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Abstract

In order to ramp up the conversion ratios and burn-up of nuclear reactors, it is
inevitable to go to tightly packed fuel rods in the reactor. These nuclear reactors with
tightly packed rod-bundles are characterized by interesting flow patterns, different
from the ones encountered in regular channel and pipe flows. The correct prediction
and control of the flow distribution is essential for the reactor design and safety
assessment, and has been an active area of research in reactor thermal-hydraulics.
Apart from the axial flow of coolant parallel to the rod bundles, there exists cross-
flow between the sub-channels.

The cross-flow promotes homogeneous enthalpy distribution and enhanced mix-
ing between the coolant flowing in the sub-channels. Turbulent mixing is an im-
portant phenomenon, which influences the flow and temperature patterns in the
rod bundles. Large-scale coherent structures along with transverse flow pulsations
have been identified in the rod-rod and rod-wall gap regions. This large-scale struc-
ture has a quasi-periodic behavior and is considered an important factor for high
mixing-rate.

The aim of this work is to get a better understanding of the flow in a rod-
bundle. This is done by performing numerical investigations on a simplified rod-
channel geometry. The Unsteady Reynolds Averaged Navier Stokes equations are
solved using the Computational Fluid Dynamics software OpenFOAM. Extensive
benchmark and validation studies were done in order to determine the simulation
technique that offers a good balance between computational cost and accuracy. The
flow dynamics and the transport and mixing of a passive scalar due to the coherent
structures are studied.

Different turbulence models were used to study their effect on flow dynamics, and
no major differences were observed. Following this, the computationally cheaper
k − ε turbulence model with wall functions was chosen for the simulations. The
time required for flow development in this geometry was significantly higher than
that in regular turbulent channel or pipe flow. This led to different results than
the ones observed in the experiments and in previous simulation results published
in the literature. It was concluded that the flow in the experiments was not fully
developed and that probably not enough time was used to allow flow development in
the previous simulations. Our results indicate that the shear-layer becomes thinner
and the number of structures decreased with flow development, which would explain
the higher number of structures found in previous simulations.

High values of velocity fluctuations and the kinetic energy due to these fluc-
tuations indicated the presence of structures in the near-gap region. Large-scale
three-dimensional counter-rotating sledge-shaped structures were observed via the
flow visualization of resolved velocity. These structures were not only restricted to
the gap region, but encompassed the entire flow domain. The high periodicity and
stability of these structures indicate that they are not turbulence structures.

The effect of gap-size on the coherent structures was studied, and this study
suggested that the presence of more than one mechanism for the formation of these
structures. A critical gap-size was obtained, at which the intensity of the structures
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has a maximum value, and a cut-off gap size was identified, at which a transition
takes place between the two mechanisms.

The coherent structures were found to play a significant role in both the trans-
port and mixing of the passive scalar. The contribution were similar to that of
the turbulent diffusion. The simulations indicate that the effect of the coherent
structures on the transport and mixing of a passive scalar is of the same order of
magnitude of the effect of the turbulent diffusion.
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Chapter 1

Introduction

The flow in a simplified rod-channel geometry tries to emulate the coolant flow between
the rod bundles inside a nuclear reactor. Given the high priority of safety in the operation
of nuclear reactors, it is necessary to have a comprehensive understanding of the coolant
flow behavior. The interesting geometry of the rod bundles, with the presence of wide
and narrow regions results in a unique flow profile, with the presence of large-scale
swirling structures. These structures are known to be coherent in nature and result in
cross-flow zones in the otherwise axial flow in rod bundles.

1.1 Nuclear Energy and Reactors

With the dwindling conventional energy resources and slow development of renewable
energy, nuclear power will continue to be in the world energy mix for years to come.
There has been a steady growth in the world nuclear-fission reactor capacity over the
past few decades, and it continues to grow. With more countries joining the league of
developing countries, further development of nuclear fission energy is very important.
Figure 1.1 shows the projected nuclear-fission generation capacity worldwide.

Figure 1.2 shows a schematic of the basic operation of a pressurized water nuclear
reactor. Most of the nuclear reactors consist of cylindrical fuel rod assemblies, where
controlled nuclear fission reactions take place. Large amount of heat is generated as
a by-product of these fission reactions. In most of the nuclear reactors a coolant is
used to remove the heat produced. In pressurized water reactors, the heated coolant is
subsequently sent to a secondary loop, where steam is produced, and this steam is used
to run turbines and generate electricity.
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1.2. Safety of Nuclear Reactors

Figure 1.1: Projections of nuclear fission generation capacity, 2020-2030

Figure 1.2: Schematic of a pressurized water nuclear reactor

1.2 Safety of Nuclear Reactors

Two of the biggest challenges in the development and widespread use of nuclear energy
are operational safety and radioactive waste disposal. The Chernobyl disaster in 1986
and the more recent Fukushima disaster in 2011 are two of the well known nuclear
accidents which have caused major apprehensions to the future of nuclear power. The
Fukushima accident was caused due to the loss of power supply and cooling, hence
leading to partial melting of the fuel rods.

The knowledge of flow and energy distribution inside the reactor is crucial given the
high chances of coolant overheating or loss of coolant accident. This may lead to the
Critical Heat Flux (CHF) phenomena. In this condition, there is a rapid increase in the
wall temperature or rapid decrease in the heat flux, leading to very low heat transfer
coefficients. This could lead to the departure from nucleate boiling (leading to vapor
blanketing of the rod) or liquid film dry-out depending upon the vapor quality in the
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Chapter 1. Introduction

core (Todreas and Kazimi [1993]). In other words, the heat produced due to the fission
reactions is not removed and a build up of temperature takes place. Due to material
limitations of the various components inside the reactor, this build-up could lead to
initiation of cracks and other thermo-mechanical related failures. Hence, it becomes all
the more important to be able to predict accurately the energy distributions inside the
reactor.

1.3 Flow in Rod Bundles

The Boiling Water Reactors (BWR), Pressurized Water Reactors (PWR), Pressurized
Heavy Water Reactors (PHWR), Liquid Metal Fast Breeder Reactors (LMFBR) and
Advanced Gas Cooled Reactor (AGCR) all contain nuclear fuel rods. A schematic of
a nuclear fuel rod element is shown in Figure 1.3. These fuel rod sub-assemblies are
mainly characterized by their geometric layout (triagonal, hexagonal or square - shown
in Fig 1.4) and rod spacing.

Figure 1.3: Schematic view of fuel rod element

Rod spacing is one of the main design characteristic of the fuel rod assemblies. The
rod-rod spacing is defined as the pitch to diameter ratio (P/D), and the rod-wall spacing
is defined by W/D ratio (shown in Fig 1.5). The spacing determines how tightly the fuel
rods are packed in the assembly: lower the spacing, higher the number of rods in the
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1.3. Flow in Rod Bundles

(a) (b) (c)

Figure 1.4: Geometric layout of fuel rod sub-assemblies: (a) Triangular, (b) Hexagonal
and (c) Square

same cross-sectional area. In order to realize higher power-densities, conversion ratios
and burn-up of reactors, the fuel rods have to be tightly packed.

Figure 1.5: Gap spacing in a rod bundle

These tightly packed rod bundles are characterized by interesting flow patterns, dif-
ferent from the ones encountered in regular channel and pipe flows. The correct predic-
tion and control of these flow distribution is essential for the reactor design and safety
assessment, and has been an active area of research in reactor thermal-hydraulics. In
fact, the well-known international conference on the nuclear reactor thermal-hydraulics
(NURETH–13, NURETH–14) has a special session devoted to this phenomenon in rod
bundles. Turbulent mixing is an important phenomena which influences the flow and
temperature patterns in these rod bundles. Large-scale swirling coherent structures
along with transverse flow pulsations have been identified in the rod-rod and rod-wall
gap regions. These structures are quasi-periodic in nature and are considered an impor-
tant factor for high mixing-rate. The enhanced mixing due to these structures helps in
reducing the local temperature in the region, thereby reducing overheating and occur-
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Chapter 1. Introduction

rence of CHF phenomena. Figure 1.6 shows a schematic of the transverse flow pulsations
in rod bundles.

Figure 1.6: Schematic view of transverse flow pulsations in rod-bundles

The analysis of a full scale rod bundle is computationally very expensive, and ex-
perimental data is not available for validation of simulations. Hence the numerical
simulations are done on a simplified geometry consisting of a cylindrical rod inside a
rectangular channel. This geometry tries to emulate the gap region between a fuel rod
and the pressure vessel wall inside the reactor. Detailed experimental and simulation
results pertaining to the chosen configuration are reported in the literature. These will
be used for benchmarking the results of the simulations.

1.4 Objectives

The following objectives were defined for the thesis:

1. Investigate the effect of different numerical approaches on the simulation results,
and determine the most suitable approach. Validate the results of the most suitable
approach with those of the experimental and simulation results reported in the
literature. (Chapter 5)

2. Study the effect of the large-scale swirling coherent structures on the mean flow
and investigate the dynamics of the coherent structures. (Chapter 6)

3. Study the effect of different geometrical configurations on the dynamics of the
large-scale structures, and determine the configuration at which these structures
are the most prevalent. (Chapter 6)

4. Analyze the transport and mixing of a passive scalar by the coherent structures
and compare their contribution with that of turbulence. (Chapter 7)

The open source CFD solver, OpenFoam v2.0.1 is used for the simulations.
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1.5. Thesis Outline

1.5 Thesis Outline

Chapter 2 deals with the background theory concerning the work. The conservation
equations, turbulence and turbulence modeling are discussed. The underlying physics
of the coherent structures; mechanism behind their formation and an overview of the
previous work done is discussed in Chapter 3.The numerical schemes used in the thesis
are discussed in Chapter 4. An introduction to OpenFOAM is given, followed by a
description of the implementations done. The contents of the Chapters 5, 6 and 7 were
already mentioned before. The conclusions and recommendations for future work are
discussed in Chapter 8. The Appendix A covers the governing equations of the turbulence
models used.
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Chapter 2

Background Theory

The important physics relating to the work is summarized in this section. The Navier-
Stokes equations are discussed, followed by an overview of turbulent flows. The various
methodologies for turbulence modeling has been discussed, and the governing equations
of the turbulence models used in this work are described.

2.1 Conservation Equations

The continuity equation for an incompressible fluid is given by

∂ui
∂xi

= 0 (2.1)

The momentum conservation is described by the Navier-Stokes equations. The equa-
tion for an incompressible Newtonian fluid is given by

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj2 (2.2)

The conservation equation for a passive scalar T is described by

∂T

∂t
+ uj

∂T

∂xj
= α

∂2T

∂xj2 (2.3)

2.2 Overview of Turbulent Flows

Turbulent flows are unsteady and three dimensional in nature, with the presence of
both small and large scale flow structures: eddies and vortical structures. One of the
main advantage turbulence offers in industrial applications is enhanced mixing. Inside a
nuclear reactor, it is important that the coolant is well mixed and the heat is distributed

7



2.2. Overview of Turbulent Flows

Figure 2.1: Cartoon of energy cascading process

evenly. The physics of turbulence can be explained by the energy cascade concept
described first by Richardson in 1922 (Pope [2000]). The turbulence kinetic energy is
produced at the largest scales, which are of the order of the mean flow. These large eddies
are unstable and anisotropic, and break into smaller eddies leading to the phenomenon
of an energy cascade from the largest to the smallest eddies. The smallest scales of
turbulence (called the Kolgomorov scales) are stable and dissipative in nature. A cartoon
of the energy cascade is shown in Fig. 2.1.

It is interesting to discuss in brief the length-scales of the largest and smallest eddies
of turbulence. The production of turbulence kinetic energy occurs at the largest scales,
which have a characteristic velocity u0 and a characteristic length of the order of l0,
where u0 is the mean velocity and l0 is the length of the flow domain. Hence, the kinetic
energy content and the time-scale of the largest scales can be expressed as u2

0 and l0/u0

respectively. The production of turbulence kinetic energy, Pl0 will be proportional to
u3

0/l0 and this is equal to the viscous dissipation at the smallest scales, expressed by ε.
If ν is the kinematic viscosity of the fluid, then a simple dimensional analysis will lead
to the Kolgomorov scales, η, uη and τη are length, velocity and time scales respectively.

η =
(ν3

ε

)1/4
, uη =

(
εν
)1/4

, τη =
(ν
ε

)1/2 (2.4)

8



Chapter 2. Background Theory

The ratio of the smallest scales to that of the mean flow are given by

η

l0
' Re0

−3/4, uη
u0
' Re0

−1/4,
τη
τ0
' Re0

−1/2 (2.5)

2.2.1 Reynolds Equations

In order to obtain an equation for the mean flow, Reynolds decomposition is applied to
the Navier-Stokes equations. The vector and scalar fields are decomposed into a mean
and a fluctuation component. The velocity field, for instance, is expressed as u = u′+u,
where u′ is the fluctuation component and u is the mean component. This decomposition
follows a set of rules, or the Reynolds conditions. If x and y are two fields and c is a
constant, then the conditions are as follows

x+ y = x+ y (2.6)

cx = cx (2.7)
∂x

∂s
= ∂x

∂s
(2.8)

xy = xy (2.9)

Applying the Reynolds decomposition to the Navier-Stokes equations, the Reynolds
Averaged Navier Stokes equations (RANS) are obtained. The RANS equations for con-
tinuity, momentum and scalar conservation are described by

∂ui
∂xi

= 0 (2.10)

ρ
∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ µ

∂2ui
∂xj2 − ρ

∂u′iu
′
j

∂xj
(2.11)

∂T

∂t
+ uj

∂T

∂xj
= α

∂2T

∂xj2 −
∂u′jT

′

∂xj
(2.12)

The decomposition leads to additional terms in the momentum and scalar conserva-
tion equations. The ρu′iu′j term is called the Reynolds-stress. The Reynolds equations
are not closed due to the Reynolds-stress term; a closure is required in terms of known
flow parameters.
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2.3. Prediction of Turbulence

2.2.2 Wall-Bounded Turbulent Flows

A brief overview of different terms used in wall flows is given. As the flow in rod bundles
is affected by the gap region, the effect of the wall is probably quite important. For a
fully developed channel flow, the total shear stress, τ , is the sum of viscous stress, ρν duidxj

,
and Reynolds-stress −ρu′iu′j .

