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Abstract

Proton therapy is a type of therapy where the disease area, most often a cancerous tumor,
is irradiated by an external beam of protons. Tissue surrounding the tumor is exposed
in this process as well. The resulting dose in normal tissue can lead to undesirable long
term side effects. To minimize the dose in normal tissue, there is a need for accurate
treatment planning methods. These methods are used in the planning stage to calculate
the optimal treatment plan. Planning methods now consist out of fast approximations
such as pencil beam algorithms and uniform-intensity algorithms, and a very accurate but
very slow approach: the Monte Carlo method. In this thesis, an alternative method is
investigated: the SN method.

The SN method is a deterministic method in which the solution of the transport
equation is approximated by discretization of all its independent variables. In principle,
this method can be as accurate as the Monte Carlo method, and has some additional
advantages: it can be considerably faster, it offers a dose distribution over the entire region
of simulation, and it is suitable for perturbation techniques (which allows us to capture
to effects of the uncertainty in the chemical composition of the tissue in the patient, and
the movement of the patient).

The SN method was first developed by reactor physicists who used it to calculate the
neutron distribution in a reactor core. In this thesis, the method is used to calculate
the proton distribution in a patient. The nature of interaction of the proton, however, is
different from that of the neutron: due to the Coulomb interactions, the proton has a large
number of small angle scatter interactions. This type of interaction is expressed in nearly
singular differential scatter cross sections. It is very unpractical to treat these differential
cross sections with conventional means in deterministic methods. To deal with this issue,
the Fokker-Planck approximation is used. In this approximation, the small angle scatters
and the small energy transfers are described by the Fokker-Planck operators.

In this thesis it is investigated whether the SN method is accurate enough to replace
the Monte Carlo method in proton therapy planning, and what underlying methods need
to be improved to reach its potential computational speed. For this purpose, the available
models and methods for charged particles transport are investigated on accuracy and
applicability for protons in the energy range considered in proton therapy.

To investigate the accuracy of the SN method, two Monte Carlo calculations are used
as a benchmark. The results are very promising: the dose profiles of the two methods
are almost exactly overlapping. The angular part of the solution, however, cannot be
benchmarked with our 1D SN calculations, 3D calculations should validate this part of
the problem in future work.

The underlying methods we used in our work need at least three improvements to reach
the potential computation speed of the SN method: (i) a more advanced discretization
method in the spatial and angular domain is necessary, for example, a linear discontinuous
finite element method, (ii) adaptive mesh refinement in the spatial and angular range is
needed to obtain the most optimal discretization structure, and (iii) acceleration of the
convergence of the continuous scatter operator is necessary with, for example, a multi-grid
method.
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ϕn Flux in discrete ordinate n [# cm−2 s−1]
ϕi,n Flux in spatial cell i and discrete ordinate n [# cm−2 s−1]
ϕa,i,n,g Average flux in spatial cell i, discrete ordinate n

and energy group g [# cm−2 MeV−1 s−1]
ϕe,i,n,g Normalized slope of flux in spatial cell i, ordinate n

and energy group g [-]
ϕ+
g Flux value at upper boundary of energy group g:

ϕ(Eg+ 1
2
) [# cm−2 MeV−1 s−1]

ϕ−g Flux value at lower boundary of energy group g:

ϕ(Eg− 1
2
) [# cm−2 MeV−1 s−1]

ϑ Cosine scattering angle measured in
center-of-mass frame [-]



vii



Contents

1 Introduction 2

1.1 Radiotherapy in Treating Cancer Patients . . . . . . . . . . . . . . . . . . . 2

1.1.1 Biological Effects of Radiation . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Types of Radiation Therapies . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proton Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 History of Proton Therapy . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Proton Beam Dose Deposition Properties . . . . . . . . . . . . . . . 3

1.2.3 Proton Therapy Compared to IMRT . . . . . . . . . . . . . . . . . . 4

1.3 Treatment Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Conventional Methods of Treatment Planning . . . . . . . . . . . . . 5

1.3.2 The SN Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Goals of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Proton Interactions with Matter 8

2.1 Elastic Interactions with the Nucleus . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Transformation of Reference Frame . . . . . . . . . . . . . . . . . . . 10

2.2 Inelastic Interactions with Atomic Electrons . . . . . . . . . . . . . . . . . . 12

2.2.1 Hard Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Soft Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Inelastic Interactions with the Nucleus . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 The SADCO Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Mathematical Description of Proton Transport 19

3.1 The Linear Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . 19

3.1.1 Justification of the Underlying Assumptions . . . . . . . . . . . . . . 19

3.1.2 Physical Interpretation of the Operators . . . . . . . . . . . . . . . . 20

3.1.3 Separation of the Scatter Interactions . . . . . . . . . . . . . . . . . 20

3.1.4 Introduction of Flux Definitions . . . . . . . . . . . . . . . . . . . . 21

3.2 The Fokker-Planck Approximation . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Continuous Scatter Operator . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Continuous Slowing Down and Energy Straggling Operators . . . . . 25

3.2.3 Validation of the Coefficients . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Validation of the Fokker-Planck Approximation . . . . . . . . . . . . . . . . 30

3.3.1 The Boltzmann-Fokker-Planck Approximation . . . . . . . . . . . . 31

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 The SN Method 34

4.1 The Quadrature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Angular Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Advanced Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Energy Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



CONTENTS ix

4.4.1 The Boltzmann Scatter Operator . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Continuous Slowing Down Operator . . . . . . . . . . . . . . . . . . 41
4.4.3 Energy Straggling Operator . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Numerical Solution of the Discretized System 44
5.1 The Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Energy Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Identification of Streaming, Deposition and Source Terms . . . . . . 47
5.2.2 Dose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Investigation of Discretization Requirements 50
6.1 General Computational Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Geometry and Material . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3 Structure of the Discretization . . . . . . . . . . . . . . . . . . . . . 52

6.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Test Case A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Test Case B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Energy Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 Test Case A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Test Case C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Angular Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.1 Test Case B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.2 Test Case C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Results 61
7.1 Benchmark Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Computational Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Medulloblastoma Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.1 Computational Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Discussion and Conclusions 68
8.1 Models for Describing Protons Transport . . . . . . . . . . . . . . . . . . . 68
8.2 Methods to Solve the Transport Equation . . . . . . . . . . . . . . . . . . . 69
8.3 Main Question of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Rutherford Scatter 74

B Derivation of Continuous Slowing Down and Energy Straggling Opera-
tors 78

C Effect of Energy Straggling Operator on Solution of Transport Equation 79

D Results Discretization Requirements 81



List of Figures

1.1 Left: a T1 weighted MRI scan [34] of a 4-year-old medulloblastoma patient.
Right: the spread-out Bragg peak (SOBP). Since the size of the tumor is
usually large compared to the width of a single Bragg peak, a particle beam
with multiple energies is used to obtain energy deposition over the entire
range of the tumor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Left: dose distribution of photons compared to the dose distribution of
protons [6]. Right: proton therapy treatment plan compared to a photon
therapy treatment plan [35]. The critical organs in the human head are
much more spared using proton therapy. . . . . . . . . . . . . . . . . . . . . 5

2.1 The trajectory of an incident proton with impact parameter b, interacting
with a particle through the Coulomb force. The proton is scattered in angle
Θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation between the cosine scattering angle cos(Θ) of the incident proton
measured in the center-of-mass frame, and in the laboratory frame cos(ϑ)
for different target nuclei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Correction factor for transformation of differential cross section expressed
in coordinates in the center-of-mass frame to the differential cross section
expressed in coordinates in the laboratory frame for protons incident of a
nucleus, see equation 2.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Screened Rutherford cross section for incident protons on water for various
energies. The cross sections are nearly singular at µ0 = 1. . . . . . . . . . . 13

2.5 Screened Rutherford cross section for hard collisions between incident pro-
tons and electrons for various energies. The cross sections are nearly singu-
lar at Q = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Multi-group coupled differential cross sections expanded in a P11 Legendre
series, evaluated with the SADCO code. Left: proton to neutron cross
sections from energy group g to g′. Right: proton to proton cross sections
from energy group g to g′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Multi-group coupled differential cross sections expanded in a P11 Legendre
series, evaluated with the SADCO code. Left: proton to proton cross sec-
tions on hydrogen from energy group g to g′. Right: multi-group total cross
sections for protons incident on water. . . . . . . . . . . . . . . . . . . . . . 17

3.1 The nearly singular differential cross sections of charged particles expanded
in Legendre functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Momentum transfer cross section σtr(E) for protons incident on water. . . . 26

3.3 Stopping power S(E) of protons incident on water. . . . . . . . . . . . . . . 27

3.4 The energy straggling coefficient T (E) for protons incident on water. . . . . 28

3.5 Stopping power evaluated with equation 3.28 compared to literature values
of PSTAR [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

x



LIST OF FIGURES xi

3.6 Left: moments of the inelastic Rutherford cross section for protons inci-
dent on water. Right: moments for the elastic Rutherford cross section for
protons incident on water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Left: the 1D pencil beam problem can be visualized in the 3D geometry as
the uniform radiation of an infinite large slab. Large angle scatter can be
ignored in this case. Right: 3D pencil beam problem. Large angle scatter
can not be ignored in this case, since in this process energy is pushed to the
surrounding tissue, where critical organs may be present. . . . . . . . . . . 31

3.8 Left: decomposition of the differential cross section into a smooth and a
singular part. Right: moments of the singular part of the elastic cross
section for protons incident on water for different energies. µ∗ = 0.98 was
set here, but different choices for µ∗ near µ∗ = 0.98 gave similar results. . . 32

4.1 A pencil beam on a slab. The direction of movement of the protons are
characterized by the directional cosine µn = cos(θn). The directional cosine
of the particles in the pencil beam is µ = 1. . . . . . . . . . . . . . . . . . . 35

4.2 Representation of the variables which characterize the quadrature set. µn
is the directional cosine, wan the weight and ϕn the flux value of the discrete
ordinate Ω̂n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Upper: representation of the step scheme. The 1D slab is divided into NE
cells, the flux inside these cells is assumed to be constant, and allowed to
be discontinuous an the cell faces. Bottom: representation of the upwind
scheme in the spatial domain. If µn > 0, the direction of the particle flow
(from left to right) is simulated by assuming ϕi− 1

2
= ϕi−1 and ϕi+ 1

2
= ϕi.

Vice versa for µn < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Representation of the multi-group method. NG is the total number of
energy groups used to divide the energy range. Eg is the center energy
value of enegy group g. Protons move from g = 1 to g = NG through the
problem domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Representation of the linear discontinuous Galerkin method. The flux is
assumed linear inside the energy groups, and discontinuous on the group
faces. Each energy group contains two unknowns, the average of the flux
in the energy group ϕa,g and the slope of the flux inside the energy group
ϕe,g. ϕ

−
g and ϕ+

g are the flux values on the boundaries of the energy group. 40

4.6 Representation of the finite volume method used to evaluate the derivative
in the expression of the discretized energy straggling operator. . . . . . . . 43

5.1 Representation of the particle flow through the spatial and the energy range
along ordinate Ω̂N . In this ordinate the particles stream from left to right
through the spatial domain (µN > 0), described by the streaming operator
Lstr, and from top to bottem through the energy domain, described by the
continuous slowing down operator LCSD. In the iterative method, the flux-
values are solved in the direction of these flows. Note that the flows in the
spatial domain are reversed if µn < 0. The particles streaming out of the
final energy group are assumed to deposit their energy locally. In this thesis
ENG+ 1

2
= 1 MeV. No particles stream through the final spatial element if

the spatial range is sufficiently large. . . . . . . . . . . . . . . . . . . . . . . 45



xii LIST OF FIGURES

5.2 Schematic representation of the energy transport in spatial cell i and ordi-
nate Ω̂n with µn > 0. The energy streams in and out of the spatial cells
carried by the protons through the spatial domain. Due to the scatter in-
teractions, energy is transferred to atomic nuclei and atomic electrons. The
secondary protons created in the catastrhopic scatter process can carry their
energy to other cells. The terms in red are energy deposition terms, the
green one is an energy source term. . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 The energy plateau boundary conditions used in test case A in the inves-
tigation of the discretization requirement for the energy variable. Here,
Emax = 100 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Left: test case A, error versus width of spatial cell ∆xi for plateau and
mono-energetic boundary conditions. Right: test case B, error versus width
of spatial cell ∆xi with an S40 quadrature set. . . . . . . . . . . . . . . . . . 54

6.3 Left: energy depending differential flux of an energy plateau boundary
condition problem. Right: energy depending differential flux of a mono-
energetic boundary condition problem. The 50 group energy structure is
more suited to approximate the energy depending differential flux on the
left compared to the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Left: test case A, error versus energy width ∆Eg. Right: test case C, error
versus energy width ∆Eg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Left: test case B, the angular depending differential flux at the end of the
range, Ein = 100 MeV. Right: test case B, the error versus the number of
ordinates N in the quadrature set. . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 Left: test case A (see table 6.1), dose profile of a mono-energetic pencil beam
boundary condition problem. Right: the error we allow in the calculation
is the error in the 500 energy group case which corresponds to ε ≤ 10−4. . . 62

7.2 Left: 100 MeV benchmark calculation, dose distribution. Right: 200 MeV
benchmark calculation, dose distribution. . . . . . . . . . . . . . . . . . . . 63

7.3 Left: 100 MeV benchmark calculation, angular depending differential flux.
Right: 200 MeV benchmark calculation, angular depending differential flux. 63

7.4 Left: T1-weighted MRI scan, sagittal view of a medulloblastoma patient [34].
Right: the 1D geometry used in the treatment plan. . . . . . . . . . . . . . 65

7.5 The energy depending differential flux of the protons in the pencil beam at
the boundary used in the medulloblastoma calculation. . . . . . . . . . . . . 66

7.6 Left: medulloblastoma case, dose distribution. Right: medulloblastoma
case, scalar flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.7 Left: medulloblastoma case, angular depending differential flux at various
positions in the patient. Right: medulloblastoma case, energy depending
differential flux of the protons in bone (x = 1 cm), in the brain (x = 3 cm)
and in the tumor (x = 6 cm). . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 The hyperbolic path of the incident proton around the target nucleus. r
is the distance between the proton and the nucleus, θ the angle between
proton and nucleus, and Θ is the scattering angle. . . . . . . . . . . . . . . 75

C.1 Test case A, energy spectrum of plateau boundary condition problem, with
and without straggling operator. . . . . . . . . . . . . . . . . . . . . . . . . 80

D.1 Left: test case A, error versus width of spatial cell ∆xi, Ein = 150 MeV.
Right: test case A, error versus width of spatial cell ∆xi, Ein = 200 MeV. . 81



LIST OF FIGURES xiii

D.2 Left: test case A, error versus energy width ∆Eg, Ein = 150 MeV. Right:
test case A, error versus energy group width ∆Eg, Ein = 200 MeV. . . . . . 81

D.3 Left: test case A, error versus energy width ∆Eg. The slope of the plateau
does not influence the discretization requirement. Right: test case A, error
versus energy width ∆Eg. f in ∆Eg = f · ∆Eg+1. The uniform energy
structure is optimal in most problems. In this case, however, solution can
be obtained more efficiently by applying a different energy structure than
the uniform one, but the gain is not significant. . . . . . . . . . . . . . . . . 82

D.4 Left: test case A, error versus energy width ∆Eg. The error using bound-
ary condition (i) and (ii) is similar, see section 6.3.1. Right: test case C,
illustration of the error in the differential flux for several group widths ∆Eg,
Ein = 100 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D.5 Left: test case B, differential flux at the end of the range, Ein = 10 MeV.
The error in the low quadrature is large near µ = 1 and decreases rapidly
further away from µ = 1. Right: test case A, Bragg peak position in
PMMA. The position of the Bragg peak is used to impose a range in test
case C over which the error in a calculation is evaluated. . . . . . . . . . . . 83



List of Tables

6.1 The three test cases in which we investigate the discretization requirements.
The discretization requirement in a variable in the total transport equation
is determined by the most strict discretization requirement of the test cases. 50

6.2 General computational set-up of the test cases, where NEref , NGref , and
Nref are the number of cells in the reference calculation. . . . . . . . . . . . 51

6.3 Momentum transfer cross section σtr(E) of protons in PMMA with energy
Ein for test cases B and C and the corresponding range of the protons with
through PMMA for test case B. . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 The quadrature sets used in test case B and the approximate computation
time to obtain a solution. f in wn = f · wn+1. µN = 0.999995 and waN =
10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 Computational set-up of the benchmark cases. . . . . . . . . . . . . . . . . 62
7.2 Computational set-up of the medulloblastoma case with an S40 quadrature

set (see table 6.4), with 100 energy groups, a P10 order Legendre expan-
sion catastrophic differential scatter cross sections, and a plateau energy
boundary condition ∆Ep = 30 MeV, with energy depending differential
flux as in figure 7.5. The multi-group stopping powers S(Eg± 1

2
) are eval-

uated with equation 3.28, the multi-group momentum transfer cross sec-
tions σtr,g = σtr(Eg) are evaluated with equation 3.19, the multi-group
catastrophic scatter cross sections σC,g and σC,g′→g,l are evaluated with the
SADCO code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiv





1. Introduction

1.1 Radiotherapy in Treating Cancer Patients

Cancer is a group of various diseases in which cells divide uncontrollably. In economically
developed countries, cancer is the number one cause of death. Globally, around 12.7 million
cancer cases in 2008 and 7.6 million cancer deaths are estimated by GLOBOCON [12]. The
main treatment options are surgery (the physically removing of the cancer), chemotherapy
(the use of drugs which are designed to attack the cancer cells), immunotherapy (the use
of the immune system to reject the cancer) and radiotherapy (where radiation is used to
kill the cancerous cells). Usually, a combination of these treatments is used to achieve
optimal results.

1.1.1 Biological Effects of Radiation

Radiotherapy uses ionizing radiation to treat disease tissue in the body. Excitations of the
electrons energy structure and ionizations of the molecules occur due to the interaction
of the radiation with the tissue of the patient. The effects on the patient of radiation is
assumed to be due to the damage of DNA. The damage to DNA can be created either
directly or indirectly: direct if an altered electron structure is created (like the fraction
of a chemical bond) due to the interaction of the radiation with the DNA, and indirect
if the DNA is damaged by free radicals which are created due to the interaction of the
radiation with substances in the neighborhood of the DNA. The most important effects
of DNA damage are [4]: damage to nitrogenous bases, cross links between DNA-DNA or
DNA-protein, single-strand breaks, and double-strand breaks. The cells in the tissue of
a patient are able to repair most of the damage due to the radiation; most single-strand
breaks are repaired even within the first few minutes. Double strand-breaks, however,
are more difficult to repair since the broken of piece of the DNA may not be close to the
damaged DNA. The possible consequences of damaged DNA to a cell are roughly [4]: the
repair of the damage with full recovery of the cell, the creation of a modified cell, and cell
death. Cancerous cells appear to be more sensitive to radiation and are less able to repair
the damage compared to normal cells: after radiation, normal cells appear to recover more
fully than cancerous cells do. However, normal tissue is affected by the radiation as well,
creating modified cells in normal tissue, which may result in undesirable long term side
effects for the patient. Especially sensitive to these long term side effects are children as
their organs are in a developing state. Also, children are more likely to live longer if cured,
increasing the chance of encountering long term side effects. Examples of such long term
side effects are: IQ loss, growth hormone deficiency, hypothyroidism, hearing loss, and
secondary cancer [39].

1.1.2 Types of Radiation Therapies

Three main types of radiation therapies can be distinguished according to the position
of the radiation source [17]: brachytherapy, unsealed source therapy and external beam
therapy. Brachytherapy uses sealed sources placed directly in the disease area. In unsealed
source therapy, the radiation source is injected into the body or given by (oral) ingestion.
External beam therapy makes use of an external beam of particles aimed at the disease
side. The four main types of external beam therapies are: fast neutron therapy, electron
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therapy, photon therapy, and heavy charged particle therapy.

Fast neutron therapy uses high energy neutrons with an energy typically greater than
20 MeV [42]. Due to the nature of interaction of neutrons with matter (they primarily
interact via (n,p) spallation reactions, in contrast to other forms of radiation which pri-
marily interact through excitations and ionizations), this type of treatment is used to treat
tumors which are radio-resistant (tumors which do not respond to other forms of radia-
tion). The downside is that neutrons are difficult to aim at the disease side; they cannot
be targeted at the tumor side using magnetic fields since they carry no charge. This, and
the fact that neutrons contribute to a relatively large dose in front of the tumor, makes
neutron therapy only suitable for relatively large, shallow tumors.

Electrons have a finite range through tissue, sparing tissue behind the tumor side [17].
This is a big advantage of electron therapy, since normal tissue as well as possible critical
organs behind the tumor can be spared using this type of therapy. However, due to the
strong scatter interactions with matter, the electrons deviate strongly from their incident
trajectory, making electron therapy only suitable for treating shallow tumors (< 5cm
deep). A second disadvantage, due to the strong scatter interactions of the electrons, is
that hot and cold spots (spots were the dose is locally very different from the dose in
the surrounding tissue) are created in areas were highly heterogeneities are present in the
tissue (for example near a bone structure). As a consequence, electron therapy is not
suitable for treating tumors lying in or near strong heterogeneous tissue, like a tumor in
the head.

The advantage of photons in the use of external beam radiation is the large penetration
depth and the skin sparing property [27]. Due to these properties, photon therapy is the
most commonly used type of therapy for deep lying tumors (> 5cm deep). The most
advanced form of photon therapy is IMRT (Intensity Modulated Radiation Therapy).
IMRT uses modulated intensity beams to deliver precise radiation which conform to the
three-dimensional shape of the tumor.

The most common form of heavy charge particle therapy is proton therapy. This type
of therapy can offer a superior dose distribution compared to the conventional treatment
types, as will be demonstrated in the following section.

1.2 Proton Therapy

1.2.1 History of Proton Therapy

Robert Wilson published a proposal [45] in 1946, saying that accelerated protons can be
used in radiation therapy on human patients. Only eight years later, the first patient
was treated using a particle accelerator built for physics research [8] at the University
of California, Berkely. In 1967, Wilson started as director of the National Accelerator
Laboratory, which was to create the largest particle accelerator of his time. It quickly
came apparent that it was in that time too early to develop a hospital-based treatment
facility, since a highly reliable accelerator with little downtime, greatly improved imaging
capabilities and extensive computer modeling were necessary, which were not available in
that time. In the 1960s, 1970s and 1980s other physics facilities around the world offered
proton treatments, but were all based in research laboratories. The first hospital based
proton therapy center was built in 1990 in Loma Linda, California at the Loma Linda
University Medical Center. As of June 2011, 42 proton therapy centers are world wide in
use, which have treated a total of 74000 patients [36].

1.2.2 Proton Beam Dose Deposition Properties

Protons have a couple of interaction properties which make them especially suited for
external beam therapy. The first is that, due to their relatively large mass, protons tend
to go into a straight line through tissue. This property makes them easy to aim at the
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Figure 1.1: Left: a T1 weighted MRI scan [34] of a 4-year-old medulloblastoma patient. Right: the
spread-out Bragg peak (SOBP). Since the size of the tumor is usually large compared to the width
of a single Bragg peak, a particle beam with multiple energies is used to obtain energy deposition
over the entire range of the tumor.

tumor side, and suited for use in highly heterogeneous tissue. The second is their relatively
low standard deviation in their range through a material: all protons with a certain energy
penetrate a material almost over an identical range. This, together with the finite range
of protons through tissue results in almost no dose deposition behind the tumor, allowing
sparing of critical tissue near the disease area. The third property which makes protons
especially suited for therapy is that protons do not interact much with their surrounding
until near the end of their range. There, they start to interact very strongly with their
surroundings, depositing their remaining energy very locally. This result in the steep rise
of deposited dose, known as the Bragg peak, see figure 1.1 (right). In this figure, the
Bragg peak is shown as well as the spread-out Bragg peak (SOBP). The Bragg peak is
obtained if a mono-energetic proton beam is used. The SOBP is a summation of several
Bragg peaks and is obtained by using a proton beam with multiple energies. The SOBP
is used to achieve a dose profile over the entire range of the tumor.

