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Summary Xl

Summary

Dynamics of boiling water reactors (BWRs) is studied using low-dimensional analytical
models. We focus on dynamic instabilities induced by the nuclear and thermohydraulic
processes inside the vessel of a BWR. Our analytical models strongly increase the physical
insight into the complex processes determining BWR stability and enable fast (linear and
nonlinear) parametric studies (as opposed to large-scale BWR codes, which are often extremely
time-consuming). A broad range of stability issues is explored: coupled neutronics-
thermohydraulics, nonlinear dynamics, space-dependent oscillations, natural circulation BWRs

and low-pressure dynamics.

First, a theoretical model describing coupled neutronic-thermohydraulic power oscillations
in natural circulation BWRs is developed. This model consists of approximating models for the
neutron kinetics, fuel dynamics and thermohydraulics. These subsystems are interconnected via
void and Doppler reactivity feedback paths. Model equations are transformed to a
nondimensional basis, to eliminate all explicit pressure dependence in the model.

Two major types of BWRs instabilities are predicted by the analytical model. BWRs without
a riser section (e.g. forced-convection reactors) are susceptible to instabilities of the so-called
Type-II. This type of instability has a thermohydraulic origin - phase lags between the one- and
two-phase friction in the reactor core - and is amplified strongly by the neutronics feedback. It
occurs typically at high-power and low-flow conditions, i.e. when the dimensionless Zuber
number is large. Natural circulation cooled BWRs are also susceptible to Type-I instabilities.
Type-1 instabilities are caused by the significant gravitational pressure drop over the riser section
in a natural circulation BWR. They become especially important under low-power and low-
pressure (reactor startup) conditions. The influence of spatial out-of-phase oscillations on Type-I
and Type-II stability is investigated in detail.

The analytical model is analyzed in the nonlinear domain with a Hopf-bifurcation code and
numerical time-domain simulations. The two main bifurcation types in BWRs, the supercritical
and subcritical Hopf bifurcation, are studied for a variety of systems (purely thermohydraulic
systems vs. complete nuclear-coupled reactors, forced vs. natural circulation cooled systems).
Bifurcation characteristics are shown to be particularly sensitive to the strength of the nuclear
feedback, the operating conditions and nodalization approximation in the model. The time-
domain model also predicts a sequence of period-doubling pitchfork bifurcations (after the first
supercritical Hopf bifurcation), ‘deep’ in the Type-1l instability region.
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Next, a dynamic model for natural circulation BWRs under low-pressure conditions is
developed. This model accounts for the effect of (axial) pressure differences in the flow loop on
the saturation enthalpy of the coolant liquid. At a low reactor pressure, the saturation enthalpy
becomes strongly dependent on the pressure level. The decreasing hydrostatic pressure along the
flow path (when the coolant flows upwards through the core and riser sections) then leads to a
rapidly decreasing saturation enthalpy and, possibly, the occurrence of void flashing. A
parametric study shows that ex-core boiling, due to void flashing in the unheated riser, is
dominant during the startup of a natural circulation BWR. Nuclear void reactivity effects are
expected to be small under these circumstances. The Type-I instability region in the operating
plane expands dramatically if the pressure is reduced, due to unstable void flashing in the riser
at low pressures. This supports the recent concern about the startup stability of natural
circulation BWRs.

The developed analytical models are benchmarked successtully against experimental data
available from a natural circulation cooled BWR (the Dodewaard reactor, located in the
Netherlands) and experimental facilities. Experimentally observed trends in the high power
(Type-11) domain are predicted correctly. The nonlinear reactor model is also validated against
large-amplitude power oscillations, measured in the Dodewaard BWR. Oscillations encountered
in the low power and pressure (Type-I) domain, during the startup of this reactor, are simulated
with the low-pressure BWR model. Evaluation of these startup measurements shows that void
flashing in the riser indeed becomes important in the low-pressure regime, in agreement with the
theoretical predictions.
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Chapter 1

Introduction

1.1. OBJECTIVE

The last decade, high-fidelity boiling water reactor (BWR) stability codes have been
developed, with state-of-the-art models for the three-dimensional neutron kinetics, heat
transfer and thermohydraulics. Significant progress has been made in this numerical field, but
an important trade-off between modeling accuracy and computational demands still exists.
The most advanced codes are often extremely time-consuming and require the application of
sophisticated numerical solution schemes. Therefore, a complementary effort has focused on
the development of reduced-order models, often consisting of only a limited set of ordinary
differential equations (ODEs).

These ‘physical’ models include descriptions of the most important processes determining
the dynamic characteristics of a BWR, but approximate (or neglect) less important
phenomena. Moreover, because most state variables (like for instance the neutron flux
density, fuel temperature and coolant density) are spatially distributed, approximating
integration schemes of the basic ODEs are used, to keep the dimension of the model (i.e. the
total number of ODEs) relatively low.

This analytical approach leads to the development of fast-running codes generating
qualitatively correct predictions for a wide range of operating and design parameters.
Reduced-order models are therefore suitable candidates to evaluate the consequences of new
designs on reactor stability and safety. Because next generation BWRs are probably cooled by
natural convection, to enhance the degree of ‘passive safety’, this thesis focuses on the
specific stability problems associated with natural circulation core cooling. This thesis also
investigates whether the stability problems encountered in present-day BWRs, which are
cooled by forced convection, are important as well for new reactor designs.

Model predictions will be compared with experimental data to assess their accuracy and
range of validity. Furthermore, a comparison with detailed BWR stability codes will be
presented.
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1.2. PRINCIPLE OF BWR OPERATION

The principle of operation of a reference BWR design [a BWR/4 from the General Electric
(GE) company] is clarified in Fig. 1-1. Heat is produced by nuclear fission reactions inside
more than 700 fuel assemblies, located in the reactor core. A fuel bundle itself consists of a
lattice of 8x8 fuel rods. These rods are rather thin - approximately 1 ¢m in diameter - and
very long — about 4 m. Each individual rod has a cladding of zircaloy, which confines the
radioactive fission products released by the uranium-dioxide (UO,) fuel.

Heat produced in the fuel bundles is removed by the coolant (ordinary water, H,0).
Normally, the coolant enters the core several degrees below the saturation temperature. As it
flows upwards along the fuel assemblies, the temperature increases, and the coolant starts to
boil. At the core outlet, approximately 10% of the coolant mass is converted to steam. This
steam-water mixture flows through the steam separators and dryers after exiting the core. The
steam leaves the vessel via the main steam line, to drive (a cascade of) turbines. The turbine
axis is coupled with an electric generator which produces electricity. The water, which is
separated from the steam, flows downwards in the periphery of the vessel and mixes with the
recirculated condensate from the turbines.

The electric output of a BWR is approximately 1200 MWe. A typical efticiency ot a BWR
is 33%, implying that the total thermal power produced is 3600 MWth. This huge amount of

energy is generated in a relatively small
core volume of only 65 cubic meters, i.e.

STEAM ORYER —=2> STEAM LINE the average core power density is 56
kW/1. Hence, cooling of the reactor core

SEE:Q‘ATOR should be guaranteed wunder all

‘ circumstances, to avoid excessively high
FEEDWATER fuel temperatures (possibly even leading
to fuel damage).

Core cooling is partly sustained by the
density differences between the low-

1+-DOWNCOMER . . .
density core region (where steam is

present) and the downcomer channel

(filled with liquid only). These density

{ e TR PUMP differences induce a spontaneous or

‘natural’ convection of the coolant.
However, the natural circulation flow is
limited by frictional pressure losses in
the flow loop, for instance due to wall

Figure 1-1. The configuration of the BWR recirculating .. L.
loop.! friction, local flow restrictions, structural
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material, etc. In a BWR, this natural circulation limit (~4000 kg/s) is reached at a power level
of ~1800 MWth (50% of full power). Increasing the power level further, the natural
circulation flow rate no longer increases. Therefore, pumps are used at higher power levels to
force the coolant through the core. These jet pumps, depicted in Fig. 1-1, are driven by
coolant flow from pumps in the recirculation loops. Notice that the recirculation pumps are
located outside the reactor vessel. In the most recent BWR design of GE, the Advanced BWR
(ABWR), the complete recirculation system is installed inside the reactor vessel.

The last decades, passive safety is one of the main concepts in the design of nuclear
reactors.” Passively-safe systems are governed by naturally occurring processes, and do not
rely on active components (like recirculation pumps or explosion valves) or active controllers
(reactor operators, electronic control equipment). Core cooling by natural circulation, instead
of active coolant pumps, is an excellent example of a passive process that can be applied in a
nuclear reactor.

The prototype of natural circulation BWRs is the Dutch Dodewaard BWR.** This small-
size reactor (60 MWe) has been operated successfully from 1968 through 1997. A cut-away
view of the Dodewaard vessel is shown in Fig. 1-2. Most importantly, the jet pumps in
Fig. 1-1 are not present in this design. On top of the Dodewaard core, an unheated riser
section (with a length of ~3 meters) is installed. This riser section lengthens the region with
two-phase flow, and thus enhances the natural circulation flow rate.

Steam separators, shown in Fig. 1-1, are not used in this design. Instead, steam separation
takes place at the free water surface. In total, about 10 mass percent of the liquid is converted
to steam in the reactor core. Approximately 80% of the produced steam escapes at the
surface, and flows upwards in the direction of the steam dryers and main steam line. About
20% of the steam is dragged into the downcomer channel by the down-falling liquid. This
complex phenomenon is called carry under. At the feedwater sparger, the voids in the
downcomer are condensed by the subcooled feedwater. Carry under reduces the density
difference between the riser and the top of the downcomer. It therefore has a negative effect
on the natural circulation flow.

In 1982, the General Electric company started the design of a 600 MWe Simplified Boiling
Water Reactor (SBWR), which incorporates and refines many passive safety features applied
and tested in the Dodewaard BWR. The coolant flow is, again, completely driven by natural
convection in this reactor concept. Furthermore, important safety systems like the isolation
condensers and the emergence core cooling system mainly depend on passive processes.
Steam separators are incorporated in this design to avoid carry under.

Development of the SBWR stopped in 1996, because there was not enough commercial
interest in a medium-size BWR. Therefore, a larger SBWR, the European SBWR (ESBWR),’
was proposed. This reactor has a design power of 1190 MWe, at the same level as currently
operating BWRs, probably making it a more attractive design from economics point of view.
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steam outlet

steam dryer

steam dome

feedwater sparger

\ = feedwater inlet

downcomer channel

core region

&

= lower plenum

T

Figure 1-2. Cut-away view of the Dodewaard BWR vessel. Notice that no recirculation pumps are present in
this design: the convection of the coolant is driven by the density differences between the core/riser and
downcomer.

/;__

1.3. CLASSIFICATION OF BWR INSTABILITIES

This section discusses the physical mechanisms that cause instabilities in BWRs. Previous
research has shown that the most important instabilities in currently operating BWRs are
purely thermohydraulic and coupled neutronic-thermohydraulic instabilities.>” These
instability types are basically induced by the ‘density-wave’ character of the two-phase flow
in the coolant channels. Traditionally, the mechanism causing density-wave oscillations is
clarified qualitatively as follows (see Fig. 1-3). Consider a boiling channel with a constant
pressure difference between inlet and outlet.” If the inlet flow rate is reduced at a constant
heating power, voids are produced in the channel that travel upwards as a packet, forming a
propagating ‘density wave’. This traveling density wave causes a change in the local pressure
drop at higher axial positions, with a certain delay due to the finite velocity of the propagating
wave. The frictional pressure drop becomes particularly large in the region with a high
(volumetric) amount of steam (void fraction), i.e. close to the core outlet. The major part of

¥This constant pressure drop boundary condition can be achieved in an experimental setup, by
having a large bypass flow parallel with the heated channel.
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the total pressure drop will therefore be

Tota! Channel Pressure Drop

delayed with respect to the original inlet
out let Local Pressure Drops flow perturbation. Hence, if the inlet flow is

perturbed sinusoidally as in Fig. 1-3, the
total pressure drop over the channel (which

is the sum of the delayed local pressure

Density wave Time Delay

drops) will be delayed with respect to the

tnlet Flow inlet flow perturbation. In Fig. 1-3, the total

T IME

pressure drop is delayed 180 degrees with
Figure 1-3. Hlustration of the local pressure drop delay ~TeSpect to the inlet flow, i.e. a decrease in
introduced by the density-wave mechanism.* inlet flow results in an increase of the total

pressure  drop (and  vice  versa).
Perturbations of the inlet flow thus receive a positive feedback, and the oscillations grow at
the unstable frequency.

Recently, Rizwan-uddin started a discussion about the dominant feedback mechanism
causing density-wave instabilities.” He investigated the physical mechanism causing density-
wave oscillations with a sophisticated nonlinear model. Interestingly enough, Rizwan-uddin’s
results contradict the aforementioned line of reasoning at some points. He found, for instance,
that traveling density waves do not play a dominant role during the oscillations. Instead, axial
variations in the mixture velocity were identified as the true origin of the dynamic
instabilities.

An earlier theoretical study'® by Fukuda and Kobori focused on the dependence of the
density-wave instability on the operating conditions. Basically, these authors used the same
differential equations as Rizwan-uddin. However, Fukuda and Kobori linearized the
governing equations and performed a frequency-domain stability analysis, whereas Rizwan-
uddin solved the nonlinear set of (integro-differential) equations directly in time domain.
Fukuda and Kobori demonstrated that at least eight ‘types’ of density-wave instabilities exist.
Three of them are static or ‘Ledinegg’ flow excursions, and the remaining five of them are all
dynamic instabilities. Roughly, however, two main instability types can be distinguished:
low-frequency Type-1 instabilities due to the gravitational pressure drop term, and high-
frequency Type-II instabilities due to frictional pressure losses.

Type-1II instabilities have been studied extensively in the past,” because of their importance
under low-flow/high-power (reactor accident) conditions. Note, for instance, that the previous
discussion focused on Type-II oscillations (only the variations in the frictional pressure drop
were considered).

The Type-1 instability mechanism becomes dominant in natural circulation reactors
operating at low power and pressure conditions, e.g. during the reactor startup. Under these
circumstances, the (mass) percentage of steam (the flow quality) at the core outlet becomes
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very small. Figure 1-4 shows that for small flow

qualities and low pressures, the volumetric
amount of steam (the void fraction) increases

=

-% very rapidly as a function of the flow quality. A

E small decrease in the core inlet flow then leads

% ) to a strong increase of the volume of steam

- 7 |——10bar produced at the core outlet. In a natural
024 - — 75 bar irculati hi low-densi

T e 218 bar circulation reactor, this causes a low-density

0 T T T T wave traveling through the riser section. This

0 02 04 06 08 1 enhances the driving head, and the inlet flow

Flow Quality will increase. Then the opposite process occurs,

. . . . and the void fraction in the riser decreases.
Figure 1-4. Relation between the void fraction

and the flow quality for different pressures. The Consequently, the driving head becomes smaller,
slope of the void fraction vs. flow quality curve
becomes steeper when the flow quality and o
pressure decrease. one cycle of a Type-I oscillation.

and the flow rate will decrease. This completes

The main time constant governing this type of
density-wave oscillations is the transit time of the voids through the riser. At low power
levels, this transit time becomes rather large (~5-10 s) because the coolant velocity
diminishes under these conditions (moreover, the flow velocities in the riser are relatively
small due to its large flow area).

1.4. HIGH VERSUS LOW-PRESSURE STABILITY

Until very recently, almost all theoretical density-wave models assumed that the physical
properties are constant in the flow loop. This assumption leads to accurate results under
nominal operating pressures (~75 bar), when the fluid properties are weakly dependent on the
actual pressure level. At high pressures, the saturation temperature (T,,) is, for instance, in
good approximation constant in the flow loop. Figure 1-5a illustrates how the liquid
temperature (T)) then increases due to heating in the core region, until T, is reached and
boiling starts.

At lower operating pressures (below 20 bar, for instance during the reactor startup) fluid
properties like the saturation temperature become strongly dependent on the pressure level.
Figure 1-5b shows the influence of a changing saturation temperature on the steam production
in a natural circulation reactor. As the coolant flows upwards, the hydrostatic pressure will
decrease. Hence, the saturation temperature will also decrease. This causes a downward shift
of the boiling boundary position. The steam production will also continue in the unheated
riser, whereas the void fraction is constant in this section in Fig. 1-5a. This additional steam
production, due to the decreasing saturation temperature along the flow path, is known as
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one phase 'itwo phase

(a) high pressure Tsa 7§- -------------------

T

Teu | One phase |two phase
(b) low pressure = 0ore==~~aao

]
|
il I
e T
T ¢
| |

(¢) low pressure & Tsa
lowpower | T TTTmme~eo___ '

- — )
L ——

core riser z—»

Figure 1-5. Influence of the pressure dependence of the saturation temperature, T, on the steam
production in a natural circulation BWR. At high pressures, T, is in good approximation constant
in the flow loop, see Fig. 1-5a. The coolant temperature T, then increases due to heating, until T,
is reached and boiling starts. At lower pressures, T, significantly decreases as the coolant flows
upwards, see Fig. 1-5b, due to the decreasing hydrostatic pressure along the flow path. At a very
low heating power,’flashing’ of the coolant in the riser section is also possible, see Fig. 1-5c.

void “flashing’."

This flashing effect becomes very important under low power and pressure conditions. In
Fig. 1-5c, the power level is reduced, compared to Fig. 1-5b, and the coolant does not reach
the boiling point before the outlet of the heated channels. However, in the riser section the
decreasing saturation temperature becomes equal to the (constant) fluid temperature, and
boiling out of the heated reactor core starts. Notice that ex-core boiling is not likely to occur
at high pressures, because the saturation temperature is in good approximation independent of
the axial position under these circumstances (see Fig. 1-5a).

Void production in the riser directly affects the gravitational pressure drop over this
section. Hence, it can be expected that the Type-I feedback mechanism is amplified by the
occurrence of void flashing, especially in natural circulation BWRs with a tall riser section.
This observation has prompted recent experimental and theoretical research on the stability of
‘flashing-induced’ Type-I oscillations. An overview of this new and rapidly developing field
is provided in Section 5.2 of this thesis.

1.5. COUPLED NEUTRONICS-THERMOHYDRAULICS

Up to this point, we have only discussed thermohydraulic instabilities, occurring in boiling
channels with a fixed heating power. In BWRs, however, we also need to consider the
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important role of the coolant as a neutron moderator.

The fission cross-section of the fissile uranium isotope in the nuclear fuel (*°U) is over
two orders of magnitude larger for low-energy or ‘thermal’ neutrons (<l eV) than for
neutrons with energies above 1 keV.!? After each fission on the average 2.5 high-energy
neutrons are released (in the MeV range). These fast neutrons lose their kinetic energy as they
collide with the coolant nuclei (the moderator). After several collisions, the neutrons have lost
most of their kinetic energy and can cause new fissions with a higher probability.

As neutrons slow down from fission energies in a BWR, there is a certain probability that
they leak out of the reactor core or are absorbed in the nuclear fuel. In particular, resonance
absorption by #®*U nuclei is an extremely important phenomenon. The resonance escape
probability increases when the slowing-down process of the neutrons becomes more efficient,
e.g. when the density of the coolant material increases. A decreasing moderator density, for
instance due to void production inside the coolant channels, has just the opposite effect and
will therefore cause an increase of the resonance absorption rate.

The influence of void fraction changes in the coolant channels on the reactor power is
depicted schematically in Fig. 1-6. The impact of the void fraction on the reactivity is
described with the void reactivity coefficient #, in this block diagram. The (complicated)
thermohydraulic subsystem is described by the G,-transfer function in Fig. 1-6. An extended
block diagram, revealing the different feedback paths in the thermohydraulic subsystem, is
presented in Fig. 2-2.

Figure 1-6 shows that overall BWR stability is determined by the interaction between
neutronics (the zero-power reactor transfer function Gy), fuel dynamics (Gp) and
ihermohydraulics (G,). For instance, if we increase the external reactivity, the reactor power
will increase (via Gg). This causes an increase of the fuel temperature (via Gg) and the void
fraction (via G,). An increase of the void fraction reduces the resonance escape probability,
and therefore causes a negative void reactivity effect (¥, is negative). Furthermore, an increase
of the fuel temperature will broaden the width of the ***U capture resonances, effectively
increasing the  resonance
absorption. This  Doppler

®) D Gy Gy effect is accounted for in the

external reactor power fuel .
reactivity temperature (also negative) Doppler
reactivity  coefficient iy,

(D) - f .
X Doppler ° Hence, an increase of the
reactivity reactor power results in a
subsequent decrease of the
f, e G, reactivity via the void- and

void reactivity void fraction

Doppler feedback paths. This
Figure 1-6. Elementary block diagram describing the dynamics of

BWRs. A more detailed block diagram is presented in Fig. 2-2. negative feedback mechanism
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makes a BWR a very stable system during slow transients.

However, during high-frequency transients (~0.5- 1 Hz) the (stabilizing) negative feedback
in a BWR can become positive (destabilizing), in particular when the feedback processes
occur with a certain time delay. When the feedback gain then exceeds a critical value,
coupled neutronic-thermohydraulic instabilities can occur in a BWR.

Theoretical, numerical and experimental research on this topic has been intensified in the
last two decades, after instability events in several commercial BWRs were reported.l3
Unexpectedly large power oscillations were, for instance, measured during the startup of the
Italian Caorso plant in 1984. Four years later, in 1988, two recirculation pumps of the
LaSalle-2 unit tripped. In the natural circulation mode, this reactor also became unstable.
Since the LaSalle unit is located in the United States, the U.S. Nuclear Regulatory
Commission (NRC) undertook action, and started a detailed research program to solve the
stability problems in BWRs. The proceedings of the 1990 international workshop on BWR
stability (in Brookhaven, NY) give a good overview of the research activities following the
LaSalle instability event.'"* An excellent review of the current state of the art in this field is
provided by a recent OECD/NEA report on BWR stability.’* However, almost no information
about stability problems in natural circulation BWRs is found in Refs. 13 through 15. For
instance - to the author’s knowledge - the influence of low-frequency Type-I oscillations on
coupled neutronic-thermohydraulic stability of natural circulation reactors has not been
studied in the past. This is one of the main incentives of the research on nuclear-coupled
stability of natural circulation BWRs, presented in this thesis.

1.6. SPACE-DEPENDENT OSCILLATIONS

An excellent example of coupled neutronic-thermohydraulic phenomena are so-called
‘out-of-phase’ oscillations of the reactor power in a BWR. Typically, in the out-of-phase
oscillation mode the power in one half of the reactor core increases, while in the other part the
power decreases with the same amount. A schematic picture of the out-of-phase mode is
given in Fig. 1-7. The axial component of the neutron flux density is omitted in this picture.

Out-of-phase oscillations have been observed in several European BWR plants, for
instance in the Caorso plant (see Section 1.5) and during stability tests in the Swedish
Ringhals-1 reactor.'® These reports have raised considerable concern, because out-of-phase
oscillations are very difficult to detect with average power detectors and may therefore not
lead to an automatic control rod scram if a reactor instability occurs.

March-Leuba and Blakeman were - to the author’s knowledge - the first to point out that
out-of-phase oscillations are more unstable from thermohydraulic point of view than global
oscillations: because the core pressure drop and total coolant flow rate remain essentially
constant, flow oscillations in the core are not damped by friction and inertia in the
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recirculation loop."”

/_//// On the other hand, the out-of

//“/ phase mode is stabilized by the
g . neutronic subsystem due to the fact
'..‘\2"(:;:::"' that all higher harmonic modes

I’.’O’ have an eigenvalue smaller than

unity in the equilibrium state.
‘;lg’,v;",f'; Hashimoto combined the point-
s kinetic equation for the out-of-
phase mode with an elementary
model for the thermohydraulic
““““““““““ / feedback.'® He demonstrated that

) in the low flow/high power
Figure 1-7. Schematic picture of the first-azimuthal or ‘out-of-

phase’ mode. The axial dependence of the neutron flux density is domain, out-of-phase oscillations
omitted in this figure. can indeed occur for realistic

values of subcriticality and void
reactivity feedback.

Nowadays, there is a tendency towards designing larger reactor cores, to increase the
reactor power while reducing the power density. Good examples are modern BWR designs by
GE, like the (E)SBWR and ABWR product lines. The 600 MWe SBWR was, for instance,
designed to have a larger core radius (~2.44 m) than currently operating 1200 MWe BWRs
(~1.83-2.29 m). Because it is conceivable that especially large (more spatially decoupled)
reactor cores are susceptible to out of phase oscillations, the need for an evaluation of these
space-dependent phenomena becomes apparent. A detailed comparison between in-phase and
out-of-phase reactor stability of natural circulation BWRs will therefore be presented in
Chapter 3 of this thesis.

1.7. NONLINEAR AND CHAOTIC DYNAMICS

Nonlinear dynamics of BWRs is one of the main application fields of modern chaos and
bifurcation theory. Nuclear engineers started to recognize the importance of these ‘new’ and
‘esoteric’ branches of science after the aforementioned instability events in LaSalle and
Caorso were reported. The transition from a stable operating point to an oscillatory behavior
resulted in rapidly growing power oscillations in these reactors, eventually leading to reactor
scrams. This raised questions about the possible consequences of a failing scram system.

Careful experiments in the Forsmark-1 BWR in Norway showed that, due to nonlinear
effects, stable limit cycle oscillations can exist in the unstable operating region of a BWR."
The transition from a (linearly) stable operating point to a (nonlinearly) stable limit cycle
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oscillation of the thermal

5Py, reactor power (P,) s

&P, clarified schematically in
Fig. 1-8. The reactor

t becomes (linearly) unstable
in Fig. 1-8 when the (design

or operating) parameter p is
larger than a critical value ..

% In the stable region (p<p.),
oscillations of the reactor

t power are damped, and after

t a perturbation the system

returns to the  stable

o Operating point. In the

Stable ™ Unstable m unstable  region  (p>p),

Figure 1-8. Limit cycle oscillations in a BWR (this is an example of a SMall-amplitude  power
supercritical Hopf bifurcation).?® The reactor becomes (linearly) unstable gscillations initially diverge.
when the parameter p is larger than p. In this unstable region, the
oscillating reactor power converges to a stable nonlinear oscillation (limit
cycle). The oscillation amplitude of the attracting limit cycle depends on  gscillation amplitude
W, as the solid curve in the right half plane (where p>u) shows.

However, when the

becomes large, stabilizing
nonlinear terms prevent a
complete runaway of the system. The resulting limit cycle is a stable (‘attractive’) solution of
the nonlinear equations which govern the dynamics of a BWR. The solid line in the right half
plane of Fig. 1-8 shows the increasing limit cycle amplitude as a function of p. Notice that
both small and large-amplitude oscillations finally converge to the same limit cycle.

Figure 1-8 might have a reassuring effect: even if a BWR becomes linearly unstable, the
resulting power oscillations are bounded. Recently, however, it has been pointed out that
another, more dangerous, scenario might also occur in a BWR.2' This scenario is explained in
Fig. 1-9. The reactor is now unstable in the linear instability region (u>p ), and a runaway of
the reactor power takes place. More importantly, the reactor also becomes unstable in some
region of linear stability (u<p,) for large enough amplitude excitations. Stated otherwise, the
nonlinear periodic solution has become unstable (‘repelling’) and is now located in the
linearly stable region. This is potentially a very dangerous situation, since classical linear
stability analysis (for instance in frequency domain) would indicate that the system is stable
for p<p . In particular, close to the linear stability boundary the ‘basin of attraction’ of the
stable steady-state operating point becomes smaller, and small perturbations (for instance due
to control rod movements or noise) could in principle result in diverging and undamped
power oscillations. This is the background for performing a detailed nonlinear analysis of our
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BWR model in this thesis.
8Py, The  theoretical  link
oPy between nonlinear BWR
dynamics and chaos theory
t was established by March-
Leuba in the early 1980's.”
Using a highly simplified
BWR model, March-Leuba
P, studied the stability of limit

cycle oscillations, as

SPy,

t depicted in Fig. 1-8, as a
function of the p-coordinate.
He showed that, if p is
increased above a certain

1

Stable U Unstable u
Figure 1-9. Unstable nonlinear oscillations in a BWR (this is an example of the limit cycle can become
of a subcritical Hopf bifurcation).” In the linearly stable region (u<p.), unstable, yielding a new
only small-amplitude power oscillations die out. Large perturbations of limi | .
the reactor result in rapidly diverging nonlinear oscillations. The imit cycle of twice the

amplitude of the repelling nonlinear solution, existing in the stable region, period. Increasing p further
is depicted with a solid curve.
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practical importance of period-

doubling and chaotic phenomena in natural circulation BWRs is discussed further in
Chapter 4 of this thesis

This thesis contains eight chapters. Except for the first (Introduction) and the last chapter
(Conclusions and Recommendations), this thesis consists of six technical chapters. Each
chapter has its own abstract, introduction, conclusions and references, and can be read almost
independently from the other chapters. '

An analytical model describing coupled-neutronic thermohydraulic power oscillations in
natural circulation BWRs is outlined in Chapter 2. This model focuses on the dynamics of
BWRs in the high-pressure domain, i.e. the coolant properties are assumed to be constant in
the coolant loop (cf. Section 1.4). Model equations are also transformed to a nondimensional
basis in Chapter 2, to identify the main dimensionless numbers determining stability,

Chapter 3 consists of a comprehensive parametric study of nuclear-coupled BWR stability,
employing the theoretical model proposed in Chapter 2. As an example, the stability
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characteristics of the Dodewaard BWR (cf. Section 1.2) are determined. The Dodewaard
reactor can be considered as the prototype of next generation natural circulation BWRs. The
stability issues that are identified for this prototype reactor are therefore important in the
design of new natural circulation BWRs. Special attention is paid to the impact of
thermohydraulic Type-I and Type-II oscillations on overall reactor stability. Furthermore, a
comparison between in-phase and out-of-phase stability is presented.

Chapter 4 evaluates the complicated nonlinear dynamics of natural circulation BWRs. We
analyze the model developed in Chapter 2 with modern bifurcation theory in this chapter.
Predictions of a numerical bifurcation code will be compared with direct time-domain
simulations.

A dynamic model for natural circulation BWRs under low-pressure conditions is
developed in Chapter 5. The pressure dependence of the saturation temperature, neglected in
Chapters 2 through 4, is incorporated in this model, to account for the effect of void flashing
(cf. Section 1.4).

An extensive parametric study of low-pressure BWR stability is presented in Chapter 6.
This chapter focuses on the impact of void flashing on Type-I stability during the startup of a
natural circulation BWR. Again, data from the Dodewaard BWR are used to put the
parametric results into perspective.

Finally, the theoretical BWR models are benchmarked against experimental data in
Chapter 7. In particular, a series of unique experiments on (linear and nonlinear) Type-I and
Type-II stability, performed in the Dodewaard BWR, will be evaluated.
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Chapter 2

High-Pressure BWR Dynamics: | - Theoretical Model®

Abstract - A theoretical model describing coupled neutronic-thermohydraulic power
oscillations in natural circulation BWRs is developed. The governing equations for the
thermohydraulic subsystem are transformed to a dimensionless basis, to eliminate all explicit
pressure dependence in the model. It is proved that all necessary information about the
operating conditions is incorporated in only two dimensionless numbers: the Zuber and the
subcooling number. The density ratio number cancels in the dimensionless equations, because
a homogeneous flow model is applied. The Froude number is also shown to be redundant in a
natural circulation system, as it can be expressed in the other dimensionless groups. The
stability boundary of the complete coupled neutronic-thermohydraulic reactor system in the
dimensionless Zuber-subcooling plane is estimated to be rather insensitive to the system
pressure as well. Therefore the usage of dimensionless stability maps, instead of the
traditional power-flow maps, is strongly recommended as an efficient method to determine
the dynamic characteristics of natural circulation BWRs.

2.1. INTRODUCTION

Much research has been performed in recent years in the field of dynamic stability of
BWRs, after unexpected large amplitude power oscillations were observed in the Caorso
(1984) and the LaSalle (1988) plants: Consequently, several stability tests have been
performed under similar low flow and high power conditions."? Analytical work on the
coupling between the neutronics and the thermohydraulics, the origin of the power

“This chapter has been published (in a slightly modified form) as:

D.D.B. van Bragt and T.H.J.J. van der Hagen, “Stability of Natural Circulation Boiling Water
Reactors: Part I - Description Stability Model and Theoretical Analysis in Terms of
Dimensionless Groups,” Nucl. Technol., 121, 40 (1998).
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oscillations, was also intensified.* Advanced BWR stability codes like TOSDYN-2, STAIF,
RAMONA or NUFREQ-N were used to evaluate test data.>’

Just before BWR dynamics attracted large-scale attention, March-Leuba developed a
qualitative reduced-order stability model for BWRs (Ref. 10). This model is very suitable for
fast parameter studies in both the linear and the nonlinear domain. However, this reduced-
order model, especially the equations describing the thermohydraulic processes, contains
several fit-parameters, that need to be estimated via experiments or code calculations. A more
elaborate reduced-order model to analyze spatial out-of-phase power oscillations was
proposed in Ref. 11. This model reduces to March-Leuba’s model when the influence of the
dynamic behavior of the boiling boundary between the one-phase and the two-phase region in
the core is neglected in the equations for the thermohydraulic subsystem.