τ = ρν
dui
dxj
− ρu′iu′j (2.13)

At the wall, ui = 0, hence the Reynolds-stress goes to zero. Therefore the viscous
stress is the only contribution to the wall shear-stress (τw), given by

τw = ρν

(
dui
dy

)
y=0

(2.14)

where ui is the streamwise velocity and y the wall-normal direction. The viscous
velocity scale, uτ and length scale, δτ are defined as the following:

uτ =
√
τw
ρ

δ+
τ = ν

uτ
(2.15)

On basis of the above defined velocity and length scales, the friction Reynolds number
Reτ is defined as

Reτ = uτδ

ν
(2.16)

where, δ is the half width of the channel. The distance from the wall is measured in
terms of wall units, y+. It is given by

y+ = uτy

ν
(2.17)

Table 2.1, constructed from Pope [2000] shows the different wall regions defined on
the basis of wall units and the corresponding property there, where u+

i = ui/uτ ,

2.3 Prediction of Turbulence

In order to accurately predict turbulence, all the length and time scales have to be
resolved, and the simulation technique which does this is called Direct Numerical Simu-
lations (DNS). There is no modeling in DNS, all the scales are resolved and the Navier
Stokes equations are solved. Following the discussion of turbulent length and time scales
in Section 2.2, the number of computational mesh points required for a three dimensional

10



Chapter 2. Background Theory

Table 2.1: Wall regions (Pope [2000])

Region Location Property
Inner layer y/δ < 0.1 ui determined by uτ and y+, independent

of bulk velocity and δ
Viscous wall region y+ < 50 Significant viscous contribution to total

shear stress
Viscous sublayer y+ < 5 Reynolds shear-stress is negligible com-

pared to viscous stress
Outer layer y+ > 50 Negligible effects of viscosity on mean flow

Overlap region y+ > 50, y/δ < 0.1 Region of overlap between inner and outer
layers

Log-law region y+ > 30, y/δ < 0.3 u+
i = f(ln(y+))

Buffer layer 5 < y+ < 30 Transition region between viscosity domi-
nated and inertia dominated parts

geometry scales as Re9/4. Even for a very low Reynolds number of 1000, the number
of mesh points required are of the order of 5.106. In the regime of turbulent flow in
rod bundles, the Reynolds number is much higher (order of 105), and it is impossible to
perform DNS, given the current available computational resources.

Another technique used for predicting turbulent flows is the Large-Eddy Simulation
(LES). It is based on the concept that the smallest dissipative scales of turbulence are
isotropic and easy to predict and the energy is mainly contained in the larger scales.
Hence, the smallest scales are modeled using equations and the large scales are resolved
explicitly. Although the number of computational mesh points required are less than
DNS, it is still computationally very expensive.

Due to the high computational costs of both DNS and LES, the prediction of turbu-
lence is done mainly by solving the Reynolds equations, and not the Navier Stokes equa-
tions. These are the Reynolds Averaged Navier Stokes (RANS) simulations. As discussed
in the previous section, a closure for the additional Reynolds stresses, ρu′iu′j , ρu′ju′k, ρu′iu′k
etc. is required. A turbulence model is used for the closure, which represents these
stresses in terms of known flow parameters. In practice, the RANS equations can be
solved in two ways: 1) steady and 2) unsteady. In the steady RANS, the time dependent
terms are not included, and it is useful for flows which do not contain any temporal dy-
namics. The unsteady RANS or URANS on the other hand solves the complete RANS
equations including the time-dependent terms. In cases of wall resolved flows, the size
of the mesh is very small close to the wall and therefore small time-steps of the or-
der of 10−3 − 10−5 s is required. This makes URANS computationally expensive than
steady-RANS, but still they remain less expensive than DNS and LES.

Among the three approaches discussed above for turbulence prediction, LES and DNS
have proved to be most accurate in predicting flows in rod bundles. But, due to the high

11



2.3. Prediction of Turbulence

Re number, the computational resources act as a barrier in applying these approaches
for the more practical reactor flow conditions. As of now, they can be used only for
simulating the flow in test geometries which operate at lower Re numbers. Whereas, the
computationally cheaper URANS was able to predict the flows in such geometries fairly
accurately. Chang and Tavoularis [2012] conducted LES on the geometry used in this
work, and the time required for one set of simulations were of the order three months.
Hence considering all these factors, URANS methodology is used in this thesis. In view
of this, LES and DNS techniques are not discussed further. A general description of the
different types of RANS turbulence models is given.

2.3.1 Turbulence Models

There exist different approaches to obtain a closure relationship for the Reynolds stresses.
They can be roughly divided into the following three types

1. based on the linear eddy-viscosity hypothesis

2. based on the non-linear eddy-viscosity hypothesis

3. solving equations for each Reynolds stress

The turbulence models of the first and third types are used in this thesis and discussed
below.

Models Based on Linear Eddy-Viscosity Hypothesis

In the Boussinesq or the eddy-viscosity hypothesis, the Reynolds-stresses are expressed
as a product of a turbulence viscosity and the strain rate. For an incompressible flow
the formulation is as follows:

ρu′iu
′
j = −µt

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.18)

A closure relationship is required for the turbulence viscosity, µt. Most of the sim-
ulations carried out in this thesis are based on the k − ε model. This is a form of a
two-equation model in which transport equations are solved for two turbulence quan-
tities: the turbulence kinetic energy, k and the turbulence dissipation rate, ε. The
equations for k and ε are as follows:

Dk

Dt
= ∂

∂xj

[
(ν + νt

σk
) ∂k
∂xj

]
+ Pk − ε (2.19)

Dε

Dt
= ∂

∂xj

[
(ν + νt

σε
) ∂ε
∂xj

]
+ Cε1

ε

k
Pk − Cε2

ε2

k
(2.20)

12
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The turbulence viscosity is expressed as

νt = Cµ
k2

ε
(2.21)

The standard model coefficients are as expressed in Table 2.2.

Table 2.2: Model coefficients for standard k − ε turbulence model (Pope [2000])

Coefficient Value
Pk νtS

2

S
√

2SijSji
Sij 0.5

[
∂ui
∂xj

+ ∂uj
∂xi

]
Cε1 1.44
Cε2 1.92
Cµ 0.09
σk 1
σε 1.3

The eddy-viscosity hypothesis is also applied for the closure of u′jT ′ term in Equa-
tion 2.12

− u′jT ′ =
νt
Prt

∂T

∂xj
(2.22)

where Prt is the turbulent Prandlt number and it is taken as 0.85, following the
simulations of Chang and Tavoularis [2006].

Reynolds-Stress Models

Reynolds stress models (RSM) are the other major class of RANS turbulence models.
In these models, transport equations are solved separately for each of the six Reynolds-
stresses; usually, considered superior than the models based on the Boussinesq hypothe-
sis(Wilcox [1993]). The LRR (Launder, Reece and Rodi) turbulence model proposed by
Launder et al. [1975] is used here. The transport equations are solved for the Reynolds
stresses and turbulence dissipation rate, ε. This leads to five additional equations com-
pared to the k − ε model, hence making it computationally expensive. The model
equations for the RSM are
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2.3. Prediction of Turbulence

Du′iu
′
j

Dt
= −

[
u′ju
′
k

∂ui
∂xk

+ u′iu
′
k

∂uj
∂xk

]
− 2

3δijε

− Cε1
ε

k
(u′iu′j −

2
3δijk) + (φij + φji)2 + (φij + φji)w

+ Cs
∂

∂xk

k

ε

[
u′iu
′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′ku
′
i

∂xl
+ u′ku

′
l

∂u′iu
′
j

∂xl

]
(2.23)

Dε

Dt
= Cε

∂

∂xk

(
k

ε
u′ku

′
l

∂ε

∂xl

)
− Cε1

εu′iu
′
k

k

∂ui
∂xk
− Cε2

ε2

k
(2.24)

The model coefficients are given in Table 2.3.

Table 2.3: Model coefficients for LRR turbulence model (Launder et al. [1975])

Coefficient Value

(φij + φji)w
[
0.125 εk (u′iu′j − 2

3kδij) + 0.015(Pij −Dij)
](

k1.5

εx2

)
(φij + φji)2 γ(Pij − 2

3Pδij)

Pij u′iu
′
k
∂uj
∂xk

+ u′ju
′
k
∂ui
∂xk

Dij u′iu
′
k
∂uk
∂xj

+ u′ju
′
k
∂uk
∂xi

P −2u′iu′j
∂Ui
∂xj

Cε 0.15

Cs 0.25

Cε1 1.44

Cε2 1.92

σk 1

σε 1.3

γ 0.6

x2 Normal distance of the cell to the surface

2.3.2 Treatment Near the Walls

Due to the sharp gradients of different flow parameters near the wall-region, special
attention needs to paid to its modeling. The two approaches are: 1) using wall functions
or 2) resolving the flow in the near wall region by including more grid points and using
damping functions. The schematic of the computational mesh for both the cases is shown
in Figure 2.2.
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(a) (b)

Figure 2.2: Schematic of the mesh in the near the wall region for (a) Wall function
approach and (b) Resolving the flow in the near wall region (not to scale)

Wall Functions

The wall functions are applied as boundary conditions in the log-law region (discussed
in Section 2.2.2), hence working on the assumption that the region close to the wall can
be approximated to a turbulent boundary layer. The log-law, at y+ > 30, takes the form

ui = uτ

[1
κ
ln(y+) +B

]
(2.25)

Here uτ and y+ follow the definitions in Section 2.2.2, κ is the von Kármán constant
with a value of 0.41, and B = 5.2 is a constant.

Following the derivation found in Pope [2000], the boundary condition for the tur-
bulence kinetic energy becomes

kp = Cµ
(−1/2)uτ

2 (2.26)

here index p denotes the first cell next to the wall.
The turbulence dissipation rate boundary condition is

εp = uτ
3

κyp
(2.27)

It is to be noted that in order to use wall functions, the first cell should be located
at a distance 30 < y+ < 100 for the log-law approximation to be accurate.
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2.3. Prediction of Turbulence

Near-Wall Turbulence Models

Although the wall functions are computationally cheap and attractive, they fail to work
in cases of strong pressure gradients or impinging flows. In such cases, more number of
cells are included close to the wall and the transport equations for the turbulence quanti-
ties are modified using damping functions. The first computational cell must be located
at a distance y+ < 1. These models are also called low-Re turbulence models. Three
different low-Reynolds number variants of the k−ε model were available in OpenFOAM
and are used in the present work. They are based on the following references:

• Lam and Bremhorst [1981]

• Launder and Sharma [1974]

• Lien and Leshziner [1995]

The governing equations of these models are given in Appendix A.
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Chapter 3

Flow in Rod Bundles

The axial flow in tight-lattice rod bundle geometries are known to contain large-scale
swirling structures. The characteristics of these structures, i.e., the length scale (wave-
length) and time scale (frequency) depend parameters such as the gap spacing (P/D and
W/D ratio) and Re number. These structures are also known to cause high cross-flow
mixing, leading to uniform enthalpy distribution in the rod bundles. In this chapter, the
underlying physics of coherent structures is discussed.

Firstly, a brief introduction to the two mechanisms (Kelvin-Helmholtz instability
and secondary flows) commonly associated with the formation of the large-scale coher-
ent structures is given. This is followed by an overview of the past experimental and
numerical studies carried out, pertaining to the flows in rod-bundles. Based on these,
specific objectives are defined for the thesis.

3.1 Kelvin-Helmholtz Instability

One of the mechanisms associated with the formation of the large-scale structures is the
Kelvin-Helmholtz instability. The Kelvin-Helmholtz instability describes the production
of a vortex sheet at the interface of two parallel horizontal streams having different
velocities or densities (Kundu and Cohen [2002]). The sharp shear layer at the interface
leads to vortical structures. A linear stability analysis of a simple inviscid fluid with a
pattern shown in Figure 3.1a always leads to an unstable mode if U1 6= U2(Kundu and
Cohen [2002]). This leads to a vortex sheet similar to the one shown in Figure 3.1b.
Such patterns are very common in the atmosphere in the form of clouds and also in
oceans.
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(a) (b)

Figure 3.1: (a) Shear layer - Kelvin Helmholtz Instability; (b) Schematic view of a vortex
sheet due to the Kelvin Helmholtz Instability

3.2 Secondary Flows

Another mechanism used to explain the presence of the structures is secondary flow.
In a fully developed turbulent channel-flow, the anisotropy of Reynolds-stresses lead to
additional flow patterns in the normal plane to the bulk streamwise flow. This mean flow
pattern is called secondary flow, a schematic of which is shown in Figure 3.2. Secondary
flow are of the order of 1-2 % of the mean bulk flow, and can cause enhancements in
heat or scalar transport (Belt [2007]).

3.3 Flow in Rod Bundles

Meyer [2010] has given a comprehensive review of both experimental and numerical work
done on the prediction of large-scale swirling structures in rod-bundle flows. The ex-
perimental studies have observed that the momentum transfer and the eddy-diffusivity’s
for such flows were strongly anisotropic. In the 1970s-1980s, there was a consensus that
secondary flows were responsible for high transfer rates in the gap regions. But, with
further experiments and simulations it was concluded that they contribute only to a
small extent (1-2 %). The mechanism causing such flows was explained with the help
of a new kind of instability for a fluid similar to the one present in the mixing layer
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Figure 3.2: Secondary flow in cross-section of a channel flow

between the high-speed flow in the open core and low-speed flow in the gap region. The
formation of quasi-periodic vortices were attributed to the Kelvin-Helmholtz instability
mechanism.

Most of the results cited by Meyer [2010] conclude that the gap-spacing (P/D or
W/D) is the most important parameter affecting the flow structure, decreasing which
would lead to higher turbulence intensities. In terms of the computational work done, the
review concludes that the flow characteristics can be only captured by Direct Numerical
Simulations (DNS) or Large Eddy Simulations (LES), or by using anisotropic Unsteady
Reynolds averaged Navier Stokes (URANS) modeling.

The low velocity in the narrow gap region and the high velocity in the sub-channels
results in a shear-layer pattern (shown in Figure 3.3). In addition to the presence of the
shear-layer, the flow in the channel is highly turbulent in nature. Gosset and Tavoularis
[2006] were the first to observe coherent structures in laminar flow using an experimental
geometry similar to the one in Figure 3.5b. They observed that the span-wise velocity
profile is similar to the low-speed streaks observed in boundary layers, which have a wake-
like profile and not an inflectional profile observed in Kelvin-Helmholtz type mixing layer
instability. They cite similarities to the von Kármán vortex street which is formed in a
wake region behind a cylinder.

