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1 | Introduction

1.1 Boron neutron capture therapy

Boron Neutron Capture Therapy (BNCT) is a type of radiotherapy that can be used to treat various types
of cancer. It is based on the nuclear reaction that occurs when neutrons are captured by the 10B isotope.
This nuclide has a high capture cross section, especially for low energy neutrons (see Figure 1.1). In BNCT,
the boron needs to be delivered into the patient’s tumour by a biochemically targeted drug. If there is a
sufficient amount of 10B atoms present in each cancer cell, one or more neutron beams are directed towards
the tumour region to initiate the capture reactions. The capture reaction is illustrated in the scheme below.

10B + nth [11B] 4He + 7 Li (Q = 2.79 MeV)y (94%)

γ

In this reaction, a total energy of 2.79 MeV is released. This energy is distributed over the emitted alpha
particle (1.47 MeV) and the recoiling 7Li ion (1.32 MeV). In 94% of all cases, a 0.48 MeV gamma is emitted
as well [1]. Both the alpha particle and 7Li ion have high linear energy transfer (LET) characteristics, which
means they deposit their energy over a relatively small range. In human tissue, the track lengths of these
particles are on average 8.9 µm for 4He and 4.8 µm for 7Li [2]. This is comparable to the diameter of a
single cell. Hence, all their energy is deposited within the targeted cell. This way, it is possible to selectively
kill cancer cells, while healthy cells are spared if these have not taken up high amounts of boron. A high
tumour-to-healthy tissue ratio in boron concentration is therefore essential for the effectiveness of BNCT.
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Figure 1.1: Microscopic (n, α) cross section for B-10 as a function of neutron energy [3].
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2 1.2. Short history of BNCT

1.2 Short history of BNCT

The idea to apply the boron capture reaction in radiation therapy was first proposed by Locher [4] in 1936.
Soon after his suggestion the first experiments in cell cultures and mice started. In the early 1940s, Kruger [5]
and Zahl [6] demonstrated that BNCT worked as suggested. From this point on, interest primarily developed
in treating high-grade brain tumours (glioblastoma multiforme), a malignant type of cancer that is usually
fatal within six months of diagnosis [7]. It was reasoned that the reduction of the blood brain barrier at the
tumour could be exploited to selectively increase the concentration of boron in the cancer cells [8].

In the early 1950s, the first clinical trials on BNCT took place at Brookhaven National Laboratory (BNL) in
the United States. Ten patients suffering from glioblastoma multiforme were irradiated by thermal neutrons
after a 10B-enriched borax solution was injected [9]. Around the same time, comparable trials were performed
at Massachusetts Institute of Technology (MIT). The outcomes and average survival time after BNCT did
not show any improvement compared to conventional therapies [9, 10]. The overall results of the trials at
BNL and MIT were considered unsatisfactory. It was concluded that thermal neutrons do not penetrate
deep enough and that the boron compounds were not sufficiently selective [11]. As a consequence, research
on BNCT came to an end around 1961 in the United States.

Despite the poor results, Hatanaka [10] introduced new clinical trials in Japan starting from 1968. Over
120 patients were treated and there have been reports of excellent clinical results in some malignant glioma
patients [9]. The success was mainly due to the availability of some new boron compounds: sodium boro-
captate (BSH) was synthesised by Soloway [12] and later also p-boronophenylalanine (BPA) was used by
Mishima [13]. At this stage, the first steps were taken to apply BNCT on other types of cancer such as skin
melanoma and head and neck cancer.

After the promising results in Japan, other researchers regained interest in BNCT and both BNL and MIT
started new trials in the 1990s. At the beginning of this century, trials were started in the Netherlands
(Petten, 2002), Finland (2003), Sweden (2003), the Czech Republic (2002), again in Japan (2003), Argentina
(2004) and Taiwan (2004) [14]. All mentioned studies were carried out at research reactor facilities and
applied epithermal neutron beams to increase the penetration depth of neutrons into tissue. Several encour-
aging outcomes have been reported about these trials. The Finish group, for instance, has reported increased
survival times of patients with glioblastoma multiforme that were treated with BNCT [15]. Meanwhile, many
of these BNCT programs have been brought to an end.

1.3 Current status and challenges

Even after many decades of research, BNCT is still considered as an experimental treatment. There are
several problems that need to be solved before BNCT could become a serious alternative for current cancer
treatments such as proton therapy. First of all, there is the need for more selective boron compounds. The
two boron compounds that were discovered in the 1960s are nowadays still the only available options [14].
Some research is aimed at finding new methods to enhance the uptake and retention of the existing boron
compounds. Other research is focused on finding new boron compounds. These should be non-toxic with a
tumour-to-normal tissue ratio greater than 3 [16]. Whenever a new compound is proposed, there is still a
long and expensive procedure needed to investigate and approve the drug before it can be used in clinical
practice. Nevertheless, there are some promising candidates under development [17]. In recent years, nano-
sized particles are becoming an increased topic of interest. The use of liposomes and nanoparticles could
make it possible to perform controlled and sustained release of boron in the tumour cells. These nanoscale
delivery systems have already shown some promising results [18].

Secondly, the availability of effective neutron sources is of importance. Until now, all BNCT trials have been
performed at thermal research reactors. At these facilities it is possible to generate high intensity neutron
beams that have been essential for the development of BNCT. However, the use of nuclear reactors has some
drawbacks. Usually, research reactors are used for many other applications. This can lead to conflicts or
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limitations in the BNCT work. Additionally, most reactors are separated from hospitals, which causes some
logistic difficulties in performing clinical trials. As an alternative, it has been proposed to use accelerator-
based neutron sources. These sources are more compact and less expensive than nuclear reactors. They can
be placed in hospitals and the required licensing procedure is much easier. In accelerator-based sources, a
beam of charged particles is produced and directed at a target that releases neutrons after impact. The
source strength of the produced neutron beam is generally low compared to reactor sources. In many types
of accelerators, an increase in intensity of the resulting neutron beam by more than an order of magnitude
is needed [14]. Several reviews have reported that this required increase appears to be possible [19].

Finally, some other practical reasons are mentioned as obstacles in the current development of BNCT. The
implementation of this treatment requires collaboration between very different disciplines such as nuclear
physics, chemistry, surgery and radiation biology. In treatment planning, knowledge from all these research
fields needs to be combined. Several systems for treatment planning have been developed in recent years
[2]. For further development, large-scale clinical trials need to be performed, which can only be realized if a
sufficient number of BNCT facilities becomes available in hospital environments.

1.4 The scope of this thesis

This thesis is focused on the design of neutron filters. In BNCT, a neutron filter is placed between the
neutron source and the patient to tailor the spectrum. A standard neutron filter consists of a series of layers
of various materials which are positioned perpendicular to the incident neutron beam (see Figure 1.2). The
incoming neutrons interact with the materials inside the filter. Various reactions can occur depending on
the material properties. The most important interactions are:

– Elastic scattering (n, n): the neutron simply scatters off the nucleus causing a change in energy and
direction of the neutron. Kinetic energy is conserved in this event.

– Inelastic scattering (n, n′): the neutron scatters off the nucleus while leaving it in an excited state.
The neutron may lose a large amount of energy because of the the threshold energy that is needed to
excite the nucleus. The unstable nucleus returns to its ground state by emitting some type of radiation,
often a gamma ray. Kinetic energy is not conserved in inelastic collisions.

– Radiative capture (n, γ): the neutron is absorbed by the nucleus to form a new compound nucleus
in an excited state. This nucleus decays to its ground state by emitting a gamma ray.

– Other absorption reactions such as (n, p) and (n, α): the neutron is absorbed by the nucleus
followed by the emission of another particle such as a proton or alpha particle.

As a result, the neutrons leaving the filter will have a modified spectrum.

source	neutrons filtered	neutrons

Figure 1.2: Standard design of a multi-layered neutron filter. The incoming neutrons interact with the nuclei of the
filters materials by (in)elastic scattering and absorption. Part of the neutrons is leaving the filter through the final
collimator. The neutron filter is designed in such a way that the output spectrum is optimised to treat the patient.
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The purpose of this work is to develop algorithms that are able to optimise the neutron filter compositions in
BNCT. This is done by choosing the filter materials and thicknesses in such a way that an optimal neutron
beam is created to treat the patient. In order to develop these optimisation methods, calculation schemes
are needed to model neutron transport and to estimate the resulting dose contributions inside the patient.
Furthermore, the possibilities are investigated to set up an effective treatment plan based on the optimised
neutron filters. An additional goal is to gain more insight in possible limitations that still exist in BNCT
treatments. This might involve the 10B uptake ratio between the tumour and healthy tissue for instance.

The remainder of this thesis is organized as follows. In Chapter 2, some basic principles about neutron
filtering are discussed. It is explained which requirements an optimal neutron beam should meet. Also, a
selection of useful filter materials is made to be used in the optimisations. Before these optimisations are
performed, a better understanding about neutron and photon transport is needed. A distinction is made
between particle transport inside the filter (Chapter 3) and inside the patient (Chapter 4). A deterministic
method is used to model neutron transport inside the filter. Here, the discrete ordinates method is explained
and several tools are investigated to reduce computation time. Particle transport inside the patient is
modelled by a Monte Carlo code. In this chapter, the most important dose components are described and
it is explained how these dose components can be estimated. After this, the filter optimisation problem is
worked out for a specific situation. This involves a simplified case of a brain tumour patient that is treated
with BNCT. The details of this model problem are described in Chapter 5. Two different types of algorithms
are used to address the model problem. In Chapter 6, an optimisation method based on gradient descent
is elaborated. The other approach includes a genetic algorithm, which is described in Chapter 7. The
resulting filter compositions and dose distributions are discussed for both optimisation methods. Finally,
some conclusions and recommendations are given in Chapter 8.
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2.1 General beam requirements

In practice, there is a large variety of factors to take into account to determine the optimal beam character-
istics in treatment planning, such as the shape and location of the tumour, possible metastasis, organs at
risk and the local boron distribution in tissues. Some of these features are discussed in further chapters. At
this point it is useful to zoom out a little and discuss some general beam requirements that can serve as a
guideline for selecting filter materials.

2.1.1 Neutron energy

We can distinguish between thermal, epithermal and fast neutrons based on the kinetic energy. Different
boundaries of these energy ranges are found in literature. In this thesis, the common definition from the
International Atomic Energy Agency (IAEA) [8] is applied:

Thermal neutrons: E < 0.5 eV
Epithermal neutrons: 0.5 eV < E < 10 keV
Fast neutrons: E > 10 keV

Thermal neutrons are the most important for BNCT because they have the largest probability to be captured
in boron. They have been used in early trials, but did not give optimal results. The thermal neutron flux
decreases strongly as a function of tissue depth, primarily because they are captured by hydrogen atoms.
Also, it is difficult to collimate the neutron beam and restrict its range to the tumour region because of
thermal neutron scattering. For these reasons, the use of thermal neutron beams often leads to insufficient
penetration in tissue, which makes it impossible to treat deep tumours.

These limitations can be solved by using higher-energy neutrons. When epithermal neutrons enter tissue,
they are moderated by collisions with mostly hydrogen atoms before they are captured by boron nuclei. This
way, epithermal neutrons can penetrate the tissue while protecting the skin from severe damage by high-LET
radiation. Figure 2.1 shows a comparison between a thermal and epithermal neutron beam entering soft
tissue. If we extend this reasoning, one could argue to use fast neutrons for treating even deeper located
tumours. Unfortunately, fast neutrons will cause an additional dose component by recoil protons through
collisions with hydrogen nuclei. These high-LET protons mostly damage the upper surface and skin tissue,
which makes fast neutrons undesirable when treating deep tumours. This effect is described in more detail
in Section 4.2 of this thesis.

These considerations resulted in the current trend to use only epithermal neutron beams for clinical therapy
in BNCT. This objective is challenging because it concerns an energy level between thermal and fast energies,
which are both undesirable. It is complicated to reduce thermal and fast spectrum contributions without
affecting the epithermal component too much. Any filter material that is able to decrease the fast neutron
component will decrease the epithermal neutron component to some extend as well.

5
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Figure 2.1: Comparison of the thermal neutron flux for thermal and epithermal neutron beams entering soft tissue.
These fluxes have been calculated by a one-dimensional discrete ordinates code (XSDRN). The use of this code
is explained in Chapter 3 of this thesis. The tissue is modelled using a standard atomic composition from the
International Commission on Radiation Units and Measurements (ICRU) [20].

2.1.2 Gamma ray component

Other types of radiation such as gamma rays can contaminate the neutron beam. Gammas are either emitted
directly from the neutron source (which is the reactor core in most cases) or by (n,γ) reactions inside the
filter or patient. Gamma radiation is unwanted because it delivers a non-selective dose over a long range
and this could damage a large volume of healthy tissue. Therefore, gamma radiation needs to be reduced to
an acceptable level.

2.1.3 Current-to-flux ratio

The neutron current-to-flux ratio is a measure of the fraction of neutrons that is moving in the forward
direction. A high value of this ratio is desirable because it ensures that the neutron beam is focused towards
the tumour region and prevents divergence to adjacent healthy tissues. In addition, a forwardly-peaked beam
offers flexibility to position the patient along the beam axis. If necessary, the patient can be placed a little
further away from the beam port without a big loss in neutron flux. The current-to-flux ratio is affected by
neutron scattering inside the filter. Unwanted beam directions can be blocked by using a collimator at the
cost of reducing the total neutron flux somewhat.