This chapter focuses on the topic of natural circulation BWRs. The keyword in modern
nuclear reactor designs is so-called passive or inherent safety. Passive safety means that the
nuclear reactor always remains within certain safety limits, without active (safety)
components. The concept of natural circulation of the coolant in BWRs is a major step
towards a passively safe reactor design. The coolant in existing BWRs is circulated by pumps.
When these pumps fail or do not work properly, the core can heat-up significantly and the
margin to thermal limits decreases. Furthermore, the possibly dangerous low flow and high
power region, where dynamic instabilities are to be expected, might be entered.

Natural circulation of the coolant is a gravity-driven process that automatically starts when
boiling in the reactor core occurs, see Section 2.2, and therefore it is a very attractive way to
cool a nuclear reactor. A time-domain stability model for natural circulation BWRs is
developed in Section 2.3. The frequency-domain variant is outlined in Section 2.4. The
thermohydraulic model for the natural convection of the coolant can be analyzed in terms of
nondimensional groups. The transformation to a nondimensional basis is described in
Section 2.5.1, and enables a more general approach and a deeper insight into the primary
parameters determining the stability of the natural circulation flow, in case of a constant heat
flux density from fuel to coolant. The usefulness of dimensionless numbers in the analysis of
coupled neutronic-thermohydraulic reactor stability of natural circulation BWRs is discussed
in Section 2.5.2.

2.2. NATURAL CIRCULATION OF THE COOLANT

Figure 2-1 provides a simplified overview of the flow path in a natural circulation BWR.
When the coolant enters the core region, coming from the lower plenum, the temperature is
normally below the saturation temperature. The fluid is heated in the core region by nuclear
fission reactions in the fuel. Bulk boiling occurs at a certain axial position and the quality of
the two-phase mixture increases as it travels through the core. An unheated riser (or chimney)
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STEAM DOME ——»  section is placed on top of the core in natural circulation
0 0000000000 0 BWRs. The two-phase mixture passes through this region
and enters the steam dome. The steam then leaves this dome
8 o% 00300000 M L_ via the main steam line to drive on the turbine. The liquid,
0oRISER o on the other hand, falls into the downcomer section. The
00y 00,000 b
X oo0 o% 0(:)0 0 condensed steamn is carried back to the downcomer at the
0
2 % feedwater inlet. Finally, the down-coming coolant re-enters
g’ 1?0 R 3 the lower plenum and the natural circulation loop is
0&0& f-':-]) g completed.
f The flow in a natural circulation system is driven by the
f { density differences between the core and the riser sections
LOWER PLENUM and the downcomer. The riser lengthens the relatively low-

; : . density two-phase region of the core and therefore increases
Figure 2-1. Schematic overview of a

natural circulation BWR. The arrows  the natural circulation flow rate. The riser flow area is quite
indicate the coolant flow direction. Jar0¢ in order to minimize the negative effect on the flow

rate of friction losses in the riser.
2.3. MODEL

The basic equations determining the time-evolution of the main state variables in a natural
circulation BWR are listed below. All symbols used are summarized in the Nomenclature.
The equilibrium value of a variable is denoted by omitting the explicit time-dependence
symbol.

2.3.1. Neutron Kinetics

The ordinary point-kinetic equations, with one effective delayed neutron group, describe
the time-evolution of the neutron density and the precursor concentration'?;

dN@®) _ p(t) —B
RO - OB N +ac ]
. 2 Lnw +ico, @)
€O = Py -ac
-0 = Pne - aco. (2-2)

The modal point-kinetic equations, governing higher harmonic oscillations of the neutron
flux density, are derived in Appendix A. Higher harmonic flux modes are not considered in
this chapter. In Chapter 3, however, the dynamics of the out-of-phase mode is discussed in
detail. The reactivity term in Eq. (2-1) consists of a constant base reactivity, needed to make
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the reactor critical at the initial conditions, an external reactivity, for instance due to a control
rod movement, and the void and Doppler feedback reactivity terms:

P =P, * po® D) + pp(®),

where p (1) =1, <a(t)>, and pp(t) =1, T(t). (2-3)
2.3.2. Fuel Dynamics

The transfer from linear reactor power to heat flux density from fuel to coolant is described
with one effective fuel time constant:

daty _ 1 {q ‘© _ a'w

dt g | q/ q” ' (2-4)
Using Newton's law of cooling the heat flux density term in Eq. (2-4) becomes:
a’) =k (T, - T, (2-5)

The fuel heat transfer coefficient k; is assumed to be independent of the void fraction. The
coolant saturation temperature ‘1, has a constant value in Eq. (2-5), supposing that the system
pressure is constant. The variation of the saturation temperature as a function of the axial
position, a very important effect under low-pressure conditions, is incorporated in the
theoretical model outlined in Chapter 5.

The thermohydraulic subsystem [Egs. (2-6) through (2-17) and Table 2-1] influences the
reactor power via the void and Doppler reactivity terms in Eq. (2-3). The governing equations
for the thermohydraulic subsystem are derived on the basis of the well-known one-
dimensional homogeneous equilibrium mixture (HEM) model.”” The two phases move with
the same velocity in this model, and have the same temperature. The influence of integral
slip, originating from the cross-sectional averaging of a nonuniform void profile in the
channel, is neglected here. The axial heat flux profile is also assumed to be flat in this
chapter. Model equations for nonuniform power and void concentration profiles are presented
in Appendix B. The multiple parallel channels in the reactor core are approximated with one
average channel, to keep the analysis as transparent as possible. Subcooled boiling and void
flashing phenomena are also not taken into account in this chapter. The latter phenomenon is
incorporated, however, in the low-pressure BWR model developed in Chapter 5.
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Table 2-1. Original and Nondimensional Form of the Dynamic Pressure Drops

in the Natural Circulation Loop
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2.3.4. Boiling Boundary Dynamics

The equation for the dynamic behavior of the boiling boundary is derived by integrating
the differential energy equation from the core inlet to the axial position where the coolant
reaches the saturation temperature:

Z,® _ M ® _ Z,0a'y | 26
dt Pr pfAC<hf—hlcvi)

Conservation of mass directly implies that the mass flux density in the one-phase region is

independent of the axial position (incompressibility of the phases is assumed). The local
enthalpy is assumed to change simultaneously at all axial positions. This approximation
facilitates the spatial integration over the one-phase region. Because the oscillations in the
local single-phase enthalpy are delayed in the upper area of the one-phase region, this
approach is appropriate for frequencies smaller than the inverse of the transit time of the one-
phase region.

2.3.5. Core Void Dynamics

The equations for the core void dynamics are derived by integrating the differential
continuity and energy equations for the two-phase region:
d<a(t)>, _ M, —Mc'i(t)

dt (PeP )L

2-7)

PP, () [Le ~Zy, (D10 )
P, Ac(h, ~h)

Oscillations in the local quality are delayed in the upper area of the cooling channel. This

delay effect is neglected and the assumption is made that the local quality changes

simultaneously at all axial positions. The HEM void model (no velocity difference between

Mg, () =M (D)1 +

Xe.o(t)

(2-8)

Pe
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the phases) is used to relate the void fraction in Eq. (2-7) with the exit quality in Eq. (2-8):

a1 421 "s;cc,em] -

g

H-Z (t
catyry =@ _Pr fy P

H PeTP, PP XM

2.3.6. Riser Void Dynamics

The riser is divided in Ny spatial intervals (or “nodes”) of equal length L;/Ng, to solve the
two-phase flow equations for this section. The local quality is assumed to increase or decrease
linearly between the node inlet (denoted with the subscript n-1) and the node outlet (referred
to with a subscript n) quality. The average void fraction in a riser node then becomes:

<e(®r, = Pr |i- ! tnft +22Ps_Fra® Laan O
’ PP,

PeP PP P
TR T ha® g a )] L SN (5}
Pe Pg (2-10)

The riser quality is constant along the axial coordinate in the equilibrium state. Therefore the

result of the expression for the nodal riser void fraction in Eq. (2-10) is a singularity. A
Taylor expansion of the logarithmic term in Eq. (2-10) is recommended to remove this
singularity. Integrating the differential mass and energy equations over the n-th riser node
consequently yields:

d<a(>y, _ My, Mg, () Ny

2-11
dt PP, Ly ( )
Pe P P; P
My o 01 +——25, ®) = M ()1 +——F xR’n(t)l. (2-12)
g g
Conservation of mass and energy at the junction of the core and the riser implies that:
AC
MR,i(t) = A_MC,c(t)’ XR’i(t) = Xc,e(t)- (2'13)

R

2.3.7. Natural Circulation Loop Momentum Dynamics

The dynamic pressure is continuous along the closed natural circulation loop, so the
integral momentum equation can be stated directly:

AP (t) + AP (t) + AP (1) = 0. (2-14)

All pressure drop terms accounted for in the model are summarized systematically in the
second column of Table 2-1. The specific section in the natural circulation loop (core, riser,
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or downcomer) is denoted in the first column. The first column also gives information about
the pressure drop type (inertial, accelerational, gravitational, frictional, inlet, or outlet). Not
all pressure drop terms are discussed separately in this chapter, because there already exists a
vast literature on this subject.” However, special assumptions or methods used in the
derivation of specific pressure drops are explained in more detail.

2.3.8. Core

The dynamic pressure drop over the core results from an integration of the differential
momentum equation for the one-phase and the two-phase regions of the core. Because the
mass flux density in the one-phase region is constant in space (conservation of mass),
integration over this region is straightforward. The mass flux density ranges axially from M
to M, in the two-phase region. However, in the integration process, the assumption is made
that the two-phase mass flux density is equal to M. .. Regarding channel stability, this is a
conservative assumption, because of the (destabilizing) delay of M., with respect to M; [on
the other hand, the spatial assumptions in Egs. (2-6) through (2-8) lead to a nonconservative
estimation of channel stability] (Ref. 14). The HEM two-phase friction multiplier is used in
the evaluation of the core and the riser frictional pressure drop. This multiplier is dependent
on the vapor and the liquid densities and the flow quality only:

& (x,P) =1 +[p/p, ~11x. (2-15)

2.3.9. Riser

Because the riser section is divided in Ny nodes, a nodal riser mass flux density is defined
in order to facilitate the integration process:

MO>y, = ~[My, () M, O] (2-16)

[ 5]

The two-phase mixture suddenly expands to the steam dome at the riser exit. The local
pressure losses associated with this expansion are included in Table 2-1. The node-length
needs to be much smaller than the typical “wavelength” of the density-waves propagating
through the riser (equal to Lg/f,T3), to represent the transient behavior of the riser accurately.
This implies that Ng>>f 1. is required for accurate calculations. However, dividing the riser
in many nodes has a practical drawback, because of a rapid increase in calculational labor.

2.3.10. Downcomer

Several simplifying assumptions were made for the downcomer section, to keep the
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analysis as transparent as possible. The pressure drops at the lower plenum and the steam
dome are not taken into account in the model and momentum exchange between these
sections and the downcomer is neglected. The down-coming fluid is assumed to be one phase
(i.e. no carry under), incompressible and inviscid, with a fluid temperature uniform in space
and time. The downcomer pressure drop terms in Table 2-1 are derived under these
assumptions by applying Bernoulli’s integral equation for an inviscid and incompressible
fluid in a variable geometry."?

The total circulation flow is used in Table 2-1 as a state variable. The mass flux density
changes in the downcomer due to flow area changes. However, conservation of mass implies
that the total circulation flow is independent of the downcomer geometry. The circulation
flow is therefore a convenient variable to use. Table 2-1 shows that the gravitational pressure
drop over the downcomer is negative. Essentially, this pressure gain along the flow path in
the downcomer is responsible for the natural circulation of the coolant.

The effect of changing flow areas on the downcomer inertia is accounted for by
introducing an equivalent inertia length (L/A):

D,
L 1
= = dz. -
(AJ fAD(z) : (2-17)

D,i

The model also accounts for the accelerational pressure drop (or gain) due to the different
flow areas of the upper respectively the lower sections of the downcomer. The downcomer
inlet friction term accounts for pressure losses due to local inlet restrictions.” Tube friction in
the downcomer is neglected, because the downcomer flow area is large compared to the core
flow area, and the fluid is assumed to be one phase.

2.4. FREQUENCY-DOMAIN ANALYSIS

Laplace transforming of the linearized equations is a very powerful approach to gain more
insight into the physical processes determining natural circulation channel and reactor
stability. For instance, using root-locus and Nyquist-diagram techniques, the linear stability
boundary can be calculated precisely, without much calculational effort. Direct numerical
calculations in the time domain are more time consuming, due to the many nonlinear terms
involved.

The most efficient way to present the (multiple regenerative) feedback loops involved is in a
block diagram, see Fig. 2-2. The transfer functions in this block diagram are a function of the
Laplace variable s. For brevity, this dependence is omitted in the notation of the transfer
functions. If a positive step in the reactivity is introduced, the reactor power will increase (via

®The downcomer inlet is located at the transition steam dome - downcomer.
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Figure 2-2. Block diagram of natural circulation BWR stability. The from heat and mass flux density

thermohydraulic transfer functions are clustered in the dashed rectangle. to boiling boundary position

(Gipy,g and Gy, py). The transfer
functions G, -, G, and G, 5, are derived using Egs. (2-7) through (2-9) and describe the void
production and transport in the core.
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dynamic pressure drop in the natural circulation loop sections. The inlet mass flux density
responds via the feedback transfer functions Gy, and Gy z,, to compensate for the impact of
these perturbations on the momentum balance. For instance, when the channel void fraction
increases, the two-phase frictional pressure drop also increases, and the mass flux density has
to decrease to keep the pressure drop over the channel constant. When the inlet mass flux
density decreases, the void fraction will increase, and the boiling boundary shifts down (G, v
and Ggy, ), etc. Eventually, the resulting void fraction increase will lead to a negative void
reactivity p, (via the negative void reactivity coefficient), and the power will decrease. Thus,
at low frequencies, this system is stable (negative feedback). However, depending on the
phase shifts in the thermohydraulic subsystem, instabilities can occur at higher frequencies.
The complicated thermohydraulic transfer functions in Fig. 2-2 are collapsed into one transfer

9 Adjusted void and Doppler coefficients are used in Fig. 2-2, because the state variables are

normalized: f, = 1, <a>¢ and fp = rp [T, - T, J.
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function from heat flux density to void fraction, to investigate these dynamic instabilities:

d<a(s)>/<a>. G,
) 8qsyrq” 1+Gy .G *Gy 245 G zpn g
where G, = Ga’q//"'Ga’beGbe‘q//. (2-18)

The thermohydraulic system is on the threshold of instability if the denominator of the
transfer function G, is equal to zero. This means that the operating conditions have to be such
that

Gpra G YO 260 O zpng” = 71 (2-19)

for a certain channel resonance frequency. The “closed-loop™ reactor transfer function from
external reactivity to reactor power is equal to

_ SN(s)/N _ Gp

G .
Pe(8) 1 7GgGylt, #,G,]

T

(2-20)

The reactor is on the threshold of instability if the denominator of Eq. (2-20) is equal to zero.

Instead of linearizing and Laplace transforming the nodal equations (2-10) through (2-12)
for the two-phase flow in the riser, another approach was made in the frequency-domain
analysis. Directly perturbing and linearizing the governing differential mass and energy
equations and rearranging yields a convection equation describing the transport of the two-
phase mixture through the riser:

06a,(z,t) +i 98y (z,t) =0
oz

e 2-21)

Laplace transforming and integrating Eq. (2-21) then yields the local riser void fraction
response on perturbations of the heated section outlet void fraction:

Sap(z/Ly,s) = BaR,i(s)exp(—s‘rRz/LR). (2-22)

The local mass flux density in the riser can be derived in a similar way. Substituting these
expressions in the differential momentum equation and integrating over the riser length yields
the exact dynamic pressure drop APg(s) in the frequency domain. As an example the
important gravitational riser pressure drop is evaluated. It proves to be convenient to
introduce a new state variable: the average void fraction in the riser. This quantity is defined
in the linearized model as

L
N 1 —exp(-—st1,)
d<a(s)>, = f&uk(z,s)dz = 6&R'i(s)—s;—R—-, (2-23)

z=0 R
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where Eq. (2-22) is used. The gravitational pressure drop over the riser then becomes

LR
8APg (5) =g (py 7Py f bap(z,5)dz = Log (p, ~pp)8<a(s)>y, (2-24)
z=0
where Eq. (2-23) is applied. Explicit expressions for the other riser pressure drops are
presented in Ref. 15.

2.5. NONDIMENSIONAL ANALYSIS

2.5.1 Thermohydraulic Stability

It is very instructive to write the governing equations for the thermohydraulic subsystem in
a nondimensional form. This approach yields important information for scaling purposes:
Many dimensionless numbers are important scaling numbers as well. The transparent form of
dimensionless equations also gives more insight into the key numbers determining the state of
the dynamical system. This latter point is extremely important in the stability analysis of
BWRs. Because of the strong influence of the complicated two-phase flow processes on
reactor dynamics, many thermohydraulic parameters, for instance the core tlow, the reactor
power, the subcooling, and the pressure, affect reactor stability. Instead of investigating the
influence of all these variables separately, it is more convenient to combine them in only a
few key numbers. Nonuniform power and void concentration profiles are not considered here.

Appendix B).
Only the thermohydraulic subsystem is studied in this section, so the heat flux from fuel to
coolant is kept constant. The procedure followed is comparable with the approach of Rizwan-
uddin and Dorning,'® and Inada et al."’ First, the dimensionless Zuber number N, the
subcooling number N, the Froude number N, and the density ratio number N, are
introduced:
a'Le e, N MM eee, L Mede)t e

- 8
_ ’ sub _ ’ Fr B = - (2-25)
b, (b, ~h) p, h,~h, p, gL o,

Zu

The dimensioniess numbers defined in Eq. (2-25) determine the thermohydraulic operating
conditions. The frictional numbers A, and A, are representative for the tube friction in the
core and the riser respectively:

f L
2D

fRLR
LAg = o (2-26)

C

A, =

C
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The local inlet and outlet loss coefficients already have a nondimensional form. The

geometrical numbers are:

* Ap . A « A, * Ly L)* L)A
AR = -, AD'i = “E’ AD,: = £ ’ LR = s | — = - _C (2'27)
A, Ag Ag L, L,

The variables in Eqs. (2-6) through (2-16) and Table 2-1 are made dimensionless by
introducing the following variables:

.oz i
M *(t) = $’ P *(t) = _PZ(F)_, be(t) = L , X () = ==t = _i. (2-28)
ckf

Ci Mg /p, c Xce

Using the definitions of Egs. (2-25) through (2-28), the nondimensional form of the basic
equations (2-6) through (2-13) is derived. The nondimensional equation for the boiling
boundary dynamics becomes

dZ(t %
dt*

=2

N

* * N,
Mc,i(t *) Ly, (t *) Z } (2-29)

sub

The core void-quality relation in Eq. (2-9) is easily transformed to a nondimensional form
using the following auxiliary definitions:
T = ("N )<a(t )>¢ and 1,0 (t") = xo (YN, ~N,,). (2-30)

Using Eq. (2-9), the J:C -function becomes:

Jie@?) =[1 —be,(t*)J I—IH—[J%L?;ﬂ : (2-31)
Jz.c(t

Equations (2-7) and (2-8), describing the core void dynamics, are transformed into the
following expressions:

et .
L = M (t ) M (Y, (2-32)
dt*
MY = M, *)[1 +1, et “)} —NZ“[I ~Z (t *)]. (2-33)
The average void fraction in a riser node is also expressed in auxiliary dimensionless
functions:
Jiaath = (17N )<a(t >,
* * ~
- 1 " LA (e T AN (9 al, (2-34)

* * *
Jra(t ) “Jyrn (t b) Jirm- (t b
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where the riser J;function is defined as
Toa®™) = At YN, Ny, (2-35)
and the J," function is an abbreviation of

1+xp YN, N ). (2-36)

0]

J;R,n (t ')

Because Eq. (2-34) is based on Eq. (2-10), a Taylor approximation of the logarithmic term in
Eq. (2-34) is again recommended to avoid a singularity in the steady state. The governing
nodal Egs. (2-11) and (2-12) for the riser void dynamics are now easily rewritten:

a3, . N N

R LIV (ly B VI -2, (2-37)
dt R

Myt 8 a8 = Mg ()50 (6. (2-38)

Equation (2-13), stating the conservation of mass and energy at the junction of the core and
the riser, becomes
D | * LEPPE R
Mgt = " "M (), 2,0 = xclt ). (2-39)

R

The nondimensional expressions of the dynamic pressure drops in the natural circulation
loop are listed in Table 2-1. Equations (2-29) through (2-39) together with Table 2-1
demonstrate that all pressure dependent parameters, like phasic densities and enthalpies, are
incorporated compietely in the dimensioniess numbers defined in Bq. (2-25). All cxplicit
pressure dependence is therefore eliminated by transforming to these dimensionless groups.
The density ratio number N, cancels in the dimensionless equations, due to the assumption of
homogeneous two-phase flow.

Table 2-1 furthermore demonstrates that one of the remaining three numbers defined in
Eq. (2-25) is redundant. The dimensionless pressure drops in the last column can be added
easily in the equilibrium state. According to Eq. (2-14) their sum is equal to zero. Therefore,
the Froude number can be calculated as a function of the Zuber number, the subcooling
number, the geometrical numbers, and the frictional numbers for a natural circulation system.

The Zuber and the subcooling number are also coupled in a natural circulation BWR. For
instance, when the subcooling number is small, the void fraction in the core and the riser will
be relatively high. This affects the circulation flow and the Zuber number, because the Zuber
number is inversely proportional to the circulation flow, When the Zuber number is small, the
exit quality diminishes and the steam and feedwater flow become relatively small compared
to the total circulation flow. Because the down-coming fluid is then mainly at saturation
temperature, the subcooling number will become small as well.
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Without carry under and with a stationary feedwater system, there exists a simple
relationship between the Zuber and the subcooling number. Stating an energy and mass
balance at the feedwater sparger level yields an expression for the inlet subcooling:

he=h = hemhdue, (2-40)

Applying Eqs. (2-7), (2-8) and (2-25) then leads to:

Y

sub h -h
8 fw

Ny, (2-41)

With Eq. (2-25) and the auxiliary relationship in Eq. (2-41), typical trajectories in the
dimensionless Zuber-subcooling plane can be calculated as a function of different system
parameters like the pressure, the reactor power, and the feedwater temperature. The influence
of carry under on the subcooling can be important in natural circulation BWRs without steam
separators, for instance the Dutch Dodewaard BWR. Equation (2-41) is not valid in that case,
and needs to be replaced by a more complicated expression using an appropriate model for
carry under.'®

2.5.2 Reactor Stability

The dimensionless stability map of the thermohydraulic subsystem in a natural circulation
BWR is independent of the hydrostatic pressure. However, because of the pressure
dependence of the (adjusted) void and Doppler reactivity coefficients f, and ip,” the coupled
neutronic-thermohydraulic reactor stability is affected by pressure variations.

The core void fraction depends on the density ratio of the vapor and the liquid phase,
according to Eqs. (2-30) and (2-31). This ratio increases slowly as a function of pressure.
Hence, the void fraction increases slightly in a certain (N, N, ,)-coordinate, causing only a
slight change in the gain of the void reactivity feedback. The difference between the fuel
temperature and the saturation temperature increases in a fixed (N,,,N,,;)-point as a function
of pressure (because the power level should be increased strongly at higher pressures, to keep
N,, at a fixed value). Therefore, the Doppler reactivity coefficient ¥ becomes larger for
higher pressures. However, the Doppler effect has only a minor impact on BWR stability, so
reactor stability is not expected to be very dependent on the strength of the Doppler effect.'’
Numerical results in Chapter 3 further demonstrate that the pressure dependence of reactor
stability in the dimensionless plane is only very small.®

The assumpticn was made in the previous analysis that the void reactivity coefficient r, is
independent of the hydrostatic pressure. However, when the pressure changes, the moderator

density changes as well. The principal effect is a change in the resonance escape probability
p:
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b = exp| -20et A Vo lar | (2-42)
Pm Apet Vi €04
which is explicitly dependent on the moderator density p, = (1 - <a>c) p; + <a>c p,
(Ref. 12). The atomic weights A and the volumes V of the fuel and the moderator, the fuel
density pq,., the effective resonance integral I, the microscopic scattering cross section o,
of the moderator and the mean lethargy gain per collision & are all independent of the
hydrostatic pressure. The void reactivity coefficient r, can be determined with the six-factor

formula'*:
I ap _ 1 ok g R ok g
L= o
d<a>. k:ﬁ a<a>, k. 0<a>,
(2-43)
- _ An Vi Lo Pe Py
P el A Y D"
fuel m Eos,m (1 7<°‘>C)Pf +<“>C pg]
The void reactivity coefficient is calculated
<oc as a function of the channel void fraction and
” &
0 0.2 0.4 06 the pressure in Fig. 2-3. Notice that the pressure
0 ' ' dependence is not very large. Up to void
-0.1 fractions of 0.6 the void reactivity coefficient
-0.2 becomes smaller (in an absolute sense) if the
ra -0.3 pressure is reduced. For void fractions higher
slane N L tlin AfFant A€ Tasinsming tha mwancoiiea 1o
uial v.u, ic vliivu Ul iowulil 15 L }Jlb\)ulb 1o

-0.4

just the opposite. The denominator of the

057 pressure-dependent term in Eq. (2-43) then

-0.6 decreases very rapidly as the channel void
Figure 2-3. Influence of the pressure and the void fraction increases. Thus, for high channel void
fraction on the void reactivity coefficient. fractions and low pressures, the void reactivity
coefficient is strongly negative. This effect is
not visible on the scale of Fig. 2-3.

Note that only the influence of the resonance escape probability on the reactivity is
considered. The thermal utilization factor and the thermal and fast nonleakage probabilities
also change as a function of the pressure and need to be taken into account in more detailed

calculations of the void reactivity coefficient.?!
2.6. CONCLUSIONS

A theoretical model for coupled neutronic-thermohydraulic power oscillations in natural
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circulation BWRs is developed. The neutron kinetics model consists of the point-kinetic
equations with one effective delayed neutron group. The heat transfer from fuel to coolant is
modeled as a first-order process. The two-phase flow in the coolant channels is analyzed on
the basis of the one-dimensional HEM model for one effective coolant channel. The
differential equations of mass, energy, and momentum were integrated over the core region
by assuming a time-dependent but spatially linear profile of the one-phase enthalpy and the
two-phase quality in the axial direction. The riser section was divided in axial nodes, and a
spatially linear quality profile within each node was assumed. The down-coming flow was
assumed to be an inviscid and one-phase fluid. The resulting nonlinear time-domain model
was linearized and Laplace transformed, to enable an analysis in the frequency-domain. Exact
solutions of the HEM equations for the riser section were used in the linearized model.

The nonlinear time-domain equations have been transformed to a dimensionless form, to
identify the main parameters determining the dynamic behavior of the thermohydraulic
subsystem. After this transformation, all pressure dependent parameters are incorporated
implicitly in the dimensionless Zuber, subcooling, and Froude numbers. All explicit pressure
dependence in the thermohydraulic equations is eliminated. The density ratio number cancels
in the set of dimensionless equations, because a homogeneous flow model is applied. It has
been proven that one of the three remaining dimensionless numbers (for instance the Froude
number) is redundant in the natural circulation case and can be expressed explicitly in terms
of the other dimensionless groups. Furthermore, an elementary model for the steam and
feedwater system demonstrates that the Zuber and the subcooling number are related to each
other, giving rise to very specific trajectories in the Zuber-subcooling plane as the operating
conditions change.

Including muiclear feedback effects, the coupled neutronic-thermohydraulic reactor stability
in the dimensionless Zuber-subcooling plane is also rather insensitive to changes of the
system pressure. The employment of dimensionless maps, instead of the traditional power-
flow maps, in the reactor stability analysis is therefore strongly recommended. A
comprehensive parametric study with the proposed theoretical model is performed in a
Chapter 3, to identify the main parameters that determine the stability of natural circulation
BWRs (Ref. 20).
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Chapter 3

High-Pressure BWR Dynamics: Il - Parametric Study?®

Abstract - A parametric study of coupled neutronic-thermohydraulic stability of natural
circulation BWRs is performed. As an example, the stability characteristics of the Dutch
Dodewaard reactor, which was cooled by natural circulation, are determined. The Dodewaard
reactor can be considered as the prototype of next generation natural circulation BWRs. The
stability issues that are identified for this prototype reactor are therefore important in the
design of new natural circulation BWRs. Without a riser section installed, only one region of
thermohydraulic instability exists in the (dimensionless) stability plane. The significant
gravitational pressure drop in a riser section, installed to enhance the natural circulation flow,
gives rise to the emergence of an additional region of instability. The oscillations in this zone
become especially important during low-power/low-pressure (reactor startup) conditions.
Significant damping of these oscillations occurs in a reactor, due to the nuclear void reactivity
feedback. A comparison between natural circulation in-phase and out-of-phase reactor
stability is made, in particular important for large reactor cores but also yielding unexpected
results for small reactors. The impact of downcomer inertia on the stability of the in-phase
mode is investigated in detail. Typical trajectories in the dimensionless stability plane are
calculated as a function of changing operating conditions, to investigate their influence on
reactor dynamics.

3.1. INTRODUCTION

A theoretical stability model for natural circulation BWRs was described and analyzed in

“This chapter has been published (in a slightly modified form) as:

D.D.B. van Bragt and T.H.J.J. van der Hagen, “Stability of Natural Circulation Boiling Water
Reactors: Part 1I - Parametric Study of Coupled Neutronic-Thermohydraulic Stability,” Nucl.
Technol., 121, 52 (1998).
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Chapter 2." Numerical results of the model are discussed in this chapter. Design parameters of
the Dutch Dodewaard nuclear power plant, which was cooled by natural circulation, are used
as an example in this parameter study. The Dodewaard reactor can be considered as the
prototype of next generation natural circulation BWRs. The stability problems that are
encountered for this prototype reactor are therefore important in the design of new natural
circulation BWRs. A summary of the nominal operating conditions of the Dodewaard reactor
is presented in Table 3-1.

Table 3-1. Nominal Conditions of the Dodewaard BWR

Thermal power (MW) 183
Pressure (bar) 75.5
Feedwater temperature (K) 408
Recirculation flow rate (kg/s) 1300 to 1400

Stekelenburg developed a model for the statics and the dynamics of this specific reactor.? He
concluded that the reactor is very stable under nominal conditions, in accordance with
operational experience and experimental evidence.” However, computer simulation of startup
conditions (low power and low pressure) showed a flow oscillation and decreased stability in
the natural-circulation loop. These oscillations were recently measured during startup
experiments.*

A theoretical explanation of these startup oscillations is given in earlier work of Fukuda
and Kobori.” Using an elementary density-wave model, they analyzed the thermohydraulics of
a boiling channel, and found two main types of instability: Type-I and Type-II. Type-I
instabilities are caused by the gravitational pressure drop in the thermohydraulic system, for
instance in the unheated riser sections in natural circulation loops. These instabilities are
important under low-power conditions. Type-II instabilities are caused by the interplay of the
one-phase and the two-phase frictional pressure drops in the natural circulation loop. Both
static (Ledinegg) flow excursions as dynamic density wave oscillations can occur in this case.
The thermohydraulic oscillations of the Type-II become important under high-power
conditions and have been studied extensively in the past.* Recently, combined stability maps
for both types of instabilities were generated.” Lin and Pan used their model to study the
transient response of the coolant channel after a step change in power.'°

The main goal of this chapter is to describe and analyze the aforementioned kinds of
thermohydraulic instabilities in natural circulation BWRs, and to consider the influence of

these thermohydraulic processes on nuclear reactor stability. The influence of both the riser
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and the downcomer and the important role of the system pressure on thermohydraulic
stability are investigated in Section 3.2. The coupling between neutronics and
thermohydraulics in a natural circulation BWR is investigated in Section 3.3. Typical
trajectories in the stability plane are calculated, as a function of the operating conditions, in
this section as well. Conclusions from the analyses are drawn in Section 3.4, ‘

3.2. THERMOHYDRAULIC STABILITY

The set of dimensionless thermohydraulic, geometrical, and frictional numbers
determining the thermohydraulic stability of natural circulation BWRs was identified in
Chapter 1." The geometrical numbers for the Dodewaard reactor are calculated using data
from Stekelenburg® and listed in Table 3-2. An elementary data set (labelled as data set I) is
used in Sections 3.2 through 3.3.3. All friction losses in the natural-circulation loop are
lumped and incorporated in the dimensionless friction number A, in data set I. The riser
friction number Ay and all local inlet and outlet friction coefficients were set equal to zero.
With A. equal to 5.1 a recirculation flow rate of 1300 kg/s is predicted by the model
(compare with the reference values given in Table 3-1).