Linear stability analysis of laminar Pouseille flow in an eccentric annulus was carried
out by Merzari et al. [2008] and they confirm the presence of an additional instability
mechanism, compared to that observed in pipe and channel flows. Similar analysis by
Piot and Tavoularis [2011] observes two inflectional points on either side of the gap,
indicating the Kelvin-Helmholtz type of instability. A comparison is also made to the
study by Gosset and Tavoularis [2006] and differences in the geometry has been cited
as the reason of different instability mechanisms. The high stability of the vortical
structures is reported by Meyer [2010]. This is generally not the case in the typical
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Figure 3.3: Schematic view of a shear layer pattern in rod bundles (Krauss and Meyer
[1998])

instability mechanisms, where there is both a growth and destruction of structures.
Figure 3.4 shows the schematic of the structures and cross flow (Derksen [2010]).

They are a set of counter-rotating vortices moving with the flow, and generate span-wise
or cross-flow regions at their interface.

Figure 3.4: Schematic view of cross-flow

An overview of the different experimental and numerical studies carried out for the
investigation of flows in rod bundles are discussed further.

3.3.1 Experimental Studies

Due to the difficulties in emulating the complex rod bundle geometry, many simpler
geometries have been used for experiments. Most of the numerical works try to bench-
mark the experiments done by Meyer and Rehme [1994], Krauss and Meyer [1996, 1998]
and Guellouz and Tavoularis [2000a,b]. The geometries used by them are shown in Fig-
ure 3.5. The summary of the experimental conditions are listed in Table 3.1, where Reb,
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Ub and Dh refer to the bulk Reynolds number, bulk velocity and hydraulic diameter
respectively. Air was used as the working fluid in all these experiments.

(a) (b)

(c)

Figure 3.5: Experimental geometries: (a) Meyer & Rehme [1994]; (b) Guellouz &
Tavoularis [2000a,b]; (c) Krauss & Meyer [1996, 1998]

Table 3.1: Details of benchmark experiments

Reference P/D Reb Ub(ms−1) Dh(mm)

Meyer and Rehme [1994] 1.06 - 1.30 250000 20 180

Krauss and Meyer [1996,1998] 1.12 (P/D), 1.06 (W/D) 38574-64590 20 33-55

Guellouz and Tavoularis [2000a,b] 1.10 (W/D) 108000 10.1 160.6
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Meyer and Rehme [1994] did measurements in 18 different geometries, corresponding
to different values of a, b1, b2, d and g in Figure 3.5a. They observed high turbulence
intensities and Reynolds shear-stresses very close to the gap, and this was attributed to
the presence of strong large-scale quasi-periodic flow oscillations. The frequency of these
structures depended only on the gap size.

Krauss and Meyer [1996, 1998] conducted measurements of a heated rod bundle, and
observed large values of the intensities of temperature fluctuations, with the maximum
in the gap region. Also, very high anisotropy of both momentum and heat transport
was observed, which increased at lower P/D ratios. The spectral analysis of velocity
and temperature fluctuations showed characteristic frequencies of the fluctuations in the
gaps, hence attributing the high momentum and heat transport in such channels to
periodic structures.

Guellouz and Tavoularis [2000a,b] also observed these large scale quasi-periodic struc-
tures, and obtained a correlation of the convection speed and streamwise spacing of them
as a function of the gap width. Mahmood [2011] in his Ph.D. thesis conducted extensive
experiments to characterize these flow patterns in compound channels (Figures 3.6a and
3.6b) as well as in tube bundle geometries (Figure 3.6c).

(a) (b)

(c)

Figure 3.6: Experimental geometries investigated by Mahmood [2011]: (a) and (b) Com-
pound channels; (c) Rod bundle
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He tried to quantify the the total cross-flow mixing as a sum of contributions from the
coherent structures and turbulent mixing (Figure 3.7). θexp represents the inter-channel
tracer transfer, S the gap spacing and Dgap

h is the hydraulic diameter of the gap. It can
be clearly seen that the effect of coherent structures on mixing fades away above a gap
size of 9 mm.

Figure 3.7: Mixing as a function of gap spacing

In order to correlate the inter-channel cross-flow mixing as a function of gap spac-
ing, velocity of the coherent structures and other flow parameters, Mahmood [2011]
developed a mixing-model. This was based on the transport of a passive scalar via the
coherent structures represented as continuously stirred tanks (CST). The model was able
to predict the total cross-flow mixing fairly accurately, however for turbulent flow in the
gap region, it under-predicted the turbulent mixing.

3.3.2 Numerical Studies

A host of numerical techniques have been used to understand the characteristics of
rod-bundle flows. Among all, LES (Merzari and Ninokata [2008, 2009], Ikeno and Ka-
jishima [2010], Merzari and Ninokata [2011], Chang and Tavoularis [2012]) yields the
most accurate results when compared to the experiments. In spite of its high accuracy,
the requirements of high spatial resolution and computing power limits its use to few
research groups around the world. Hence, the widely used steady RANS (Tóth and
Aszódi [2010]) and URANS techniques (Yan and Yu [2011], Liu and Ishiwatari [2011],
Yu et al. [2011], Chang and Tavoularis [2012], Yan et al. [2012a,b]) continues to be the
most popular. Some of the major conclusions obtained from the numerical simulations
reported in the literature are:

• There is negligible effect (∼1-2 %) of secondary flows on the high mixing rates.
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• High values of velocity fluctuations and Reynolds shear-stresses are observed in
region close to the gap. This is attributed to the presence of large-scale velocity
fluctuations or quasi-periodic structures.

• The temporal characteristics and intensity of the coherent structures depend on
the Re number and the gap spacing (P/D or W/D). The intensity is found to
be directly proportional to the Re number and inversely proportional to the gap
spacing.

• High anisotropy of momentum and heat transport is observed at lower gap sizes.

• There exists a critical gap size (P/D ∼ 1.03) at which the cross-flow mixing is the
strongest.

• The LES techniques is the most accurate in predicting the flow structures, although
URANS simulations also yielded reasonable estimates.

3.4 Specific Objectives

The different URANS turbulence models were discussed in Section 2.3.1. There exist
significant differences in the computational costs between an eddy-viscosity based and
Reynolds-stress based models, and that between different wall-treatment approaches.
A study to analyze the effect of these different approaches in predicting the flow char-
acteristics will help in obtaining a reasonable balance of accuracy and computational
cost.

There is no clear consensus on the precise mechanism behind the formation of these
structures. Some of the mechanisms popularly reported are: (1) Kelvin-Helmholtz in-
stability, (2) instability associated with the wake-region of a flow across a cylinder, (3)
similar to the structures formed during the laminar to turbulence transition and (4)
association with the turbulence structures formed in the near wall region in a fully
developed turbulent flow. An attempt will be made to shed further insights into the
possible mechanism for the formation of the structures.

Very little information on the three-dimensional nature of these structures has been
reported. The only parameter used in the literature to describe them is the streamwise
spacing, which is a one-dimensional description. No attempt has been made to analyze
the extent of these structures away from the gap region. Hence, it will be interesting to
study the global structure of these fluctuations. The effect of gap size on the coherent
structures have been widely discussed in the literature. Only a few works in the literature
try to quantify the contribution of coherent structures towards total scalar transport and
mixing.
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Therefore, based on the past work carried out, specific objectives are defined for this
work:

• Study the effect of the turbulence model on the dynamics of flow in the experimen-
tal geometry of Guellouz and Tavoularis [2000a,b]. Compare the results by using
different wall treatment and the type of URANS model.

• Determine the length of periodic domain sufficient to resolve the temporal scales of
the the flow accurately. The length should be long enough such that the periodicity
of the flow domain has no effect on the dynamics of the flow.

• Validate the results of the simulations using the experimental results of Guellouz
and Tavoularis [2000a,b] and the simulations of Chang and Tavoularis [2005, 2006,
2008, 2012].

• Analyze the effect of the large-scale swirling structures on the time-averaged ve-
locity, their fluctuations and turbulence kinetic energy.

• Investigate the extent of the structures via flow-visualization of streamlines and
determine the specific length, time and velocity scales of the fluctuations.

• Study the effect of gap size on the coherent structures, and determine the critical
gap size at which the structures are the most dominant.

• Analyze the cross-flow mixing by including passive scalar, and quantify the con-
tributions of turbulence and coherent structures.
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Chapter 4

Numerical Techniques

In this chapter, an overview of the various numerical techniques used is given. An
introduction to OpenFOAM and its features is highlighted. This is followed by the code
implementation done for the passive scalar equation and related boundary conditions.
The details of the discretization procedures, solvers used, convergence criterion and other
settings are also mentioned.

4.1 OpenFOAM

OpenFOAM is an acronym for Open Source Field Operation and Manipulation. It
is an object oriented C++ library used for CFD applications. OpenFOAM uses the
finite volume method for computing the flow field. This method solves the integral
form of the conservation equations. The flow domain is divided into a number of finite
control volumes, and the discretized differential equations are solved over these volumes.
OpenFOAM also includes utilities for pre and post-processing steps. Figure 4.1 gives an
overview of the structure of OpenFOAM (OpenFOAM Documentation).

Figure 4.1: Structure of OpenFOAM (OpenFOAM Documentation)
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OpenFOAM consists of a number of dynamically linked pre-compiled applications.
It also gives users freedom to create new applications or modify the previous applications
according to their specific needs. The two main categories of applications are:

• Solvers - algorithms for solving the partial differential equations arising in different
problems, e.g., steady and unsteady incompressible flows, turbulent flows, flows
with heat transfer, compressible flows, etc.

• Utilities - used for data manipulation, algebraic calculations and various pre- and
post-processing steps, e.g., modifying the mesh, calculating averages of fields, etc

The OpenFOAM version 2.0.1 is used for simulations in this work. The PISO (Pres-
sure Implicit with Splitting of Operators) algorithm is used for solving the unsteady
Navier-Stokes and continuity equations. The algorithm is shown in Figure 4.2.

Figure 4.2: PISO algorithm

The open source pre-processing software SALOME v.6.4.0 was used for constructing
the CAD geometry and computational mesh. The constructed 3D mesh was imported
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into OpenFOAM as a .unv format, and was subsequently converted into the standard
OpenFOAM format by using the already present pre-processing utilities in OpenFOAM.

4.2 Computational Procedures

4.2.1 Discretization, Solvers and Preconditioners

The discretization scheme for the various terms is listed in Table 4.1.

Table 4.1: Discretization schemes

Term Scheme

∂/∂t Second-order implicit

∇(X) Linear interpolation Central differencing

∇.(ρUU) First order Upwind differencing

∇.(ρUk) First order Upwind differencing

∇.(ρUε) First order Upwind differencing

∇.(ρUR) First order Upwind differencing

∇.(R) Second order Central differencing

∇.(νeff (∇(U) +∇(U)T ))) First order Upwind differencing

∇.(ρUT ) Second order Upwind differencing

∇.(X∇Y ) Unbounded second order explicit

where R is the Reynolds-stress tensor. X and Y refers to all the corresponding
fields which occur in the various equations. The preconditioned bi-conjugate gradient
solver (PBiCG) is used for the velocity fields and the turbulence quantities. The asym-
metric diagonal incomplete LU preconditioner is used for the solver. For the pressure,
preconditioned conjugate gradient (PCG) solver, along with the symmetric diagonal
incomplete-cholesky (DIC) is used. The choices for solvers and discretization schemes
were made on basis of the various OpenFOAM tutorials on turbulent flows.

4.2.2 Convergence Criterion

Table 4.2 shows the convergence criterion set for various quantities. No significant dif-
ferences were observed in the results when changing the criterion from 105 to 106.
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Table 4.2: Convergence criterion

Quantity Convergence criterion

p 106

U 105

k 106

ε 106

R 106

T 105

4.2.3 Courant Number and CPU Time

As all the simulations were unsteady, the time step was chosen pertaining to the Courant-
Friedrichs-Lewy (CFL) condition, which is defined as

CFLmax = Umax∆t
∆xmin

< 1 (4.1)

where, Umax represents the maximum velocity corresponding to the smallest cell with
a grid spacing ∆xmin. ∆t is the time step used for simulations, and it is kept constant
throughout. All the simulations were run in parallel. Table 4.3 shows the time step,
maximum CFL number, number of processors used and the CPU time per time step for
each of the simulations.

Table 4.3: Details of simulations

Simulations Time Step CFLmax Processors Wall clock time

∆t(s) per ∆t(s)

Standard k − ε model 5.10−4 0.62 4 12

High Re based LRR model 5.10−4 0.8 4 35

Launder-Sharma low Re k − ε 1.10−5 0.1 48 5

Lam-Bremhorst low Re k − ε 2.5.10−5 0.05 48 5

Lien-Leschziner low Re k − ε 2.5.10−5 0.1 48 6

Standard k − ε with passive scalar 5.10−4 0.64 8 9
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4.2.4 Boundary Conditions

Periodic boundary conditions are applied for U , k, ε and T (except case of developing
passive scalar field simulations in Section 7.3) in the streamwise direction. At the walls,
No-slip boundary condition is used for velocity, U = 0 and zero-gradient for the pressure
correction. The wall boundary conditions for k and ε are discussed in Section 4.3.

Periodic Flow Field

Generally, two approaches can used to enforce periodicity of the flow: (1) splitting the
pressure field into a periodic and non-periodic part, and adding the constant pressure
gradient as a source term in the momentum equation or (2) adjusting the pressure in
the channel such that a constant inlet flow rate is maintained.

The second approach is applied in the current work, using the boundary condition
(directMapped) which is available in OpenFOAM. Zero-gradient boundary condition is
used for the pressure correction, which automatically adjusts itself in order to maintain
a constant inlet velocity of Ubulk = 10 m/s.