An example of a tumor case where proton therapy may give advantages over con-
ventional electron or photon therapy is medulloblastoma. A scan of a medulloblastoma
patient is showed in figure 1.1 (left). In this case, the beam needs to go through a highly
heterogeneous tissue (which can give problems using electron therapy), and critical area
is present lying behind the tumor, which is difficult to spare using photon therapy as we
will demonstrate in the following section.

1.2.3 Proton Therapy Compared to IMRT

The most advanced and common type of photon treatment used is IMRT. In principle,
proton therapy can offer a superior dose distribution compared to photons. This is illus-
trated in figure 1.2 (left) where the dose distribution of a photon beam is compared to
the dose distribution of a proton beam. The entrance dose of the proton beam is small
compared to the entrance dose of the photon beam, the energy deposited in the tumor by
the proton beam is large compared to the photon beam, and the exit dose of the proton
beam is very small compared to the photon beam. In figure 1.2 (right), a treatment plan
of a medulloblastoma patient of proton therapy is compared to IMRT. In this case, a
superior dose profile is obtained by the proton treatment plan, much more sparing the
critical organs lying behind the tumor (eyes, brain, nerves).

A number of studies show that more tissue is spared in proton therapy compared to
IMRT and conventional photon therapy [7] [25] [26]. On the other hand, not enough data is
available to provide scientific proof of reduced risk in proton therapy. From the data avail-
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Figure 1.2: Left: dose distribution of photons compared to the dose distribution of protons [6].
Right: proton therapy treatment plan compared to a photon therapy treatment plan [35]. The critical
organs in the human head are much more spared using proton therapy.

able, not all cases indicate a lower risk compared to photon therapy. Extensive randomized
clinical evidence that protons provide better clinical outcomes compared to photons are
available only for ocular, brain and pediatric tumors [48]. Proton therapy is most promising
in reducing the long term effects of treatment pediatric tumors [29] [13] [30]. Examples of such
treatments by which much is to be gained in sparing normal tissue are: retinoblastoma,
medulloblastoma, and rhabdomyosarcoma.

Disadvantages of proton therapy exist as well. First, proton therapy is estimated to
be 2.4 times more costly compared to IMRT [39]. However, the costs of the long term side
effects of the patient are not incorporated in this estimation. Second, in proton therapy,
a relatively large number of secondary neutrons are created. These neutrons may increase
the chances of the patient developing secondary cancer, however, no clinical data supports
this argument. Third, errors in aiming the proton beam can result in a relatively large
dose deposition in normal tissue. To prevent unnecessary dose in normal tissue, there is a
need for accurate treatment planning.

1.3 Treatment Planning

1.3.1 Conventional Methods of Treatment Planning

Treatment planning is the process of simulating a delivery strategy for a radiation treat-
ment with as goal to find the optimal treatment plan. There are three primary models
for the calculation of the dose profile of a proton beam [20]: uniform-intensity beam al-
gorithms, pencil-beam algorithms and the Monte Carlo method. The uniform-intensity
beam algorithms are the simplest and fastest of the three models. They are also the least
accurate, especially in estimating the effects of complex heterogeneities on the final dose
distribution. This algorithm uses experimentally measured data or numerical fits of dose
profiles of a proton beam on a water equivalent phantom. Pencil-beam algorithms are more
accurate. In this algorithm, the incident beam is modeled using a set of closely-spaced
pencil beams. The broadening of the beam is modeled with the use of experimental data.
The resulting dose is computed by adding the dose of the individual contributions from
each beam. The uncertainty, however, is very difficult to evaluate using this method. The
Monte Carlo method is very accurate. In this approach, individual protons are tracked as
they penetrate through the patient. Tens of millions of histories usually must be traced,
which can take hours or even days to process. This large computation time hampers the
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use of the Monte Carlo methods in the clinics.

1.3.2 The SN Method

In this thesis, an alternative method for planning proton therapy is investigated: the
deterministic method, or discrete-ordinates method, or SN method. This method refers
to the way a solution of the transport equation is obtained. The transport equation,
which is, in this case, the linear Boltzmann equation, contains operators which describe
the interaction processes of the particles. These operators contain scatter cross sections,
which express the likelihood of such interaction process taking place. In the SN method
the direction of travel of the particles is approximated by a finite set of discrete ordinates.
Subsequently, the equation is discretized in all of its independent variables. The result of
this discretization process is a set of coupled equations describing the particle field in the
problem domain. By solving the resulting set of equations, the solution of the transport
equation is approximated. In principle, this method offers a similar level of accuracy as
the Monte Carlo method does, but has some advantages: it can be considerably faster;
it delivers the dose distribution in the entire region of simulation; different optimization
techniques are available due to the formulation; and it is suitable for sensitivity analyzes
used to quantify uncertainty in a solution due to the movement of the patient and the
uncertainties in the chemical composition of the human body on the delivered dose.

The SN method was first developed by nuclear reactor physicists to calculate the dis-
tribution of neutrons in a reactor core. In our work, this method is used to calculate the
proton distribution in the patient. Due to the charge of the proton, the nature of interac-
tion with matter is different from the neutron. The Coulomb forces work over a relatively
long range, resulting in a large number of small angle scatter interactions. This behav-
ior of the proton is expressed in nearly singular differential cross sections of this scatter
process. In the SN method, it is common practice to expand the differential cross section
into Legendre polynomials. However, an unrealistic number of polynomials are necessary
to accurately describe the nearly singular shape. The Fokker-Planck approximation of
the linear Boltzmann equation is used to overcome this issue. In this approximation,
the linear Boltzmann equation is transformed into the Fokker-Planck equation, with the
Fokker-Planck operators describing the small angle Coulomb scatter interactions with the
atomic nuclei and the small energy transfers to the atomic electrons. Due to the approxi-
mation, there exists no need to expand the nearly singular differential scatter cross section
into a Legendre series.

1.4 Goals of this Thesis

The goal of this thesis is to investigate the applicability of the SN method to the use of
proton therapy planning, and if it can replace and augment the Monte Carlo method.
Therefore, the main question of this thesis is:

Is the SN method accurate enough to replace the Monte Carlo method in proton ther-
apy planning, and what underlying methods need to be improved to reach its potential
computation speed?

To answer this question, the available models for describing charged particles transport
and the methods for solving the transport equation are investigated on accuracy for pro-
ton transport calculations in the energy range considered in proton therapy (which is
0 - 200 MeV). This investigation can be divided into four parts. In the first part (chap-
ters 2 and 3), the available models for describing the charged particle interaction processes
are investigated. The models adopted in our work are used to evaluate scatter cross sec-
tions, which are validated by comparing them to literature values. Also, the validity of
the Fokker-Planck operators are tested for the energy range considered in proton therapy.
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In the second part (chapters 4 and 5), the methods are presented which we used to solve
the transport equation. In chapter 4, three discretization methods are presented: the
SN method, the step scheme and the discontinuous Galerkin method, which are used for
discretization of the angular, spatial and energy variable in the 1D transport equation
respectively. The result of this discretization procedure is a set of coupled equations. In
chapter 5, the method to solve the set of coupled equations is presented. From this solu-
tion the dose profile can be calculated. In the third part (chapter 6), the discretization
requirements are tested for mono-energetic, and plateau boundary condition problems. In
the final part of this thesis (chapter 7), the results of the previous investigations are used
to set up two benchmark cases. In the final section of the thesis, the SN method is used
to calculate a proton treatment plan for the medulloblastoma patient in the scan of figure
1.1 (left). Based on this investigation, the main question is answered in the final chapter
of this thesis. Also recommendations are made for future work regarding investigations
which need to be performed in order to improve the SN method and make it ready to be
implemented in the clinics.

This report is part of a master thesis research of Technology University of Delft at the
department of Physics of Nuclear Reactors at the Reactor Institute Delft.



2. Proton Interactions with Matter

The basis for the therapeutic suitability of proton therapy is the interaction of protons
with matter. Protons have a high ionization rate at the end of their range, they have a
tendency to go in a straight line through tissue, and the standard deviation in the range
of the protons is very low. These properties of interaction enable us to accurately aim a
proton beam at the tumor side while sparing the surrounding normal tissue.

Protons interact with matter through various mechanisms: elastic and inelastic Coulomb
scatter with atomic nuclei, with atomic electrons, with the atom as a whole and through
catastrophic scatter interactions with the nuclei. In these interactions energy gets lost, the
path of direction changes and secondary particles are created. In modeling these interac-
tion processes we require differential scatter cross sections. These cross sections express
the likelihood of any type of interaction taking place. With these cross sections we have
all the information one needs to model proton therapy. In this chapter we present the in-
teraction processes which are important in the energy range considered in proton therapy,
and how to obtain the differential cross sections to describe these interaction processes.

2.1 Elastic Interactions with the Nucleus

The incident proton interacts with the nucleus through Coulomb forces. Due to these
forces, the incident proton deviates from its original path of direction, and some energy is
transferred during these elastic interactions to satisfy conservation of momentum. As we
will encounter later on in the thesis, this energy loss is very small compared to the energy
lost in the inelastic interactions with the atomic electrons. For this reason, the focus of
this section is on the angular deflection of the incident proton.

Rutherford derived differential cross sections for the elastic scatter process from the
classical equations of motion [11]. Here we present its derivation mainly following the work
of Goldstein [14], starting with the relation between the scattering angle Θ and the impact
parameter b:

b = cot

(
Θ

2

)
ZiZte

2

4πε0m0v2
0

. (2.1)

How to derive this relation can be found in appendix A. The impact parameter b is the
closest distance between the incident proton and the target nucleus, if the proton does
not deflect from its original trajectory. The scattering angle is the angle between the
proton’s original trajectory, and the proton’s trajectory after interacting with the nucleus,
see figure 2.1. Zi and Zt are the charge counts of the incident and the target particle
respectively, ε0 is the vacuum permitivity, v0 is the initial velocity of the incident particle
in the laboratory frame of reference, e is the elementary charge and m0 is the reduced
mass of the incident particle:

1

m0
=

1

mi
+

1

mt
(2.2)

where mi is the mass of the incident particle (which is the proton in this thesis), and mt

is the mass of the target nucleus.
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Figure 2.1: The trajectory of an incident proton with impact parameter b, interacting with a
particle through the Coulomb force. The proton is scattered in angle Θ.

The scattering angle Θ is uniquely determined for an energy E and an impact pa-
rameter b. To determine the differential cross section from this result, we consider its
definition:

dσ

dΩ
=

number of particles scattered into solid angle dΩ per unit time

incident intensity
. (2.3)

Consider the situation depicted in figure 2.1. The number of particles going through the
area 2πbdb on the left hand side of the picture is equal to the number of particles passing
the area of the sphere on the right hand side of the picture: 2π sin ΘdΘ. So the number
of particles scattered into solid angle dΩ per unit time is equal to the ratio of the two
areas multiplied by the incident intensity of protons: I b

sin Θ
db
dΘ . Substituting this into the

definition of the differential cross section in equation 2.3, we obtain:

dσ

dΩ
=

b

sin Θ

db

dΘ
. (2.4)

We use this result together with equation 2.1 to obtain the Rutherford differential scat-
tering cross section:

σ′e(Θ) =
dσ

dΩ
=

(
ZiZte

2

8πε0m0v2
0

)2

csc4

(
Θ

2

)
=

(
ZiZte

2

4πε0m0v2
0

)2
1

4 sin4
(

Θ
2

) . (2.5)

Using the trigonometric identity sin4(Θ) = (1−cos(2Θ))2

4 , the Rutherford differential cross
section takes its final form:

σ′e(Θ) =

(
ZiZte

2

4πε0m0v2
0

)2
1

(1− cos(Θ))2
. (2.6)

This result however, cannot be put into direct use. The Rutherford differential cross
section is singular at a scattering cosine of unity. As a consequence, the total elastic
scattering cross section σe,s is infinite as well:

σe,s =

∫
4π
σ(Ω)dΩ = 2π

∫ π

0
σ′e(Θ) sin(Θ)dΘ =∞. (2.7)

Physically, this makes sense: the total scatter cross section is the total number of particles
scattered in all directions per unit time for unit incident intensity. The range of the
Coulomb force is infinite. Therefore the incident particles show small deflection angles
due to interactions with particles which have large distances between them: the scattering
field is nonzero at all distances. So, σe,s is finite only when a cutoff in the scattering
field occurs. Physically, a cutoff occurs in the Coulomb field, as a result of the bound
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atomic electrons surrounding the nucleus. Those electrons screen the nucleus, canceling
the charge of the nucleus outside of the atom. A lower bound on Θ can be set if one
accounts for the screening of the nucleus [38].

Θmin =
Z

1
3
t αmec

p
(2.8)

Here, p is the momentum of the incident particle, and α is the fine structure constant.
This constant is a measure of the strength of the electromagnetic force that governs the
interaction of electrically charged elementary particles. Goudsmit and Saunderson [16]

included this minimal scattering angle into the analysis to obtain the cross section which
is called the screened Rutherford cross section:

σ′e(Θ) =

(
ZtZie

2

4πε0m0v2
0

)2
1

(1− cos(Θ) + 2η)2
(2.9)

with,

η = Θ2
min. (2.10)

This result is not singular at a cosine of unity. It contains the information on the angular
deflection of the incoming protons due to the Coulomb interaction with the atomic nuclei.
Keen [21] demonstrated this cross section to be very accurate for heavy charged particles,
like protons, for energies above 1 MeV. For energies under 1 MeV, however, the accuracy
deviates significantly. In this work 1 MeV is used as the cutoff energy; the paths of the
incident protons are modeled until they reach the energy of 1 MeV, after which the protons
are assumed to deposit their remaining energy locally. Since the range of a 1 MeV proton
in soft tissue, such as the tissue in the human body, is approximately 10−3 cm [4] (p. 53),
this approximation is well justified.

2.1.1 Transformation of Reference Frame

Before we proceed any further, it must be noted that this analysis so far is done in
the center-of-mass frame. However, it is desirable to have an expression of the cross
section in terms of the scattering angle measured in the laboratory frame. In the work
of Goldstein [14], a relation is derived which expresses Θ in terms of the scattering angle
measured in the laboratory frame ϑ. For protons this relation is:

cos(ϑ) =
cos(Θ) +

mp

mt√
1 + 2

mp

mt
cos(Θ) +

(
mp

mt

)2
(2.11)

with ϑ the scattering angle measured in the laboratory frame and mp the mass of the
proton. This relationship is shown in figure 2.2 for protons interacting with different
target masses with mass mt. An important conclusion can be drawn from the analysis
depicted in this figure: since the mass of an arbitrary nucleus and of the incident proton
is very large compared to that of an electron, the angular deflection due to scatter with
atomic electrons is negligible compared to the angular deflection by the atomic nuclei. This
is demonstrated by substituting the electron mass me as the target mass mt in equation
2.11. For every deflection angle in the center-of-mass frame, the cosine deflection angle
in the laboratory frame is approximately equal to unity. This is taken advantage of in
modeling proton transport, as we will encounter in the next section.

The differential cross section in equation 2.9 has to be expressed in the scatter angle
measured in the laboratory frame of reference. Since the number of particles scattered
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Figure 2.2: Relation between the cosine scattering angle cos(Θ) of the incident proton measured
in the center-of-mass frame, and in the laboratory frame cos(ϑ) for different target nuclei.

into a solid angle must be the same in every coordinate system, we obtain the following
relation:

2πIσ′e(Θ) sin ΘdΘ = 2πIσe(ϑ) sinϑdϑ (2.12)

or,

σe(ϑ) = σ′e(Θ)
sin Θ

sinϑ

dΘ

dϑ
= σ′e(Θ)

d cos Θ

d cosϑ
(2.13)

where σe is the differential elastic scatter cross section expressed in the scattering angle in
the laboratory frame of reference. The derivative in 2.13 can be evaluated with equation
2.11:

σe(ϑ) =

(
1 + 2

mp

mt
cos Θ +

(
mp

mt

)2
) 3

2

1 +
mp

mt
cos Θ

σ′e(Θ). (2.14)

The correction term on the right hand side of this equation transforms the scatter cross
section measured in the center-of-mass frame to the scatter cross section measured in
the laboratory frame. This correction term is plotted in figure 2.3 for incident protons
interaction with various nuclei. From this figure, we see that the scatter angle measured
in the center-of-mass frame differs only 10% from the laboratory frame for most nuclides
considered in proton therapy. However, for a hydrogen nucleus this correction factor is
maximum 4.

Now we have derived the final form of the screened Rutherford differential cross section
for protons (Zi = 1) expressed in the scattering angle in the laboratory frame,

σe(µ0) =

(
1 + 2µ0

At
+ 1

At

2
) 3

2

1 + µ0
At

(
Zte

2

4πε0m0v2
0

)2
1

(1− µ0 + 2η)2
(2.15)
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Figure 2.3: Correction factor for transformation of differential cross section expressed in coordi-
nates in the center-of-mass frame to the differential cross section expressed in coordinates in the
laboratory frame for protons incident of a nucleus, see equation 2.14.

with At the mass number of the target nucleus and µ0 ≡ cos(Θ) the cosine of the deflection
angle.

The screened Rutherford scatter cross section is plotted in figure 2.4 for protons inci-
dent on water. As can be seen from this figure, the cross sections are extremely forward
peaked: the cross sections are nearly singular for angles near cos(Θ) = 1. Physically,
this represents the large number of scatters of the incident proton with a small angular
deflection, and a very few number of large angle scatters. This forward peaked nature
of the screened Rutherford differential cross section causes difficulties in modeling this
interaction process, as we will encounter in the next chapter.

We deliberately did not elaborate on the energy lost by the incident proton in this
interaction process, since it turns out to be negligible compared to the energy lost in the
elastic scatter interaction process with the atomic electrons. This is demonstrated in the
next section.

2.2 Inelastic Interactions with Atomic Electrons

The incident proton interacts with the atomic electrons through the Coulomb forces. This
interaction process is inelastic, since energy is used to alter or break the bond between the
atomic electrons and its nucleus. As for the elastic scatter of atomic nuclei, we would like
to derive differential cross sections for the interaction process of the incident proton with
the atomic electrons.

Two types of collisions with atomic electrons can be distinguished: hard collisions and
soft collisions. In a hard collision, the binding energy of the electron is negligible compared
to the energy transferred to the electron. Therefore, the electron can be seen as free, which
greatly simplifies the analysis. Soft collisions, on the other hand, are the collisions in which
the binding energy of the electron is not negligible compared to the energy transferred in
the collision. In the case of soft collisions, the electron must be treated as bound. This
type of interaction is more difficult to model.

In both types of collisions, energy is transferred from the proton to the electrons, and
the proton gets deflected from its original direction of movement. However, as we have
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Figure 2.4: Screened Rutherford cross section for incident protons on water for various energies.
The cross sections are nearly singular at µ0 = 1.

seen in the previous section, the angular deflection in this process is negligible compared
to the angular deflection due to interaction with the atomic nuclei. Therefore, the focus of
this section is on the energy transferred from the incident proton to the atomic electrons.

2.2.1 Hard Collisions

In a hard scatter collision, the energy transferred from the incident proton to an atomic
electron is much larger than the binding energy of that electron. As a consequence, the
electron can be treated as if it were free, and the collision can be considered elastic. Elastic
scatter can be modeled with the Rutherford cross section derived in the previous section.
This analysis follows the work of Evans [11].

Because the velocity of the incident proton is several orders of magnitude larger than
the velocity of the bound electron, the electron may be considered a stationary particle.
Therefore, the energy of the electron after the collision is equal to the energy lost Q by
the incoming proton:

Q =
1

2
mev

2
e . (2.16)

From the conservation laws, a relation can be derived between the energy lost Q by the
incident proton and its deflection angle Θ [11]:

Q =
1

2
me

(
2v0m0

me

)2

sin2 Θ

2
. (2.17)

The differential of this energy loss:

dQ = 2
v2

0m
2
0

me
sin

Θ

2
cos

Θ

2
dΘ (2.18)

substituting into equation 2.6 the value of cos Θ
2 dΘ of the above equation and the value

of sin2 Θ
2 from equation 2.17 leads to:

σin,hard(Q) =
dσin,hard
dQ

=
2πe4

(4πε0)2mev2
0

1

Q2
. (2.19)
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Figure 2.5: Screened Rutherford cross section for hard collisions between incident protons and
electrons for various energies. The cross sections are nearly singular at Q = 0.

Here, we have derived a simple formulation for the energy loss of the hard collision between
an incident proton and an atomic electron. In figure 2.5 this differential cross section is
plotted for protons incident on water. As can be seen from this figure, this cross section
is nearly singular near Q = 0. Physically this represents the large number of interactions
with a small amount of energy transferred from the proton to the electron. Note that,
although this energy transfer near Q = 0 is small compared to the maximum energy
transferred from proton to electron Qmax, it is still very large compared to the binding
energy of the electron. Therefore, the collisions can still be seen as hard, relatively close
to Q = 0 in the figure. In the energy range in the order of magnitude of the electrons
binding energy, however, the collisions can no longer be considered hard, and we have to
apply a different analysis.

2.2.2 Soft Collisions

A large amount of soft scatter interactions take place between the incident proton and the
atomic electrons. In these interactions, the distance between the incident proton and the
electrons is relatively large, and the energy transferred to the electron is relatively small.
Therefore, unlike in hard collisions, the electron must be regarded as bound. So, instead
of considering the energy transferred to just the electron, one should consider the energy
transferred to the system formed by all of the electrons and nucleons in the atom. In other
words, the protons interact with the atom as a whole.

The two most prominent theories on soft collision scatter are derived by Bohr and
Bethe [28]. Bohr treated the atomic electrons as harmonic oscillators. The energy lost by
the incident particles is calculated using classical electrodynamics. Bethe performed his
analysis through detailed quantum-mechanical calculations using the Born approximation.
In the energy range considered in proton therapy, Bethe’s theory is in best agreement with
experimental results [28]. Therefore, his theory is adopted in this thesis. For a detailed
derivation of the soft scatter differential cross section, the reader is referred to the work
of McPalrand [28]. Because of the complexity of this derivation, only the final result is
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presented here:

σin,soft(Q) =
dσin,soft
dQ

=
2πe4

(4πε0)2mev2
0

1

Q

dfn
dEn

(2.20)

where dfn
dEn

represents the generalized oscillator strength (GOS) per unit energy transfer,
which is a generalization of the optical oscillator strength. Physically this dimensionless
quantity expresses the strength of the transition from one quantum state of the atom to
another.

The total differential cross section is obtained by adding the effect of the soft collision
scatter with the hard collision scatter:

σin(Q) = σin,soft(Q) + σin,hard(Q) =
2πe4

(4πε0)2mev2
0

(
1

Q

dfn
dEn

+
1

Q2

)
. (2.21)

In the previous section, we concluded that the process of angular deflection was dominated
by elastic scatter of atomic nuclei. A second important conclusion can be drawn from the
result in equation 2.21: the process of energy loss is dominated by the inelastic scatter of
atomic electrons. This is demonstrated by replacing the mass of the electron by the mass
of any arbitrary nucleus. Since the mass of the nucleus is at least 1836 larger than the
mass of the electron, this cross section is negligible small compared to the cross section of
the scatter of atomic electrons. So, the energy lost by the incident proton is dominated by
the process of inelastic scatter with the atomic electrons. In modeling proton transport,
advantage is taken from these differences in nature of these processes; the energy loss of
the incident proton in the interaction process with the atomic nuclei can be neglected
compared to the energy lost to the atomic electrons. In modeling the angular deflection
of the proton, on the other hand, the interaction process with the atomic electrons can be
neglected compared to the interaction with the atomic nuclei. Separation of these physical
processes greatly simplifies the modeling of proton transport, as we will see in the next
chapter.

