was calculated at steady
state, using the following form of the heat transfer equation

~q = λgraph∇T (3.19)

with λgraph the thermal conductivity of the graphite re�ector, and ~q the heat
�ux through the graphite re�ector. Boundary conditions were an inner wall
temperature of T = Twall at r = Rc and a heat �ux of ~q · n̂ = P

A with A the
total area of the graphite cylinder perpendicular to the heat �ux.

3.3 Thermophysical Properties of the UCF Gas

The fuel in the GCR core model consisted of a mixture of UF4, UF5 and CF4

molecules, with atom ratios for U:C:F of 0.70 : 0.18 : 4.00. This mixture is, at
2000 K and 25 bar, in chemical equilibrium with a graphite wall; the re�ector.
Di�erent wall temperatures or gas pressures will cause corrosion or deposition
of carbon at the re�ector wall.

At high temperatures (starting at ∼ 2500 K), the larger �uoride molecules
fall apart and dissociate into smaller molecules, creating a mixture of UmFn,
CmFn, U, C and Fn particles. At even higher temperatures, starting around
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6000 K, the atoms start to ionize, resulting in 5-10% (depending on pressure)
of the particles being ionized at 10000 K [Klein,1991a]. At higher pressures
dissociation and ionization start at higher temperatures. The various (thermo)
physical properties of the UCF gas mixture at temperatures of 2000 - 10000 K
and pressures of 1 - 100 bar were investigated by Boersma-Klein and Kistemaker
[Klein,1987, Klein,1989, Klein,1991a, Klein,1991b]. The results of their research
were used to evaluate the di�erent properties of the UCF gas in our model. In
the next paragraphs the modelling of these properties is detailed.

3.3.1 Dissociation Function

As mentioned above, the large molecules of the UCF gas mixture dissociate
at higher temperatures into smaller molecules. A dissociation function g (p, T )
can be de�ned as the relation between the original number of molecules N0, at
reference pressure p0 = 1 bar and temperature T0 = 2000 K, and the number of
molecules at the current pressure and temperature N (p, T ).

g (p, T ) =
N (p, T )
N0

(3.20)

Assuming all seperate molecules still follow the ideal gas law

pV = NRT (3.21)

where R is the universal gas constant and V is the volume, we can combine equa-
tion 3.21 with equation 3.20 to �nd a relation for g as a function of temperature
and pressure.

pV = N (p, T )RT = gN0RT → (3.22)

g (p, T ) =
pV

N0RT
(3.23)

In Klein [1991a] a numerical equation of state is derived for the UCF gas
mixture, giving a relation between its pressure, temperature and volume. The
relationship between the pressure and the volume of an initial amount of N0 =
0.876 moles of UCF gas is given as

pbarV
−a
l = 10b (3.24)

for the pressure pbar in bar and the volume Vl in liters. a and b are functions of
T . After rewriting 3.24 to

V = Vl · 10−3 = pbar
1
a · 10−

b
a · 10−3 (3.25)

we can substitute V in equation 3.23 to get

g (p, T ) =
p · pbar

1
a · 10−

b
a · 10−3

0.876 ·R · T
(3.26)

an equation for the dissociation function g as a function of p and T . For a (T )
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Figure 3.1: Plots of the coe�cients a(T ) and b(T ) using equations 3.27 - 3.30.
The dots are data points given in Klein.

and b (T ), the following equations were given

For 2000 < T < 4200

a(T ) =− 3.576 + 6.69339 · T ′ − 6.452637 · T ′2

+ 2.801388 · T ′3 − 0.5611048 · T ′4 + 0.042220499 · T ′5 (3.27)

b(T ) =0.0287 + 0.4469 · T ′ + 1.925646 · T ′2

− 1.3965195 · T ′3 + 0.35629045 · T ′4 − 0.03104086 · T ′5 (3.28)

For 4200 < T < 10000

a(T ) =2.1393− 3.19189 · T ′ + 1.169843 · T ′2

− 0.19514 · T ′3 + 0.0151843 · T ′4 − 4.48793× 10−4 · T ′5 (3.29)

b(T ) =− 3.17545 + 5.66073 · T ′ − 2.067737 · T ′2

+ 0.3552273 · T ′3 − 0.02841493 · T ′4 + 8.58538× 10−4 · T ′5 (3.30)

with T ′ = T×10−3. See �gure 3.1 for plots of a(T ) and b(T ) versus the UCF-gas
temperature.

In �gure 3.2 the dissociation function g is plotted for various pressures in
the temperature range 2000-10000 K. The dots are data points from table 3 in
Klein [1991a], the lines are plotted using function 3.26 and values of a and b
from equations 3.27 - 3.30. As can be seen, the functions for a(T ), and g(p, T )
sometimes deviate from the exact data. When comparing the function for a(T )
with a plot in Klein, it was concluded a mistake was made in the function given
for a(T ). Unfortunately, not enough data points were available to �t a new
function for a(T ) to.

3.3.2 Density

For most gases, the density at constant pressure scales with the inverse of the
temperature T , according to the ideal gas law. In the GCR core however, the
UCF gas will dissociate at higher temperatures and the large molecules will fall
apart into multiple smaller, lighter molecules. The particle density n will still
follow the ideal gas law, see equation 3.9, but the gas density ρ will decrease
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Figure 3.2: Dissociation function g(p, T ) for various pressures as a function of
temperature. The dots are data points from Klein [1991a]. The continuous lines
are plotted using equation 3.26.

proportionally to the level of dissociation. Since we assume the atomic ratios of
the fuel gas do not change, the density ρ can be calculated using equations 3.9
and 3.10 by

ρ (p, T ) = n0W =
p

kT

W0

g
(3.31)

with W0 the average weight per molecule of the original, undissociated mixture.
Since g becomes larger at higher temperature and lower pressure, the density

will no longer scale linear with pressure or inversely linear with temperature,
but will react more extremely. See �gure 3.3 for a plot of the UCF gas density
ρ for pressures of 1 and 100 bar, together with the particle density n, which
follows the ideal gas law.

3.3.3 Kinetic Thermal Conductivity

The 'regular' or kinetic thermal conductivity λkin is normally only due to dif-
fusion. But in the case of a dissociating mixture, temperature gradients will
cause concentration gradients of the di�erent components of the mixture, which
in turn will cause di�usion of the seperate components. To account for these
e�ects, the e�ective kinetic thermal conductivity λkin is composed of three parts

λkin = λtr + λint + λreact (3.32)

in which λtr is the translational thermal conductivity and represents the kinetic
energy �ux, λint is the internal thermal conductivity, and λreact is the reactant
thermal conductivity [Klein,1991b]. The last term is due to concentration gra-
dients arising from di�erent dissociation levels due to a temperature gradient.
This will induce the movement of dissociated molecules from high temperatures
towards regions of lower temperatures, where they recombine (and the other
way around). The recombination and dissociation reactions deposit or extract
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Figure 3.3: UCF gas density ρ as a function of temperature for a pressure of 1
and 100 bar. Also given is the particle density n, following the ideal gas law.
Functions are normalized to a density of 1 at T = 2000 K.

a relatively large amount of energy to or from the gas, resulting in large values
for λkin at p, T values at which the dissociation function g has a large gradient.
At these p, T values small changes in T will result in large changes in the chem-
ical composition of the gas, and in relatively large concentration gradients. See
�gure 3.4.

Values for λkin were evaluated for a continuous pressure interval from 1-100
bar from the two plots in �gure 3.4 of λkin at pressures of 0.1 and 10 MPa,
reproduced from Klein. First, data points were evaluated from the �gures, and
λkin values could be evaluated for pressures of 0.1 and 10 MPa between 2000
and 6000 K, using linear interpolation between these points. For p = 0.1 MPa
λkin was extrapolated to a value of 1800 K, assuming λreact would go to zero
and λint and λtr would stay the same. For temperatures above 6000 K, and for
p = 10 MPa for T < 2000 K, the thermal conductivity of 6000 K or 2000 K was
used.