2.1.4 Beam intensity

The neutron flux needs to be high enough to initiate a sufficient amount of 10B(n,α)7Li reactions to kill the
tumour cells within a reasonable time. Beam intensity and treatment time are directly connected; a lower
beam intensity can be compensated by irradiating the patient for a longer time. However, long irradiation
times are undesirable for the comfort of the patient and the effectiveness of the treatment. During the
entire treatment, the 10B concentration in the tumour needs to be maintained at a specific level, which may
not be possible for a long time. The IAEA applies a maximum treatment time of one hour and concludes
from experience that a desirable minimum beam intensity would be 109 epithermal neutrons cm-2s-1 [8]. In
addition, fractionation can be considered as an alternative to avoid extremely long treatment times.
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2.2 Material selection

The next step in the design process is to make a selection of materials with useful properties to use in
the filter. These materials can be classified into different categories depending on the function they have.
The main filter components are spectrum shifters, thermal neutron absorbers and gamma shields. These
components can be built up by multiple layers of various materials. Additionally, the filter consists of radial
components to reflect and collimate neutrons. In this section, each component is discussed and some suitable
materials are recommended. This material selection is partly based on recommendations from other filter
optimisation studies performed by Hassanein [21], Ross [22], Tracz [23] and Azahra [24]. The suitability of
materials depends primarily on the nuclear cross section, which is a measure of the interaction probability
for neutrons. Therefore, nuclear cross section data from the Evaluated Nuclear Data Library [3] is used to
support the choice of materials.

2.2.1 Spectrum shifters

The function of the spectrum shifters is to moderate fast neutrons to the epithermal range. For this purpose,
high scattering cross sections are required for fast neutrons, while cross sections below 10 keV should be
relatively low. This way, high-energy neutrons lose part of their energy by scattering and ideally end up in
the epithermal range. High scattering cross sections for fast neutrons normally appear in the form of narrow
resonance peaks. This means that a single material is not capable of moderating fast neutrons over the
full range. As a consequence, it is always necessary to use several spectrum shifter materials and combine
multiple resonance peaks to cover the fast neutron range completely.

Some elements with suitable scattering cross sections are 4He, 7Li, 19F and 27Al. In order to compare their
cross sections effectively, we can define the relative scattering cross section

R(E) =
σ(E)

σepi
. (2.1)

Here, the scattering cross section σ(E) is normalized by σepi, which is the average epithermal cross section:

σepi =
1

E2 − E1

∫ E2

E1

σ(E)dE, (2.2)

where E1 and E2 are the lower and upper boundary of the epithermal interval. This way, the cross sections
are scaled with respect to σepi (see Figure 2.2).
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Figure 2.2: Relative scattering cross section R(E) for various nuclides.
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A combination of these four nuclides is already capable of moderating a substantial amount of neutrons
above 20 keV. This example also shows the importance of the order of the filter materials; there is a logical
sequence of layers starting with materials which can scatter high-energy neutrons towards materials with
resonance peaks at lower energies. Other nuclides that can be used as spectrum shifter are 16O, 24Mg, 28Si,
32S, 40Ar, 46Ti and 60Ni. Some of the selected nuclides can be used individually (most metals for example).
Others are combined in molecular bindings such as AlF3 and LiF.

The material selection is not only based on the scattering properties. Some other desired characteristics are:

• Low absorption cross section: the beam intensity needs to be high enough for a successful treat-
ment. Therefore, the absorption of both epithermal and fast neutrons should be minimal.

• Low mass number: light elements are generally better moderators. In elastic scattering, the max-
imum possible energy loss per collision is higher for low atomic masses. Moreover, it is possible to
maintain a stronger forwardly-peaked beam direction if less scattering has occurred. Therefore, most
of the selected candidate nuclides have low mass numbers of A ≤ 32. Since it is unclear how strong
this effect will be exactly, some heavier nuclides (e.g. 60Ni) are included as well because of other useful
properties.

• Low gamma production: gamma radiation is delivering a non-specific dose and is therefore con-
sidered as a contaminating beam component. Gamma rays can be emitted by capture reactions, so
materials with low (n, γ) cross sections are preferred.

2.2.2 Thermal neutron absorbers

The most commonly used materials for thermal neutron absorbers are cadmium and boron. Natural cadmium
consists of eight isotopes including 113Cd which gives rise to the desired properties. Figure 2.3 shows the
total neutron cross section of 113Cd. There is a sharp transition around 0.5 eV with the result of thermal
neutrons being absorbed without a large effect on epithermal neutrons. The main drawback of cadmium is
the emission of gamma rays that follows after thermal neutron absorption. Gammas are emitted at various
characteristic energy levels up to 2.46 MeV, among which the most frequent is a 0.56 MeV gamma that is
emitted in 85% of all neutron absorptions [25]. Alternative materials are being investigated because of the
increasingly stricter regulations on the use of cadmium in equipment [26].
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Figure 2.3: Total neutron cross sections of 113Cd and 10B. It can be seen that cadmium is more selective in absorbing
thermal neutrons than boron.
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Boron can also be used as a thermal neutron absorber. 10B is useful for the same reason as it is used in
BNCT: because of its large thermal neutron cross section by the (n,α) capture reaction. Instead of a distinct
transition, 10B is showing a 1/v dependence over the full energy range (Figure 2.3). This makes boron a less
selective material. The neutron capture reaction in 10B produces a 0.48 MeV gamma in 94% of all cases [1].
This gamma ray is somewhat less energetic than the gamma emissions in cadmium. Boron is also attractive
because of its low cost in comparison to other materials [26]. It is normally used in the form of boron carbide
sheets (B4C). For both boron and cadmium, only thin layers are needed to construct a thermal neutron
absorber; no more than a few millimeters are sufficient to remove the complete thermal neutron spectrum
in most cases.

2.2.3 Gamma shields

Suppose a collimated beam of mono-energetic photons with intensity I0 is travelling through a layer of a
material with mass density ρ. The intensity inside the slab can be described by an exponential absorption
law: after a distance x, the beam intensity has decreased to I(x) = I0e

−µ·x. The quantity µ/ρ is defined as
the mass attenuation coefficient. This measure of the gamma attenuation can be determined experimentally.
The value depends on the sum of the probabilities of the possible photon interactions, which are (in)coherent
scattering, the photo-electric effect and pair production [27]. Materials with favourable mass attenuation
coefficients are glass systems consisting of lead (Pb) and bismuth (Bi) [28]. These materials are suitable for
gamma shielding. In our application, it is also important to sustain the neutron flux. Both Pb and Bi are
relatively transparent to neutrons. There is a small preference for bismuth, since it is nearly as good as lead
for shielding gamma rays, while having a higher transmission of epithermal neutrons [8]. The transmission
rates for both materials are compared in Figure 2.4.
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Figure 2.4: Transmissions rates for photons and epithermal neutrons in 1 cm thick slabs of bismuth and lead. The
values have been calculated by the one-dimensional discrete ordinates code XSDRN. A detailed explanation about
these calculations is given in Chapter 3. Most of the lower-energy photons are absorbed in the 1 cm slabs, while
photons with energies higher than 300 keV require thicker gamma shields to be removed. For epithermal neutrons,
bismuth has a somewhat higher transmission than lead.
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2.2.4 Radial components
The radial components are placed around the main filter layers. Reflectors and collimators are supposed
to reflect neutrons back into the beam. This can be achieved by using materials with high scattering cross
sections and high atomic masses for a minimum energy loss per collision. Lead, bismuth and lead fluoride
are useful for this reason [21]. The collimators close to the beam port are beam delimiters and should absorb
neutrons to prevent them leaving the filter system at undesired angles. These collimators are usually made
of B4C or Li2CO3 dispersed in polyethylene [8]. Outside the entire system, a high-density concrete shield
should be placed to protect the environment from all types of radiation. The concrete shield can be mixed
with iron minerals to increase the gamma absorption even further.

The risk of activations inside the neutron filter should also be taken into account in the material selection.
This applies for all components mentioned before. Some materials might accumulate long-term radioactivity
or toxic substances after neutron activation occurred. This is the case for bismuth for example. After
a neutron is captured by 209Bi, the highly radioactive 210Po is created in combination with beta decay.
Polonium is an extremely dangerous alpha emitter that can already be lethal in tiny amounts [29]. Therefore,
caution is needed with respect to neutron activation inside the filter. Materials like bismuth should either
be avoided or encapsulated.



3 | Neutron and Gamma Transport

3.1 The Boltzmann transport equation

A complete description of the neutron field inside the filter is given by the angular neutron flux ϕ(~r,E, Ω̂, t).
In general, this quantity depends on seven independent variables, which are the position ~r = 〈x, y, z〉, angular
direction Ω̂ = 〈θ, φ〉, energy E and time t. The angular flux can be obtained by solving the Boltzmann
transport equation. This equation is given by [30]:

1

v

∂ϕ

∂t
+ Ω̂ · ∇ϕ+ Σt(~r,E)ϕ(~r,E, Ω̂, t) =

∫
4π

dΩ̂′
∫ ∞

0

dE′Σs(E
′ → E, Ω̂′ → Ω̂)ϕ(~r,E′, Ω̂′, t) + S(~r,E, Ω̂, t).

(3.1)
The Boltzmann transport equation follows directly from balancing the various mechanisms by which neutrons
can be gained or lost in a system. Losses are due to leakage (second term) and collisions (third term). Both
absorption and scattering (causing a change in E and/or Ω̂) account for a loss of neutrons with this specific
energy and direction. Therefore, the total neutron cross section Σt is used here. Gain mechanisms are
inscattering (fourth term) and any other neutron source (fifth term). Inscattering is the event of neutrons
with a different E′ and Ω̂′ suffering a scattering collision that changes their energy and direction into the E
and Ω̂ of interest. The difference between all gains and losses is equal to the rate of change of the angular
neutron flux (first term).

In many cases the general transport equation can be simplified somewhat. For our neutron filter model, it
is convenient to use a one-dimensional slab geometry as shown in Figure 3.1. This means the neutron flux
only depends on a single spatial coordinate, say x. The direction Ω̂ is given by θ which is the angle with
the positive x-axis. Also, the assumption is made that a stationary situation has been reached inside the
system. Hence, the model is time-independent.

x

Ω

θ

Figure 3.1: Coordinate system of the one-dimensional slab geometry in which the filter layers are placed perpen-
dicular to the x-axis. The direction in which the neutrons are moving is given by the angle θ.
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These simplifications reduce the number of independent variables from seven to three. The new transport
equation becomes

µ
∂ϕ

∂x
+ Σt(x,E)ϕ(x,E, µ) =

∫ +1

−1

dµ′
∫ ∞

0

dE′Σs(E
′ → E,µ′ → µ)ϕ(x,E′, µ′) + S(x,E, µ), (3.2)

with µ = cos θ. It is hardly ever possible to solve this equation analytically. Therefore, other methods are
used to approximate the solution.

3.2 The discrete ordinates method

It was decided to use a deterministic method to solve the simplified Boltzmann transport equation. In this
approach, all continuous variables in the equation are replaced by a discrete set of values. Similarly, all
operations are replaced by their discretized counterparts. Derivatives can be represented by finite difference
formulas and integrals by numerical quadrature formulas. This way, one arrives at a set of algebraic equations
for the discrete representation of ϕ. This approach is called the discrete ordinates method or SN method
and can be used to solve the Boltzmann transport equation numerically. In our case, the one-dimensional
discrete ordinates code XSDRN is used. This routine is part of the SCALE Code System [31].

3.2.1 Discretizing the variables

All three independent variables (E, x and µ) need to be discretized. The neutron energy E spans a wide
range from 10−5 eV up to 20 MeV. This full energy range can be divided into intervals or so-called energy
groups. In our XSDRN calculation, a standard library of 200 neutron energy groups is used. The spacing
between the energy groups is approximately logarithmic with a somewhat finer structure in the resonance
regions. In these regions, both cross sections and the neutron flux can vary strongly with energy.

The position variable x is decomposed into a spatial mesh. Inside the neutron filter, different mesh sizes
are chosen depending on the material. Some materials (e.g. aluminium) have only weak interactions with
neutrons and can be modelled in a relatively course spatial mesh. Other materials require a finer mesh,
because they are strong neutron absorbers (e.g. cadmium). Therefore, the mesh size is taken inversely
proportional to the total macroscopic neutron cross section Σt of the material of interest.

Finally, the angular variable µ is defined as a set of discrete directions and corresponding weights. This
way, the integral

∫ +1

−1
f(µ)dµ can be replaced by the sum

∑M
m=1 wmf(µm). The quadrature points (µm, wm)

need to be chosen is such a way that functions can be integrated with maximum accuracy. A double Gauss-
Legendre quadrature set of order 16 is selected based on recommendations from Carlson [32].

3.2.2 Calculation of the group cross sections

The discretization of the problem also affects the cross sections in the transport equation. Instead of continu-
ously defined functions Σ(E), so-called group cross sections Σg are defined which have constant values within
each energy group g. The group cross sections are supposed to have values that preserve the reaction rates
that would arise from integrating the continuous cross section by group. The problem is that the neutron
flux ϕ(E) appears in their formal definition, while ϕ(E) is of course unknown beforehand. To solve this, the
neutron flux can be approximated by a weighting function W (E). In our case, the group cross sections are
calculated by CSASI which is another module in SCALE. For a fine group structure, the cross sections and
hence the flux tend to be smoothly varying within most energy groups. In the fast energy region however,
the cross sections can vary strongly due to resonances, even within a single energy group. Therefore, another
module called CENTRM is used to process the cross section data in the resolved resonance regions. CSASI
uses the standard weighting function W (E) that is given in Table 3.1. This function roughly resembles the
neutron spectrum inside a thermal reactor. Here, the spatial and angular dependence are neglected. The
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total group cross sections then become

Σt,g =

∫
g

Σt(E)W (E)dE∫
g

W (E)dE

. (3.3)

Table 3.1: Standard weighting function for processing multigroup data in CSASI [33]

Neutron energy E Weighting function W (E)
10−5 eV - 0.1 eV Maxwellian (peak at 0.025 eV)

0.1 eV - 80 keV 1/E dependence
80 keV - 10 MeV Watt fission spectrum (kT = 1.273 MeV)

10 MeV - 20 MeV 1/E dependence

The other cross section that is present in the Boltzmann equation is Σs(E
′ → E,µ′ → µ) in the inscattering

term. Again, the continuous variable E is replaced by discrete groups. The change in direction from µ′

to µ is indicated by a single variable µ0 = Ω̂′· Ω̂. Now, the angular dependent scattering cross section
can be expanded in spherical harmonics. In one dimension, these are Legendre polynomials P`(µ0). An
approximation of the group-to-group scattering cross section then becomes

Σs(g
′ → g, µ0) =

L∑
`=0

2`+ 1

2
Σs,`(g

′ → g)P`(µ0), (3.4)

where Σs,`(g
′ → g) are the tabulated angular components of the differential scattering cross section [33]. A

fifth order approximation is used in XSDRN (L = 5).