2.3 Inelastic Interactions with the Nucleus

Two types of inelastic interactions with the nucleus can be distinguished: catastrophic
scatter reactions, and interactions which result in bremsstrahlung. For the energy range
in proton therapy bremsstrahlung is a small and negligible process [11] (p. 632). Catas-
trophic reactions, on the other hand, are not negligible. In these reactions, the incident
proton penetrates the nucleus interacting with the individual nucleons. In this interaction
process the proton can get absorbed and various secondary particles can be created such
as electrons, neutrons, photons, secondary protons, and also heavy fragments. Some of
these secondary particles will deposit their energy locally, other particles deposit their
energy over a large range, contributing to a secondary dose. This secondary dose is small
compared to the primary dose of the incident protons. However, we should not ignore it
as this dose may be deposited in surrounding tissue where critical organs may be present.
So, to acquire an accurate dose deposition profile, the paths of these secondary particles
with significant range and energy have to be modeled as well. The differential cross section
containing the information on catastrophic scatter reactions are, for the purpose of this
thesis, generated by the SADCO [15] code.

2.3.1 The SADCO Code

The SADCO [15] system is a code developed to prepare multi-group cross sections for
deterministic multi-group calculations. This algorithm is based on an approximation of
the available experimental data, accumulated in RD [10] and SADCO nuclear databases,
and calculated data using nuclear models.
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Figure 2.6: Multi-group coupled differential cross sections expanded in a P11 Legendre series,
evaluated with the SADCO code. Left: proton to neutron cross sections from energy group g to g′.
Right: proton to proton cross sections from energy group g to g′.

For the purpose of this thesis, the SADCO code is used for generating coupled multi-
group cross sections for the catastrophic scatter interaction process, for protons, pions
and neutrons in the energy range of 20−200 MeV. To illustrate the data of SADCO, in
figures 2.6 and 2.7 multi-group cross sections from a cross section library with 3 MeV wide
energy groups are shown, where Eg is the center energy value of energy group g. The cross
section are expanded in a P11 Legendre series, which is the standard number of Legendre
moments generated by the SADCO code.

Figure 2.6 (left) shows differential cross sections from incident proton to secondary
proton. The truncation of the Legendre series is clearly visible in the bumpy shape of these
cross sections, suggesting that the cross sections are not completely faithfully represented
by the P11 Legendre expansion. In future work, the validity of these cross sections should
be confirmed by literature values, or by cross sections evaluated with a different code, for
example MCNPX.

Figure 2.6 (right) shows differential cross sections from incident proton to secondary
neutron. Just as in the proton to proton differential cross sections, the truncation of the
Legendre series is clearly visible in the bumpy shape of these cross sections.

The differential cross sections for protons incident on hydrogen are shown if figure 2.7
(left). The alternating shape and the negative values suggest these cross sections to be
unphysical. This problem is discussed in the following section.

The total cross sections of the catastrophic scatter process σC,s is shown in figure
2.7 (right). This total cross section expresses the likelihood of any catastrophic scatter
interaction taking place for particles carrying energy E, including absorption. These
cross sections increase with an decreasing energy. Below the 20 MeV these cross sections
decrease in magnitude [22]. These values are similar compared to the values for the total
cross sections evaluated in the work of Kesley [22].

Problems Encountered Using the SADCO Code

Four problems were encountered in using the SADCO code for the purpose of describing
the catastrophic scatter interaction process of protons in the energy range considered in
proton therapy:
(i) The coupled differential cross sections generated by the SADCO code suggest no sec-
ondary particles other than protons and neutrons are created. However, experiments show
that photons are created [33], as well as some other more heavy fragments. These heavy
fragments are likely to deposit their energy very locally, and can therefore be ignored in
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Figure 2.7: Multi-group coupled differential cross sections expanded in a P11 Legendre series,
evaluated with the SADCO code. Left: proton to proton cross sections on hydrogen from energy
group g to g′. Right: multi-group total cross sections for protons incident on water.

the modeling process. The photons, on the other hand, do not deposit their energy locally.
It is desirable to obtain information about the creation of photons for two reasons: first,
the energy of these photons is deposited over a large range, contributing to a secondary
dose in parts of the patient where critical organs may be present. Second, the creation
of prompt photons can be used to verify the calculated particle field. This is used to
verify the treatment plan during treatment. This is important since small errors in the
treatment plan can lead to significant dose in normal tissue and, therefore, these small
errors need to be detected during treatment. However, although it is desirable to have
this information on these secondary photons, it is not strictly necessary for the purpose
of our work. Therefore, this problem is accepted in this thesis.
(ii) The differential scatter cross sections for protons incident on a hydrogen nucleus have a
strange and unphysical shape, see figure 2.7 (left). Since the hydrogen nuclide is a nuclide
frequently encountered in body tissue, it is desirable to have an accurate cross section of
this nuclide for the catastrophic scatter process. In future work, other methods to obtain
these cross sections should be investigated, for example with the code MCNPX. In this
work, however, these cross sections are accepted since the scatter of hydrogen is a small
and a relatively unimportant process compared to Coulomb scatter.
(iii) SADCO does not generate catastrophic differential scatter cross sections for energies
E < 20 MeV. In this thesis, the effects of the catastrophic scatter process is assumed to be
small in this energy range and is neglected. This can be justified by noting that low energy
protons are less likely to overcome the repelling Coulomb forces of the nucleus [22]. If sec-
ondary particles are created by protons with an energy less than 20 MeV, these particles
will carry a relatively small amount of energy themselves, and are more likely to deposit
their energy locally. So, the missing information in this area is expected to be relatively
unimportant. In this work, this incomplete description of the catastrophic scatter process
is accepted. However, in future work, differential cross sections for the catastrophic scatter
process should be obtained by other means, for example by means of the computer code
MCNPX [32], to acquire a more complete description of the particle-field.
(iv) The maximum order of expansion of the differential cross sections generated by the
SADCO code is P16. Future studies should verify if this order of expansion is enough
to describe the catastrophic scatter process. In this work, however, we only used a P10

expansion of the differential scatter cross sections of the catastrophic scatter interaction
process. This due to computation and storage space considerations, and we assumed this
is an accurate enough description.
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So concluding, problems were encountered using the SADCO code and in future work
an alternative code should be investigated to obtain differential scatter cross section for the
catastrophic scatter process. In this work these problems are accepted, and the SADCO
code is used to generate the differential scatter cross sections for the catastrophic scatter
process.

2.4 Conclusions

Three main interaction processes of protons with matter are identified: elastic Coulomb
interaction with atomic nuclei, inelastic Coulomb interactions with atomic electrons and
catastrophic scatter interactions. The energy lost by the protons in the elastic Coulomb
scatter of the atomic nuclei is negligible compared to the energy lost in the inelastic
Coulomb scatter of the atomic electrons, and vice versa for the angular deflection of the
protons. The Coulomb interactions are modeled by Rutherford differential cross sections
and by Bethe’s theory. This is accurate for energies above 1 MeV. This is an acceptable
cut off energy for proton therapy since the typical range of a 1 MeV proton through tissue
is short (of the order of 10−3 cm).

The catastrophic scatter interactions are modeled by the SADCO code. In this thesis,
the problems encountered using the SADCO code are accepted, and the results of the
SADCO code are used to describe the catastrophic scatter interaction process. This can
be justified since the catastrophic interaction process is relatively unimportant compared
to the Coulomb interaction processes. However, in future work, to obtain a more accurate
and complete solution of the problem, an alternative code for obtaining these cross sections
should be investigated, for example the MCNPX code.



3. Mathematical Description of Proton
Transport

The central problem in proton therapy planning is to determine the distribution of the
protons in the treatment area. Proton transport is the process in which protons stream
from one place to the next and interact with the atomic nuclei and the atomic electrons.
The linear Boltzmann equation is the equation which is adopted in this thesis to describe
this process. This equation is derived starting from a balance equation of the angular
proton distribution. It can be solved analytically for the simplest of problems only. In
general, for problems considered in this thesis, the linear Boltzmann equation can only be
solved numerically.

In the next section we discuss the underlying assumptions of the linear Boltzmann
equation and the physical interpretation of the operators in the linear Boltzmann equation.
In the following sections we present an approximation of the linear Boltzmann equation
(the Fokker-Planck equation) which enables computer codes to solve the equation using
little computation time compared to solving the equation without this approximation. In
the final section, we demonstrate the accuracy of the Fokker-Planck equation to be on
the verge of validity for the description of angular deflection of the incident protons, after
which we discuss a hybrid method to overcome this issue.

3.1 The Linear Boltzmann Transport Equation

3.1.1 Justification of the Underlying Assumptions

Since the linear Boltzmann equation is the basis of all the following work in this thesis, a
few words will be spend on the properties of the equation and the assumptions underlying
the equation, and on how these assumption can be justified for the purpose of describing
proton transport in the energy range considered in proton therapy:
Assumption: the free motion of the particles can be described using classical
mechanics. States of the proton, such as spin, do not influence the free movement of the
proton in the energy range considered in proton therapy.
Assumption: only binary collisions take place; three body collisions are as-
sumed to be negligible. This can be justified since the proton density is in the order
of magnitude of 1010 cm−3, while the atom density of a typical tissue is around the 1023

cm−3, making the occurrence of a three or more body collision very unlikely.
Assumption: no proton-proton interaction can take place. Protons interact with
each other through the Coulomb forces, which can extend over a long range. However,
since the large number of atoms present in tissue compared to the number of free protons,
the charges of the protons get screened from each other by the atomic electrons, interfering
with the protons to have long range Coulomb interactions.
Assumption: the properties of the host medium are not altered. This can be
justified since the catastrophic scatter cross sections are small (catastrophic scatter is the
process which alter the material properties), and the number of protons are small com-
pared to the number of atoms. As a consequence, the number of atoms which are altered
during the treatment is small, and so the properties of the material are not altered signif-
icantly.

19
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Property: the linear Boltzmann equation only describes the mean particle den-
sity distribution. Fluctuations in the distribution are present, since the interaction of
protons with matter is a stochastic process. To capture these fluctuations, other terms in
the equation are necessary. But since we are only interested in the total deposited energy,
which can be obtained by integrating the average dose deposition over time, we are not
interested in capturing the fluctuations in the delivered dose per unit time, but only in
the average delivered dose per unit time.
Since these assumptions can be justified for the interest of proton therapy, and the equa-
tion is known to be very accurate for neutron transport problem where these assumptions
can be justified as well, we assume the transport of protons through matter is accurately
described by the linear Boltzmann equation.

3.1.2 Physical Interpretation of the Operators

The linear Boltzmann equation contains seven independent variables: one in time, three
in the position ~r, one in the kinetic energy E and two in the direction of movement Ω̂.
In proton therapy planning, we are only interested in the steady state solution of the
problem, leaving us with six independent variables described by the steady state linear
Boltzmann equation:

Ω̂ · Oϕ(~r,E, Ω̂) + σtϕ(~r,E, Ω̂) =

∫
4π

∫ ∞
0

dE′σs(~r,E
′ → E, Ω̂′ → Ω̂)ϕ(~r,E′, Ω̂′)dΩ̂′ (3.1)

Here we introduce the symbols and the physical interpretation of the operators in the
equation. For a complete derivation of this equation, the reader is referred to the work of
Duderstadt and Hamilton [9].

The quantity considered in this equation is the angular flux ϕ(~r,E, Ω̂). It may be
interpreted as the particle density with kinetic energy E, moving in direction Ω̂ through
the surface of the unit sphere at position ~r. The first term on the left hand side is the
streaming term, which describes the free movement of the particles through the problem
domain. The second term is the total removal term, describing all the interactions of the
particles, causing the particles to scatter to an energy different from E and a direction of
travel different from Ω̂, or get absorbed by the target nucleus. The rate of this interaction
is proportional to the total cross section σt and to the angular flux ϕ(~r,E, Ω̂). The term
on the right hand side is the Boltzmann scatter operator. This operator describes the
particles scattered from all the energies E′ and direction of movement Ω̂′ to the energy
and direction of movement which is being considered; E and Ω̂. In this operator, no
distinction is made between the types of scatter interactions.

3.1.3 Separation of the Scatter Interactions

In the previous chapter, we have distinguished between three types of scatter interactions:
catastrophic scatter, inelastic scatter with atomic electrons and elastic scatter with atomic
nuclei. It is convenient to separate the Boltzmann scatter operator into three terms, each
representing one of these three scatter interactions:

Ω̂ · Oϕ(~r,E, Ω̂) =

∫
4π

∫ ∞
E

σC(~r,E′ → E, Ω̂′ → Ω̂)ϕ(~r,E′, Ω̂′)dΩ̂′dE′ − σC,sϕ(~r,E, Ω̂)

+

∫
4π
σe(~r,E, Ω̂

′ → Ω̂)ϕ(~r,E, Ω̂′)dΩ̂′ − σe,sϕ(~r,E, Ω̂) (3.2)

+

∫ ∞
0

σin(~r,E +Q→ E, Ω̂)ϕ(~r,E +Q, Ω̂)dQ− σin,sϕ(~r,E, Ω̂),

where σC is the catastrophic scatter cross section, σe is the elastic scatter cross section,
and σin is the inelastic scatter cross section, defined in the previous chapter. In this
equation the total scattering cross section is replaced by the total cross section of the
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three interaction processes: σt = σC,s + σe,s + σin,s. The first term on the right hand
side of the equation represents all the particles having energy E and moving in direction
Ω̂ after a catastrophic scatter interaction with a nucleus. Notice that the integral in
this term is from E′ = E instead of E′ = 0. This is because we assume that no upscatter
interactions take place (the protons only lose energy in this interaction process). The third
term on the right hand side represent the particles which have a direction of movement Ω̂′

before a elastic scatter interaction with a nucleus, and a direction of movement Ω̂ after the
interaction. Since the energy loss in this interaction process is neglected, the particles have
energy E before and after the interaction. The rate of this interaction is proportional to
the elastic scatter cross section σe. The fourth term on the right hand side of 3.2 represents
all the particles which have direction of movement Ω̂ before a elastic scatter interaction,
and are scattered to a direction of movement different from Ω̂. The fifth term on the right
hand side of equation 3.2 represents the particles with an energy different from E before
and energy E after a inelastic scatter interaction with the atomic electrons. The angular
deflection of this interaction process is neglected. Hence, the particles have a direction of
movement Ω̂ before and after the interaction. The final term of equation 3.2 represents the
particles having energy E before a inelastic scatter interaction with the atomic electrons
and an energy different from E after the interaction. A solution of 3.2 will give us all
the information we need on the proton field, including the creation of secondary particles.
Trying to solve this equation directly with a deterministic code, however, gives rise to a
practical problem as we will see in the next section.

3.1.4 Introduction of Flux Definitions

The quantity of interest in the Boltzmann equation is the angular flux ϕ(~r,E, Ω̂). Before
we continue, we need to introduce three quantities which will be used in the following
sections: the angular depending differential flux ϕ(~r, Ω̂), the energy spectrum or the energy
depending differential flux ϕ(~r,E) and the scalar flux φ(~r).

The angular depending differential flux can be interpreted as the particle density at
position ~r moving in direction Ω̂ and can be expressed in terms of the angular flux as:

ϕ(~r, Ω̂) =

∫ ∞
0

ϕ(~r,E, Ω̂)dE. (3.3)

The energy depending differential flux can be interpreted as the particle density with at
position ~r with energy E and can be expressed in terms of the angular flux as in:

ϕ(~r,E) =

∫
4π
ϕ(~r,E, Ω̂)dΩ̂. (3.4)

The scalar flux can be interpreted as the total number of particles moving through the
surface of the unit sphere at position ~r. The scalar flux can be expressed in terms of a
differential flux or in terms of the angular flux as in:

φ(~r) =

∫ ∞
0

∫
4π
ϕ(~r,E, Ω̂)dΩ̂dE =

∫
4π
ϕ(~r, Ω̂)dΩ̂ =

∫ ∞
0

ϕ(~r,E)dE. (3.5)

3.2 The Fokker-Planck Approximation

Significant problems arise when treating charged particle transport with conventional
means in deterministic methods, due to the nearly singular shape of the differential cross
sections, see figures 2.4 and 2.5. In deterministic methods, it is common practice to expand
the differential cross section in Legendre polynomials (up to P10 is standard, due to com-
putation time and storage considerations). Smooth functions can be approximated well
with a relatively low order expansion, see figure 3.1(a). In this figure, a smooth example
scoss section is expanded, and well approximated, by a P10 Legendre expansion. However,
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Figure 3.1: The nearly singular differential cross sections of charged particles expanded in Leg-
endre functions.
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the differential cross sections in charged particles interaction are nearly singular, see figure
3.1(b). In this figure, the differential cross section of protons with an energy of 100 MeV
incident on water is shown. This cross section increases near µ0 = 1 with approximately
15 orders of magnitude. A very high order of expansion is needed to accurately represent
such a cross section. In figure 3.1 this cross section is expanded up to a P500 Legendre
series, and even with this high order expansion, the cross section is still not represented
well. Also, to describe these large number of small angle scatters and small energy trans-
fers, an unrealistic fine angular and energy grid are necessary. Since it is important in
the modeling process that these cross sections are accurately represented, and since the
computation expense and storage space increases with the order of the Legendre expansion
and grid size, it is inconvenient to treat these cross sections by conventional means.

The Fokker-Planck approximation offers a solution to these problems. In this approach,
the small angle scatter in the elastic scatter interaction process with the atomic nuclei
is approximated by the continuous scatter operator, and the small energy losses in the
inelastic scatter interaction process with the atomic electrons is approximated by the
continuous slowing down and energy straggling operators. Due to the formulation of this
approximation, there is no further need to describe the near singular differential cross
section with Legendre polynomials, resulting in reduced computation time.

In the following section, a short derivation of these Fokker-Planck operators is pre-
sented, followed by a brief discussion on the physical interpretation and the accuracy of
these operators.

3.2.1 Continuous Scatter Operator

In this section, we demonstrate how to derive the continuous scatter operator by applying
the Fokker-Planck approximation to the Boltzmann scatter operator LB,e of the elastic
scatter interaction process of charged particles with atomic nuclei. This derivation follows
the work of Leakeas and Larsen [24]. The Boltzmann operator of this process for particles
with an arbitrary energy at an arbitrary position is given by:

LB,eϕ(Ω̂) =

∫
4π
σe(Ω̂

′ → Ω̂)ϕ(Ω̂′)dΩ̂′ − σe,sϕ(Ω̂). (3.6)

The first step is to expand the elastic differential cross section into spherical harmonic
functions:

σe(µ0) =
∞∑
l=0

σe,l

l∑
m=−l

Y m
l (Ω̂)Y ∗ml (Ω̂′) (3.7)

with the Legendre moments σe,l given by:

σe,l = 2π

∫ 1

−1
σe(µ0)Pl(µ0)dµ0. (3.8)

Notice that we have replaced Ω̂′ → Ω̂ by the cosine scatter angle µ0. We could do this since
we assume that only isotropic materials are considered in proton therapy. In isotropic
materials the scattering angle, and also the cosine of the scatter angle µ0 = Ω̂′ · Ω̂, is
independent of the incoming direction of movement Ω̂′ of the incident proton. The second
step is to expand the angular flux in these same spherical harmonic functions:

ϕ(Ω̂) =
∞∑
l=0

l∑
m=−l

φlmY
m
l (Ω̂) (3.9)

where,

φlm =

∫
4π
ϕ(Ω̂)Y m

l (Ω̂)dΩ̂. (3.10)
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With these expressions and using the orthogonality property of the spherical harmonic
functions, the Boltzmann scatter operator becomes:

LB,eϕ(Ω̂) =

∞∑
l=0

σe,l

l∑
m=−l

φlmY
m
l (Ω̂)− σe,s

∞∑
l=0

l∑
m=−l

φlmY
m
l (Ω̂). (3.11)

Since the differential cross section is peaked near µ0 = 1 we can approximate the Legendre
polynomials in equation 3.8 by a Taylor series about µ0 = 1.

σe,l ≈ 2π

∫ 1

−1
σe(µ0)

(
Pl(1) + P ′l (1)(µ0 − 1) +O(µ0 − 1)2

)
dµ0

= σe,s − σtrP ′l (1) +O
(
σe,s(µ0 − 1)2

)
(3.12)

with,

σtr = 2π

∫ 1

−1
(1− µ0)σe(µ0)dµ0. (3.13)

Legendre polynomials have the following basic property:

P ′l (1) =
l(l + 1)

2
(3.14)

Plugging this back into 3.12 gives:

σe,l ≈ σe,s − σtr
l(l + 1)

2
+O

(
σe,s(µ0 − 1)2

)
. (3.15)

We have used Legendre and Taylor expansions to rewrite the Boltzmann scatter term. In
the next step, we assume the differential cross section is forward peaked enough to express
it with only a first order Taylor expansion. With this approximation, the expression of
the Boltzmann scatter operator becomes:

LB,eϕ(Ω̂) ≈ σtr
2

∞∑
l=0

−l(l + 1)
l∑

m=−l
φlmY

m
l (Ω̂) (3.16)

The spherical harmonics functions are the eigenvalues of the angular part of the Laplace
operator:

O2
Ω̂
Y m
l = −l(l + 1)Y m

l . (3.17)

Now, we use all of the above to obtain the final expression for the first order Taylor
approximation of the Boltzmann scatter operator:

LB,eϕ(Ω̂) ≈ σtr
2

∞∑
l=0

l∑
m=−l

φlmO
2
Ω̂
Y m
l (Ω̂) =

σtr
2
O2

Ω̂

( ∞∑
l=0

l∑
m=−l

φlmY
m
l (Ω̂)

)
=
σtr
2
O2

Ω̂
ϕ(Ω̂)

=
σtr
2

[
∂

∂µ
(1− µ2)

∂ϕ(Ω̂)

∂µ
+

1

1− µ2

∂2ϕ(Ω̂)

∂φ2

]
. (3.18)

Here, we have transformed an integro-differential operator into a differential operator
which is much easier to solve. This Fokker-Planck operator is the continuous scatter
operator. Physically, this operator represents the diffusion of flux over the unit sphere; in
a proton pencil beam, the protons are introduced in the problem domain all having the
same direction of movement. This is represented by an infinitely small dot on the surface of
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the unit sphere. As the protons penetrate through the material, the direction of movement
deviates from their original trajectory. This process is represented by the diffusion of this
dot over the surface of the unit sphere. The rate in which this dot diffuses over the unit
sphere is proportional to the first moment of the elastic scatter cross section σtr(E), which
is called the momentum transfer cross section, or the transport cross section. Physically, it
represents the average angular deviation of the incident particle per unit distance traveled.
So instead of modeling the large number of small angle scatters, with this operator we
only model the average angular deflection of the protons per unit distance traveled. The
momentum transfer cross section can be evaluated by substituting the screened Rutherford
cross section for σe from the previous chapter, equation 2.15:

σtr(E) = 2π

∫ 1

−1
(1− µ0)σe(µ0)dµ0

= 2π

∫ 1

−1
(1− µ0)

(
1 + 2µ0

At
+ 1

At

2
) 3

2

1 + µ0
At

(
Zte

2

4πε0m0v2
0

)2
1

(1− µ0 + 2η)2
dµ0. (3.19)

Unfortunately, this integral is very difficult to solve analytically, and therefore one should
use numerical integration. For heavy nuclei, the scattering angle of the proton measured
in the center of mass frame is approximately equal to the scattering angle measured in
the laboratory frame: ϑ ≈ Θ. Using this approximation, the transport equation can be
evaluated analytically:

σtr(E) = 2π

∫ 1

−1
(1− µ0)σe(µ0)dµ0

≈ 2π

∫ 1

−1
(1− µ0)

(
Zte

2

4πε0mpv2
0

)2
1

(1− µ0 + 2η)2
dµ0 = 2π

(
Zte

2

4πε0mpv2
0

)2(
ln
η + 1

η
− 1

η + 1

)
(3.20)

where we used m0 ≈ mp. In this thesis, this expression is used to evaluate all of the
momentum transfer cross sections, including those of the light elements. The error due
to this approximation is around 10%, except for hydrogen, for which the error is much
larger, see figure 2.3. However, the magnitude of the momentum transfer coefficient for
hydrogen turns out to be negligible compared to the momentum transfer cross sections
of the other elements. This is demonstrated by comparing the result of equation 3.19
with Zt = 1 and At = 1 for hydrogen and, for example, Zt = 8 and At = 16 for oxygen.
The total error in using equation 3.20 instead of numerically evaluating the integral in
equation 3.19 for evaluating the momentum transfer cross sections of materials considered
in proton therapy, is estimated to be approximately 10%. In future work a numerical
integration routine should be developed to evaluate the integral in equation 3.19 precisely
and efficiently. In this work, the error of 10% is accepted in the value of the moment
transfer coefficient, and no distinguishing is made between the scatter angle measured in
the laboratory reference frame ϑ and the center-of-mass frame Θ in the rest of this thesis.