Table 3-2. Geometrical Numbers for the Dodewaard BWR

Ag' 2.25
Ay 3.07
Ap, 2.29
Ly 1.71
(L/AY* 1.00

3.2.1. Influence Riser and Downcomer

The stability map for a natural circulation cooled channel, with a constant reactor power, is
presented in Fig. 3-1. The fluid is one phase (1¢) at the core exit in the half-plane left of the
diagonal in Fig. 3-1. When the Zuber number is larger than the subcooling number, a
two-phase (2¢) mixture leaves the heated section.

The case without the riser has been discussed in detail in Ref. 11. The model predicts both
stable and unstable channel behavior in this case, depending on the Zuber and the subcooling
number. The stable region in Fig. 3-1 is denoted by the symbol S. The instabilities are caused
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by a significant delay of the core outlet flow

8 - (and the two-phase frictional pressure drop)
32:12;11 1 2‘1.’ with respect to perturbations of the inlet

6 no riser flow, and are the previously mentioned
half lengthl  Type-II instabilities. Notice that reducing

N 4 | \ fuliisli rng th the Zuber number always has a stabilizing
riser effect. The fluid in the core is almost

5 ©75.5 bat entirely two phase at very low subcooling
@ ®10 bar numbers. This strongly reduces the

S t  destabilizing influence of the boiling

0 0 5 10 s boundary dynamics, and the two-phase flow
N, (~Py/d) stabilizes. The channel void fraction is

Figure 3-1. Influence of riser length and pressure on relatively ~ small at relatively  high
natural circulation thermohydraulic stability in the gubcooling numbers (N, =N__). This also
dimensionless Zuber-subcooling plane. The coolant is one Zu sub
phase (1¢) at the core exit in the region left of the
diagonal. Unstable oscillations of the Type-1 occur in a A new region of instability emerges in

narrow region right of the diagonal. The Type-II unstable . .
region is located at higher values of the Zuber number. Fig. 3-1 as the heated channel is coupled

‘T'he stable zone is denoted by the symboi S. The stabiiity with an adiabatic riser section. As opposed
boundaries are independent of the pressure in the
dimensionless plane.

has a stabilizing influence.

to the Type-II instabilities (caused by the
frictional pressure drop), these instabilities,
occurring at low exit quality, are caused by the gravitational pressure drop in the riser. These
oscillations are of the Type-1, according to the classification scheme of Fukuda and Kobori.?

Type-I oscillations are

(=%

riven by the following feedback mechanism. When the core inlet
flow decreases, the core outlet quality will increase. The void fraction increases very rapidly
as a function of the quality at low flow qualities, so even a small increase of the core exit
quality corresponds to a relatively large increase of the core outlet void fraction, causing a
high gain in the feedback loop. Consequently, the void fraction in the riser will increase
significantly, and the gravitational pressure drop over the riser decreases. The core inlet flow
will increase to compensate for this pressure drop change, causing a core exit quality and riser
void fraction decrease. The gravitational pressure drop over the riser then increases and the
inlet flow decreases, etc. Because the gravitational pressure drop over the riser is proportional
to the riser length, channels with long riser sections are more susceptible to this type of
instabilities.

The time scale of Type-1 and Type-1I oscillations is determined by the transit time of the
two-phase mixture through the riser (and the short two-phase region in the core) and the core,
respectively. Because the riser length and the riser flow area are both larger than the
respective core dimensions (Table 3-2), the riser transit time will be large compared to the
transit time of the heated section. Type-I oscillations therefore have a much smaller resonance




High-Pressure BWR Dynamics: |l - Parametric Study 37

frequency than Type-II  oscillations.

120 ) Furthermore, Type-1 oscillations occur

channel no riser . . ..
data set I under low exit quality conditions, when the
natural circulation flow is much smaller

80 4 halflength ) o

riser (and the riser transit time much larger) than
Tow (K) under the high-power Type-II conditions.
40 | @ full length This results in a more pronounced
riser difference between typical Type-I and
Type-11 resonance frequencies. Because of
o L S&10 bar the low frequency of Type-I oscillations, the
0 100 200 300 400 500 influence of inertia on the Type-I stability

Power (% f.p.)

Figure 3-2. Influence of riser length and pressure in the
power-subcooling plane. An increase of the riser length
results in a larger natural circulation flow and a smaller but also indirectly dependent on the power
Zuber number. The region with unstable Type-II
oscillations therefore becomes smaller. Type-I oscillations
are induced by the unheated riser section and become the flow is not constant but a function of the
more important when the riser length increases.
Decreasing the pressure has a strong destabilizing effect.

boundary is small.
The Zuber number is not only directly

level in the natural circulation case, because

subcooling and the power. Therefore, it is
useful to plot the stability boundaries in the
power-subcooling (in units of degrees Kelvin) plane as well, see Fig. 3-2. The borderline
between the one-phase and the two-phase regions is not discernible in Fig. 3-2. The coolant
flow diminishes when the power is reduced, and therefore the coolant already starts to boil at
extremely low power levels. Single-phase convection at low power levels is not taken into
account by the model.

The Type-I1 stability boundary shifts to significantly higher power levels if the riser length
increases. This is because a larger riser section enhances the maximum circulation flow rate,
and thus reduces the channel void fraction and the two-phase frictional pressure drop.
Therefore, the critical power level shifts to higher values, and the size of the Type-II
instability region decreases.

The Type-I unstable region in Fig. 3-2, however, becomes larger with increasing riser
length. An increase of the riser length causes an increase of the circulation flow, which has a
stabilizing effect due to the enhanced one-phase friction, and a destabilizing effect due to the
decrease of the exit quality (because the slope of the void fraction-quality curve is steeper for
lower qualities, see Fig. 1-4). A longer riser also enlarges the gravitational riser pressure drop,
which is the origin of Type-l oscillations. Thus, increasing the riser length has both
stabilizing and destabilizing effects. Figure 3-2 shows that the destabilizing effects are
dominant. These observations agree with earlier parametric studies.’
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3.2.2. Influence of Pressure

The pressure invariance of thermohydraulic stability in the dimensionless
Zuber-subcooling plane was proved in Chapter 2. The conclusions there are supported by the
numerical results in Fig. 3-1: The stability boundaries coincide exactly, even if the pressure is
reduced from the nominal pressure to 10 bars. This effect has also been observed in Ref. 9.
Figure 3-2 demonstrates that the region in the power-subcooling plane where Type-I and
Type-II instabilities occur becomes larger at lower pressures because of the larger liquid-to-
vapor density ratio.

Oscillations in the Type-I zone become especially important under low-power and
low-pressure reactor startup conditions. It has become clear in recent years that a quantitative
prediction of low-pressure startup stability is only possible when void flashing in the riser is
taken into account.'*'* The term “flashing” refers to the occurrence of boiling in the riser
section (even when the fluid in the heated section is entirely one phase), due to the decrease
of hydrostatic pressure in the axial direction. This effect is accounted for in the theoretical
model proposed in Chapter 5, but neglected in the high-pressure model developed in
Chapter 2.

The resulting effect of flashing on thermohydraulic stability is very similar to the Type-I
feedback mechanism. However, because there is (almost) no void generation in the heated
section, the impact of flashing on reactor stability (via the void reactivity feedback path) is
very small, as the parametric study in Chapter 6 will demonstrate. The influence of the
pressure level on reactor stability, applying the high-pressure model of Chapter 2, is discussed
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model of Chapter 5, will be presented in Chapter 6.
3.3. REACTOR STABILITY

The interaction between the neutronic and the thermohydraulic subsystems in natural
circulation BWRs is studied in this section. A description of the models for neutron kinetics
and fuel dynamics was given in Chapter 2. Table 3-3 summarizes the neutron kinetic data for
the Dodewaard BWR in data set I (Ref. 2). The heated perimeter is denoted by the symbol £.

Table 3-3. Neutron Kinetic and Fuel Data for the Dodewaard BWR

B 0.0061

A(sh) 0.084
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A (s) 5% 10°
T (8) 2.11
r, (K -2x10°
gk, (W/m'K) 9.33 x 10°

The influence of void reactivity feedback on natural circulation reactor stability is

investigated in Section 3.3.1. The effect of system pressure on reactor stability is discussed in

Section 3.3.2. Then the influence of fuel dynamics on the coupling between the

thermohydraulics and the neutronics is considered (Section 3.3.3). The most accurate data set

currently available for our reactor mode!l is summarized in Section 3.3.4. The stability of

in-phase and out-of-phase oscillations is compared in Section 3.3.5. The influence of

downcomer inertia on stability is considered as well in this section. Finally, in Section 3.3.6,

trajectories in the dimensionless stability plane are calculated as a function of the operating

conditions, to investigate their impact on reactor stability.

3.3.1. Influence of Void Reactivity Feedback

7.5 Z
reactor 4 2
data set I 1o ¢ ¢
, reactor
5 | ) r,=-0.05
reactor )y’
N =01 channel
/, (ra - 0)
257
S v @ ©75.5 bar
°10 bar
S
0% 2 4 6 8 10
NZu

Figure 3-3. Influence of void reactivity feedback on
natural circulation reactor stability. The low-frequency
Type-1 oscillations are stabilized by neutronic feedback
effects. The opposite effect is visible for the higher-
frequency Type-II oscillations. The effect of pressure
changes on the stability boundaries is small in the Type-I
and the Type-II regions.

®The transfer function G, (see Chapter 2)

The influence of void reactivity feedback
on the coupled neutronic-thermohydraulic
reactor system is depicted in Fig. 3-3.
Nuclear feedback effects clearly have a
strong destabilizing effect
This

obtained in previous studies.®"' Increasing

on Type-ll

oscillations. agrees with results

the magnitude of the void reactivity
feedback coefficient r, (in an absolute
sense) increases the gain of the void
reactivity feedback loop and therefore has a
effect. the
interaction between the neutronics and the

destabilizing However,
thermohydraulics has a stabilizing effect on
Type-I oscillations.

The phasc and the gain of the fuel and
the thermohydraulic transfer functions®
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were calculated for four different points on

the horizontal dotted line in Fig. 3-3 to
explain these two opposite effects. This
trajectory is represented in more detail in
Fig. 3-4. The channel stability boundary
(SB) is also represented in Fig. 3-4. All four
points are located in the region where the
channel is stable. However, point A is

rather close to the Type-I stability boundary

S channel SB ] . .
0 and point D is near the Type-II stability
2 3 4 N3 6 7 threshold.
Zu
Figure 3-4. Investigated points in the dimensionless The gain and the phase of the
Zuber-subcooling plane (SB = stability boundary). thermohydraulic transfer function and those

of the fuel transfer function (which is
independent of the position in the Zuber-subcooling plane) in points A through D are
presented in Figs. 3-5 and 3-6, respectively. The rather low-frequency (~0.2 Hz) Type-I
resonance can be recognized in point A and the higher-frequency (~0.6 Hz) Type-II resonance
in point D, see Fig. 3-5. Notice that for the intermediate points B and C, a single resonance
peak is visible in Fig. 3-5, indicating that oscillations in these points are induced by a
combination of Type-I and Type-II oscillations. The transition from Type-I to Type-II
oscillations is gradual, and it is not possible to distinguish sharply between those two kinds of

Kionra 3.4 chnwe that tha nhaca lagc in the channel and tha fiial are ralativaly crmanll 5 tha
Figure 3-6 shows that the phase lags in the channel and the fuel are relatively small in the
100 90
10 gain 0 "
(a-dim. dP ase
scale) (degrees)
. 1 L -90
e /ﬁm T
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Figure 3-5. Gain diagram of the fuel and channel Figure 3-6. Phase diagram for different points in
transfer functions for points A through D in Fig. 3-4.  Fig. 3-4. The phase shifts of the fuel and channel
Notice the low-frequency Type-l resonance in transfer functions are small in the Type-l frequency
point A, close to the Type-l channel stability range and much larger for the higher-frequency Type-11
boundary. The higher-frequency Type-Il resonance in  oscillations.

point D is also visible.
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Type-I region (point A). Therefore the void reactivity feedback has a stabilizing effect on
void fraction oscillations. The stability boundary shifts further away from point A if neutronic
feedback is added, see Fig. 3-3. The situation is thus completely opposite to the Type-II
region (consider for instance point D). The higher frequency of the Type-I1 oscillations causes
a significant phase lag in the transfer from power to fuel temperature. Together with the phase
lag associated with the void production and transport in the channel, the void reactivity
feedback can become positive in this region. This can cause coupled neutronic-
thermohydraulic reactor instabilities (in point D the channel is stable, but the reactor is
unstable).

Finally, Fig. 3-3 demonstrates that the magnitude of the void reactivity feedback
coefficient only slightly influences the reactor stability boundary close to the origin of the
Zuber-subcooling plane. The previous observation that the void reactivity feedback has a
stabilizing influence on Type-I oscillations can be used to explain this insensitivity
qualitatively. The reactor becomes more stable if the magnitude of the void reactivity
coefficient (in an absolute sense) increases, and the width A = N, - N, of the unstable
Type-1 region will become smaller (for a certain subcooling number). The exit quality on the
new stability boundary decreases, since A = y¢, (p,/p, - 1), and the void fraction decreases
very rapidly as well. This void fraction decrease reduces the void reactivity feedback, and
partly cancels the effect of increasing the magnitude of the void reactivity coefficient.

3.3.2. Influence of Pressure

Figure 3-3 demonstrates that the influence of pressure on the Type-l and the Type-1l
stability boundaries in the dimensionless plane is very small. The void reactivity coefficient is
assumed to be pressure independent and equal to -0.1 in the calculations. The stability
boundary shifts significantly in the region of intermediate Type-1/Type-II oscillations if the
pressure is reduced to 10 bars (the channel stability boundary is independent of the pressure,
see Section 3.2.2). However, this region with a relatively high subcooling number is not
reached in practical situations, as will be outlined in Section 3.3.6. The relatively large shift
of the stability boundary in this intermediate region will be explained as well in that section.

3.3.3. Influence of Fuel Dynamics

The impact of the fuel time constant on the stability boundaries is depicted in Fig. 3-7. The
void reactivity coefficient r, is equal to -0.05 in the calculations. Large fuel time constants
have a stabilizing effect on Type-II oscillations because of a significant filtering of high-
frequency oscillations in the void reactivity feedback loop.'' Again, the situation is
completely opposite with respect to Type-I oscillations. Small phase lags in the void
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reactivity feedback loop tend to stabilize
7.5

reactor 1o G 2% the thermohydraulic Type-I oscillations in
data set . the reactor. If the fuel time constant
7z

s L7 reactor increases, the break frequency of the fuel
N ) / ©21LS] transfer function will shift toward a lower
sb | reactor . frequency, and the total phase shift in the
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Figure 3-7. Influence of the fuel time constant on natural diminishes when the fuel time constant is
circulation reactor stability. A larger fuel time constant
causes a significant gain reduction of high-frequency
oscillations in the fuel and therefore stabilizes Type-II Van der Hagen outlined that the heat
oscillations. The significant phase lag induced by a large
fuel time constant has a destabilizing effect on Type-I
oscillations. by typically small fuel time constants that

large.
transfer for high frequencies is governed

are associated with heat transfer from the
outer region of the fuel. He proposed a small effective fuel time constant of 2.11 s, to describe
Type-I1 power oscillations of ~1 Hz in the Dodewaard reactor."* Larger time constants,
associated with variations of the bulk of the fuel, will become more important in the Type-I
region, where the oscillation frequency is much lower. Therefore, it is reasonable to use a
typically large fuel time constant (of the order of ~5 s) to describe the fuel dynamics in the
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3.3.4. Best Estimate Data Set for the Dodewaard BWR

The distribution of friction over the different segments of the natural circulation loop is
taken into account in this section (see Table 3-4), to improve the accuracy of the model
predictions.”® The Dodewaard reactor has channel spacers at three different axial positions.
The spacer friction losses are included in the core inlet and outlet friction coefficients. A total
recirculation flow rate of ~1400 kg/s is calculated by the model at nominal conditions, in
good agreement with the characteristic values in Table 3-1.

Table 3-4. Frictional Numbers for the Dodewaard BWR

Ac 1.03

Aq 0.10
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ke, 3.46
Ke. 2.19
Ke. 1.00
ko, 1.00

The void reactivity p, (t) is related with the core average void fraction <a(t)>c, and the

core average quadratic void fraction <a(t)>¢ , to close the reactor model:
(0 =, <aV)>¢ *r, ,<e’(t)>c. (3-1)

Specific values? for the void reactivity coefficients in Eq. (3-1) are provided in Table 3-5.

Table 3-5. Void Reactivity Coefficients Dodewaard BWR

r -0.014

a,l

., -0.240

Tables 3-2 through 3-5 constitute data set II. Data set II is used in the remaining sections of
this chapter. A fine-tuned friction model, based on flow measurements in the Dodewaard
reactor, is proposed in Chapter 7.

3.3.5. In-Phase Versus Out-of-Phase Stability

The total pressure drop over the downcomer section remains essentially constant during
out-of-phase oscillations.'® This boundary condition results in a constant recirculation flow
(when the flow in one half of the core increases, it decreases in the other half), causing no
extra friction and inertia in the downcomer section. The pressure drop over the recirculation
section oscillates during in-phase oscillations, resulting in extra damping in the recirculation
loop. Therefore, from thermohydraulic point of view, the out-of-phase oscillation mode is
more likely to cause large oscillations in the reactor core.

The thermohydraulic stability of the in-phase and the out-of-phase modes for a natural
circulation BWR are compared in Fig. 3-8. The dynamic inertial' pressure drop in the
downcomer stabilizes thermohydraulic in-phase oscillations. The influence of acceleration
and inlet friction on downcomer dynamics is only very small. The oscillation frequency (in
hertz) is represented for some points in the dimensionless plane in Fig. 3-8. The underlined
number denotes the oscillation frequency of the out-of-phase mode, the other number
corresponds to the in-phase oscillation frequency. For instance, the pair of numbers 1.2/2.5 in
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5 Fig. 3-8 means that the in-phase
channel Nats :
data set 1l | oscillation frequency is equal to 1.2 Hz
4 F ; and the out-of-phase frequency is 2.5 Hz.

03/04

Note that the out-of-phase mode is just
on the threshold of stability for this
specific point, while the in-phase mode
is stable in this Zuber-subcooling
coordinate. The frequency of in-phase
oscillations is lower because of the extra

inertia in the downcomer. Because of the

typical low resonance frequency of
. Type-I oscillations, the difference
Figure 3-8. In-phase versus out-of-phase thermohydraulic .

stability. The out-of-phase (0-0-p) mode is less stable than between the in-phase and  the
the in-phase (i-p) mode, due to the stabilizing effect of  gut-of-phase modes is relatively small in
downcomer inertia on in-phase oscillations. The oscillation . . .

frequency of the in-phase mode is lower due to the extra the Type-I instability region.

inertia. The oscitlation frequencies (Hz) for the in-phase The out-of-phase (or first azimuthal)
and the out-of-phase modes (underlined) are represented . . .
for several points. reactor mode is a higher harmonic

solution of the neutron kinetic equations,
see Appendix A. The in-phase (or fundamental) mode has a k.,-eigenvalue equal to one in the
equilibrium state. The higher harmonic modes are all subcritical. The subcriticality of these
modes will decrease (in an absolute sense) in larger reactor cores [for instance the natural
circulation ESBWR concept of GE] and therefore hlgher harmonic (for instance out-of-phase)

oscillations become more likely to occur oint of view, see Fig. (A-1) in

n
1CUL 1 1%

Appendix A.

The active Dodewaard core radius R is only 1.1 m. Applying elementary one-group
diffusion theory for a homogenized cylindrical reactor core the subcriticality p®, of the
out-of-phase mode is estimated to be -6.5% [applying Eq. (A-20) in Appendix A]. The reactor
stability boundaries for the in-phase and the out-of-phase modes are presented in Fig. 3-9.
The neutron kinetic model used for the out-of-phase mode is described in detail in
Appendix A and Ref. 11. Out-of-phase oscillations are strongly damped in the Type-II
unstable region in comparison with in-phase oscillations and are therefore not expected to
occur in the small reactor cores. The stabilizing effect of the neutronic feedback is reduced
significantly during spatial out-of-phase oscillations in the Type-1 unstable region, and the
coupling of thermohydraulic out-of-phase oscillations with the out-of-phase reactor mode
becomes possible.

It is instructive to investigate the influence of the core radius, and therefore the
subcriticality of the out-of-phase mode, on reactor stability. The stability boundaries in case
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Figure 3-9. In-phase versus out-of-phase reactor Figure 3-10. Influence downcomer inertia [reflected
stability for (a) the Dodewaard core radius of by (L/A)] on in-phase Type-Il reactor stability.
R=11m(p5=-658), B)R=19m(p5 =-23), Downcomer inertia has a destabilizing effect on
and (c) R —~ o (pS, - 0). Type-Il out-of-phase Type-ll in-phase oscillations for the Dodewaard
oscillations are strongly suppressed if the BWR.

subcriticality is  strongly negative. In-phase

oscillations are dominant in the Type-II region, even

if the subcriticality of the out-of-phase mode is zero.

of a core radius R of 1.9 m (p% = -2 $) and an infinite core radius R ~ o (p, ~ 0) are
depicted in Fig. 3-9 (keeping all other design parameters constant). Notice the rapid decrease
of the out-of-phase Type-II stability as the core radius and the neutronic feedback increases.
The stronger nuclear feedback stabilizes the Type-I oscillations. If the core radius, of course
hypothetically, would be infinitely large, the subcriticality of the out-of-phase mode vanishes,
see Eq. (A-20). Neglecting the minor influence of downcomer acceleration and friction, the
only difference between the in-phase and the out-of-phase mode (with subcriticality zero) is
the effect of the downcomer inertia. Downcomer inertia has a stabilizing influence on the
Type-1I thermohydraulic stability boundary. However, Fig. 3-9 demonstrates that the
influence on reactor stability is destabilizing in the Type-1I region. This apparent paradox can
be explained by the resonance frequency lowering effect of downcomer inertia. This
frequency lowering causes an increase in the gain of the fuel heat transfer function and the
thermohydraulic transfer function from heat flux and inlet mass flux density to void fraction.”’

A time-domain study in the point marked with a dot in Fig. 3-9 was performed to
investigate the influence of downcomer inertia in more detail. The minor influence of
downcomer friction and acceleration is not considered in this section. The effect of the
dimensionless equivalent inertia length (L/A)" on the reactor decay ratio (DR), the ratio of
two successive maxima of the power fluctuations caused by an external perturbation, and the

9The transfer function G, defined in Eq. (2-18).
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oscillation frequency is calculated in Fig. 3-10. The operating point of interest is located on
the in-phase Type-II stability boundary, so the influence of the gravitational pressure drop in
the riser is relatively small, and therefore only one riser node was used in the calculations.
This approximation already yields accurate results: The error in the decay ratio calculated
with the time-domain code (compared with the exact value of 1.0 from the frequency-domain
code) is only 0.1%. The decay ratio was also calculated with the frequency-domain model, by
determining the poles with the largest real part (two complex-conjugate poles in this case) of
the closed-loop reactor transfer function. This approach yields results similar to the
time-domain analysis.

The destabilizing influence of downcomer inertia [except for large values of (L/A)’] is
clear in Fig. 3-10. Note that the value of (L/A)" for the Dodewaard BWR (1.00, see Table 3-2)
is just the least stable situation [as a comparison, the SBWR concept of GE has a much larger
(L/A) -value of =4.1] (Ref. 17). So even if the Dodewaard reactor hypothetically had an
extremely large core radius, the in-phase mode would still be dominant in the Type-II region
compared with the out-of-phase mode, see Fig. 3-9.

3.3.6. Sensitivity of Reactor Stability to Changes in Operating Conditions

The Zuber and the subcooling number are coupled in a natural circulation BWR, as was
explained in Chapter 2. Therefore, only specific trajectories in the dimensionless plane as a
function of the operating parameters are possible. Typical trajectories in the Zuber-subcooling
plane are presented in this section. The model that Stekelenburg developed for the
Dodewaard stcam and focdwater system? was added to our model, to take into account the
relationship between the Zuber and the subcooling number. Stekelenburg’s model for carry
under is applied as well in this section. It is important to emphasize that the influence of
feedwater dynamics and carry under on reactor dynamics is not taken into account:
Stekelenburg’s model is only used to calculate the steady-state values of the Zuber and the
subcooling number.

Applying this extended model, it is possible to calculate trajectories in the
Zuber-subcooling plane, as a function of different system parameters. The reactor decay ratio
was calculated for many different operating conditions with the developed time-domain code.
The calculations were performed with one riser node. The decay ratio is represented in
Fig. 3-11 as a function of the Zuber number and the ratio of the subcooling and the Zuber
number (which is equal to the boiling boundary position relative to the channel height,
because a flat axial power profile is used in the calculations). Using this latter axis removes
the one-phase region from the stability plane (the dynamic characteristics of this region are
not incorporated in the model of Chapter 2).

Figure 3-11 gives more insight into the dependence of reactor stability on the operating
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2.0 -reactor conditions in comparison with Fig. 3-9,
data set II where only the stability boundaries were

DR | plotted. Note for instance that due to the
Type-I resonance, the decay ratio increases

10 | very rapidly when the boiling boundary
position is close to the exit of the heated

section (N, / Ny, close to 1). This further

explains why the Type-I stability boundary

is quite insensitive to important system

0.0 parameters like the void reactivity
Lo coefficient: A change of the decay ratio due

. 5 s to system changes will cause a relatively

N X . small shift of the position of the stability

boundary.

The decay ratio also increases strongly
Figure 3'-]]. Thr'ee-dim.ension_al picture of the reactor  for large Zuber numbers, especially when
decay ratio (DR) in the dimensionless stability plane. . . .

the Zuber number is approximately twice
the subcooling number. This is the region of Type-II oscillations. Furthermore, Fig. 3-11
reveals that the decay ratio is relatively small and only slowly increasing as a function of the
Zuber number for the intermediate region of combined Type-I/Type-II oscillations. This
explains why in this region the position of the stability boundary is very sensitive to changing
system parameters (for instance, the influence of the system pressure on the stability boundary
in Fig. 3-3 is relatively large in this intermediate region): A change of the decay ratio due to
an alteration of the system causes a relatively large shift of the stability boundary position.

The impact of changing the operating conditions on reactor stability is visualized in
Fig. 3-12. The contour lines of equal decay ratios are extracted from Fig. 3-11. Decreasing the
pressure (while keeping the power and the feedwater temperature at their nominal values) has
a strong destabilizing effect, completely in line with the earlier conclusions in Section 3.2.2.
Type-I and Type-II reactor stability characteristics are only slightly affected by the system
pressure in the dimensionless stability plane, as was demonstrated in Section 3.3.2. Therefore,
the stability analysis is performed only for the nominal pressure and not repeated for other
values of the system pressure. The influence of the thermal power on reactor stability is also
shown in Fig. 3-12. Increasing the power level causes an increase of the Zuber number. The
subcooling number also increases for higher power levels because in that case, the steam and
feedwater flow are relatively large (compared with the total circulation flow). This larger
feedwater flow, with a temperature below the saturation temperature, then causes an increase
of the subcooling number. Finally, decreasing the feedwater temperature increases the
subcooling number and has a destabilizing effect. However, even when the feedwater
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Figure 3-12. Sensitivity of the decay ratio to changes in operating conditions: (a) changing the pressure (solid
line), (b) changing the power (dotted line), and (c) changing the feedwater temperature (dashed line).

temperature is as low as 30°C, the region of intermediate Type-I/Type-II or Type-I
oscillations is not reached in this hlgh -pressure BWR model. Including the ﬂashmg effect in
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3.4. CONCLUSIONS

A parametric study of coupled neutronic-thermohydraulic stability of natural circulation
BWRs is performed. The theoretical model described in Chapter 2 was used to determine the
stability characteristics of natural circulation BWRs. Stability was investigated in the
nondimensional Zuber-subcooling plane. Without a riser section installed, only one region of
thermohydraulic instability exists in this stability plane. This region of instability, caused by
the interplay of the one-phase and the two-phase frictional pressure drop in the heated section,
is the so-called Type-II instability zone, The significant gravitational pressure drop in a riser
section gives rise to the emergence of an additional region of instability in the stability plane.
The gravitational or Type-I oscillations in this zone can become especially important during
low-power/low-pressure reactor startup conditions, as will be demonstrated further in
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Chapter 6.

The coupling between the neutronic and the thermohydraulic subsystems in a natural
circulation reactor was found to be strongly dependent on the state of the thermohydraulic
subsystem. Because of their typically low resonance frequency, thermohydraulic oscillations
of the Type-I are damped by the nuclear void reactivity feedback. However, the higher-
frequency Type-II oscillations are amplified in a reactor, because of larger phase shifts in the
void reactivity feedback loop.

A comparison between natural circulation in-phase and out-of-phase reactor stability was
made. Out-of-phase oscillations in the Type-II region are strongly suppressed in small reactor
cores, for instance the Dodewaard core. However, in the Type-I zone, spatial oscillations are
possible. The influence of downcomer inertia on in-phase reactor stability was studied in
detail, using Dodewaard design parameters. It was found that downcomer inertia has a
stabilizing effect of Type-II thermohydraulic stability. However, the downcomer inertia has a
destabilizing effect on reactor stability. This was explained by the decrease of the
thermohydraulic resonance frequency as a function of the inertia, and the resulting
(destabilizing) increase of the reactor open loop gain. Finally, typical trajectories in the
stability plane were calculated as a function of the pressure, the power, and the feedwater
temperature, to clarify the impact of changing operating conditions on reactor stability.
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Chapter 4

High-Pressure BWR Dynamics: lll - Nonlinear Analysis®

Abstract - A dynamic model of natural circulation BWRs is analyzed using a bifurcation
code and numerical simulations. The two fundamental bifurcation types relevant to BWRs,
the supercritical and the subcritical Hopf bifurcations, are first studied in natural circulation
systems without nuclear feedback. The effect of nodalization approximation in the riser on
stability and bifurcation characteristics of the system is determined. The strong effect of the
nuclear-thermohydraulic interaction on the nonlinear characteristics of a natural circulation
BWR is then explored in a parametric study. Supercritical bifurcations become dominant in
the (high-power) Type-II region for small values of the subcooling number and a strong
nuclear-thermohydraulic coupling. A ‘cascade’ of period-doubling pitchfork bifurcations
(deep in the unstable region) is also predicted by the model under these conditions.
Subcritical bifurcations in the Type-II instability region were found for larger values of the
subcooling number. Both Hopf-bifurcation modes were also encountered in the (low-power,
or high-power/high-subcooling) Type-I instability region.

4.1. INTRODUCTION

Prompted by unexpectedly large power oscillations observed in the Caorso (1984) and the
LaSalle (1988) plants, significant progress has been made in recent years in better
understanding the stability issues in BWRs. Several stability tests have been performed under

“This chapter is an adapted version of:

D.D.B. van Bragt, Rizwan-uddin, and T.H.J.J. van der Hagen, “Nonlinear Analysis of a Natural
Circulation Boiling Water Reactor,” To appear in Nuclear Science and Engineering (January
1999).

"Department of Nuclear Engineering, University of Illinois, 103 S. Goodwin Avenue, Urbana,
IL 61801; Also, Computational Science and Engineering Program.
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decreased stability conditions.'? Detailed time-domain codes like TOSDYN-2,* RAMONA,*®
RETRAN’ and TRACG® were used to simulate the experimental data and validate the
computer codes for large oscillation incidents.

However, since the complexity of nonlinear calculations increases rapidly as a function of
the model order, parametric studies with the aforementioned high-fidelity codes, and others
like them, are very expensive and time-consuming. Classical frequency-domain stability
analyses of detailed BWR models have been performed to carry out quick parametric studies
and to study the impact of various design and operating parameters on system stability.’
Important as they are, such frequency-domain analyses nevertheless only identify stability
boundaries and shed no information on the system behavior following relatively large
perturbations. Therefore a simultaneous, complementary effort has focused on the
development of reduced-order models, which are easy to use in fast analytical and numerical
studies and still sufficiently accurately describe the main physical phenomena. Just before
nonlinear BWR dynamics attracted large-scale attention, March-Leuba et al.'*"! developed a
qualitative reduced-order stability model for BWRs. This fifth-order nonlinear model is very
suitable for fast parametric studies, and predicts the evolution of the reactor power to stable
limit cycles in the unstable region close to the stability boundary. ‘Deeper’ in the unstable
region, a cascade of period-doubling bifurcations occurs, eventually resulting in chaotic
oscillations. Muiioz-Cobo and Verdu'? applied Hopf-bifurcation theory to the same model
and determined the limit cycle stability, amplitude and oscillation period as a function of
model parameters. A more elaborate nonlinear model was analyzed with the bifurcation code
BIFOR2" by Tsuji et al." The simple ‘damped-spring’ equation for the channel two-phase
flow dynamics in the model by March-Leuba et al.'' was replaced by a more sophisiicaied
channel model by these authors. Their Hopf-bifurcation analysis showed that the periodic
solutions in the vicinity of the stability boundary were orbitally unstable, and they therefore
concluded that the experimentally observed stable limit cycles in BWRs should be explained
by another nonlinear mechanism. Karve et al."* included detailed fuel rod dynamics in their
simple model and determined stability boundaries in the inlet-subcooling/external reactivity
operating parameter plane. More importantly, they, via mapping, determined the stability of
points on the power-flow map. Numerical simulation of the nonlinear ordinary differential
equations (ODEs) was also carried out and showed that the Hopf bifurcation is subcritical.
Significant progress made in recent years in the stability analyses of single and multiple
parallel heated channels with two-phase flow, but without neutronic feedback, will not be
reviewed here.