3.2.3 Transport calculation in XSDRN

After discretization and calculation of the group cross sections, the so-called SN equations are formulated:

µm
ϕg,i+ 1

2 ,m
− ϕg,i− 1

2 ,m

xi+ 1
2
− xi− 1

2

+ Σt,g,iϕg,i,m =

M∑
m′=1

wm′

G∑
g′=1

Σs,i(g
′ → g, µ0)ϕg,i,m + Sg,i,m. (3.5)

This is a coupled set of equations for the group fluxes ϕg,i,m representing the neutron fluxes (units of cm-2s-1)
in energy group g, at spatial interval i in direction m. The neutron beam entering the filter is placed as
a fixed surface source at the left side of the first spatial interval. A vacuum boundary condition is used at
the right end of the system. XSDRN solves the equations by performing multiple loops over each of the
variables. In the spatial domain, the neutron fluxes are calculated both at the boundaries and the centers
of the intervals. The centered fluxes are related to the boundary fluxes by weighted diamond difference
assumptions. Further details about the calculation procedure can be found in the SCALE manual [33].

One of the useful features in XSDRN is the capability to perform coupled neutron-gamma calculations. So
far, all equations were discussed for neutron transport, but these are similarly applied on photons. For this
purpose, a standard library from SCALE is used with 200 neutron groups (from 10−5 eV to 20 MeV) and
47 gamma groups (from 10 keV to 20 MeV). This library contains neutron cross sections (n → n), gamma
cross sections (γ → γ) and gamma production cross sections (n→ γ). In XSDRN, gamma rays arising from
neutron-induced interactions are automatically determined and included in the source term that is present
in Equation 3.5. Photonuclear reactions (γ → n) are hardly ever induced by photons with energies less than
6 MeV [34]. Therefore, these interactions are not taken into account.
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3.3 Transport model by matrix multiplication

The transport calculations in XSDRN are relatively time-consuming and new input files need to be writ-
ten for each filter configuration. To overcome these issues, a simplified model of one-dimensional particle
transport has been developed. This method is an extension of the fast filter estimation from Feilzer [35] who
approximated the neutron filter by a linear system. Additional work is done by including angular dependence
and n-γ interactions.

3.3.1 Transmission and reflection matrices for slabs

The main principle of this model is to describe the filter by predefined slabs of various materials. The
thickness of each slab is taken ∆x ≈ 1/Σt (at E = 25 meV) with a maximum of ∆x = 10 cm. Each slab is
described by two matrices - the transmission matrix T and reflection matrix R - which contain all interaction
probabilities of particles with this slab. The elements of these matrices are defined as follows:

Tij = the expected number of particles Rij = the expected number of particles
leaving the slab on the opposite side in group i leaving the slab on the same side in group i
per particle entering the slab in group j per particle entering the slab in group j

Each group is specified by a particle type (neutron or gamma), energy and angular direction. The values of
Tij and Rij are calculated in XSDRN. Each matrix column is the result of a single calculation for a given
unit source with a specific energy and angle. The format of the XSDRN input files can be found elsewhere.
Using 200 neutron energy groups, 47 gamma energy groups and 8 forward and backward angles, T and R
become 1976 by 1976 matrices.

Figure 3.2 shows a part of the transmission matrices for two different materials. In these images, the matrix
elements are selected that correspond to particles moving along µ = 0.98 both when entering and leaving
the slab. This is the most forward direction in the applied quadrature set. The majority of all particles is
transmitted without a change in direction. All scattered angles give only minor contributions for a single
slab. Neutron scattering becomes increasingly important when more slabs are added to expand the filter,
which can be seen by a wider spread-out angular distribution of the neutron flux. Therefore, the use of
angular groups and reflection matrices is necessary for an accurate estimation of the neutron spectrum at
the exit of a filter.

One problem at this stage, was the appearance of a few negative values inside the transmission and reflection
matrices. These are non-physical values, since the angular flux is positive by definition. It is expected
that these negative fluxes are due to extrapolation errors in XSDRN. Some scattering angles are extremely
unlikely to appear in the output flux for a given input angle. These group fluxes are expected to be very
close to zero, but can be estimated just below zero if the spatial mesh is not fine enough. For this reason,
the number of spatial intervals was increased from 20 to 100 in each slab. Although fewer negative fluxes
were observed, the problem was not solved entirely by this adjustment. The remainder of the negative fluxes
is set to zero to ensure a physical solution. As an alternative, a Monte Carlo code could be used to calculate
the group fluxes and solve this issue completely.
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Figure 3.2: Representation of the transmission rates Tij for input and output particles moving in the most forward
direction (µ = 0.98) in aluminium (left) and boron carbide (right). The groups are given by increasing energy and
contain neutrons (group 1 to 200) and photons (group 201 to 247). The graphs are divided into four segments,
describing the following transitions: n→ n (top left), n→ γ (top right), γ → n (bottom left), γ → γ (bottom right).
Al (10 cm): Aluminium is used as a spectrum shifter. Most neutrons are transmitted without interactions (along
the diagonal) or they lose some of their energy by (in)elastic scattering (below the diagonal). A small amount of the
thermal neutrons gains some energy by upscattering. It can be seen that elastic collisions only allow for a limited
energy loss for lower-energy neutrons. Fast neutrons can also undergo inelastic collisions resulting in a larger energy
loss. Gamma rays are created by thermal neutron capture, but also at resonance peaks for fast neutrons. Many of
the incoming photons lose some of their energy by Compton scattering.
B4C (0.2 mm): Boron carbide is used as a thermal neutron absorber. This looks almost like a diagonal matrix,
which indicates the absence of neutron scattering. A considerable amount of the thermal neutrons is captured by
the 10B nuclei. In 94% of these captures, a 0.48 MeV gamma is emitted, which is clearly visible in the upper right
corner. Most incoming photons are transmitted without interactions inside this thin layer.

3.3.2 The transport model

The transport matrices T and R allow us to calculate the particle flux at any point inside the neutron filter.
Suppose the neutron filter consists of N layers. Then, N + 1 spatial points xi are positioned between all
filter layers ranging from the neutron source at x0 to the beam exit at xN (see Figure 3.3). The particle
flux at spatial point xi is represented by the two vectors ~φ+

i and ~φ−i . Here, a distinction is made between
particles moving in the positive x-direction (µ > 0) and particles moving in the negative x-direction (µ < 0).
The vector elements of ~φ+

i and ~φ−i are the group fluxes ϕg,m for all 247 energy groups and 8 (either forward
or backward) angles at spatial point i. Using these definitions, the transmitted and reflected fluxes can be
calculated by matrix-vector multiplications. The particle flux ~φ+

i is the sum of the transmitted flux Ti~φ
+
i−1

and the reflected flux Ri~φ
−
i . A similar equality can be formulated for the reverse particle flux. The neutron

flux at the entrance of the filter is taken equal to the input spectrum ~φ+
0 = ~S. At the filter exit, a vacuum

boundary condition is applied. This results in the following system of equations:

{
~φ+
i,k = Ti~φ

+
i−1,k + Ri~φ

−
i,k−1

~φ+
0 = ~S

~φ−i,k = Ti+1
~φ−i+1,k + Ri+1

~φ+
i,k

~φ−N = ~0
(3.6)

The particle fluxes are determined by an iterative process. The subscript k indicates the iteration number.
In the first iteration, all unknown fluxes are set to ~0. Iterations are performed by updating ~φ+

i from i = 1

to i = N , followed by updating ~φ−i from i = N − 1 back to i = 0. This process is repeated until a stationary
state is reached. The output spectrum is then given by ~φ+

N .
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Figure 3.3: Schematic overview of the transport model by matrix multiplication. The neutron filter consists of N
layers indicated by Li. The particle fluxes ~φ+

i and ~φ−i are defined at the boundaries xi between all layers. Iterations
are performed by first updating ~φ+

i in the positive x direction and subsequently updating ~φ−i in the reverse direction.

3.3.3 Validation with dummy filter

A calculation with a dummy filter has been performed to validate the transport model. The composition
of the dummy filter was found in one of the early optimisations. It consists of 25 layers from 6 different
materials and has a total length of 76.6 cm. A typical neutron distribution that can be found inside a thermal
reactor was used as the input spectrum. The output spectrum was both calculated directly by XSDRN and
by the transport model described in the previous section. After 25 iterations, the change in the angular
fluxes had become smaller than 0.5% and the calculation was ended. The filtered neutron spectrum matches
with the output spectrum from XSDRN as can be seen in Figure 3.4.
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Figure 3.4: Validation of the output spectrum by applying the transport model on a dummy filter. The output
spectra are shown as Eφ(E) for all neutrons moving at µ = 0.98. After 25 iterations, the output spectrum of the
transport model (full matrix) has converged to the output spectrum obtained by XSDRN. The resulting output
spectra for two sparse matrix approximations are also given.
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Also, the angular dependence of the filtered neutron flux has been compared with a higher-order quadrature
calculation in XSDRN (see Figure 3.5). The use of 16 angular directions in the transport model seems to
be sufficient for an accurate estimation of the angular distribution. It can be seen that directions with small
µ have weaker intensities in the output spectrum. This can be explained by the longer path lengths these
neutrons need to travel within each filter layer, which leads to more absorptions.
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Figure 3.5: Validation of the angular distribution φ(µ) of the neutrons at the exit of the dummy filter. The flux
is summed over all energy groups. The XSDRN calculation is performed with a 64th order double Gauss-Legendre
quadrature. The use of 16 angles in the transport model seems sufficient to estimate the angular distribution of the
filtered neutron spectrum.

3.3.4 Computation time and the use of sparse matrices
The transport model makes it possible to estimate filtered output spectra faster because of the computational
effectiveness of matrix multiplications. Fifty calculations similar to the dummy filter calculation have been
performed to compare computation times. In each calculation, the composition of the 25 filter layers was
determined by a random selection out of 12 materials. In XSDRN, the calculation took 42 seconds of CPU
time on average. The computation time has decreased to 3.2 CPU seconds per filter in the simplified transport
model if 25 iterations were used. This improvement is of great benefit in the optimisation algorithms, because
typically tens of thousands of filter calculations need to done before an optimum is found.

The computation time can be reduced further by the use of sparse matrices. Many of the transmission
and reflection matrices are relatively empty with lots of zeros on off-diagonal elements (see for example the
elements Tij for boron carbide in Figure 3.2). In this case, it could be beneficial to switch from full to
sparse matrices. This means only nonzero elements of the matrix are stored together with their indices.
Also, operations on zero elements are eliminated, which can reduce computation time. Before the transport
matrices are converted to sparse matrices, a cut-off value needs to be chosen. All values Tij and Rij below
this cut-off value are set to zero. Different cut-off values have been tested in the random filter calculations.
There is a slight improvement in computation time for a cut-off value of 10−5 or higher. At the same time,
the estimated output spectrum becomes less accurate because a fraction of the matrix elements has been
neglected. Figure 3.6 shows how the error in the output spectrum develops for different cut-off values. Here,
a trade-off can be made between calculation speed and accuracy of the estimated spectrum, by choosing the
number of iterations and the cut-off value. In the remainder of this thesis, it was decided to perform all filter
calculations using sparse matrices with a cut-off at 10−5 and 25 iterations.



18 3.3. Transport model by matrix multiplication

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

R
el
at
iv
e
er
ro
r

Full matrix calculation
Sparse matrix: cut-off at 10-5

Sparse matrix: cut-off at 10-4

Figure 3.6: Comparison of the relative error in the output spectrum as a function of the iteration number for full
and sparse matrix calculations. The transport model was used for one of the randomly generated neutron filters
which consists of 25 layers. The relative error is defined as ||φg−φ̂g||

||φg|| , where the norm is taken of the difference

between the estimated group fluxes φ̂g and the in XSDRN calculated group fluxes φg. The average computation
time is 1.2 s for a cut-off at 10−4 and 2.0 s for a cut-off at 10−5 using 25 iterations. There is no significant
improvement in computation time for a cut-off at 10−6 compared to the full matrix approach. The computation
times are approximately proportional to the number of iterations.



4 | Dose Calculation

After filtering, the neutron beams continue their ways inside the patient towards the tumour. The neutrons
inside the body induce various nuclear reactions in which ionizing radiation is released. These energetic
particles can deliver a dose to the tumour, but also healthy tissue can be damaged by unwanted radiation.
In this chapter it is described how the particle fluxes are estimated inside the patient and how the resulting
dose distributions are derived from there.