In figure 3.2, the value of the momentum transfer cross section is shown for protons
incident on water. From this figure we see that this cross section increases significantly in
the low energy range. Physically representing the proton starting to deviate strongly from
its original trajectory at the end of its range where its energy is relatively small, resulting
in a trumpet-like shape of the proton field.

3.2.2 Continuous Slowing Down and Energy Straggling Operators

The Fokker-Planck approximation for the inelastic scatter has an analogous derivation.
As little energy is lost in every collision, the differential cross section is peaked near Q = 0,
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Figure 3.2: Momentum transfer cross section σtr(E) for protons incident on water.

allowing it to be approximated with a Taylor series. Including terms up to 2nd order in
the Taylor series will lead to:

LB,inϕ(E) =

∫ ∞
0

σin(E +Q→ E)ϕ(E +Q)dQ− σin,sϕ(E)

≈ ∂S(E)ϕ(E)

∂E
+

1

2

∂2T (E)ϕ(E)

∂E2
. (3.21)

The coefficient S(E) and T (E) are the first and second moment of the inelastic cross
section respectively. S(E) is the stopping power and T (E) the energy straggling coefficient.
In this section, we elaborate on the physical interpretation of these two Fokker-Planck
operators and their corresponding coefficients. A complete derivation of these Fokker-
Planck operators can be found in appendix B.

Stopping Power

The first term on the right hand side of equation 3.21 is what we call the continuous slowing
down operator. Physically, this operator represents the continuous energy transfer of the
incident proton to the atomic electrons. The rate of this energy transfer is given by the
first moment of the inelastic cross section

S(E) =

∫ ∞
0

σin(Q)QdQ (3.22)

and is called the stopping power. Two types of inelastic scatter interactions with the
atomic electrons contribute to the stopping power: the soft scatter interactions and the
hard scatter interactions. The contribution to the stopping power of soft scatter is obtained
by integrating the soft scatter differential cross section in equation 2.20 from the minimum
possible energy transfer to the bound electron Qmin, up to some maximum value H, for
which the collision can still be considered soft. The minimum possible energy transfer
Qmin is in the order of the geometric mean of all the ionization and excitation potentials
I of the target atom. This value cannot be determined analytically, except for hydrogen.
Therefore, this constant is determined empirically for each element. In this thesis, the
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Figure 3.3: Stopping power S(E) of protons incident on water.

values of I in eV as proposed by Turner [41] are used.

Ssoft(E) =

∫ H

Qmin

Qσin,soft(Q)dQ =

∫ H

Qmin

Q
2πZ2

i e
4

(4πε0)2mev2
0

1

Q

dfn
dEn

dQ

=
2πe4

(4πε0)2m0v2
0

ln
2m0v

2
0H

I2
(3.23)

with,

I =


19 for Zt = 1

11.2 + 11.7Zt for 2 ≤ Zt ≤ 13
52.8 + 8.71Zt for Zt > 13.

(3.24)

The contribution of the hard scatter collisions is obtained by integrating the hard scatter
differential cross section from equation 2.19 from the value from which the collision can
be considered hard H to the maximum energy transferred in one such collision Qmax.

Shard(E) =

∫ Qmax

H
Qσin,hard(Q)dQ =

∫ Qmax

H
Q

2πZ2
i Z

2
t e

4

(4πε0)2mev2
0

1

Q2
dQ

=
2πe4

(4πε0)2m0v2
0

ln
Qmax
H

(3.25)

The largest amount of energy transferred in one collision can be derived from the conser-
vation law for energy and momentum [11],

Qmax = Ek

 1 +
(

2mpc2

Ek

)
1 + (mp +me)2

(
c2

2meEk

)
 (3.26)

where Ek is the kinetic energy of the incident proton. In the energy range considered in
proton therapy, this relationship reduces to the following:

Qmax = 2mev
2
0. (3.27)



28 3. MATHEMATICAL DESCRIPTION OF PROTON TRANSPORT

20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

10
0

T
 [M

eV
2  c

m
−

1 ]

E [MeV]

Figure 3.4: The energy straggling coefficient T (E) for protons incident on water.

Using this result, and adding the contribution of the soft and the hard scatter, we obtain
the total stopping power for protons:

S(E) = Ssoft + Shard =
4πe4

(4πε0)2mev2
0

ln
2mev

2
0

I2
. (3.28)

This is the stopping power for incident protons per electron. From this result, we see
that the value of H is arbitrary, since it cancels out when the soft- and hard scatter
contributions are added.

From figure 3.3 we recognize the nature of energy deposition of the incident protons:
the incident protons transfers relatively little energy to their surroundings when their
energy is high. When the protons reach the end of their ranges through the material, their
energy is relatively low, and the magnitude of the stopping power increases significantly.
As a consequence, the protons deposit their remaining energy very locally at the end of
their range, which results in the Bragg peak.

Energy Straggling Coefficient

The second term on the right hand side of equation 3.21 is the energy straggling operator.
Physically, this operator represents the stochastic nature of the interaction process between
the incident proton and its surrounding medium; not every proton has the same amount
of energy after passing a fixed amount through a material, and not every proton has the
same range through the material. In modeling, this operator acts as a diffusion operator
in the energy domain, with the energy straggling coefficient T (E), the second moment
of the inelastic differential cross section, as a diffusion coefficient. Williams [43] included
quantum mechanical effects of the electron binding in his derivation of T (E). The final
result is

T (E) = 4πe4

(
1 +

kI

m0v2
0

ln
2m0v

2
0

I

)
(3.29)

where k = 4
3 is assumed to obtain approximate results for any atom. The energy straggling

coefficient is shown in figure 3.4 for protons incident on water. From this figure we see
that the energy straggling coefficient does not increase in magnitude as much in the low
energy range as the two other Fokker-Planck coefficients.
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Figure 3.5: Stopping power evaluated with equation 3.28 compared to literature values of
PSTAR [2].

3.2.3 Validation of the Coefficients

So far, we have introduced three coefficients based on models derived in the previous
sections: the stopping power S(E), the momentum transfer coefficient σtr(E), and the
energy straggling coefficient T (E). In order to validate these models, the outcomes of
these models are compared to literature values.

To compare momentum transfer coefficients and the energy straggling coefficients, we
used the work of Kelsey [22]. For energy straggling coefficients, we have obtained similar
result to those found in his work. Kelsey used two methods to evaluate the momen-
tum transfer cross sections: the screened Rutherford model and a computer code called
MCNPX. Our results are similar to screened Rutherford results found in his work. The
results of the MCNPX model, however, differ approximately by a factor of two. This
uncertainty in the momentum transfer coefficient is much larger than the 10% error which
we allowed for, in our model in the previous chapter.

Values of stopping power for protons on various materials are well documented in
literature. Both experimental data and models are available to compare results with. In
this work, we compare our data with the data from PSTAR [2]. PSTAR generates stopping
powers for protons as tabulated in ICRU report 49 [19]. In figure 3.5, the results are shown
of stopping power value evaluated by PSTAR for three materials: PMMA, water and MEL
(muscle equivalent liquid). Also in this figure are the stopping power values generated by
our model in equation 3.28. Although the results are similar, the values of the stopping
power generated by our model is a small fraction larger compared to the stopping power
evaluated by PSTAR. Two effects are not included in our model which may be responsible
for the small difference: the electronic shell correction effect, and the density effect.

The density effect occurs in dense media, where the dielectric polarization of the ma-
terial alters the particle’s field, and thus ’screening’ the field from distance atoms, which
decreases the interaction between the incident charged particle and the material, resulting
in a slightly reduced stopping power. This effect becomes significant for protons with an
energy which exceeds their rest mast. For a proton, the rest mass is 938 MeV, which is
far beyond the energy range considered in proton therapy.

The second effect, the shell correction effect, is important in the energy range consid-
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Figure 3.6: Left: moments of the inelastic Rutherford cross section for protons incident on water.
Right: moments for the elastic Rutherford cross section for protons incident on water.

ered in proton therapy. This effect corrects for the assumption that the incident particles
velocity is far greater than the velocity of the atomic bound electron in the energy range
of 1 - 100 MeV in the case of protons [47]. In this energy range, the electron’s orbital bond-
ing needs to be considered in the collision between the electron and the incident proton.
These shell corrections have been calculated and documented in literature using various
approximations. The two most common approaches to calculate non-relativistic shell cor-
rection are the hydrogenic wave functions and the local density approximation. In future
work one of these approaches should be included in the model for the stopping power to
improve results. Or, as an alternative, available tabulated data of stopping power values
can be used from, for example, PSTAR.

3.3 Validation of the Fokker-Planck Approximation

Due to the forward peaked nature of the interaction process, the scatter cross sections of
the inelastic scatter with atomic electrons and the elastic scatter with atomic nuclei can
be approximated by a finite Taylor series, giving rise to the Fokker-Planck operators. But
since this approximation uses only the first and second order Taylor expansions around
Q = 0 and µ0 = 1 respectively, it discards any large angle scattering and large energy
transfers. So, the differential scattering cross section has to be sufficiently forward peaked,
for this approximation to hold. If this condition is met, we expect the higher moments of
the differential cross sections

σe,n =

∫ 1

−1
(1− µ0)nσe(µ0)dµ0 (3.30)

and

σin,m =

∫ Qmax

Qmin

Qmσin(Q)dQ (3.31)

to be vanishing small for n > 1 and m > 2.

Figures 3.6 show the magnitude of various moments for different energies for the inelas-
tic (left) and the elastic scatter (right) processes. Similar results were found by Smith [40].
And indeed the higher moments for the inelastic scatter for all energies in the range consid-
ered seem to vanish. For elastic scatter, however, this does not seem to be the case. Here,
the second moment is an order of magnitude smaller than the first, but the magnitude
of the higher moments starts to increase significantly. On the basis of this analysis, the



3.3. VALIDATION OF THE FOKKER-PLANCK APPROXIMATION 31

Figure 3.7: Left: the 1D pencil beam problem can be visualized in the 3D geometry as the uniform
radiation of an infinite large slab. Large angle scatter can be ignored in this case. Right: 3D pencil
beam problem. Large angle scatter can not be ignored in this case, since in this process energy is
pushed to the surrounding tissue, where critical organs may be present.

validity of the Fokker-Planck approximation for elastic scatter is questionable. An analysis
by Larsen and Börgers confirms this suspicion, showing the Fokker-Planck approximation
for elastic scatter to lie on the verge of validity [23].

A second argument to doubt the validity of the Fokker Planck approximation for elastic
scatter is the fact that large angle scatter can (and will) transfer energy to surrounding
tissue where critical organs may be present, see figure 3.7 (right). It is desirable to predict
the amount of this energy, and since the Fokker-Planck approximation ignores all large
angle scatter, it is not a complete description of the problem, at least not by itself.

3.3.1 The Boltzmann-Fokker-Planck Approximation

The objective of a hybrid method is to isolate the problematic part of the differential cross
section and to treat it by other means. The large angle scatter is the problematic part
for the Fokker-Planck (continuous scatter) operator, and the small angle scatter is the
problematic part for the conventional Boltzmann scatter operator. The optimal hybrid
approximation proposed is the Boltzmann-Fokker-Planck approximation [40]. Here, the
singular part, which describes the small angle scatter, is separated from the smooth part,
which describes the large angle scatter. The singular part is treated with the Fokker-Planck
continuous scatter operator; the remaining smooth part is treated by the conventional
Boltzmann scatter operator. This hybrid method allows exact treatment of the large
angle scatter, with all the benefits of the Fokker-Planck approximation.

LB,eϕ(Ω̂) ≈ σtr
2

[
∂

∂µ
(1− µ2)

∂ϕ(Ω̂)

∂µ
+

1

1− µ2

∂2ϕ(Ω̂)

∂φ2

]

+

∫ 1

−1
σe,sm(Ω̂′ → Ω̂)ϕ(Ω̂′)dΩ̂′ − σe,sm,sϕ(Ω̂) (3.32)

with

σtr = 2π

∫ 1

−1
(1− µ0)σe,si(µ0)dµ0. (3.33)

Here, σe,sm and σe,si are the smooth part and the singular part respectively, see figure 3.8
(left).

Again, we want the higher moments in the Fokker-Planck equation to be vanishing
small for n > 1. In order to investigate these higher moments, we decompose the elastic
differential equation in a smooth part from µ0 = −1 to µ0 = µ∗ and a singular part from
µ0 = µ∗ to µ0 = 1. In deterministic methods, however, decomposing the differential cross
section as described here, is inconvenient since the smooth part has a discontinuity at µ∗

which makes this part difficult to expand in a Legendre series. For the analysis done here,
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Figure 3.8: Left: decomposition of the differential cross section into a smooth and a singular part.
Right: moments of the singular part of the elastic cross section for protons incident on water for
different energies. µ∗ = 0.98 was set here, but different choices for µ∗ near µ∗ = 0.98 gave similar
results.

however, with the object of investigating the higher moments, the method of decomposing
is arbitrary. For a discussion on a smooth decomposition of the differential cross section,
the reader is referred to the work of Smith [40]. With the decomposition method we have
used here, we are able to calculate higher moments of the singular part:

σe,si,n =

∫ 1

µ∗
(1− µ0)nσe(µ0)dµ0. (3.34)

These higher moments, as shown in figure 3.8 (right), do vanish for n > 1, showing
the accuracy of the Boltzmann-Fokker-Planck equation. In the decomposition depicted
in figure 3.8 (left), we chose µ∗ = 0.98 by inspection of figure 2.4. Other values near
µ∗ = 0.98 gave similar results.

So, in modeling proton therapy in a 3D simulation, one should decompose the elastic
differential equation in a smooth and a singular part in order to obtain optimal results. In
this thesis, however, we only consider 1D problems (this for simplicity, in future work the
obtained equations can be expanded to solve problems in 2D and 3D geometries). In 1D
calculations no energy can be transferred to the surrounding tissue. This is demonstrated
by visualizing the 1D geometry in three dimensions. In 3D, the 1D problem is the uniform
irradiation of an infinite large slab. Since no energy can be pushed outside the beam in
this case, and the number of particles which encounter large angle scatter is very small
compared to the number of particles in the beam, the energy deposited by these large
angle scattered particles can be neglected, see figure 3.7 (left). Only in a 3D geometry
energy can be pushed outside the beam where critical organs may be present, see figure
3.7 (right). Since only 1D calculations are performed in this thesis, this decomposition
of the elastic scatter cross section is not taken into account in the rest of this work.
However, since we still use the Boltzmann scatter operator in the transport equation to
describe the catastrophic scatter process, the transport equation is still referred to as the
Boltzmann-Fokker-Planck equation in the remainder of this thesis.

3.4 Conclusions

The underlying assumptions of the linear Boltzmann equation can be justified. This
equation is assumed to be able to accurately describe proton transport and is used as the
basis of the modeling process.
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The nearly singular Coulomb scatter cross sections are unpractical to treat with con-
ventional methods in deterministic methods (to expand them in a finite Legendre series).
The Fokker-Planck approximation is used to overcome this issue. In this approximation,
the small angle scatter and the small energy transfers are described by the Fokker-Planck
operators: the continuous scatter operator describes the small angle scatter, the continu-
ous slowing down operator describes the small energy transfers of the incident protons to
the atomic electrons, and the energy straggling operator describes the stochastic nature
of the energy transfer to the atomic electrons.

The Fokker-Planck coefficients are evaluated with the Rutherford scatter cross sections.
The momentum transfer cross section σtr(E) expresses the rate of the continuous scatter
process. The stopping power S(E) expresses the rate of the energy transfer to the atomic
electrons, and the energy straggling coefficient T (E) expresses variance in the stochastic
nature of the energy transfer process. These coefficients were validated by comparison
to literature values. Similar results were found for the energy straggling coefficient T (E)
in the work of Kelsey [22]. The transport cross sections σtr(E) have a relatively large
uncertainty according to the work of Kelsey, values of our work are within this range of
uncertainty. The stopping power S(E) is compared to the values of the stopping power
from PSTAR [2]. The stopping power evaluated with the Rutherford scatter cross sections
results in a slightly overestimated stopping power, compared to PSTAR. This difference
is expected to reduce if shell corrections are included in the models.

The investigation of the validity of the Fokker-Planck approximation shows the ap-
proximation to ignore all large angle Coulomb scatter. In 1D geometries this large angle
can be ignored. In 3D geometries, however, the large angle scatter cannot be ignored and
the differential scatter cross sections has to be decomposed where the small angle scatter
is described by the Fokker-Planck operator and the large angle scatter by the conventional
Boltzmann operator.



4. The SN Method

The Boltzmann-Fokker-Planck transport equation can be solved analytically only in the
simplest of problems. In practice, however, such simple problems do not occur, and the
transport equation has to be solved by numerical means. For this purpose, we transform
the transport equation into a set of algebraic equations. This is accomplished by dis-
cretizing the transport equation in all its independent variables. One of the methods to
discretize the angular variable in the transport equation is the SN method. In the SN
method, or the discrete ordinate method, the direction of travel of the particles is approx-
imated by a finite set of N discrete ordinates Ω̂n each with a corresponding weight wn.
The sum of the weights equals 4π, since this is the surface of the unit sphere. With this
method, the scalar flux is approximated with a sum over the discrete ordinates, multiplied
by their corresponding weights:

φ(~r) =

∫
4π
ϕ(~r, Ω̂)dΩ̂ ≈

N∑
n=1

wnϕn(~r). (4.1)

In this thesis, the SN method is used to discretize the 1D transport equation in angle.
The 1D transport equation with the SN approximation is:

µn
∂ϕn(x,E)

∂x
+ σC,sϕn(x,E) =

∂S(E)ϕn(x,E)

∂E
+
∂2T (E)ϕn(x,E)

∂E2

+
σtr
2

(
∂

∂µ

[(
1− µ2

n

) ∂ϕn(x,E)

∂µ

])
+

N∑
n′=1

∫ ∞
0

σC(E′ → E, Ω̂n′ → Ω̂n)ϕn′(x,E
′)dE′

(4.2)

where µn ≡ cos(θn), the directional cosine of the particles traveling along ordinate Ω̂n,
see figure 4.1. In a one dimensional problem, an ordinate Ω̂n is fully specified by the
directional cosine µn. This 1D direction can be visualized in three dimensions by all the
directions having an angle θn with the x-axis. These directions form a ring on the unit
sphere, see figure 2.1.

The number of ordinates N in the set, together with their corresponding weights and
directions, is referred to as the quadrature set. The optimal choice for a quadrature set
depends on the problem to be solved. In the next section, we present the quadrature
set which is adopted in this thesis. In the following sections, we demonstrate how to
discretize the one dimensional transport equation in order to obtain an algebraic set of
equations. The discretization is done in three steps: an angular, a spatial and an energy
discretization.

4.1 The Quadrature Set

The most common choice for a quadrature set in a one dimensional calculation in reactor
physics is the Gauss quadrature set [5]. This quadrature set integrates polynomial of order
2N - 1 exactly, which is useful as it is common practice to expand the differential cross
sections in Legendre polynomials. However, in this quadrature set the discrete ordinates
are symmetrically located around µ = 0. In a proton therapy problem, the directional
cosine of the majority of the protons are close to µ = 1, since the protons are introduced

34
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Figure 4.1: A pencil beam on a slab. The direction of movement of the protons are characterized
by the directional cosine µn = cos(θn). The directional cosine of the particles in the pencil beam is
µ = 1.

at the boundary with direction cosine µ = 1 and have a strong tendency to go in a straight
line and to have small scatter angle interactions. If we would use a Gauss quadrature set
in this case, much of the computation expense would go into calculating the angular flux
in directions which contribute almost nothing to the solution of the problem. Therefore,
we introduce a quadrature set in which the discrete ordinates are densely located near
µ = 1 and much less further away from µ = 1. This is accomplished by applying the
following recursion relationship on the weights of the ordinates,

wn−1 = f · wn (4.3)

and placing the discrete ordinates as depicted in figure 4.2, where wan = wn
2π .

The values of N and f are chosen such that: (i) the majority of the ordinates are
located in the region of interest, 0.98 < µ < 1. (ii) the directional cosine µN of ordinate
Ω̂N is close enough to µ = 1 to approximate the pencil beam boundary condition as
depicted in figure 4.1. The optimal value for f and N is investigated in chapter 6.

4.2 Angular Discretization

The general procedure in discretizing an independent variable in equation 4.2 is to divide
the range of that variable into a number of cells and subsequently integrate the transport
equation over the volume of each cell. The result is a set of coupled equations, describing
the flux field in the cells in the problem domain. For the angular variable in a 1D prob-
lem this means integrating the transport equation over the area surrounding a discrete
ordinate. This is done in two steps. First, we evaluate the arbitrary operators La in the
transport equation which do not explicitly depend on the angular variable µ. Second, we
evaluate the integration of the continuous scatter operator LCS over the angular variable.
The Boltzmann scatter operator LB for catastrophic scatter, which depends on both the
angular variable µ as the energy variable E, is discretized in section 4.4.1.

Operators that do not depend on the angular variable are left unchanged after inte-
gration:

1

wan

∫ µ
n+1

2

µ
n− 1

2

Laϕndµ ≈ Laϕn. (4.4)

The continuous scatter operator LCS , on the other hand, does depend on the angular
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Figure 4.2: Representation of the variables which characterize the quadrature set. µn is the
directional cosine, wa

n the weight and ϕn the flux value of the discrete ordinate Ω̂n.

variable µ. Integration of this operator results in:

1

wan

∫ µ
n+1

2

µ
n− 1

2

LCSϕndµ =
1

wan

∫ µ
n+1

2

µ
n− 1

2

σtr
2

(
∂

∂µ

[(
1− µ2

n

) ∂ϕn
∂µ

])
dµ

=
1

wan

[
σtr
2

(
1− µ2

n

) ∂ϕn
∂µ

∣∣∣∣µn+1
2

µ
n− 1

2

=
1

wan

σtr
2

[
βn+ 1

2

∂ϕn
∂µ

∣∣∣∣
n+ 1

2

− βn− 1
2

∂ϕn
∂µ

∣∣∣∣
n− 1

2

]
(4.5)

with,

βn+ 1
2

=
(

1− µ2
n+ 1

2

)
βn− 1

2
=
(

1− µ2
n− 1

2

)
. (4.6)

The values of the angular derivatives on the cell faces are approximated by a finite dif-
ference scheme. In this scheme, the derivatives are approximated by the finite difference
between the flux in the control volume and the flux in the neighbor control volume.

∂ϕn
∂µ

∣∣∣∣
n+ 1

2

≈ ϕn+1 − ϕn
µn+1 − µn

(4.7)

Note that, due to symmetry, the derivatives of the angular flux on µ = 1 and µ = −1 are
equal to zero. This corresponds with the derivatives at µN+ 1

2
and µ 1

2
respectively.

Discretization of the continuous scatter operator leaves us with an expression for the
discrete ordinate flux ϕn, which depends on both the neighboring discrete ordinate fluxes
ϕn−1 and ϕn+1. As we will encounter in chapter 5, this dependency on the flux in both
neighbor ordinates will introduce the necessity to iterate the equations to obtain a solution
which significantly increases computation time.

4.2.1 Advanced Scheme

Since the spherical harmonic functions are eigenfunctions of the continuous scatter oper-
ator, it can be demonstrated that [31]

LCSfiso = 0 (4.8)∫
4π
LCSϕdΩ̂ = 0 (4.9)

and∫
4π

~ΩLCSϕdΩ = −σtr ~J (4.10)

where fiso is an arbitrary isotropic function and ~J is the particle current. The first
property in equation 4.8 shows that there is no angular diffusion if the flux is already
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homogeneously distributed over the unit sphere. The second property, in equation 4.9, tells
us that no particles are created or removed by the continuous scatter operator. The third
property tells us what current is created in direction ~Ω due to the Fokker-Planck operator.
In transport calculations, it is highly desirable to preserve these properties. Failure to
preserve these properties can lead to nonphysical results or to degraded accuracy. The
’standard’ scheme presented so far does preserve the properties 4.8 and 4.9 but fails to
preserve property 4.10. Morel proposed an improved scheme [31], which uses the following
recursion relationship for β.