To calculate values of λkin at pressures between 0.1 and 10 MPa, the values
could not be directly interpolated using λkin(p = 0.1, T ) and λkin(p = 10, T ).
This would not take into account the shift in the maxima and minima with
changing pressures. When comparing the �gures for p = 0.1 and p = 10 MPa,
the �gure for λkin,10 looks like λkin,0.1, but shifted over temperature, stretched
out a bit, and with lower peaks. In other words, with rising pressure the graph
for λkin is shifted and stretched, and the maximum values are lowered. To ac-
count for these e�ects, a relationship between the graphs of λkin,0.1 and λkin,10

was sought by assuming that a point T0.1 on the graph for p = 0.1 MPa corre-
sponds to a point T10 = A+BT0.1 on the graph for p = 10 MPa. By looking at
the location of the maxima and minima of the graphs, the following relationship
was found.

T10 = (T0.1 − 1500)
22
13

+ 1500 (3.33)

It was assumed that the temperature for which we wanted to evaluate λkin
should lie on a line between these two temperatures, interpolating based on the
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Figure 3.4: Kinetic thermal conductivty components at p = 0.1 MPa and p = 10
MPa from Klein. λeff is the total kinetic thermal conductivity λkin.

pressure. In other words, the temperature we are interested in, T , must lie in
between T0.1 and T10, with linear interpolation on log(p)

T = aT0.1 + (1− a)T10 (3.34)

a =
1
2
− 1

2
log (p) (3.35)

with p in MPa. Using 3.33 to eliminate either T0.1 or T10 from 3.34, equations
were found for the temperature corresponding to T on the graphs for p = 0.1
and p = 10 MPa

T0.1 =
13T + 13500 (1− a)

22− 9a
(3.36)

T10 =
22T − 13500a

22− 9a
(3.37)

and the thermal conductivity for an arbitrary temperature T and pressure p
could be calculated by

λkin(p, T ) = aλ0.1(T0.1) + (1− a)λ10(T10) (3.38)

where λ0.1 and λ0.1 are the thermal conductivities at p = 0.1 and 10 MPa.
The thermal conductivity, calculated using the method described above, is

plotted for various pressures in �gure 3.5.

3.3.4 Heat Capacity

To be able to evaluate the heat capacity cp(p, T ) of the UCF gas mixture for all
pressures between 0.1 and 10 MPa and temperatures from 2000 to 10000 K, the
same method was used as for the thermal conductivity. From plots of cp(p, T )
for p = 0.1, 2.5 and 10 MPa [Klein,1991a] points were evaluated and functions
for cp could be constructed using linear interpolation (see Figures 3.6, 3.7 and
3.8).
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Figure 3.5: Kinetic thermal conductivity λkin, calculated for pressures of 0.1,
1, 2.5 and 10 MPa.
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Figure 3.6: Heat capacity of the UCF fuel gas at a pressure of 0.1 MPa from
Klein, with right the evaluated data points and linear interpolated function.
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Figure 3.7: Heat capacity of the UCF fuel gas at a pressure of 2.5 MPa from
Klein, with right the evaluated data points and linear interpolated function.
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Figure 3.8: Heat capacity of the UCF fuel gas at a pressure of 10 MPa from
Klein, with right the evaluated data points and linear interpolated function.
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Figure 3.9: Heat capacity cp of the UCF fuel gas evaluated at di�erent pressures,
using interpolation based on the shifting and stretching of the functions with
rising pressure.

As with the thermal conductivity, an interpolation scheme based on the
shifting and stretching of the peaks and the local minimum was used. At tem-
peratures above 10000 K or below 2000 K, the cp value at 10000 K or 2000 K
was used. Results of cp evaluated at various pressures using this method are
plotted in �gure 3.9.

Since the heat transfer equation, equation 3.16, is only solved for steady
state, cp(p, T ) is not used. At the start of this project it was not clear only steady
state solution would be sought during this research, thus values for cp(p, T ) were
evaluated and included in the code. The results are given here for future use,
as they are needed for time-dependent calculations, such as transients.

3.3.5 Photon Cross Section and Mean-Free-Path

In the Rosseland di�usion approximation, the radiative thermal conductivity λr
depends on σph, the microscopic photon cross section, a property of the gas, see
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equation 3.7. For di�erent molecules, even consisting of the same atoms, this
cross section can di�er strongly. Few data is available on photon cross sections
for UFn gases, especially at high temperatures. Data for a few of the compo-
nents (UF4, U and F) of the UCF gas mixture was available from Watanabe
[1993], which also showed some temperature dependence of the various cross
sections. In van Dam [1983] and Kuijper [1992] a constant photon cross section
per molecule for the UCF gas mixture of σph = 2.5×10−21 m2 was used. Given
the many unknowns, the value used in previous work on the UCF gas mixture
of σph = 2.5 × 10−21 m2 was used, with the sidenote that it might di�er for
certain p, T values by as much as a factor 10.

The Rosseland di�usion model for radiative heat transfer is valid when the
photon mean-free-path length is much smaller than the geometry, and when
more than a photon mean-free-path away from a wall. Using case 1 from table
2.1 as a reference, the UCF gas density was nc = 3.18 × 10−5 atoms/barn-cm.
With a gas mixture consisting of 70% UF4 and 30% CF4, this translates to
6.31 × 1024 molecules/m3 (without dissociation), resulting in a photon mean-
free-path length lph of

lph =
1

nσph
=

1
6.31× 1024 · 2.5× 10−21

= 6.3× 10−5 m (3.39)

multiple orders smaller than the radius of the cylinder of 1.18 m, and even
smaller than the smallest volume cell used in our numerical solver. For calcula-
tions with a lower enrichment, the critical density of the gas is even higher, and
the mean-free-path length is lower. Thus it was concluded the Rosseland model
for radiative heat transfer is valid for all our calculations.

3.4 Numerical Solution Method

To calculate the temperature distribution inside a GCR, the heat transfer equa-
tion derived in section 3.2, equation 3.16, was discretized using a �nite volume
method over a non-uniform grid. The resulting linear system was solved using a
linear solver. Since the solver calculated the temperature pro�le, but most of the
physical properties also depend on temperature, the temperature distribution
was solved in several iterations, each time using the most recent temperature
�eld to evaluate the physical properties inside the system.

Discretization

The one-dimensional geometry was discretized over non-uniform volume cells
with cell with ∆ri for cell i, width i = 1 the index of the cell closest to the
centre of the core. The distribution of the volume cell widths is detail in section
3.5. The location of the cell centres and borders are indicated in �gure 3.10.

Equation 3.16 was discretized for steady state (∂T∂t = 0) resulting in

0 = VifiρU,i −Ai− 1
2
λi− 1

2

Ti − Ti−1
1
2∆ri + 1

2∆ri−1

+Ai+ 1
2
λi+ 1

2

Ti+1 − Ti
1
2∆ri + 1

2∆ri+1

(3.40)
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Figure 3.10: Locations of volume cell borders and centres.

where Vi is the volume of cell i, Ai+ 1
2
is the area of the interface between cell i

and i+ 1 and λi+ 1
2
is the thermal conductivity between cell i and i+ 1.

λi+ 1
2
was calculated using the harmonic mean of the heat transfers in cell i

and i+ 1, weighted with their cell widths ∆ri, resulting in

λi+ 1
2

=
∆ri + ∆ri+1

∆ri

λi
+ ∆ri+1

λi+1

(3.41)

with λi the total thermal conductivity of the fuel gas in cell i.
For cylindrical coordinates, with ∆ri the width of cell i, the following equa-

tions can be derived for Vi and Ai+ 1
2

Vi = πr2
i+ 1

2
− πr2

i− 1
2

(3.42)

Ai+ 1
2

= 2πri+ 1
2

(3.43)

where ri+ 1
2
is the r-coordinate of the boundary between cell i and i+ 1.