Periodic Passive Scalar Field

For the passive scalar temperature field, simulations are done using two different wall
boundary conditions: (1) constant temperature and (2) constant heat flux. In the first
case, the periodic boundary conditions are applied simply by matching the temperature
values at the outlet and inlet. Whereas for the second case with constant heat flux at the
walls, the effect of the heat flux source has to be accounted for in the energy equation.
In order to do that, an effective temperature T̃ is defined as

T̃ = T (z)− dTbulk
dz

(4.2)

where z is the streamwise direction. The expression for the term, dTbulk/dz is ob-
tained by performing an energy balance over an arbitrary control volume with an area
of cross-section, Ac and wetted perimeter, Pw. If the heat flux at the wall is given by
qw, the energy balance leads to

ρCpdTbulkAcLzUbulk = qwPwLzdz (4.3)

where Lz is the streamwise length of the periodic domain. From this, the dTbulk/dz
term can be obtained as

dTbulk
dz

= qwPw
ρAcUbulkCp

(4.4)
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The hydraulic diameter of the cross-section can be defined as, Dh = 4Ac/Pw. An
equation for the effective temperature T̃ is obtained by substituting T (z) in terms of T̃
and the temperature gradient in Equation 2.12.

∂T̃

∂t
+ uj

∂T̃

∂xj
= α

∂2T̃

∂xj2 −
∂u′j T̃

′

∂xj
− 4qw
ρDhUbulkCp

(4.5)

This modified equation along with the boundary condition (Equation 4.6) is imple-
mented in OpenFOAM.

Tinlet = Toutlet −
4qw

ρDhUbulkCp
Lz (4.6)

4.3 Turbulence Models

OpenFOAM consists of a wide range of RANS turbulence models. They include linear
and non-linear eddy viscosity models, Reynolds-stress and low-Re (using damping func-
tions near the wall) turbulence models. The wall boundary conditions for k and ε for
the different turbulence models are listed in Table 4.4.

Table 4.4: Wall boundary conditions of k and ε

Turbulence model k ε

High Re turbulence models: k − ε and LRR Wall-functions Wall-functions

Launder Sharma based k − ε 0 2ν(∂
√
k

∂y )2

Lam-Bremhorst and Lien-Leschziner 0 Zero-gradient

4.4 Post-Processing

In order to compare the temporal scales of the fluctuations, a dimensionless frequency
(Strouhal number, St) is defined. The St is calculated at the equidistant plane and is
defined as

St = fD

Ub
(4.7)

where, f refers to the frequency of the power spectrum. The St number defined for
the dominant frequency in the power spectra is used for comparisons.

The convection velocity of the structures is determined by the streamwise space-time
correlation coefficient of the cross-flow velocity fluctuations, Ruxux .
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Ruxux(∆z,∆t) =
∑N
i=1

[
(uxi(z, t)− ux(z))(uxi(z + ∆z, t+ ∆t)− ux(z + ∆z))

]√∑N
i=1(uxi(z, t)− ux(z))2

√∑N
i=1(uxi(z + ∆z, t+ ∆t)− ux(z + ∆z))2

(4.8)
The time delay corresponding to the maximum correlation is plotted as a function

of streamwise distance, the slope of which gives the convection velocity, Uc of the gap
vortices. The streamwise spacing (λ) or the wavelength of the structures is then calcu-
lated by using this velocity and the St number corresponding to the dominant frequency
obtained in the power spectra.

λ

D
= Uc
Ub

1
St

(4.9)
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Chapter 5

Benchmark and Validation

The aim of this chapter is to report the extensive benchmark and validation studies
carried out. The description of the benchmark experimental geometry used for the
simulations along with the computational domain is given. In order to ensure that the
numerical solution is not an artifact of the numerical grid, a grid independence test was
done. This was followed by a study on the effect of the length of the periodic domain on
the flow dynamics, and whether the length is long enough for the spatial de-correlation
of the periodicity of flow-domain and the periodicity of the fluctuations in the flow.

After obtaining a certain level of confidence over the numerical procedures with
regards to the mesh and the length of the domain, the next step was to study the
effect of various turbulence models on the flow dynamics. It has been claimed in the
literature that the eddy-viscosity based models are not sufficient to capture the flow
characteristics accurately, and only the Reynolds-stress models (RSM) can be expected
to give reasonable results. A comparative study between k − ε model and the Launder-
Reece-Rodi (LRR) RSM was done to verify the literature claims. A comparison was
also done between the two different wall-treatment approaches. Based on these studies,
a turbulence model was chosen such that it offers an optimum balance between the
accuracy and the required computational effort.

Using the optimum settings obtained from the validations, simulations are done and
compared with the results of the experiments and other simulations reported in the
literature.

5.1 Computational Domain

CFD simulations were carried out in the Guellouz and Tavoularis [2000a,b] geometry
discussed in Chapter 3. The detailed geometry is shown in Figure 5.1 and the experi-
mental conditions in Table 5.1. Air was used as the working fluid in the experiments.
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5.1. Computational Domain

Figure 5.1: Benchmark geometry

Table 5.1: Details of benchmark geometry

W/D 1.025-1.25

Reb 108000

Ub(ms−1) 10.1

Dh(mm) 160.6

The experiments were conducted on different gap sizes ranging from W/D = 1.025 - 1.25,
and a detailed study of the Reynolds-averaged measurements, flow spectrum and phase-
averaged quantities of the coherent structures was done. Most of the measurements were
done only on the equidistant plane (a plane parallel to the bottom wall located at the
center of the gap; see Figure 5.2a), at a distance 1.8D from the exit.

Figure 5.2 shows the computational domain used for simulations. Due to the avail-
ability of results from both experiments and past simulations, the benchmark studies
were carried out with W/D = 1.10. The flow conditions were same as that of the exper-
iment, with the bulk velocity, Ubulk = 10m/s, and Re based on the hydraulic diameter,
Dh = 1.59D, equal to 108,000. The equidistant plane shown in Figure 5.2a is defined in
Equation 5.1.

y = 0.5W −D
D

(5.1)
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(a) (b)

Figure 5.2: Computational flow domain, (a) Cross-section, (b) 3D flow domain

(a) (b)

Figure 5.3: 3-D mesh: Right-prism cells with cross-sectional face as (a) Triangular (b)
Quadrilateral

5.2 Grid Independence Studies

Due to the high computational time required for the low-Re turbulence models sim-
ulations, grid independence tests were done only for the simulations with the k − ε

turbulence model using wall functions. The 3-D mesh is formed by right-prism cells
with the cross-sectional faces formed by either triangles or quadrilaterals (Figure 5.3).
The cross-section of the M1 mesh contains only triangular cells, whereas the M2 mesh
consists of both triangular and quadrilateral cells (Figure 5.4). The streamwise length
is equal for all the cells. The near gap mesh for both of them is shown in Figure 5.5.

Simulations were done using various meshing configurations to check the grid inde-
pendence. Table 5.2 shows the list of configurations used, the size of the grid elements
and the total the number of elements.

The velocity contours on the half of a cross-plane and in the near-gap region for all
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(a)

(b)

Figure 5.4: Cross-sectional mesh (a) Triangular elements (M1) and (b) Quad elements
(M2)

Table 5.2: Details of the different grids used

Case Grid Element Size Number of grid elements Total number

x/D y/D z/D x y z of elements

M2-1 0.045 0.040 0.50 66x50x50 174600

M2-2 0.038 0.033 0.50 78x60x50 235800

M1-1 0.033 0.026 0.50 90x77x50 615850

M1-2 0.033 0.026 0.60 90x77x60 739020

M1-3 0.033 0.026 0.75 90x77x75 923775
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(a)

(b)

Figure 5.5: Meshing in the gap region (a) M1-1 and (b) M2-1
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(a) (b) (c)

(d) (e)

Figure 5.6: Time-averaged dimensionless streamwise velocity component (uz/Ub) on the
cross-plane for the different cases with Lz = 25D: (a) M2-1, (b) M2-2, (c) M1-1, (d)
M1-2 and (e) M1-3

the lengths is shown in Figure 5.6 and Figure 5.7 respectively. Identical profiles can be
observed in all the cases. The convection velocity (Uc) and streamwise spacing (λ) of the
structures are calculated by the technique explained in Section 4.4. Table 5.3 compares
the values of St, Uc, λ, peak streamwise velocity and turbulence kinetic energy at the
gap center.

The maximum differences are of the order of 8.5 % for St, 2.5 % for Uc, 10 % for λ,
5 % for the streamwise velocity and 8 % for the turbulence kinetic energy. Considering
the time constraints, further refinement studies were not carried out, and the current
tests are deemed sufficient for the scope of this work. The meshing scheme with the
least number of cells, M2-1 is used for all the simulations in this work.
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(a) (b) (c)

(d) (e)

Figure 5.7: Time-averaged dimensionless streamwise velocity component (uz/Ub) in the
near-gap region with Lz = 25D: (a) M2-1, (b) M2-2, (c) M1-1, (d) M1-2 and (e) M1-3

Table 5.3: Effect of the computational grid on the results

Case St Uc/Ub λ/D U/Ub k/U2
b

at gap center near the gap

M2-1 0.035 0.808 23.06 0.63 0.0125

M2-2 0.032 0.813 25.40 0.62 0.0130

M1-1 0.034 0.792 23.73 0.60 0.0135

M1-2 0.033 0.798 23.90 0.61 0.0124

M1-3 0.034 0.806 23.93 0.60 0.0125
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Figure 5.8: Effect of length of periodic domain on the axial velocity profile in the equidis-
tant plane

5.3 Effect of Length of Periodic Domain

It is important that the periodic domain is long enough so that it does not have any
influence on the periodicity of the fluctuations in the flow. Chang and Tavoularis [2005,
2008] and Liu and Ishiwatari [2011] conducted simulations with a streamwise length,
Lz of 20D. This length is almost six times the experimentally determined wavelength of
flow fluctuations (4.2D), and was considered long enough not to effect the periodicity
of the fluctuations. Although a recent study by Chang and Tavoularis [2012] concluded
that the length of 20D is not long enough for the required spatial decorrelation. Hence,
simulations were done using different streamwise lengths (20D, 25D, 40D, 50D and 100D)
to determine the sufficient Lz.

Figure 5.8 shows the profile of the normalized time-averaged axial velocity component
at the equidistant plane, and no significant differences are observed between the different
domain lengths. The velocity contours on the half of a cross-plane and that in the near-
gap region for all the lengths are shown in Figures 5.9 and 5.10 respectively, and similar
patterns are observed in all the cases.

Figure 5.11 shows the power spectral distributions of the spanwise velocity fluctua-
tions for all the turbulence models. A peak St of around 0.035-0.040 can be observed in
all the cases, with similar shapes of the power spectra.

Table 5.4 gives the summary of the different lengths simulated, with the correspond-
ing St, Uc, λ, streamwise velocity and turbulence kinetic energy in the near gap regions.
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(a) (b) (c)

(d) (e)

Figure 5.9: Time-averaged dimensionless streamwise velocity component (uz/Ub) on the
cross-plane for different lengths of periodic domain: (a) 20D, (b) 25D, (c) 40D, (d) 50D
and (e) 100D
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(a) (b) (c)

(d) (e)

Figure 5.10: Time-averaged dimensionless streamwise velocity component (uz/Ub) near
the gap for different lengths of periodic domain: (a) 20D, (b) 25D, (c) 40D, (d) 50D and
(e) 100D

Figure 5.11: Comparison of power spectral distributions of spanwise velocity fluctuations
measured at the center of the gap for different lengths of the periodic domain
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Table 5.4: Effect of the length of periodic domain

Length St Uc/Ub λ/D U/Ub k/U2
b

Lz/D at gap center near the gap

20 0.042 0.803 19.11 0.60 0.0118

25 0.035 0.808 23.06 0.63 0.0125

40 0.041 0.794 19.27 0.63 0.0120

50 0.047 0.775 16.31 0.60 0.0107

100 0.040 0.799 19.98 0.60 0.0119

The maximum differences, with respect to the longest length (Lz = 100D) are around
15 % for λ, 17.5 % for St and 3 % for Uc. The values at the center of the gap differ
by a maximum of 10 % for the axial velocity and 15 % for turbulent kinetic energy.
This shows that the length chosen for the current work, 25D is long enough for the
de-correlation of the periodicity of flow and that of the fluctuations, contrary to the
conclusions of Chang and Tavoularis [2012].

5.4 Effect of Turbulence Model

Different turbulence models were used to study their effect on the dynamics of flow. Due
to the strong anisotropic nature of the flow in rod bundles, the low-Re Reynolds-stress
models (resolving the wall layer) was chosen in most of the URANS simulations reported
in the literature (Chang and Tavoularis [2006], Liu and Ishiwatari [2011], Chang and
Tavoularis [2012]). Although RSM requires comparatively lower computational effort to
LES and DNS, the total time required for the simulations is pretty high (of the order
of months as reported by Chang and Tavoularis [2012]). This is a prohibiting factor
while conducting large-scale three-dimensional simulations as in the present case. In
comparison, the eddy-viscosity based models as well as RSM with wall functions are
nearly ten times computationally less expensive.

The velocity contours in the half cross-sectional plane and in the near-gap region are
shown in Figures 5.12 and 5.13 respectively. The contours do not indicate any significant
differences.

Figure 5.14 shows the power spectral distributions of the spanwise velocity fluctua-
tions at the center of the gap for all the turbulence models. It can be noticed that the
St number corresponding to the peak frequency is roughly the same in all the cases.
However, the power spectral shape of the Reynolds-stress equations based LRR turbu-
lence model is different from the others with representation of many sub-harmonics and
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(a) (b) (c)

(d) (e)

Figure 5.12: Time-averaged dimensionless streamwise velocity component (uz/Ub) on
the cross-plane for different turbulence models: (a) k− ε, (b) LRR, (c) Lam-Bremhorst,
(d) Lien-Leshziner and (e) Launder-Sharma
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(a) (b) (c)

(d) (e)

Figure 5.13: Time-averaged dimensionless streamwise velocity component (uz/Ub) in the
near-gap region for different turbulence models: (a) k−ε, (b) LRR, (c) Lam-Bremhorst,
(d) Lien-Leshziner and (e) Launder-Sharma

peaks at low-intensities. Physically this translates to the fact that the Reynolds-stress
model is able to capture a richer dynamics of the flow in comparison to that of the
eddy-viscosity based models. However, the most dominant fluctuations are captured by
all the turbulence models. This suggests that the bulk flow dynamics are caused by a
mechanism which is not very complex in nature. The fact that a simple k − ε model
is able to predict the fluctuations, indicates that there is no major effect of either the
complex turbulence dynamics or the anisotropy associated with the flow.