βn+ 1
2

= βn− 1
2
− 2µnw

a
n where β 1

2
= 0 (4.11)

This scheme preserves 4.10 as well as 4.8 and 4.9, and is therefore adopted in this thesis.
In the previous section, we defined the quadrature set adopted in this thesis. In this

set, we require the ordinate Ω̂N to have a directional cosine close to µ = 1, in order to
approximate the directional cosine of the particles in the pencil beam. The reason for not
including a discrete ordinate with µN = 1 in the quadrature set is that the properties in 4.8
- 4.10 are not preserved in this case. In this thesis, we choose to preserve these properties
by placing the discrete ordinates as presented in the previous section, and approximate
the pencil beam with an ordinate Ω̂N with a directional cosine very close to but not equal
to one.

4.3 Spatial Discretization

Since the focus of this thesis is on the Fokker-Planck operators, a simple discretization
method is used for the spatial discretization: the step scheme. In the step scheme the 1D
spatial domain is divided into NE cells, and the flux is approximated piecewise constant,
see figure 4.3 (upper). We have one unknown per cell, let’s say the average value. Now,
in order to obtain a set of coupled equations, we integrate the 1D transport equation
over each spatial cell. Operators La in the equation, which do not depend on the spatial
variable x,

1

∆xi

∫ x
i+1

2

x
i− 1

2

Laϕn(x)dx ≈ Laϕi,n (4.12)

are left unchanged after integration and act on the flux of ordinate n in spatial cell i; ϕi,n.
Here, ∆xi is the width of the i’s cell. The only operator in the transport equation which
does depend on the spatial variable x is the streaming operator, Lstr. Straightforward
integration of this operator leads to:

1

∆xi

∫ x
i+1

2

x
i− 1

2

Lstrϕn(x)dx =
1

∆xi

∫ x
i+1

2

x
i− 1

2

µn
∂ϕn(x)

∂x
dx =

µn
∆xi

ϕn(x)

∣∣∣∣xi+1
2

x
i− 1

2

. (4.13)

In order to choose which flux value to use on the discontinuous cell faces to perform above
integration, we introduce the upwind scheme. In this scheme, the upwind side and the
downwind side of a cell are defined such that the particles propagate from the upwind
side to the downwind side of the cell. The value of the flux on the cell faces is chosen
such that we simulate the direction of travel of the particles, by choosing the flux-value
of the neighbor cell on the upwind side, and choosing the flux-value inside the cell on the
downwind side, see figure 4.3 (bottom).

ϕn(xi− 1
2
) ≈ ϕi,n and ϕn(xi+ 1

2
) ≈ ϕi+1,n if µn > 0 (4.14)

ϕn(xi− 1
2
) ≈ ϕi−1,n and ϕn(xi+ 1

2
) ≈ ϕi,n if µn < 0 (4.15)
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Figure 4.3: Upper: representation of the step scheme. The 1D slab is divided into NE cells, the
flux inside these cells is assumed to be constant, and allowed to be discontinuous an the cell faces.
Bottom: representation of the upwind scheme in the spatial domain. If µn > 0, the direction of
the particle flow (from left to right) is simulated by assuming ϕi− 1

2
= ϕi−1 and ϕi+ 1

2
= ϕi. Vice

versa for µn < 0.

We use this scheme to obtain the final expression of the discretized streaming operator.

1

∆xi

∫ x
i+1

2

x
i− 1

2

Lstrϕn(x)dx ≈ µn (ϕi−1,n − ϕi,n)

∆xi
if µn > 0 (4.16)

1

∆xi

∫ x
i+1

2

x
i− 1

2

Lstrϕn(x)dx ≈ µn (ϕi,n − ϕi+1,n)

∆xi
if µn < 0 (4.17)

The discretization scheme presented here, is the simplest and most straightforward
scheme available. It must be noted that this scheme suffers from large truncation errors:
to obtain an accurate solution it is necessary to use a relatively large number of spatial
cells. More advanced discretization schemes would require fewer cells, and thereby reduce
computation time. This disadvantage of the step scheme is accepted in this thesis, since
the focus is on the Fokker-Planck operators. In future work, however, solutions can be
obtained more efficiently by, for example, introducing a linear discontinuous finite element
method [18].

4.4 Energy Discretization

The standard method of discretization of the energy variable in the transport equation is
the multi-group method. In this method the energy range is divided into a number of cells
which are referred to as energy groups, see figure 4.4. Note that the energy group with the
highest energy correspond to g = 1, and the direction of flow of the particles from g = 1
to g = NG, where NG is the total number of energy groups. In the spatial discretization
scheme we have assumed a constant flux within the spatial cells. For the energy domain,
however, we have used a more advanced discretization scheme: the linear discontinuous
Galerkin method [18], see figure 4.5. In this scheme, the flux is assumed to be linear within
the energy group, and is allowed to be discontinuous at the group faces.

The flux inside each energy group can be expressed with a set of two basis functions:

pA(E) = p0(E) = 1 (4.18)

pE(E) = p1(E) =
2

∆Eg
(E − Eg) (4.19)
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Figure 4.4: Representation of the multi-group method. NG is the total number of energy groups
used to divide the energy range. Eg is the center energy value of enegy group g. Protons move
from g = 1 to g = NG through the problem domain.

where ∆Eg is the width of energy group g, and Eg is the center energy value of energy
group g. With these basis functions, which are scaled Legendre functions, the flux is
expressed as,

ϕi,n,g(E) ≈ ϕa,i,n,gpA(E) + ϕe,i,n,gp
E(E) (4.20)

where ϕa,i,n,g is the average of the flux in energy group g and ϕe,i,n,g is the normalized
slope of the flux in energy group g. The basis functions satisfy the following orthogonally
property: ∫ E

g− 1
2

E
g+1

2

pi(E)pj(E)dE =
∆Eg

2j + 1
δij . (4.21)

Since we have two unknowns per energy group, the average flux and the normalized
slope of the flux, we need two equations in each group to solve for these unknowns. The
method to obtain this average and slope equation, is: (i) expand the flux in the transport
equation into the two basis functions, (ii) multiply this equation by one of the basis
functions, (iii) integrate this equation over the volume of an energy group, (iv) use the
upwind scheme to evaluate the surface integrals. In this process, the total cross sections,
the scatter cross sections, transport cross sections, and the energy straggling coefficient
are assumed to be constant within each of the energy groups. The stopping power, on the
other hand, is assumed to be linear continuous in the energy group.

The derivation of this average and slope equation is done in two steps; first, we dis-
cretize the operators La in the transport equation which do not act on the energy variable
E. Second, the derivation of the continuous slowing down, Boltzmann scatter and the
energy straggling operator for the average and slope equation is presented.

Straightforward integration of the operators which do not depend on the energy vari-
able E,

1

∆Eg

∫ E
g− 1

2

E
g+1

2

Laϕi,n,g(E)pA(E)dE ≈ Laϕa,i,n,g (4.22)

results in an expression in which the operator La is left unchanged after integration and
now acts on the average flux ϕa,i,n,g of the energy group. The derivation of the slope
equation for the operators La,

3

∆Eg

∫ E
g− 1

2

E
g+1

2

Laϕi,n,g(E)pE(E)dE ≈ Laϕe,i,n,g (4.23)

results in an expression with the operators La unchanged after integration, and now acting
on the flux slope ϕe,i,n,g.
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Figure 4.5: Representation of the linear discontinuous Galerkin method. The flux is assumed
linear inside the energy groups, and discontinuous on the group faces. Each energy group contains
two unknowns, the average of the flux in the energy group ϕa,g and the slope of the flux inside the
energy group ϕe,g. ϕ−g and ϕ+

g are the flux values on the boundaries of the energy group.

The multi-group constants follow from a more general derivation of the multi-group
method. For this derivation, the reader is referred to the work of Duderstadt and Hamil-
ton [9]. Here, we only state the final result:

σC,g =

∫ Eg− 1
2

E
g+1

2

σC(E)ϕ(E)dE∫ Eg− 1
2

E
g+1

2

ϕ(E)dE

and σtr,g =

∫ Eg− 1
2

E
g+1

2

σtr(E)ϕ(E)dE∫ Eg− 1
2

E
g+1

2

ϕ(E)dE

. (4.24)

Note that in these expressions, the flux ϕ(E) is unknown and has to be approximated
beforehand. The SADCO code assumes a 1

E dependency for the flux in the energy range

considered for proton therapy [15]. In this thesis, the multi-group constant σtr,g is not
evaluated as in 4.24, but at the center of the energy group (σtr,g = σtr(Eg)). As we will
see in chapter 6, there is no need for a better approximation of this group constant, such
as in equation 4.24

So far, we have demonstrated how to obtain expressions for the average and energy
slope equations for operators which do not act on the energy variable. The Boltzmann
scatter operator, the continuous slowing down operator and the energy straggling operator,
on the other hand, do act on the energy variable. In the following sections, we demonstrate
how these operators can be discretized using the multi-group linear discontinuous Galerkin
method.

4.4.1 The Boltzmann Scatter Operator

We assume the medium in which the protons propagate to be isotropic. In isotropic media,
the scatter angle of the proton is independent of the angle in which the proton approaches
the material. With this assumption, the differential cross section depends on the scattering
angle Ω̂′ · Ω̂ = µ0 only, instead on both Ω̂ and Ω̂′. The expression of the Boltzmann scatter
operator with this assumption, together with the multi-group approximation, results in:

LBϕi,n,g(E) =

g∑
g′=1

∫ E
g′− 1

2

E
g′+1

2

N∑
n′=1

σC(E′ → E, Ω̂n′ → Ω̂n)ϕi,n,g(E
′)dE′. (4.25)

In this first step, we have used the multi-group method to break up the integral over
E′. Note that we sum up to energy group g′ = g since we assume no upscatter in the
simulation (the protons can only lose energy in the catastrophic scatter interactions). In
the second step, we expand the angular flux and the differential cross section in a Legendre
series of degree L, and integrate the resulting expression, multiplied by the corresponding
basis function, over an energy group to obtain the expression of the Boltzmann scatter
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operator in the average and slope equations. For the average equation:

1

∆Eg

∫ E
g′− 1

2

E
g′+1

2

pA(E)LBϕi,n,g(E) ≈
g∑

g′=1

L∑
l=0

2l + 1

4π
σC,g′→g,lφi,g′,lPl(µn)

∆Eg′

∆Eg
(4.26)

with,

φi,g,l =

N∑
n=1

Pl(µn)ϕa,i,n,gwn (4.27)

where σs,g′→g,l are the Legendre moments of the regular multi-group cross section σs,g′→g(µ0).
For the slope equation:

3

∆Eg

∫ E
g′− 1

2

E
g′+1

2

pE(E)LBϕi,n,g(E) ≈ 0. (4.28)

Here we have used the following assumption:∫ E
g′− 1

2

E
g′+1

2

σC(E′ → E,µ0)pE(E)dE ≈ 0. (4.29)

If we used the complete linear discontinuous treatment of the scattering source, we would
end up with nonzero scattering source energy slopes. In this thesis, however, we ignore
this slope scattering source for two reasons. The first reason is simplicity: the solution
converges to the same solution if these scatter source energy slopes were included. The
second reason is that we would need multi-group scatter moments for these scatter source
energy slopes. For the average source, the multi-group Legendre moments σs,g′→g,l are
generated by the SADCO code. For the energy slopes, however, we do not have such a
code available.

For a derivation of the expression of the multi-group Legendre scatter cross section,
the reader is referred to the work of Duderstadt and Hamilton [9]. The final result of this
derivation is:

σC,g′→g(µ0) ≈ σC,g′→g(µ0, Ω̂
′) =

∫ Eg+1
2

E
g− 1

2

∫ Eg′+1
2

E
g′− 1

2

σC(E′ → E,µ0)ϕ(Ω̂′, E′)dE′dE

∫ E′g+1
2

E′
g− 1

2

ϕ(E′, Ω̂′)dE′
(4.30)

where the assumption is made that the medium is isotropic, i.e. the scatter cross section
does not depend on the incoming direction Ω̂′ of the proton. These group to group differ-
ential scatter cross sections are generated by the SADCO code, which uses a 1

E dependency
of the flux in the energy groups. The SADCO code gives the moments of the Legendre
expansion of these group to group differential cross sections. Since these differential cross
sections are relatively smooth functions, these cross sections can be represented by a rel-
atively low order Legendre expansion L. In this thesis, we assumed L = 10 is sufficient to
represent these cross sections, since the cross section are relatively smooth, and the effect
on the solution of this scatter process is relatively small.

4.4.2 Continuous Slowing Down Operator

The stopping power S(E) is an important parameter in the transport equation: it deter-
mines the range of the protons and is the main contributor to energy deposition. Due to its
importance, and because it is strongly varying in energy, it is assumed to be linear within
an energy group, and continuous on the group faces (in contrast to the other multi-group
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parameters, which were assumed to be constant within the group). The stopping power in
an energy group is expressed with the same set of basis function as the flux in the energy
groups,

S(E) =
Sg+ 1

2
+ Sg− 1

2

2
pA(E) +

Sg− 1
2
− Sg+ 1

2

2
pE(E) (4.31)

where Sg± 1
2

are the values of the stopping power on the faces of the energy group, and are

evaluated using equation 3.28, with E = Eg± 1
2
.

To obtain an expression of the continuous slowing down operator LCSD in the aver-
age equation, the operator is multiplied by the basis function pA(E), and subsequently
integrated over the volume of an energy group.

1

∆Eg

∫ E
g− 1

2

E
g+1

2

LCSDϕi,n,g(E)pA(E) =
1

∆Eg

∫ E
g− 1

2

E
g+1

2

∂

∂E
S(E)ϕi,n,g(E)pA(E)

≈
Sg− 1

2

∆Eg
(ϕa,i,n,g−1 − ϕe,i,n,g−1)−

Sg+ 1
2

∆Eg
(ϕa,i,n,g − ϕe,i,n,g) (4.32)

Here, we have used the upwind scheme to evaluate the surface integral. Since the protons
have a unique direction of travel through the energy domain, from high energy to low, the
upwind neighbor is energy group g − 1, see figure 4.5.

For the slope equation, we multiply the continuous slowing down operator by pE(E)
and integrate over an energy group,

3

∆Eg

∫ E
g− 1

2

E
g+1

2

LCSDϕi,n,g(E)pE(E)dE = − 3

∆Eg

∫ E
g− 1

2

E
g+1

2

S(E)ϕi,n,g(E)
∂pE(E)

∂E
dE

+
3

∆Eg

[
pE(E)S(E)ϕi,n,g(E)

∣∣Eg− 1
2

E
g+1

2

≈ −3
Sg+ 1

2
+ Sg− 1

2

∆Eg
ϕa,i,n,g (4.33)

−
Sg− 1

2
− Sg+ 1

2

∆Eg
ϕe,i,n,g + 3

Sg− 1
2

∆Eg
(ϕa,i,n,g−1 − ϕe,i,n,g−1)− 3

Sg+ 1
2

∆Eg
(ϕa,i,n,g − ϕe,i,n,g)

where the upwind scheme is used to evaluate the surface integral.
The result of the discretization of the continuous slowing down operator is a coupled

set of terms in the average and slope equation: both the average and the slope equation
of group g depends on both the average and the slope of the flux in group g.

4.4.3 Energy Straggling Operator

In this thesis, we use a simple finite volume method to discretize the energy straggling
operator LES for the average equation, and its contribution to the slope equation is ig-
nored. This simplified discretization is used because the discontinuous Galerkin method
is difficult to apply on diffusion operators. The solution converges to the same solution
we would have obtained if we had used the fully discretized energy straggling operator in
the slope equation.

Straightforward integrating of the energy straggling operator with the finite volume
approach leads to:

1

∆Eg

∫ E
g− 1

2

E
g+1

2

pA(E)LESϕi,n,g(E) =
1

∆Eg

∫ E
g− 1

2

E
g+1

2

pA(E)
1

2

∂2

∂E2
T (E)ϕi,n,g(E)

=
1

∆Eg

[
1

2

∂

∂E
T (E)ϕi,n,g(E)

∣∣∣∣Eg− 1
2

E
g+1

2

(4.34)

≈ 1

∆Eg

(Tϕa,i,n)g−1 − (Tϕa,i,n)g
∆Eg + ∆Eg−1

− 1

∆Eg

(Tϕa,i,n)g − (Tϕa,i,n)g+1

∆Eg+1 + ∆Eg
.
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Figure 4.6: Representation of the finite volume method used to evaluate the derivative in the
expression of the discretized energy straggling operator.

In figure 4.6 is depicted how the finite volume method is used to evaluate the derivatives
on the energy group faces.

4.5 Conclusions

In this thesis, three methods are used to discretize the three independent variables µ, x and
E in the 1D transport equation: the SN method, the step scheme and the discontinuous
Galerkin method respectively.

In the SN method, the direction of travel of the particles is approximated with a set of
N discrete ordinates, together forming the quadrature set. By integrating the 1D transport
equation over the volume surrounding these discrete ordinates, a set of N coupled equations
is obtained, describing the flux in these ordinates.

The step scheme is the most simple and straightforward discretization method avail-
able: it suffers from large truncation errors. In this method, the spatial range is divide
into NE spatial cells, and the flux is assumed constant inside the cells and discontinuous
on the cell faces. A coupled set of NE equations describing the flux in these spatial cells is
obtained by integrating the 1D transport equation over the volume of these cells. The up-
wind scheme is used to simulate the direction of flow of the particles through the problem
domain.

The energy variable is discretized using a combination of the multi-group method
and the Galerkin method. In the multi-group method, the energy range is divided into
NG energy groups. In the Galerkin method, the flux is assumed to be linear within
these energy groups and discontinuous on the group faces. The direction of travel of the
particles through the energy domain is simulated using the upwind method. By integrating
the transport equation, multiplied by the corresponding basis function, over the volume
of the groups, a coupled set of NG average equations and NG slope equations is obtained.
The contributions of the Boltzmann scatter operator and the energy straggling operator
to the slope equations are neglected.

The result of the three discretization methods is a coupled set of 2×N×NE×NG equa-
tions. In the following chapter, the method is presented which is used to solve this,
generally large, set of coupled equations.



5. Numerical Solution of the Discretized
System

The result of discretization of the transport equation in all of its independent variables is
a set of coupled linear equations describing the particle field. The size of this set depends
on the number of cells in which we divide the problem domain. For a typical 1D problem
considered in this thesis, the number of equations in the set is large: in the order of
107 − 109, depending on the type of boundary condition problem. These equations are
solved with the help of a computer. In the following sections, we demonstrate the methods
used in the computer code to efficiently solve the set of equations.

With this computer code, the particle field can be evaluated from the set of equations.
However, the quantity of interest in proton therapy planning is not the particle field itself,
but the distribution of deposited energy over the problem domain. In the final section of
this chapter we demonstrate how to obtain this energy deposition profile from the particle
field.

5.1 The Iterative Method

The linear Boltzmann-Fokker-Planck equation consists of streaming, diffusion, source and
removal operators. Streaming is the main process in proton transport. The flows in this
process have a unique direction through the problem domain. This is illustrated with help
of figure 5.1, where the flows in ordinate Ω̂N are shown. On the top left, particles stream
into the system through the spatial domain (here only a boundary condition is imposed
on the energy group g = 1, depending on the type of boundary condition multiple energy
groups can have boundary conditions). The flows from the left to the right of the picture
represent the free movement of the particles through the spatial domain. As the protons
stream through the slab they slow down due to interaction with the atomic electrons.
This process is described by the continuous slowing down operator and represented in this
figure by the stream of particles down the energy domain. At the bottom (E = ENG+ 1

2
)

the particles stream out of the system through the final energy boundary. The remaining
energy of the protons, which is ENG+ 1

2
= 1 MeV in our work, is assumed to be deposited

locally.

The two equations which describe the angular flux in one such cell in figure 5.1 can be
expressed in the following matrix system:(

a11 a12

a21 a22

)(
ϕa,i,n,g
ϕe,i,n,g

)
=

(
c1

c2

)
. (5.1)

The average and slope equation are solved together as they are strongly coupled. This
matrix system is used as the basic building block to solve the large set of equations. The
general idea here is to use 5.1 to solve the flux-value in cell i, n, g, using the most up to
date flux-values for the matrix coefficients. These cells are than solved in the direction of
the flows, starting at the top left of figure 5.1 if µn > 0, and starting at the top right if
µn < 0. One successive solution through the angular and spatial range of a single energy
group is referred to as a sweep.

44
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Figure 5.1: Representation of the particle flow through the spatial and the energy range along
ordinate Ω̂N . In this ordinate the particles stream from left to right through the spatial domain
(µN > 0), described by the streaming operator Lstr, and from top to bottem through the energy
domain, described by the continuous slowing down operator LCSD. In the iterative method, the
flux-values are solved in the direction of these flows. Note that the flows in the spatial domain are
reversed if µn < 0. The particles streaming out of the final energy group are assumed to deposit
their energy locally. In this thesis ENG+ 1

2
= 1 MeV. No particles stream through the final spatial

element if the spatial range is sufficiently large.

Sweep:
for n = N to n = 1 do

if µn > 0 then
for i = 1 to i = NE do

Solve matrix system 5.1 for ϕa,i,n,g and ϕe,i,n,g
end for

else
for i = NE to i = 1 do

Solve matrix system 5.1 for ϕa,i,n,g and ϕe,i,n,g
end for

end if
end for

The flux-values in the discrete ordinates are coupled through the scatter operators. The
continuous scatter operator contains a second order derivative in angle, see equation 3.18.
Discretization of second order derivatives results in an expression containing the flux-values
of both neighbors, in this case the flux-values in both neighbor ordinates of ordinate n:
(ϕn−1 and ϕn+1), see equation 4.5. As a consequence, unknowns appear in the expression
for the matrix system 5.1. Therefore an iterative procedure is necessary to obtain a solution
of this part of the system. In this iterative procedure, the sweep is repeated using the
most up-to-date flux-values (the Gauss-Seidel method [1]) until some convergence criterion
is met.

The expression of the energy straggling operator contains a second order derivative in
energy, see equation 3.21. Discretization of this operator results in an expression containing
the flux-values of both neighbor energy groups of energy group g: ϕg−1 and ϕg+1, see
equation 4.34. A similar iterative procedure as with the continuous scatter operator is
used to obtain a solution for this part of the system. This iterative procedure is also
repeated until some convergence criterion is met. The solution of the system is obtained
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when both convergence criteria are met.

Iterative procedure:
repeat

for g = 1 to g = NG do
repeat

for n = N to n = 1 do
Sweep

end for
Update scatter source

until convergence
end for

until convergence

The inner iterations are for convergence of the continuous scatter and Boltzmann scatter
operator. The outer iterations are for convergence of the energy straggling operator.

The iterations are repeated until the convergence criterion is met. In order to quantify
the convergence in a solution, we introduce the residual rli,n,g, which is a measure for the
change of the flux-value in spatial cell i, discrete ordinate n and energy group g after
iteration l.

rli,n,g = |c|l −Aϕl−1 (5.2)

where

|c| =
√
c2

1 + c2
2 (5.3)

and A is the matrix on the left hand side, and c the vector on the right hand side of matrix
system 5.1. The residual is a measure for change in the solution after iteration l. Only if
the residual is small enough, the solution is assumed to be converged. The criterion used
in our work,

max

(
rli,n,g
|c|l

)
≤ 10−8 (5.4)

was semi-arbitrarily chosen, based on inspection of solutions with smaller and larger con-
vergence criteria.

The diffusion operators in the transport equation, make the calculation computation-
ally very demanding. In a typical calculation performed in this thesis, using a S40 quadra-
ture set approximately 500 inner iteration are necessary to converge the solution. In future
work, computation time can be gained in accelerating the iterative processes to obtain the
solution of these diffusive operators.