Equation 3.40 can be rearranged in a linear set of equations of the form

VifiρU,i =
( 2Ai− 1

2
λi− 1

2

∆ri + ∆ri−1
+

2Ai+ 1
2
λi+ 1

2

∆ri + ∆ri+1

)
Ti

−
( 2Ai− 1

2
λi− 1

2

∆ri + ∆ri−1

)
Ti−1 −

( 2Ai+ 1
2
λi+ 1

2

∆ri + ∆ri+1

)
Ti+1 (3.44)

for i = 2 to n− 1. Using the boundary conditions in equations 3.17 and 3.18 at
the centre of the core and at the wall, the heat transfer equations for the �rst
volume cell at i = 1 and last volume cell at i = n become

V1f1ρU,1 =
2A1+ 1

2
λ1+ 1

2

∆r1 + ∆r2
T1 −

2A1+ 1
2
λ1+ 1

2

∆r1 + ∆r2
T2 (3.45)

VnfnρU,n =
( 2An− 1

2
λn− 1

2

∆rn + ∆rn−1
+

2An+ 1
2
λwall

∆rn

)
Tn

−
( 2An− 1

2
λn− 1

2

∆rn + ∆rn−1

)
Tn−1 −

(2An+ 1
2
λwall

∆rn

)
Twall (3.46)

where λwall is the thermal conductivity of the fuel gas evaluated at T = Twall.
The pressure p was calculated using a discretized version of equation 3.12,

resulting in

p =
N0k∑
i
Vi

Tigi

(3.47)
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Algorithm 1 Layout of the FORTRAN heat transfer program.
Input Twall, nc, P

DO

Calculate thermophysical gas properties

Check for convergence

Calculate new T

LOOP

Output T(r), ρ(r), p

Program overview

The discretized equations were implemented in a FORTRAN program to cal-
culate the radial temperature pro�le T (r), density pro�le ρ(r) and pressure p
inside the GCR core. As input the code needs the graphite wall temperature
Twall, the thermal power P , and the critical density nc from which the total
number of molecules inside the core can be calculated. The temperature �eld is
calculated inside a loop, since almost all thermophysical properties in the heat
transfer equation depend on both pressure and temperature. A program layout
is depicted in algorithm 1.

Equations 3.40, 3.45 and 3.46 form a set of linear equations and can be
written into a matrix equation of the form

AT = B (3.48)

with A an n×n diagonal matrix and T and B vectors of length n. This matrix
equation is solved using a linear solver routine (dgtsv) from the lapack library
[Anderson,1999].

To solve the temperature distribution, several iterations are performed. The
program starts with an initial temperature and pressure guess (T0 = Twall
and p0 = 1 bar). In each iteration, �rst the dissociation function g(pold, Told)
is calculated for each cell, using the old pressure and temperature, then the
pressure p(g, Told) is calculated using the new dissociation function and old
temperatures. Next all other thermophysical gas properties are evaluated using
the old temperature �eld and the new dissociation and pressure. These are used
to build the matix A and vector B in equation 3.48. The new temperature �eld
replaces the old one and is used as input for the next loop, until the convergence
criterium is met.

To check for convergence, after recalculating all variables, just before running
the solver routine, it is checked how well the old temperature �eld satis�es the
new matrix equation 3.48. When, for all i, the following condition is satis�ed∣∣∣∣∣

(
ATt−1

)
i
−Bi

(ATt−1)i

∣∣∣∣∣ < ε (3.49)

with ε = 10−7 and Tt−1 the temperature �eld calculated in the previous iter-
ation, the calculation is assumed to have converged, and the iteration loop is
terminated.
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Figure 3.11: Distribution of the course volume zones in GCR cases 2 and 3
in the core (r < 150 cm) and the re�ector (r > 150 cm). Depicted are the
boundaries of the course volume zones.

3.5 Volume Cell Distribution

The temperature gradient in a GCR is near the re�ector wall several orders
larger than in the centre of the core, due to the lower thermal conductivity at
the low temperatures near the wall. To be able to calculate the temperature �eld
with su�cient precision, but keep the total number of volume cells manageable,
a non-uniform grid is used. We also wanted to use the heat transfer code to do
coupled calculations together with MCNP, but in MCNP not as many zones are
needed as in the heat transfer code. Thus a non-uniform grid was de�ned with
10 zones in the fuel gas region and 5 zones in the re�ector region, used in the
MCNP calculations. In the heat transfer calculations, each zone was split up
into m smaller cells with uniform width.

The distribution of the course volume zones is de�ned using a constant ratio
between the widths of adjacent volume zones, such that each zone closer to the
wall is 1

a times the width of the previous zone. The zone widths ∆Ri were
calculated using

∆Ri =
a(n−i)Rc∑j=n
j=1 a

(j−1)

with i counting from the centre of the core, Rc the radius of the core and n the
number of course zones. A ratio of a = 1.75 was chosen, resulting in a course
volume zone distribution depicted in �gure 3.11.

As mentioned above, in the heat transfer code each course zone is split up in
m �ne cells of uniform width. Cell 1 to m had width ∆r1..m = ∆R1/m, the next
m cells had width ∆rm+1..2m = ∆R2/m, etc., with m equal for all course zones.
To determine how many �ne cellsm are needed per course zone, the temperature
pro�le of core case 2, see table 2.1, with thermal power set to P = 0.1 MW,
was calculated using di�erent numbers of m, and the resulting temperature
pro�les were compared. The temperature di�erence ∆T between calculations
using m = 90, assuming to be su�ciently accurate, and using m = 10 or m = 2
�ne cells per zone are plotted in �gure 3.12. The di�erence between using 10
or 90 �ne cells per zone is less than 1 K at all position, acceptable compared to
temperature di�erences in the thousands of Kelvin. The deviation when using
m = 2 is over ten times as large, up to 10 K. Thus m = 10 is used in the core for
temperature calculations. Since temperature gradients are much smaller in the
re�ector, the error in the temperature is less sensitive to the volume cell width,
and in the re�ector region m = 5 is used.
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Figure 3.12: Temperature di�erence ∆T compared to m = 90 for calculations
using m = 2 and m = 10 �ne cells per zone.

3.6 Code Checks

To check if the calculation of the temperature �eld was internally consistent,
several checks were performed on the calculated heat �ows. To perform these
checks, the heat �ows out of each cell were used. The heat �ows towards the
left qleft,i and towards the right qright,i are calculated for each cell using

qleft,i =
( 2Ai− 1

2
λi− 1

2

∆ri + ∆ri−1

)
(Ti − Ti−1) (3.50)

qright,i =
( 2Ai+ 1

2
λi+ 1

2

∆ri + ∆ri+1

)
(Ti − Ti+1) (3.51)

First it was checked whether the heat balance for each cell was consistent. In
steady state, the heat �ow out of each cell must be equal to the heat production
in that cell. This was done with the following equation

VifiρU,i = qright,i + qleft,i (3.52)

Next it was checked that the heat �ow out of cell i to i + 1 was equal to
the heat �ow into cell i + 1 from cell i, in other words that the matrix A was
symmetric, using

qleft,i = −qright,i−1 (3.53)

Since the �rst condition is equal to the convergence criterion, and the second
condition follows directly from using the same variables in the code to calculate
the two heat �ows, it was no surprise these conditions were met.

The third check was on the total heat �owing out of each cell in the direction
of the wall, qleft,i. At steady state, for each cell this heat �ow must equal the
heat produced in the cell itself, plus the sum of the heat produced in all previous
cells

qleft,i =
j=i∑
j=1

VjfjρU,j (3.54)
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For the last cell, i = n, the total heat �owing out to the re�ector must of course
equal the thermal power P . Equation 3.54 was also satis�ed for all fuel cells.

3.7 Benchmark Calculation

The heat transfer model was validated by duplicating calculations done by van
Dam and Hoogenboom [1983] on a spherical GCR. Although the rest of this
thesis covers cylindrical models, in van Dam and Hoogenboom heat transfer
calculations were only performed on a cylindrical one-dimensional core model,
which is why this benchmark covers a spherical one-dimensional GCR core.