4.1 Monte Carlo particle transport inside the patient

The Monte Carlo method is a statistical approach to find the solution of the Boltzmann transport equation.
In this method, the trajectories of individual particles are tracked from their source until their disappearance.
Along their trajectories, particles undergo a series of events which are determined by their interaction
probabilities. These events can change the direction and energy of the particles, produce secondary particles
or lead to the end of a particle track. By repeated sampling of source particles and possible interactions,
estimations of the particle fluxes and reaction rates inside the patient can be obtained. In this thesis, the
Monte Carlo N-Particle (MCNP) code by Los Alamos National Laboratory [36] was used.

The Monte Carlo code needs a description of the geometry and material composition of the tissues to
calculate the interaction probabilities of the neutrons and photons. In realistic treatment planning, one
would normally determine the tissue composition of the patient by using MRI or CT data. These images
have a resolution of typically 1-2 mm and ideally this data should be implemented in the Monte Carlo code.
Unfortunately, MCNP is not optimised for using such a detailed geometry description [35]. The code works
more efficient and faster when particle tracks are simulated through less complicated geometries. Therefore,
only simplified phantoms are used in this thesis. They consist of simple geometric volumes in which material
concentrations are taken constant.

The trajectories of particles are tracked within finite volumes inside the phantom. These finite volumes are
defined by applying a three-dimensional grid over the entire volume. The cubes that are created this way are
called voxels. The voxel size determines at which level spatial information can be estimated. Smaller voxels
provide a higher spatial resolution, but this also leads to higher variance and longer convergence times in
the simulations. In practice, the voxel size is often limited by the resolution of MRI or CT images.

In MCNP, various quantities can be estimated on a voxel level by applying a track-length tally (FMESH4).
The scalar particle flux for example, can be approximated inside each voxel by an estimator based on the
track lengths Ltrack of these particles inside the voxel volume V . The estimator for this flux (normalized
per source particle) is given by

ϕ̂ =
1

N

∑
tracks

Ltrack
V

, (4.1)

where N is the total number of simulated source particles. Similarly, these track-length tallies can be used
to estimate reaction rates and dose values in each voxel.
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4.2 Dose estimations inside test phantom

4.2.1 Four major dose components in BNCT
Absorbed dose is defined as deposited energy per unit mass and can be measured in gray (1 Gy = 1 J/kg).
The energy deposition is caused by ionizing particles which are created in nuclear reactions. There is a large
variety of possible reactions of neutrons with nuclei in human tissue, mainly with 1H, 12C, 14N, 16O and of
course the injected 10B. In practice, the total absorbed dose in BNCT can be reduced to the contributions
of four major dose components. These dose components are:

• The boron dose, which is caused by the previously described neutron capture reaction in 10B. This
reaction is the reason to apply BNCT and this dose component inside the tumour needs to be large
compared to the other dose components for the treatment to be effective.

• The nitrogen dose is caused by thermal neutron capture in 14N. In this reaction, a 620 keV short
range proton is emitted. Although nitrogen has a lower neutron capture cross section than boron, its
concentration in tissue is much higher. These capture reactions outside the tumour result in unwanted
tissue damage; it comprises 96% of the energy deposition in healthy tissue due to thermal neutrons
[37]. Also, it reduces the total number of thermal neutrons that can reach the tumour.

• The fast neutron dose is caused by high-energy neutrons scattering with 1H. In this collision, the
proton can be knocked out of the hydrogen atom, leaving with half the energy of the incoming neutron
on average. Having an energy of a few MeV at most, also these protons have relatively short ranges
in tissue. This single reaction is responsible for about 90% of the total energy deposition in healthy
tissue due to neutrons between 600 eV and 3 MeV [37]. It mostly affects the skin because neutrons
have the highest energy directly after entering the body.

• The gamma dose comes from different sources. Photons can already be present inside the neutron
beam or they can be created in capture reactions. The largest contribution comes from the 2.22 MeV
photon that is emitted after thermal neutron capture in 1H. Also in the boron capture reaction a
gamma ray is emitted in 94% of all cases. This gamma has less impact with an energy of 0.48 MeV.

Some of the characteristics of these dose components are summarized in Table 4.1. In the first three dose
components, the track lengths of the ionizing particles are much smaller than the typical voxel size. Therefore,
it is assumed that all energy is deposited locally. In case of the gamma dose Dγ , the energy is deposited
differently. Gamma rays are indirectly ionizing because they deposit their energy by secondary electrons
which are created in the photoelectric effect, Compton scattering or pair production. A kerma approximation
is used to estimate the absorbed photon dose. Kerma is defined as the kinetic energy released per unit mass
and consists of the energy that is transferred after the first collision [38]. At low gamma energies, kerma
approximately equals the absorbed dose, since most of the initial kinetic energy of the electrons is deposited
within the same region. In case of a charged particle equilibrium, kerma and absorbed dose are equal. The
approximation becomes less accurate at higher energies, because some highly energetic secondary electrons
or X-rays can escape the region of interest before depositing their energy. In that situation, the absorbed
dose would be overestimated by the kerma approximation.

Table 4.1: Overview of the four major dose components in BNCT.

Symbol Name Reaction Released energy
DB Boron dose 10B(n,α)7Li 2.34 MeV ∗
DN Nitrogen dose 14N(n,p)14C 620 keV
DH Fast neutron dose 1H(n,n)p Half the neutron energy on average
Dγ Gamma dose 1H(n,γ)2H ∗∗ 2.22 MeV
∗) Gamma energy not included
∗∗) The largest contribution of many possible reactions



Chapter 4. Dose Calculation 21

4.2.2 Calculation of the dose components in MCNP
In MCNP, it is possible to convert track-length based flux estimators (given in Equation 4.1) to dose tallies.
The estimated absorbed dose in a voxel then becomes

d̂ =
1

N

∑
tracks

Ltrack
V

ρaσ(Etrack)H(Etrack). (4.2)

For each dose component, the estimated flux is multiplied by the microscopic cross section of the reaction
of interest σ(E), the released energy or heating number H(E) and the atomic density ρa of the nuclide
that is involved in this reaction. MCNP uses internal libraries which contain values for the cross sections
and heating numbers. For the gamma dose, a similar expression is used containing flux-to-kerma conversion
factors. In MCNP, dose values d̂ are given in units of MeV/cm3 per source particle. Using the mass density
of the tissue, these values are converted to arrive at the absorbed dose in Gy per source particle.

The absorbed dose values have been calculated inside a test phantom to investigate the effects of the various
dose components. The test phantom consists of an ellipsoid with outer dimensions of 20.6 cm, 17.6 cm
and 14.6 cm. A spherical tumour of 3 cm in diameter is positioned at the centre of the ellipsoid. ICRU
four-component soft tissue was used for the atomic composition inside the entire phantom [20]. Boron-10
was added inside the tumour (35 ppm) and inside the healthy tissue (10 ppm). A mono-directional disk
source with a diameter of 3 cm was placed along the shortest axis of the ellipsoid directly pointing towards
the tumour. The voxel size was taken 2 mm in each dimension. The four dose components have been
calculated for 247 different beamlets. The energies of these beamlets correspond to the mean energies of
the 200 neutron groups and 47 gamma groups that were also used in the XSDRN calculation. For each
beamlet, 107 source particles were used. The computation times of these simulations were about 30 minutes
per beamlet in MCNP running on 3 cores. Figure 4.1 shows the dose components that were found inside the
test phantom for three different neutron energies.

From theDB components, it can be seen that the 10B(n,α)7Li reactions occur at different locations depending
on the incident neutron energy. Thermal neutrons are captured directly after entering the tissue. The 1 keV
neutrons penetrate deeper into the tissue, which results in neutron captures both inside the healthy tissue
and inside the tumour. The fast neutron beam of 1 MeV produces most of the capture reactions inside the
tumour, which seems highly beneficial. At this energy however, the fast neutron dose causes severe damage
to the healthy tissue. The absorbed dose values of the DH component are about two orders of magnitude
larger than the DB component at 1 MeV. For the two lower energetic neutron beams, the DH component
has minimal influence on the total dose distribution. Both the DN and Dγ component are delivered non-
selectively affecting both the tumour and healthy tissue. Neutrons of higher energies suffer a larger number
of scattering interactions before they are absorbed. This results in a wider spread of these dose components
inside the phantom for fast neutrons compared to thermal neutrons.
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Figure 4.1: Dose distributions of the four dose components inside the test phantom delivered by neutrons of 0.25 eV,
1 keV and 1 MeV. The mono-directional disk source (diameter = 3 cm) is positioned at the left side of the phantom.
The neutrons are emitted in the direction normal to the ellipsoid boundary.
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4.2.3 Biologically weighted dose
Each type of ionizing radiation deposits its energy differently in tissue. A higher density of ionizations along
particle tracks results in a stronger biological effect in comparison with the same physical dose of low LET
radiation. For this reason, weights are used to compare different dose components. These weights are called
relative biological effectiveness (RBE) factors. The RBE factor of the gamma dose is taken equal to one
and the other factors have been determined experimentally with respect to this reference value. This way,
a biologically weighted dose is defined in terms of gamma dose equivalents which is usually expressed in
Gray-Equivalent (Gy-Eq). In further chapters, the biologically weighted dose will simply be referred to as
dose, denoted by D.

The biological effects caused by the boron dose depend not only on the type of radiation, but also on the
specific boron compound that is used. Therefore, DB is weighted with a compound biological effectiveness
(CBE) factor instead. The CBE factor depends on many different parameters, such as the mode of drug
administration, the boron distribution within the cells and the size of the nucleus within the target cell
population [1]. As a result, the CBE factor can be different in each tissue. For efficient boron compounds,
the CBE factor is higher inside the tumour than in healthy tissues.

After many years of research, the values of these factors are still under discussion [38]. In this thesis, RBE
and CBE factors are taken from currently available experimental data [39, 40]. The resulting biologically
weighted dose distributions inside the test phantom are shown in Figure 4.2 for some of the beamlets. The
healthy cells receive most of the unwanted dose from the DN component for lower-energy neutron beams
and from the DH component for higher-energy neutron beams. Also, it can be seen that a single neutron
beam is not capable of effectively irradiating the back side of the tumour in this configuration. Additional
neutron beams from different angles are needed to obtain a better dose distribution.
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Figure 4.2: Biologically weighted dose distributions in the test phantom for six different epithermal neutron beams.
The weighted dose is defined as the sum of the four dose components using the RBE and CBE factors as weights.
The following values are used: RBEγ = 1, RBEN = RBEH = 3.2, CBEB = 3.8 inside the tumour and CBEB = 1.3 in
healthy tissue.



5 | The Model Problem

5.1 Problem description

In this chapter, a model problem is formulated which serves as a tool to test the optimisation algorithms that
are discussed in Chapter 6 en 7. The problem describes a simplified case of a patient with a brain tumour
that is treated with BNCT. The aim is to find the optimum neutron filter design for this specific case.

5.1.1 Phantom geometry
The patient’s brain is represented by a modified version of the Snyder head phantom [41] (see Figure 5.1).
The boundaries of the tissues are defined by three ellipsoids given by the following surfaces:
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Here, the dimensions are given in centimeters. The inner ellipsoid encloses the brain tissue and is surrounded
by an 8 mm thick skull and a 5 mm thick scalp. The dimensions of the outer ellipsoid are 17.6 cm, 20.6 cm
and 14.6 cm in the x-, y- and z-direction. The tumour region is defined by a sphere with a radius of 2 cm
with its centre at (x, y, z) = (− 3.5√

2
,− 3.5√

2
,−2) at the lower part of the brain touching the brainstem. The

brainstem is modelled as a cylinder with a diameter of 3 cm centered around the z-axis between z = −6
and z = 0. Within each tissue, the composition is assumed to be homogeneous with densities and atomic
fractions taken from Lawrence Berkeley National Laboratory [42]. All tissues contain 1H, 12C, 14N and 16O.
Inside the skull, 31P and 40Ca are added as well (see Table 5.1). BPA is used as boron compound, which is
modelled by adding 10 ppm of 10B in the healthy tissues and 35 ppm in the tumour.

Table 5.1: Atomic composition of the tissues given in mass percentages.

ρ (g/cm3) 1H 12C 14N 16O 31P 40Ca
Skin 1.07 10.4 23.7 2.7 63.0 0.0 0.0
Bone 1.61 5.0 21.1 4.0 43.4 8.1 17.6
Brain 1.05 10.6 14.0 1.8 72.6 0.0 0.0

5.1.2 Organs at risk
In each treatment, organs at risk (OAR) need to be identified and protected from receiving too much dose.
Some of the possible organs at risk in the brain are the optic chiasm, brainstem, hippocampus, retina and eye
lenses [43]. In this model problem, only the brainstem is taken into account because of the tumour location.
The brainstem connects the brain to the spinal cord and maintains vital control of the heart and lungs. If
the absorbed dose inside the brainstem becomes too high, symptomatic necrosis can occur, which leads to a
decrease in cognitive functioning. A maximum dose constraint of 45 Gy-Eq is used in the brainstem [44]. In
the phantom description, OARs are assumed to have the same composition as their surroundings. For this
reason, the locations of OARs do not influence the resulting dose distribution. This makes it possible to add
more OARs after the dose calculations have been performed if one wishes to extend the model problem.
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Figure 5.1: Intersections of the problem geometry. The left image shows the intersection in the xy-plane at z = −2.
The right image shows the intersection in the vertical plane along beam direction 3. All regions are defined by simple
geometric volumes. The atomic compositions are constant within each region. The tumour is irradiated by five
neutron beams which are denoted by the arrows between the dashed lines.