5.2 Energy Deposition

After obtaining the solution of the transport equation, we have the particle distribution
in the problem range. To determine the distribution of the deposited energy, we make use
of a quantity called the energy flux ΦE(~r).

ΦE(~r) =

∫ ∞
0

∫
4π
Eϕ(~r,E, Ω̂)dΩ̂dE. (5.5)

This quantity can be seen as the amount of energy going through the surface of the unit
sphere per unit time at a certain point ~r in the problem domain and is used to obtain a
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balance equation of energy in a spatial cell. Multiplication of the transport equation by
the energy E, and integrating the resulting equation over the angular and energy domain
and over a single spatial cell, results in this balance equation of energy in that spatial cell.∫ E 1

2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π
E · (Transport Equation) dxdEdΩ̂

=

∫ E 1
2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π
Eµ

∂ϕ

∂x
dxdEdΩ̂ +

∫ E 1
2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π
EσC,sϕdE (5.6)

=

∫ E 1
2

E
NG+1

2

∫
4π
E
∂S(E)ϕ

∂E
dxdE +

∫ E 1
2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π

g∑
g′=1

EσC,g′→gϕg′∆E
′dxdE

here we used

E

∫
4π

σtr
2

(
∂

∂µ

[(
1− µ2

) ∂ϕ
∂µ

])
dΩ̂ = 0 (5.7)

and ∫ E 1
2

E
NG+1

2

E
∂2T (E)ϕ(E)

∂E2
≈ 0. (5.8)

Equation 5.7 represents the redistribution of the energy flux over the unit sphere. Since
no energy flux is created in this process, this term does not contribute to the balance
equation. In equation 5.8, we assumed the contribution of the energy straggling term to
be negligible, due to the small effect of this term to the solution. The result in equation 5.6
contains energy streaming, energy deposition, and energy source terms. In the following
section, these terms are identified.

5.2.1 Identification of Streaming, Deposition and Source Terms

In this section, we evaluate the integrals in equation 5.6 term by term. In the resulting
expressions the streaming, deposition and source terms are identified.

After performing the integration on the streaming operator,∫ E 1
2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π
Eµ

∂ϕ

∂x
dΩ̂dxdE ≈

N∑
n=1

wnµn

NG∑
g=1

∫ E
g− 1

2

E
g+1

2

E
(
ϕi+ 1

2
,n,g(E)− ϕi− 1

2
,n,g(E)

)
(5.9)

two streaming terms are recognized. They represent the nett energy flow through the
spatial faces of the cell. No deposition or source terms result from the integration.

The continuous slowing down operator represents the Coulomb interaction process of
the incident protons with the atomic electrons. In this process, energy is transferred from
the incident proton to the atomic electrons. After using partial integration,∫ E 1

2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π

∂S(E)ϕ(r, E)

∂E
EdΩ̂dxdE

≈ ∆xi

N∑
n=1

wn

NG∑
g=1

−∫ E
g− 1

2

E
g+1

2

S(E)ϕi,n,g(E)dE + S(E)ϕi,n,g(E)E|
E

g+1
2

E
g− 1

2

 (5.10)

we recognize a streaming term, and therefore the remaining term is must be a deposition
term. The deposition term is further evaluated to a relation which expresses the deposited
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energy to the atomic electrons in the spatial cell:

∫ E
g− 1

2

E
g+1

2

S(E)ϕi,n,g(E)dE ≈ ϕa,i,n,g
Sg+ 1

2
+ Sg− 1

2

2
∆Eg + ϕe,i,n,g

Sg− 1
2
− Sg+ 1

2

2

∆Eg
3

. (5.11)

The intern energy flows in the spatial cell through the energy domain do not contribute
to energy deposition. However, the energy carried by the particles which stream out of
the system through the final energy boundary E = ENG+ 1

2
, is assumed to be deposited

locally. This flow is expressed as,

S(E)ϕi,n,g(E)E|E
NG+1

2

= SNG+ 1
2
ϕi,n,NG+ 1

2
ENG+ 1

2
= SNG+ 1

2
(ϕa,i,n,NG − ϕe,i,n,NG)ENG+ 1

2

(5.12)

and is added to the deposited energy.

The total removal operator in equation 5.6 represents the total amount of energy which
is removed due to the catastrophic scatter interactions. In this process, protons with
energy E are removed from the equation, and secondary particles with energy Es < E
are introduced into the system. The expression for the total amount of energy lost in this
process,

∫ E 1
2

E
NG+1

2

∫ x
i+1

2

x
i− 1

2

∫
4π
EσC,sϕdΩ̂dxdE

≈ ∆xi

N∑
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NG∑
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(
1

6
∆E2

gϕe,i,n,g + Eg− 1
2
ϕa,i,n,g∆Eg −

1

2
∆E2

gϕa,i,n,g

)
(5.13)

is an energy deposition term. The secondary protons can carry their energy over a sig-
nificant range. The expression of this energy is obtained by performing the integral in
equation 5.6:
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+
NG∑
g=1

N∑
n=1

wn∆xiσC,g→g

(
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6
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gϕe,i,n,g + Eg− 1
2
ϕa,i,n,g∆Eg −

1

2
∆E2

gϕa,i,n,g

)
.

Since this is a source of energy, this expression is subtracted from the total energy depo-
sition obtained so far. In our work, we have ignored the energy carried by the secondary
neutrons, and other secondary particles. If they would have been included, more source
terms would show up here, and some of the energy, which now is assumed to be deposited,
would have been carried to other parts of the problem domain. This results in somewhat
higher energy deposition in the areas where the creation of these secondary particles is
significant.

Figure 5.2 shows a schematic overview of the energy flow, source, and deposition terms
in spatial cell xi of the particles streaming along ordinate Ω̂n which are identified in this
section.
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Figure 5.2: Schematic representation of the energy transport in spatial cell i and ordinate Ω̂n

with µn > 0. The energy streams in and out of the spatial cells carried by the protons through the
spatial domain. Due to the scatter interactions, energy is transferred to atomic nuclei and atomic
electrons. The secondary protons created in the catastrhopic scatter process can carry their energy
to other cells. The terms in red are energy deposition terms, the green one is an energy source
term.

5.2.2 Dose

The energy deposited Edep in tissue is distributed over the mass in that tissue. This energy
causes molecular bonds to break, and energy structures to be altered. These effects are
the basis of the interference with the cancerous cells. A better measure for the damage
in these cells is the deposited dose. Dose expresses the energy absorption by the medium
per unit of mass:

D(~r) ≡
Edep(~r)

ρ(~r)
. (5.15)

In treatment planning, this is the quantity which is considered.

5.3 Conclusions

The set of coupled equations, obtained in the discretization process described in the pre-
vious chapter, is solved by the use of an iterative method. In this method, the slope
equation and the average equation are solved together and is used as the basic building
block in solving the system. The cells are solved in the direction of the flows (along the
ordinate directions and down the energy domain), starting at (i = 1, g = 1, n = N).
This is repeated until both convergence criteria are met. To quantify the convergence,
the residual is defined which is a measure for change in the flux values after an iteration.
The convergence criterion is set based on inspection of solutions with more and less strict
criteria.

An energy flux balance equation is obtained by the multiplication of the transport
equation by the energy variable E, and integrating the result over energy, angle and a
single spatial cell. In this balance equation the in and out flows terms are identified. The
remaining terms signify energy deposition or source terms.



6. Investigation of Discretization
Requirements

In chapter 4, we have obtained a set of coupled equations by discretization of the 1D
transport equation in all of its independent variables. The number of equations in the
set depends on the level of discretization we use. If we use a high level of discretization,
we can obtain a very accurate solution, which is referred to as the converged solution.
However, the computation time and the storage space required to obtain this solution will
be large. If we, on the other hand, use a low level of discretization, the solution looses
accuracy. Therefore, we want to obtain an accurate solution with a minimum level of
discretization. In this chapter, we investigate what level of discretization is necessary to
obtain an accurate enough solution. In other words; what is the minimum amount of
cells in which we need to divide the energy, angular and spatial range, and how should we
distribute these cells over the ranges, in order to produce accurate results as efficiently as
possible.

By focusing on simplified versions of the Boltzmann-Fokker-Planck equation, we are
able to efficiently investigate the level of discretization necessary in an independent vari-
able. We assume the number of cells needed to obtain a converged solution in a test case
from table 6.1 to be the same as in the total transport equation.

Table 6.1: The three test cases in which we investigate the discretization requirements. The
discretization requirement in a variable in the total transport equation is determined by the most
strict discretization requirement of the test cases.

test case transport equation error equation

A µ∂ϕ∂x + σC,sϕ = ∂Sϕ
∂E ε =

∫∞
0 (Dref−D)

2
dx∫∞

0 D2
refdx

B µ∂ϕ∂x = σtr
2

[
∂
∂µ

(
1− µ2

) ∂ϕ
∂µ

]
ε =

∫∞
0

∫ 1
−1(ϕref−ϕ)

2
dµdx∫∞

0

∫ 1
−1 ϕ

2
refdµdx

C ∂Sϕ
∂E = −σtr

2

[
∂
∂µ

(
1− µ2

) ∂ϕ
∂µ

]
ε =

∫∞
0

∫ 1
−1(ϕref−ϕ)

2
dµdE∫∞

0

∫ 1
−1 ϕ

2
refdµdE

Note that we did not include the Boltzmann scatter operator and the energy straggling
term in the test cases. The effects of these operators on the solution are assumed to be
small, and therefore not to have a large effect on the choice of angular, spatial and energy
discretization required.

Each of the transport equations in the test cases in table 6.1 contain two independent
variables: x and E in test case A, x and µ in test case B, and E and µ in test case C.
The discretization requirement of one such variable is investigated by performing multiple
calculations with a varying levels of discretization in this variable, while using a fixed level
of discretization in the other variable. The error in one such calculation is evaluated by
comparing it to a reference solution. In this reference solution, the discretization level is
as high as possibly allowed by computation time and storage space limitations, and we
assume this solution to be fully converged. The error equation in test case A compares the

50
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Table 6.2: General computational set-up of the test cases, where NEref , NGref , and Nref are the
number of cells in the reference calculation.

fraction % by weight

Material H C O ρ [ g
cm3 ] S(Eg± 1

2
) σtr(Eg) NEref NGref Nref

PMMA 8 60 32 1.18 Eq. 3.28 Eq. 3.19 100000 10000 500

dose distribution D over the spatial domain to the dose distribution Dref of the reference
solution. The error functions in test cases B and C compare the angular flux ϕ over the
problem domain to the angular flux ϕref of the reference reference solution.

The discretization requirement of a single variable is set by the most strict requirement
for the discretization of that variable in any of the test cases. The error ε which is allowed
in the system depends on the problem at hand. In this thesis, we assumed the following
error criterion to be acceptable in proton therapy planning:

ε ≤ 10−4. (6.1)

See section 7.1.1 for more details on how this semi-arbitrary criterion was chosen.

6.1 General Computational Set-up

Here, the general set-up of the test cases is presented regarding the geometry, the material,
the boundary conditions which are used, and the structure of the discretization. These
settings are used in all of the test cases, unless stated otherwise in the computational set-up
section of the corresponding test case. In these sections, the more specific computational
set-up is presented of the corresponding test case.

6.1.1 Geometry and Material

The 1D geometry can be visualized in 3D as an infinite large slab, see figure 3.7 (left).
This slab is uniformly irradiated from the left side.

The Monte Carlo benchmark cases are calculations performed on PMMA. PMMA, or
polymethylmethacrylate, is a transparent plastic which closely resembles the properties of
human tissue. Phantoms are often made out of PMMA, which are used as model for the
human body with the purpose of measuring the dose deposition in a certain environment.
Since this material closely resemble the tissue of a patient, this material is assumed to
be a good representation of the materials encountered in proton therapy. Therefore this
material is, just as in the benchmark cases, used in the test cases as well. The physical
properties of PMMA can be found in table 6.2.

6.1.2 Boundary Condition

The boundary condition is set to mimic a pencil beam on the left side of the 1D slab. In
this boundary condition, the particles stream into the problem domain in the first spatial
element (i = 1). Therefore, the boundary condition ϕBC is imposed on the first spatial
element in the streaming operator (Lstr = µ ∂

∂x). To approximate the pencil beam direction
(µ = 1) of the particles, the boundary condition is imposed on the discrete ordinate with
the directional cosine closest to one: ϕBC(Ω̂N ) 6= 0 and ϕBC(Ω̂n6=N ) = 0.

Two types of boundary conditions are investigated: the mono-energetic boundary con-
dition (which gives rise to a Bragg peak), and the energy plateau boundary condition, see
figure 6.1 (which gives rise to a SOBP). In this figure, the two energy plateau boundary
conditions with ∆Ep = 25 MeV and ∆Ep = 50 MeV are shown which are investigated
in this chapter. The size of the plateaus ∆Ep is around the size of the plateau in the
medulloblastoma case. We also investigate the influence of the slope in the plateau on the
discretization requirement. For that purpose slope 0 (a flat plateau), 1 (a plateau which



52 6. INVESTIGATION OF DISCRETIZATION REQUIREMENTS

40 60 80 100
0

0.5

1

E [MeV]

ϕ
B
C
(E

)

∆E
p
 = 25 MeV, slope 0

40 60 80 100
0

0.5

1

E [MeV]

ϕ
B
C
(E

)

∆E
p
 = 50 MeV, slope 0

40 60 80 100
0

0.5

1

E [MeV]

ϕ
B
C
(E

)

∆E
p
 = 25 MeV, slope 1

40 60 80 100
0

0.5

1

E [MeV]
ϕ

B
C
(E

)

∆E
p
 = 25 MeV, slope 2

Figure 6.1: The energy plateau boundary conditions used in test case A in the investigation of
the discretization requirement for the energy variable. Here, Emax = 100 MeV.

goes half way to zero) and 2 (a plateau which goes to zero) are defined. The calculations
are performed with varying inlet energies. Ein refers to the energy of the mono-energetic
boundary condition. Emax refers to the maximum energy of the energy plateau boundary
condition.

6.1.3 Structure of the Discretization

Unless stated otherwise, the cells in the spatial and the energy domain in the test calcu-
lations are all uniformly distributed over the problem range. The size of the spatial range
is taken just over the range of the proton through the material, see figure D.5 (right). In
section 6.3.1 is investigated if adopting a different structure in the energy domain enables
us to obtain results more efficiently. In this thesis the optimal structure for the spatial
cells is not investigated.

The discrete ordinates are not uniformly distributed over the problem range, but are
distributed as described in section 4.1. Several quadrature sets (see table 6.4) are used
to investigate the discretization requirement of the angular variable. In order to be able
to compare the results of calculations with different quadrature sets, we only want the
discretization to be different in these calculations, not the boundary conditions. Therefore,
we want the direction of the particles streaming into the problem domain to be equal in
every calculation. To accomplish this, the directional cosine µN of the ordinate in which
the particles stream into the problem domain must be fixed for every set: µN = 0.999995
(waN = 10−5). This value is semi-arbitrarily chosen such that it is very close to µ = 1 to
approximate the pencil beam direction and that the majority of the remaining ordinates
are in the region of interest: 0.98 < µ < 1. In order to validate this pencil beam direction
approximation, we want to quantify the error due to this approximation. This is done
by performing calculations using the setting of test case A with the quadrature sets: (i)
N = 1, µN = 1, wN = 4π, and (ii) N =1, µN = 0.999995, wN = 4π. The results of
calculations with quadrature set (i) are used as a reference solution (in the error equation
of test case A) to evaluate the error due to the pencil beam approximation in quadrature
set (ii). The result is that the error is approximately ε ≈ 10−11. This is much smaller than
the error which we allow into the system due to discretization, and from this result can



6.2. SPATIAL DISCRETIZATION 53

be concluded that the directional cosine µN = 0.999995 close enough to 1 to accurately
approximate the pencil beam direction.

6.2 Spatial Discretization

6.2.1 Test Case A

Computational Set-up

The requirement for the spatial discretization is determined by the most strict discretiza-
tion requirement of test cases A and B. We start with case A. In this test case, we consider
the spatial variable x and the energy variable E, and we ignore the operators which depend
on the angular variable µ. Therefore, it is sufficient to consider just a single ordinate in
the quadrature set: N = 1, µN = 1 with wN = 4π. In the energy range, we use a fixed
number of 1000 energy groups. As we will see in the following section, this meets the error
criterion in equation 6.1 for the energy variable. In the reference case, we use 100000 spa-
tial cells. In these calculations, we distinguish two different types of boundary conditions:
the mono-energetic boundary condition and the energy plateau boundary condition.

Results of the Mono-Energetic Boundary Condition Problem

The result for Ein = 100 MeV is shown in 6.2 (left), the results of Ein = 150 MeV and
Ein = 200 MeV can be found in appendix D. As we can see from these figures, the error
decreases with an increasing number of cells with approximately 2nd order. If a more
advanced discretization scheme would have been used here, we would expect this order to
be higher, and the number of cells needed to produce accurate results to be lower. To meet
the error criterion in equation 6.1, approximately 2000 spatial cells cm−1 are necessary.
A total of 10000 cells uniformly distributed over the spatial range is sufficient to meet the
error criterion for all values of Ein, if the spatial range is set not much larger than the
range of the protons through the material (else, part of the spatial cells do not contribute
to the solution, reducing the number of effective spatial cells).

Results of the Plateau Boundary Condition Problem

The same analysis is applied with a plateau boundary condition. The result for Emax = 100
MeV is shown in 6.2 (left), the results of Emax = 150 MeV and Emax = 200 MeV can be
found in appendix D. We see that the number of spatial cells needed to meet the error
criterion is approximately a factor of 5 - 10 smaller as compared to the mono-energetic
boundary condition problem. With an increasing size of the energy plateau ∆Ep, a de-
creasing number of spatial cells are necessary to produce accurate results. The error
decreases approximately 2nd order, which is small compared to more advanced discretiza-
tion schemes. The number of spatial cells to produce accurate results is expected to be
lower if a more advanced discretization scheme would have been used here.

So concluding, the size of the energy depending differential flux influences the number
of cells in the spatial domain necessary to meet the error criterion; with an increasing
sharpness of the energy depending differential flux at the boundary, an increasing number
of spatial cells are necessary in the spatial domain to produce accurate results.

6.2.2 Test Case B

Computational Set-up

In the transport equation in test case B, the angular variable µ and the spatial variable x
are considered, and we ignore operators which depend on the energy variable E. Therefore,
it is sufficient to include just a single energy group in the calculation. In the angular
domain, just as in the benchmark cases and in the medulloblastoma case in the next
chapter, we use an S40 quadrature set. In the reference solution, we use 100000 spatial
cells.
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Figure 6.2: Left: test case A, error versus width of spatial cell ∆xi for plateau and mono-
energetic boundary conditions. Right: test case B, error versus width of spatial cell ∆xi with an
S40 quadrature set.

Table 6.3: Momentum transfer cross section σtr(E) of protons in PMMA with energy Ein for
test cases B and C and the corresponding range of the protons with through PMMA for test case
B.

Material Ein [MeV] σtr(Ein) [cm−1] range [cm]

PMMA 200 7 · 10−5 23

PMMA 100 2 · 10−4 7

PMMA 50 7 · 10−4 2

PMMA 20 4 · 10−3 0.3

PMMA 10 1.5 · 10−2 0.1

The transport equation in test case B does not contain operators which remove particles
from the equation, such as the total removal operator or the continuous slowing down
operator. As a consequence, in this problem no particles are removed from the equation
and the range over which the particles penetrate the spatial domain is infinite. Therefore,
in test case B, we have to impose a range over which we investigate the error in a solution.
This range is set equal to the range which the protons would have had if the continuous
slowing down term and the total removal operator would have been included. This range
is investigated with the help of test case A. The results are shown in figure D.5 in the
appendix of this thesis. The error in the solution of test case B is evaluated over the range
which corresponds with Ein in this figure.

In this test case, the protons do not lose energy as they penetrate the material. As
a consequence, the energy of the protons equals their inlet energy Ein everywhere in the
slab. The value of the momentum transfer cross section σtr(E) depends on the material
and on the energy of the proton. Since both are constant everywhere in the slab, the
momentum transfer cross section is also constant everywhere in the slab: σtr(Ein). See
table 6.3 for the values of the momentum transfer cross section in this test case.

Results

The results are plotted in figure 6.2 (right). From this figure, the error decreases with
an increasing number of spatial cells with approximately 3rd order. For high values of
σtr(E), we need a more dense structure to converge the solution compared to low values
of σtr(E). The discretization requirement depends on what size of effects it is desirable to
capture in the calculation. If the energy of the proton is small, the remaining range of that
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proton is small, but it will start to deviate from its direction of movement strongly in this
remaining range. To capture this small-sized large-angular effect, a more dense spatial cell
structure is necessary at the end of the range of the proton compared to the density of
the structure to capture the small-angular effects at the beginning of the range. Therefore
the spatial discretization in the medulloblastoma case in the following chapter is increased
in the tumor, where the energy of the particles is low compared to in front of the tumor.
In the remainder of this chapter all calculations are performed using 10000 spatial cells
uniformly distributed over the spatial range, due to computation time considerations.

6.3 Energy Discretization

6.3.1 Test Case A

Computational Set-up

The discretization requirement of the energy variable E is determined by the most strict
discretization requirement of test cases A and C. In test case A, the transport equation
contains two independent variables: the spatial variable x and the energy variable E, and
we ignore operators which depend on the angular variable µ. Therefore, it is sufficient to
consider a single ordinate in the quadrature set: N = 1, µN = 1 and wN = 4π. In the
spatial domain we use a fixed number of 10000. In the reference case we use 10000 energy
groups. Just as in the previous section, we distinguish two types of boundary conditions:
the mono-energetic boundary condition, and the energy plateau boundary condition. The
plateau boundary condition can easily be set up using the multi-group method. The
mono-energetic boundary condition, on the other hand, is not that easy to approximate
using the multi-group method. In the next section, we present two energy group structures
which can be used to approximate the mono-energetic boundary condition.

Computational Set-up of the Mono-Energetic Boundary Condition Problem

Since we are using a multi-group method, we can only approximate the mono-energetic
boundary condition by introducing protons in energy group with a width ∆E1. To inves-
tigate the optimal mono-energetic boundary condition approximation, we investigate two
types of energy structures, (i) and (ii):
(i) we choose a very small value of ∆E1 (the energy group in which the protons stream into
the problem domain), after which the following energy groups are uniformly distributed
over the remaining energy range. The energy group boundaries are determined according
to the following three equations:

∆E1 = 10−10 (6.2)

E 1
2

= Ein +
1

2
∆E1 (6.3)

∆Eg 6=1 =
E 3

2
− ENG+ 1

2

NG
. (6.4)

The first, very small, energy group is placed symmetrically over the inlet energy Ein.
Equation 6.4 distributes the remaining energy groups g > 1 uniformly over the remaining
energy range. The disadvantage of this boundary condition is that the energy widths of
the first and second energy groups are very different, which may cause inaccuracy in the
solution.
(ii) we distribute all the energy groups uniformly over the problem domain. The energy
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group boundaries in this case are determined according to the following three equations:

∆Eg =
E 1

2
− ENG+ 1

2

NG
(6.5)

ϕBC =
1

wN∆E1
. (6.6)

Ein = µNϕBCwN
1

2

(
E2

1
2

− E2
3
2

)
. (6.7)

In equation 6.5 the energy boundaries are uniformly distributed over the energy range,
equation 6.6 acquires that the number of particles streaming into the problem range is
equal for every choice of ∆E1 and thus for every choice of NG, and equation 6.7 acquires
the energy Ein streaming into the problem domain is equal for every choice of NG. This
last mentioned expression was obtained in the previous chapter, by evaluation of equation
5.9. The disadvantage of this boundary condition is that, although the number of particles
and the average inlet energy of the particles streaming into the problem domain at the
boundary is equal in every calculation, the boundary condition changes since ∆E1 changes
in every calculation. This is undesirable since we do not want the boundary condition to be
dependent on the level of discretization we use, but only on the problem we are simulating.