In van Dam and Hoogenboom dissociation was ignored and only radiative
heat transfer was included. The kinetic heat transfer was assumed to be negligi-
ble compared to the radiative heat transfer. To compare the results in van Dam
and Hoogenboom with our model, the dissociation function was set to unity
(g = 1) and the kinetic heat transfer to zero (λkin = 0) for all p, T . The result-
ing pressure p, the maximum temperature Tmax (at r = 0), and the 'e�ective

temperature' T̃ were calculated. T̃ was de�ned in van Dam and Hoogenboom
as the hypothetical uniform core temperature, which would give the correct
pressure for a given total number of molecules Ntot, satisfying

p =
Ntot
V

kT̃ (3.55)

As input data were used, a core radius of Rc = 2 m, 50% enriched ura-
nium and a critical inventory of 58.1 kg Uranium resulting in a total number of
molecules of Ntot = 2.113 × 1026 molecules. The gas mixture consisted of 70%
UF4 and 30% CF4 (molar percentage). The temperature of the inner re�ector
wall was Twall = 2500 K. The spherical geometry of the GCR model changes
the values for V and A to

Vi =
4
3
π
(
r3
i+ 1

2
− r3

i− 1
2

)
(3.56)

Ai+ 1
2

= 4πr2
i+ 1

2
(3.57)

Temperature pro�les were calculated for various values of the reactor power
P . The resulting pressure p, maximum temperature T0, and e�ective tempera-
ture T̃ were compared with values from van Dam and Hoogenboom. Results are
in table 3.1. The calculated values are in excellent agreement with the reference
values.

Next, for P = 0.5 MW, a new calculation was performed, but now including
dissociation and kinetic heat transfer. This was compared with results from
the previous calculations, without dissociation and kinetic heat transfer, to in-
vestigate the importance of these e�ects. The resulting density distributions
(both particle and uranium atom density per m3) and thermal conductivities
are plotted in �gure 3.13 for both calculations. The calculated temperature
distributions are plotted in �gure 3.14. A comparison of the maximum tem-
perature Tmax, e�ective temperature T̃ , average fuel mass tempearture T̄m and
pressure p is given in table 3.2.

There is almost no di�erence in the maximum temperature Tmax at r = 0.
The pressure however is more than a factor two higher when including dissoci-
ation and λkin. This is due to dissociation e�ects, resulting in an increase in
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Table 3.1: Comparison of maximum fuel temperature Tmax, e�ective temper-
ature T̃ , and core pressure p calculated by the heat transfer code (-cal) with
values from van Dam and Hoogenboom [1983].

P Tmax Tmax-cal T̃ T̃ -cal p p-cal
[MW] [K] [K] [K] [K] [bar] [bar]
0.1 4440 4445 3580 3604 3.12 3.14
0.5 6450 6447 5020 5025 4.38 4.38
2.0 9050 9057 6980 6977 6.08 6.07
10.0 13510 13505 10370 10365 9.03 9.03
50.0 20190 20200 15480 15498 13.5 13.5
100.0 24010 24021 18410 18440 16.0 16.1

Table 3.2: Temperatures (maximum Tmax, e�ective T̃ and mass averaged T̄m)
and pressure p for a spherical GCR ignoring dissociation g and kinetic heat
transfer λkin (as in van Dam and Hoogenboom), and when including dissociation
and kinetic heat transfer in the calculations.

g = 1 g = f(p, T )
Variable λkin = 0 λkin = f(p, T )
Tn [K] 6448 6447

T̃ [K] 5027 4897
T̄m [K] 5027 4482
p [bar] 4.38 10.62

the total number of particles in the GCR core. The 'e�ective' temperature T̃ ,
as de�ned in equation 3.55, has no real meaning when dissociation is included,
but the mass averaged fuel temperature T̄m does, as it describes the neutronics
of the fuel. T̄m is signi�cantly lower in the case including dissociation, due to
a more extreme density redistribution towards the wall, together with a lower
temperature in this region due to a higher λtot with the inclusion of λkin. This
can also be seen from �gure 3.13. The molecular density n is a constant factor
higher throughout the core due to dissociation. However, the uranium atom
density nU , proportional to the actual mass density ρ of the fuel, is higher near
the wall, and a lot lower near the centre. This results in more mass in the
'colder' region near the wall, and thus a lower mass averaged temperature T̄m.

When examining the heat transfer for the two cases, we see a signi�cantly
lower radiative thermal conductivity λr due to the higher particle density n
when dissociation is included. However, close to the wall the contribution of
the kinetic thermal conductivity λkin becomes more important and causes the
total conductivity to be higher than in the case where λkin is ignored. This
causes temperatures near the wall to be lower (see �gure 3.14), but when coming
closer to the centre, the lower radiative thermal conductivity causes a faster
rise of the temperature towards the centre resulting in almost equal maximum
temperatures Tmax. From the plot of the thermal conductivities one would
perhaps expect a much higher temperature near the centre for the case including
dissociation and λkin, because λtot is only in a small region slightly higher. But
this small region is also the region were λtot is very low, and thus the most
important for the heat transfer towards the wall away from the central region.
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Algorithm 2 Adjusted heat transfer program, using the average fuel tem-
perature Tf as input, calculating besides the radial temperature and density
distributions also the thermal power P .
Input Tf, Twall, nc,

DO

Calculate T(r), ρ(r) (see Algoritm 1)

Check for convergence

Adjust P

LOOP

Output T(r), ρ(r), p, P

From the benchmark calculations it was concluded that the heat transfer
model gave results in excellent agreement with earlier calculations in van Dam
and Hoogenboom [1983], giving con�dence in the validity of the heat transfer
model. When comparing calculations with and without dissociation and kinetic
heat transfer, it is concluded that both dissociation and the kinetic heat transfer
play an important role in the heat transfer inside a GCR. The inclusion of
dissociation has a great in�uence on the core pressure p and on the density
distribution of the fuel inside the core. The kinetic thermal conductivity has
a signi�cant e�ect on the thermal conductivity near the wall where the fuel
temperature is low and radiative heat transfer becomes less e�ective. Together
with the fuel redistribution due to dissociation λkin signi�cantly lowers the mass
average fuel temperature inside the core, for an equal thermal load to the wall.

3.8 Heat Transfer Calculations

Once the heat transfer model was tested and validated, it could be used to
calculate the radial temperature T (r) and density distribution ρ(r) for each of
the three cylindrical core cases from table 2.1. These cases were de�ned by their
average fuel temperature Tf and critical density nc, instead of their power P .
Since the e�ect of changing the fuel or density distribution in a GCR is expected
to have only minor e�ects on the criticality, we assumed any temperature and
density pro�le which has average fuel temperature Tf and average density nc will
satisfy a critical reactor. To calculate these pro�les, the heat transfer program
was adapted to use the average fuel temperature Tf as input parameter instead
of the thermal power P .

The heat transfer code was adjusted to seek the thermal power P for which
the resulting temperature T (r) and density pro�le ρ(r) would result in a mass
averaged fuel temperature T̄m equal to Tf , using Tf , Twall and nc as input
parameters. This was done by adding a second loop around the loop from algo-
rithm 1, in which the power P was adjusted and a new temperature distribution
calculated until the di�erence between the calculated T̄m and input value Tf ,∣∣T̄m − Tf ∣∣, was less than 0.5 K, see algorithm 2. Besides the radial temperature
and density distributions and thermal reactor power P , also the core pressure p
was calculated.