Table 5.5 summarizes the various coherent structure characteristics and mean flow
parameters for all the turbulence models. Firstly, on comparing the results obtained
between the k − ε model with and without wall functions, the maximum differences
(considering k − ε with wall functions as the base model) are 15 % for St, 4.5 % for Uc
and 8.5 % for λ. Comparing the eddy-viscosity based k − ε model and Reynolds-stress
LRR model (both using wall functions), the differences are 8 % for St, 3 % for Uc and
12 % for λ. Hence, it can be concluded that the k− ε model using wall functions is able
to capture the flow dynamics fairly accurately, and considering the least computational
effort, it was chosen as the main working model for the present work.

5.5 Flow Development

This section tries to address the issue flow development in the geometry used for simula-
tions. The recent work by Chang and Tavoularis [2012] concludes that the experimental
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Figure 5.14: Comparison of power spectral distributions of spanwise velocity fluctuations
measured at the center of the gap for different turbulence models

Table 5.5: Effect of the turbulence model on flow dynamics

Model Wall- St Uc/Ub λ/D U/Ub k/U2
b

Function at gap center near the gap

k − ε Y 0.035 0.808 23.06 0.63 0.0125

LRR Y 0.032 0.782 24.43 0.60 0.0128

Lam-Bremhorst N 0.034 0.844 24.37 0.73 0.0127

Lien-Leshziner N 0.032 0.813 25.02 0.69 0.0145

Launder-Sharma N 0.030 0.784 25.79 0.57 0.0132
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flow conditions were not fully developed, and simulations with a uniform inlet bound-
ary conditions were used to benchmark the experimental results. Similar findings are
obtained in the present simulations.

According to the Taylor’s hypothesis (Taylor [1938]), the spatial and temporal char-
acteristics of turbulence can be related by the bulk velocity, Ub. Hence, in the present
work, the terms developing length and developing time are used synonymously.

Comparisons between the current simulation results (using mesh M2-1, Lz = 25D and
k− ε turbulence model with wall functions) with those the experiments and simulations
reported in the literature are done. Many recent simulation works (Chang and Tavoularis
[2005, 2006, 2008], Liu and Ishiwatari [2011], Chang and Tavoularis [2012]) have tried to
benchmark the experimental results of Guellouz and Tavoularis [2000a,b]. A summary
of the simulation settings, turbulence model and the type of simulations is given in
Table 5.6.

Table 5.6: Summary of past simulations

Reference Lz Turbulence Inlet boundary-

model conditions

Chang and Tavoularis [2005, 2006] 20D low Re RSM Periodic

Chang and Tavoularis [2008] 20D low Re RSM Periodic

Liu and Ishiwatari [2011] 20D EARSM 1 Periodic

Chang and Tavoularis [2012] 108D low Re RSM, LES Uniform inlet

Experiment 54D N/A Fully-developed

Firstly, a comparison of the time-averaged velocity and turbulence kinetic energy
profiles in the case of present simulations and those of the past experiments and sim-
ulations is done, and the differences are noted. This is followed by comparisons of the
temporal dynamics (frequency and length scales of fluctuations) in all the cases.

5.5.1 Mean-Flow Characteristics

Figures 5.15 and 5.16 compares the normalized time averaged axial velocity contours for
the experiment, past simulations and the current k − ε model simulations in the half
cross-sectional plane and the near-gap region respectively. It can be seen that contours
of the experiment in Figure 5.15a are very similar to the contours of the developing
flow simulations of Chang and Tavoularis [2012] at z = 50D in Figure 5.15e. They are
also similar to the contours of Liu and Ishiwatari [2011] in Figure 5.15d. This indicates

1Explicit-Algebraic Reynolds Stress Model
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(a) (b) (c)

(d) (e) (f)

Figure 5.15: Time-averaged dimensionless streamwise velocity component (uz/Ub) on
the cross-plane for (a) GT experiments, (b) current simulations, (c) Chang(2005) simu-
lations, (d) Liu et al. (2011) simulations, (e) Chang et al. (2012) at z = 50D, (f) Chang
et al. (2012) at z = 100D

that the flow wasn’t fully developed in both the experimental flow loop of Guellouz and
Tavoularis [2000a,b] and the simulations of Liu and Ishiwatari [2011].

On comparing the contours at z=100D in (Figure 5.15f) and the current simulations
(Figure 5.15b), differences can be observed in the open sub-channel. The contours of the
current simulations are similar to that of the simulations of Chang and Tavoularis [2005],
Figure 5.15c. The experimental uz/Ub at the gap center is about 0.70 (Figure 5.16a),
similar to that observed by Liu and Ishiwatari [2011] (Figure 5.16d). Low values of
uz/Ub are observed in the center of the gap in Figure 5.16c of the simulations of Chang
and Tavoularis [2005]. The near-gap contours of the present simulations (Figure 5.16b)
are closer to those of Chang and Tavoularis [2012](Figure 5.16f) at z=100D.
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(a) (b) (c)

(d) (e) (f)

Figure 5.16: Time-averaged dimensionless streamwise velocity component (uz/Ub) near-
gap region (a) GT experiments, (b) current simulations, (c) Chang(2005) simulations,
(d) Liu et al. (2011) simulations, (e) Chang et al. (2012) at z = 50D, (f) Chang et al.
(2012) at z = 100D

Figure 5.17 shows a comparison of the streamwise velocity profiles at the equidistant
plane, between the developing flow simulations and the present ones. Thinning of the
shear layer can be observed with flow development. This could be the reason behind the
differences in contour shapes of the present simulations (Figure 5.15b) and the developing
flow simulations at z=100D (Figure 5.15f).

Figure 5.18 shows the contours of dimensionless turbulent kinetic energy in all the
cases. Regions of high turbulent kinetic energy can be observed on either side of the gap
in both experiments and simulations. The overall shape of the contours at the region
above the rod are similar in all the cases, however, the finer details are different owing
the developing flow in Figure 5.18a, 5.18d and 5.18e. Similarities are observed between
the present simulations (Figure 5.18b) and those of Chang and Tavoularis [2005](Fig-
ure 5.18c).

The two core regions of high k/U2
b can be observed by looking at the near-gap

contours of k/U2
b in Figure 5.19. A maximum value of 0.012 in the experiments (Fig-

ure 5.19a) compares well with the 0.013 in the present simulations (Figure 5.19b), how-
ever differences are observed in the open sub-channel region above the rod. The core
region extends to distance of almost 0.75D on either side of the gap in the present sim-
ulations (Figure 5.19b), whereas the distance is about 0.6D in case of the simulations
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Figure 5.17: Axial velocity profiles in the equidistant plane of the developing flow simu-
lations of Chang and Tavoularis [2012] (blue line is at z=30D, red line at z=50D, black
line at z=100D) and those of the present simulations with periodic boundary conditions
(dotted black line

of Chang and Tavoularis [2012] (Figure 5.19d, 5.19e). It can be clearly seen that very
little development of the core region has taken place in the simulations of Chang and
Tavoularis [2005] (Figure 5.19c).

5.5.2 Temporal and Spatial Scales of Fluctuations

Table 5.7 compares the St, λ and reported time for flow development in case of simu-
lations with periodic boundary conditions. The time required for flow development is
defined in terms of Tc, which is one flow over run time, defined as

Tc = Lz
Ubulk

(5.2)

The differences of a factor of 4-5 are observed in the reported time required for flow
development. The values of St number in case of the past simulations with periodic
boundary-conditions are very close to those of the experiment. The phenomenon of
shear layer thinning with flow development can be cited as the main reason of significant
differences in the Strouhal number of the present simulations with that of experiments.

Therefore, considering the velocity and turbulence kinetic energy contour plots, shear
layer profile and the high values of St, it can be concluded that flow wasn’t fully de-
veloped in time in both the experiment of Guellouz and Tavoularis [2000a,b] and the
simulations of Chang and Tavoularis [2005, 2006, 2008], Liu and Ishiwatari [2011].
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(a) (b) (c)

(d) (e)

Figure 5.18: Time-averaged dimensionless turbulent kinetic energy (k/U2
b ) on the cross-

plane for (a) GT experiments, (b) current simulations, (c) Chang(2005) simulations,
Chang et al. (2012) at (d) z = 50D and (e) z = 100D
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(a) (b) (c)

(d) (e)

Figure 5.19: Time-averaged dimensionless turbulent kinetic energy (k/U2
b ) on the cross-

plane for (a) GT experiments, (b) current simulations, (c) Chang(2005) simulations,
Chang et al. (2012) at (d) z = 50D and at (e) z = 100D

Table 5.7: Comparison of the temporal characteristics

Reference Reported Time for Strouhal Streamwise

flow development number spacing

Chang and Tavoularis [2005, 2006] 5.7Tc 0.146 4.9D

Chang and Tavoularis [2008] 7.6Tc 0.18 4.0D

Liu and Ishiwatari [2011] N/A 0.18 4.2D

Chang and Tavoularis [2012] N/A 0.20 (RSM) 3.8D (RSM)

0.17 (LES) 4.3D (LES)

Present simulations 25Tc 0.035 23.06D

Experiment N/A 0.17 4.2D
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5.6 Summary

The grid independence, effect of the streamwise length of the periodic domain, the effect
of turbulence models and the comparisons of results with the past experiment and sim-
ulations were done. Interesting conclusions were obtained and they can be summarized
as follows:

• The length of the periodic domain 25D is sufficient to resolve the flow dynamics
accurately. This is against the claim by Chang and Tavoularis [2012] that past
simulations led to erroneous results due the short length of periodic domain.

• There is very little effect of the turbulence models on the temporal and time-
averaged characteristics of the coherent structures. The results are similar both
with or without wall functions, and with eddy-viscosity or Reynolds-stress models.
It is concluded that the k− ε model using wall functions is sufficient to accurately
capture the large-scale flow dynamics.

• The time required for flow development is much longer in the geometry used for
simulations in this work. On comparing the results of past experiment and simu-
lations with the current simulations, it can be seen that they were carried out for
much shorter time.

With these interesting conclusions, the rest of the work is based on the following
conditions,

• Length of Periodic Domain: Lz = 25D

• Type of simulations: Periodic boundary conditions

• Turbulence model: k − ε model with wall functions
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Chapter 6

Hydrodynamics in Channel with
Rod Geometry

Following the conclusions of the benchmark and validations carried out, simulations
were done using the k − ε turbulence model with wall functions. The flow dynamics
were investigated in order to answer a number of questions related to the structure of
the fluctuations present in the flow. Firstly, in order to ascertain the effect of the flow
fluctuations on the the mean-flow parameters, the various patterns of time-averaged
velocity, RMS of velocity fluctuations and kinetic energy were studied.

The flow-visualization and streamlines of the resolved velocity field is shown. It
is expected that the patterns observed will give an indication of the size, shape and
extent of these fluctuations. The time-evolution of the streamlines are also plotted in
order to determine the periodicity of the fluctuations. The quantification of the various
characteristics: spatial, temporal and velocity scales of the fluctuations are done. This
formalization will help not only in understanding the extent of these structures, but also
for future comparisons.

An effect of the gap-size on these fluctuations is studied with an aim to obtain the
critical gap-size at which the intensity of the fluctuations are the maximum. It will also
be interesting to compare the various scales of these structures at different gap-sizes. It
is expected that the domain will behave like a fully-developed turbulent channel at both
zero and very-large gap-size.

6.1 Mean Flow Parameters

6.1.1 Streamwise Velocity

Figure 6.1a and 6.1b show the time-averaged dimensionless streamwise velocity contours
in the cross-plane and the details in the near-gap region. The maximum velocity in the
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6.1. Mean Flow Parameters

simulations is predicted in the symmetry region above the rod. The symmetry of the
mean flow about the center-line can also be noticed. The velocity gradually reduces
towards the center of the channel, with a minimum of 0.62Ub at the center of the gap.
The dimensionless time-averaged spanwise and wall-normal velocity components are of
the order of 0.1 % of the bulk flow, indicating the absence of secondary flow. This can
also be due to the inability of k − ε turbulence model to predict secondary flows.

(a)

(b)

Figure 6.1: Time-averaged dimensionless streamwise velocity (uz/Ub) on the (a) cross-
sectional plane and (b) in the near-gap region

The streamwise velocity profile at two planes (shown in Figure 6.2) is plotted in
Figure 6.3. It can be seen that the velocity profile at y/D = 1.55 (plane equidistant
between the top of the rod and the upper wall) resembles that of a fully developed
turbulent channel flow (Kim et al. [1987]). The center-line velocity is 1.22Ub, compared
to the 1.16Ub predicted by the DNS data of Kim et al. [1987] (Re = 3300), differing by
around 5 %. The maximum velocity at the equidistant plane in the gap region is 0.74Ub
located approximately at x = −D and x = D. The velocity decreases by about 17 %
towards the center of the gap, resulting in a relatively smooth shear layer.

The streamwise velocity profile at the symmetry plane from y = 0 to y = 0.1D is
plotted in Figure 6.4a. As only few mesh points were present in the gap region (due to
the use of wall functions), a smooth curve is fitted. This also resembles the profile for a
fully developed turbulent flow (Kim et al. [1987], Re = 3300). The local Re at the center
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Chapter 6. Hydrodynamics in Channel with Rod Geometry

Figure 6.2: Equidistant plane in the gap and channel region

Figure 6.3: Time-averaged dimensionless streamwise velocity (U/Ub) in the equidistant
planes

of the gap region was around 4000, indicating highly turbulent flow in the region. These
predictions are qualitatively similar to the profiles observed by Chang and Tavoularis
[2008] and Chang and Tavoularis [2012] in Figures 6.4b and 6.4c.

6.1.2 Velocity Fluctuations

The resolved velocity field is defined as

u′ = u− u (6.1)

Figure 6.5 shows the plot of the RMS of the resolved velocity component (
√
u′2)

at the equidistant plane in the gap region, y = 0.05D. The spanwise intensity has a
maximum in the center of the gap, whereas two peaks are observed for the streamwise
intensity. This indicates that the cross-flow is concentrated in the center of the gap, and
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6.1. Mean Flow Parameters

(a) (b)

(c)

Figure 6.4: Time-averaged dimensionless streamwise velocity (U/Ub) in the gap region
(a) present simulations, (b) Chang et al. (2008) and (c) Chang et al. (2012)

its effect on the axial flow is observed in the two regions or sub-channels on either side
of the gap. This profile also suggests the presence of some additional mechanism other
than turbulence that leads to a spike in the RMS fluctuations near the gap.