Results of the Mono-Energetic Boundary Condition Problem

The results are plotted in figure D.4 (left) in the appendix of this thesis. From this
figure, we see that the difference in the error is very small for the two different boundary
conditions. So, it does not really matter which of the boundary conditions ((i) or (ii))
is used to approximate the mono-energetic boundary condition. However, (i) is gives
slightly better results and is therefore adopted as mono-energetic boundary condition in
the remainder of this thesis. From figure 6.4 (left), the error decreases with an increasing
number of energy groups with an order of approximately 5.5. Note that this is 3.5 orders
higher than the order in which the error decreases in the spatial domain, where a simple
discretization scheme is used. In the low energy domain, we need a more dense energy
structure to obtain an accurate solution. In every calculation 500 energy groups is sufficient
to meet the error criterion, independent of Ein.

Results of the Plateau Boundary Condition Problem

The same analysis is applied on problems with the energy plateau boundary condition. In
figure 6.4 (left) the results are shown with energy Emax = 100 MeV. The results of the
Emax = 150 MeV and Emax = 200 MeV calculations can be found in appendix D of this
thesis. We see that the number of cells we need to obtain a converged solution is about
5 - 10 times smaller (i.e. around 50 - 100) compared to the number of energy groups
we need with the mono-energetic boundary condition. The reason for this is depicted in
figure 6.3: the more singular the shape of the energy depending differential flux, the more
energy groups are needed to accurately represent the shape of that flux. Since the shape
of the energy depending differential flux in the mono-energetic boundary condition prob-
lem is much more singular compared to the energy depending flux of the energy plateau
boundary condition problem, we can approximate the flux in the energy plateau boundary
condition problem with less energy groups. Also, with an increasing width of the energy
plateau boundary condition ∆Ep the shape of the smoothness of the energy depending
differential flux increases and a decreasing number of energy groups are necessary here
produce accurate results.

The error decreases approximately with an order of 5.5, which is equal to the order
in which the error in the mono-energetic boundary condition problem decreases. Just
as in the spatial discretization, we need a more dense group structure in the low energy
domain to produce accurate results. The total number of groups sufficient to meet the
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Figure 6.3: Left: energy depending differential flux of an energy plateau boundary condition
problem. Right: energy depending differential flux of a mono-energetic boundary condition problem.
The 50 group energy structure is more suited to approximate the energy depending differential flux
on the left compared to the right.

error criterion is approximately 100 and 50 for ∆Ep = 25 MeV and ∆Ep = 50 MeV
respectively, independent of Emax, see figures 6.4 (left) and D.2.

The influence of the slope of the plateau on the discretization requirement is tested.
The results are shown in figure D.3 (left), in the appendix of this thesis. From this figure,
the slope of the plateau does not influence the discretization requirement (significantly).
Therefore, we assume that only the size of the energy plateau ∆Ep is on influence on the
discretization requirement, not the shape of the plateau.

Investigation of the Optimal Energy Group Structure

In the previous sections, we have seen that we need a more dense energy group distribution
in order to produce accurate results in the low energy range compared to the high energy
range. This raises the suspicion that we could obtain an accurate solution more efficiently
by applying a different energy group structure than the uniform distributed energy group
structure. To investigate this, we introduce a method to distribute the energy groups
which is similar to the distribution of ordinates in the quadrature set we introduced in
section 4.1: we start with an energy group with a certain width, after which the following
energy groups have widths which are a factor larger than the previous energy group:
∆Eg = f · ∆Eg+1. In this section, we investigate the influence of f on the error in the
solution.

From this investigation we found that in some cases we can obtain a more accurate
solution with the same number of groups for certain values of f , but the gain is rather
small. The result of a case in which we can obtain a very small decrease in error is shown
in figure D.3 (right), in the appendix of this thesis. In most of the cases, however, in both
the energy plateau and the mono-energetic boundary condition problems, we found that
the best energy structure was the uniform distributed group structure. This is probably
due to the range of the protons through the material after an error is created: if the
error is created in the high energy range, the proton carries this error over a large range
through the slab and has relative large effects on the solution. Errors created in the low
energy range are carried over a short range through the slab, and therefore have a relative
small effect on the solution. So, refining the group structure in the low energy range at the
expense of the high energy range does not decrease the error in the solution (significantly).
In all following calculations a uniform distributed energy groups structure is used.
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Figure 6.4: Left: test case A, error versus energy width ∆Eg. Right: test case C, error versus
energy width ∆Eg.

6.3.2 Test Case C

Computational Set-up

In this thesis, the values of the momentum transport cross section σtr(E) are evaluated
at the center of the energy group (σtr,g = σtr(Eg)). In this section, this method of
representing σtr(E) is tested with the help of test case C. The transport equation in
this test case contains the energy variable E and the angular variable µ. In the angular
domain, we use an S40 quadrature set as defined in table 6.4, and in the reference solution,
we use 1000 energy groups. Since there is no dependence on the spatial variable x in this
transport equation, it is sufficient to consider only one spatial cell. Since the transport
equation does not contain the streaming operator (Lstr = µ ∂

∂x), we cannot impose a
boundary condition as we did in the previous test cases. Therefore, in this test case the
boundary condition is imposed on the continuous slowing down operator (LCSD = ∂S(E)

∂E )
by fixing ϕ(E 1

2
) = ϕBC .

Results

From figure 6.4 (right), we see that the error in the test case decreases 6th order, with an
increasing number of energy groups. An example of a 100 MeV calculation is plotted in
figure D.4 (right) in the appendix of this thesis. The discretization requirement depends
on what size of angular effects is desirable to capture in a simulation. We assume it is
not useful to capture the angular deviation of protons with a range less than 0.3 cm,
which corresponds to an energy of approximately 20 MeV (see figure D.5). To capture the
angular effects of the protons with energies E ≥ 20 MeV, the discretization requirement
of the energy variable in this test case does not exceed the discretization requirement in
test case A, independent of the type of boundary condition (plateau or mono-energetic).
So, in conclusion, the method we have used here to represent σtr(E) (σtr,g = σtr(Eg)),
does not need to be improved.

6.4 Angular Discretization

6.4.1 Test Case B

Computational Set-up

The requirement for the angular discretization is investigated by means of test case B.
The transport equation in this test case contains the angular variable µ and a spatial
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Table 6.4: The quadrature sets used in test case B and the approximate computation time to
obtain a solution. f in wn = f · wn+1. µN = 0.999995 and wa

N = 10−5.

Quadrature f CPU time [a.u.]

S10 3.75 1

S20 1.82 3

S40 1.32 9

S80 1.14 40

S150 1.063 100

S250 1.036 300

S400 1.021 700

S500 1.016 1300

variable x, and we ignore operator which depend on the energy variable E. Therefore,
it is sufficient to consider a single energy group. In the reference case, we use an S500

quadrature set. In the spatial domain we use 10000 cells in every calculation. See table
6.4 for the quadratures sets used in this investigation. No operators which remove particles
from the equation are included in the transport equation, and as a consequence, we have
to impose a range over which we investigate the error (see section 6.2.2). See table 6.3 for
the values of the momentum transfer cross section σtr(E), and the ranges which are used
in the calculations.

Results

Figure 6.5 (left), shows the angular depending differential flux at the end of the range in
a calculation performed with a 100 MeV boundary condition. The result of a calculation
with a 10 MeV boundary condition is shown in figure D.5 (left) in the appendix of this
thesis. From these figures we see, that if a low order quadrature set is used, the flux is
overestimated near µ = 1. Further away from µ = 1, the error in angular flux decreases
strongly. Note that the computation time increases strongly with an increasing degree of
quadrature, see table 6.4. This due to the increased number of equations in the set, and
the increased number of iterations necessary to obtain the converged solution. In future
work, much computation time can be gained if this iteration process is accelerated. For
example, it can be investigated if a multi-grid method is suited to decrease computation
time. In this multi-grid method, first a relatively low order quadrature is used to evaluate
the angular flux. In this first solution, the flux is well approximated far from µ = 1 and
less near µ = 1. The quadrature is then refined and interpolation is used for the flux
values in the new ordinates. This fine quadrature is used to refine the angular flux away
from µ = 1 and improve the angular flux near µ = 1.

From figure 6.5 (right), we see that the error decreases 4th order. The error is in
approximation independent of the inlet energy Ein. To obtain an error which meets
the criterion we would need an S80 quadrature set. However, due to computation time
considerations, we choose to use the S40 quadrature set in the benchmark calculations and
to accept the error ε ≈ 10−3 in the angular solution.

6.4.2 Test Case C

Test case C is not included in the investigation of the angular discretization requirement.

6.5 Conclusions

The error due to discretization is allowed to be ε ≤ 10−4. To meet this criterion, a
typical mono-energetic boundary condition problem needs 500 energy groups, 10000 spa-
tial cells and an S80 quadrature set. The number of unknowns in such a calculation is:
2×NG×NE×N = 2×500×10000×80 = 8·108.
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Figure 6.5: Left: test case B, the angular depending differential flux at the end of the range,
Ein = 100 MeV. Right: test case B, the error versus the number of ordinates N in the quadrature
set.

In a typical energy plateau boundary condition problem, the number of unknowns is,
depending on the width of the plateau, approximately 2×NG×NE×N = 2×75×2500×80=
3·107. The total number of unknowns (and thereby also computation time) is approxi-
mately a factor of 25 smaller compared to the mono-energetic boundary condition problem
(in a 3D calculation, this factor will even be orders larger). So concluding, due to compu-
tation time and storage space considerations, the SN method is more suitable for solving
energy plateau boundary condition problems compared to mono-energetic boundary con-
dition problems.

Investigation showed that the optimal energy structure is the uniform energy structure
in most cases. In some cases, solutions can be obtained more efficiently by applying a
different structure, but the gain is not significant.

The number of cells necessary to produce accurate results decreases with an increas-
ing size of the plateau. The slope of the plateau does not influence the discretization
requirement.

The mono-energetic boundary condition is best approximated with a very small first
energy group, for example, ∆Eg=1 = 10−10 MeV. To approximate the pencil beam bound-
ary condition, the directional cosine of this ordinate Ω̂N was chosen to be µN = 0.999995.
The error due to this pencil beam approximation is ε ≈ 10−11, which is very small com-
pared to the error which we allow due to discretization (ε ≤ 10−4). So, this is a good
approximation of the pencil beam direction.

The multi-group momentum transfer cross sections are evaluated as (σtr,g = σtr(Eg)),
which does not need improving.

The number of iterations necessary to converge the continuous scatter operator in-
creases strongly with an increasing size of the quadrature set. A lot of computation time
can be gained by accelerating this iteration process.

The energy straggling operator can be ignored for the purpose of proton transport
calculations in the energy range considered in proton therapy (see appendix C).



7. Results

7.1 Benchmark Cases

The results of the previous chapters are used in this chapter to set up two benchmark
calculations. The results of these calculations are compared to the results of Monte Carlo
calculations of the same problem. The Monte Carlo method is known to be very accurate,
and therefore, these Monte Carlo calcualtions are assumed to be equally valuable as a
benchmark as experimental results would have been. The results of these calculations are
provided by Aleksandra Biegun [3], a post-doctoral researcher at the Technical University
Delft.

7.1.1 Computational Set-up

Geometry and Material

The Monte Carlo calculations are of a mono-energetic pencil beam problem on a slab
of PMMA. These calculation are performed in a 3D geometry. In this thesis, we only
considered the 1D transport equation, and so, we are only able to perform calculations
on 1D geometries. Still, we expect the solution of the Monte Carlo calculation to be
comparable because of the nature of interaction of the protons with matter: they tend to
go in a straight line through the material and they have small angle scatter interactions.
These properties make the problem more depending on the x-coordinate, and less on the
y and z coordinates. The 1D pencil beam problem can be visualized in 3D as the uniform
irradiation of an infinite large slab, see figure 3.7 (left). On the right of this figure is the
3D pencil-beam problem visualized. In both cases, we expect the depth of the Bragg peak
to be at the some depth in the slab. The dose profile from the Monte Carlo calculation is
obtained by integrating the dose over the y and z coordinate. In this way, we have equal
units of dose in both cases. We are not able to compare the angular solution; to be able
to compare the angular solution of our method to the results of the Monte Carlo method,
we need to perform calculations in a 3D geometry.

Boundary Condition

The benchmark cases are mono-energetic pencil beam boundary condition problems. From
section 6.3.1, we have concluded that the best mono-energetic boundary condition approx-
imation is boundary condition (i) from this section. Therefore, this boundary condition is
used in these benchmark cases as well. The particles in the pencil beam stream into the
problem domain perpendicular to the surface of the slab (µ = 1). This is approximated by
imposing a boundary condition on the first spatial element (i = 1), on discrete ordinate
Ω̂N , in the streaming operator (Lstr = µ ∂

∂x).

Discretization

The level of discretization we use depends on the error which we allow in the calculation
due to discretization. The error criterion in this thesis is semi-arbitrarily chosen, based on
inspection of results of a 100 MeV mono-energetic pencil beam calculation from test case
A of the previous section, see figure 7.1 (left). We decided that error in the NG = 500
calculation in this figure, is acceptable for the purposes of proton therapy. The difference
in the peak position from the reference case is here 4.5 · 10−3 cm, and the overshoot at
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Figure 7.1: Left: test case A (see table 6.1), dose profile of a mono-energetic pencil beam boundary
condition problem. Right: the error we allow in the calculation is the error in the 500 energy group
case which corresponds to ε ≤ 10−4.

Table 7.1: Computational set-up of the benchmark cases.

fraction % by weight

Material Ein [MeV] NG N NE L S(Eg± 1
2
) σtr(Eg) σC,g σC,g′→g,l H C O ρ [ g

cm3 ]

PMMA 100,200 500 40 10000 10 Eq. 3.28 Eq. 3.19 SADCO SADCO 0.08 0.6 0.32 1.18

the edge of the Bragg peak is acceptable. From figure 7.1 we see that this corresponds
with ε ≈ 10−4. So, discretization level in calculations performed in this thesis, is required
to meet the error criterion ε ≤ 10−4. In table 7.1, the settings are listed which we used
to set up the benchmark cases. Note that the S40 quadrature set is used (see table 6.4),
which does not meet this error criterion. Due to computation time considerations, the
error ε ≈ 10−3 is accepted in the angular domain. The energy straggling operator is not
included in the calculations, due to its large influence on the computation time, and the
small influence on the solution, see appendix C.

7.1.2 Results

In figure 7.2 (left), the dose deposition result of the 100 MeV benchmark calculation is
presented. Here we see that the shape and the position of the peak are similar in both
calculations. The SN method does suffer from a small overshoot at the edge of the Bragg
peak.

In figure 7.3 (left) we see the angular depending differential flux at various positions
in the slab. The further the protons penetrate into the material, the further the protons
deviate from their original path of direction. This deviation is the strongest in the last part
of the protons range, as we can see from the difference in value of the angular depending
differential flux between x = 6 and x = 6.5 cm. However, this part of the solution cannot
be compared to the 3D Monte Carlo calculation.

In figure 7.2 (right), the dose deposition result of the 200 MeV benchmark calculations
is presented. The profiles are similar in this case as well, although we do see two clear
differences. The first is at the beginning of the dose profile. Here, the Monte Carlo
simulation shows a smaller dose than our calculation with the SN method. This difference
in dose profile is probably the energy transferred to secondary particles which are not
included in our calculations, like neutrons and photons. The energy which would have
been carried and deposited over a relatively large range by to these particles, is assumed
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Figure 7.2: Left: 100 MeV benchmark calculation, dose distribution. Right: 200 MeV benchmark
calculation, dose distribution.
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Figure 7.3: Left: 100 MeV benchmark calculation, angular depending differential flux. Right:
200 MeV benchmark calculation, angular depending differential flux.
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to be deposited locally in our SN calculations. This effect is large in the high energy
range, compared to the low energy range. Therefore, this effect is large in the 200 MeV
case compared to the 100 MeV case. The second lies in the position of the peaks. This
small difference is probably the result of two things. The first is not including the shell
corrections in our model for the stopping power. This effect corrects for the requirement
that the velocity of the incident proton is much larger than the velocity of the target
electron, slightly reducing the magnitude of the stopping power, resulting in a slightly
larger range of the protons through the material. The second is the error criterion. This
criterion is based on inspection of results of a 100 MeV mono-energetic boundary condition
problem calculation. This error criterion may need to be more strict for a 200 MeV
boundary condition problem. If under discretization is used, the position of the Bragg
peak shifts to the left, see figure 7.1.

In figure 7.3 (right) the angular depending differential flux is shown for the 200 MeV
SN calculation. Just as in the previous benchmark case, this result cannot be to compared
to the Monte Carlo calculation. We do see that the angular depending differential flux is
more diffused to larger angles in the 200 MeV problem compared to the 100 MeV problem,
as we would expect.

In both results, the SN method suffers from overshoots end the end of the Bragg peak.
This overshoot is seen in the energy depending differential flux as well. It is a consequence
of the level of discretization we used. If a higher level of discretization would have been
used, these overshoot disappear. However, computation time and storage space increases.

7.2 Medulloblastoma Case

As the final part of this thesis, we propose a treatment plan for the 4-year-old medul-
loblastoma patient in the scan of figure 7.4 (left), calculated with the SN method. In
the T1-weighted scan, the fatty tissue appears more bright on the picture, and we can
clearly recognize the tumor in the brain. A critical area of the brain of the patient is lying
directly behind the tumor. Irradiation of this tumor with conventional means, like photon
or electron radiation, will lead to a significant dose in this critical area of the brain. This
may result in long term side effects in the development of the patient, such as problems
with speech, hearing or locomotion. Using proton therapy, we can achieve maximum dose
in the tumor, while sparing this critical area.

7.2.1 Computational Set-up

Geometry and Materials

Figure 7.4 shows a T1-weighted MRI scan of the patient’s head. From inspection of this
figure, we estimated the width of the various tissues from the entry point in the head to
reach the tumor. In our 1D calculation, we can not include information on the height
and the width of the materials, only the depth. Such a 1D geometry can be visualized in
3D as the uniform irradiation of an infinite-sized slab. This slab then consist of several
layers, representing the different tissues in the patient, see figure 7.4 (right). The tissues
which are encountered by the proton are deducted from figure 7.4: skin, bone, brain,
tumor, and behind the tumor lies a critical area of the brain, see table 7.2. The chemical
composition and the density of these tissues is abstracted from the work of Woodard [46].
These physical properties are used in our models to evaluate the stopping powers and the
momentum transfer coefficients, and used in the SADCO code to evaluate the multi-group
catastrophic scatter constants.

Discretization

The discretization is such, that we meet the error criterion established in the previous
section: ε ≤ 10−4, with the exception of the angular quadrature set, where we accepted
the error of ε ≈ 10−3 due to computation time considerations, see table 7.2 for the settings.
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Figure 7.4: Left: T1-weighted MRI scan, sagittal view of a medulloblastoma patient [34]. Right:
the 1D geometry used in the treatment plan.

Table 7.2: Computational set-up of the medulloblastoma case with an S40 quadrature set (see
table 6.4), with 100 energy groups, a P10 order Legendre expansion catastrophic differential scatter
cross sections, and a plateau energy boundary condition ∆Ep = 30 MeV, with energy depending
differential flux as in figure 7.5. The multi-group stopping powers S(Eg± 1

2
) are evaluated with

equation 3.28, the multi-group momentum transfer cross sections σtr,g = σtr(Eg) are evaluated with
equation 3.19, the multi-group catastrophic scatter cross sections σC,g and σC,g′→g,l are evaluated
with the SADCO code.

fraction % by weight [46]

Body tissue size [cm] ∆xi[cm] H C N O Na P S Ca Cl K ρ [ g
cm3 ]

Skin 0.2 10−2 10 25 4.6 59.4 0.2 0.1 0.3 0 0.3 0.1 1.09

Bone 0.5 10−2 3.4 11.5 4.2 43.5 0.1 0 0.3 22.5 0 0 1.85

Brain Gray 0.4 10−2 10.7 9.5 1.8 76.7 0.2 0.3 0.2 0 0.3 0.3 1.04

Brain White 2.4 10−2 0.6 19.4 2.5 66.1 0.2 0.3 0.2 0 0.3 0.3 1.04

Tumor 3.5 10−3 0.6 19.4 2.5 66.1 0.2 0.3 0.2 0 0.3 0.3 1.2

Critical Area 2 10−2 10.6 19.4 2.5 66.1 0.2 0.3 0.2 0 0.3 0.3 1.04

Just as in the benchmark cases, the energy straggling operator was not included in the
calculations, since the effect of this operator on the solution is very small, see appendix
C.

Boundary Condition

To approximate the pencil beam direction (µ = 1) a boundary condition is imposed on
the discrete ordinate Ω̂N in the streaming operator (Lstr = µ ∂

∂x) in the first element on
the left side of the slab (i = 1). The optimal energy depending differential flux of the
boundary condition ϕBC(E) is such that a maximum, nearly flat dose profile in the tumor
is accomplished, while sparing the critical area. For this purpose, the optimal energy
depending differential flux is investigated, using trial and error. The result is shown in
figure 7.5. The width is ∆Ep = 30 MeV, and Emax = 103 MeV.

7.2.2 Results

The dose deposition result of the medulloblastoma calculation is plotted in 7.5 (left). Near
the entry point, the dose is relatively small compared to the dose in the tumor, although
it is high compared to the entry dose of a single Bragg Peak. This can be explained by
viewing the plateau boundary condition as a summation of a number of mono-energetic
pencil beams. The Bragg peaks of these beams line up next to each other to obtain a flat
dose profile in the tumor. Their entry doses, on the other hand, are added together, which
result in a relatively high entry dose. The dose is maximum in the tumor, and hardly
any dose is deposited in the critical area directly behind the tumor. Notice that the dose
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Figure 7.5: The energy depending differential flux of the protons in the pencil beam at the boundary
used in the medulloblastoma calculation.

in the bone is smaller than the one in the surrounding tissue. This is due to the high
number of the relatively heavy calcium atoms present in the scull; the amount of nucleons
compared to the number of atomic electrons here, is relatively large due to the number of
neutrons in the nucleus of a calcium atom, and as a consequence the deposited energy is
distributed over a larger mass and so the dose is relatively low.

In this treatment plan, 62.3% of the energy is deposited in the tumor, 37.8% is de-
posited in front of the tumor, and only 0.7% of the dose is deposited in the critical area.
If photon or electron radiation would have been used, the energy in front of the tumor
and especially the energy in the critical area would be significantly higher. 96.5% of the
deposited energy is transferred from the proton through inelastic Coulomb interactions
with the atomic electrons. The remaining 3.5% is transferred through the catastrophic
interactions of the incident protons with the atomic nuclei.

To reduce the entry dose, the tumor can be radiated from several angles. This causes
the entry energy to be distributed over a larger part of the brain, locally reducing the dose
in the brain. However, although the dose is lower, the total amount of normal tissue which
is irradiated is larger, which may increase the chance on long term side effects instead of
reducing it.

In figure 7.6 (right) the scalar flux is shown. At the beginning of the slab, the scalar
flux decreases only due to absorption of protons in the catastrophic scatter process. After
approximately x = 4 cm, the scalar flux decreases as a consequence of protons streaming
out of the system through the final energy group boundary. After a little more than 7 cm,
all of the protons have deposited their energy within the patient.

In figure 7.7 (left) the angular depending differential flux is plotted at several positions
in the patient. The protons deviate from their original trajectory as they penetrate the
patient. Due to this effect, some of the protons may pass the tumor on the side, thus
contributing to the dose in normal tissue. This effects is not captured in a 1D calculation.
However, since the protons tend to move in a straight line through the tissue, this effect is
expected to be small. If the depth of the tumor increases, the protons can deviate further
from their original trajectory, and as a consequence, the expected number of protons which
miss the tumor by passing it on the side becomes larger. To capture these effects, 2D or
3D calculations are necessary.