5.1.3 Beam directions

Five possible beam directions are chosen to irradiate the patient. In practice, this can be achieved by
rotating the patient around a fixed neutron beam and changing the neutron filter for each direction. The
beam diameter is chosen equal to the tumour diameter. The directions are selected in such a way that their
paths towards the tumour are short or without intersection of the OAR. Also, it is important to irradiate
the tumour from multiple different sides to obtain a uniform dose distribution within the tumour. A single
neutron beam is not always able to deliver a sufficient amount of dose to the backside of a deep tumour as
was shown in Figure 4.2. The optimisation algorithm has the freedom to neglect one or more of these beam
directions if this leads to better results.

5.1.4 Objective function

The optimisation is performed by minimising the cost function F , which is defined as

F =
∑
i

wi(Di − Pi)2. (5.1)

Here, Pi is the prescribed dose in voxel i and Di is the actual dose in voxel i. The squared differences are
summed over all voxels using weights wi, which can be used to increase the importance of specific voxels. In
fact, the weights and prescribed dose values are defined for regions (denoted by subscript r). These regions
include the various tissues and the tumour. A dose of Pr = 60 Gy-Eq is prescribed to the tumour. In all
other regions, Pr is taken equal to zero. Some of the voxels which are located at the boundaries between
regions, are occupied by more than one region. In these voxels, Pi and wi are determined by taking an
average over the various regions of interest. For example, the weight of a voxel which comprises multiple
regions becomes wi =

∑
r fi,rwr, where fi,r is the fraction of voxel i that is occupied by region r. Similarly,

the prescribed dose in a voxel is Pi =
∑
r fi,rPr.
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5.1.5 Description of the neutron source

As in the majority of the performed BNCT trials, we assume a thermal research reactor is used as neutron
source. To yield a high beam intensity, the idea is to build the neutron filter inside one of the beam tubes,
similar to the neutron filter at the HFR in Petten [45]. The neutron spectrum at the entrance of the beam
tube is approximated by:

– a Maxwell-Boltzmann distribution with maximum intensity at 25 meV in the thermal energy range,

– a 1/E dependence in the epithermal energy range,

– the Watt fission spectrum of 235U in the fast energy range.

As a reference frame, some information about the neutron spectrum at the HOR was used. At the entrance of
beam tube L1, the total neutron flux is about 1011 cm-2s-1 and the spectrum consists of 60% thermal neutrons,
14% epithermal neutrons and 26% fast neutrons. In our input spectrum, the same relative intensities were
applied. It was decided to use a higher source strength to make it more likely that the prescribed dose could
be delivered within a reasonable treatment time. The HOR in Delft is operated at a thermal power level
of 2 MW [46]. One of the most powerful research reactors is the 100 MW BR2 reactor in Belgium [47].
This reactor type is assumed to be available as neutron source in the model problem. Given that the total
neutron flux is approximately proportional to the reactor power, this would correspond to a scalar flux of
5 · 1012 neutrons cm-2s-1 at the beam tube entrance. The resulting energy spectrum is shown in Figure 5.2.
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Figure 5.2: Energy spectrum of the neutron source given as Eφ(E) for 200 neutron energies corresponding to the
energy groups used in XSDRN. The spectrum represents the neutron flux at the beam tube entrance of a high-power
research reactor approximated by theoretical distributions in the thermal, epithermal and fast energy range with
relative intensities of 0.60, 0.14 and 0.26 respectively. The energy integrated neutron flux is 5 · 1012 neutrons cm-2s-1.

For simplicity, the flux at the entrance of the beam tube is assumed to be isotropic1. The group fluxes ϕg,m
are determined by integrating the energy-dependent flux φ(E) over the energy groups and multiplying by
the Gauss-Legendre quadrature weights wm,

ϕg,m = wm

∫
Eg

φ(E)dE. (5.2)

1In fact, an angular dependence of ϕ(θ) ∼ sin θ was applied in the optimisations. This distribution was considered unrealistic
and therefore all results have been recalculated for an isotropic source flux. This resulted in equal relative dose distributions
and a somewhat shorter treatment time.
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The quadrature weights are defined in such a way that
∑
m wm = 1. This means that the summation over

all group fluxes is equal to the total flux of 5 · 1012 neutrons cm-2s-1. Half of these neutrons is moving in
the positive x-direction (µ > 0). In the transport model, these group fluxes are inserted in the vector ~φ+

0

as explained in Section 3.3.2. A fraction of 2.5% of all source neutrons enters the neutron filter in the most
forward direction of µ = 0.98.

Finally, the gammas were added to the source spectrum. No spectrum was available at the same location
as the neutron source. Instead, a gamma spectrum was taken at the exit of beam tube L1 and scaled to
estimate the actual intensity (see Figure 5.3). The gamma group fluxes were determined similarly as was
described for the neutron group fluxes.
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Figure 5.3: Energy spectrum of the gammas in the beam given as φ(E) for 47 photon energies corresponding to
the energy groups used in XSDRN. The spectrum is an amplified version of the spectrum taken at the exit of beam
tube L1 at the HOR.

5.2 Calculation scheme

For a given set of filter compositions, the objective function is evaluated by the following calculation scheme.
For each neutron beam b, the procedure consists of two steps: a filter calculation, followed by a dose
calculation.

Filter	calculation
Transport	model

using	transmission	and
reflection	matrices

Dose	calculation
Multiplication	by	dose	

transfer	matrices
=��,� �0�0���,���,�

��,� ��,�

Input	spectrum
Filter	composition

For a given input spectrum and filter composition, the resulting output spectrum is determined by the
iterative process as described in Chapter 3. The transmission and reflection matrices which are needed here,
have been calculated before the optimisation starts. The filtered spectrum is given by ϕg,m,b, which contains
the group fluxes (units of cm-2s-1) in energy group g and angular direction m in beam b. This neutron beam
is collimated and it is assumed that only the particles moving in the most forward direction µm = 0.98 are
transmitted. These group fluxes ϕg,b are selected and used as input in the dose calculation.
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The dose calculation is performed by multiplying the group fluxes by A0, t0 and dig,b. This product contains
the beam area A0 = 12.6 cm2 and a standard treatment time of t0 = 3600 s. The treatment time is adjusted
at a later stage in the algorithm. The dose transfer matrix contains the elements dig,b, which are equal
to the delivered dose in voxel i if a particle of energy group g enters the phantom from beam direction b.
For simplicity, all collimated beams are assumed to enter the tissue at normal incidence (µ = 1). The dose
transfer matrices have been calculated beforehand in MCNP as described in Chapter 4.

When the dose contributions from the different beams Di,b are known, the next step is to determine how
long the patient should be irradiated from each beam direction. A relative treatment time tb is assigned to
each beam. The total dose distribution then becomes Di =

∑
b tbDi,b, which should resemble the prescribed

dose Pi as much as possible. To achieve this, the relative treatment times are determined by the method
of least squares. It is convenient to express this in matrix form. The prescribed dose is represented by a
column vector ~P , the dose contributions Di,b are grouped together as columns in D and the voxel weights
wi from Equation 5.1 are placed on the diagonal of W :

~P =

P1

...
PN

 , D =


...

...
Di,1 . . . Di,5

...
...

 , W = diag(w1, ..., wN )

The weighted least squares solution of the relative treatment times tb then becomes

~t = (DTWD)−1DTW ~P . (5.3)

The final dose distribution Di is then determined and inserted in Equation 5.1 to arrive at the cost value F .

5.3 Preliminary optimisations

Before the filter compositions are optimised, some preliminary optimisations have been performed. Here,
the goal was to find the optimum energy spectra of the neutron beams. This was done by omitting the
filter calculation and taking the group fluxes ϕg,b as input variables of the optimisation. The neutron and
gamma beamlets are defined for 247 energy groups and 5 beam directions. The optimisation of these 1235
parameters was performed by the interior-point algorithm using the fmincon function in Matlab. The cost
function (Equation 5.1) was used as the objective function and the gradient was included as well. Equal
values of ϕg,b = 107 cm-2s-1 were used for all g and b as the starting point and a lower bound of zeros was
applied. The algorithm was terminated when the first-order optimality had become smaller than 10−3. No
more than 65 function evaluations were needed to arrive at this point.

The optimisations have been performed for different combinations of tissue weights. These four cases are
specified in Table 5.2. The resulting optimum dose distributions that were found for these cases are shown
in Figure 5.4 and the corresponding dose volume histograms are given in Figure 5.5. It can be seen that
the maximum dose in the brainstem remains below the imposed dose constraint. This dose can be reduced
further by increasing the OAR weight. Similarly, a higher and more uniform tumour dose can be obtained
by increasing the tumour weight. For all cases however, the dose distribution inside the tumour shows a
relatively wide spread. It is expected that this dose uniformity can be improved somewhat by increasing the
tumour weight further at the cost of a higher dose in the OAR.

A standard treatment time of 1 hour was applied for each beam. In case C and D, this has led to average
beam intensities of ∼ 2 ·109 neutrons cm-2s-1 that were needed to perform the treatment. Using the neutron
source that is described in Section 5.1.5, these beam intensities can be achieved if about two percent of the
source neutrons in the most forward angular direction are transmitted through the neutron filters.
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Table 5.2: Tissue weights that have been applied in the four optimisations.

Region A B C D
Tumour 1 10 30 30
OAR 1 1 1 10
Other 1 1 1 1
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Figure 5.4: Optimum dose distributions found by optimising the particle fluxes ϕg,b with the interior-point algo-
rithm. The voxel weights in the tumour and OAR are varied as is shown in Table 5.2.
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Figure 5.5: Dose volume histograms in the tumour and organ at risk for the different cases.
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Finally, the optimised group fluxes have been analysed. The gamma fluxes were found to be zero everywhere.
The neutron spectra are characterized by sharp peaks between 1 and 4 keV. The relative neutron beam
intensities vary strongly depending on the chosen weights. In most of the beam directions, only a few
neutron energies are present (see Figure 5.6). It can be seen that a finer group structure is required to
describe the optimum neutron spectra more accurately. In order to do this, additional dose transfer matrices
are needed for a number of intermediate neutron energies. In practice, it will be difficult to develop a neutron
filter that is able to generate such a narrow output spectrum, since the input spectrum comprises a wide
range of energies. Therefore, it is still useful to apply the broader group structure in the filter optimisations.
In the following chapters, voxel weights from case D are applied in all optimisations.
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Figure 5.6: Optimised group fluxes for each neutron energy and beam direction corresponding to case C.



6 | Filter Optimisation by a
Gradient Descent Algorithm

A large class of optimisation algorithms is based on the principle of gradient descent. In these algorithms,
the strategy is to evaluate the function value repeatedly at different points by taking steps proportional
to the negative of the gradient. This way, a minimum of the objective function can be found. If we want
to apply this on filter optimisation, the problem needs to be formulated in such a way that the objective
function is differentiable with respect to the input variables. Because of this condition, continuous variables
are needed to describe the neutron filter. Two different descriptions have been considered to achieve this:

(i) A variable thickness is assigned to each filter layer. The objective function is then minimised to find
the optimal combination of thicknesses. This approach has the disadvantage that the order in which
the materials are positioned is already fixed.

(ii) Each filter layer is described by a combination of several materials. In this approach, the aim is to find
the optimal material concentrations in each layer.

Because of the additional degrees of freedom, it was decided to elaborate the second approach. This was
attempted in the continuous filter model.

6.1 The continuous filter model

In the continuous filter model, the neutron filter is divided into a fixed number of layers. Each layer contains
a mix of possibly all materials from a given material selection. These mixtures are homogeneous within
each layer, but are allowed to vary between different layers. The composition of a filter is specified by an
array C in which the element cm,n is equal to the relative concentration of material m in layer n. In our
model problem, the index b is also added to distinguish between filters in different beam directions. For
convenience, this subscript is left out for now. The elements cm,n take values between zero and one because
they are defined as relative quantities. The relative material concentration is a fraction, which is defined
as the amount of material m inside the mixed layer with respect to the total amount that is present in the
predefined slab of material m. Because these predefined slabs have variable sizes, the thickness of each layer
can also vary in the continuous filter model.

In the filter transport calculation, transmission and reflection matrices are used. These matrices have been
defined and determined for pure materials. In this new filter model, transmission and reflection matrices are
required for mixed layers. Therefore, a new set of matrices is defined, denoted by T̃n and R̃n, which can
be used for a mixture in layer n. These matrices are obtained by taking linear combinations of the original
matrices Tm and Rm, which are specified for a single material m:

T̃n = I +

M∑
m=1

cm,n(Tm − I), R̃n =

M∑
m=1

cm,nRm. (6.1)

Here, T̃n and R̃n have slightly different expressions due to effect of void layers. If the sum of the material
concentrations inside a layer is smaller than one, the remainder of this layer is treated as void. The trans-
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mission matrix of such a layer is equal to the identity matrix I. Hence, T̃n = I if all cm,n are zero. In the
case of the reflection matrix, the expression reduces to R̃n = 0 if the layer is empty.

The reason to use linear combinations of the material matrices can be explained by their definitions. The
elements of the transmission matrices can be seen as probabilities that a neutron is transmitted from one
group to another after passing this layer. Suppose a certain interaction probability is T1 for material 1 and
T2 for material 2. If a layer consists of these two materials with relative fractions of c1 and c2, one could
argue that the total probability that this interaction occurs in the mixed layer is c1 · T1 + c2 · T2. However,
there is also a probability that neutrons interact with both materials. When more materials are added, new
combinations of interactions are possible, which are not taken into account by this model. For this reason,
the expressions in Equation 6.1 do not give an exact description of mixed layers, but they can be used as
approximations.