For each case, input values for the critical density nc, the average fuel tem-
perature Tf and the core radius Rc were taken from table 2.1 and 2.2. The
input value for the inner re�ector wall temperature was Tw = 2000 K and a �at
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Table 3.3: For each case the critical fuel density nc and average fuel temperature
Tf are given which were used as input, together with the calculated thermal
power P , pressure p and maximum fuel temperature Tmax.

nc Tf P p Tmax
[atoms/b-cm] [K] [kW] [bar] [K]

Case 1 3.18× 10−5 10000 962.2 48.98 14624
Case 2 2.833× 10−5 4400 104.4 8.477 6048
Case 3 4.37× 10−4 4400 40.5 96.84 6369

speci�c power density f(r) = 1 was assumed. A comparison with calculations
using more detailed neutronics input can be found in chapter 4. The calculated
temperature T (r) and density ρ(r) distributions for each case are plotted in
�gure 3.15. The resulting thermal power P , core pressure p and maximum fuel
temperature Tmax in the centre of the core are listed in table 3.3.

When comparing the core pressures in table 3.3 with those in 2.2, the calcu-
lated pressure is two times higher for case 3, three times for case 2 and even �ve
times higher for case 1. These di�erences result from the fuel gas dissociation,
which is more pronounced at lower pressure (case 2) and higher temperature
(case 1), see �gure 3.2. It is also noted that the core pressure for case 3 is nearly
100 bars, the maximum pressure for which the thermophysical data used in the
heat transfer model is still valid.

The di�erences in the thermal powers P between the three cases is very
large. P represents the amount of heat leaving the reactor through the graphite
re�ector, and depends on the temperature gradient and thermal conductivity
λtot near the wall. As the temperatures are much higher in case 1, so is the
temperature gradient, explaining the much higher P . λkin is lower for higher
pressures, and as λkin > λr near the wall, so is λtot near the wall, which explains
the di�erence in P between case 2 and 3. Due to the lower fuel density in case 2,
λr is higher than in case 3. This results in a �atter temperature distribution in
the central part of the core, where the radiative heat transfer is more important,
which is why the maximum fuel temperature Tmax is lower for case 2 than for
case 3. See also �gure 3.15.

As can be seen from �gure 3.15 all three cases have steep temperature gra-
dients near the wall, due to the lower temperatures near the wall, resulting in a
low λr. This same steep temperature gradient is the cause of the sudden increase
in the fuel gas density ρ(r) near the wall. As the temperature drops nearer to
the wall, not only does the particle density increase according to the ideal gas
law, but the fuel gas also recombines into larger, heavier molecules, resulting in
a sudden, extreme rise in density. Thus the density di�erence between the core
centre and close to the graphite wall is a factor 40 for case 1, where dissociation
is most pronounced due to the very high temperatures, and a factor 10 for cases
2 and 3, much higher than would be expected without dissociation.

Also depicted in �gure 3.15 is the temperature pro�le inside the graphite
re�ector, based on equation 3.19, and a heat �ux through the re�ector equal to
the thermal power P . As can be seen, the temperature pro�le inside the re�ector
drops o� faster for case 1 than for cases 2 and 3. This is mostly due to the
higher thermal power inside the core, requiring a larger temperature di�erence
to sustain an equal heat �ux through the re�ector, but also due to the smaller
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Figure 3.15: Calculated temperature T (r) pro�le and fuel density ρ(r) for the
three cylindrical cases describe in table 2.1.
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core size, resulting in a smaller graphite surface through which the heat �ux can
�ow. As can be seen in �gure 3.15, the average re�ector temperature was around
1900 K for cases 2 and 3, based on which the average re�ector temperature Tr
was chosen to be 1900 K for these cases, as mentioned in chapter 2.

3.9 Conclusions

A heat transfer code was developed which accurately describes the temperature
and denstity distributions inside a GCR, under the assumptions detailed in
section 3.1. The code was thoroughly tested with internal checks, and gave
results in excellent agreement with results from van Dam and Hoogenboom
[1983] in benchmark calculations in section 3.7, giving us con�dence in results
calculated with the code.

Due to the high fuel temperatures, radiative heat transfer is important in
a GCR. Radiative heat transfer can be modelled using the Rosseland di�usion
approximation, as for all critical fuel densities inside a GCR core the photon
mean-free-path length will be much smaller than the core radius. Since the
radiative thermal conductivity λr scales with T

3, λr is small near the core wall
where temperatures are low, resulting in a steep temperature gradient. Further
away from the wall, where temperature are higher, λr is large, resulting in a �at
temperature distribution in the central part of the core.

In section 3.7 a comparison of calculations with and without dissocation and
kinetic heat transfer showed both are of importance in heat transfer calculations
inside a GCR. Due to dissociation, the pressure inside a GCR will be a factor
two or more higher for moderate fuel temperatures of 4400 K than would be
expected without. For higher fuel temperatures the e�ect is even more pro-
nounced. Another e�ect of the dissociation of the fuel gas is a more extreme
density redistribution towards the wall, due to dissociation of the fuel gas in the
central region of the core.

Although the kinetic thermal conductivity λkin is smaller than λr in most
of the GCR core, near the wall λkin > λr. Thus the inclusion of λkin will cause
a signi�cant increase in λtot near the wall, lowering the temperature gradient
near the wall. Together with the extreme density redistribution towards the
wall due to dissociation, the higher thermal conductivity near the wall causes a
signi�cant decrease of the average fuel temperature when keeping the thermal
load to the wall the same. In the benchmark calculations a di�erence in the
average fuel temperature of 600 K was observed.

When examining the calculation results for the three core cases, results of
the heat transfer for core cases 2 and 3 are within limits of the core model.
However, results for case 1 are not valid as temperatures are well above 10000
K in a large region of the core, beyond the validity of the data describing the
properties of the fuel gas. Also at these temperatures signi�cant ionization of
the fuel gas will occur, causing the fuel gas to form a (partial) plasma, and the
ideal gas law is no longer valid under these conditions.

From results for cases 2 and 3 it can be concluded, that, for an equal average
fuel temperature, a higher fuel density will result in a lower thermal load to
the wall, as radiative and kinetic heat transfer become less e�ective at higher
pressures. For case 3, using low enriched fuel and having a high density, for an
average fuel temperature of 4400 K, the thermal load to the wall was only 40 kW
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per meter length of the cylinder. For a cylinder with a diameter of 1.5 meters
this translates to a �ux to the graphite wall of only 5.7 kW/m2. However, the
higher density due to the low enriched fuel of case 3 results in a pressure of nearly
100 bars at a fuel temperature of 4400 K, limiting the operating temperature of
the fuel gas for low enriched uranium.
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Chapter 4

Coupled Heat Transfer and

Neutronics

In most research on GCRs, either neutronics calculations are performed assum-
ing a uniform temperature and density �eld inside the core, or the heat transfer
is investigated assuming a �at neutron �ux and speci�c power density. In this
chapter the errors caused by these assumptions are investigated. E�ects of the
coupling between heat transfer and neutronics are also of interest in transient
calculations, in which the e�ects of changing temperature or density pro�les is
important.

The same three GCR core cases as in table 2.1 were investigated. First, the
coupling of the heat tranfer code with neutronics calculations using MCNP is
explained, and how a converged solution was reached. Coupled calculations were
performed for the three core cases, and results for the speci�c power density f(r),
the heat transfer inside the core, and the multiplication factor were compared
with neutronics results using uniform temperature and density pro�les from
chapter 2, and heat transfer results using a uniform speci�c power density from
chapter 3.

4.1 Coupled Calculation

In this section it is explained how calculations with the heat transfer code were
coupled with neutronics calculations using MCNP. The goal of the coupled cal-
culations for the neutronics was to investigate the e�ect on keff and f(r) of
using calculated temperature and density pro�les T (r) and ρ(r) in the MCNP
calculations instead of assuming a uniform T and ρ, and to �nd the e�ect on
T (r), ρ(r), P , and p of using the calculated f(r) instead of assuming f(r) = 1
in the heat transfer calculations.