Figure 6.6 shows the comparison between the kinetic energy of resolved fluctuations
(kc = 0.5 ∗ (u′2x + u′2y + u′2z )) and time-averaged turbulence kinetic energy (knc). At
regions away from the gap and above the rod, the knc is higher than kc, which indi-
cates that the intensity of additional dynamics discussed above reduces away from the
gap. Whereas, in the near-gap region the resolved component is quite higher than the
unresolved turbulence kinetic energy.

The total turbulence kinetic energy is obtained by the summation of the resolved and
un-resolved components (kt = kc + knc), under the assumption that both the kinetic
energy components are un-correlated. The profile is shown in Figure 6.7, and it should
be noted that the values are zero at the wall (the walls are not shown in the figure).
Two core regions of high turbulence kinetic energy exist at either side of the gap, which
correspond to the two peaks in the profile of u′x in Figure 6.5. The minimum is located
in the center of the channel region above the rod. The partition of the turbulent kinetic
energy is quite different in the gap region from that of the open channel. In the center of
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Figure 6.5: RMS of resolved velocity components (u′/Ub) in the equidistant planes

(a) (b)

Figure 6.6: Time-averaged kinetic energy of: (a) resolved fluctuations, kc and (b) tur-
bulence, knc
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Figure 6.7: Contours of time-averaged dimensionless turbulence kinetic energy (k/U2
b )

the gap, the axial turbulent intensity, u′z contributes to 55 % of the total, the spanwise
intensity 37 % and the contribution of u′y is around 7 %. Whereas in the open channel
region, where the turbulent intensity is maximum, the axial intensity contributes the
maximum at around 80 %, and the other two contributes 10 % each.

The time-averaged profiles of various quantities indicate the presence of some addi-
tional dynamics present in the flow other than turbulence. Peaks were observed in the
RMS of the resolved velocity components near the gap region.

6.2 Transient Analysis

6.2.1 Flow Visualizations

The streamlines of the resolved velocity vector field at the equidistant plane is plotted
in Figure 6.8. Two large swirling zones can be noticed. The front of these swirling zones
point in two different directions.

Three-dimensional streamlines are shown in Figure 6.9, and here the two large scale
structures are clearly seen. These are two sledge-shaped structures, which extend from
the gap region to all the way to the open channel region above the rod. The stream-
lines are colored by the dimensionless resolved spanwise velocity component, u′x/Ub.
There is also an indication of interaction between the structures. Zooming in the three-
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Figure 6.8: Streamlines of resolved velocity vector at the equidistant plane in the gap
region

Figure 6.9: Three dimensional streamlines of the resolved velocity field

dimensional vectors of one of these structures, the swirling zones can be observed in
greater detail. Figure 6.10 shows the vectors colored by the magnitude of dimensionless
resolved velocity vector. Elongated elliptical shaped vortices are formed, and two bulging
regions around the rod can be observed. The magnitude of the vectors are maximum in
the gap region. These structures and their features clearly coincide with the profiles of
RMS of resolved velocities observed in the gap region.

Figure 6.11 shows that the two structures are counter-rotating, similar to the coherent
structures found in rod bundle flows (Meyer [2010]). Q-factor is generally used for

Figure 6.10: Three dimensional vectors of the resolved velocity field
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6.2. Transient Analysis

Figure 6.11: Vector field of the counter-rotating structures at the equidistant plane

Figure 6.12: Q-factor in the equidistant plane of the gap region

visualizing coherent vortical structures. It is defined as the second invariant of the
velocity gradient tensor (Dubief and Delcayre [2000]).

Q = −1
2
∂Ui
∂xj

∂Uj
∂xi

= 1
2(ΩijΩij − SijSij) (6.2)

where, Ωij and Sij are the rotation tensor and rate of strain tensor respectively.

Ωij = 1
2(∂Ui
∂xj
− ∂Uj
∂xi

) (6.3)

Sij = 1
2(∂Ui
∂xj

+ ∂Uj
∂xi

) (6.4)

At Q > 0, vorticity prevails over strain. The Q-factor plot at the equidistant plane is
shown in Figure 6.12, and two regions are observed. These regions correspond to the two
structures observed in the vector plots. On observing the Q-factor plots alone, incorrect
conclusions about the extent of these structures could be drawn. This is due to the fact
that the Q-factor is a derivative of the velocity field, and hence it represents only the
gradients of the velocity field and not the velocity itself. Although the velocity field
is highly three-dimensional, the Q-factor plot shows two-dimensional structures, that
too only in the gap region. Hence, it can be concluded that Q-factor is not a suitable
technique of visualizing these structures.
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Figure 6.13: Temporal evolution of the streamlines of the resolved velocity field in the
y-z plane

The temporal evolution of the streamlines can be seen in Figure 6.13. It can be seen
that the structures are extremely stable and are convected with the mean flow. High
periodicity can also be observed, suggesting that these structures are quite stable, i.e.,
there exists an unsteady stable periodic flow.

6.2.2 Temporal Scales of the Structures

The flow visualization leads to very interesting observations pertaining to the three
dimensionality, periodicity and stability of the structures. The time-series and frequency
spectra studies will substantiate the above findings and a quantification of the temporal
and spatial scales of the structures can be obtained. Figure 6.14 shows the time-series
of all the velocity components at the center of the gap in the equidistant plane. The
periodic nature of the fluctuations observed in Figure 6.13 can be confirmed by the
time series. Contrary to the quasi-periodic nature of the fluctuations observed in the
experiment, the current results indicate highly periodic structures. This may be due
to the use of URANS approach for turbulence modeling. Such high periodicity is also
observed in the URANS simulations of Chang and Tavoularis [2012].

The time series of dimensionless spanwise velocity component at different x/D in
the equidistant plane is shown in Figure 6.15; the maximum amplitude of fluctuations is
observed at the center of the gap. This is consistent with the peak observed in the RMS
plot of spanwise resolved velocity fluctuations in Figure 6.5. The periodicity of the flow
is maintained even at regions far away from the gap, confirming the three-dimensionality
of the structures observed in the vector fields.

The power spectra of the three velocity components is shown in Figure 6.16. The St
number corresponding to the peak frequency is calculated to be 0.035 for the spanwise
velocity component, and almost twice (0.067) for the other two velocity components.
This is expected due to the presence of a y-z symmetry plane. The fluctuations used
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(a) (b)

(c)

Figure 6.14: Time series of instantaneous velocity components in the equidistant plane,
(a)ux, (b)uy and (c)uz
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Figure 6.15: Fluctuations of spanwise velocity component at different x/D at the equidis-
tant plane

to determine the power spectra was captured for a much longer time than that used
while comparing the results of different turbulence models (Figure 5.14). This was done
in order to ascertain the different shapes of the power-spectra between the LRR and
k − ε turbulence models observed in Figure 5.14. It can be observed that the different
sub-harmonics of the peak frequency are also observed in the present case, i.e., while
using the k − ε turbulence model. This further substantiates the importance of the
longer simulation time required to accurately capture all the dynamics of the flow. The
sub-harmonics can be observed power spectra of uy and uz as well, reiterating the fact
that the structures observed are highly periodic.

6.2.3 Velocity and Spatial Scales of Structures

The formalization of the coherent structures can be done by defining the associated
spatial and velocity scales. Figure 6.17 shows the space-time correlation of u′x as a
function of the time delay. High correlation values indicate clear spatial periodicity,
associated with the large three-dimensional structures observed in the flow visualization.

Figure 6.18 shows the time delay corresponding to the maximum correlation as a
function of ∆z/D. The slope of this line gives the convection speed, Uc of the structures.

The streamwise spacing, λ/D is around 23, which is associated to the two counter-
rotating sledge shaped three dimensional velocity fields observed in the flow visualization.
The parameters, St, λ and Uc were also computed at other points in the cross-section, and
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(a)

(b)

(c)

Figure 6.16: Power spectra of the instantaneous velocity components in the equidistant
plane at x/D = 0 , (a)ux, (b)uy and (c)uz
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Figure 6.17: Space-time correlation as a function of time delay at various streamwise
locations

Figure 6.18: Time delay corresponding to the maximum correlation as a function of
streamwise location
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(a) (b)

Figure 6.19: Maximum spanwise velocity (Ux/Ub) as a function of the gap size, (a)
Present simulations and (b) simulations of Yan et al. [2012b]

similar values to that at the center of the gap were obtained. This further substantiated
the fact that the fluctuations are highly three-dimensional and exist as large structures
encompassing the entire flow domain.

6.3 Effect of Gap Size on Coherent Structures

Simulations were carried out at various gap sizes to determine its effect on the coherent
structures. The results of simulations at gap sizes W/D < 1.025 are subject to errors
in turbulence modeling in the near gap region. Due to the usage of wall functions in
all the simulations, the requirement of having the first computational cell in the log-
log layer (y+ > 30) could not be achieved for W/D < 1.025. The maximum (at the
center of the gap) spanwise velocity fluctuations as a function of the gap size is shown
in Figure 6.19a. Similar study was done on the experimental geometry of Krauss and
Meyer [1996, 1998] (shown in Figure 3.5c) by Yan et al. [2012b] and the results obtained
are plotted (Figure 6.19b) alongside those of the present simulations.

It can be seen that the maximum fluctuations occur at gap-size ofW/D = 1.04. This
is defined as the critical gap-size, either side of which the maximum velocity decreases.
The critical gap size in case of Yan et al. [2012b] was around 1.03, which is comparable to
the present case. It is interesting to note that low intensity fluctuations are observed even
at high gap sizes such as W/D = 1.30− 1.40. Mahmood [2011] also observed structures
at high gap sizes such as 1.40. The maximum fluctuations decrease at a higher rate when
going from the critical gap size to zero gap in comparison to the trend observed when
the gap size is increased above the critical gap size.

The St number of the flow pulsations as a function of the gap size is shown in
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Figure 6.20: Strouhal number of coherent structures at the center of the gap (St =
fpD/Ub) as a function of the gap size

Figure 6.20. The maximum St corresponds to the critical gap size of W/D = 1.04. The
St first increases to the maximum value, followed by a short decrease till a gap size
of W/D = 1.10, after which it becomes constant. This indicates the presence of two
different mechanisms (A and B) responsible for the flow fluctuations. Mechanism A is
responsible for the fluctuations at gap sizes lower than W/D = 1.10, which is related to
the presence of two regions of wide and narrow gaps. Whereas mechanism B is prevalent
at higher W/D ratios, where the velocities in the open sub-channel and gap region are
not very different. This suggests that the fluctuations are observed due to the complex
distribution of the Reynolds-stresses as a result of the geometry.

The power spectra comparison for various gap sizes was also done (not shown here)
and an order of magnitude difference in the peak power was observed on reduction of the
gap size, W/D < 1.15. The decrease in the peak power in the spectra was also observed
by Guellouz and Tavoularis [2000a] in their experiments.

The convection velocity, Uc and streamwise spacing, λ of the coherent structures for
different gap sizes is shown in Figures 6.21 and 6.22 respectively. Similar to the St plot
(Figure 6.20), at after a gap size of W/D = 1.10, there is no substantial change in the
values of both Uc and λ. At larger gap-sizes, the Uc approaches the bulk velocity, which
is consistent with characteristics of mechanism B described above. Both the profiles are
similar to the experimental findings of Guellouz and Tavoularis [2000a].

When the gap size is close to zero, the boundary layers at the walls next to gap
overlap, leading to high viscous effects in the region. This prevents the formation of any
structures as the velocity is almost zero. Whereas, a similar effect should be observed
at large gap-sizes when the flow is expected to behave like a fully-developed turbulent
channel flow. Interestingly, this is not the case and the structures continue to exist at
large gap-sizes of W/D = 1.30− 1.40. A critical gap-size of W/D = 1.04 is observed, at
which the fluctuations are the maximum. A cut-off gap size of W/D = 1.10 is defined,

71



6.3. Effect of Gap Size on Coherent Structures

(a) (b)

Figure 6.21: Average convection velocity of coherent structures (Uc/Ub) as a function
of the gap size, (a) Present simulations and (b) experiments of Guellouz and Tavoularis
[2000a]

(a) (b)

Figure 6.22: Streamwise spacing of coherent structures (λ/D) as a function of the gap
size, (a) Present simulations and (b) experiments of Guellouz and Tavoularis [2000a]
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which is roughly the transition point between the two different mechanisms present.
Below the cut-off gap-size the mechanism A dominates, and mechanism B plays a more
important role above that.

6.4 Summary and Discussion

The dynamics of the flow, including the time-averaged velocity profiles, fluctuations
and turbulence kinetic energy were discussed. The peaks in both the RMS of velocity
fluctuations and kinetic energy indicated the presence of additional dynamics in the near-
gap region. Upon visualization of the resolved velocity field, large three-dimensional
sledge shaped structures were observed. These structures extended the entire length of
the domain, and formed a pair of two interacting counter-rotating sledges. The spanwise
component of time-averaged velocity and RMS of the spanwise velocity fluctuations had
maximum values in the center of the gap, and decreased gradually while moving away
from the gap. Whereas, the peaks in the axial component of the RMS of velocity
fluctuations and the turbulence kinetic energy profiles were located at two core regions
on either side of the gap in the open sub-channel.

Another interesting feature of these structures is the high periodicity and stability.
After their formation, and stabilization upon initial transients, these structures stay as
they are. The instantaneous velocity fluctuations profiles were quite sinusoidal in nature
with a distinct dominant frequency. The power-spectra clearly showed the presence of
the additional sub-harmonics. This leads to a conclusion that these three-dimensional
stable structures are not turbulence structures, which are highly unstable and have a
short life-time.

The effect of the gap size on these structures was also investigated. A critical gap size
of W/D = 1.04 was obtained at which intensity of the flow pulsations are the maximum.
Both the maximum spanwise velocity and the St number occurred at this gap size. The
profiles of St, Uc and λ indicated the presence of these structures at very large gap sizes
of W/D = 1.30 − 1.40 as well. Two competing mechanisms (A and B) leading to the
formation of these structures were identified, and a cut-off gap size of W/D = 1.10 was
observed as the transition point between the domination of these two mechanisms.