It is quite likely that next generation BWRs will be cooled by natural circulation.
Bifurcation studies of natural circulation BWRs - like those reported by Mufioz-Cobo and
Verd(,'"? and Tsuji et al."* for forced-circulation BWRs - are hence needed. Moreover, most

bifurcation analyses have been carried out with the subcooling or the power level as the
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bifurcation parameter. Discrepancies between the results obtained by different researchers
seem to depend on “other” design or operating parameters, such as the presence of a riser, the
riser height, the nuclear feedback strength and even on modeling parameters.

Using the low-dimensional BWR model, developed and successfully used earlier by Van

Bragt and Van der Hagen, see Chapters 2 and 3,'*"®

we here report the results of a bifurcation
analysis carried out using the Hopf-bifurcation code BifDD," the successor of the
aforementioned BIFOR2 code. Comparisons are made between heated channel systems and
reactors (with neutronics feedback). The effects of design and operating parameters on the
bifurcation characteristics is studied. In addition, the effect of modeling approximation on
bifurcation is also analyzed. Specifically, the effect of the number of nodes in the riser on the
stability boundary and bifurcation mode is investigated. Numerical simulations were carried
out to determine the range of validity of the bifurcation analyses away from the stability
boundaries.

A summary of the nonlinear model equations, transformed to a nondimensional basis, is
provided in Appendix B. Nonuniform (but symmetrical) axial power profiles and nonuniform
void profiles over the channel cross-section are accounted for in this appendix. Furthermore,
the algebraic equations in the model of Chapter 2 are eliminated in Appendix B, by
substituting them in the model ODEs. This thermo-nuclear model then consists of a set of
(normalized) ODEs which describe the time evolution of the neutron and precursor
population, the fuel temperature dynamics, the boiling boundary position in the core, the core
exit quality and mass flux density, and the nodal exit quality of the axial riser nodes.

In this chapter we will focus on the nonlinear dynamics of only in-phase oscillations.
Moreover, all parametric studies are performed with the homogeneous equilibrium model (i.e.
both local and integral slip are neglected). Local friction losses are lumped in the global core
friction (data set I of Chapter 3 is used), and the calculations were performed with an
elementary flat profile. A comparison of the model with nonlinear power oscillations,
measured in the Dutch Dodewaard reactor,’ is presented in Chapter 7. We there applied a
fine-tuned reactor model including distributed friction losses and an axially peaked power
profile.

The BifDD code is described in Section 4.2. A bifurcation analysis for the thermohydraulic
subsystem of a natural circulation BWR, neglecting nuclear feedback effects, is presented in
Section 4.3. The impact of nuclear feedback on the nonlinear dynamics of a natural
circulation BWR is investigated in Section 4.4. Conclusions are provided in Section 4.5.

4.2. THE HOPF BIFURCATION

One of the most important bifurcation types in BWR stability problems is the ‘Hopf” (or
dynamic) bifurcation.”*® A Hopf bifurcation occurs when a pair of complex conjugate
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eigenvalues of the Jacobian matrix of the dynamical system crosses the imaginary axis with a
non-zero speed, as a parameter is varied. The real parts of all other eigenvalues should be
negative. When these conditions are satisfied, a family of periodic solutions, with a small
amplitude €, exists in a neighborhood of the stability boundary:

Z(tA) =xX(,) *+ eRe(@™99) + 0(e?). (4-1)

The components of the vector X(t;4) in Eq. (4-1) consist of the different state variables of the
system. %(1,) is the equilibrium value of this state vector at the critical value (on the stability
boundary) of the bifurcation parameter A, and ¥, is the eigenvector of the linearized system
on the stability boundary. The nonlinear oscillation period T(€) in Eq. (4-1) is expanded as a
function of €:

T(e) =2/ (A )] [1 *1,e? +0(eh)], (4-2)
and likewise the bifurcation parameter A(e) is expanded:
A(e) =A_tp,e” +0(eh). (4-3)

State-space trajectories in the direct neighborhood of the periodic solutions in Eq. (4-1) are
decaying exponentially to the periodic solutions, if the periodic solution is orbitally stable.
Unstable periodic solutions, on the other hand, repel the state-space trajectories in their
vicinity. The characteristic exponent characterizing the asymptotic decay to the periodic
solutions is denoted as B(e) =B,e” +O(e*)."> The periodic solutions are therefore orbitally
stable if B(e)<0 and orbitally unstable if p(e)>0.

Whila 3t 1c nagaible ta carmy ot hifirantinn analucic niging T:ndnfa,iv DPnhinanr
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analyses,” these quickly become tedious and cumbersome. Several numerical bifurcation
codes have hence been developed. The Hopf-bifurcation code BifDD (Bifurcation Formulae
for Delay-Differential Systems)'" is here used to analyze the stability characteristics of the
outlined BWR model in the design and operating parameter space. The BifDD code can
analyze systems of ordinary differential equations with fixed time delays. Our model consists
of ordinary differential equations without time delays, so all delays are set equal to zero in the
code. Apart from the set of equations, BifDD must be supplied with a subroutine containing
explicit expressions for the Jacobian matrix of the system of ODEs. Symbolic expressions for
the Jacobian were derived with the Mathematica software package. The BifDD code
numerically verifies whether the user-supplied Jacobian is consistent with the set of ODEs.
For given values of all the system parameters except one, the code determines the value of
the unspecified parameter and the corresponding frequency at the Hopf stability boundary. By
incrementally varying another parameter, the entire stability boundary in a two-dimensional
space can be determined. The Hopf-bifurcation equations are also solved numerically. The

main result of the bifurcation calculations is the set of expansion coefficients My T, and B,

2
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for each point on the stability boundary.

All numerical calculations were performed with double precision on an IBM-RS6000
workstation at the University of Illinois. Comparative calculations with single precision
yielded significantly different quantitative results, indicating that the high-accuracy double
precision is required for these nonlinear calculations. We did not check the accuracy of the
double-precision calculations by carrying out, for example, quartic-precision calculations.
The check was, however, indirectly performed by comparing the predictions of BifDD with
the results of numerical integrations, which were carried out using the NDSolve subroutine of
the Mathematica package. NDSolve uses an Adams predictor-corrector method for non-stiff
differential equations and backward difference formulas (Gear method) for stiff differential
equations.

4.3. THERMOHYDRAULIC SUBSYSTEM

An elementary thermohydraulic natural circulation loop, consisting of a heated (core)
section and a downcomer channel, is investigated in Section 4.3.1. The natural circulation
flow rate in natural circulation BWRs is normally enhanced by installing a tall riser section on
top of the core region. The impact of this riser section on the linear and nonlinear
characteristics of a natural circulation system is studied in Section 4.3.2.

4.3.1. Natural Circulation System Without Riser

The threshold of (linear) stability for a natural circulation system is most efficiently

represented as a function of the dimensionless Zuber number N, and subcooling number

Zu
N_,,» as we demonstrated in Chapter 3. In Fig. 4-1, we first compare the results of (linear)
stability analysis obtained using BifDD with the stability boundary (SB) presented in Fig. 3-1
(the case without riser). Note that the expected good agreement between the stability
boundaries only provides a consistency check for the two approaches.

Also shown in Fig. 4-1 are the results of the bifurcation calculations. The Zuber number is
used as the bifurcation parameter in these calculations. For each value of the subcooling
number and the corresponding critical value of the Zuber number, the expansion coefficients
M, T, and B, are calculated. Neglecting terms of order four and higher in Eq. (4-3), the
values of the Zuber number for which a periodic solution with amplitude 0.1, 0.3 or 0.5 exists
are calculated and plotted in Fig. 4-1. The eigenvector ¥, in Eq. (4-1) is normalized with
respect to the first component (the normalized core exit flow M C*‘:) of the state vector %(t;A),
meaning that the € in Fig. 4-1 (and all other bifurcation diagrams in this chapter) is the
oscillation amplitude (half the peak-to-peak value) of this state variable. Figure 4-1 shows

that stable nonlinear (‘supercritical’) oscillations (B,<0) are predicted in the region of small
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subcooling numbers (N, <2.7). However, for large values of the subcooling number unstable
(‘subcritical’) oscillations (B,>0) are predicted.

Numerical integrations were performed at various points in the stability plane not only as a
counter check for the results of the bifurcation code, but also to determine the range of
validity of oscillation amplitude and frequency predicted by BifDD in different regions of
parameter space. Examples of numerical simulations of both types of Hopf bifurcations are
presented in Fig. 4-2. The supercritical Hopf bifurcation - predicted for N_,<2.7 - yields a
family of orbitally stable (‘attracting’) periodic solutions in the unstable region. All

irajeciories in the state space conveige to these stable periodic solutions. Time evolutions,
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Figure 4-2, (a) Time evolution of the normalized core exit flow MC: for stable oscillations at the supercritical
trajectory A in Fig. 4-1. (b) Time evolution for the subcritical point Y in Fig. 4-1. Notice that the long-term time
evolution in the subcritical case is strongly dependent on the initial conditions (the two initial conditions are
very close to each other).
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after initial transients, for three different Zuber numbers (at trajectory A in Fig. 4-1) are
shown in Fig. 4-2a. Considering that BifDD calculates only second-order expansion
coefficients, implying that the results of this code are strictly speaking only valid for small
values of the oscillation amplitude (i.e. close to the stability boundary), the predictions of the
BifDD code agree remarkably well with the amplitude of the stable oscillations predicted by
numerical simulations. Subcritical periodic solutions exist in the stable region where the
bifurcation is subcritical, and are unstable: They repel all nearby trajectories in the state
space, and are therefore difficult to detect numerically. The growing and decaying oscillations
at a point in the stable region with subecritical bifurcation (point Y in Fig. 4-1) are shown in
Fig. 4-2b. The influence of initial transients is minimized in Fig. 4-2b by perturbing the
system with the calculated eigenvector. Notice that the time evolution for the subcritical case
is strongly dependent on the initial conditions: The two initial conditions are almost the same,
yet the resulting long-term evolutions are entirely different. Figure 4-2b indicates that the
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Figure 4-3. Comparison between the Hopf prediction and numerical simulations for four sequences of points
(A through D) shown in Fig. 4-1: (a) for trajectory A in Fig. 4-1 (N,,,=1.3), (b) for trajectory B (N,,,=2.0), (c)
for trajectory C - on the stable side of the SB - with N, ,=4.1, and (d) for trajectory D (N,,=7.0). Note that the
subcooling number (instead of the Zuber number) is the bifurcation parameter in Fig. 4-3d.
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unstable periodic solution for parameter values at point Y has an amplitude between 0.27 and
0.28. This time-domain result agrees well with the amplitude of 0.3 predicted by the BifDD
code.

Hopf’s theorem predicts the amplitude of the stable and the unstable periodic solutions in
the immediate vicinity of the SB to grow proportional to the square root of the distance from
the SB. An estimate for the region that qualifies for “immediate vicinity” is not provided by
the theorem, and can only be obtained by comparing the amplitude and frequency of the
oscillations predicted by the Hopf theorem with those obtained using the numerical
simulation of the full nonlinear set of ODEs. Not surprisingly, the distance over which the
Hopf prediction agrees with the amplitude and the frequency of the numerical simulation
varies in different regions of the parameter space.

Figure 4-3 shows the comparison between the Hopf prediction and numerical simulations
for four sequences of points plotted in Fig. 4-1 - three (A, B and D) in the unstable and one
(C) in the stable region. At N, =1.3 and N, =2.0, as N, is increased, the Hopf prediction
for the oscillation amplitude agrees very well with the numerical simulation results up to
€=0.6 (Figs. 4-3a and 4-3b). Note that at N, =1.3, N, has to be increased by almost 1 to
reach the point in parameter space where e = 0.6, whereas for N_,, =2.0, €=0.6 is reached with
a more modest increase in N, (from N, of about 0.25.

At N_, =4.1, the bifurcation is subcritical, and hence the periodic solution is unstable.
Numerically, the amplitude of the subcritical oscillations was estimated to be in between the
oscillation amplitudes of a decaying and a growing oscillation (after the initial transients have
died), obtained by starting from different initial conditions in phase space. These small “error
bars” are shown in FIO 4-3¢c. The oscillation amplitude of the unstable nprmrim colution
follows the “square-root behavior” up to €=0.3, and then increases more rapidly as the
bifurcation parameter N, is further decreased. Figure 4-3d shows the results for N, 7.0,
with N_ as the bifurcation parameter.

The effect of the Froude number N [which is proportional to the square of the mass flux
density, see Eq. (2-25)] on the SB is known to be small. However, the bifurcation type for
large subcooling numbers is strongly dependent on the value of this dimensionless number.
The flow rate, and therefore the Froude number, is not an independent variable in a natural
circulation system, but is determined by the density differences between the two-phase
mixture in the core and the riser and the one-phase fluid in the downcomer. The Froude

number is approximately equal to 0.02 (for N_,>2.7) for the natural circulation system

sub
without riser, being analyzed in this section. As the Froude number is artificially increased
(by imposing an external pressure drop over the recirculation section), the stability boundary

for large N, moves slightly to the right, increasing the stable region (see Fig. 4-4a). The

sub

nonlinear characteristics of the system change more significantly. The subcritical region for
high subcooling numbers (Fig. 4-4b) disappears as the Froude number is increased to 0.1
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Figure 4-4. Influence of the Froude number on the SB (Fig. 4-4a) and on the bifurcation characteristics (Figs. 4-4b
through 4-4d). Figure 4-4a shows that the influence of the Froude number on the SB is rather small. However, the
nonlinear characteristics of the system change significantly. Figure 4-4b shows the bifurcation diagram for a Froude
number of 0.02, which is close to the natural circulation case investigated in Fig. 4-1. The subcritical bifurcations
at larger N, disappear when the Froude number is increased to 0.1 (Fig. 4-4c) and 1.0 (Fig. 4-4d).

(Fig. 4-4¢c) or 1.0 (Fig. 4-4d), and the Hopf bifurcation becomes supercritical in the entire
dimensionless plane. These results agree with observations by Clausse et al.,*> who also found
that decreasing the Froude number, i.e. increasing the relative importance of the gravitational
pressure drop terms, the Hopf bifurcations change from supercritical to subcritical at higher

subcooling numbers.
4.3.2. Natural Circulation System With Riser
In this section, the elementary thermohydraulic loop discussed in the previous section is

extended with an unheated riser on top of the heated core. Since the riser is not heated, the

(linearized) model equations for the riser section can be integrated exactly, see Chapter 2 and
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Ref. 23, and hence the SB can be determined without any error due to nodalization in the
riser. For the Hopf analysis using BifDD, however, the two-phase quality profile in the riser
must be approximated, and hence nodalization is necessary to obtain the set of ODEs given in
Appendix B. The impact of such a nodalization in the riser on the SB can be easily studied by
comparing the SB obtained using exact integration in the riser (without nodalization error)
with those obtained with an approximated quality profile and different number of nodes (Ny)
in the riser. The influence of a riser section and the impact of nodalization on the stability
boundary of a natural circulation system is shown in Fig. 4-5. Notice that the stability
boundaries calculated by the bifurcation code approach the stability boundary obtained with
exact treatment of the riser (taken from Fig. 3-1) when the number of riser nodes is increased.
The bifurcation characteristics change significantly in the region of Type-I oscillations
when the number of riser nodes is varied, see Fig. 4-6. Subcritical nonlinear oscillations are
predicted when only one riser node is used (see Fig. 4-6a), whereas calculations with more
nodes indicate that the nature of the Hopf bifurcation is supercritical in the Type-I region
(Figs. 4-6b through 4-6d). Note that the nonlinear solutions depicted in Fig. 4-6 appear to be
inconsistent for large values of the

8 subcooling number, indicating a

----- Exact Riser 16
— Nodalized Riser

20 reduced accuracy in the neighborhood
of the turning point in the SB. The
results in Fig. 4-6 also indicate that a

N detailed axial nodalization of the riser

sub

4 is necessary, especially in the Type-I

region, to account correctly for the
nonlinear dynamics of the void
transport in this section. Analogously,

our model of nonlinear stability in the

0 Type-11 region could be improved by
0 2 4 Ny, 6 8 10 applying a more detailed nodalization

scheme for the heated section (now
Figure 4-5. Influence of the number of riser nodes (N ) on the (no

stability boundary for a natural circulation system with riser. The only one subcooled and one boiling

stability boundary approaches the frequency-domain stability node are employed in the analysis of
boundary with exact treatment for the riser, when the number of . . .
riser nodes increases. The circumscribed characters | and 1I the core region). The bifurcation

indicate the Type-I and Type-Il instability regions. The stable characteristics in Fig. 4-6 have been
region is denoted with the symbol S. . .
confirmed by direct nonlinear time-

domain simulations in Ref. 24. Other analytical and numerical studies of nonlinear dynamics
in the Type-1 instability region®* also reported supercritical Hopf bifurcations. Three axial
riser nodes were used in these references.

Finally, notice that the bifurcations for the Type-II instability at high values of the
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Figure 4-6. Influence of the number of axial riser nodes on the nonlinear stability characteristics. The bifurcation
curves change dramatically in the region of Type-1 oscillations when the number of riser nodes is increased.
Subcritical oscillations in the Type-I region are predicted when only one riser node is used (Fig. 4-6a), whereas
calculations with more nodes (Figs. 4-6b through 4-6d) indicate that the nature of the Hopf bifurcation is
supercritical in the Type-I region.

subcooling number are supercritical, instead of subcritical, when the natural circulation
system is coupled with a riser (compare Fig. 4-6d with Fig. 4-1). This effect can be explained
by the larger natural circulation flow, and therefore the larger Froude number, when a riser
section is installed. The influence of the Froude number on the Hopf bifurcation has already
been discussed in Section 4.3.1.

4.4. REACTOR SYSTEM

The (nonlinear) interaction between the neutronic and the thermohydraulic subsystems in a
natural circulation BWR is investigated in this section. Table 3.3 summarizes the neutron
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kinetic and fuel data that were used in the calculations. The influence of nuclear feedback on
the stability of an elementary natural circulation reactor without riser is discussed in
Section 4.4.1. The dynamics in the vicinity of the stability boundary is first explored in
Section 4.4.1.1. The complicated nonlinear oscillations which can occur ‘deeper’ in the
unstable region are then investigated in Section 4.4.1.2. Finally, the influence of an unheated
riser on the reactor bifurcation characteristics is considered in Section 4.4.2.

4.4.1. Reactor System Without Riser
4.4.1.1. Dynamics in the Vicinity of the Stability Boundary

The bifurcation diagram for a natural circulation reactor without riser, and a void reactivity
coefficient r, equal to -0.05, is shown in Fig. 4-7. The channel bifurcation diagram without
neutronics coupling (taken from Fig. 4-1) is also shown. Note that nuclear feedback has a
negative effect on the Type-II stability, in accordance with the parametric results in Chapter 3.
Both the SB and the bifurcation characteristics are affected by the addition of nuclear
coupling. The stability boundary for the coupled neutronic-thermohydraulic system moves to
the left when compared with the SB for the heated channel, reducing the stable region.

In both cases a supercritical Hopf bifurcation occurs for low values of N__ and a

sub

subcritical Hopf bifurcation occurs for larger values of N_,. The transition from a
supercritical to a subcritical Hopf bifurcation for the heated channel occurs at approximately
N_,, 2.7, while for the reactor it occurs at about N_,0.8.

The influence of the subcooling number on the nonlinear reactor dynainics is neglected in
1

both the qualitative'' as well as the more detailed’” BWR model developed by March-Leuba

4.5 -
A A lo -~ 2 7
44 m B r
3.5 4| ° Nom. Cond.| d
3 4 SB
Reactor .
Nsub 25 A 3 4
€=0.5 _ * SB Figure 4-7. Bifurcation characteristics of
2 7 Reactor ; Channel a natural circulation reactor without riser
1.5 4 S8 (r,=—0.05). Nuclear feedback has a
! H strong destabilizing effect on the Type-I1
17 stability. The bifurcation characteristics
054 0 T also change: The region in the Zuber-
' o subcooling plane where subcritical
0 + . . bifurcations exist becomes larger for a
0 2 4 10 nuclear-coupled reactor system. Also

shown is the normal operating point of
the Dodewaard reactor.
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et al. For simplicity they assumed in their models that the coolant enters the core as a
saturated liquid (i.e. N_, =0). Both models predicted the existence of large-amplitude stable
oscillations in the unstable low-flow/high-power domain (i.e. large Zuber numbers). This
result is consistent with the supercritical Hopf bifurcations predicted by our model for small
subcooling and large Zuber numbers. Similar results were found in other theoretical studies.
Karve et al."* numerically found the bifurcation in their model of forced circulation BWRs to

be subcritical for a large N_ of 1.5. The subcritical bifurcations for higher values of the

b
subcooling number were reported earlier by Tsuji et al.' Also shown in Fig. 4-7 is the
nominal operating point of the Dodewaard reactor. It is clear that this operating point is in the
stable region, far from the SB.

Time-domain illustrations of supercritical and subcritical bifurcations in a reactor system
are presented in Fig. 4-8. Figure 4-8a shows the evolution of the normalized reactor power
N * to a stable nonlinear oscillation, in case of a supercritical Hopf bifurcation (point A in
Fig. 4-7). The limit cycle amplitude is quite large, although point A is located close to the
stability boundary. The bifurcation code predicts oscillations of the reactor power with an
amplitude of 100% at point A. Figure 4-8a shows that this estimate is in fact close to the
actual time-domain oscillation amplitude (half the peak-to-peak value) of 113%. This
relatively small difference in numerical and bifurcation studies should have been surprising,
since the BifDD code is strictly speaking only valid for small-amplitude oscillations, but
results presented in Fig. 4-3 for the heated channel already showed us that the Hopf-predicted
oscillation amplitude in this region of the parameter space can indeed be very accurate, even
at points far from the SB. The major differences between the Hopf-predicted stable (and
unstable) periodic solutions and those determined using the direct numerical simulations of
the set of ODEs is that the Hopt solutions are purely sinusoidal [see Eq. (4-1)], whereas
actual oscillations may be quite asymmetric about the fixed point (see Figs. 4-8a and 4-8b).
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Figure 4-8. (a) Time evolution of the normalized reactor power N * for stable oscillations at the supercritical point
A in Fig. 4-7. (b) Time evolution for the suberitical point B in Fig. 4-7, for two initial perturbations.
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Figure 4-8b shows the result of a subcritical Hopf bifurcation, which yields an unstable
periodic solution in the stable region. The long-term behavior at point B of Fig. 4-7 is
therefore strongly dependent on the initial perturbation of the state variables. The initial
conditions for the two cases depicted in Fig. 4-8b are almost the same, yet the slightly larger
initial perturbation causes a diverging and large-amplitude power oscillation, whereas the
smaller initial perturbation is damped out and the system returns back to the stable fixed
point. According to the BifDD code, the unstable and periodic nonlinear oscillation that exists
at point B has an amplitude of 0.70. The time-domain simulations in Fig. 4-8b suggest that
the amplitude of this periodic oscillation is in fact slightly larger (between 0.77 and 0.79).
The agreement between the bifurcation code predictions and the time-domain simulations
further improves (as expected) for nonlinear oscillations with smaller amplitudes.

From reactor safety point of view, the existence of subcritical nonlinear oscillations in the
stable region has profound consequences, because in case of a subcritical Hopf bifurcation the
reactor can become unstable in the stable region when the initial perturbation is large enough.
Close to the stability boundary the ‘basin of attraction’ of the stable steady-state operating
point becomes smaller, and modest perturbations (for instance due to noise or small control
rod movements) could in principle result in diverging and undamped power oscillations, even
when linear models still predict a stable system.

The impact of the void reactivity feedback on the Hopf-bifurcation (HB) characteristics is
next investigated in more detail. Figure 4-9 shows curves, calculated with the BifDD code, of

a constant oscillation amplitude €=0.1, in the 8N_, —r, and 8N, —r, planes. The horizontal

sub

coordinate 6N_, =(N_, —-N N e in Fig. 4-9a is the relative change in N, from its

sub,¢
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line in Fig. 4-9a), the periodic solutions that exist for 8N_, >0 are stable nonlinear

b
oscillations (caused by a supercritical Hopf bifurcation), and the periodic oscillations are
unstable if 6N_, <0 (subcritical Hopf bifurcation).

The entire €=0.1 curve in Fig. 4-9a is located on the unstable side of the stability
boundary, and the bifurcation type is therefore supercritical in the entire 8N_, —r, space. The
parameter study in Fig. 4-9a is performed at N, =7.0, close to point A in Fig. 4-7. The heated
channel bifurcation characteristics (no nuclear feedback) is obtained by setting r =0.
r,=-0.05 corresponds with the case studied in Fig. 4-7. Notice that the €=0.1 curve in
Fig. 4-9a slightly tends toward the stability boundary as r, is increased (in an absolute sense)
from zero, but turns away as r, is further increased. Hence, the periodic solutions with an
amplitude of 0.1 are located deeper in the unstable region when the (absolute) void reactivity
coefficient becomes larger.

The Zuber number, instead of the subcooling number, is the bifurcation parameter in
Figs. 4-9b through 4-9d. We notice in Fig. 4-9b, for N_, =1.3, that the bifurcation type

changes from supercritical to subcritical and then back to supercritical as the strength of the
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Figure 4-9. Influence of the void reactivity coefficient r, on the Hopf-bifurcation (HB) curves in the Type-I1
instability region for a reactor without riser. The horizontal coordinate 8N_, = (N, ~N_, )/N_, in Fig. 4-9a

is the relative change in N_, from its value on the stability boundary, N_ . . N, is the bifurcation parameter

in Figs. 4-9b through 4-9d. Shown are constant amplitude periodic solution curves for an oscillation amplitude
of 0.1. The vertical dotted line is the stability boundary.

nuclear feedback is varied via the void reactivity coefficient. Neglecting the nuclear feedback
by setting r, =0, Fig. 4-9b shows that the bifurcation type for the thermohydraulic subsystem
is supercritical at N_, =1.3, in agreement with Fig. 4-7. The bifurcation remains supercritical
for a reactivity coefficient as large as -0.02. The bifurcation becomes subcritical, however, as
the void reactivity coefficient is increased (in an absolute sense) to (for instance) -0.05 (cf.
Fig. 4-7). A further increase of the void coefficient once again changes the bifurcation to a

supercritical Hopf bifurcation. At larger values of N the “windows” of supercritical

sub?

bifurcations become smaller (see Fig. 4-9¢), and the Hopf bifurcation finally becomes
subcritical in the entire N, -, space (for example for N =4.1 in Fig. 4-9d).
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Figure 4-10. Higher-order bifurcations occurring in a natural
circulation reactor without riser (r,=-0.2 and N, =7.0). The
evolution of the reactor power after the (a) first (or ‘Hopf®),
(b) second, and (c) third bifurcation (N, "N o~ 0027,
0.176, and 0.205, respectively) is shown.

4.4.1.2. ‘Deep’ in the Unstable
Region

Direct time-domain simulations are
necessary to investigate the nonlinear
dynamics of a reactor far away from the
stability boundary. We performed
simulations for N, =7.0 and r=-0.2,
with the subcooling number as the
bifurcation parameter. Figure 4-9a
showed that under these circumstances
the Hopf bifurcation is supercritical,
and  therefore  stable  nonlinear
oscillations exist if the subcooling
number is increased just above the
critical value. Increasing the subcooling
further, a cascade of period-doubling
pitchtork bifurcations was found,
similar to that observed in Refs. 10 and
11. After each higher-order bifurcation,
the  oscillation period doubles.
Figure 4-10 shows as an example the

evolution of the reactor power after the
first, second, and third bifurcation
(N, Ny .= 0.027, 0.176, and 0.205,
respectively). Notice that the oscillation
amplitude after the second (see
Fig. 4-10b) and the third bifurcation
(see Fig. 4-10c) becomes very large.
The practical importance of higher-
order bifurcations is therefore limited,
because a reactor scram system would
prevent the development of such
extreme oscillations.

The difference in N, between two
successive bifurcations decreases as the
bifurcation parameter is increased. This

suggests that the cascade of
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bifurcations converges to an accumulation point where the oscillations become aperiodic
(chaotic), as has been observed earlier in another BWR model'' and is predicted by
Feigenbaum’s universal theory.”® The flow rate can become very small (approaching zero)
during extremely large-amplitude power oscillations. The time-domain model breaks down,
therefore, after the third bifurcation, and the entire ‘path to chaos’ could not be explored with
the present model.

4.4.2. Reactor System With Riser

The bifurcation characteristics of a natural circulation reactor system with riser (r, = -0.05)
are presented in Fig. 4-11. Also shown in this figure, for comparison, is the SB for the heated
channel from Fig. 4-6d. There is a quantitative change in the SB as the neutronics feedback is
included. The “nose” or “elbow” of the stable region for the reactor case is narrower, but
extends to higher values of the subcooling number compared to the stable region for the
heated channel case. For example, the operating point (N,N,,) = (6,5) is stable for the
reactor, but unstable for the heated channel. Results of the bifurcation analysis show a more
dramatic (qualitative) change in the bifurcation characteristics of the system as the neutronics

feedback is included. Without the
nuclear feedback, the bifurcation

7 Ng=4 10 was always supercritical (see
6 - --- SB Channel Fig. 4-6d). When neutronics
w— SB Reactor feedback is included, bifurcation
5 —-e=02 for r, = -0.05 is found to be
] subcritical for the Type-I stability
Nsub4 region, and a combination of
3 A subcritical (for large Ny, > 0.8)
and supercritical (for low N_,)
2- bifurcation for Type-II instability
1A regions. While the impact of
S neutronics feedback on the
0 T I T I bifurcation in the  Type-II
2 3 4 5 6 7  instability regions is  quite
Nzu

insignificant for small Ng,, for

Figure 4-11. Bifurcation characteristics of a natural circulation large values of N, the change
reactor with riser (r, =-0.05). The bifurcation curves in the Type-l
instability region change significantly in a nuclear-coupled reactor
system: The supercritical bifurcations in the Type-l instability the Type-I and the Type-II regions
region for a thermohydraulic system (see Fig. 4-6d) become
subcritical in a reactor. For comparison, the SB for the channel is
also shown. stability is most important in the

from super- to subcritical for both

is quite important. Its impact on
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Type-I region where the £=0.2 bifurcation curve is quite removed from its corresponding SB.
This indicates that for systems operating in between the £=0.2 bifurcation curve and the
corresponding SB, a perturbation of 20% magnitude can “kick” the system to “outside” the
unstable periodic solution, causing diverging oscillations. The small separation between the
Type-1I SB (for large N} and the corresponding £=0.2 bifurcation curve indicates that in this
case the operating point in the stable region must be much closer to the SB (compared to the
Type-I case) in order for a perturbation of 20% magnitude to cause a diverging oscillation.
Because of their importance, the dependence of the bifurcation mode on the strength of the
nuclear feedback is investigated next. The impact on the bifurcation characteristics in the
Type-I instability region is shown in Fig. 4-12a. The location of the SB depends on the value
of the void reactivity coefficient, but is close to point A in Fig. 4-11 (N, is equal to 4.0).
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Figure 4-12. (a) Influence of the void reactivity coefficient r, on the bifurcation characteristics in the Type-I
instability region, close to point A in Fig. 4-11 (N =4.0). Both supercritical and subcritical bifurcations can
occur, depending on the value of the void reactivity coefficient. (b) Influence of the void coefficient on the
bifurcation characteristics in the Type-II instability region, close to point B in Fig. 4-11 (N, =4.1).

sub

Both sub- and supercritical Hopf bifurcations are possible in this case. As r, is decreased from
0, the bifurcation is initially supercritical, it changes to subcritical for -0.102 < r, < -0.018,
and changes back to supercritical for r, < -0.102. '

Results of bifurcation analysis for the Type-II region, as a function of r,, are shown in
Fig. 4-12b. The parameter study in Fig. 4-12b is performed close to point B in Fig. 4-11
(Ny,=4.1). As remarked in Section 4.3.2, the bifurcation mode in the Type-II instability
region for the thermohydraulic system becomes supercritical for higher values of the
subcooling number, when the flow rate is enhanced by a riser section. The bifurcation curve
in Fig 4-94, for a system without riser, is hence also expected to change as the riser is added.
This is shown in Fig. 4-12b.
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4.5. CONCLUSIONS

A low-dimensional stability model of natural circulation BWRs is analyzed successfully.
The complicated nonlinear dynamics is investigated with a Hopf-bifurcation code and with
time-domain simulations. Good agreement between the results of the two approaches was
found, especially in the immediate neighborhood of the stability boundary (where the local
analysis of the bifurcation code is the most accurate).