For precise calculations, the heat transfer code requires information about
the shape of the speci�c power density f(r) from neutronics calculations. On the
other hand, the neutronics calculations with MCNP needs information on the
fuel density and temperature distribution inside the core. To �nd a converged
solution for these pro�les, the heat transfer and neutronics calculations were
coupled in an iterative loop, see �gure 4.1. The same heat transfer code as
explained in algorithm 2 is used. As input for the coupled calculations, the
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desired average fuel temperature T̄f , the inner graphite wall temperature Twall,
the critical density nc and the re�ector bulk temperature Tr are used.

The heat transfer code uses T̄f , Twall and nc as input, together with the
newest speci�c power density f(r), to calculate a temperature and density pro-
�le, T (r) and ρ(r), together with the thermal power P and pressure p, for which
the mass average fuel temperature T̄m = T̄f .

The calculated T (r) and ρ(r) are used as input in the MCNP calculations,
averaged over the course volume zones used in MCNP, together with the bulk
re�ector temperature Tr for the re�ector temperature. See �gure 4.2 for an
example of the calculated density pro�le ρ(r) by the heat transfer code, with
its corresponding density distribution in MCNP. MCNP gives as output a new
speci�c power density pro�le f(r), which is used as input for the next heat
transfer calculation until the calculations are converged.

To check for convergence, the new speci�c power pro�le is compared with the

old f(r) and if the relative change in the speci�c power pro�le,
∣∣∣ fnew(r)−f(r)

f(r)

∣∣∣, is
less than a convergence limit ε for all volume zones, the calculation is converged.

The converged solution is used as input for a �nal, longer MCNP run, to
calculate the multiplication factor keff with large precision. This keff can be
compared with keff calculated in table 2.2 for a �at temperature and denstiy
pro�le, to estimate the e�ect of fuel and temperature redistribution inside a
GCR.

In the coupled calculation, keff = 1 was not used as convergence criteria,
as changes in keff due to changing density and temperature pro�les are very
small, and it takes a long time to calculate keff to a large precision with MCNP.
Instead, a converged solution for the speci�c density f(r) was sought, since this
can be calculated relatively fast with large enough precision. The MCNP short
run in which f(r) is calculated was 250 cycles with 16000 source particles, while
the long MCNP run to calculate keff with enough precision was 1000 cycles
with 75000 source particles, almost 20 times longer.

4.2 Coupled Calculation Results

For each case from table 2.1, the coupled heat transfer and neutronics calcula-
tions were performed. For the input values for T̄f and Tr, the fuel temperature
Tf and re�ector temperature Tr from table 2.1 were used. For nc the critical
density nc from table 2.2 was used and for the wall temperature Twall = 2000
K. For the �rst heat transfer calculation, as initial guess of the speci�c power
density, the f(r) calculated in chapter 2 was used. The calculations were con-
verged if the change in speci�c power was less than ε = 0.1%. For each case it
took only two iterations for the speci�c power density to converge. Results for
the coupled heat transfer and neutronics after convergence of the speci�c power
density are given in the sections below.

4.2.1 Speci�c Power Density

The calculated speci�c power density f(r) from the coupled calculations for each
of the three core cases is plotted in �gure 4.3. As can be seen when comparing
the plots with the speci�c power density for a uniform mass and temperature
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Figure 4.1: Flow chart of the coupled heat transfer and neutronics calculation.
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Figure 4.2: Fuel density distribution in atoms/barn-cm as calculated by the
heat transfer code and the corresponding fuel density distribution used as input
in MCNP for case 2.
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Figure 4.3: Normalized speci�c power density f(r) for each case, for the coupled
calculations. The r-coordinate of case 1 is on the top x-axis, the values on the
bottom axis refer to case 2 and 3.

distribution from �gure 2.2, the fuel density redistribution has a noticable e�ect
on the speci�c power density pro�les.

For case 1 and case 3 there is a clear drop in the speci�c power density close
to the re�ector wall compared to f(r) for uniform temperature and density
distributions. This is caused by increased absorption and scattering of neutrons
near the wall, due to the high fuel density near the wall, see �gure 3.15.

For case 2, the shape of f(r) changed slightly, but the di�erence between the
centre and next to the wall remained around 2%. Even after fuel redistribution,
the gas densities near the wall where not dense enough to have a signi�cant
impact on the speci�c power density.

When comparing the speci�c power densities for the coupled calculations in
�gure 4.3 with f(r) calculated for a uniform temperature and density in �gure
2.2, the already small di�erences between the maximum and minimum value of
f(r) are even smaller when density and temperature distributions are taken into
account. Di�erences were below 2% for all core cases, indicating a �at speci�c
power pro�le f(r) = 1 is a good approximation for all GCR cores.

4.2.2 Heat Transfer

Heat transfer calculations for the coupled calculations, using the converged spe-
ci�c power density, resulted in no noticable di�erence in the temperature and
density distributions compared to the heat transfer equations in section 3.8,
where a uniform speci�c power density of f(r) = 1 was used. The power, pres-
sure and maximum temperature for the three cases were also calculated and
compared with results from the uncoupled calculations, see table 4.1. As can
be seen, there is also no signi�cant di�erence in these quantities between the
coupled and uncoupled results.

Initially, the e�ect of using a coupling between the neutronics and the ther-
mohydraulics was expected to have a minor, but noticable e�ect on the heat
transfer, since the speci�c power density calculated in chapter 2, �gure 2.2, had
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Table 4.1: Results for the coupled calculations of the thermal power P , pressure
p and maximum temperature Tmax for each case, together with the uncoupled
results from table 3.3.

Uncoupled Coupled
P [kW] p [bar] Tmax [K] P [kW] p [bar] Tmax [K]

Case 1 962 49.0 14624 960 49.0 14631
Case 2 104 8.48 6048 104 8.48 6052
Case 3 40.5 96.8 6369 40.6 96.8 6370

a small deviation between the centre of the core and the wall of up to 6% for
case 3. However, as seen in the previous paragraph, the speci�c power density
�attens out when calculated for the real density distribution, resulting in an
almost constant value. With these results in mind it is no surprise that the heat
transfer calculations resulted in equal temperature and density distributions as
for the uncoupled case, where a uniform speci�c power density of f(r) = 1
was used. It is concluded that using a �at speci�c power density is a good
approximation in heat transfer calculations in a GCR, for all fuel densities and
enrichments, and will lead to no signi�cant errors.

4.2.3 Reactivity E�ect of Fuel and Temperature Redistri-

bution

In this section the e�ect on the reactivity of using the actual fuel density and
temperature distribution compared to using uniform distributions is calculated
for each of the three cases.

In van Dam and Hoogenboom [1983] the e�ect on the reactivity of fuel
redistribution towards the wall was also investigated for several one-dimensional
core models. The investigated models were a cylindrical core model equal to
case 1, and a slab and spherical core. The reacivity e�ect was calculated by
comparing calculations of the multiplication factor for fuel density pro�les with
higher densities near the wall than near the centre of the core, with calculations
with a uniform density distribution. The imposed fuel density pro�les were not
calculated with heat transfer equations, but analytical functions were used, with
two to three times higher densities near the wall than near the centre of the core.
A uniform fuel temperature was used and calculations were performed with the
deterministic Sn code ANISN.

For the slab core, no reactivity e�ect of fuel redistribution was found, but
for both the cylindrical and spherical reactor a small reactivity e�ect was cal-
culated. The reactivity e�ect was calculated to be between 72 and 86 pcm for
the cylindrical reactor, using an Sn order of S4. However, calculations for the
spherical reactor core with di�erent Sn orders showed S4 calculations resulted
in a signi�cant overprediction of the reactivity e�ect of 30 to 40 pcm.

The explanation for the reactivity e�ect of the fuel redistribution towards
the wall was sought in the distribution of the paths neutrons traverse through
a GCR in a curved geometry. In a GCR the re�ector is the source of thermal
neutrons. It can be shown that for neutrons �ying along straight, uninterrupted
paths through the core, the average path length traversed by neutrons per unit
volume, equal to the neutron �ux, is larger in a region near the wall than near
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Table 4.2: Di�erence in the multiplication factor, compared to calculations us-
ing a �at density and temperature pro�le, for calculations using the calculated
density distribution and a uniform fuel temperature, and for calculations us-
ing both the calculated density and temperature pro�le, non-uniform T . The
standard deviation of the calculated reactivity change is 13 pcm.