Various mechanisms leading to the formation of the structures was discussed in Chap-
ter 3. The similarity to the Kelvin-Helmholtz instability mechanism has been cited ex-
tensively in the literature. Counter-rotating structures were also observed in the laminar
flow experiments on Gosset and Tavoularis [2006] in the same geometry as used in the
current simulations. A mechanism similar to that of the von Kármán vortex street which
is formed in a wake region behind a cylinder is cited.

The current results clearly indicate the presence of more than one mechanism present.
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The mechanism A, which dominates at lower gap-sizes could be similar to the Kelvin-
Helmholtz instability. Whereas, the mechanism B probably suggests that the observed
flow is akin to that of a complex-fluid, which stems from the complex Reynolds-stress
profiles due to the geometry itself.
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Chapter 7

Simulations of a Passive Scalar

The studies on the effect of the coherent structures on the transport and mixing of a
passive scalar are reported in this chapter. The energy equation is solved along with
the momentum and continuity equations. The temperature field acts as a passive scalar.
Both fully developed and developing passive scalar fields are studied. The former gives
an indication of the transport and fluctuations caused due to passive scalar, whereas the
developing scalar field simulations indicate the effect on the mixing. A comparison of
the effect of the coherent structures with that of turbulent diffusion is also done, and
the relative contributions of each are estimated.

In both the cases the flow is fully developed. The simulations were carried out using
the same settings that were used to study the hydrodynamics.

7.1 Decomposition of Temperature Fluctuations

The variance of the total temperature fluctuations (ϑ) is divided into resolved (ϑres) and
non-resolved ϑnr components. The resolved fluctuations are due to the presence of the
coherent structures, whereas the non-resolved fluctuations are caused due to turbulence.

ϑ2 = ϑ2
res + ϑ2

nr (7.1)

The resolved component, ϑ2
res, is given as

ϑ2
res = (T − T )2 (7.2)

where, T is the time-averaged local temperature. As the URANS simulations do
not explicitly calculate the unresolved temperature fluctuations, a mixing-length model
assumption is used. The non-resolved temperature fluctuations in each of the three
directions can be approximated as
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T ′x ∼ l
∂T

∂x
(7.3)

T ′y ∼ l
∂T

∂y
(7.4)

T ′z ∼ l
∂T

∂z
(7.5)

The mixing-length, l is given in terms of the turbulence kinetic energy and dissipation
rate as

l = k3/2

ε
(7.6)

The variance of the total non-resolved temperature fluctuations can hence be ap-
proximated as

ϑ2
nr = Cµ

Cν1Prt

k
3

ε

[
(∂T
∂x

)2 + (∂T
∂y

)2 + (∂T
∂z

)2
]

(7.7)

with the constant of proportionality Cµ/(Cν1Prt) similar to the derivation in Chang
and Tavoularis [2006], where Cµ = 0.09, Cν1 = 0.62 and Prt = 0.85.

7.2 Fully Developed Passive Scalar Field

In order to study the transport of a passive scalar, simulations were done in a fully
developed temperature field. Two heating modes were investigated:

• Case 1: constant wall-temperature with Trod = 335 K and Twall = 298 K.

• Case 2: constant heat flux at walls with qrod = 100 W/mK and q = 0 at the other
walls (i.e., zero gradient boundary condition is applied to the other walls)

The non-dimensionless time-averaged temperature difference is defined as

θ(x, y) = T (x, y)− Tb(z)
Trod(z)− Tb(z)

(7.8)

In Case 2, the time-averaged temperature difference is represented by θ̃.

7.2.1 Time-Averaged Flow Parameters

The contours of θ and θ̃ for the heating modes on the cross-plane are given in Figure 7.1,
along with those of the simulations of Chang and Tavoularis [2006]. The contour shapes
and values for all the four cases are similar. The near-gap contour values are higher in
the present simulations, and this can be attributed to periodic-boundary conditions in
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the simulations. High temperature zones can be observed near the gap. It can be also
seen that the contours in the near-gap region are different for the two cases.

The rest of the results reported here are those of Case 1 (constant wall temperature)
alone. The spanwise variation of time averaged dimensionless temperature difference, θ
at the equidistant plane is shown for in Figure 7.2. A significant increase is observed in
the gap region, with the maximum at the center of the gap. This due to the presence of
the two walls (bottom wall, where θ = 0 and the rod where θ = 1) close to each other
in the gap region, and θ is approximately 0.5.

To investigate the contribution of the coherent structures, the iso-contours of the
dimensionless standard deviation of resolved (

√
ϑ2
res) and un-resolved (

√
ϑ2
nr) temper-

ature fluctuations are plotted in Figures 7.3b and 7.4b respectively. This is compared
with the simulation results of Chang and Tavoularis [2006], and similarities are observed
in the contours of the un-resolved fluctuations. The resolved fluctuations on the other
hand, extend more towards the open channel region than those observed by Chang and
Tavoularis [2006], probably due to flow developmental reasons. This finding is similar
to the contours of turbulence kinetic energy, which extended very much into the open
channel region as discussed in Section 5.5.

The contribution of the coherent structures towards to the total temperature fluc-
tuations of the present simulations along with those observed by Chang and Tavoularis
[2006] is shown in Figure 7.5. Similar to the contours of (

√
ϑ2
res), the contribution

of coherent structures extend deep into the channel region. This is consistent with the
three dimensional nature of the coherent structures determined in the Section 6.2.1. The
contribution towards total fluctuations is almost 50% in the near gap region, and the
maximum occurs on either side of the gap and not at the center. The contribution at the
center is about 15%, which is consistent with the simulations of Chang and Tavoularis
[2006].

7.2.2 Transient Analysis

Both the time-averaged and instantaneous (snap-shot) temperature difference are plot-
ted as a function of streamwise distance in Figure 7.6. After the initial transient period,
the time-averaged difference does not depend on the streamwise distance, whereas fluc-
tuations can be observed in the instantaneous difference plot. These fluctuations are
very similar to that of the spanwise velocity fluctuations (Figure 6.14). This clearly
indicates that the transport of the passive scalar takes place via the coherent structures.

The iso-surfaces of the instantaneous resolved temperature fluctuations (T − T ) are
shown in Figure 7.7. Three-dimensional structure of the iso-surfaces can be observed,
and they extend all the way into the open-sub-channel. This is very consistent with the
contours of

√
ϑ2
res, substantiating the observation that the fluctuations are caused due to
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(a) (b)

(c)

Figure 7.1: Contours of dimensionless temperature difference at the cross section, (a)
Case 1 - Constant temperature at the walls, (b) Case 2 - Constant heat flux at the
walls and (c) Chang and Tavoularis [2006] simulations, left side plot is the uniform-rod
temperature case and right side the constant rod heat flux case

78



Chapter 7. Simulations of a Passive Scalar

Figure 7.2: Spanwise variation of the θ at the center of the gap in the equidistant plane

(a) (b)

Figure 7.3: Contours of dimensionless resolved temperature fluctuations
√
ϑ2
res/(Trod −

Tb) at the cross section, (a) Chang and Tavoularis [2006] simulations and (b) present
simulations, Case 1 - both with constant temperature at the walls
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(a) (b)

Figure 7.4: Contours of dimensionless un-resolved temperature fluctuations√
ϑ2
nr/(Trod − Tb) at the cross section, (a) Chang and Tavoularis [2006] simulations

and (b) present simulations, Case 1 - both with constant temperature at the walls

(a) (b)

Figure 7.5: Contours of the contribution of coherent temperature fluctuations ϑ2
res/ϑ

2

(in %) at the cross section, (a) Chang and Tavoularis [2006] simulations and (b) present
simulations, Case 1 - Constant temperature at the walls
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Figure 7.6: Streamwise variation of the θ and θ at the center of the gap

Figure 7.7: Iso-surface of resolved temperature (θ′ = θ − θ), θ′ = 0.01 colored by the
magnitude of resolved velocity vector

the coherent structures. It can be also noticed that the iso-surfaces are present as a pair,
with each present on either side of the gap. The coherent structures were also observed
in the form of three-dimensional counter-rotating sledge shaped pairs (Figure 6.10)

The power spectra of the instantaneous temperature fluctuations is shown in Fig-
ure 7.8, and the St corresponding to the peak frequency is twice that of the St associated
with that of spanwise velocity fluctuations. This is expected due to the presence of a
y-z symmetry plane, and the passive scalar will be transported twice across the gap
compared to the spanwise velocity. The convection velocity, Uc and streamwise spacing,
λ of the structures of the resolved temperature fluctuations were found to be exactly
similar to that of the spanwise velocity fluctuations.

From both the contour plots of the time-averaged resolved temperature, and the
analysis of the instantaneous profiles, it can be concluded that the coherent structures
play a very important role in the transport of passive scalar. Their contribution is almost
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Figure 7.8: Power spectra of the instantaneous temperature fluctuations at the equidis-
tant plane

50% in the near-gap regions, with decreasing effect away from it.

7.3 Developing Passive Scalar Field

In the previous section, the contribution of coherent structures towards the total tem-
perature fluctuations was analyzed. In this section, the effect of the coherent structures
on the mixing characteristics in a developing passive-scalar field is studied. It should be
noted here that a highly fluctuating temperature field will not necessarily cause good
mixing. As the resolved T ′ fields were illustrative in observing the transport of the
passive scalar, the resolved u′T ′ field will help in determining the mixing.

Figure 7.9 shows the inlet cross-section of the channel. A higher temperature of
T1 = 310 K was maintained in the small rectangular region shown in the figure, and the
rest of the plane has an inlet value of T2 = 298 K. The entire flow domain was initialized
with Tb = 298 K. The higher temperature T1 will be convected downstream, and a more
uniform temperature distribution is expected at the end of the channel. This is expected
due to the presence of both turbulent diffusion and coherent structures.

Re-writing the URANS equations of the temperature field from Equations 2.12 and
2.22 results in:

∂T

∂t
+ uj

∂T

∂xj
= (α+ αt)

∂2T

∂xj2 (7.9)
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Figure 7.9: Inlet cross-section of the domain showing the two temperature zones, black
denotes T1 = 310 K and grey is T2 = 298 K

where αt is the turbulent diffusivity, defined as

αt = νt
Prt

(7.10)

The temperature, velocity and turbulence diffusivity are divided into a time-averaged
component and a resolved fluctuation component.

T = 〈T 〉+ T ′ (7.11)

u = 〈u〉+ u′ (7.12)

αt = 〈αt〉+ α′t (7.13)

Substituting the above expressions into Equation 7.9 and considering that the tur-
bulence diffusivity is much higher than the molecular diffusivity (αt ∼ O(10−3) and
α ∼ O(10−5)), hence, αt + α ∼ αt, the equation reduces to:

∂

∂xj

[
ujT + 〈u′jT ′〉

]
= αt

∂2T

∂x2
j

+ 〈α′t
∂2T

∂x2
j

′
〉 (7.14)

The 〈u′jT ′〉 term can be written as:

〈u′jT ′〉 ∼
√
〈u′2j 〉〈T ′2〉ρuT (7.15)

where ρuT is the correlation coefficient, with values ranging from -1 to 1.
In the cross-section of the channel ujT = 0. Hence, a comparison between the

resolved component
√
〈u′2j 〉〈T ′2〉 and the time-averaged αt∂T/∂xj will give a measure

of the relative contribution of the coherent structures and the mean turbulent diffusion.
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(a) (b)

(c) (d)

Figure 7.10: Contours at the cross-section plane of (a) αt∂T/∂y at sub-channel 1 (b)√
〈u′2y 〉〈T ′2〉 at sub-channel 1, (c) αt∂T/∂y at sub-channel 2 and (d)

√
〈u′2y 〉〈T ′2〉 at

sub-channel 2

The exact comparison will depend on the values of ρuT and 〈α′t∂2T/∂x2
j
′〉. However, a

qualitative understanding of the possible importance of the coherent structures can be
obtained here.

Figure 7.10 shows the contours of
√
〈u′2y 〉〈T ′2〉 and αt∂T/∂y for both the sub-channels

at the cross-section plane. It can be seen that the values of the resolved component are
higher by a factor of almost 2.5-10. The maximum of the resolved component is located
near the center of the gap, whereas that of the time-averaged heat-flux is in the open
sub-channel. If the values of ρuT are of the order 0.1-0.5, then the contribution of 〈u′jT ′〉
associated with the coherent structures and the turbulent diffusion are almost equal.

It can be clearly concluded that the contribution of the resolved component (hence
coherent structures) is significant and cannot be neglected. This is consistent with
the earlier findings related to the resolved turbulence kinetic energy and the transport
due to coherent structures, where the magnitude of the kinetic energy of the coherent
structures was higher than the kinetic energy of turbulence near the gap region, with
high turbulence kinetic energy far away from the gap.

84



Chapter 7. Simulations of a Passive Scalar

Figure 7.11: Control volumes

An energy balance is done over the control volumes shown in Figure 7.11, in order to
analyze the contribution of mixing due to turbulent diffusion and coherent structures.

All the fluxes are shown in Figure 7.12, and the net energy balance is:

∫
(uzT )outletdA1 −

∫
(uzT )inletdA1 =

∫ (
αt
∂T

∂y
+ 〈α′t

∂T

∂y

′
〉
)
dA2

+
∫ (

αt
∂T

∂x
+ 〈α′t

∂T

∂x

′
〉
)
dA3 (7.16)

where the streamwise diffusion at the outlet and inlet is neglected with respect to
convection. The total heat-flux can be represented as a sum of the mean turbulent
diffusion qdiff and the diffusion due to resolved components (qres)

qdiff =
∫
αt
∂T

∂y
dA2 +

∫
αt
∂T

∂x
dA3 (7.17)

qres =
∫
〈α′t

∂T

∂y

′
〉dA2 +

∫
〈α′t

∂T

∂x

′
〉dA3 (7.18)

qt = qdiff + qres (7.19)

The energy balance equation reduces to,

∫
(uzT )outletdA1 −

∫
(uzT )inletdA1 = qdiff + qres (7.20)

In the above equation, all the terms except qres are known, hence the relative con-
tribution due to the diffusion and resolved (or coherent structures) components can be
determined. This was done for both the control-volumes. In control volume 1, which is
a part of sub-channel 1, the contribution due to turbulent diffusion is twice as large as
that of the coherent structures. Whereas in the control volume 2, the coherent structures
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(a)

(b)

Figure 7.12: Schematic of the two control volumes and all the associated heat fluxes

contribution is 1.5 times larger than that of turbulent diffusion. This once again substan-
tiates the finding that both turbulent diffusion and coherent structures have significant
contribution towards the total mixing.