The nonlinear stability of (high-power) Type-II oscillations was studied in an elementary
natural circulation loop without a riser section, and without nuclear feedback. Both
supercritical and subcritical Hopf bifurcations were encountered. The unstable subcritical
oscillations become dominant for large values of the subcooling number and small values of
the Froude number, whereas the stable supercritical oscillations occur at low values of the
subcooling number. The elementary natural circulation loop was extended with a riser, to
study the nonlinear Type-1 oscillations induced by the gravitational pressure drop over this
section. A parametric study demonstrated the importance of using multiple riser nodes in the
model: The Hopf bifurcation mode changes dramatically for the Type-I instability from
subcritical (one node in the riser) to supercritical (multiple nodes) as the number of axial
nodes is increased.

Nuclear feedback has a profound impact on the stability of a natural circulation reactor.
For the Type-II instability, parametric studies indicate that supercritical bifurcations become
dominant for small values of the subcooling number and a strong nuclear-thermohydraulic
coupling. A cascade of period-doubling pitchfork bifurcations, ‘deep’ in the unstable region,
was also encountered under these conditions. The bifurcations for larger values of the
subcooling number and small values of the Froude number, were of subcritical nature. Both
subcritical and supercritical bifurcations are possible in the Type-I instability region for a
natural circulation reactor with riser, again depending on the strength of the nuclear feedback.

Numerical simulations were also carried out to determine the range of validity of the
bifurcation analyses away from the stability boundaries. Results for the channel case show
that in certain regions of the parameter space, the bifurcation results are accurate for an
oscillation amplitude as high as 70% of the nominal value.

The long standing concern over the impact of various design and operating parameters on
the nature of bifurcation (subcritical vs. supercritical; stable periodic oscillations vs. growing
amplitude oscillations) has been at least partly answered in this study. More work is needed
using more elaborate models (such as the drift-flux model for the two-phase flow, and
quadratic enthalpy and quadratic quality profiles in the single and two-phase regions), and
using continuation codes that allow the continuation of periodic solution paths when
asymptotic analyses such as those employed in the bifurcation code BifDD are not applicable.
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Low-Pressure BWR Dynamics: | - Theoretical Model

Abstract - A dynamic model for natural circulation BWRs under low-pressure conditions is
developed. The motivation for this theoretical research is the recent concern about the
stability of natural circulation BWRs during the low-pressure reactor startup phase. There is
experimental and theoretical evidence for the occurrence of void flashing in the unheated riser
under these conditions. This flashing effect is included in the differential (homogeneous
equilibrium) equations for two-phase flow. The differential equations were integrated over
axial two-phase nodes, to derive a nodal time-domain model. The dynamic behavior of the
interface between the one and two-phase regions is approximated with a linearized model. All

model equations are presented in a dimensionless form.

5.1. INTRODUCTION

The stability of natural BWRs under
startup conditions has been recognized in
recent years as an important issue that needs
to be considered in the design of new reactor
types. The key issue under low pressure
startup conditions is the phenomenon of void
‘flashing’ in the riser. The term ‘flashing’
refers to the occurrence of boiling in a natural
circulation BWR, due to the decrease of
hydrostatic pressure and saturation enthalpy
along the flow path, when the coolant flows
upwards through the core and riser sections.
Because the saturation enthalpy is strongly
dependent on the pressure at pressures lower
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than 20 bar, see Fig. 5-1, the influence of flashing becomes especially important under low-
pressure conditions.

Dynamic instabilities can be induced by flashing under these circumstances, since the
slope of the void fraction - flow quality curve in Fig. 1-4 is very steep under low power and
pressure conditions, i.e. a small increase of the flow quality already induces a large increase
of the riser void fraction. As a result, the driving force of the convection and the natural
circulation flow increase. The flow quality in the core and the riser will consequently
decrease, this way providing a thermohydraulic feedback mechanism that can cause self-
sustained oscillations. Because void flashing in the riser directly affects the gravitational
pressure drop over this section, it can be classified as a ‘“Type-I’ density-wave stability
phenomenon.!

5.2. CURRENT RESEARCH ON FLASHING

The impact of void flashing on reactor stability is the incentive to recent studies of the
stability of natural circulation BWRs under low-pressure startup conditions. A short summary
of the main research activities in this new and quickly developing field is provided in this
section.

The Central Research Institute of Electric Power Industry (CRIEPI) in Japan has
constructed a low-pressure thermohydraulic test facility, which can be used to simulate the
startup of the SBWR concept of GE. The design parameters for this facility were estimated by
transforming the basic equations of the drift-flux flow model to a nondimensional basis.’

s ~fF tlha Lo £1. A Vien v man
i0n O7 uUic nicat llu)\ SUoCo0 IIIE (llIU D_yDlClll PLrossulc

(ranging from atmospheric pressure to 5 bar) were presented by Furuya et al.’ Two stability
boundaries were found in the heat flux-subcooling plane between which the natural
circulation flow becomes unstable due to void flashing in the riser. Intermittent ‘pulsed’
oscillations with a long oscillation period were measured close to the high subcooling
stability boundary. At a smaller subcooling sinusoidal oscillations with a shorter oscillation
period were measured. These oscillations stabilize when the subcooling decreases further.
Furuya et al. moreover measured an increase of the range of the unstable region (in the heat
flux-subcooling plane) when the heat flux is increased. An increase of the pressure has just
the opposite, stabilizing, effect on flashing induced stability. A corﬁparison with typical
SBWR operating points (calculated with the detailed BWR stability code TRACG)
demonstrated” that these operating points were on the stable (highly subcooled) side of the
unstable region. A TRACG model of the CRIEPI facility was developed by Andersen and
Klebanov.* Good agreement with the CRIEPI measurements was shown, thereby qualifying
TRACG as a suitable code for the startup of a natural circulation BWR.

The Chinese Institute of Nuclear Energy and Technology (INET) has developed a 5§ MW
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nuclear test reactor for district heating, which is in operation since 1989.° This natural
circulation reactor operates at a low pressure (15 bar), low steam quality (less than 1% at the
core exit), and is cooled by natural circulation. A test loop (HRTL-5), simulating the design
and geometry of this reactor, was built at INET to simulate the thermohydraulic stability of
the nuclear test reactor. It was observed that subcooled boiling and void flashing have a
significant influence on two-phase flow stability, especially at low system pressures.%’
Several kinds of flow instabilities were observed as a function of the inlet subcooling. The
HRTL-5 test loop was analyzed numerically with a one-dimensional two-phase flow drift-
flux model with four governing equations.® The measured and calculated stability maps in the
heat flux-subcooling plane showed a good quantitative agreement.

The first in-core measurements of the startup stability of a natural circulation BWR were
performed in the Dutch Dodewaard BWR. A team of specialists from several Dutch institutes
has performed measurements during the startup phase of this reactor at the beginning of
cycles 23-26.° The Dodewaard startup of cycle 23 was successfully simulated with the
TRACG code by Wouters et al."’ However, during this particular measurement session only
minor oscillations were measured (and predicted by TRACG). The first significant decrease
of stability was observed during the startup of cycle 25, but these experimental data have not
yet been analyzed quantitatively with a BWR stability code that includes a flashing model.

Therefore, the previously developed stability model for natural circulation BWRs, see
Chapter 2,'"'"? is extended in Section 5.3 of this chapter with a description of the flashing
effect. This extended model can be used as a powerful analytical tool to gain more physical
insight into the complicated flashing phenomenon. A parametric study of low-pressure BWR
stability is presented in Chapter 6. A validation of the model on the basis of startup stability
data from the Dodewaard BWR is presented in Chapter 7.

5.3. MODEL

Our theoretical flashing model is developed using the one-dimensional homogeneous
equilibrium mixture (HEM) equations for two-phase flow. We also employed these equations
in Chapter 2. The decrease of the liquid saturation enthalpy along the flow path in the core
and riser was, however, neglected in that chapter. Inada and Ohkawa'? included flashing
effects in the HEM model for two-phase flow by assuming that the liquid saturation enthalpy
is proportional to the local pressure. All other fluid properties were assumed to be
independent of the pressure. The nondimensional differential equations which Inada and
Ohkawa used, based on these assumptions, are the starting point of our flashing model.
Precise definitions of all pressure-dependent dimensionless numbers and variables, like the
Zuber number and the subcooling number, are provided in Appendix C. The axial power
profile is assumed to be flat, to simplify the analysis.
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The dimensionless continuity equation for the two-phase region is:"

* o x
i[] 1 ¢4 *,t*) + N a(z *,t *)] + M =0. (5_1)
at* ? az*

The dimensionless energy equation for homogeneous two-phase flow can be written as:

:9—8—:{(1 “N))a(z Tt —Nmshh(*(z [ —e(z Nt "‘)]} +
t

1 -N
9 { La(z M @ N Ny b (2 59 —x(z 5 HIM Yz 5 =N,a .
oz * Np

(5-2)

The void production due to flashing is incorporated in the dimensionless flashing number
Na- This number is equal to the difference between the dimensionless subcooling of the
fluid at the core inlet and the riser exit, see Eq. (C-1) in Appendix C. When flashing is
neglected, i.e. when the saturated liquid enthalpy is constant over the assembly height, these
two dimensionless numbers are equal and the flashing number becomes equal to zero. The
differential momentum equation for the boiling region becomes:
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The left hand side of Eq. (5-3) consists respectively of the differential inertial, accelerational,
gravitational, frictional and local pressure losses. The differential momentum equation (5-3)
is identical to the equation previously used in the model without flashing. The pressure drop
terms summarized in Table 2-1 are therefore equally valid in this flashing model.”

The following axial nodalization scheme is used in this low-pressure model. If the coolant
reaches the boiling point before the core exit, the two-phase region in the core is treated as a
single node with a dimensionless length 1 —Zh:'c(t *). The riser section is divided in N axial
nodes of equal length LR*/N g if Zb;(t "< 1. Neglecting the flashing effect, this condition is
always satisfied, and the same nodalization scheme as used in the model without flashing is
applied. If Zb:(t ">1, only out-of-core boiling occurs. The nodalization scheme shown in

“The (small) accelerational and frictional pressure drops over the downcomer are added to the
pressure losses at the core inlet, to simplify the analysis. Therefore a factor Y%k, i/AD*?i +
% (l/AD*jze —l/A,;f) is added to the core inlet friction coefficient k.
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1Le’ (Outlet) 0000% OOOOO 'y Fig. 5-2 is adopted in this case. .
o0 00 B0 As an example, a three-node scheme is
L0 - (Ne2)*A 00008%)0800 considered here. Applying another number of
8%%00830% nodes is straightforward. The height of the first
. (%0(90080%8 riser node in Fig. 5-2 is dependent on the
e - (Ng-1)*A OébO 08)0% transient position of the boiling boundary:
Zope (1) —-J020000-000 . " _
b;b - ¢ 8Zgpr (t) Lea(t? =4 _[Zb;,n(t b _Zb;,R]’
b.R
N 1 +L * -7 * (5-4)
1o with A= — & "R
1 (Riser Inlet) . N

Figure 5-2. Nodalization scheme for the riser section, A large increase of the boiling boundary

if out-of-core boiling occurs. A three-node scheme position causes a significant reduction of the
(Ng=3) is shown. The height A of the upper two nodes . . Lo
is fixed and equal to (1 +L, ~Z,, J/N,. Notice that height of this node. It is important, therefore,
the height of the lowest riser node changes as the (g check whether LR*I(t *) remains positive at
boiling boundary fluctuates. . . U . b
all times during the transient calculations.” All
other riser nodes in Fig. 5-2 have a fixed height A. The advantage of this nodalization scheme
becomes clear when we integrate Eq. (5-1) over an arbitrary boiling node with a

dimensionless length Ln*(t :
d<at®>, Mt ~M5¢H  <e(t)> dL (Y
) L, (¢ H(1N,) L% dt”

The quantities with a subscript n-1 are evaluated at the node ‘inlet’, while a subscript n
denotes the node ‘outlet’. Because their node heights are fixed, the second term on the right

dt (5-5)

hand side of Eq. (5-5) is zero for all riser nodes except the first one, assuming that ZbZ(t H>1.
If Zb:(t "<1, all riser nodes have a fixed height, and this time-derivative term becomes zero
for all riser nodes.

Integrating the differential energy equation (5-2) over a two-phase node, and simplifying
the result by substituting Eq. (5-5) leads to:

YIf this restriction causes problems, an alternative nodalization scheme, for instance using Ny
time-dependent riser nodes with equal length [1 +L —sz,k(t "1/N,, might be used.
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The saturation enthalpy hf*(t  in Eq. (5-6), defined in Eq. (C-1), is assumed to be linearly
dependent on the local pressure:"?
P P (D)
P;,e(t D) -Pc*,i(t b)

This approximation is used because the pressure difference between the core inlet and the

he(th = (5-7)

riser exit is smaller than 0.5 bar. A linear approximation of the saturation-enthalpy function
over such a small pressure range is quite accurate, even in the low-pressure regime, see
Fig. 5-3.

The influence of the inertial pressure losses on the saturation enthalpy is neglected in this
model. The pressure difference P, (t ") —Pcti(t ") between the riser exit and core inlet is then
equal to the gravitational pressure drop over the downcomer, when the minor frictional, local
and accelerational pressure losses over the
downcomer are also neglected. Assuming

that the down-coming fluid is subcooled, as 07
has been done in the model without flashing, .
see Chapter 2, this pressure difference g’ 0.6
becomes: S

Lt = 05

Pre(t) Poit) = —,  (5-8)
Ner 04 T T T

As a boundary condition, the pressure at the 1 2 3 4 5
riser exit is assumed to be kept constant by P (bar)

the reactor pressure controller, so usin -
*p g Figure 5-3. The saturated liquid enthalpy h; as a
Eq. (5-8) Pc,i(t ") can be calculated. function of the pressure level, for pressures below 5
The local pressure at the boiling bounda bar (cf. Fig. 5-1). A linear approximation of the
. P . & . il hefunction (over a pressure range of ~0.4 bar) is used
(the ‘inlet’ of the first boiling node) is then in the model.
determined by integrating Eq. (5-3) over the
one-phase regions in the core and the riser. Since the pressure drop over each two-phase node
is a function of two-phase variables as the flow quality, the saturation enthalpy at the node

‘exit’ becomes a function of these variables, whereas according to Eq. (5-6) these variables
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are in their turn dependent on the saturation enthalpy. This leads to recursive equations,
which are rather cumbersome in the numerical analysis. Therefore, it is assumed that the
saturation enthalpy is a linear function of the axial position between the boiling boundary and
the riser exit.

The local quality in Eq. (5-6) is assumed to increase or decrease linearly between the node
inlet and outlet (this approximation has been applied as well in the model without flashing).
The nodal void fraction then becomes:

L, i N, D0 x|

<a(t™> = - x 1
LN (N, =Dl ) x4 )] LN, =1y, ()

}- (5-9)

A Taylor approximation of the logarithmic term in Eq. (5-9) is recommended to avoid a
singularity in the steady state.'""?

Finally, the complexity of Eq. (5-6) is reduced further by neglecting the term containing
the time derivative of the nodal saturation enthalpy hf*(t . The magnitude of this term is
proportional to the flashing number, and its importance therefore increases at lower pressures.
The impact of this neglect is investigated numerically in Chapter 6.

The dimensionless length of the lowest two-phase node is determined by the instantaneous
position of the boiling boundary. An evaluation of the one-phase region is therefore
necessary, to determine the dynamic behavior of this quantity. In fact, we can employ Egs. (5-
1)-(5-3) for the one-phase region as well, if we set the void fraction and flow quality equal to
zero in these equations. Equation (5-1) then shows that M "(Zb’;’C At =Mcfi(t ", if Zb:<1.
Due to conservation of mass at the junction of the core and the riser we also find that
M *(Zb;’R,t N =Mt "Ay if Z,y>1. Applying Eq. (5-2), the differential energy equation for
the one-phase region becomes:

oh,z "t i,

. » Oh(Z ") N,
LA
ot*

= —Z 4. (5-10)

*
oz flash
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Equation (5-10) is used to determine whether the equilibrium position of the boiling
boundary is located in the core or in the riser section. Assuming that the saturation
temperature is reached in the core section (Zb;<1) , and neglecting the time-dependent term in
Eq. (5-10), we integrate this equation from the core inlet to the boiling boundary:

N
* * _ * VA *
hZy) =y X 2 Zoy (5-11)

flash

Integrating Eq. (5-3) over the one-phase region in the core, and substituting the pressure
differential between the core inlet and the boiling boundary in Eq. (5-7), then yields the
saturation enthalpy at the boiling boundary:
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Fr

* N T k i Zb’;
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If the boiling boundary is indeed located in the core section (as has been assumed!), the fluid

reaches the saturation enthalpy before the core outlet:

hl*[Zb:(t *)] = hf*[Zb;(t *)]. (5-13)
Substituting Egs. (5-11) and (5-12) in Eq. (5-13) then implies that:
ke, N
N ._'& - + Niash
2 L,
0 < s 1, (5-14)
+ 1 NFr
NZu AC N *Nﬂash
Np ) 1+L,

when the coolant starts to boil in the core. We now introduce the parameter by, which is equal
to zero when Eq. (5-14) is satisfied, and equal to one if the condition in Eq. (5-14) is violated.
The equilibrium position of the boiling boundary is thus located in the core section if b,=0,
while bg=1 if only boiling in the riser occurs. We assume here that two-phase flow is present
in at least part of the system. The occurrence of single-phase convection, when h,

<h, , can
R,

’
€

Re
be predicted with a simple criterion, which will be derived below.

With the new parameter by, Egs. (5-11) and (5-12) can be generalized for an arbitrary
position of the boiling boundary:

N
n'Z0) =h ——2[h 4z b )
e it vd SR GG ¥
flash
k k (z* 1)1\ z: 4-19)
and h(Z,;) = F'* Sl 4p St +Ac{bR +(1 —bR)Zb:]+bR——bb* - R 400
1+Lg | 2 2 LeAg Ng,

Equating the liquid enthalpy with the saturation enthalpy in Eq. (5-15), and solving for the
boiling boundary position, we arrive at:

NFr kCi kCc AR
NsubCi beNgz, ,,Nﬂash == by —=tA, . %
* ‘ 1 +LR 2 2 LRAR
Zy, = N A (5-16)
1=b )N, +—" N_ |A(1 =b )+b,— R+ L1
( R) Zu x  flash C( R) R * %
1+L, LeA,. Ng

Note that even when bg=1, the outcome of Eq. (5-16) can be smaller than unity! This apparent
paradox occurs when the coolant temperature is slightly below the saturation temperature just
before the core outlet, and starts to boil at the core exit, due to local core outlet pressure
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losses. The boiling boundary position Z,} is equal to unity in this particular case.

The boundary between the one- and two-phase regions in the operational N, -N,, space
can be determined easily using Eq. (5-16). At the onset of boiling, the boiling boundary
position will be located at the very end of the riser. Furthermore, the coolant flow rate (and
therefore the Froude number) will diminish if the length of the two-phase region decreases.
Setting Zb: =1 +LR* and letting N, approach zero in Eq. (5-16), we find that the boundary
between the one- and two-phase regions is located at N, =N
thus exist if NZu>Nsubc‘i N
power level, and therefore the Zuber number, is equal to zero, provided that N_ <N

!
be; flash”
This apparent paradox is avoided, however, because the latter condition is never satisfied.

~N,..- Two-phase flow will

subg;

This criterion suggests that tw‘o-phase flow can exist if the

Assume, for instance, that the coolant enthalpy at the core inlet is equal to the saturated liquid
enthalpy at the vriser exit. The core-inlet subcooling is then equal to
(h . ~h fn‘c) (pfc,i -p sc,;)/(hfsc,;psc,;) = Np Taking the effect of the added feedwater into
account, it is clear that Nsubwz N . The influence of the system pressure and the feedwater
flow on the core inlet subcooling is taken into account in the parametric study in Chapter 6.

The dynamic behavior of the boiling boundary is approximated with a linearized model.
Perturbing and Laplace transforming Eq. (5-10) yields:

adh*z"s™ _ N

s *Bhl*(z *$HM Yz s Zu [6M *z%s M) —8q /*(z *s *)] (5-17)
oz ) flash
Integrating Eq. (5-17) from z *=0 to Z,;, and assuming that 8h,"(z "=0,s ") =0, results in:

*
NZu 1 —exp(—s *TN"C)

6hl*(Zb:,s N o= exp( s *T]*d,,R) éMcfi(s " —8q s b (5-18)

*
flash S

The dimensionless transit time <, o Of the one-phase fluid, introduced in Eq. (5-18), is equal

to:

*

_ * * _ * *
Tige ~ Zopcr 304 Typp = (be,R —1)AR' (5-19)

Perturbing the pressure difference between the core inlet and the boiling boundary, and
applying Eq. (5-7) leads to:
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38, (Zyp,s ) 38h,(Z,y,s *)5

8h(Zyys ™ = : 8Zyp(s ™ + - Mcis ),
982, (s ™ 38Mc (s

38h (Zyus ) _ Ny, | i Ag

with - = (b )A t—to———| (5-20)
38Z,,(s 1 +LR[ Ne ALy

38h, (Zypss N ke, k Zg ~1)A

an r € — D -, N - AC[(l “bg)Zes +bR]+-ﬂ +b, <t +bk( = L 2
d8Mc (s 1 +L, 2 2 LaAg

Perturbing Eq. (5-13) relates the fluctuations of the liquid and saturation enthalpy at the
boiling boundary: :
oh %(Z,:,0) . s .
L 7,0 (s ) +8h,"(Zyns ) = 80,7 (Zns ),

*

0Zy,
(5-21)
oh X(Z,:,0) N
where —~‘+h = —(1 —bR) o
Bbe Nﬂash

according to Eq. (5-10). Substituting Eqs. (5-18) and (5-20) in Eq. (5-21), and solving for the
boiling boundary perturbation, leads to:

1 —exp(—s "ty o) . . . a8h, (Zy,s ™) .
N, ———*exp(s r;;’k){éMCti(s )y =8q"G *)] —Nﬂ“h_f_:LGMCJ(S )
37 e = s 96Mc (s 9
Y 8h,(Z s
96h, (Zy,8
(1 -bR)NZu N ash T e .
8Z,,(s ) (5-22)

A first-order Padé approximation'* for the exponential function is useful, to reduce the order
of Eq. (5-22):

|
1 ——2—1 s
exp(s"th = —= (5-23)
1 +=t*s*
2

The exponential terms in Eq. (5-22) are now rewritten, applying Eq. (5-23):

* 1 = * "
P T -1 T s
1 —exp(—s "1¢,c) . 14.C 5 14.C “14,R
e — exp(~s Ti4p) ®
s 1+

) (5-24)

* * «, 1 * * ©
;(Tw,c T eR)S +Z‘1¢,c’-'1¢,ks
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Equation (5-24), in combination with Eq. (5-22), shows that the boiling boundary transfer
function is a first-order system, when boiling occurs in the core (. sr —0 in this case). The
same first-order transfer function that was used in the model without flashing'® is derived
when we set Ny, equal to zero in Eq. (5-22) and apply Eq. (5-23):

*
BZy(s") | BZy() | Tiec

” .
6Mc*,i(S b 876 +%T1*¢,cs *

(5-25)

The boiling boundary transfer function becomes of order two, when the coolant is subcooled
in the entire core region and starts boiling in the riser. Substituting Eq. (5-24) into Eq. (5-22)
and transforming back to the time domain results in a second-order ordinary differential
equation for the boiling boundary position:

42zt . Azt

a2 Cz, 0 FCo 0 (Ziy(t N Zy) =

z2

(5-26)
dIM(tT) dM (1)
RS ,

M,1
dt *? dt*

/*
* d t *
a2 +Cpy (Mt ) ~1) +Cy ———th(* ) +Coola "t 1)

The coefficients of this equation are provided in Appendix D.
5.4. CONCLUSIONS

The developed theoretical model for flashing-induced oscillations in natural circulation
BWRs can be summarized at this point. The two-phase flow dynamics is governed by
Egs. (5-5) and (5-6), stating the conservation of mass and energy in the two-phase nodes.
Conservation of momentum in a natural circulation system implies that the total pressure drop
over the core, the riser, and the downcomer sections is equal to zero. The nodal pressure drops
over the different sections are listed in Table 2-1.

A time-domain expression for the (linearized) boiling boundary dynamics is provided by
Eq. (5-26). Note that this equation contains a term proportional to the second-order derivative
of the core inlet mass flux density. The governing equation for this quantity is however only a
Sirst-order differential equation [the momentum equation (5-3), integrated along the entire
natural circulation flow path]. The term C,,, in Eq. (5-26) is therefore neglected in the model
calculations. The effect of this assumption on the boiling boundary dynamics is evaluated in
the parametric study in Chapter 6.

The models for neutron kinetics and fuel dynamics that have been used previously in the
natural circulation BWR model without flashing, see Chapter 2, can be coupled directly with
this thermohydraulic model. However, nuclear feedback effects are important only when the
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coolant reaches the boiling point before the core outlet, and can be neglected if ex-core
boiling occurs due to flashing in the riser.
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Chapter 6

Low-Pressure BWR Dynamics: Il - Parametric Study

Abstract - The statics and dynamics of natural circulation BWRs are investigated in a
parametric study. We focus on the behavior under low power and pressure (reactor startup)
conditions. Ex-core boiling, due to void flashing in the unheated riser, is demonstrated to be
dominant during the reactor startup phase. This implies that nuclear feedback effects are of
minor importance under these conditions. Stability is investigated in the dimensionless Zuber-
subcooling plane. The Type-I instability region in this plane expands strongly if the reactor
pressure is reduced, due to the occurrence of unstable void flashing in the riser. Typical
trajectories in the stability plane are calculated as a function of changing operating conditions,
to determine their influence on reactor stability. Stable reactor operation is not guaranteed
during the startup phase, because under low power and pressure conditions the (safe) margin
to the Type-I instability region is small. This confirms the recent concern about the stability
of natural circulation BWRs in the low power and pressure domain.

6.1. INTRODUCTION

The statics and dynamics of natural circulation BWRs are explored in a parametric study
in this chapter. We focus on the behavior of natural circulation BWRs under low-pressure
conditions, using the theoretical model that has been developed in Chapter 5. The prototype
of natural circulation BWRs, the Dodewaard reactor, is analyzed in this chapter. We use data
set II from Chapter 3 as the model input data for the calculations.'

The elementary axial nodalization scheme that was used in Chapter 3 is applied again in
this chapter, i.e. only one two-phase node in the riser section is used in the calculations (i.e.
Ng=1). The boiling region in the heated core section is also treated as a single node (N-=1).
We restrict the present analysis to small-amplitude perturbations. Large-amplitude
oscillations have been studied in Chapter 4, employing the BWR model without the flashing
effect.? We demonstrated there that the usage of multiple nodes in the riser is necessary to
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obtain qualitatively correct results in the nonlinear domain. Investigating nonlinearities in the
low-pressure regime is thus not recommended with the simple nodalization scheme we use in
this chapter. In the linear domain, the trends are predicted correctly, however, with a single-
node model for the riser. Section 4.2 provides details about the Mathematica subroutine we
used to integrate the model equations numerically.

A comprehensive validation of our model on the basis of several startup experiments in the
Dodewaard reactor is provided in Chapter 7 of this thesis. However, to relate the present
parametric study to actual operating data, a set of operating conditions, measured during the
cycle 23 startup of the Dodewaard BWR, is listed in Table 6-1. The experiments in Table 6-1
cover a broad range of pressure and power levels: From an initial pressure of only 3.1 bar and
a power level of | MW (case 1), to a final pressure of almost 70 bar and a thermal power of
43 MW (case 9). As a comparison, the nominal operating conditions are also listed in
Table 6-1.

Table 6-1. Typical Operating Conditions During the Startup of a Natural Circulation BWR
(Cycle 23, Feb. 1992, Dodewaard BWR)

Case Pre P, ¢ hg, T Nz N - Npasn | Nzy-
(bar) | (MW) | (kg/s) J/kg) (K) b,
+Nﬂash

—
[¥8]
—
—

3.09E2 | 4.15E5 8.9 0.7 85 44 -33
6.3 2 4.13E2 | 3.86E5 3.5 0.6 1.9 1.4 0.1
10.7 2.5 | 732E2 | N.A. 1.8 0.3 0.6 0.6 0.2
20.3 5.5 8.89E2 | N.A. 1.5 0.3 03 0.2 0.3
30.3 10 971E2 | N.A. 2 0.3 03 0.1 0.1
18 9.64E2 | 3.26E5 | 24 0.4 0.3 0.06 0.2
50 28 9.41E2 [ 3.18E5 | 2.9 0.5 0.3 0.04 03
59 40 9.20E2 | 3.04E5 3.5 0.7 0.3 0.03 0.4

R L Y. T N VE R
E-N
&
(&}

69.7 43 8.82E2 | 3.07ES 39 0.6 0.3 0.02 04

Nom. | 75.5 183 1.30E3 | 5.72E5 | 4.7 1.7 0.3 0.02 1.3

Table 6-1 not only contains the main dimensional operating data (riser exit pressure Pg.,
thermal power Py, flow rate ¢, feedwater enthalpy hy,, and subcooling T,,), but also the
primary dimensionless numbers: The Zuber number N, the (core-inlet) subcooling number
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N
subg ;

provided in Appendix C. The transformation to a dimensionless basis requires the evaluation

and the flashing number Ny,,,. The definitions of these dimensionless numbers are

of several pressure-dependent properties (e.g. densities and enthalpies) at the core inlet,
whereas in Table 6-1 only the riser exit pressure is given. The pressure level at the core inlet
is calculated by adding the pressure difference over the Dodewaard downcomer (with a height
of 4.85 m) to the riser exit pressure level, see Eq. (5-8).

The strong dependence of the flashing

20 number on the system pressure is shown in
15 - Fig. 6-1. At pressures lower than 20 bar, this
number increases very rapidly, indicating that
N 10 1 the flashing phenomenon becomes very
important in the low-pressure regime. The
57 trend in Fig. 6-1 is also visible in Table 6-1:
0 Ny, increases from 0.6 to 4.4, when the
; T ; T

pressure is reduced from 10.7 bar (case 3) to
3.1 bar (case 1). The last column of Table 6-1
indicates whether or not two-phase flow (due

0 15 30 45 60 75
P, (bar)

Figure 6-1. Influence of the system pressure on the to flashing and/or heating) exists according to
dimensionless flashing number Ng,. Notice the
rapid increase of Ny, if the pressure is reduced
below 20 bar. Chapter 5. We there derived a simple criterion

the theoretical model we developed in

for the occurrence of two-phase flow:
Nz, >Ns“bc,; - Nj.q Hence, if the number in the last column of Table 6-1 is positive, boiling
occurs in the core or in the riser section. Clearly, in all cases, except case 1, two-phase flow is
predicted by the model. Without flashing (Ng,,,=0), the coolant would be one phase for cases
1 through 4 (N, < Nsubc,i)' The small (but still significant) flow rate in case 1 is possibly due
to single-phase density differences. The convection can be driven as well by boiling in only a
few (hot) channels, for instance when the power distribution is strongly peaked. Notice the
relatively large flow rate for case 2 (the power is only 1% of the nominal power, yet the flow
rate has already reached 30% of its nominal value). The flow rate predictions of our model for
the Dodewaard cycles 23-26 will be discussed in detail in Section 7.5.1.

A qualitative explanation of the experimentally observed phenomena is provided in the
parametric study in Sections 6.2 and 6.3 of this chapter. Section 6.2 focuses on the influence
of void flashing on the static behavior of a natural circulation BWR, using the cases in
Table 6-1 as examples. First, our model is compared in Section 6.2.1 with an alternative
flashing model’ and the previously developed model without flashing (see Chapter 2).* Then
the influence of the operating conditions, i.e. the power, subcooling and system pressure, on
the void production is studied in Section 6.2.2. After this introductory parametric study, the
strong effect of the pressure level on the subcooling of the coolant is considered. Applying
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this model for the fluid subcooling, the flow rate is then calculated for a wide range of
operating pressures and heating powers.