The transmitted neutron fluxes through an arbitrary mixed layer have been calculated to demonstrate the
accuracy of this approximation. As an example, a 10 cm thick slab which consists of 60% 27Al, 30% 28Si
and 10% 32S (given by mass percentages) is used. The transmission matrix of this slab is calculated both
directly in XSDRN and by taking a linear combination of the separate transmission matrices. A comparison
between the two transmission matrices applied on a uniform input spectrum is shown in Figure 6.1. It can
be seen that most group fluxes are approximated well. However, at some points in the fast energy region
larger errors are visible.
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Figure 6.1: Validation of the approximated transmission matrix of a single mixed layer. The output spectra have
been calculated by ~φout = T ~φin. An input spectrum of 1012 neutrons cm-2s-1 is used with equal fluxes in each
energy group. The transmission matrix of the validation was calculated in XSDRN by using a 10 cm thick layer of a
material with a density of 2.53 g/cm3 containing Al-27, Si-28 and S-32 with relative mass fractions of 0.6, 0.3 and 0.1
respectively. The material fractions with respect to their predefined slabs have been determined using the densities
of the individual materials. Then, the transmission matrix of the approximation was calculated by taking the linear
combination T̃ = 0.58TAl + 0.33TSi + 0.12TS.

The concept to use mixed material layers could give some troubles when building the filter in practice. Some
materials can easily by combined like an alloy of metals, but other combinations might be less realistic.
Another option to create such a layer in practice, is by using thin alternating layers. If the thickness of these
layers is taken much smaller than 1/Σt, the characteristics will be similar to a material mixture. This could
be a way to implement the filters that are found by this model in a real treatment.
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6.2 Gradient calculation

When the relative material concentrations cm,n,b from the new filter model are used as input variables, the
calculation scheme becomes:

cm,n,b
filter calculation−−−−−−−−−−→ ϕg,b

dose calculation−−−−−−−−−−→ Di,b
cost function−−−−−−−−→ F

An expression for the gradient is needed for the optimisation algorithm. Using the chain rule, the gradient
∂F/∂c can be expressed as the product of the gradients of the three functions given above. Two of them
are obtained easily by taking the derivatives of the analytical functions. First of all, the derivative of the
cost function with respect to the dose contributions is determined. Using the same matrix notation that was
defined in Section 5.2, this gradient becomes

∂F

∂D
= 2W (D~t− ~P )~t T . (6.2)

Secondly, the gradient of the dose calculation is given by(
∂Di

∂ϕg

)
b

= A0t0dig,b, (6.3)

where the elements of the dose transfer matrices dig are multiplied by the beam area and treatment time.

The final gradient is less straightforward to evaluate. This is the derivative of the particle fluxes ϕg,b
with respect to the material concentrations cm,n,b following from the filter calculation. This calculation
is performed by an iterative process instead of an explicit function. Therefore, we need to look into the
transport model once more, which was formulated in Section 3.3.2. Now, the aim is to estimate how the
particle fluxes at the exit of the filter are influenced by a change in filter composition.

Suppose the relative concentration of material m in layer n is increased by a small amount ∆c (Figure 6.2).
Because of this, the transmission and reflection matrices of this particular layer are changed. According to
Equation 6.1 they are replaced as follows,

T̃ ′
n → T̃n + ∆c(Tm − I),

R̃′
n → R̃n + ∆cRm.

The particle fluxes entering layer n are given by ~φ+
n−1 and ~φ−n , which are known when the filter calculation

is done. The particle fluxes leaving this layer are calculated by applying the new transmission and reflection
matrices on these incoming fluxes. The change in outgoing fluxes ∆~φ+

n and ∆~φ−n−1 can then be expressed as

∆~φ+
n = ∆c(Tm − I)~φ+

n−1 + ∆cRm~φ
−
n ≡ ~S+

n , (6.4)

∆~φ−n−1 = ∆c(Tm − I)~φ−n + ∆cRm~φ
+
n−1 ≡ ~S−n−1. (6.5)

These ∆~φ+
n and ∆~φ−n−1 are modelled as perturbation sources ~S+

n and ~S−n−1 at the boundaries of layer n. The
transport model based on matrix multiplication is used to calculate the propagation of these perturbations
through the entire filter. This is done similarly as described by Equation 3.6, but now the operators T̃i and
R̃i are working on the change in flux ∆~φi instead of the particle flux ~φi itself. Also, a source term ~Si is added
to include the perturbation sources ~S+

n and ~S−n−1. On all other spatial intervals, ~Si is taken zero. Vacuum
boundary conditions are used at both ends of the filter. The system is then described by the following two
equations, where the subscript i indicates the spatial interval and the iteration number is given by k:{

∆~φ+
i,k = T̃i∆~φ+

i−1,k + R̃i∆~φ−i,k−1 + ~S+
i ∆~φ+

0 = ~0

∆~φ−i,k = T̃i+1∆~φ−i+1,k + R̃i+1∆~φ+
i,k + ~S−i ∆~φ−N = ~0

(6.6)
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Figure 6.2: Schematic overview of the transport model by matrix multiplication, in which the gradient ∂ϕ
∂c

can be
approximated. A change in material concentration ∆c in one of the filter layers is modelled by two perturbation
sources ~S+

n and ~S−n−1 at the boundaries of this layer. The perturbations are propagated by transmission and reflection
as described by the system of equations in 6.6. Iterations are performed in the directions of the arrows to estimate
∆~φ+

N at the exit of the filter.

Iterations are performed by updating ∆~φ+
i from i = 1 to i = N , followed by updating ∆~φ−i from i = N − 1

back to i = 0. In the first iteration, the first n−1 points can be skipped because they are not affected by any
of the sources. As the perturbation sources are expressed in ∆c, all values for ∆~φi are calculated in terms
of ∆c as well. This starts with a linear component and each time the fluxes have passed the perturbed layer
again, a higher-order approximation can be made. As a result, the flux change at the exit of the filter takes
the form ∆~φ+

N = ~f1∆c+ ~f2(∆c)2 + ... . Then, the derivative is given by

∂ϕg
∂cm,n

= lim
∆c→0

∆~φ+
N

∆c
= lim

∆c→0

1

∆c

(
~f1∆c+ ~f2(∆c)2 + ...

)
= ~f1.

Hence, only a first-order approximation of ∆~φ+
N is used to estimate the gradient. All higher-order terms

of ∆c are neglected. This is realized by using the original matrices T̃n and R̃n in the perturbed layer
without the change in concentration taken into account. This way, a first-order approximation of ∆~φ+

N and
an estimation of the gradient are found after the final iteration. Approximately 20 iterations were needed
until convergence when a filter of 25 layers was used.

In principle, this calculation is relatively fast because of the efficient use of sparse matrix multiplications.
However, this gradient needs to be calculated with respect to each material concentration in each filter
layer. Depending on the number of materials and filter layers, this can typically add up to more than a
thousand independent variables cm,n,b and the same number of perturbation calculations. Because of this,
the computation of the gradient is by far the most time-consuming part of the optimisation. Gradient descent
algorithms do not necessarily have to use exact values for the gradient. An approximation can be sufficient
to lead the solver towards a minimum. Therefore, it is beneficial to use a small number of iterations in the
gradient calculation. After only 5 iterations the approximation seems to be reasonably accurate. This is
shown for two different materials in Figure 6.3. Here, the approximations of the gradient have been compared
with finite difference estimations. Small errors are acceptable in this approximation, if the computation time
is reduced significantly.
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Figure 6.3: Comparison of the derivatives ∂ϕg/∂cm,n approximated by the perturbation model and by finite
differences. This was done for lithium fluoride and bismuth, both in layer 15 which is located in the middle of the
neutron filter. The approximation in the perturbation model was obtained with 5 iterations. The finite difference
calculation was done with ∆c = 10−8 and is assumed to give an exact estimation of the gradient. For most energies,
the approximation seems very accurate. Both gradients were calculated at the starting point of the algorithm, which
is c = 0.05 for each layer and each material.
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6.3 A gradient descent algorithm applied on the model problem

6.3.1 Details of the algorithm

The interior-point algorithm in Matlab was used to find the optimum filter compositions in the model
problem. Neutron filters were placed in each of the five selected beam directions (see Figure 5.1). Each
filter was described by the continuous filter model allowing for 12 different materials in 25 layers per filter,
which adds up to 1500 independent material concentrations cm,n,b. These parameters were constrained by∑12
m=1 cm,n,b ≤ 1 to restrict the maximum amount of materials in each filter layer n. Also, each individual

concentration was bound by 0 ≤ cm,n,b ≤ 1. The starting point was chosen at cm,n,b = 0.05 for all m, n and
b, which means equal concentrations of each material were added in each layer.

A standard step in the optimisation consists of an evaluation of the objective function (Equation 5.1) and an
approximation of the gradient. The evaluation of the objective function takes about 3 CPU minutes. The
gradient approximation was included as described in Section 6.2. Here, 5 iterations were used to estimate
∂ϕg/∂cm,n. This resulted in a calculation time of 64 CPU minutes to determine the gradient of the objective
function with respect to all 1500 input variables. The interior-point algorithm also has the option to include
the Hessian. However, this would increase the calculation time of each step even more and it could be
doubted if the second-order derivatives would be accurate enough if they are based on approximated first-
order derivatives. Therefore, no Hessian was included in the algorithm.

The stopping criteria of the algorithm are given by the so-called tolerance limits. These are set for both the
input variables c and the objective function F . When the solver is close to a minimum, the algorithm is
terminated after iteration k if |ck − ck+1| has become smaller than the step tolerance or if |F (ck)−F (ck+1)|
has become smaller than the function tolerance. The step tolerance is set to 10−5, which is expected to
provide a sufficiently accurate description of the material concentrations. The function tolerance is set to
105 since no significant differences in dose distributions are observed for this order of magnitude.

6.3.2 Results

The algorithm stopped after 163 function evaluations, because the step size had become smaller than the step
tolerance. This took approximately 36 hours on 5 cores. The optimised material concentrations for all five
neutron filters are shown in Figure 6.4. Many of the relative concentrations turned out to be close to either
zero or one. This means that most filter layers could be built from pure materials, which is beneficial for
practical reasons. Nevertheless, one should keep in mind that even small concentrations of certain materials
can influence the output spectrum. Although each filter has its own unique composition, some similarities
can be observed. The first layers are often composed of Al, AlF3 and sometimes LiF, which seems to work
efficiently as a combined moderator. Some other repeated patterns are Al-S-B4C and AlF3-Ni-Al at the end
of the filters. Boron-10 is used as thermal neutron absorber and seems to appear at arbitrary locations in
each filter. The other possible neutron absorber cadmium is not used in any of these filters. Not so many
gamma shields are present in the optimised compositions. Only a single layer of lead can be found at the
end of two filters.

The minimum cost of F = 2.38 ·107 that was found in this optimisation is not necessarily a global minimum.
A few more optimisation runs have been performed for different starting points. In these optimisations,
other minima were found. The second best solution for example, was found by using cm,n,b = 0.01 for all
material concentrations as starting point. The resulting minimised cost value was F = 2.47 · 107. Some
of the optimised filters from this second best solution are shown in Figure 6.5. These filter compositions
are completely different compared to the previous solution. Many layers are composed of nickel instead of
aluminium, and small amounts of bismuth and cadmium are present as well. Despite these large differences
in filter composition, the resulting dose distributions are almost similar. These results demonstrate that the
problem is not convex and multiple local minima exist. There might be many different filter designs which
lead to similar results.



Chapter 6. Filter Optimisation by a Gradient Descent Algorithm 37

1 5 10 15 20 25
0

0.5

1

Layer n

cm,n,1

Beam 1

1 5 10 15 20 25
0

0.5

1

Layer n

cm,n,2

Beam 2

1 5 10 15 20 25
0

0.5

1

Layer n

cm,n,3

Beam 3

1 5 10 15 20 25
0

0.5

1

Layer n

cm,n,4

Beam 4

1 5 10 15 20 25
0

0.5

1

Layer n

cm,n,5

Beam 5

Al AlF3 LiF Mg S Ni Pb Ti B4C

Figure 6.4: Optimised values for the material concentrations that were found using cm,n,b = 0.05 as starting point.
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Figure 6.5: Two of the optimised filters that were found using cm,n,b = 0.01 as alternative starting point.

The filtered and collimated output spectra of the best found solution are shown in Figure 6.6. The filters
have removed most of the thermal and fast neutrons. The fraction of epithermal neutrons is between 0.93
and 0.96 in each beam. The total beam intensities are between 2.9 and 3.7·109 neutrons cm-2s-1. With these
neutron fluxes, the desired dose could be delivered within a total treatment time of 3.2 hours. This is a
reasonable time if the treatment is divided over several fractions.

The resulting dose distribution in the brain phantom is given in Figure 6.7. The brainstem received a
maximum dose of 11 Gy-Eq, which is far below the imposed dose constraint. In the tumour, a mean dose
of 56 Gy-Eq is delivered, which is close to the prescribed dose of 60 Gy-Eq. However, the algorithm has
not succeeded in delivering a uniform dose distribution inside the tumour. The wide dose range between
43 and 74 Gy-Eq would probably not be acceptable in practice. This problem is caused by the OAR which
is touching the tumour region. Possibly, the uniformity of the tumour dose can be improved somewhat by
further adjustment of the voxel weights. Another option is to irradiate the tumour from different angles.
For simplicity, all beam directions in the model problem were selected in the same plane. Additional beams
could be added orthogonal to the xy-plane to contribute to a more uniform dose distribution.