7.4 Summary and Discussions

The simulations with a passive scalar have led to interesting conclusions regarding the
contribution of coherent structures towards their transport and mixing. The developed
passive scalar field simulations with periodic boundary conditions was done to predict
the effect of coherent structures on the transport of the temperature field. Whereas
the developing passive scalar field simulations were done to analyze the mixing effect of
coherent structures.

In the fully developed scalar field simulations with periodic boundary conditions, it
was observed that the effect of the coherent structures on the temperature fluctuations
extended all the way up to the open sub-channel region, with the maximum resolved
temperature fluctuation occurring on either side of the gap, and not in the gap center.
The contour profiles were similar to those of the kinetic energy of resolved velocity
fluctuations and the kinetic energy due to turbulence. The instantaneous temperature
fluctuations were highly periodic, which was similar to the velocity fluctuations observed
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before. This clearly suggested that the temperature fluctuations were caused due to the
presence of coherent structures.

Highly three-dimensional structures of the iso-surface of resolved temperature field
were observed, which was consistent with the contour plots of the coherent component
of the temperature fluctuations. Hence, it was concluded that coherent structures sig-
nificantly contribute towards the total fluctuations. The effect was not only present in
the narrow-gap region, but also in the open sub-channel.

The developing passive scalar field simulations were done in order to analyze the
effect of coherent structures on the mixing characteristics. A high temperature source
was applied on a rectangular zone on the flow inlet cross-section, and the evolution of
the temperature field was studied. It was found that the coherent structures have a
significant effect on the total mixing. This was consistent with its effect on turbulence
kinetic energy and temperature transport.

In spite of the low frequency of the coherent structures, they have a significant effect
on the transport and mixing of the passive scalar. Owing to their large three-dimensional
structure, the effect is not only confined to the gap region, but extends all the way into
the open sub-channel. The major influence of the structures observed in the relatively
simple geometry suggests that there could be an enhanced effect in full-scale rod bundles
where multiple gaps are present.
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Chapter 8

Conclusions and
Recommendations

Three-dimensional, unsteady RANS (URANS) simulations were carried out on a fully
developed turbulent flow with periodic boundary conditions in a geometry consisting of
an eccentric cylindrical rod inside a rectangular channel. The interesting flow patterns
observed in tightly packed rod bundles in a nuclear reactor formed the main motivation
of this study. The major conclusions obtained in this work are reported in this chapter.
This is followed by the recommendations for future study.

8.1 Conclusions

The main objective of this work was to study the effect of coherent structures on the
mean velocity profiles, turbulence quantities, and the transport and mixing of passive
scalar. In order to gain confidence on the simulation, an extensive benchmark study was
done. In this study, the effect of the computational mesh, length of periodic domain
and turbulence model were evaluated. This was followed by the comparisons with the
experimental and computational studies in the literature. The simulation settings ob-
tained upon these validation studies were used for further investigation of both the flow
dynamics and the transport and mixing of a passive scalar. The major conclusions are
presented below.

8.1.1 Benchmark and Validation

Effect of the Length of the Periodic Domain

Due to the presence of periodic fluctuations in the flow, it was important that there was
no effect of the length of the periodic domain on them. In other words, the periodicity of
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the flow domain should not interfere with that of the flow fluctuations. Simulations were
carried out using different lengths: 20D, 25D, 40D, 50D and 100D. The time-averaged
profiles of velocity, turbulence kinetic energy, magnitude of velocity fluctuations and
the various scales (length, time and velocity) of the fluctuations were compared and no
significant differences were observed. It was therefore concluded that a length of 25D is
sufficient to capture accurately the various structures occurring in the flow.

Effect of Turbulence Model

Among the various Unsteady RANS turbulence models, a comparison was done between
the eddy viscosity k − ε model and the Reynolds stress model of Launder, Rodi and
Reece (LRR). The power spectra of the velocity fluctuations in case of the LRR model
represented richer dynamics with multiple sub-harmonics compared to that of the k− ε
model. This indicates that the Reynolds-stress model is probably better suited to predict
the intricacies of the flow. However, the primary flow structure was the same in both the
models, the time-averaged contours as well as the dominant frequency of the fluctuations
were the same. The k−εmodel was chosen for further simulations due to the significantly
lower computational cost.

A comparative study was also done to ascertain the effect of the wall treatment on
the results. The results of the k − ε model using wall functions were compared with
the available low-Re k − ε turbulence models in OpenFOAM. These low-Re models
employ damping functions to adjust the turbulence quantities in the near-wall region.
No significant differences were observed between these low-Remodels and the k−εmodel
with wall-functions. Hence, the computationally cheaper wall-function k − ε turbulence
model was found acceptable for predicting accurately the various flow characteristics,
and used in the rest of this work.

The conclusions obtained here suggest that the large scale fluctuations are associated
with the inherent dynamics of the URANS equations in this geometry, and are largely
independent of the turbulence model used.

Flow Development and Comparisons with the Literature

Significant differences were observed between the results of the present simulation and
those of the benchmark experiment and past simulations reported in the literature. The
phenomena of thinning of the shear layer was observed with flow development. For the
purpose of the current study, the development in time and space are considered synony-
mous, with the bulk velocity acting as a transformation between them. A comparison
was also done with a recently reported developing flow simulation in space, results of
which are much closer to that of the experiment than that of the present simulations
with periodic boundary conditions.
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The temporal and spatial scales of the flow pulsations were off by a factor of five
on comparison with the experiments and literature simulations. Some of the simulation
work in the literature has also cited the possibility of the flow still being developing
in the benchmark experiments. This has been confirmed in this study. The reported
time of flow development for the (supposedly) developed flow simulations were a factor
of 3-4 less than the time required in the current simulations. Based on comparisons
between the various time-averaged and time-dependent parameters, it is concluded that
a significantly longer time than that in turbulent pipe and channel flows is required for
flow development in such geometries, and that the number of structures decrease with
flow development.

On the basis of these validation studies, it was concluded that the present simula-
tion settings (periodic domain of 25D and wall function based k − ε turbulence model)
accurately predicts both the time-averaged and temporal characteristics of the flow pul-
sations.

8.1.2 Flow Dynamics

A detailed study on the physics of the flow pulsations was done. The time-averaged axial
velocity profile resembled that of a fully developed turbulent channel flow. The peaks
in the profiles of the RMS of velocity fluctuations near the gap region indicated the
presence of some additional dynamics. The turbulence kinetic energy obtained from the
resolved fluctuations was higher than the un-resolved component near the gap region.
The contour profiles suggested that the effect of the resolved fluctuations was maximum
in the gap region, decreasing gradually away from it.

The flow visualization studies resulted in large three-dimensional sledge shaped struc-
tures encompassing the entire flow domain. High periodicity and stability was also
observed. They occurred in a pair of two counter-rotating structures. It was also deter-
mined that the Q-factor is not a good tool to visualize these structures. Highly mislead-
ing two-dimensional patterns were obtained, which was not the case while observing the
vector fields.

The temporal, spatial and velocity scales of the structures were defined and deter-
mined by the St number, λ, the streamwise spacing, and Uc, the convection velocity. The
instantaneous fluctuations were highly periodic in nature, with its maximum magnitude
at the center of the gap. However, the St, λ and Uc were constant in the entire cross-
section, consistent with the large three-dimensional vector fields of the resolved velocity.
These results also clearly suggest that these structures are not turbulence structures,
which have relatively shorter life-times and are highly unstable.

The effect of the gap size on the structures was studied, and a critical gap size of
W/D = 1.04 was obtained, at which the intensity of the fluctuations had a maximum
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value. With both the decrease and increase in gap-size, the intensity of the fluctuations
decreased. However, a very different behavior was obtained for the St, λ and Uc. All
these parameters approached a constant value at a gap size of W/D = 1.10. The shape
of the St curve suggested the presence of two co-existing mechanisms for the formation
of the structures, with either of them dominating on the two sides of the cut-off gap size,
W/D = 1.10.

8.1.3 Transport and Mixing of a Passive Scalar

The energy equation was solved, using temperature as a passive scalar. The transport
of the temperature was studied by conducting developed passive scalar field simulations
with periodic boundary conditions. A high contribution of the coherent structures to-
wards the total temperature fluctuations was observed near the gap region. The effect of
the structures was present at regions away from the gap region, however, the magnitude
was highest in the near-gap regions. This was consistent with the profiles of the resolved
velocity kinetic energy.

The effect on mixing of the passive scalar was studied by performing developing
passive scalar field simulations. The inflow was specified with two different temperature
sources, and the downstream temperature distribution was studied. Although exact
quantitative comparisons could not be obtained between the relative contributions of
turbulent diffusion and coherent structures, an order of magnitude study was done.
This concluded that the mixing caused by coherent structures is of the same order of
magnitude of that caused by turbulent diffusion.

8.2 Recommendations

Several recommendations are proposed in order to understand in detail the characteris-
tics of the large-scale coherent structures and their respective dynamics.

As it was concluded in this work that the coherent structures are not turbulence
structures, it will interesting to investigate if they are also present in a laminar flow.
Simulations can be done in the same geometry using the turbulence viscosity νt, as the
effective viscosity of the fluid. This will help in determining whether turbulent flow is a
necessary condition for the formation of these structures.

The simulations conducted on different gap-sizes indicate two different mechanisms
responsible for the fluctuations. In order to investigate this further, Proper Orthogonal
Decomposition of DNS or LES can be performed. Via this, the eigen-value corresponding
to the dominant mode can be determined and compared with the instability modes
obtained in Merzari et al. [2008]. This will provide information on whether these large-
scale structures are somehow associated with the dynamics of instability or whether
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they are mostly associated with the dynamics of Reynolds-stresses and eddy viscosity,
or both.

In the current simulations, k − ε model with wall functions was able to predict the
primary flow structure fairly accurately and no significant differences were observed
when compared to the other turbulence models. If the mechanism of the formation of
structures is similar in full-scale rod bundles, this model can be used to accurately predict
the mixing characteristics due to coherent structures in a full-scale rod-bundle. Due to
the lower computational cost, this can act as an excellent tool for accurate engineering
estimates. However, in order to study the detailed physics of the structures, a more
complex turbulence model or LES/DNS will probably be needed.

The presence of a large channel-region in the current geometry could be a reason
behind the large three-dimensional structures. In a rod-bundle, such regions are not
present, and hence it is expected that there will be more number of smaller structures.
Also, it will be interesting to study the interaction of the structures formed in different
sub-channels.

A more detailed study on the mixing characteristics of coherent structures can be
done. In the current work, many approximations were used to compare the contribution
of turbulent diffusion and that of structures. The exact values of the terms 〈u′jT ′〉 and
〈α′t ∂T∂xj

′〉 can be calculated during run-time. Also, the effect of gap-size on the mixing
characteristics can be studied. It is expected that the trend will be similar to the one
observed in the flow characteristics.
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Appendix A

Turbulence Models

The governing equations for the three low-Re turbulence models are listed here.

A.1 LaunderSharmeKE

The low-Re Launder-Sharma k − ε turbulence model was developed by Launder and
Sharma [1974]. The governing equations are

Dk

Dt
= ∂

∂xj

[
(ν + νt

σk
) ∂k
∂xj

]
+ Pk − ε̃−D (A.1)

Dε̃

Dt
= ∂

∂xj

[
(ν + νt

σε
) ∂ε̃
∂xj

]
+ Cε1f1

ε̃

k
Pk − Cε2f2

ε̃2

k
+ E (A.2)

The turbulence viscosity is given by:

νt = Cµfµ
k2

ε
(A.3)

The model constants are given in Table A.1. The parameters Pk, S, Sij , Cε1, Cε2,
Cµ and σk are the same as that of the simple k − ε turbulence model, mentioned in
Table 2.2.

A.2 LamBremhorstKE and LienLeschzinerLowRe

The low-Re models by Lam and Bremhorst [1981] and Lien and Leshziner [1995] have
identical governing equations, and the difference is in the formulation of the damping
functions. The governing equations are:

Dk

Dt
= ∂

∂xj

[
(ν + νt

σk
) ∂k
∂xj

]
+ Pk − ε (A.4)
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A.2. LamBremhorstKE and LienLeschzinerLowRe

Table A.1: Model coefficients for low-Re Launder-Sharma k−ε turbulence model (Laun-
der and Sharma [1974])

Coefficient Value

ε̃ ε - D

D 2ν(∂
√
k

∂xj
)2

E 2ννt
(

∂2ui
∂xj∂xk

)2

fµ e

(
−3.4

(1+RT /50)2

)
f1 1

f2 1− 0.3e(−R2
T )

RT
k2

νε̃

σε 1.22

Table A.2: Model coefficients for low-Re Lam-Bremhorst k − ε turbulence model (Lam
and Bremhorst [1981])

Coefficient Value

fµ

[
1− e(1−0.0165Ren)

]2(
1 + 20.5

Ret

)
f1 1 + (0.05

fµ
)3

f2 1− e(−Re2
t )

Ren
√
kYn
ν

Ret
k2

νε

Dε

Dt
= ∂

∂xj

[
(ν + νt

σε
) ∂ε
∂xj

]
+ Cε1f1

ε

k
Pk − Cε2f2

ε2

k
(A.5)

The turbulence viscosity is expressed similar to the formulation in Equation A.3.
The damping functions for the two turbulence models are mentioned in Table A.2 and
A.3.

Yn is the distance to the nearest wall.
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Appendix A. Turbulence Models

Table A.3: Model coefficients for low-Re Lien-Leschziner k − ε turbulence model (Lien
and Leshziner [1995])

Coefficient Value

fµ
1−e(−0.016y∗)

1−e(−0.263y∗)

f1 1 + P ′k
Pk

f2 1− 0.3e(−R2
T )

y∗ y(
√
k
ν )

RT
k2

νε

P ′k

(
1.92[1−0.3e(−R2

T
)]k3/2

3.53y[1−e(−0.263y∗)]

)
e−0.00222y∗2

The parameters Pk, S, Sij , Cε1, Cε2, Cµ, σk and σε are the same as that of the simple
k − ε turbulence model, given in Table 2.2.
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