The strong influence of void flashing on the dynamics of BWRs under low-pressure
conditions is investigated in Section 6.3. The impact of the approximations in the model,
made in Chapter 5, on the accuracy of the transient calculations is assessed first in
Section 6.3.1. The effect of void flashing on the stability boundaries in the dimensionless
Zuber-subcooling stability plane is then explained in Section 6.3.2. Applying our elementary
model for the fluid subcooling again, we demonstrate that the subcooling number should be
defined with respect to the riser exit (instead of the core inlet) in the Zuber-subcooling
stability plane. This results in a convenient stability map, in which the influence of the
operating conditions on stability is studied in Section 6.3.3. Conclusions from the analyses

are provided in Section 6.4.

6.2. STATICS

6.2.1. Comparison With Other Models
Model results arc compared with the previously developed BWR stability code (see

Chapter 2) and the flashing model of Inada and Ohkawa® in this section. Several cases in

Table 6-1 are used as examples here, to illustrate the importance of the flashing phenomenon

under experimental conditions. Figure 6-2a shows the calculated void fraction profile along

the core and riser sections for case 4 in Table 6-1. The fluid is subcooled at the core inlet
(z'=0), and starts to boil at the boiling boundary Z,, (for 2'=0.9), just before the core exit.

(a) 0.920 - , 0.920 (b)
0.16 Flashing Model [ — Flashing Model
Model Inada et al. ~—— Model Inada et al.
..... g | 0918 - + 0918
0.12 A [:lage i] (”Z/y"c{laiﬁ“)"g _ case 4 (cycle 23)
& 0916 - 0.916 &
o 0.08 - S S
= 0914 r0.914 =
0.04 1 Core Riser | Boiling |
Inlet Outlet 0.912 Point 0912
0 -‘ J T g‘ 0910 T T 0.910
0 1z 2 0 1z 2

Figure 6-2. Influence of void flashing at a pressure of 20.3 bar (case 4 in Table 6-1). Figure 6-2a shows the
calculated void fraction profile in the axial direction. The void fraction increases rapidly in the diabatic core
region (0<z'<1) where the coolant is heated and starts to boil. The void production in the adiabatic riser (z">1)
is caused by flashing only. Figure 6-2b shows the axial profile of the saturation enthalpy h; and the liquid
enthalpy h,. Comparisons with the flashing model of Inada and Ohkawa’® and a model without flashing (see
Chapter 2) are provided as well.
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The model without flashing predicts that the coolant does not reach the saturation temperature
in the core region under these conditions, see Fig. 6-2a. This implies that without the
influence of flashing the coolant would not boil in the core region. The void production in the
riser (1<z'<2.71) should be attributed to the flashing effect only, because this section is
unheated.

The decrease of the saturated liquid enthalpy h, along the core and the riser is shown in
Fig. 6-2b. The coolant enters the core region subcooled, i.e. the liquid enthalpy h, is smaller
than the saturation enthalpy at z'=0. In the core region, heat is transferred to the coolant, and
h, increases until the saturation enthalpy is reached (at the boiling boundary position indicated
in Fig. 6-2b).

Notice that the slope of the h, (z')-curve is slightly steeper in the core region than in the
riser section, This can be explained by considering the different pressure drop contributions.
Figure 6-2a shows that the fluid is mainly one phase in the core, but two phase in the riser.
The differential gravitational pressure drop dP(z")/dz" will therefore be smaller in the riser
region than in the core. Furthermore, the frictional and accelerational pressure losses are
relatively small as well in the riser region, because the (hydraulic) flow diameter of the riser is
rather large and the void fraction is low. These two effects slightly diminish the decrease of
the pressure along the riser, and the void production due to flashing in this section will be
somewhat attenuated.

We used the measured flow rate for case 4 (889 kg/s) as a fixed input parameter in the
calculations. This procedure was chosen to simulate the operational conditions for case 4 as
closely as possible. Iterative model calculations show that the momentum balance is restored
completely when the recirculation flow is reduced (slightly) to 850 kg/s.

We compare our flashing model with the alternative model proposed by Inada and
Ohkawa.’ Their analytical model is derived from the same basic equations [Egs. (5-1) through
(5-3) and Eq. (5-7)] as our flashing model. The differential two-phase flow conservation
equations are simplified in Ref. 3 by assuming that the flow quality  and the vapor to liquid
density ratio N, are much smaller than unity. The steady-state equations are then integrated
numerically, applying a finite-difference method, along the two-phase region. Stability
analysis was performed in the frequency domain, by Laplace transforming the perturbed basic
equations.

We did not neglect y and N, with respect to unity in the theoretical model proposed in
Chapter 5. We, furthermore, developed a reduced-order time-domain model by integrating
the basic partial-differential equations in Chapter 5 over a limited number of two-phase
nodes. In spite of the different integration schemes, the calculated axial profiles agree very
well for case 4. The differences are in fact indistinguishable on the scales of Figs. 6-2a and
6-2b. This implies that the elementary axial nodalization scheme applied in the static
calculations (with N and Ny both equal to one) is sufficiently accurate here, since the fine-
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mesh nodalization in the model of Ref. 3 leads to very similar results. The assumption of
Ref. 3 that x and N, are much smaller than unity is justified as well under these low power
and pressure conditions.

Figure 6-3 illustrates the occurrence of boiling out of the heated reactor core, due to void
flashing in the riser. Case 2 in Table 6-1 is simulated in these calculations. The fluid enters
the core inlet highly subcooled (T,,=3.5 K, instead of 1.5 K in Fig. 6-2) and remains one
phase in the entire core region. At the end of the unheated riser section, the continuously
decreasing saturation enthalpy becomes equal to the fluid enthalpy, and the coolant starts to
boil. Notice that the agreement with the flashing model of Inada and Ohkawa is again

excellent.
(a) 0.70 . 0.70 (b)
0.16 Flashing Model " Flashing Model
Model Inada et al. -—— Model Inada et al.
----- Model w/o flashing case 2 (cycle 23)
0.12 1 g
case 2 (cycle 23) < 0.69 L 0.69 =
< 2
& 0.08 g s
< 0.68 L 0.68 =
0047 Boiling
Point
0 T T 067 T T 067
0 1z 2 0 1z 2

Figure 6-3. Ex-core boiling induced by flashing, at a pressure of 6.3 bar (case 2). The fluid is subcooled in the
entire core region and reaches the boiling point at the end of the adiabatic riser section.

The effect of flashing at higher system pressures is investigated in Fig. 6-4. At a pressurc
of 30.3 bar (case 5 in Table 6-1) the model without flashing predicts the occurrence of boiling
in the core and the riser, see Fig. 6-4a. However, the effect of flashing is still significant.
Accounting for flashing, the boiling boundary is located at a lower axial position in the core.
Close to the core exit, the two-phase mixture flashes quickly, because of the relatively large
core-outlet pressure drop. Figure 6-4c shows the axial void profile at a pressure of 40.2 bar
(case 6 in Table 6-1). Void flashing is less intense in this case due to the relatively small
pressure dependence of the saturation temperature at higher pressures (see Fig. 5-1).
Increasing the power and pressure level to the nominal conditions, the heating process almost
completely governs the void production, and the predictions of the models with and without
the flashing effect become almost identical. Apparently, the flashing phenomenon is only of
minor importance under high power and pressure conditions. Note that the model of Inada
and Ohkawa underestimates the void fraction in Fig. 6-4d. This discrepancy is caused by the
neglect of y with respect to unity in their model. This assumption is not very accurate in the
high power domain (the flow quality is equal to 0.08 at the core exit in Fig. 6-4d, compared to
only 0.001 in Fig. 6-4a).
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(a) 1.022 , 1.022 (b)
0.16 Flashing Model —— Flashing Model
Model Inada ct al. —— Model Inada et al |
0124 777 Poe s tote a8 1017 9 cases (eyele 23)] - 1.017
el g
% 08 - S 1.012 A - 1.012 2
::: Boiling E
0.04 4 1.007 Point + 1.007
0 T T 1.002 T T 1.002
0 122 0 1z 2
d
0.2 0.8 (d)
0.15 4 0.6 A
* 0.1 + @ 0.4 4
1 . .
. Flashing Model N Flashing Model
0.05 A Model Inada et al. 0.2 Model Inada et al.
A IR Model w/o flashing| | [ |e==-- Modcl w/o flashing
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Figure 6-4. Influence of flashing at higher pressures. Figures 6-4a and 6-4b show the void fraction and
saturated liquid enthalpy profiles for a pressure of 30.3 bar (case 5). Figures 6-4¢ and 6-4d show the void
fraction profiles for 40.2 bar (case 6) and 75.5 bar (nominal conditions), respectively. The effect of flashing
diminishes at a high system pressure, and the predictions of the models with and without flashing become
identical (see Fig. 6-4d). The flashing model of Inada et al. however slightly underestimates the void fraction in
this case.

6.2.2 Influence of the Operating Conditions

The influence of the operating conditions on the model predictions is investigated
systematically in this section. Case no. 4 in Table 6-1 (T,,=1.5 K, P, =5.5 MW, P =20.3 bar)
is the reference case (indicated with a thick line in the figures). Starting from this operating
point, the subcooling, power and pressure are varied in Figs. 6-5 through 6-7, respectively.
The natural circulation flow rate is not an input parameter, like in Section 6.2.1, but is
calculated as a function of the operating conditions.

The impact of the degree of subcooling on the void production is shown in Fig. 6-5. The
pressure and power level are kept constant at 20.3 bar and 5.5 MW, respectively. Figure 6-5
suggests that the degree of subcooling can be adjusted freely in a natural circulation BWR.
This is not the case, however. The impact of the pressure level, the reactor power and the
feedwater temperature on the core-inlet subcooling is discussed in detail at the end of this
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section, but neglected at this point.
The subcooling is reduced from 3.5 K
(case a), to 2.5 K (case b), 1.5 K (case c)

027 @ and 0.5 K (case d). Void profile (c) in

0.15 + Fig. 6-5 is the base case (sece Fig. 6-2a).
o Figure 6-5 clearly illustrates the major
0.1 T (© / impact of the degree of subcooling on the
0.05 + / (b) / void production in the core and the riser.
(@) Comparing case a with case d, the

subcooling differs only 3.0 K, yet the

0.25

\

T
0 1z 2 .
coolant starts to boil already close to the

Figure 6-5. Influence of the degree of subcooling on  cqre inlet for case d, whereas the fluid is
the void production at a pressure of 20.3 bar

(P,=5.5 MW, cf. case 4 in Table 6-1). The subcooling ©On€ phase in the core and only boils in the
is decreased from 3.5 K (case a), to 2.5 K (case b), riser section for case a. The sensitivity of

15K (e 0 and 05 K (ewe 0 T e et predictions to th actual degre
Figs. 6-5 through 6-7. of subcooling is investigated further in
Chapter 7, where the effect of the
experimental uncertainty in the subcooling
(0.5 K) on the calculated flow rate is taken into account.

The slope of the void fraction curve becomes less steep in the adiabatic riser section if we
compare case a with case d in Fig. 6-5. One explanation for this effect is the decreasing slope
of the void fraction vs. flow quality curve for higher void fractions, see Fig. 1-4. Because of
this nonlinearity, the same increase in flow quality corresponds io a smaller void fraction
increase in case d compared to case a. The nonlinearity of the void fraction vs. flow quality
curve becomes more pronounced under low-pressure conditions, due to a smaller vapor to
liquid density ratio. We also observed in Section 6.2.1 that the flashing effect limits itself at
higher void fractions, because the local pressure and saturation temperature decrease
relatively slow in the two-phase region.

Figure 6-6 shows the impact of the heating power on the axial void fraction profiles. The
pressure is equal to 20.3 bar and the subcooling is equal to 1.5 K in these calculations (cf.
case 4 in Table 6-1). The thermal power level is increased, going from case a to case d, from
1.5 MW (case a) to 3.0 MW (case b), 5.5 MW (case c) and 12.0 MW (case d). An increase of
the thermal reactor power causes a rapid increase of the liquid enthalpy in the single-phase
region, and the boiling process will therefore start at a lower axial position. Comparing case d
in Fig. 6-5 with case d in Fig. 6-6 also illustrates that a higher heating power results in a
steeper void profile in the boiling region. Figure 6-6 shows (cf. Fig. 6-3) that boiling starting
out of the heated reactor core is possible at low heating powers (cases a and b).

The major impact of the pressure level on the void production is illustrated in Fig. 6-7
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Figure 6-6. Influence of the thermal reactor power on
the axial void fraction profiles. The pressure is equal
to 20.3 bar and the subcooling is 1.5 K in these
calculations (cf. case 4 in Table 6-1). The thermal
power level is increased from 1.5 MW (case a), to
3.0 MW (case b), 5.5 MW (case c) and 12 MW
(case d). The impact of the heating process in the core
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Figure 6-7. Influence of the system pressure on the
void production (P,=5.5 MW and T,,=1.5 K, cf.
case 4 in Table 6-1). The pressure is equal to 68.7 bar
in case a, 20.3 bar in case b, 6.3 bar in case ¢ and 3.1
bar in case d. The void fraction increases strongly for
lower pressures, due to a smaller vapor to liquid
density ratio and more intense void flashing.

on the void production increases at higher power
levels (cases ¢ and d), whereas the void production
due to flashing in the riser becomes dominant at lower
power levels (cases a and b).

(P,=5.5 MW and T,,=1.5 K, cf. case 4 in Table 6-1). The pressure is equal to 68.7 bar in
case a, 20.3 bar in case b, 6.3 bar in case ¢ and 3.1 bar in case d. Notice that the void fraction
increases strongly under reduced-pressure conditions, due to a smaller vapor to liquid density
ratio (see Fig. 5-1) and more intense void flashing. However, the boiling boundary position is
not continuously decreasing as the pressure is reduced. For instance, the boiling boundary
position shifts upwards, in the transition from case a to case b, and then shifts downwards for
cases ¢ and d. This behavior of the boiling boundary is caused by the increase of the average
void fraction as the pressure is reduced. This results in an increasing natural circulation flow
rate and a decreasing specific energy of the coolant. The boiling boundary therefore shifts
upwards if the pressure is reduced from case a to case b. At lower pressures, the coolant
flashes quickly (the core-inlet subcooling is constant in the calculations), and the boiling
boundary position decreases (cases ¢ and d). Notice that the slope of the axial void fraction
profile in the riser initially increases when the pressure is reduced (cases a, b and ¢), and then
decreases (compare case ¢ with case d). This clearly illustrates the strong nonlinearity of the
void fraction vs. flow quality curve: If the void fraction is high an increase of the flow quality
only results in a small additional void fraction increase.

So far, the core-inlet subcooling has been treated as an independent operating condition in
the analysis. However, the measurement series in Table 6-1 shows that the subcooling is in
fact changing strongly as a function of the pressure, power level and feedwater enthalpy. At a
low pressure, the subcooling is relatively high (cases 1 and 2). At a higher pressure, the
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subcooling is initially small (cases 3 and 4), but then increases slowly as the power level
increases (cases 3 through 9).

The large subcooling at low pressures is mainly caused by the axial variation of the
pressure (and therefore the saturation temperature) in the natural circulation loop. The liquid
that turns around at the riser exit and falls into the downcomer, will re-enter the core
subcooled because the saturation temperature is higher at the core inlet than at the riser exit.
Neglecting the influence of the recirculated feedwater and phenomena like carry under (the
presence of voids in the downcomer section), we showed in Chapter 5 that the dimensionless
core-inlet subcooling N, is at least equal to Ng,q. This rule indeed holds for all cases in
Table 6-1,” and explains the rapid increase of the subcooling at low-pressure (i.e. large
flashing number) conditions.

The influence of the feedwater flow on the subcooling becomes important at higher power
levels (cases 5 through 9 in Table 6-1), i.e. when the steam and feedwater flow rates increase.
Assuming a stationary feedwater system and again neglecting carry under, stating a mass and
energy balance at the feedwater sparger yields an expression for the subcooling number:

- hfk e _hf“’ -1
Niw., =~ Npan xk,c.——(NP —l)' (6-1)

C.i
e,

A simplified version of Eq. (6-1) has already been given in Eq. (2-41). The N, -term on the
right hand side of Eq. (6-1) has been neglected in Eq. (2-41), which is a good assumption
only under high-pressure conditions (i.e. when Ny, is small).

The influence of the operating conditions on the subcooling, and the impact of the
subcooling on the static behavior of a natural circulation RWR, are shown in Fig. 6-8. Note
that the riser exit quality ;. in Eq. (6-1) not only determines, but also depends on the core-
inlet subcooling. The core-inlet subcooling is therefore determined iteratively in the model
calculations. The feedwater enthalpy hg, is equal to 4.15x10° J/kg for N,,,=4.44,
hg,=3.86x10° J/kg for Ng,,=1.41, and h,,=3.26x10° J/kg for N,,,,=0.06 (cf. cases 1, 2 and 6 in
Table 6-1). Figure 6-8a shows that the subcooling number increases proportional to the
flashing number [because Nsubc‘i(NZu =0) =N, 1, and (approximately) proportional to the
Zuber number (which is in turn proportional to the heating power). When the influence of
flashing on the subcooling diminishes, the role of the feedwater supply becomes more
important. Neglecting the flashing effect, i.e. only considering the influence of heating, the

“Several measurements during the cycle 25 startup of the Dodewaard BWR violate this criterion,
however. This apparent paradox is discussed in Section 7.5.
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Figure 6-8. (a) Relationship between the dimensionless Zuber and subcooling numbers for different values of
the flashing number. The (core-inlet) subcooling number increases proportional to the flashing number and
(approximately) proportional to the Zuber number. The feedwater enthalpy hy, is equal to 4.15.10° J/kg for
Np=4.44, h,=3.86.10° J/kg for Np=1.41, and h,,=3.26.10°J/kg for Ny, =0.06 (cf. cases 1, 2 and 6 in
Table 6-1). (b) Influence of the Zuber number on the boiling boundary position. (c) Influence on the void
fraction (averaged over the core and riser length). (d) Influence on the natural circulation flow rate. The effect
of the Zuber number on the subcooling number (see Fig, 6-8a) is taken into account in Figs. 6-8b through 6-8d.

(almost linear) relationship between the subcooling and the Zuber number can be understood
easily. In that case, the riser exit quality can be calculated directly:*
Xre "X "Nz, "Ny i)/(Np_l -D. (6-2)
Substituting this expression in Eq. (6-1), with Nj,,=0, we arrive at a linear relationship
between the subcooling and the Zuber number, Eq. (2-41), which is valid for high-pressure
conditions. Examining Eq. (2-41) reveals that the slope of the N, vs. N, curve is
proportional to the subcooling of the feedwater Ahg, (=h, ~h_ ), and inversely proportional
R,c
to the evaporation enthalpy h;,. The subcooling of the feedwater increases with more than
200%, when we compare the cases for which N, =4.44 and N, =0.06 in Fig. 6-8a. This

explains the increase of the slope of the N, vs. N, curve when N decreases. The

fl
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decreasing evaporation enthalpy at a higher pressure (smaller N,,), causes an additional
b (at a fixed N, ).
The large subcooling of the fluid at low pressures strongly suppresses the occurrence of

increase of N

boiling at low heating powers (i.e. small N, ). The position of the boiling boundary Zb; is
plotted as a function of N, in Fig. 6-8b. Boiling out of the heated reactor core (Zb1> 1) is
dominant at low pressures (large Ng,g,). Only at relatively high heating powers (large N, )
two-phase flow exists in the core under these conditions. This observation implies that under
low power and pressure (i.e. reactor startup) conditions nuclear feedback effects, chiefly
induced by void production in the core, are of minor importance. At a high system pressure,
for instance at 40.2 bar (Ng,,=0.06 in Fig. 6-8b), the impact of flashing on the subcooling
becomes relatively small (especially at large N,), and in-core boiling dominates. The boiling
boundary position becomes independent of N,, under these circumstances, because
Z,:; =N, /N, [see Eq. (2-29)] and N, is proportional to N, [Eq. (2-41)].

Due to the relatively short two-phase region at a low pressure, the void fraction (averaged
over the core and the riser sections) is small under these conditions, see Fig. 6-8c. Hence, the
natural circulation flow rate is relatively small for low N, and large N, see Fig. 6-8d. The
maximum flow rate is larger at low pressures, however, because two-phase flow then mainly
exists in the riser section, where the frictional pressure iosses are relatively smalli.

6.3. DYNAMICS
6.3.1. Model Assumptions

Various model simplifications have been proposed in the development of the theoretical
model in Chapter 5, to reduce the model order and to avoid numerical problems. The
influence of these assumptions is investigated in detail in this section. Section 6.3.1.1
discusses several models for the boiling boundary dynamics, ranging from exact, but very
complicated, frequency-domain solutions to approximate time-domain expressions. Different
variants of the nodal energy equation, Eq. (5-6), are then considered in Section 6.3.1.2 The
steady-state model, used in the previous section, is not affected by the approximations in the
dynamics model, evaluated here.

6.3.1.1. Boiling Boundary Model

The impact of several successive assumptions in the boiling boundary model is shown in
Fig. 6-9. The operating conditions for case 3 in Table 6-1 are used in the calculations. The
boiling boundary is located in the riser section in this case (Zb: =1.58). First, the influence of
the single-phase inertial pressure losses on the gain and phase diagrams of the boiling
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Figure 6-9, Effect of modeling assumptions on the Bode diagrams of the boiling boundary transfer function
ézb:/(‘SMcfi, for case 3 in Table 6-1 (Z,,'=1.58). The impact of neglecting the inertial pressure losses on the
boiling boundary dynamics is investigated in Figs. 6-9a and 6-9b. Inertia is neglected in Figs. 6-9¢ through
6-9¢. The influence of the applied Padé approximation is shown in Figs. 6-9¢c and 6-9d. Setting the C,,,-term
equal to zero in the final boiling boundary equation (5-26) has a small effect, as Figs. 6-9d and 6-9e
demonstrate.

boundary transfer function 6Zb’:/ ¢5Mc’fi is shown in Figs. 6-9a and 6-9b, respectively. The
inertial pressure drop is proportional to the time derivative of the mass flux density. The
magnitude of this pressure drop term, and its impact on the saturation enthalpy at the boiling
boundary, therefore increases linearly as a function of the oscillation frequency in the
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frequency domain. Figure 6-9a indeed shows that the relative importance of this pressure drop
term is small at low frequencies (<0.2 Hz), but increases at higher frequencies. Because we
are mainly interested here in the dynamic behavior at low frequencies (=0.1 Hz), the neglect
of inertia in the boiling boundary model is a reasonable assumption. Notice that the gain of
the boiling boundary transfer function increases and decreases at higher frequencies due to
interference phenomena in the one-phase region. This effect has been encountered and
explained before in our boiling boundary model without flashing.’

The effect of the applied Pad¢é approximation [of the exponential term in the boiling
boundary transfer function, see Eq. (5-24)] is investigated in Figs. 6-9c and 6-9d. Good
agreement is found for frequencies <0.1 Hz. Larger discrepancies are visible for higher
frequencies, caused by the low-order approximant used here. Applying a higher-order Padé
approximation improves the results,’ but leads to a more complex (higher-order) ODE when
we transform the boiling boundary transfer function back to the time domain.

Finally, we proposed in Chapter 5 to neglect the dZMC*,i(t *)/dt *-term in the boiling
boundary equation (5-26), by setting its coefficient, labeled as C,j,, equal to zero. This
neglect has a small impact on the results, as Figs. 6-9¢ and 6-9f show. A second-order time
derivative term is proportional to the square of the oscillation frequency in the frequency
domain, and is therefore important oniy at reiatively high frequencies (>0.3 Hz).

6.3.1.2. Energy Conservation Equation

The effect of modeling assumptions in the nodal energy equation (5-6) is considered in this
section. As an example, the step response of the normalized (core-inlet) mass flux density
M(; is shown in Fig. 6-10 for five different model variants (labeled as a through e). These
variants differ in the degree of simplification in Egs. (5-6) and (5-26). Table 6-2 summarizes
which terms in these equations are neglected. For instance, in model variant c¢ the
dL,’(t ")/ dt *-term in Eq. (5-6) is neglected, whereas the d<h,(t "> /dt *-term is included in
the calculations. The d2Z,; (t*)/dt *- and dZMcfi(t */dt ¥ -terms in Eq. (5-26) are also
neglected in variant c.

The equilibrium position of the boiling boundary is located close to the riser inlet
(Zyy, =1.05; Ny, =1.91). Therefore, the coefficient C,, of the d2Z,;/dt **-term in the boiling
boundary ODE (5-26) is relatively small. Note that C,, vanishes for in-core boiling [see
Appendix D]. Neglecting this term, Eq. (5-26) reduces to a first-order differential equation,
because Cy,, is set equal to zero as well (see Section 6.3.1.1). Step response a in Fig. 6-10 is
calculated in this case.

Starting from variant a, the effect of successive simplifications in Eq. (5-6) is considered
in cases b through d. The effect of the d<hf*(t "> /dt *-term is illustrated by the difference
between case a (d<h,(t *)> /dt *#0) and case b (d<h,'(t *)> /dt *=0). The dL,’(t */dt *-term is
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neglected in case c, but the d<hf*(t "> /dt *-term is included. Model variant b provides a

better approximation (compared to case a) than variant c, indicating the importance of
including the dL‘*(t */dt *-term in Eq. (5-6). Both the d<h,(t ")>,/dt *- and dL,(t "y dt *-
terms are neglected in case d. The oscillatory time evolution of Mc*'i almost completely
disappears after these simplifications in Eq. (5-6), indicating that this model variant gives a

poor prediction of dynamic stability.

Table 6-2. Model Variants Investigated in Section 6.3.1.2

Model Nodal Energy Equation (5-6) Boiling Boundary Equation (5-26)
Variant dL(t "y dt *- | d<h,(t %> /dt *- A2z, /dt - d*M/dt #-
term term term term
a Included Included Neglected Neglected
b Included Neglected Neglected Neglected
c Neglected Included Neglected Neglected
d Neglected Neglected Neglected Neglected
e Included Neglected Included Neglected

As remarked before, model variant a is accurate only when C;,=0, i.e. when Zb:l 1.
Therefore, we include the effect of the d2Z, /dt”-term in Eq. (5-26) in the final
calculational model (variant ¢). We were forced, however, to neglect the d<hf*(t *)>1/dt *.

term in the energy equation, in order to find solutions with the numerical ODE solver applied

here. Future research should consider the application of more advanced numerical algorithms,

able to solve Egs. (5-6) and (5-26) directly without simplifications.
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Figure 6-10. Effect of modeling assumptions in the
boiling boundary equation (5-26) and energy equation
(5-6) on the dynamic response of the (core inlet) mass
flux density MC"‘i (Zb; =1.05, N, =1.91). Incases a
through d the C,,-term in the model for the boiling
dynamics is neglected. The complete energy equation is
solved in case a. In case b the d<h,'(t ")> /dt *-term is
neglected, whereas in case ¢ the dL, (t *)/dt "-term is set
equal to zero (see Table 6-2). Both the d<hr*(t ) fdt -
and dL,"(t *y/dt *- terms are neglected in case d. The
dynamic response with C,,#0 and d<h(t %> /dt * =0
is shown in case e. This is the final calculational model.
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6.3.2. Stability Analysis

Neglecting the effect of flashing and employing the homogeneous two-phase flow model,
we proved in Ref. 4 that the influence of the operating conditions on the thermohydraulic
stability of a natural circulation BWR is determined by only two dimensionless numbers, i.e.
N, and N,. This theoretical observation was then used in Chapter 3 to generate pressure-
invariant stability boundaries in the Zuber-subcooling stability plane. An example of such a
dimensionless stability map is shown in Fig. 6-11a. A natural circulation system without
nuclear feedback, and without the influence of flashing (N;,,,=0), is considered here. At the
core exit, the coolant is one phase (1¢) in the half plane left of the diagonal (N,,<N,,) and
two phase (2¢) right of the diagonal.

Unstable density-wave oscillations of the Type-I occur in a narrow region right of the
boundary between one- and two-phase flow. These Type-I oscillations occur when the flow
quality at the core exit is small (i.e. when Z,'=N, /N, -1). Under these circumstances, the
two-phase flow dynamics is mainly governed by the significant gravitational pressure drop
over the riser section. The effect of the frictional pressure drop on the momentum balance is
relatively small, because the coolant is almost entirely single phase in the core section. We
demonstrated in Chapter 3 that the importance of the Type-I feedback mechanism increases at
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Figure 6-11. (a) Dimensionless stability map for a thermohydraulic natural circulation system, when flashing is
neglected (Np,,,=0). The coolant is one phase (1¢) in the half plane left of the diagonal (Nz,<N,,). Unstable
oscillations of the Type-I occur in a narrow region right of this diagonal. The Type-II unstable region is located
at higher values of N,. (b) Stability map for Ny, ,=2.17 (Pg=4.85 bar). The region with N, (core inlet) < N,
is inaccessible during operation, because N, (core inlet) increases proportional to Ny, [see Eq. (6-1)]. Single-
phase flow now occurs if N, <N_, (core inlet)-N e The size of the Type-1 unstable region expands,
compared to Fig. 6-11a, due to unstable void flashing in the riser. Flashing has a stabilizing effect on the Type-
I oscillations in this dimensionless plane. The dynamics in point A is investigated in detail in Fig. 6-12.
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lower pressure and power levels. Therefore, we expect that the Type-I instability mechanism
is dominant under typical reactor startup conditions (for instance cases 1 through 4 in
Table 6-1).

The Type-II instability region is located at larger values of N, i.e. when the void fraction
in the core is relatively high. The Type-1I oscillations are caused by a significant delay of the
core outlet flow (and the two-phase frictional pressure drop) with respect to perturbations of
the inlet flow. Because ex-core boiling is dominant under low power and pressure conditions
(see Section 6.2.2), the Type-II instability mechanism is not expected to be very important
during the reactor startup.

We remarked in Chapter 3 that Type-I oscillations have a much lower resonance frequency
(0.1 Hz) than Type-II oscillations (=1 Hz), because the former type of oscillations occurs
under low quality conditions, when the flow velocity (especially in the riser section) is low.
Therefore we focused in Section 6.3.1 on the performance of our dynamic model in the low
frequency range (<0.1 Hz), which will be of primary interest during low power and pressure
(reactor startup) conditions.

The incorporation of the flashing effect in our BWR stability model, see Chapter 5,
resulted in an additional dimensionless number, N, quantifying the effect of void flashing.
The SB in the Zuber-subcooling map therefore depends on the pressure level if we include the
flashing effect. As an example, the SB for a pressure of 4.85 bar (Ng,,=2.17) is shown in
Fig. 6-11b. The region with Nsubchnash
Nsubm has an minimum value of N, [see Eq. (6-1)]. The boundary between the one- and
two-phase regions also shifts in the Zuber-subcooling plane, and is now located at

is now inaccessible during operation, because

N, =N_. -N_ [see the discussion following Eq. (5-16) in Chapter 5]. The region in the
C,i
stability plane where two-phase flow exists is thus extended in Fig. 6-11b to lower values of

N,, compared to Fig. 6-11a. When N_ =~ -N_ <N, <N

swbg, Ntgsn the heating process alone is

sub.
not strong enough to induce boiling in the core and riser Cgections. The boiling point is
therefore reached in this region due to the combined effect of heating and flashing. Reducing
the Zuber number from NsubC’i to Nsubc,; —Nj, the effect of heating diminishes and void
flashing out of the reactor core becomes dominant. Close to the one-phase boundary in
Fig. 6-11b single-phase convection becomes more important. Inada et al.® reported that flow
instabilities do not occur when the heating power is too low to generate voids in the riser
section and the convection is driven by single-phase density differences.

The region in Fig. 6-11b where ex-core boiling occurs (1<Z,,’<1+L;’") coincides with the
Type-1 instability region. This means that, according to our model, void flashing in the riser is
an unstable phenomenon at the low-pressure conditions simulated in Fig. 6-11b. At a higher
pressure (i.e. smaller value of Ng,,), stable void flashing out of the core is also possible,
especially when the boiling boundary is located close to the riser inlet. The transition from
stable to unstable void flashing in the riser (as a function of the operating conditions) is
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studied in detail in Section 6.3.3. Our observations agree well with the theoretical results
reported by Inada and Ohkawa.’ They predicted diverging oscillations when boiling starts in
the riser (Z,, >1), whereas boiling in the heated reactor core (Z,,"<1) stabilizes the flow.