An important aspect in beam optimisation is the trade-off between beam quality and intensity. In fact, this
algorithm is only optimising the beam qualities by looking for the best possible relative dose distribution.
Using the presumed source intensity of 5 · 1012 neutrons cm-2s-1 at the beam tube entrance, the demanded
treatment time turned out to be realistic. If a weaker source were used, this could have caused some
difficulties to deliver the dose within a reasonable time. In the current algorithm, the total number of layers
per filter N can be varied to influence the filtered beam intensities. By decreasing this parameter, it can
be expected that more neutrons are transmitted through the filters. This way, higher neutron fluxes can be
obtained at the cost of some of the beam quality. Alternatively, the algorithm can be improved by using a
new objective function in which long treatment times are penalised. In that case, a trade-off between beam
quality and intensity is made regardless of the number of filter layers.
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Figure 6.6: Energy spectra of the filtered neutron beams at an angle of µ = 0.98 shown as Eφ(E) for the optimum
filter compositions. All beams consist predominantly of epithermal neutrons. Also, two lower peaks in the fast energy
region are visible around 23 keV and 62 keV in each beam.
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Figure 6.7: The optimised dose distribution shown in a cumulative dose volume histogram (left) and in the xy-plane
of the brain phantom (right). The treatment times per beam are t1 = 0.66 h, t2 = 0.56 h, t3 = 0.58 h, t4 = 1.17 h
and t5 = 0.24 h.
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Optimisation methods based on gradient descent come with some disadvantages. First of all, it is not always
possible to find an expression for the gradient of complicated objective functions. In our filter problem,
the gradient of the cost function can be approximated, but relatively long computation times are needed
to evaluate the gradient at each point. Furthermore, these methods involve the risk of getting trapped in
a local minimum. If the solution space is large, it requires many optimisation runs from different starting
points before a satisfactory solution is found.

Some of these issues can be solved by a category of alternative optimisation algorithms. These algorithms use
completely different approaches compared to gradient methods and can be classified as natural or probabilistic
methods. Some of them include the genetic algorithm (Holland, 1975), simulated annealing (Kirkpatrick et
al., 1983) and particle swarm optimisation (Parsopoulos and Vrahatis, 2002). These methods are inspired
on processes in nature. They all use their own techniques to generate new points in the solution space by
applying operators on possible solutions. This way, it is possible to move statistically towards more optimal
solutions. These algorithms do not require taking cost function derivatives and can thus deal with discrete
variables and non-continuous objective functions [48]. In this thesis, it was decided to look further into
genetic algorithms and investigate how these could be applied on filter optimisation.

7.1 The genetic algorithm

Genetic algorithms are based on the principles of genetics and natural selection. Instead of iterations, these
algorithms work with so-called generations. Each generation is composed of a group of solutions, which is
called a population. The aim is to let these populations evolve under specified selection rules to a state that
minimises the cost function.

Each candidate solution is encoded by an array of fixed length. The algorithm starts with randomly gener-
ating an initial population which consists of a predefined number of candidate solutions. Then, the objective
function is evaluated for each solution in this population. Based on the individual scores or cost values, a
new population is created in the next generation. Normally, a specified number of elite solutions is chosen,
which are the best solutions of the population. The elite solutions are always copied to the next generation.
The remainder of the new population is made up by newly created solutions. This is done by first selecting
two parent solutions from the old population and then apply an operator on them to generate two offspring
solutions. This process is repeated until the new population contains as many individuals as the initial
population. This way, the population size remains unchanged during the optimisation.

The selection of parent solutions can be done in various ways. One of the commonly used techniques is the
roulette wheel selection, in which a solution is chosen with a probability proportional to its fitness. In case of
a minimisation problem, the fitness can be defined as the inverse of the cost function. Another option is to
select solutions based on tournament. In tournament selection, a specified number of solutions is chosen at
random and then the best individual out of that set is selected as parent solution. The tournament selection

40
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has better or equivalent convergence and computational time properties compared to any other selection
method that exists in literature [49].

The crossover and mutation operators are applied on the selected parent solutions to create offspring solu-
tions. Crossover recombines features of the selected candidate solutions. This operator can be defined in
many different ways. For our application, we assume that each offspring solution is constructed by an array
receiving half of its elements from parent 1 and the other half from parent 2. The selection of these elements
is performed randomly for each crossover operation. By repeatedly creating new combinations of favourable
elements, it can be expected that superior candidate solutions appear during the optimisation.

In the mutation operation, a number of elements from the parent solutions is replaced by random values.
This often leads to worse solutions, but sometimes a significant improvement can occur by coincidence.
Mutation is equivalent to a random search. When the optimisation is stagnating and the set of solutions
becomes homogeneous at a certain point, the mutation operation can insert more diversity in the population.
This way, it can prevent the algorithm from getting trapped in a local minimum. Figure 7.1 shows an example
of the crossover and mutation operations on candidate solutions composed of eight integers. Which of these
two operations is applied, depends on the crossover probability pc and the mutation probability pm. These
parameters are specified beforehand. A value of pc = 0.7 is typically used for crossover [50]. If crossover and
mutation are the only possible recombination methods, the mutation probability is taken pm = 1− pc.

Crossover

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

1 7 6 4 4 6 7 1

8 2 3 5 5 3 2 8

Parent 1

Parent 2

Offspring 1

Offspring 2

Mutation

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

1 2 3 4 5 5 7 8

8 1 6 5 4 3 2 1

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 7.1: Schematic representations of the crossover and mutation operations. Both operators use two parent
solutions as input and create two offspring solutions as output, which are added to the new population.

This cycle of creating new populations and evaluating the objective function for all individuals is repeated
for each generation. Because of the elite solutions, the best solution in each generation is at least equal
to or better than the best solution from the previous generation. Furthermore, the average fitness of a
population tends to increase over the course of generations, which is proven by the schema theorem [50]. As
a stopping criteria, the algorithm could be terminated if the optimum function value does not improve for
a specified number of generations. However, this could be problematic because of the stochastic character
of the algorithm. The fitness of a population might remain stable for a number of generations before a
superior solution appears. An alternative is to simply terminate the algorithm after a specified number of
generations and then take the best solutions in the final population. A typical number of generations for a
genetic algorithm can range from 50 to over 500 [51].

7.2 A genetic algorithm applied on the model problem

A genetic algorithm was used to determine the optimum neutron filters in the model problem. Since this
optimisation method can handle integer variables, there was no need to use the continuous filter model, in
which mixed layers are approximated. Instead, all filters were modelled more realistically by layers of pure
materials. Each neutron filter was encoded by an array of 25 integers representing the filter layers. The
integer variables were allowed to range from 0 to 12, where each value corresponds to a specific material.
Zeros were used to model void layers. Combining all five neutron filters, this gave a total of 125 integers in
each candidate solution.
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7.2.1 Details of the algorithm

Many standard versions of the genetic algorithm are available, such as the ga function in the Global Opti-
misation Toolbox of Matlab. In this thesis, a new algorithm was written based on this function in Matlab
with some minor modifications to make it suitable for integer variables. Also, customized crossover and
mutation functions were added. These functions are equivalent to the representations in Figure 7.1. A flow
chart including all steps and optimisation parameters of the genetic algorithm is shown in Figure 7.2. Also,
a complete description of the algorithm can be found in the Appendix. Using these settings, the calculation
takes about 8.4 CPU hours for each generation. This is mainly caused by the large population size.

Create	an	initial	population	of	200	candidate	solutions

Evaluate	the	objective	function	for	each	candidate	solution

Copy	the	10	best	solutions	to	the	new	population

Select	a	pair	of	parent	solutions	by	tournament

Apply	crossover Apply	mutation

Add	the	offspring	solutions	to	the	new	population

= 0.8�� = 0.2��

Is	the	size	of	the	new	population	equal	to	200?

Replace	the	current	population	by	the	new	population

yes

no

Figure 7.2: Flow chart of the genetic algorithm. A population size of 200 is used. The elite count is defined as
5% of the total population, which means the 10 best solutions in each generation are guaranteed to survive to the
next generation. Selection is performed by tournament using a tournament size of four solutions. The crossover and
mutation operators are taken equivalent to the representations in Figure 7.1. In the mutation operation, it is decided
to affect 10% of all variables in a solution.

7.2.2 Results

Several optimisation runs have been performed for varying crossover and mutation probabilities. In all cases,
the algorithm was terminated after 70 generations because the optimum solution did not seem to improve
anymore. The cost value of the best solution that was found in each generation is shown in Figure 7.3. After
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20 generations, one of the populations contained a solution similar to the gradient descent optimum. Some
further decrease in the minimum cost was achieved in the subsequent generations. The best solution was
found for a crossover probability of pc = 0.8. In this section, the results are discussed for this solution.
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Figure 7.3: Performance graphs for different crossover and mutation probabilities. All optimisation runs used the
same initial population. The minimum cost value is given for each generation. The best solution found in the gradient
descent algorithm is indicated by the dashed line.

The optimised filter compositions are given in Table 7.1. The neutron beam in the fifth beam direction was
not used in this configuration. The other four neutron filters contain large amounts of Al and AlF3. Also,
the thermal neutron absorber B4C appears in many layers. Overall, lots of varieties in material composition
can be observed between the different filters. This is probably the case because all solutions have originated
from a randomly generated initial population. As a result, the various materials were present at random
positions from the beginning. This is in contrast with the homogeneous filter layers that were used as a
starting point in the gradient descent algorithm. In that case, more similarities were visible between the
filters in the optimum configuration.

Figure 7.4 shows the energy spectra of the filtered neutron beams. Although all beams have high epithermal
neutron fractions between 0.94 and 0.98, some clear differences are visible between the individual spectra.
Filter 3 for example, contains the largest number of boron layers and therefore relatively few spectrum
shifters. In the resulting output beam, it can be seen that the low-energy spectrum is attenuated more, while
higher intensities are obtained between 1 and 11 keV. Furthermore, this solution shows how two completely
different filter compositions (filter 1 and 4) generate almost similar output spectra. This confirms the notion
that many different filter designs can possibly lead to similar results.

The total beam intensities are between 1.4·109 and 2.2·109 neutrons cm-2s-1. This is somewhat weaker than
the output fluxes that were found in the gradient descent algorithm. As a consequence, a longer treatment
time of 5.4 hours is needed to deliver the desired dose. The delivered dose distribution and the corresponding
dose volume histogram are shown in Figure 7.5. As a reference, the optimum dose distribution obtained in
the gradient descent algorithm is given by the dashed lines. There is a close resemblance between the two
dose distributions. The dose uniformity in the tumour shows some minimal improvements in the genetic
algorithm result. Using this filter configuration however, a somewhat higher maximum dose is delivered in
the OAR.
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Table 7.1: Optimised neutron filters in beam direction 1 to 4.

Layer # Filter 1 Filter 2 Filter 3 Filter 4
1 LiF Si Mg Al
2 Si S Al Si
3 Al Al B4C B4C
4 Bi S B4C B4C
5 AlF3 B4C Ni Al
6 Al Ni LiF Ti
7 LiF LiF Ni AlF3

8 - AlF3 B4C AlF3

9 - B4C S AlF3

10 B4C B4C B4C LiF
11 Al Al Al Al
12 S Si Al Bi
13 Al Al B4C B4C
14 AlF3 B4C B4C B4C
15 B4C Al B4C Ni
16 Bi Al Al S
17 Al Al Al Al
18 Al Al AlF3 B4C
19 B4C S AlF3 B4C
20 B4C Ni B4C Bi
21 AlF3 Al AlF3 Mg
22 Mg LiF LiF Mg
23 Al Mg Si LiF
24 Mg LiF Ni LiF
25 AlF3 Ni AlF3 Cd
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Figure 7.4: Energy spectra of the filtered neutron beams at an angle of µ = 0.98 shown as Eφ(E) for the optimum
filter compositions. All beams consist predominantly of epithermal neutrons. The integrated fluxes for each beam
are ϕ1 = 2.1 · 109, ϕ2 = 1.4 · 109, ϕ3 = 2.2 · 109 and ϕ4 = 2.0 · 109 neutrons cm-2s-1.
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Figure 7.5: The optimised dose distribution shown in a cumulative dose volume histogram (left) and in the xy-plane
of the brain phantom (right). As a comparison, the optimum distribution that was obtained in the gradient descent
algorithm is indicated by the dashed lines in the cumulative dose volume histogram. The treatment times per beam
are t1 = 1.74 h, t2 = 0.19 h, t3 = 1.56 h, t4 = 1.88 h and t5 = 0.00 h.

Table 7.2: Comparison of the optimum treatment characteristics found in both algorithms.

Gradient algorithm Genetic algorithm
Minimum cost 2.38 · 107 2.29 · 107

Mean tumour dose 56.3 Gy-Eq 56.8 Gy-Eq
D98% in tumour 44.2 Gy-Eq 44.8 Gy-Eq
D2% in tumour 71.7 Gy-Eq 70.5 Gy-Eq
D2% in OAR 10.7 Gy-Eq 13.1 Gy-Eq
Total treatment time 3.2 h 5.4 h

Some of the optimum treatment characteristics that were found in both algorithms have been compared and
summarised in Table 7.2. Using the current objective function, the genetic algorithm result is considered as
a better solution. Obviously, this is arguable and the objective function could be modified if one wishes to
prioritise other aspects, such as the treatment time. This parameter could be implemented as an additional
penalisation in the cost function.