In figure 7.7 (right) the energy depending differential flux of the protons is shown at
several positions in the patient. Near the entry point, the protons have high energies.
As the protons penetrate the tissue, energy is transferred to their surroundings, and the
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Figure 7.6: Left: medulloblastoma case, dose distribution. Right: medulloblastoma case, scalar
flux.
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Figure 7.7: Left: medulloblastoma case, angular depending differential flux at various positions
in the patient. Right: medulloblastoma case, energy depending differential flux of the protons in
bone (x = 1 cm), in the brain (x = 3 cm) and in the tumor (x = 6 cm).

energy of the protons decrease. This is represented by the movement of the spectrum
through the energy domain.

7.3 Conclusions

Results of the SN method are compared to benchmark cases performed with the Monte
Carlo code. Results are promising: the depth of the peak is very similar, and small differ-
ence in the profile between the result of the SN method and the Monte Carlo calculations
can be explained using secondary neutron dose, under discretization and shell corrections
in the stopping power model. The profiles are expected to be exactly overlapping if these
issues are further improved. However, the angular part of the solution is cannot be com-
pared to benchmark cases using 1D calculations. In future work, 3D calculations should
be performed in order to validate that the continuous scatter operator and the transport
cross section are good representations of the angular deflection of the incident protons.



8. Discussion and Conclusions

The main goal of this thesis was to investigate the applicability of the SN method to
the use of proton therapy planning, and if it can replace and augment the Monte Carlo
method. Therefore, the main question of this thesis was:

Is the SN method accurate enough to replace the Monte Carlo method in proton ther-
apy planning, and what underlying methods need to be improved to reach its potential
computation speed?

For the purpose of answering this question, the models for describing charged particle
transport and methods solving the transport equation were investigated on accuracy for
proton transport calculations in the energy range considered in proton therapy. In this
chapter we present and discuss the main results and conclusions of this investigation. In
the following sections, we provide an answer to the main question of the thesis and give
the general conclusion of this work. In the final section, we give recommendations for
future work.

8.1 Models for Describing Protons Transport

The three main interaction processes in the energy range considered in proton therapy
are: elastic Coulomb scatter interactions with the atomic nuclei, inelastic Coulomb scat-
ter interactions with the atomic electrons, and catastrophic scatter interactions with the
nucleus. These are the only three interaction processes needed to be modeled to accurately
calculate the particle field in the problem domain in the energy range considered in proton
therapy.

The Coulomb interactions are modeled by using the Rutherford model and the model
of Bethe. These models are accurate down to 1 MeV in the energy range considered in
proton therapy. This is an acceptable cutoff energy since the range of a 1 MeV proton
through tissue is very short. Rutherford’s model and the model of Bethe are used to
evaluate the Fokker-Planck coefficients. Based on the comparison of the stopping power
(one of the Fokker-Planck coefficients) with literature values it was concluded that our
values were quite accurate, but the shell corrections need to be included in our models
to highly accurate evaluate the stopping power in the energy range considered in proton
therapy. The momentum transfer cross sections (one of the Fokker-Planck coefficients)
was also validated using literature values and found accurate. However, 3D calculations
are necessary to further validate these cross sections.

The catastrophic scatter interactions are modeled by using an extern code: the SADCO
code. However, this code does not provide data in the complete energy range considered
in proton therapy, and the accuracy is questionable in some parts of its outcome. In future
work, an alternative code should be investigated, for example MCNPX, or it should be
investigated if models are available to describe these scatter interactions.

The Fokker-Planck approximation was used to mathematically describe the small an-
gular scatter interactions and the small energy transfers. The small energy transfers are
accurately described by the continuous slowing down operator in the energy range con-
sidered in proton therapy; it is not necessary to include the energy straggling operator to
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describe the process in this energy range. The small angular Coulomb scatter of the inci-
dent protons is described by the continuous scatter operator. This operator is validated
in the energy range considered in proton therapy, for small angle scatter only. The large
angle scatter needs to be described by the conventional Boltzmann scatter operator for an
accurate and complete description of the problem. To further validate this operator for
small angle Coulomb scatter, 3D calculation are necessary in future work.

8.2 Methods to Solve the Transport Equation

The linear Boltzmann-Fokker-Planck equation is the transport equation which is used to
describe proton transport. In this thesis, the 1D form of this equation is transformed
into a set of coupled equations using discretization methods. Subsequently, an iterative
method is used to obtain the solution from this set of equations.

Several discretization methods exist for solving partial differential equations. In this
thesis, the discretization methods used are the SN method, the step scheme, and the linear
discontinuous Galerkin method for the angular variable µ, the spatial variable x, and the
energy variable E respectively. The SN method and the step scheme are equivalent to each
other, i.e. we would end up with the same set of equations if we had used the step scheme
instead of the SN method in the angular domain. Both these methods are relatively simple
and suffer from large truncation errors: a relatively large number of discrete ordinates and
spatial elements are necessary to produce accurate results. We expect these numbers to be
smaller if a more advanced discretization scheme would have been used in these domains.
This would decrease the number of cells necessary to produce accurate results, and thereby
reduce storage space and computation time.

The energy domain is discretized using the linear discontinuous Galerkin method. This
method is a more advanced method compared to the step scheme and the SN method. It
uses both features of the finite volume method and the finite element method: the energy
groups are considered as a finite volume, the flux inside the groups is approximated with
a finite set of basis functions. In this thesis, this flux is approximated to be linear within
the groups. This linear dependency is expressed with a set of two basis functions which
results in a coupled set of average and slope equations. It is possible to approximate
the flux within an energy group using more basis functions. The number of equations
and unknowns per energy group increases with the number of basis functions. However,
we expect a fewer number of energy groups to be necessary to produce accurate results.
Therefore, using more basis functions may reduce the number of equations and unknowns
in the set and thereby reduce computation time. In future work, it should be investigated
what the optimal number of basis function is in the discretization in the energy domain,
spatial and angular domain in order produce accurate results as efficiently as possible.

The Gauss Seidel iterative method is used to solve the set of coupled equations. The
average and slope equations are solved together, since they are strongly coupled, and are
used as the basic building block in solving the set of equations. It is also possible to include
more equations in the basic building block, for example, the average and slope equation of
two neighbor spatial elements. Even though it will cost more computation time to solve
this larger matrix system, the solution is expected to converge faster, and it may thus
reduce the overall computation time in this case. In future work, it should be investigated
what the optimal set of equations is in the basic building block for solving the system as
efficiently as possible.

The convergence of the continuous scatter operator during the iterative process is
slow; the angular depending differential flux moves, during the iterations, very slowly in
the direction of the converged solution. On the other hand, if a low order quadrature
set is used, the angular depending differential flux moves more quickly to the converged
solution. Therefore, we expect that higher computation speed can be reached by using
a multi-grid method. In this method, the order of the quadrature changes during the
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iterations, using interpolation to estimate to angular depending differential flux of the
higher order quadratures. In future work, it should be investigated what the optimal
method is to accelerate this convergence process.

8.3 Main Question of the Thesis

The previously discussed investigations were undertaken to test the applicability of the
SN method to proton therapy planning, and to answer the main question of the thesis.

The results of the investigations were used to set up two benchmark calculations of a
100 MeV and a 200 MeV mono-energetic pencil beam boundary condition problems. The
results of Monte Carlo calculations were used to benchmark our calculations with the SN
method. Monte Carlo is proven to be very accurate, and therefore we assume it to be a
valuable benchmark.

The results were promising: in the 100 MeV benchmark case the Bragg peaks were at
the same position and the dose profiles were almost exactly overlapping. In the 200 MeV
benchmark case the Bragg peaks were almost at the same position; the small difference is
expected to be due to the following: under discretization (the discretization criterion we
used was based upon a 100 MeV case, the 200 MeV case may need a more strict criterion),
or to the shell correction, which is not included in our model for the stopping power. The
base of the profile is slightly different from the Monte Carlo calculation. This is expected
to be due to the neglect of secondary neutrons: these secondary neutrons carry this energy
over a large range. In the SN calculation, they are assumed to deposit their energy locally.
In conclusion, if these small shortcomings are overcome, the dose profiles are expected
to be exactly overlapping. In other words, the SN appears to be just as accurate as the
Monte Carlo method. However, the angular solution cannot be benchmarked using 1D
calculations. So, in order to answer this part of the question, 3D calculations have to be
performed first.

Calculations performed in this thesis are not as efficient as the SN can potentially be.
At least three underlying methods need to be improved in order to reach the potential
computation speed: the discretization method used in the spatial and angular domain,
the structure of the discretization in the spatial and angular domain, and the iteration
process to converge to continuous scatter operator.

A linear discontinuous finite element method can be used in the angular and spatial
domain. This decreases the number of spatial cells and discrete ordinates to produce
accurate results, decreasing the number of equations in the set and thereby reducing
computation time.

Adaptive mesh refinement can be applied in the spatial and angular domain. This
method automatically refines the discretization in the areas of interest. The result of
this refinement procedure is an optimal discretization structure in the spatial and angular
domain, reducing the number of equations in the set necessary to produce accurate results,
and thereby reducing computation time.

In calculations performed in this thesis, a lot of iterations were necessary to converge
the continuous scatter operator. This process can be accelerated, for example, by using
a multi-grid method in the angular domain. In this method the level of discretization
changes in-between the iterations, using interpolation between the finer and coarser grids.
In this way fewer iterations are necessary to converge the continuous scatter operator,
which results in reduced computation time.

The computation time of the SN method with the above mentioned improvements
included is expected to be small as compared to the computation time of the Monte Carlo
method.
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8.4 Conclusion

If the angular part of the solution of the SN method is validated, the SN method is just
as accurate as the Monte Carlo method in proton therapy planning. With the necessary
improvements, the SN method is expected to be much faster as well. Furthermore, com-
pared to the Monte Carlo method, the SN method offers other advantages as well: it
offers a dose profile in the entire region of simulation and it is suitable for perturbation
techniques to capture the uncertainty of the chemical composition of the tissue and the
movement of the patient. These properties make the SN method superior to the Monte
Carlo method, and therefore, the question if the Monte Carlo method should be replaced
by the SN method in proton therapy planning can be answered positively.

Including the improvements as described in the previous section, the uniform-intensity
beam and pencil beam algorithms are still expected to be faster compared to the SN
method, especially in mono-energetic boundary condition problems. However, these meth-
ods use rough approximations and the uncertainty in the outcome is difficult to evaluate.
Therefore, these methods can only be used in those situations were they are known to
give accurate results, or as a first approximation, after which the SN method needs to be
used to validate the outcomes. In situations where the uniform-intensity beam and pencil
beam algorithms are not certain to be accurate, the SN method should be used.

8.5 Future Work

The SN method, as described in this thesis, is not ready to be applied in clinics. In this
section, we describe the improvements that need to be made in future work, in order to
make the method ready to be implemented in clinics.

In order to reach the potential accuracy of the SN method, the models which describe
the stopping power and the catastrophic scatter interactions need to be improved. The
shell correction needs to be included in the model for the stopping power, or, alternatively,
tabulated stopping power data from literature may be used. For the catastrophic scatter
interaction process a code or models should be included which are able to generate coupled
differential catastrophic scatter cross sections in the energy range 1 - 200 MeV, for protons,
neutrons, and photons. The catastrophic differential cross sections need to be accurately
described by the Legendre expansion. Therefore, it should be investigated what number of
Legendre polynomials is necessary to accurately describe these differential cross sections.

The equations in this thesis are to govern 1D geometries only. These equations need
to be expanded to govern 3D geometries for the purpose of proton therapy planning. In
a 3D geometry, the angular part of the solution can be benchmarked. The validity of
the momentum transfer coefficient can be investigated with the help of these benchmark
calculations.

Large angle elastic scatter can not be ignored in 3D geometries. The differential cross
sections of the elastic Coulomb scatter with the atomic nuclei need to be decomposed in a
singular and a smooth part, in order to describe this large angle scatter with the conven-
tional Boltzmann scatter operator. Therefore, an optimal method for this decomposing
needs to be investigated.

The next step is to increase the computation speed. For this purpose, the angular
variable and the spatial variables can be discretized by using, for example, a linear discon-
tinuous Galerkin method, the optimal discretization structure can be obtained by applying
adaptive mesh refinement, and the convergence of the continuous scatter operator can be
accelerated by using, for example, a multi-grid method. Furthermore, it should be in-
vestigated if applying even more advanced discretization methods can result in reduced
computation time. In this thesis, we solved the average and slope equation together as the
basic building block in the iterative method. In future work it should be investigated if
including more equations in this basic building block, for example, the average and slope



72 8. DISCUSSION AND CONCLUSIONS

equation of the neighbor spatial element, can result in reduced computation time.
At this stage, accurate calculations can be performed very efficiently. The next step

is to include perturbation techniques, in order to capture the effects of uncertainty of the
chemical composition of the tissue in the patient and the movement of the patient. Ideally,
the code should be able to adapt the settings of the proton beam to the movements of
the patient. To accomplish this, however, we need to be able to image the patient during
treatment, like the MRI-accelerator [37] is able to do during electron therapy.

The accuracy of the SN method is limited by the uncertainty of the chemical com-
position of the tissues in the patient. MRI and CT scans can be used to obtain this
information. Ideally, these scans capture the exact chemical composition of the tissues,
and this information is automatically communicated to the SN code.

After performing these investigations and applying the possible improvements to the
SN method, we conclude that the SN method is superior to the Monte Carlo method for
the purpose of proton therapy planning and is ready to be implemented and used in the
radiotherapy clinics.
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A. Rutherford Scatter

Here, we present a derivation of the relation between the scattering angle Θ and the impact
parameter b.

In the center of mass frame, any two body problem is reduced to a one body problem.
This greatly simplifies the analysis. We start with Newton’s second law of motion in the
cylindrical coordinate system:

F = m0

(
r̈ − rθ̈

)
. (A.1)

Here, F is the force acting on the incident proton, m0 is the reduced mass of the proton,
θ is the angle of position and r is the distance of the proton to the origin of the center of
mass frame, see figure A.1. Conservation of angular momentum L requires that:

L = m0r
2θ̇ = m0v0b = constant (A.2)

where b is the impact parameter and v0 the initial velocity of the incident particle in the
laboratory frame. Derivatives of r with respect to time can be rewritten as derivatives of
u (u ≡ 1

r ) with respect to angle, using the conservation of angular momentum law:

du

dθ
=

d

dt

(
1

r

)
dt

dθ
= − ṙ

r2θ̇
= − ṙ

h
(A.3)

d2u

dθ2
= −1

h

dṙ

dt

dt

dθ
= − r̈

hθ̇
= − r̈

h2u2
. (A.4)

The above can be combined to eliminate explicit time dependence. Physically, we are
combining the principle of conservation of angular momentum and the Coulomb interaction
between the particles in order to obtain the differential equation of the path of the incident
particle:

F = m0

(
r̈ − rθ̈

)
= −m0

(
h2u2d

2u

dθ2
+ h2u3

)
= −m0h

2u2

(
d2u

dθ2
+ u

)
. (A.5)

This equation is called the Binet equation.
The Coulomb force between two points of charge having Zi and Zt fundamental charge

units for the incoming particle and the target particle respectively, can be written as:

F =
1

4πε0

ZtZie
2

r2
(A.6)

with ε0 being the vacuum permittivity. This relationship can be plugged into the Binet
equation to arrive at:

d2u

dθ2
+ u = − ZiZte

2

4πε0m0v2
0b

2
. (A.7)

The above differential equation describes the path of the incident proton. The general
solution of the above equation;

u(v0, θ) = u0 cos (θ − θ0)− ZiZte
2

4πε0m0v2
0b

2
(A.8)
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Figure A.1: The hyperbolic path of the incident proton around the target nucleus. r is the distance
between the proton and the nucleus, θ the angle between proton and nucleus, and Θ is the scattering
angle.

where u0 and θ0 are constants of integration. The smallest distance between the proton
and its target is reached when θ = θ0. Since this constant of integration only depends
on the orientation of the reference frame, it is allowed to assume θ0 = 0, this is depicted
in figure A.1. By rearranging equation (A.8), this solution for the orbit of the incident
proton in the center of mass frame is recognized to be the hyperbolic orbit equation.

r =
1
κ

u0
κ cos(θ)− 1

(A.9)

with;

κ =
ZiZte

2

4πε0m0v2
0b

2
. (A.10)

The general hyperbolic orbit equation in polar coordinates:

r =
a(ε2 − 1)

ε cos(θ)− 1
(A.11)

Here, ε is the eccentricity of the orbit, and a is the semi-major axis of the orbit. By
comparing equations (A.9) and (A.11) we can derive the following equalities:

1

κ
= a(ε2 − 1) (A.12)

and

ε =
u0

κ
. (A.13)
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So, the incident proton makes a hyperbolic orbit around the target nucleus. Now, the next
step is to determine the constants of integration u0. To evaluate this integration constant
we apply the principle of conservation of energy to this elastic collision. The kinetic energy
of the incident particles must be equal to the electrostatic energy and the kinetic energy of
the reduced mass in the center of mass frame. The kinetic energy of the incident particle
at the moment of impact is,

v2
1 =

(
dr

dt

)
+

(
r
dθ

dt

)
=

[(
dr

dθ

)2

+ r2

](
dθ

dt

)2

(A.14)

where v1 is the velocity of the incident particle at the moment of impact in the center of
mass frame. From equation A.8 we obtain (with θ0 = 0),

dr

dθ
=
dr

du

du

dθ
=

(
− 1

u2

)
(−u0 sin θ) = u0r

2 sin θ. (A.15)

From equation A.2 we have dθ
dt = h

r2
. We use this together with the above to obtain,

v2
1 = u2

0h
2 sin2 θ +

h2

r2
. (A.16)

The sum of the kinetic energy after impact and the electrostatic energy must be equal to
the initial kinetic energy of the incident particles,

1

2
m0v

2
0 =

1

2
miv

2
1

mi

m0
+
ZiZte

2

r

m0

mi
(A.17)

where the first term on the right hand side is the total kinetic energy after impact, see
Evans [11] p. 833. Rewriting the above,

v2
0

(
m0

mi

)2

= v2
1 +

2ZtZie
2

rmi

(
m0

mi

)2

(A.18)

and substituting v2
1 from equation A.16 and 1

r from equation A.8, we arrive at:

u2
0

κ2
=

m2

κm0b2
+ 1. (A.19)

We could solve this equation for u0, but instead we use this result directly to evaluate the
eccentricity of the hyperbolic path of the incident proton from equation (A.13):

ε =

√
1 +

m2

κm2
0b

2
. (A.20)

According to this equation, the eccentricity is always larger than 1. Therefore, the path of
the proton is always hyperbolic, and never elliptical. Now, let us take a closer look at the
hyperbolic path of the proton. The direction of the incoming asymptote is determined by
the boundary condition r →∞. If we rearrange the orbit equation of the incident proton
and apply this boundary condition, we get:

cos(θ∞) =
1

ε
. (A.21)

From figure A.1, we can recognize a relation between the scattering angle Θ and θ∞:

Θ = π − 2θ∞. (A.22)
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From equation A.21, we can relate this to the scattering angle Θ:

sin

(
Θ

2

)
=

1

ε
. (A.23)

Hence,

cot2

(
Θ

2

)
= ε2 − 1. (A.24)

Together with A.20 this will lead to the final result: the relation between the scattering
angle Θ and the impact parameter b:

b = cot

(
Θ

2

)
ZiZte

2

4πε0m0v2
0

. (A.25)

This result is the starting point for the derivation of the Rutherford scatter cross sections
in chapter 2.



B. Derivation of Continuous Slowing Down
and Energy Straggling
Operators

In this section, we demonstrate how to derive the continuous slowing down and energy
straggling operator from the Boltzmann scatter operator for the inelastic scatter operator
of the incident protons with the atomic electrons:

LB,inϕ(E) =

∫ ∞
0

σin(E′)ϕ(E′)dQ− σ(E)in,sϕ(E) (B.1)

were E′ = E + Q. The first term on the right hand side represents all the protons that
scatter from energy E′ to energy E, the second term on the right hand side represent all
the protons scattering away from energy E. Small energy transfers dominate the inelastic
scatter process of the incident protons with the atomic electrons: the energy E′ is close
to the energy E. Therefore, we can approximate σin(E′)ϕ(E′) with a finite Taylor series
around E. Including up to second order terms in the approximation leads to:

σin(E′)ϕ(E′) ≈ σin(E)ϕ(E) +
∂σin(E)ϕ(E)

∂E
(E′ − E) +

1

2

∂2σin(E)ϕ(E)

∂E2
(E′ − E)2.

(B.2)

This is implemented in the expression of the Boltzmann scatter operator:

LB,inϕ(E) ≈∫ ∞
0

(
σin(E)ϕ(E) +

∂σin(E)ϕ(E)

∂E
(E′ − E) +

1

2

∂2σin(E)ϕ(E)

∂E2
(E′ − E)2 − σin(E)ϕ(E))

)
dQ

=
∂S(E)ϕ(E)

∂E
+

1

2

∂2T (E)ϕ(E)

∂E2
(B.3)

with

S(E) =

∫ ∞
0

σin(Q)QdQ (B.4)

T (E) =

∫ ∞
0

σin(Q)Q2dQ. (B.5)

S(E) is the stopping power which expresses the rate of energy transfer to the atomic
electron. T (E) is the energy straggling coefficient which expresses the variance in this
stochastic process.
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C. Effect of Energy Straggling Operator
on Solution of Transport Equation

The energy straggling operator describes the stochastic nature of the energy transfer pro-
cess of the incident protons to the atomic electrons. This stochastic process is known to
be an important process in modeling high energy protons in the energy range considered
by NASA in shielding problems for objects in space [44]. In this section, we investigate
the influence of the energy straggling operator on the solution of the linear Boltzmann
equations for protons in the energy range considered in proton therapy.

The energy straggling operator acts as a diffusion operator of flux in the energy domain.
This process in described by a second order derivative of the angular flux in the energy
domain. As we have seen in chapter 4, discretization of this operator leads to an expression
containting the flux value of both neighbor energy groups. Therefore, we have to iterate
to obtain a solution. This iterative process is computation time demanding: in the case of
the energy straggling operator, it increases computation time with an approximate factor
of 8.

To investigate the effect of the energy straggling operator on the solution of the trans-
port equation, we consider the following transport equation:

µ
∂ϕ

∂x
+ σC,sϕ =

∂Sϕ

∂E
+
∂2Tϕ

∂E2
. (C.1)

This equation is discretized according to the requirements we found in chapter 5, and
used to calculate the dose deposition distribution of several mono-energetic and plateau
boundary condition problems. These same boundary condition problems are evaluated
with the transport equation:

µ
∂ϕ

∂x
+ σC,sϕ =

∂Sϕ

∂E
(C.2)

which is the same equation as C.1, only without the energy straggling operator included.
Now, the difference in the two solutions is evaluated in order to investigate the influence
of the energy straggling operator on a solution of a typical proton therapy problem. This
is done with the help of the error equation in test case A (table 6.1):

ε =

∫∞
0 (Dref −D)2 dx∫∞

0 D2
refdx

(C.3)

where we take the solution of the transport equation C.1 as the reference solution. In this
way we evaluate the error in a solution if we ignore the energy straggling operator.

In figure C.1 the energy spectrum is plotted of the two solutions at x = 2.5 cm in the
slab of a ∆Ep = 25 MeV, Emax = 100 MeV boundary condition problem. From this figure
we already see by inspection that the difference between the solutions is small. Only at
the positions in the energy spectrum were the gradients are high, the solution of equation
C.1 shows a somewhat smoother energy spectrum. The errors evaluated with equation
C.3 were ε ≈ 10−5 for all problems, which is an order of magnitude smaller compared to
the error in the solution which we allowed due to discretization.
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Figure C.1: Test case A, energy spectrum of plateau boundary condition problem, with and without
straggling operator.

So, in conclusion, the energy straggling has only a minor effect on the solution, while
it increases the computation time significantly. Therefore, the energy straggling operator
can be ignored in the transport equation for proton transport calculations in the energy
range considered in proton therapy planning.
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Figure D.1: Left: test case A, error versus width of spatial cell ∆xi, Ein = 150 MeV. Right: test
case A, error versus width of spatial cell ∆xi, Ein = 200 MeV.
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A, error versus energy group width ∆Eg, Ein = 200 MeV.
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