The effect of flashing on the dynamic stability for Z,,"<1 is investigated in detail in
Fig. 6-12. Figure 6-12a shows the step response of M¢;" in point A in Fig. 6-11 (N,,=6.28,
N,.;=3.75). Point A is located on the Type-II SB for Ny, =0, but is located in the stable region
for Ny,,=2.17, as the dynamic responses in Fig. 6-12a confirm. To explain the stabilizing
effect of flashing on the oscillations in point A, we need to consider the influence of this
phenomenon on the dynamics of the boiling boundary. Assume, for instance, that the (core-
inlet) mass flux density increases. The specific energy of the coolant will then decrease, and
therefore the boiling boundary will shift upwards. An increase of the mass flux density,
however, also causes a larger frictional pressure drop over the one-phase region. The
saturation temperature will therefore decrease in the subcooled region, and the boiling
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Figure 6-12. (a) Step responses in point A in Fig. 6-11 (N,,=6.28, N_,,=3.75) for N,,,=0 and 2.17, respectively.
(b) The damped oscillation in Fig. 6-12a is caused by the reduced gain of the boiling boundary transfer function
GZM/GMCl under low-pressure conditions. (c) The effect of the pressure level on the boiling boundary
dynamics is neglected here, resulting in an undamped oscillation. (d) The instability in Fig. 6-12¢ can be
explained by the higher void fraction in the core due to the flashing effect.
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boundary moves downwards. So, due to a changing saturation temperature, perturbations of
the boiling boundary are partly canceled. Figure 6-12b confirms this qualitative argument:
The gain of the boiling boundary transfer function 6th/ <3MC*’i decreases at lower pressures,
when the pressure-driven fluctuations of the saturation temperature become more important.

Previous theoretical® and experimental’ studies have demonstrated that smaller oscillations
of the boiling boundary result in a more stable two-phase flow system. Consider, for instance,
the stable region below the Type-II SB in Fig. 6-11a, which is located at high power/low
subcooling conditions. Under these (rather extreme) circumstances, the coolant starts to boil
close to the core inlet, i.e. the length of the boiling region is almost equal to the height of the
core. Fluctuations in the length of the boiling region (for instance caused by flow oscillations)
will therefore be relatively small under these circumstances. Keeping the Zuber number
constant and increasing the subcooling number in Fig. 6-11a, the single-phase region in the
core appears. The length of the two-phase region will then become more sensitive to
oscillations of the boiling boundary. This effectively causes an amplification of the
oscillations in the two-phase frictional pressure drop, and the Type-II stability decreases. The
boiling boundary oscillations finally destabilize the two-phase flow as N, is increased to its
value on the Type-II SB.

Exploring the dynamics in point A further, we now neglect the influence of a changing
saturation temperature on the boiling boundary dynamics. The resulting step response is
shown in Fig. 6-12c. Keeping the saturation temperature constant in the one-phase region, the
amplitude of the oscillations of the boiling boundary becomes larger, which has a strong
destabilizing effect. Figure 6-12d explains why this simplified system is less stable than the
original model without flashing, considered in Fig. 6-12a. The flashing effect causes a higher
void fraction in the core. Hence, the two-phase frictional pressure drop over this section
becomes larger, and the Type-II stability decreases.

The location of the SBs and the boundary between one- and two-phase flow is independent
of the system pressure in Fig. 6-11a (where flashing is neglected). However, if we account for
the effect of flashing, see Fig. 6-11b, not only the SBs change, but also the location of the
boundary between one- and two-phase flow. Furthermore, an inaccessible region emerges in
Fig. 6-11b, which was not present in Fig. 6-11a. We remove this inaccessible region from the
stability plane in Fig. 6-13, by using the subcooling number relative to the riser exit as the
ordinate. By definition, N (riser exit) = N, (core inlet) - Ny, see Eq. (C-1), so Fig. 6-11b is
simply translated N, units downwards in Fig. 6-13. This coordinate transformation also
cancels the shift of the boundary between one- and two-phase flow. Figure 6-13 is therefore a
more convenient stability plane than Fig. 6-11b: The SBs change as a function of Ny, but
the size of the two-phase flow region remains constant.

At a fixed value of N, in Fig. 6-13, N (=N

Ni.sn- The single-phase regidn in the core will therefore be relatively long for large values of

+N nm) mncreases propomonal to

SUbC,i subg .




106 Chapter 6

~— Npash=0.00 R :

----- Nuaw=217| /.

= 41... Niash=3.66 |/ N
3 Ry ! Figure 6-13. Stability map for different values of the
5 3 @ _P/ A flashing number (N, =0, 2.17 and 3.66, respectively).
§ /s The ordinate in this figure is the subcooling number
) { YA with respect to the riser exit [Ny, (riser exit)=N,,, (core
Za 1¢ / inlet) - Ny, ]. The boundary between the one and two-
phase regions is now independent of N, and the
1 . : inaccessible region in Fig. 6-11b disappears as well.
KA | Hence, the strong effect of flashing on the size of the
0 * T T T 7 Type-l and Type-Il instability regions can be judged
0 2.5 5 75 10 more conveniently in this dimensionless plane. Note
Ny, that the size of the Type-I instability region increases as

a function of N,

Npagns €ven when N_, is small. We argued before that the existence of a significant

b
subcooled region has a?trong destabilizing effect. Figure 6-13 indeed shows that the ‘island
of stability’ below the Type-II SB disappears for large values of N,

The size of the Type-l instability region expands in Fig. 6-13 as the flashing effect
becomes more important, i.e in the low-pressure regime. Section 6.3.3 investigates the impact
of a pressure decrease on stability when the reactor is operated near the Type-I SB.
Furthermore, the influence of the power level and the feedwater temperature on Type-I

stability is considered in Section 6.3.3.
6.3.3. Influence of the Operating Conditions

The influence of the power level and the feedwater temperature on the dimensionless
stability coordinates is shown in Fig. 6-14. The ordinate in Fig. 6-14 is calculated by rewriting
Eq. (6-1):

Nsubnve = Nsubc_i " Npan = xk,eil:_m(Np—l —1)' (6-3)
fec,
Case 4 in Table 6-1 (P,=5.5 MW, P, =20.3 bar) is the reference operating point in Fig. 6-14.
The feedwater temperature for case 4 is not available. Therefore, we first investigate the
influence of changing this temperature, keeping the power and pressure level fixed at the
reference values. The resulting trajectory in Fig. 6-14 shows that, as expected, the subcooling
increases if we supply colder feedwater, and vice versa. The supply of relatively cold
feedwater will also reduce the void fraction in the core and riser sections. Consequently, the
natural circulation flow rate will become smaller. Because the Zuber number is inversely
proportional to the flow rate, this number will increase slightly as the feedwater temperature
decreases. This trend is indeed visible in Fig. 6-14. The impact of changing the feedwater
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Figure 6-14. Influence of the power level
and feedwater temperature on the Type-I
stability characteristics, at a (fixed)
system pressure of 20.3 bar (Ng,=0.2, cf.
case 4 in Table 6-1). The dotted line
separates the two-phase region in unstable
and stable areas. Decreasing the power
level clearly has a destabilizing effect:
The trajectory crosses the SB at
P,~1.4 MW. The
feedwater temperature on the operating
conditions is small, due to the relatively
small feedwater flow rate at low power
and pressure conditions.

influence of the

temperature on Type-I stability appears to be small. Figure 6-14 shows that the margin to the
Type-I SB only decreases slightly if we reduce the feedwater temperature.

Keeping the feedwater at a fixed temperature of 100 °C, we next investigate the influence
of the power level on the stability coordinates. Increasing the reactor power (i.e. increasing
the Zuber number), the riser exit quality increases, resulting in a larger subcooling number
[see Eq. (6-3)]. This has a strong stabilizing effect: Figure 6-14 shows that the margin to the
Type-I SB increases at higher power levels. Reducing the power has the opposite,
destabilizing, effect. The Type-I SB is crossed in Fig. 6-14 for P,=1.4 MW, Notice that the
model without flashing predicts that the Type-1 SB crosses the origin of the Zuber-subcooling
plane (see Fig. 6-11a). This implies that the SB is not crossed if we reduce the power level in
this case. We can therefore conclude that without flashing no Type-I instabilities occur.

The influence of the reactor power on the decay ratio and the oscillation frequency in the
vicinity of the Type-I SB is investigated in detail in Fig. 6-15a (P, ,=20.3 bar, T,,=100 °C).
The DR is defined as the ratio of two successive maxima of the flow oscillations caused by an
external perturbation, so the DR is larger than unity in the Type-I instability zone in Fig. 6-14.
Notice the rapid increase of the DR as the power level is decreased from 2 to 1 MW. The
oscillations are critically damped for P;=2 MW (DR=0), but quickly diverge if the power
level is reduced to 1 MW (DR=2.4). The oscillation frequency is rather low in the
neighborhood of the Type-I SB (=0.1 Hz), but increases for higher power levels (when the
flow velocity increases). Figure 6-15b shows the DR and oscillation frequency as a function
of the boiling boundary position. The Type-1 SB is crossed (DR=1) if Zb’; = 1.34. Stable void
flashing in the riser occurs for 1<Zb1<1.34. At lower pressures (larger Ng,,,), stable void
flashing out of the core does not exist, and the DR is larger than unity for Zb‘;> 1.

Finally, the influence of the pressure level on the Type-I stability characteristics is studied
(again for P, ,=20.3 bar and T;, =100 °C). The Type-I SBs for three different system pressures
(20.3, 4.85 and 3.5 bar) are shown in Fig. 6-16. The 20.3 bar SB (N,,=0.2) has been
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Figure 6-15. () Influence of the power level on the decay ratio and the oscillation frequency (P, ,=20.3 bar and
T =100 °C, see Fig. 6-14). Notice the rapid increase of the DR as the power level is decreased from 2 to
I MW. The oscillation frequency is rather low (~0.1 Hz), but increases for higher power levels. (b) Impact of
the boiling boundary position Z,," on the dynamic characteristics. The DR increases strongly as Z,, becomes
larger than one, i.e. when the coolant only boils in the riser. A shorter boiling length also corresponds to a lower

oscillation frequency.

presented before in Fig. 6-14. The SBs at 4.85 and 3.5 bar (N,,,=2.17 and 3.66, respectively)
are taken from Fig. 6-13. Decreasing the pressure (while keeping the power and feedwater
temperature constant) has two effects in the stability piane: The Type-I instability region
expands [because N, increases at lower pressures, see Fig. 6-13], and the dimensionless
coordinates of the operating point change.

The trajectory of the operating point as a function of the pressure level is shown in
Fig. 6-16. The Zuber number increases at lower pressures, due to a decreasing vapor to liquid
density ratio N . Because both the Zuber number and the flashing number become larger (i.e.
both heating and void flashing become more effective), the riser exit quality increases at
lower pressures. Therefore the increase of N, is accompanied in Fig. 6-16 by an increase of

N see Eq. (6-3). At a pressure of 20.3 bar, the operating point is located on the stable

’
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side of the (20.3 bar) SB in Fig. 6-16. At a reduced pressure of 4.85 bar, however, the
operating point has become unstable, due to the rapid expansion of the Type-I instability
region. Decreasing the pressure from 4.85 to 3.5 bar, the margin to the Type-I SB increases
further. This confirms the recent concern about the stability of natural circulation BWRs in

the low power and pressure domain.
6.4. CONCLUSIONS

A comprehensive parametric study, focusing on the statics and dynamics of natural
circulation BWRs under low-pressure conditions, is presented. The theoretical model
described in Chapter 5 was employed here. We compared this model successfully with
alternative models.

The effect of the operating conditions on the void production in the natural circulation
loop has been determined. At a low pressure, the subcooling of the fluid entering the core
increases rapidly, due to the axial variation of the saturation temperature in the natural
circulation loop. This suppresses the occurrence of boiling at low heating powers. Ex-core
boiling, due to void flashing in the riser, is therefore expected to be dominant during the
reactor startup phase. This implies that nuclear feedback effects are of minor interest under
these conditions.

Various assumptions in the dynamic model, suggested in Chapter 5, have been assessed
systematically. The simplified model used in this parametric study captures the main physical
phenomena under low-pressure conditions and is therefore a valuable analytical tool. A
comparison of our analytical model with predictions of detailed thermohydraulic codes is an
interesting topic for future research.

A parametric study of low-pressure BWR dynamics has been performed in the Zuber-
subcooling number stability plane. We argued that the strong effect of void flashing on the
size of the Type-I and Type-II instability regions can be judged most conveniently if we
define the subcooling number with respect to the riser exit in the Zuber-subcooling stability
plane. The Type-I instability region expands strongly in this plane if the pressure level is
reduced, due to the occurrence of unstable void flashing in the riser. The influence of
variations in the saturation temperature on the boiling boundary dynamics, very important
when boiling in the reactor core occurs, is investigated in detail.

Finally, we studied the impact of changing the operating conditions on the Type-I stability
characteristics in the Zuber-subcooling plane. Reactor stability decreases when, operating
near the Type-I SB, the reactor power is reduced. Reducing the pressure level also has a
strong destabilizing effect. These results confirm the recent concern about the stability of
natural circulation BWRs in the low power and pressure domain.
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Validation of the Theoretical Models®"

Abstract - The theoretical BWR stability models, developed within the framework of this
thesis, are benchmarked against experimental data. The predictions of the thermohydraulics
module are successfully compared with a set of detailed void-fraction measurements in the
DESIRE facility, and with Type-II oscillations that have been reported in two-phase flow
literature. The dynamic model for a natural circulation cooled BWR, outlined in Chapter 2, is
used to simulate stability measurements in the Dutch Dodewaard BWR. Experimentally
observed trends in the high power (Type-II) domain are explained successfully with this
analytical model. The nonlinear reactor model, analyzed in Chapter 4, was also validated
successfully against measured nonlinear power oscillations. The oscillations encountered in
the low power and pressure (Type-I) domain, during the startup of the Dodewaard reactor, are
simulated with the low-pressure BWR model that has been developed in Chapter 5.
Evaluation of the experiments shows that void flashing in the riser is important in the low-
pressure regime, in agreement with the parametric results presented in Chapter 6. Further
numerical and experimental work on this topic is recommended.

“Sections 7.2, 7.3, 7.4.2 and 7.4.3 of this chapter have been published (in a modified form) as:
D.D.B. van Bragt and T.H.J.J. van der Hagen, “Experimental Validation of a Low-Dimensional
Physical Model for Coupled Neutronic-Thermohydraulic Power Oscillations in Boiling Water
Reactors,” Proc. 5th Int. Conf. Nuclear Engineering (ICONE-5), Nice, France, May 26-30, 1997,
ICONES5-2138 (on CD-rom), American Society of Mechanical Engineers, New York, NY (1997).

Section 7.4.4 is part of a contribution submitted to Nuclear Science and Engineering (see
Chapter 4).
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7.1. INTRODUCTION

The theoretical models, developed within the framework of this thesis, are validated in this
chapter. The analytical model describing the stability of BWRs under high-pressure
conditions, outlined in Chapters 2 through 4, is compared with experimental data in
Sections 7.2 through 7.4. The thermohydraulics module is first benchmarked in Section 7.2
against a set of steady-state void fraction measurements in the DESIRE (Delft Simulated
Reactor) facility of the Interfaculty Reactor Institute. Type-II oscillations reported in two-
phase flow literature are analyzed in Section 7.3. The complete BWR model, incorporating
nuclear feedback effects, is validated in Section 7.4 using a series of well-prepared and well-
documented experiments in the natural circulation Dodewaard reactor. During one
measurement in the Dodewaard reactor (at the end of cycle 26), a large-amplitude oscillation
of the reactor power was encountered. This instability is evaluated using modern bifurcation
theory and direct model simulations. Section 7.5 focuses on BWR dynamics in the low-
pressure range. The analytical model, developed and analyzed in Chapters 5 and 6, is used to
explain the physical processes observed during the startup of the Dodewaard BWR. Our
model calculations are compared with high-fidelity TRACG calculations (for the cycle 23
startup).' Conclusions and suggestions for future research are provided in Section 7.6.

7.2. THE DESIRE FACILITY

The DESIRE facility of the Interfaculty Reactor Institute is a natural circulation loop
including a scaled model of one assembly of the Dodewaard BWR (consisting of 6x6
simulated fuel rods), with Freon-12 as a working fluid.? Operational experience with this
facility is described in detail by Kok.” Kok adopted the thermohydraulic module of our
analytical BWR model* to DESIRE by changing the appropriate dimensions and parameters
(e.g. the friction factors) of the model. He also equipped the DESIRE facility with an artificial
void reactivity feedback loop, to investigate nuclear-coupled instabilities.

The impact of the (artificial) void reactivity coefficient and fuel time constant on stability
was consequently explored in model simulations and experiments. Kok’s theoretical and
experimental results are consistent with the parametric study presented in Chapter 3.° For
instance, increasing the magnitude of the void coefficient in the DESIRE feedback loop has a
destabilizing effect (cf. Section 3.3.1). Increasing the value of the fuel time constant, another
key parameter determining coupled neutronic-thermohydraulic stability, has a stabilizing
effect in the DESIRE facility (cf. Section 3.3.3). A direct evaluation of the measurements in
the Zuber-subcooling stability plane proved to be difficult, because, at present, only a very
limited region of the operating plane can be studied with the DESIRE facility.

As an example of the analytical and experimental research on DESIRE, we here present
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void-fraction measurements in the heated
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~d section of this facility at different axial
positions and several power levels. The
0.6 T void fraction was measured with gamma
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Fraction transmission tomography. ¢ mass flux
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© 15 kW measurements with a flow control valve.
; 022 kW The results of the measurements are
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model proposed in Chapter 2 employs the
0+ t t t homogeneous flow model, i.e. void slip is
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neglected. we also investigate the
Flow Quality glected. Here, we also estig

influence of the integral void slip that
Figure 7-1. DESIRE facility void fraction measurements

at different axial positions and power levels compared
with the void fraction-flow quality relation used in our averaging of a nonuniform void profile in
model: with C;=1 (solid line), C,;=1.04 (dashed line) and
C, calculated with Dix’ relation [Eq. (7-1)] (dotted line).
In the last case C, increases from 0 to 1.08 as the flow ysed three different values of the wvoid
quality increases from 0 to 0.17.

originates from the  cross-sectional
the channel (see Appendix B). Therefore we

distribution ~ parameter C, in the
calculations: C =1 (no integral slip), a
fitted value of C,=1.04 (independent of the flow regime), and a flow regime dependent

calculation of C, using the relation of Dix:*
. 0.1
L) s e 2
P 1 +17xPe Py (7-1)

X P

C,=B

Good agreement between measurements and calculations is found in Fig. 7-1. The
underestimation of the void fraction for low flow qualities is due to the occurrence of
subcooled boiling. This non-equilibrium phenomenon is not taken into account in our model.
The influence of the nonuniform void fraction distribution over the channel cross-section is
visible for higher values of the void fraction. A void distribution parameter of C;=1.04
correlates the measured data well. The Dix relation for C, in Eq. (7-1) is dependent on the
flow regime, and correctly describes the measurements for small and large values of the void
fraction.

7.3. THERMOHYDRAULIC STABILITY BENCHMARK

The thermohydraulic part of our dynamic model is benchmarked against the experimental
data set of Saha et al.” Saha et al. conducted their experiments with a forced-convection
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Freon-113 loop. They investigated the effect of the operational conditions and the inlet and
outlet flow restrictions on the high power Type-II stability boundary. The influence of the
system pressure on thermohydraulic stability was investigated for a pressure of 12.1 bar
(set 1), 13.8 bar (set 2), and 10.3 bar (set 3). The influence of the system pressure on the
experimentally determined stability boundary is eliminated to a large extend, as can be seen
in Fig. 7-2, by converting the actual operating conditions to the dimensionless Zuber number
N,, and subcooling number N_
approximately the same value (~1 m/s) in sets 1 through 3. Changes in the Froude number

. It should be noted, that the flow velocity was kept at

[which is proportional to the square of the flow velocity, see Eq. (2-25)] are therefore small »
during these experiments, and not expected to affect the location of the stability boundary in
Fig. 7-2.

Fig. 7-2 demonstrates that our model correctly predicts the measured trends in the
dimensionless plane. Compared with the exact solutions of the differential two-phase flow
equations (obtained without simplifying spatial assumptions in the one- and two-phase
regions, and with C,=1), the quantitative agreement with the measurements is even better in
the region of low subcooling and high Zuber numbers. This apparent paradox can be
explained as follows. The equilibrium model overestimates the destabilizing fluctuations of
the boiling boundary in the low subcooling and high Zuber number region, because subcooled

boiling is neglected. Subcooled boiling
effectively reduces the volume of the one-

10 7

O sct1] One-Phase ./ ’,/', phase fluid in the channel, and therefore
® sct2 | Region ./ N diminishes the oscillations of the boiling
v L & set3 [ SO PE I SUUE I P
e vouiidaly, resung in HIVIC Staic SYSICIn

than predicted by the exact solutions of the

Now 5-# equilibrium model. Our low-dimensional
model was derived using spatial
254 / assumptions regarding the one-phase
R enthalpy and two-phase quality. Karve et
/STABLE al® have demonstrated that these
° approximations lead to a nonconservative
0 5 10 15

N prediction of thermohydraulic stability. This
Za

explains the good agreement with the

Figure 7-2. Comparison of the stability boundaries experimental data: the simplifying
calculated with our model [dotted line (Cy=1), and dashed

line (C;=1.07)] with experimentally determined pointson ~ assumptions used in our model partly
the threshol.d of instability .(sets 1—? of Ref. 7) and the compensate for the neglect of subcooled
exact solutions of the differential two-phase flow . .

equations (solid line). The operating conditions are Doiling. The exact solutions of the

represented  with  dimensionless  Zuber-subcooling  differential model solutions are, however,
coordinates, which absorb the influence of pressure on .
thermohydraulic stability. more accurate for higher values of the
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subcooling number. The discrepancy with

1.5
- the experimental data for the high
subcooling branch can be explained partly
Cale.q 4 ' by t‘he .mﬂuence of a nonuniform void
Freq. distribution over the channel flow area. A
(Hz) a2 value of C,=1.07, calculated with Eq. (7-1),
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) ® set 2 experimental stability boundary for high
& set 3 values of the subcooling number, in
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0 , ) agreement with results of Rizwan-uddin
] and Dorning.’
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Exp. Freq. (Hz) The measured resonance frequencies for

sets 1-3 are compared with our model (with
Figure 7-3. Experimental versus calculated resonance

frequencies for data sets 1-3 of Ref. 7. The oscillations C0=1’0) in Fig. 7-3. The agreement

with a relatively low frequency are located on the high  between model and experiment is excellent
subcooling branch in Fig. 7-2. The points on the low
subcooling branch in Fig. 7-2 have a significantly higher

resonance frequency. branch in Fig. 7-2. The oscillation

for points located on the highly subcooled

frequency is relatively low for these
operating points. At lower values of the subcooling number, the length of the single-phase
region decreases. The void fraction therefore increases rapidly. Hence, the velocity of the
two-phase mixture increases, and the oscillation frequency becomes higher. Fig, 7-3 shows
that our model overestimates the experimentally measured resonance frequency at very low
subcooling numbers.

This result is rather surprising, because our model neglects the influence of subcooled
boiling. This phenomenon causes a rapid increase of the void fraction (and the velocity of the
two-phase mixture) in the lower part of the core. Hence, the present model, that does not
account for subcooled boiling, is expected to wunderestimate the measured oscillation
frequency. Since this is not the case in Fig. 7-2, we suggest, as an interesting topic for future
research, to evaluate the impact of the spatial assumptions in the model on the predicted
oscillation period.

7.4. DODEWAARD HIGH-POWER (TYPE-Il) EXPERIMENTS
7.4.1. Introduction
From February 1992 (cycle 23) through January 1996 (cycle 26), a team of specialists from

several Dutch institutes (GKN, KEMA and IRI) has performed a large number of
measurements in the natural circulation cooled Dodewaard BWR. The aim of these unique
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experiments was to create a comprehensive and well-documented database of the statics and
dynamics of a natural circulation cooled BWR, for a wide range of operating conditions. A
summary and evaluation of the experimental data is presented in Ref. 10. The measurements
at relatively high power levels, i.e. when the Type-II feedback mechanism is dominant, are
compared with the predictions of our stability model for natural circulation BWRs in this
section.

The influence of the operating conditions, like the power and pressure level, on the natural
circulation flow rate in the Dodewaard BWR is investigated first in Section 7.4.2. Results of
our analytical model are also compared in that section with predictions of the high-fidelity
RAMONA BWR code.'" A model simulation of the Dodewaard Type-II stability experiments
is next provided in Section 7.4.3. Data set Il from Chapter 3 is used as the input data for the
analytical model in Sections 7.4.2 and 7.4.3. The nonlinear dynamics governing an unstable
reactor oscillation, which was encountered at the end of the cycle 26 measurements, is
analyzed in detail in Section 7.4.4. A fine-tuned friction and void reactivity model is used in
that section, to simulate the experimental conditions as accurately as possible with our
theoretical model. Experiments performed during the reactor startup phase, at very low power
and pressure levels, are evaluated in Section 7.4.5.

7.4.2. Dodewaard Natural Circulation Flow Predictions

Experimental values of the Dodewaard

1600

natural circulation flow rate as a function of
%b 1200 the thermal reactor power are compared
ey with the predictions of our model in
§ goo 4 Fig. 7-4. The model calculations were
z A Ve (ol 1) performed with an axially peaked power

= 4 a eas. (cycle . .

0 fil

T 400 Analytical Model profile (with a peaking f.actOf f, equal to
......... RAMONA-3B 1.4). The measurements in Fig. 7-4 were
0 L T T carried out during cycle 23, at the nominal

0 50 100 150 200  reactor pressure of 75.5 bar.'” The flow rate

Reactor Power (MWy,) was determined indirectly during these
Figure 7-4. Measured and calculated natural circulation €Xxperiments. By correlating the noise
flow rates for the Dodewaard BWR as a function of the
thermal reactor power. The measurements were
performed during cycle 23, at the (nominal) pressure of thermocouple, the transit time of the
75.5 bar. The experimental results are compared with
our analytical model and RAMONA-3B caiculations.
Note that both models systematically overestimate the measured. This transit time can be linked
flow rate at low power levels. The agreement between
model and experiment improves, however, at higher
power levels. about the (nonuniform) flow field in the

signals of a down-stream and an up-stream
coolant between both thermocouples was

with the flow rate if accurate information
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downcomer is available. Stekelenburg performed numerical fluid flow calculations to
establish a calibration curve between the measured transit time and the flow rate."? The total
error in the calculated flow rate was estimated to be rather small (+ 5%) for flow rates
between 579 kg/s and 1477 kg/s. It should be noted, however, that this calibration curve is
based on theoretical models instead of experiments. Hence, it remains rather difficult to
provide a good estimation of the experimental uncertainty in the flow rate. During one
experiment in Fig. 7-4 a rather small flow rate (560 kg/s) was measured, at the lower end of
the calibration curve. Relatively large experimental errors are to be expected in this case.
Figure 7-4 shows that the flow rate increases rapidly if the power is increased at an initially
low power level. At higher power levels, pressure losses due to friction become important and
limit a further increase of the flow rate. The model predictions agree quite well with the
experimental data for high flow rates. However, an overestimation of the flow rate is visible
at low power levels. To check whether this is due to model limitations, accurate 3D-
calculations were performed using the RAMONA-3B code.!" Carry under is incorporated in
RAMONA. Figure 7-4 shows that this high-fidelity model has similar problems predicting
the measured flow rate at a low reactor power. The RAMONA results agree very well,
however, with the flow rate predictions of our analytical model, especially at higher power
levels.
The measured flow rate at the end of cycle 26 is shown in Fig. 7-5. During these
experiments, the power and
Measurement Case (Cycle 26) pressure level were decreased
1 2 3 4 5 6 7 8 9  simultaneously from the nominal

1800 S : ; ; ' ’ operating conditions (case 1:

1600 P/M P,=179 MW and P=75.2 bar) to

1200 4 W the final measurement at a reduced
3

by o a—e—e——a o | pressure and relatively high reactor
1200

—6— RAMONA-3B P o=

—e— Analytical model power (case 9: P;=147 MW and
1000 © RAMONA-3B, modified — 10 .

—— Analytical model, modified P=34.4 bar).”” The impact of such
—8— Measurements

th

Flow Rate (kg/s)

a strong pressure reduction on

800 — T T
Pres.(bar) 75 65 55 50 46 41 37 32 34 reactor stability is discussed in
P (MW) 179 180 176 172 155 149 142 132 147  detail in Sections 7.4.3 and 7.4.4.

Figure 7-5. Measured and calculated flow rates for the Figure 7-5 shows that the
Dodewaard BWR (cycle 26, Jan. ‘96). The RAMONA-3B code  meagsured flow rate remains almost
and the analytical model both overestimate the flow rate for all

measured cases. The agreement between the two alternative cOnStant when we change the
models improves when some modifications are made in the codes. power and  pressure  level
Bypass flow, carry under, and local slip are neglected in the . .

modified RAMONA model. The adjusted analytical model, on the ~Simultancously. At high powers
other hand, employs a bottom-peaked power profile, C, is set gnd pressures (e.g. case 1),

equal to 1.11, and the two-phase friction model in the RAMONA X
code is adopted. changing the power has only a
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small effect on the flow rate, see Fig. 7-4. The effect of a pressure reduction on the flow rate
will be small as well at high pressures, because the fluid properties (densities, enthalpies) are
only weakly dependent on the pressure level under these circumstances. At lower pressures,
however, the void production will increase due to a smaller vapor to liquid density ratio.
Because the power level decreases as well at lower pressures during these experiments, the
void fraction increase will, however, be limited. The net effect on the recirculation flow is
therefore small, as Fig. 7-5 confirms.

Our analytical model and the RAMONA code both overestimate the measured flow rate
for all cases shown in Fig. 7-5. This systematic deviation, encountered before in Fig. 7-4, is
probably caused by an underestimation of the frictional pressure losses in the calculational
models. A fine-tuned friction model, yielding the correct flow rate for measurement case 9, is
therefore applied in Section 7.4.4.

The agreement between the predictions of our analytical model and the RAMONA code
further improves when some modifications are made in both codes. Our analytical model
neglects carry under and bypass flow (i.e. leakage flow paths in the fuel assemblies). Hence,
these phenomena were neglected as well in a modified RAMONA model. Bypass flow is
normally specified in RAMONA as a (user-defined) fraction of the total core flow rate.
Comparative RAMONA calculations, with and without bypass channel, show that the effect
of the bypass flow on the flow rate in the heated channels is very small. Accounting for
bypass flow thus directly increases the total core flow, whereas the flow through the heated
coolant channels remains essentially constant. Figure 7-5 shows that the calculated flow rate
decreases significantly in the modified RAMONA model. This means that the (negative)
effect ot carry under on the tlow ratc is smalier than the (positive) contribution of the bypass
flow to the total natural circulation flow rate. We also adjusted our analytical model, to
simulate the thermohydraulic model in the RAMONA code as accurately as possible. For
example, we used the same value of the void distribution parameter in our analytical model as
in the RAMONA code (Cy=1.11). Local slip, not modeled in the analytical model, was
neglected in the RAMONA code by setting the local drift velocity of the vapor equal to zero.
Furthermore, we incorporated RAMONA’s model for the two-phase friction multiplier'!
(Becker’s correlation) in our model. Finally, the axial power profile, calculated with the
RAMONA code, was approximated in our analytical model with a bottom-peaked power
profile. Figure 7-5 shows that the agreement between both modified models is excellent (the
relative difference between the models is less than 1% for all cases in Fig. 7-5), and
demonstrates that the results of our analytical model are consistent with the predictions of this
stripped RAMONA model.
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7.4.3. Dodewaard Type-Il Stability Tests

The model prediction of the dependence of the reactor decay ratio (DR) on the operating
conditions is compared with the experimental data in Fig. 7-6. The error in the experimentally
determined decay ratio is approximately 4% (+ 2o error)."® The calculation of the contours

Figure 7-6. Measured and calculated
decay ratios for different Dodewaard
stability tests: (a) cycle 23, Sep. ‘92
(solid line), (b) cycle 23, Jan. ‘93
(dotted line), (c) cycle 24, Jan ‘94
(dashed line), (d) cycle 25, Jan. ‘95
(dash dot), and (e) cycle 26, Jan. ‘96
(long dashes). The unstable case at
. . . the end of cycle 26 is denoted with an
0.10 i ; L ) A *“A”. Unstable Type-II oscillations are

0.5 1.0 15 20 25 3.0 predicted in region 1I, where the

Zu decay ratio is larger than unity.
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w
v

with equal decay ratio in Fig. 7-6 is performed with an axially peaked power profile (with a

peaking factor of 1.4), to improve the accuracy of the predictions. The calculations were

performed with the developed frequency-domain code, which is free from numerical
problems and provides exact solutions for
the two-phase flow dynamics in the riser.*

1.5 -
The strong influence of the system
A pressure and the thermal power on reactor
AA stability, predicted in Section 3.3.6, is
1o A confirmed by the experimental data in
Calc. AOAA,-' Fig. 7-6. During cycle 23, in September
DR 1992, the pressure was reduced from
05T o X.Q.A-' Xcycle 23, Sep. '92 75.5 bar (DR=0.19) to 60 bar (DR=0.39).
o X X cycle 23, Jan. '93 )

,zx},x' Ocycle 24, Jan. '94 The thermal power level was approximately
o o cycle 28, Jan. '95 165-172 MW during this session. At the

L A cycle 26, Jan. '96 i
0.0 + I end of the same cycle, in January 1993, the
0.0 0-5 pep.DR 10 1.5 power decreased from 179 MW (DR=0.30)

to 30 MW (DR=0), keeping the pressure at
Figure 7-7. Measured versus calculated decay ratios for . . .
the Dodewaard BWR. its nominal value (cf. Fig. 7-4). At the end
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of cycle 24, in January 1994, the same shutdown procedure was followed, but under reduced
pressure conditions of 60 bar. At a pressure of 60 bar, the DR decreased from 0.21 (148 MW)
to 0 (20 MW). At the end of cycle 25, in January 1995, the pressure was reduced to 45 bar

0.30[ T T T ¥
1
0.251 ] B
N | S S iz 1 ]
020k | ~ ; :_:I 3 p

[ 7] Figure7-8. Measured and calculated

osk | R | resonance frequencies (Hz) for

Lo {1 different Dodewaard stability tests:

23S 1 (a) cycle 23, Sep. ‘92 (sofid line), (b)

[ J 1 cycle 23, Jan. ‘93 (dotted line), (c)

0.10 . i L ! L cycle 24, Jan ‘94 (dashed line), (d)
05 1.0 1.5 2.0 2.5 3.0 35

N
Nz,

cycle 25, Jan. ‘95 (dash dot), and (e)

cyele 26, Jan. ‘96 (long dashes)
.36 (long ).