Uniform T Non-uniform T
[pcm] [pcm]

Case 1 −1 10
Case 2 33 22
Case 3 −1 −12

the centre of the core, in a curved geometry. See appendix B for a mathematical
analysis of the distribution of the paths traversed by neutrons through an empty
cylindrical core. This means that for neutrons �ying in straight uninterrupted
lines, an acceptable approximation when lt � Rc and la � ls, the �ux will
be higher near the wall than in the centre of the core, and fuel redistribution
towards the wall will result in an increase in reactivity.

In our own research, in the calculations of the speci�c power densities f(r)
for uniform density and temperature pro�les, see �gure 2.2, it was noted that
f(r) was slightly higher near the core wall, which indicates a higher probability
of �ssion in the fuel near the wall. In section 2.4 it was mentioned this could
indicate a change in the fuel density distribution might lead to an increase in
reactivity, as long as the fuel redistribution would not have too big an e�ect on
the speci�c power density. Since the neutron mean-free-path lengths inside a
GCR are large, especially for cases 1 and 2, the e�ect of redistributing fuel on
the speci�c power pro�le was expected to be negligible.

In the coupled calculation a converged fuel density distribution ρ(r) and fuel
temperature distribution T (r) is calculated for each core case. To investigate
both the e�ect of the fuel density redistribution and of the temperature pro�le
on the reactivity, compared to using �at density and temperature pro�les, two
criticality calculations were performed with MCNP. One calculation used only
the calculated fuel density distribution ρ(r) and a constant fuel temperature of
Tf . The second calculation used both ρ(r) and the calculated fuel temperature
distribution T (r) as input for the MCNP calculation. For all calculations, a
uniform re�ector temperature of Tr from table 2.1 was used. For each case
the changes in reactivity, compared to the keff 's calculated in table 2.2 for
the uniform temperature and density pro�les, were calculated and are listed in
table 4.2. The uncertainty of all calculated keff values is 9 pcm, resulting in a
combined uncertainty in the reactivity changes of σ =

√
92 + 92 = 13 pcm.

The reference case, case 1, shows no signi�cant reactivity change due to fuel
density redistribution. This is not in accordiance with results from van Dam
and Hoogenboom. To explain this, results for case 2 are used. Case 2 has a
similar average fuel density and enrichment as case 1, and shows comparable
neutronics behaviour in all calculations in chapter 2. For case 2 however, a
signi�cant change in the reactivity due to fuel redistribution is observed of 33
pcm. The di�erence is that in case 2 the fuel redistribution towards the wall is
less extreme than for case 1, see �gure 3.15. The di�erence in densities between
the centre and near the wall is a factor 10, instead of 40 for case 1. When
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comparing the fuel distribution used in case 1 with the fuel distributions used in
van Dam and Hoogenboom, a similar di�erence is noted, as there the di�erence
in density between the core centre and the wall was at most a factor 2.5. The
reactivity change of 33 pcm due to fuel distribution is in accordance with results
of van Dam and Hoogenboom, if we take into account the overprediction of the
calculated reactivity e�ect in their results.

Case 3 also showed no signi�cant reactivity change due to fuel redistribution.
However, both explanations mentioned above for an increase in the reactivity
rely on large neutron mean-free-path lengths inside the core, and a low scattering
probability. As was calculated in table 2.3, the mean-free-path lengths in case
3 do not satisfy these conditions. This explains why case 3 does not show any
signi�cant change in the reactivity due to fuel redistribution towards the wall.

Using the calculated temperature distribution T (r) instead of a uniform
temperature inside the core did not result in any signi�cant reactivity changes.
For cases 1 and 2 this is no surprise, since the reactivity coe�cient of the fuel
temperature αTf is almost zero. For case 3, αTf is no longer zero, but still
small, and showed a linear behaviour over a large temperature region, see �gure
2.4. As the non-thermal neutron mean-free-path length is still large, neutrons
travel through the entire core. Thus, the average resonance absorption for fast
neutrons will hardly change for di�erent temperature distributions, as long as
the average fuel temperature stays the same.

We conclude for a GCR with a low fuel density and high enriched uranium,
fuel redistribution towards the wall causes a slight rise in reactivity, as long as
the fuel redistribution does not cause fuel densities near the wall to become
too high. For low enriched uranium fuel, there is no signi�cant e�ect of fuel
redistribution on the reactivity, due to a higher scattering probability in the
fuel. The shape of the radial temperature pro�le has no signi�cant e�ect on the
reactivity in a GCR due to the small reactivity e�ect of the fuel temperature.
Using a uniform temperature distribution instead of the actual temperature
pro�le will not result in any signi�cant errors in neutronics calculations.
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Chapter 5

Conclusions and Discussion

In the �rst section of this chapter conclusions are drawn from the results in the
previous chapters on the important parameters for the neutronics in a GCR,
the importance of dissociation and kinetic heat transfer for the heat transfer
calculations, stability of the power of a GCR during operation, and the e�ect
of using coupled calculations instead of using uncoupled neutronics and heat
transfer equations.

The last section gives a discussion on the validity of the results given the
uncertainties and simpli�cations in the models, together with recommendations
for future work.

5.1 Conclusions

The neutronics in a gas core reactor are almost completely determined by the
fuel gas density and the re�ector temperature. The fuel density has the biggest
impact on the criticality, which results in a large reactivity coe�cient of the
fuel density α′n = n

k
∂k
∂n . Due to the large neutron mean-free-path lengths in

a GCR, the thermal neutron spectrum is entirely determined by the re�ector
temperature, resulting in a large, negative reactivity coe�cient of the re�ector
temperature αTr, and a small reactivity coe�cient of the fuel temperature αTf .
For a GCR using 50% enriched uranium, α′n = 0.31, αTr = −6.7 pcm/K and
|αTf | ≤ 0.01 pcm/K was found, compared to α′n = 0.18, αTr = −3.9 pcm/K
and αTf = −0.3 pcm/K when using 5% enriched uranium.

Due to the large reactivity coe�cient of the fuel density, density �uctuations
may cause large reactivity insertions in a GCR. In scenario's involving large
reactivity insertions (> 1$) or fuel temperature changes, feedback from the
re�ector temperature is too slow to counter these problems, due to the low
thermal conductivity of the fuel gas and the large bulk of the graphite re�ector.
Since αTf is relatively small, countering these kinds of incidents depend on
α′n. As the timescale of a change in density due to a change in temperature
is comparable to the neutron prompt removal time in a GCR of 0.003 s, it is
unclear whether the density feedback is fast enough to counter these kinds of
incidents.

Heat transfer calculations showed that dissociation e�ects and kinetic heat
transfer, besides radiative heat transfer, are both important when calculating
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the temperature and density distributions inside a GCR core. In the central
region of the core where temperatures are high, λr is high and dominates the
heat transfer, resulting in a �at temperature pro�le. Near the wall, where T
and λr are both low, the kinetic thermal conductivity λkin > λr and inclusion
of λkin in the heat transfer model causes a decrease of the temperature gradient
near the wall. In the benchmark calculation, inclusion of dissociation caused an
increase in core pressure of over a factor two, and increased the density di�erence
between the centre of the core and the region near the wall from a factor three
to a factor 10. The increased density near the wall, together with the decreased
temperature gradient due to the inclusion of λkin, resulted in a decrease of the
average fuel temperature of 600 K.