Another remarkable result was observed regarding the dose components that are present in the optimum
dose distribution. Almost 20% of all dose received by the tumour is delivered by gamma rays. From theory,
one would expect the optimised filters to remove most of the photons, since they deliver a non-selective dose
affecting all tissues. This was confirmed by some preliminary optimisations, in which only a single beam
was used to irradiate the tumour. In that case, gamma shielding materials were present at the end of most
optimised filters. However, this did not happen in the multiple beam geometry. In the best known solution,
only a few layers of bismuth are used in two of the optimised filters (see Table 7.1). Also in the gradient
descent optimum, no more than two layers of lead can be found in all filters (see Figure 6.4). In the specific
case of the model problem, it seems extremely complicated to deliver the desired dose purely by neutron
capture reactions. Apparently, better results can be obtained if some of the gamma rays are transmitted
through the filters and therefore gamma shields are not always used.
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Finally, a comparison can be made between the computation times of both algorithms. In the genetic
algorithm, 21 generations were required to arrive at a result equivalent to the gradient descent optimum.
This took about 35 hours as the calculation was running on 5 cores. This is comparable to the computation
time of the gradient descent algorithm. In that algorithm, most time was spent approximating the gradient
with respect to all possible material concentrations. In the genetic algorithm, long computation times are the
consequence of the high number of filter calculations that need to be performed in each generation. This is
directly related to the population size. A smaller population size could be used to speed up the optimisation,
although this would reduce the variety in candidate solutions. Another way to reduce computation time in
future, is by using a modified initial population. If the algorithm has already been used for several cases,
optimal filter compositions can be stored. In new cases, part of the initial population could be composed
of the previously obtained solutions instead of random solutions. This would probably improve the starting
position of the algorithm and reduce the number of generations that is needed to find an optimum.



8 | Conclusion

8.1 Concluding remarks on the model problem

Two types of algorithms have been applied on the model problem. In these optimisations, several filter
configurations were found that led to comparable dose distributions in the brain phantom. In the resulting
treatment plans, a sufficiently high mean tumour dose could be delivered within a total treatment time of
3 to 6 hours, while the maximum dose in the OAR stayed far below the imposed dose constraint. However,
none of the treatment plans succeeded in delivering a sufficiently uniform dose distribution inside the tumour.
Even in the best found solution, dose values between 75% and 118% of the prescribed dose were present
in the tumour. These unsatisfactory outcomes are probably due to the combination of the limited number
of allowed beam directions, the large tumour size and maybe most importantly, the fact that the tumour
touches the OAR. As a consequence, it seems almost impossible or at least difficult to set up an effective
BNCT treatment plan for this specific case. It appears that a combination of BNCT and photon therapy is
able to provide better dose distributions in this case, which became clear from the absence of gamma shields
in most of the optimised filter compositions. In the best solution, almost one fifth of the total tumour dose
was delivered by gammas that were present in the neutron beams.

An increase of the 10B uptake ratio between the tumour and healthy tissue is not expected to improve the
result in this specific case, since this would not influence the dose uniformity within the tumour. However,
there are some other simple modifications that could be implemented to improve the best possible outcome
of the model problem. First of all, one could increase the voxel weights in the tumour region. This would
probably lead to a higher dose in the OAR, which is still permitted by the current dose constraint. A further
improvement could be obtained by irradiating the tumour from different angles. Additional neutron beams
could be added orthogonal to the xy-plane. It is also suggested to adjust the objective function by penalising
for long treatment times. This would result in a better balance between the beam quality and intensity in
the optimised configuration.

The geometrical description in the model problem is obviously an extremely simplified representation of the
human brain. In future work, the optimisation methods should be tested for more realistic cases. This
could be done by using CT or MRI data from real patients to determine the tissue compositions. Also, the
micro-distribution of the boron compounds should be modelled more accurately. MCNP is not suitable for
using such a detailed geometry description. Therefore, an alternative transport code is needed to calculate
the dose transfer matrices.

8.2 General conclusions

First of all, a transport model was developed based on iterative multiplication of transmission and reflection
matrices. This model has been useful in performing fast transport calculations in neutron filters. A significant
reduction in computation time was accomplished by this method compared to discrete ordinates calculations
in XSDRN. The use of sparse matrices was of little additional benefit. There could be possibilities to use
this transport model in other applications, such as shielding problems. Basically all coupled neutron-gamma
transport calculations in slab geometries are applicable.
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In this thesis, the transmission and reflection matrices were calculated in XSDRN. This has resulted in some
inaccuracies. In XSDRN, the filter geometry is approximated by a one-dimensional model. This means that
the effect of particles leaking away in the radial direction is not taken into account. Furthermore, a few
negative values appeared in the transmission matrices, which were assumed to be caused by extrapolation
errors in XSDRN. Although this effect was not large, these values were not in agreement with physically
possible neutron fluxes. For future applications, it is recommended to calculate the matrix elements by
Monte Carlo simulations. This method enables the possibility to take leakage into account and the resulting
output fluxes are guaranteed to be positive. The increase in computation time is acceptable since each slab
needs to be simulated only once, after which the matrices are stored for future use.

The largest part of this work was focused on the optimisation of neutron filters. Two types of algorithms
were developed for this purpose. Both the gradient-based algorithm and the genetic algorithm have shown
to be capable of finding effective neutron filters. In both methods it seems impossible to tell if a global
minimum was found. However, this is not always necessary in practice; a local optimum could be sufficient
provided that the treatment plan satisfies its requirements. Several optimisation runs have demonstrated
the large variety in optimised filter compositions. Depending on the starting point or initial population,
completely different solutions can be found that produce similar dose distributions.

Both optimisation methods require approximately the same amount of computation time. About one or two
days were needed to find a solution if the calculations were performed on 5 cores. In addition to that, the
dose transfer matrices had to be calculated beforehand. This also took several days up to one week depending
on the number of allowed beam directions. All together, this adds up to relatively long calculations that
need to be performed for each individual patient. Additional work is necessary to achieve a reduction in
computation time. In both algorithms, there seem to be possibilities to realize this. In the gradient descent
algorithm, it would be interesting to investigate if stochastic gradient descent could be applied [52]. In the
genetic algorithm, one could experiment with varying optimisation parameters and using a newly defined
initial population.

Once the optimised filter compositions are determined, some additional steps are required to realize the
components in practice. Especially for the filters obtained by the gradient descent algorithm, this could
cause some difficulties because of the continuous filter model. The mixed layers were defined as a theoretical
concept, but there are several ways to approximate them in practice. One of the possibilities is to use a
combination of thin alternating layers which resembles the characteristics of a mixture. It might take too
much effort to build a new neutron filter for every patient and perhaps this is not even necessary, assuming
that the same neutron filter can be applied in similar cases. It would be useful to design various filters that
are optimised for different tumour sizes and depths. This way, a set of neutron filters could be created that
is usable in a wide range of cases.

The future of BNCT depends on many different aspects, such as the development of more selective boron
compounds and the availability of accelerator-based neutron sources. If progress is made in these areas,
BNCT could become a serious alternative for other cancer treatments. The optimisation methods in this
work could serve as a tool to design neutron filters for future BNCT applications.



A | Specification of the Filter Layers

Table A.1 contains the characteristics of the filter layers that were used in the optimisations. For each layer,
the thickness ∆x and mass density ρ are given. Also, the nuclides with their atomic fractions are specified. In
some layers, this corresponds to the natural abundance of the isotopes. Other materials are purely composed
of a single nuclide that possesses some useful properties.

Table A.1: Specifications of the filter layers that were used in all optimisations.

Material ∆x (cm) ρ (g/cm3) Nuclide Atomic %
Al 10 2.70 Al-27 100.0
Si 10 2.33 Si-28 100.0
S 10 2.07 S-32 100.0
Mg 6 1.74 Mg-24 79.0

Mg-25 10.0
Mg-26 11.0

AlF3 5 3.10 F-19 300.0
Al-27 100.0

LiF 5 2.64 Li-7 100.0
F-19 100.0

Bi 4 9.80 Bi-209 100.0
Pb 3 11.34 Pb-204 1.4

Pb-206 24.1
Pb-207 22.1
Pb-208 52.4

Ti 2 4.50 Ti-46 100.0
Ni 0.5 8.90 Ni-60 100.0
B4C 0.02 2.52 B-10 79.6

B-11 320.4
C-12 98.9
C-13 1.1

Cd 0.02 8.64 Cd-106 1.3
Cd-108 0.9
Cd-110 12.5
Cd-111 12.8
Cd-112 24.1
Cd-113 12.2
Cd-114 28.7
Cd-116 7.5
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B | Transport Calculations in XSDRN

The transmission and reflection matrices of all filter layers have been calculated in XSDRN. Each matrix
column is the result of a single calculation for a given unit source with a specific energy and angle. Before the
transport calculations are performed in XSDRN, the group cross sections need to be determined by CSASI.
This is another module in the larger SCALE Code System [33].

The input files for these calculations are written using the FIDO format. The XSDRN input data is divided
over five data blocks. All data blocks are composed of cards in which the input variables are specified. The
general problem description is inserted in the first input card. The most relevant fields of this card are
included in Table B.1.

Table B.1: Relevant fields in the first input card of XSDRN which are used to define the general problem description.

Field Variable Value Description
1 IGE 1 slab geometry
2 IZM 1 number of separate material zones
3 IM 101 number of spatial intervals
4 IBL 0 vacuum boundary condition at the left-hand boundary of the system
5 IBR 0 vacuum boundary condition at the right-hand boundary of the system
8 ISN 16 the order of angular quadrature
9 ISCT 5 the order of scattering
10 IEVT 0 fixed source calculation
14 ITH 0 solve the forward Boltzmann equation

As an example, one of the input files is given below. This file was used to perform the transport calculation
in a 4 cm thick layer of bismuth. The fixed source emits neutrons in the first energy group (g = 1) in the
most forward angular direction (m = 16). Some comments were added for further explanations:

=csasi parm=centrm % CSASI is used to calculate the
LOAD CROSS SECTIONS % group cross sections
V7.1−200N47G % Energy groups library
read comp % Material composition
Bi 1 END % Material 1 = bismuth
end comp
end data
end
=shell
mv ft02f001 $RTNDIR/xs.out
end
=shell
ln −fs $RTNDIR/xs.out ft04f001
end
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=xsdrn
TRANSPORT CALCULATION
1$$ 1 1 101 0 0 1 1 16 5 0 250 250 0 0 e % (See Table B.1)
3$$ 0 0 1 a8 1 e % Field 8 is used to read in 38**
5** 1e−4 1e−5 e 1t % Convergence criteria
13$$ 1 % Mixing table
14$$ 1 %
15** 1 2t %
30$$ 1 f0 % Source at first interval
32** 16r0 1 f0 3t % Source spectrum
33## f0 4t % Initial flux guess
35** −1 99i 0 4.000 e % Interval boundaries
36$$ 101r1 e % Zone number per interval
38** 0 100r1 e % Density factor per interval
39$$ 1 e 5t % Mixture number by zone
end
=shell
cp ft16f001 $RTNDIR/flux_ang.out
end



C | The Genetic Algorithm

This section contains a complete description of the genetic algorithm that was used to optimise the filter
compositions. The algorithm is based on the documentation of the ga function from the Global Optimisation
Toolbox of Matlab. Some modifications have been applied to enable the combination of using integer variables
and customized crossover and mutation functions.

First, the optimisation parameters and solution variables are specified:

GA.nvars = 125; % Number of variables
GA.maxint = 12; % Maximum value for variables
GA.NoG = 250; % Number of generations
GA.PS = 200; % Population size
GA.EC = round(0.05*GA.PS); % Elite count (5% of population size)
GA.TS = 4; % Tournament size
GA.COP = 0.8; % Crossover probability
GA.MP = 1 − GA.COP; % Mutation probability

population = zeros(GA.PS,GA.nvars); % Rows represent solutions in current population
score = zeros(GA.PS,GA.NoG); % Element (i,j) gives score of solution i

in generation j

In the first generation, an initial population is generated and the objective function is evaluated for each
individual. This objective is defined as a function of the filter composition x, the input spectrum phi_in,
transmission and reflection matrices T and R, the dose transfer matrices wd and the phantom description
geo.

gen = 1; % First generation
population = randi([0,GA.maxint],size(population)); % Create initial population
for p=1:GA.PS

x = population(p,:); % Select current solution
score(p,gen) = objective(x,phi_in,T,R,wd,geo); % Evaluate objective function

end
gen = gen + 1;
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The evolution of the further generations proceeds as follows:

while gen <= GA.NoG
newpop = zeros(GA.PS,GA.nvars); % Create new empty population
[~,ind.elite] = mink(score(:,gen−1),GA.EC); % Select elite solutions
newpop(1:GA.EC,:) = population(ind.elite,:); % Copy elite solutions
score(1:GA.EC,gen) = score(ind.elite,gen−1); % Copy elite scores

for p=(GA.EC+1):2:GA.PS
ind.par1 = tournament(score(:,gen−1),GA); % Select parent solutions
ind.par2 = tournament(score(:,gen−1),GA);
if rand(1) < GA.COP % Create new solutions

[newpop(p,:),newpop(p+1,:)] = ...
crossover(population(ind.par1,:),population(ind.par2,:),GA);

else
[newpop(p,:),newpop(p+1,:)] = ...

mutation(population(ind.par1,:),population(ind.par2,:),GA);
end

end

population = newpop; clear newpop; % Replace old by new population
for p=(GA.EC+1):GA.PS

x = population(p,:);
score(p,gen) = objective(x,phi_in,T,R,wd,geo);

end
gen = gen + 1;

end

The crossover and mutation operation are given by the following functions:

function [child1,child2] = crossover(parent1,parent2,GA)
selection = randperm(GA.nvars,round(GA.nvars/2));
bin = zeros(1,GA.nvars);
bin(selection) = 1;
child1 = bin.*parent1 + (1−bin).*parent2;
child2 = (1−bin).*parent1 + bin.*parent2;
end

function [child1,child2] = mutation(parent1,parent2,GA)
frac = 0.1; % mutation fraction
selection = randperm(GA.nvars,round(frac*GA.nvars));
child1 = parent1;
child1(selection) = randi([0,GA.maxint],1,round(frac*GA.nvars));
selection = randperm(GA.nvars,round(frac*GA.nvars));
child2 = parent2;
child2(selection) = randi([0,GA.maxint],1,round(frac*GA.nvars));
end
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