The coupled calculations showed the speci�c power density f(r) is almost
�at, and using f(r) = 1 in heat transfer calculations will cause no signi�cant
errors. When using high enriched uranium, density redistribution towards the
wall results in a small increase in the reactivity in some cases. However, when
using low enriched uranium, the shape of the density distribution has no e�ect
on the reactivity. The shape of the temperature distribution has no e�ect the
reactivity for both high and low enriched uranium

5.2 Discussion and Future Work

The use of an in�nite cylinder instead of a �nite geometry in the neutronics
calcultations is expected to have only minor e�ects on the reactivity coe�cients,
as there is little dependence on the actual geometry due to the large mean-
free-path of neutrons. The critical density will be higher in a �nite geometry
though. As the coupled calculations have shown, the results for the neutronics
are also valid for non-uniform T (r) and ρ(r) pro�les in the fuel. However, as
the �ux pro�le in the re�ector is not uniform, the reactivity coe�cient of the
re�ector αTr will depend on the temperature distribution in the re�ector. For
the calculation of both steady state and slow transients the re�ector feedback
has to be investigated in more detail, for example by calculating the reactivity
coe�cient per radial zone in the re�ector.

Although it was assumed the di�erences in atomic ratios would be negligible,
the validity of this is unknown. Temperature di�erences and dissociation e�ects
will cause concentration di�erences of the various species in the gas mixture,
which will lead to transport of the various species. The the resulting di�erences
in the local atomic ratios are not easy to estimate without further research.

The large uncertainty in the photon cross section σph is expected to lead to
only small errors in the temperature pro�le. Since the temperature gradient is
small near the centre of the core, changes in σph will have only a small e�ect on
the temperature pro�le in this region, and near the wall λkin > λr.

Pressure di�erences in the radial direction are expected to be small compared
to the total pressure, as it is expected the density will adjust quickly to any
signi�cant pressure di�erences. Thus, the assumption of uniform pressure is
expected to be accurate.

However, the exclusion of fuel �ow in the heat transfer model does lead to
large errors. The turbulent fuel �ow in an operating GCR will signi�cantly
increase the heat transfer towards the wall. Also, in a �nite cylinder the tem-
perature and density pro�les will not be fully developed, but will evolve along
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the direction of the �ow, resulting in signi�cant axial temperature and density
di�erences. Thus, the developed heat transfer code is only valid for identifying
important parameters and investigating general behaviour, and not for the cal-
culation of the actual temperature and density pro�les inside a GCR. Fuel �ow
through a GCR core will also cause a loss of reactivity, as precursors will be
transported out of the core.

In the coupled calculations no dependence of the neutronics was observed
on the radial pro�les of the temperature and density. These results stay valid
in the case of fuel �ow and a �nite geometry.

For the investigation of transients inside an operating GCR core, a model
including the time-dependent coupling between the reactor power, the average
fuel temperature, the average fuel density inside the core and the radial temper-
ature distribution inside the re�ector should be developed. Since the neutron
mean-free-path lengths are large inside a GCR, a point kinetics model of the
�ux shape should be su�cient to model the neutronics, with the bene�t that
any reactivity loss due to transport of precursors by the fuel �ow can be easily
incorporated.
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Appendix A

Sample MCNP Input Deck

MCNP Input file for GCR generated by FORTRAN code

C CELL CARDS

101 1 3.18000E-05 -11 IMP:N=1 $ Fuel core

102 2 8.55000E-02 11 -12 IMP:N=1 $ Reflector

103 0 12 IMP:N=0 $ Void outside

C SURFACE CARDS

11 CZ 118.0

12 CZ 218.0

C DATA CARDS

KCODE 75000 1.0 30 1000

SDEF POS=0 0 0 AXS=0 0 1 RAD=D1 EXT=0

SI1 = 0 100.0

M1 92235.66c 0.070 $ fraction U235

92238.66c 0.070 $ fraction U238

6000.66c 0.060 $ fraction C

9019.62c 0.800 $ fraction F

M2 6000.66c 1.0

MT2 grph.64t $ Graphite at 1000 K

TMP 0.8617342E-06

0.8617342E-07

0.0

C TALLY CARDS

F4:N 101

FM4 (-1 1 (1)) $ Total cross section

(-1 1 (-2)) $ absorption

(-1 1 (18)) $ fission

(-1 1 (2)) $ Scattering

SD4 1

E4 2.38e-6 4.31e-3 1.11e-1 20 $ Energy bins

F14:N 101

SD14 1

E14 2.38e-6 4.31e-3 1.11e-1 20 $ Energy bins

PRDMP 2J 1 1
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Appendix B

Distribution of Paths

Traversed by Neutrons

Through an Empty Core

In this appendix a mathematical analysis is given which shows that, in a cylin-
drical core, the average neutron track length per unit volume is larger near the
wall of a cylindrical core near the centre of the core, assuming neutrons move
in straight, uninterrupted lines from the re�ector through the core.

Assuming the core is an in�nite cylinder with radius R = 1, we can split up
the core cavity into two concentric areas with equal surface, one central part
and one part near the border, labelled surfaces A (central part) and B (near
the wall) in �gure B.1, with r = 1

2

√
2 the coordinate of the border between A

and B that satis�es the condition of surfaces A and B having the same area.
The line that describes the neutron tracks exiting the re�ector with angle α

with respect to the re�ector surface, is given by

y = 1 + x tanα (B.1)

with 0 < α < π, and the centre of the core at the origin (x = 0, y = 0).
The circle enclosing area B can be expressed as

x2 + y2 = 1 (B.2)

and the circle enclosing area A can be expressed as

x2 + y2 = r2 =
1
2

(B.3)

With these three expressions for the borders of areas A and B and the
neutron track through the core, one can calculate the intersections of the neutron
track with the circles, by using equation B.1 to substitute y in equations B.2
and B.3, and solve for x. The resulting two x-values can be inserted in B.1 to
�nd the y-coordinate of the two intersections. This results in 4 coordinates, o1,
o2, i1 and i2, the intersections with the outer and inner circles, each a function
of the angle α.
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Figure B.1: Neutron tracks leaving the re�ector with angle α compared to the
re�ector surface. Neutrons pass the core through core areas A and B with equal
surface area. Lo is the length of a neutron track through the outer area B, and
Li is the length through inner area A.
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From these four coordinates, the length of the neutron track through each
area can be found, by substracting the two points and taking the length of the
resulting vectors.

Li(α) = |i1 − i2| (B.4)

Lo(α) = |o1 − o2| − |i1 − i2| (B.5)

with Li(α) the length of the neutron track through the inner core area A, and
Lo(α) the length of the neutron track through the outer area B.

If we assume the angle α at which neutrons leave the re�ector is distributed
uniformly, the average neutron track length through the inner area A, and
through the outer area B can now be calculate by integrating the track lengths
Li(α) and Lo(α) over α

LA =
ˆ π

0

Li(α)dα (B.6)

LB =
ˆ π

0

Lo (α) dα (B.7)

with LA the average neutron track length through area A and LB the average
neutron track length through area B, in arbitrary units.

With maple it was calculated that the resulting average track lengths through
both areas are

LA = 1.694
LB = 2.306

which proves that the average neutron track length through the outer ring of
the core is larger than through the central part of the core, if neutrons can be
assumed to move in straight lines through the core and neutrons enter the core
from the re�ector with a uniformly distributed angle α.
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Appendix C

Radial Flux Pro�les

The radial �ux pro�les were calculated with MCNP for the four energy groups,
with upper energy bounds of 2.38 eV, 4.3 keV, 111 keV and 20 MeV. Plots are
given in �gures C.1 to C.3.
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Figure C.1: Radial �ux pro�les for the four energy groups for core case 1.
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Figure C.2: Radial �ux pro�les for the four energy groups for core case 2.

0 50 100 150 200 250
0

0.5

1

1.5

Radial position r [cm]

E
ne

rg
y 

gr
ou

p 
flu

x 
[a

rb
itr

ar
y 

un
its

]

 

 
Group 1

Group 2
Group 3

Group 4

Figure C.3: Radial �ux pro�les for the four energy groups for core case 3.
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