CyCi€ 20, van. Y0 (iong dasnes

during the shutdown before the reactor power was diminished from 154 MW (DR=0.61) to
51 MW (DR=0.11). The shutdown measurement session of January 1996 (cf. Fig. 7-5) ended
in an unstable reactor oscillation (with a DR of 1.02) at a pressure as low as 34 bar (this case
is denoted by an “A” in Fig. 7-6). At 80% full power (f.p.) initially, the reactor scrammed

1.5 R
X cycle 23, Sep. 92 R
X cycle 23, Jan. '93 e
O cycle 24, Jan. '94 L
@ cycle 25, Jan. '95 ’-' A
1.0 T} A cycle 26, Jan. ‘96 o %&
Calc. R cg&
Freq. _"Q
H .0
(Hz) o &
0.5 T i
0.0 + ! t
0.0 0.5 1.0 1.5

Exp. Freq. (Hz)

Figure 7-9. Measured and calculated
frequencies for the Dodewaard BWR.

resonance

Ref. 10 and Section 7.4.4. A comparison of
the measured DR versus the calculated DR
in Fig. 7-7 shows that the theoretical model
predicts the trends quite well. However, the
calculated DR is systematically too high
(especially for several conditions during the
cycle 26 experiments), indicating that
further tuning or refining of the theoretical
model is desirable. Hence, a fine-tuned void
reactivity and friction model is applied in
the next section.

The measured operating points and the
calculated contours of equal resonance
frequency are depicted in the stability plane
in Fig. 7-8. Notice that reducing the power
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and increasing the pressure both has a frequency lowering effect (and vice versa). Typical

trajectories in the stability plane, as a function of the operating conditions, have been

presented before in Fig. 3-12. Again, the measured trends in the resonance frequency are

predicted successfully by the model. Figure 7-9 shows that the quantitative agreement is not

entirely satisfying: the calculated resonance frequency is systematically too low.

No experiments have been performed to date that investigate the influence of the

feedwater inlet temperature on reactor stability. Experimental work on this topic, for instance

in the DESIRE facility, is strongly recommended, since our model predicts a strong

dependence of reactor stability on this independent variable (see Fig. 3-12).

7.4.4. Nonlinear Analysis of the Dodewaard Cycle 26 Instability

The experimentally observed Type-II instability, at the end of the cycle 26 measurements,

is analyzed in more detail in this section. We use the experimental data shown in Fig. 7-10 to

validate the nonlinear (Hopf-bifurcation) model analyzed in Chapter 4, Figure 7-10a presents
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Figure 7-10. Time trace of the measured thermal reactor power of the
Dodewaard reactor at the end of cycle 26 (taken from Ref. 10).
Figure 7-10a shows the last 800 seconds of the signal, the other graphs
present enlargements of certain time intervals.

the measured time trace of the
thermal reactor power. The
amplitude of the power
oscillations increases and
decreases several times during
the experiment, before it
diverges to the high-flux
scram level. Details of the
time trace are visible in
Figs. 7-10b through 7-10d.
The diverging oscillation after
t=740 s is probably induced by
the manual control of the
feedwater flow during the
experiment. The nonlinear
character of the growing
oscillations is clearly visible in
Fig. 7-10d.

The operating point of
interest is located in the
Type-1I unstable region, so the
influence of the gravitational
pressure drop over the riser is
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relatively small, and therefore only one riser node was used in the nonlinear calculations. The
core inlet and outlet friction coefficients and the void reactivity model were adjusted to
simulate the experiment in Fig. 7-10 as accurately as possible. The friction coefficients, listed
in Table 7-1, were fine-tuned to match the measured flow rate at the given operating
conditions. The void reactivity coefficients in the neutronics model were also adjusted to
simulate the diverging oscillation of the reactor power in Fig. 7-10d. Applying the void
reactivity coefficients listed in Table 7-2, the model prediction of the decay ratio is equal to
1.02, identical to the experimentally observed decay ratio in Fig. 7-10d.

Table 7-1. Frictional Numbers Tabie 7-2. Void Reactivity Coefficients
Applied in Section 7.4.4 Applied in Section 7.4.4
Ac 1.03 T, -0.017
AR 0.10 I, -0.288
ke; 9.41
ke, 3.49
e 1.00
ko 1.00

The bifurcation curves in the Type-II instability region for this Dodewaard reactor model

(a) b)

(
T T T T 0.000

|
X Stable (Exp.) )
X 4 Unstable (Exp.) subcrit. HB
0.75 1 © Nom. Cond. 0,005
Nsub Far
037 -0.010
X
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S
0 ' ' ' ‘ -0.020
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Figure 7-11. (a) Bifurcation diagram in the Type-II instability region for the natural circulation Dodewaard
reactor. A supercritical Hopf bifurcation occurs when the stability boundary is crossed. Two contours of equal
amplitude of the relative reactor power N * are shown. The stable and the unstable cases during the cycle 26
experiments are also plotted. (b) Influence of the void reactivity feedback on the bifurcation mode, for a
subcooling number equal to the value for the unstable experimental case (N_, 70.734). The Hopf bifurcation is
strongly supercritical for the values of the void reactivity coefficients used in Fig. 7-11a (see Table 7-2).
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Figure 7-12. Nonlinear model simulations of the unstable case in Fig. 7-10. (a) The development of a stable
nonlinear oscillation at the unstable experimental conditions (DR=1.02; o,,,=0). (b) The influence of
stochastic fluctuations in the thermohydraulic subsystem on the reactor power (DR=1.02; o,,=0.02). (c)
Enlargement of Fig. 7-12b. The reactor scram level (indicated with the horizontal dotted line) is reached at
t~78 s. (d) Simulation of the time trace in Fig. 7-10b (DR=0.98; G,,,,,.=0.02).
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are presented in Fig. 7-11. The model predicts the occurrence of a supercritical Hopf
bifurcation when the Type-II stability boundary in the Zuber-subcooling plane is crossed (see
Fig. 7-11a). The power oscillations thus evolve to stable nonlinear oscillations (limit cycles)
in the linearly unstable region. Two contours of equal amplitude of the normalized reactor
power N * are shown in the unstable Type-II region. Also shown are the experimental points
at which the reactor was operated. Notice that all measured stable cases during the cycle 26
measurements are indeed located on the stable side of the stability boundary. Figure 7-10b
illustrates the strong influence of the void reactivity feedback on the reactor bifurcation mode.
The subcooling number in the calculations of Fig. 7-11b is equal to the value for the unstable

experimental case (N_, =0.734). The void reactivity coefficient r,, is changed proportional

8,2
to r,, in Fig. 7-11b: r,, =r, x0.228/0.017. This implies that the reactor without nuclear
feedback is simulated in Fig. 7-11b by setting r, , equal to zero, whereas the nominal values
for the reactivity coefficients (see Table 7-2) are obtained for r,, =0.017. Figure 11b shows
that the Hopf bifurcation is strongly supercritical for the nominal values of the void reactivity
coefficients, as Fig. 7-11a confirms. The region in the N, -1,, space where subcritical
bifurcations exist is rather small, and located at much smaller values of T, and T,

The BifDD bifurcation code predicts a limit-cycle oscillation amplitude of 105 MWth
under the measured unstable conditions. This result agrees well with the time-domain
oscillation amplitude of 112 MWth in Fig. 7-12a. Apart from the deterministic time trace
presented in Fig. 7-12a, the influence of noise on reactor dynamics is also simulated with the
model, by adding a Gaussian white noise source (with ¢ . =0.02) to the right hand side of
the (normalized) core exit quality ODE [Eq. (B-9)]. This noise source is included in the

PN T T g A~ ¢l £ +
Lhcnuuu_yulauu\, suus_y stcm to modcel the influcnce of stochastic fluctuation

production on the reactor power. Notice that the strength of the noise source is a ‘free’ input
parameter in our model. However, simulations with other noise levels lead to similar results.
The time evolution of the reactor power, under the influence of noise, is depicted in
Fig. 7-12b. An enlargement shown in Fig. 7-12¢ strikingly resembles the measured time trace
in Fig. 7-10d. Because of the stochastic excitations, the reactor scram level (indicated with the
horizontal dotted line) is reached in Fig. 7-12¢, whereas the oscillations without noise in
Fig. 7-12a actually saturate at a lower amplitude. The power oscillations before the final
diverging oscillation (0<t<740s in Fig. 7-10a) can also be simulated with our stochastic

model, by reducing the decay ratio from 1.02 to 0.98 (compare Fig. 7-12d with Fig. 7-10b).
7.5. DODEWAARD STARTUP (TYPE-I) EXPERIMENTS
7.5.1. Natural Circulation Flow Predictions

The measured operating conditions during the Dodewaard startup for cycles 24-26 are
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summarized in Table 7-3. Table 6-1 contains the measurement results of the cycle 23
experiments.

Table 7-3. Operating Conditions During the Startup of the Dodewaard BWR (Cycles 24-26)
(Cycle 23 Startup Data are Summarized in Table 6-1)

Case Pgre P, ¢ hg, Tow Ny, NSUbC,i Npasn | Nz~
(bar) | (MW) [ (kg/s) | (J/kg) (K) sube
+N fagh
Cycle 24
1 2.3 43 | 466E2 { 3.35ES5 [ 7.3 2.6 8.8 7.1 1.0
2 3.8 20 |6.16E2 | 3.35E5 | 7.0 0.6 5.7 32 -1.9
3 5.1 14 | 7.46E2 | 4.01E5 | 3.5 0.3 2.2 2.0 0.05
4 7.6 34 | 8.25E2 [ 3.38E5 | 2.5 04 1.2 1.0 0.3
5 10.1 33 | 7.55E2 | 3.64E5 | 2.2 0.4 0.8 0.6 0.2
Cycle 25
1 2.0 4.5 | 396E2 | N.A. 9.0 3.6 12.0 8.7 0.2
2 2.0 45 |3.72E2 | N.A. 8.2 38 11.0 8.7 1.5
3 3.5 45 | 871E2 | 3.12E5 | 3.7 1.0 3.2 3.7 1.5
4 34 2.7 | 4.69E2 | 3.13E5 | 3.1 1.2 2.7 3.6 2.1
5 49 3.0 | 598E2 | 3.26ES | 2.7 0.8 1.8 22 1.1
6 4.8 3.1 3.95E5 | 3.21E5 | 2.8 1.2 1.9 2.0 1.3
Cycle 26
1 3.1 6.6 |4.92E2 | 397E5 | 6.4 3.0 6.2 4.6 1.4
2 3.1 6.5 | 4.93E2 | 3.25E5 | 6.5 3.0 6.3 4.6 1.2
3 3.1 6.5 | S5.75E2 [ 091ES [ 6.7 2.5 6.5 4.6 0.6
4 4.2 6.7 | 5.86E2 | 3.10E5 [ 5.5 2.0 4.1 2.7 0.6
5 4.2 6.7 | 4.88E2 | 3.54E5 | 5.9 24 4.4 2.7 0.7
6 42 6.7 | 4.81E2 | 3.62E5 | 6.0 24 4.5 2.7 0.6

The measured natural circulation flow rates are compared with the predictions of our
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analytical model in Fig. 7-13. The ‘error bars’ in Fig. 7-13 reflect the influence of the
experimental uncertainties on the calculated flow rate. Most measurement equipment is
calibrated under nominal conditions and not fine-tuned for the reactor startup range. The
measurement accuracy is therefore not optimal. Furthermore, stating an accurate heat balance
of the reactor vessel is difficult under low-power conditions, because phenomena like control
rod cooling become important. Control rod cooling, for instance, dissipates ~4 MW under
nominal conditions. Uncertainties of + 0.5 K in the subcooling,! and + 1 MW in the thermal
power'* are accounted for in the calculations in Fig. 7-13. The experimental error in the
pressure level is neglected here, but can be important as well, especially in the low pressure
range. For instance, if we decrease the pressure with 1 bar (from 5.1 to 4.1 bar) for case 3 of
cycle 24, the calculated flow rate increases from 430 kg/s to 730 kg/s, close to the measured
flow rate of 746 kg/s. Figure 7-13 shows that the error bars are relatively large in the low
power and pressure range. At higher pressures, for instance for cases 6 through 9 of cycle 23,
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Figure 7-13. Measured vs. calculated flow rates during the startup phase of the Dodewaard BWR (cycles
23-26). The “error bars’ reflect the impact of the uncertainties in the measured subcooling (+ 0.5 K) and thermal
reactor power (£1 MW) on the calculated flow rates.
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the experimental inaccuracies become less important. The impact of the operating conditions
on the void production and natural convection has been discussed in detail in Section 6.2.2.

We now discuss the experimental data and model results for each cycle in more detail. The
agreement of the model predictions with the cycle 23 experiments is satisfactory for cases 2
through 6. The measured flow rate for case 1 is significantly larger, however, than the
calculated flow rate. TRACG simulations by Wouters et al. of the cycle 23 startup’ indicate
that subcooled boiling starts at the exit of the hot channels at the low power and pressure
conditions of case 1. The voids are consequently collapsed at the entrance of the riser section,
due to mixing with the subcooled water from the bypass. The influence of local power
peaking and subcooled boiling is not included in our theoretical models, and the steam
production at the core exit is therefore underestimated. Furthermore, single-phase convection
of the fluid, very important in the low-power regime, is neglected in the model calculations.

The calculated flow rates for cases 7 through 9 in Fig. 7-13a are systematically too high,
compared to the measurements. This overestimation of the flow rate is possibly caused by an
underestimation of the friction losses in the calculations, see Section 6.4.2. As an example,
we repeated the calculation for case 9 with the fine-tuned friction model in Table 7-1. The
model then yields a natural circulation flow rate of 890 kg/s (instead of 1060 kg/s), much
closer to the measured value of 882 kg/s. We will not perform all flow calculations with the
fine-tuned friction coefficients listed in Table 7-1, however, because this friction model
depends on measured flow data (which hinders a ‘fair’ comparison between model and
experiment).

Figure 7-13b shows that the agreement between the model predictions and the cycle 24
experiments is good for all cases except case 2. Going from case 1 to case 2, the pressure
level increases and the power level decreases, while the subcooling remains almost constant
(see Table 7-3). Because the void production diminishes as the pressure increases and the
power decreases (see Section 6.2.2), one would expect a smaller flow rate for case 1 than for
case 2. This is not the case, however, see Table 7-3, possibly due to the large uncertainties in
the experimental conditions.

A systematic overestimation of the flow rate is visible for cases 3 through 6 of cycle 25 in
Fig. 7-13c. This discrepancy could be caused by the phenomenon of carry under [the presence
of voids in the (upper part) of the downcomer]. Due to carry under the pressure drop over the
downcomer decreases, and the intensity of void flashing in the riser becomes smaller. The
flow rate will therefore diminish, especially under low power and pressure conditions when
the void production due to flashing is significant. The flow rate also becomes smaller because
the density difference between core/riser and downcomer decreases when voids are dragged
into the downcomer section. We already mentioned in Section 6.2.2 that the criterion
N >N is not satisfied for all cases during cycle 25. Table 7-3 indeed shows that N

subg ; flash

subg;
is smaller than Ny, for cases 3 through 6. The flashing number is calculated in Table 7-3 by
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assuming that the coolant is single phase in the downcomer. This assumption is obviously
violated when voids are dragged into this section. The gravitational pressure gain in the
downcomer then becomes smaller and Ny, is overestimated in our model. Carry under also
increases the frictional pressure losses in the downcomer, yielding an -additional decrease of
Ng.q Furthermore, the subcooling at the core inlet becomes smaller due to carry under. These

three effects possibly explain why N, <N, . for cases 3 through 6 of cycle 25.

subc;

Our model correctly predicts the flow rate for all measurement cases during the cycle 26
startup. Table 7-3 shows that the experimental conditions are almost equal for cases 1-3 and
cases 4-6. This measurement series therefore provides a good indication of the experimental

accuracy.
7.5.2. Dodewaard Type-| Stability Tests

All measured operating conditions during the startup of the Dodewaard BWR are mapped
into the dimensionless Zuber-subcooling stability plane in Fig. 7-14. The diagonal in Fig. 7-
14 separates the cases with one- and two-phase flow. Two measured cases (case 1 of cycle 23
and case 2 of cycle 24) are located above the diagonal. These two cases are not considered
further in the stability analysis. The convection in this region is presumably driven by single-
phase density differences or subcooled boiling at the outlet of the hot channels (see the
discussion in Section 7.5.1). Research on single-phase convection suggests that the natural
convection is stable under these conditions,'® in agreement with the experimental results.

Below the diagonal, i.e. in the boiling region, the operating points are clustered in three
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the flow rate will be small. The Zuber number (inversely proportional to the flow rate) will
therefore be relatively large, yielding a group of points to the far right in Fig. 7-14. At higher

power levels the flow rate rapidly increases and the Zuber number becomes smaller. Many
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0 1 2 3 4 Figure 7-14. Mapping of the startup conditions of
the Dodewaard BWR into the dimensionless

5 ! ! L Zuber-subcooling stability plane. The diagonal
4 - separates the regions with one-phase (1¢) and two-
phase (2¢) flow. Our model predicts the

37 occurrence of boiling for most startup conditions.
2 Note that four measurements during the cycle 25

startup have a negative subcooling with respect to
the riser exit, possibly due to the influence of carry
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. . experimental uncertainties in the operating
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by the box surrounding this point.
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operating points are therefore located close to the origin in Fig. 7-14. Finally, four cases
(cases 3-6 of cycle 25) have a negative subcooling (with respect to the riser exit), possibly due
to the influence of carry under (see Section 7.5.1). A significant decrease of Type-I stability
was encountered during these experiments. Low-frequency fluctuations (<0.1 Hz) of the
reactor power, with a modest amplitude of only a few percent, were measured.'® The stability
characteristics during the cycle 25 experiments are summarized in Table 7-4.

Table 7-4. Stability Characteristics
Dodewaard Cycle 25 Experiments

Case DR | f(Hz)
1 0 N.A.
2 0.5 0.05
3(“B”inFig. 7-14) | 1.0 0.07
4 0.4 0.1
5 0 NA.
6 036 | 0.5

A self-sustained oscillation (i.e. with a DR equal to unity) was encountered at
measurement case 3. This case is labeled with a “B” in Fig. 7-14. The influence of the
experimental uncertainties in the operating conditions on the location of point B is indicated
by the box surrounding this point in Fig. 7-14. An evaluation of the stability characteristics of
cases 3-6 in Table 7-4 is not possible with our present BWR model, because we did not
consider the influence of carry under. Future analysis of these experiments, with an extended
model incorporating carry under, is strongly recommended.

We found in Chapter 6 that the location of the stability boundary in the dimensionless
Zuber-subcooling plane is strongly dependent on the system pressure during the reactor
startup. A direct evaluation of stability is therefore not possible in Fig. 7-14, because the
operating points mapped in this plane were measured over a wide range of pressure levels
[from 2.0 bar (cases 1 and 2 of cycle 25) to 69.7 bar (case 9 of cycle 23)]. Notice that the
stability analysis in the high power and pressure range, where the stability characteristics are
almost invariant in the dimensionless plane, was performed directly for all measured
operating points in Fig. 7-6.

The operating points located below the diagonal and above the horizontal axis have been
evaluated with the present model, see Table 7-5.
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Table 7-5. Calculated Margin to the Type-I Stability Boundary

for the Dodewaard BWR (Cycles 23-26)°

Cycle | Case | N, (Exp.)- [ oN,, Zy | Zy
Nz, (Calc.) | (Exp.) | (Exp.) [ (Calc.)

23 2 -0.55 0.48 2.46 >1
23 3 -0.07 0.11 1.60 1.20
23 4 0.06 0.05 0.85 1.16
23 5 0.07 0.03 0.80 1.06
23 6 0.18 0.02 0.58 1.04
23 7 0.29 0.02 047 1.02
23 8 0.40 0.01 041 1.02
23 9 0.37 0.01 0.42 >1
24 1 -1.63 0.61 2.17 >1
24 3 -0.86 0.20 2.64 >1
24 4 -0.22 0.13 1.78 1.02
24 5 -0.11 0.11 1.68 1.10
25 1 -2.82 0.79 2.62 >1
25 2 -1.58 0.84 1.98 >]
26 1 -0.42 0.46 1.47 >1
26 2 -0.54 0.46 1.61 >1
26 3 -1.14 0.39 2.22 >1
26 4 -0.60 0.30 2.00 >]
26 5 -0.50 0.35 1.84 >1
26 6 -0.54 0.36 1.92 >1

No major oscillations were measured for the cases listed in Table 7-5, case 2 of cycle 25

(see Table 7-4) excepted. A weak resonance was however encountered in the normalized

auto-power spectral density (NAPSD) of the neutron power noise for cases 1-5 during

“'The experimental position of the boiling boundary, Z,, (Exp.), was estimated in Table 7-5 with
the theoretical model, on the basis of the measured operating conditions.
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cycle 24."7 This resonance peak was located at a low frequency (below 0.2 Hz), and became
more pronounced at lower pressures. This suggests that this resonance is caused by small-
amplitude flow oscillations, probably induced by void flashing.

The third column of Table 7-5 lists the calculated margin to the Type-I stability boundary
(located at N, .). Only the Zuber number is changed in the calculations, the subcooling
number is kept constant at the experimental value. Because all cases listed in Table 7-5 are
stable, the experimental margin to the Type-I stability boundary is always positive. Our model
thus provides a conservative estimation of stability. Notice, however, that the experimental
uncertainties are relatively large, especially in the low-pressure regime where our model
predicts the occurrence of unstable Type-I oscillations. The fourth column lists the
(substantial) experimental uncertainty in the Zuber number, due to the experimental
uncertainty in the thermal power. The experimental uncertainty in the subcooling number is
also significant, see the box surrounding point B in Fig. 7-14.

The results for cases 2 and 3 of cycle 23 can be compared with the TRACG calculations
reported by Wouters et al.' During the measurements of case 1, the operators did not change
the reactor conditions. As a result, power was lost to the vessel internals, the vessel wall and
the drywell. The occurrence of subcooled boiling at the outlet of the hot channel, see
Section 7.5.1, therefore stopped due to the decrease in temperature. Going from case 1 to
case 2, the reactor power level was increased, and boiling again occurred at the exit of the hot
channel. These voids collapse in the riser, and form hot slugs with a temperature slightly
below the saturation temperature. The boiling boundary in the riser therefore moves
downwards, and the coolant starts to flash at the riser exit. The TRACG code predicts the
development of self-sustained Type-I oscillations under these circumstances (the initially
diverging oscillations rapidly converge to stable nonlinear oscillations with a modest
amplitude, cf. Ref. 18). At higher power and pressure levels, no longer all voids generated in
the hot channels are collapsed at the riser inlet, and boiling occurs in the entire riser section.
This effectively reduces the fluctuations of the driving head, and the flow stabilizes.

The results of our elementary model agree qualitatively well with the TRACG simulation
of the early startup phase of cycle 23. Boiling starts at the end of the riser when the conditions
of case 2 are simulated, see the fifth column in Table 7-5. Under these low pressure
conditions (~6 bar), void flashing out of the heated reactor core is unstable according to our
model (the flow becomes unstable in our transient model if the boiling boundary is located
above the critical value listed in the last column of Table 7-5). Increasing the power and
pressure level further, the boiling boundary moves downwards, and the Type-I oscillations
disappear when the coolant starts to boil in the reactor core (for instance for case 4).

The startup measurements during cycles 24-26 focused on the early startup phase
(pressures below 10 bar), to investigate the phenomenon of void flashing in the riser in more
detail. Our model indicates that the operating conditions were chosen correctly during these
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measurements, because the coolant was indeed flashing in the riser for all measured cases
listed in Table 7-5 (cycles 24-26). Evaluation of these experiments with advanced
thermohydraulic codes (like TRACG or MONA') is strongly recommended. A simultaneous
effort should focus on the performance of state-of-the-art experiments in the low power and
pressure domain. An overview of the experimental facilities investigating the dynamics of
BWRs at startup conditions has been given in Section 5.2. A new facility is currently under
construction at Delft University of Technology. This setup, CIRCUS (Circulation at Startup),
consists of four independently heated channels and four unheated bypass channels. The flow
channels are connected with a riser section, steam dome and downcomer loop. High-fidelity
void fraction and flow velocity measurements will be performed using gamma-transmission
and Laser Doppler Anemometry (LDA) equipment.

7.6. CONCLUSIONS

The theoretical BWR stability models, developed within the framework of this thesis, are
benchmarked against experimental data in this chapter. The thermohydraulics module is
applied to a set of detailed void fraction measurements in the DESIRE facility at the
Interfaculty Reactor Institute. Good agreement was found, especially when the nonuniformity
of the void fraction over the channel cross-section is taken into account. Thermohydraulic
instabilities that have been reported in two-phase flow literature were also correctly predicted,
over a wide range of operating conditions.

Stability tests in the Dutch natural circulation Dodewaard BWR were simulated with the
coupied neuironic-ihermohydraulic reactor model. Under high power (Type-II) conditions, the
model explains the experimentally observed trends. The nonlinear model was validated
against nonlinear power oscillations measured at the end of the cycle 26 measurements. The
stochastic nature of the measured time trace was reproduced successfully with the nonlinear
time-domain model, by introducing a noise source in the thermohydraulic subsystem.

The encountered oscillations at the startup of the Dodewaard reactor are caused by the
Type-1 feedback mechanism, according to our model. An evaluation of the experiments shows
that void flashing in the riser becomes important under low-pressure startup conditions.
Further evaluation of the available reactor data, for instance using advanced thermohydraulic
codes, is strongly recommended. A complementary effort should focus on performing high-
fidelity measurements in test facilities, to provide accurate data on the stability of two-phase
flow under low-pressure conditions.
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Chapter 8

Conclusions and Recommendations

Dynamics of BWRs was studied successfully with low-dimensional analytical models. The
analytical approach was followed to increase insight into the main physical processes
determining BWR stability. Many aspects of modern stability analysis were considered in this
thesis, €.g. coupled neutronics-thermohydraulics, natural circulation core cooling, space-
dependent oscillations, Type-I and Type-Il density-wave oscillations, low-pressure stability
and nonlinear dynamics. Progress made in each of these fields will be reviewed briefly in this
final chapter. Recommendations for further theoretical and experimental work are made as
well.

The main conclusion from this thesis is that the developed BWR models appear to have
the right ‘ingredients’ to qualify as successful analytical models. They consist, for instance, of
only a few interconnecting building blocks (neutron point-kinetics, first-order fuel dynamics
and thermohydraulics), are flexible, and easy to use in fast parametric studies. Moreover, the
models predict the measured trends in BWRs and experimental setups very well, indicating
that the most important processes determining BWR stability are accounted for in sufficient
detail.

Transformation of the model equations to a nondimensional basis, as described in
Chapters 2 and 5, proves to be an extremely powerful method to identify the main
(dimensionless) numbers determining stability. For a natural circulation BWR, all necessary
information about the operating conditions is, for instance, incorporated in only three
dimensionless numbers: the Zuber number N,, (also known as the ‘phase change’ number),
the subcooling number N, and the flashing number Ny,

Moreover, at high pressures (>20 bar) N, becomes negligibly small. Hence, the location
of the stability boundary in the N,,,-N,,, map is almost completely pressure invariant in the
high-pressure domain. Therefore, using this dimensionless stability map, instead of the
traditional power-flow map, is strongly recommended in the stability analysis of (natural
circulation) BWRs.

Two major types of BWR instabilities have been studied in this thesis (see Chapters 3 and
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6). Experimentally observed instabilities in forced-convection BWRs are all of the Type-II.
This type of instability has a thermohydraulic origin - phase lags between the one- and two-
phase friction in the reactor core - and is amplified strongly by the neutronics feedback. It
occurs typically at high-power and low-flow conditions, i.e. when Ny, is large. Experimental
work on this instability type in the DESIRE setup, which features an artificial void reactivity
feedback loop, is currently progressing.

In natural circulation BWRs, the significant gravitational pressure drop over the riser
section (installed to enhance the natural circulation flow rate) causes an additional type of
reactor instabilities. These Type-/ instabilities become especially important during low-power
and low-pressure (reactor startup) conditions. Under these circumstances, the influence of
pressure variations on the saturation enthalpy becomes significant. This effect is therefore
incorporated in a low-pressure BWR model, developed in Chapter 5.

A parametric study with this analytical model, reported in Chapter 6, shows that ex-core
boiling due to void flashing in the unheated riser section is dominant during the startup of a
natural circulation BWR. Nuclear feedback effects are small under these conditions.

Stability characteristics change dramatically at lower pressures. The Type-I instability
region in the N, -N,, plane expands, for instance, strongly if the reactor pressure is reduced,
due to the occurrence of unstable (flashing-induced) Type-I oscillations. Our stability model,
however, appears to be rather conservative (i.e. stability is underestimated) in the low-
pressure regime, as an evaluation of stability data from the natural circulation Dodewaard
reactor shows. A comparison with detailed TRACG simulations indicates that this might be
due to model limitations (for instance the neglect of subcooled boiling and local power
peaking). Incorporating these eftects in the analytical models is possible, but at the expense of
an increasing model complexity. Experimental work on low-pressure BWR dynamics will be
performed in the CIRCUS facility, which is currently under construction.

Space-dependent oscillations have been evaluated in Chapter 3. The most important
subcritical mode in BWRs is the first-azimuthal or ‘out-of-phase’ mode. This spatial mode
can be excited in large-radius reactors, where the subcriticality of the out-of-phase mode
becomes small (in an absolute sense). Local power monitoring is therefore recommended in
large BWRs.

The high-pressure BWR model was also analyzed in the nonlinear domain with a
numerical Hopf-bifurcation code (see Chapter 4). This nonlinear model was validated in
Chapter 7 against nonlinear power oscillations measured in the Dodewaard reactor. The
stochastic nature of the measured time trace was reproduced successfully with the nonlinear
time-domain model, by introducing a noise source in the thermohydraulic subsystem.

A comprehensive parametric study clarified the impact of various design and operating
parameters on the nature of bifurcation (subcritical vs. supercritical; stable periodic

oscillations vs. growing amplitude oscillations). More theoretical work is, however, still
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needed to assess the influence of modeling assumptions (especially in the thermohydraulics
model) on the bifurcation characteristics.

Both supercritical (unstable steady-state but stable oscillations) and subcritical (stable
steady-state but unstable oscillations) bifurcations were encountered, depending on the
operating conditions and the strength of the nuclear feedback. The practical importance of the
existence of subcritical bifurcations is significant, because they can in principle result in
diverging and undamped power oscillations in the linearly stable region, especially if the
reactor is operated in the vicinity of the stability boundary. A cascade of period-doubling
pitchfork bifurcations, ‘deep’ in the unstable region, was also encountered. The oscillation
amplitude of the reactor power becomes very large when the period-doubling sequence starts.
The practical relevance of period-doubling bifurcations is therefore limited, because a reactor
scram system should prevent their occurrence.
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Appendices

APPENDIX A: OUT-OF-PHASE NEUTRON KINETICS
A.1. Modal Point-Kinetic Equations

The space-dependent neutron kinetics equation is the starting point to derive a suitable
equation for higher harmonic oscillations of the neutron flux density':
LT - MEyoEy+(1-BFEHOEY +ACED,
t

v 0 (A-1)

and i%(f’—‘) = BE(E, D 1) - AC(E, 1),

where ®(T,t) is the space (r)- and time (t) - dependent neutron flux density. Only one
(effective) energy - and one delayed neutron group have been taken into account in Eq. (A-1),
to simplify the analysis. However, an extension to more energy- and delayed-neutron groups is
possible.? The destruction operator M (f,t) and production operator F(Z,t) in Eq. (A-1) are time-
dependent due to void- and Doppler feedback effects (burnup can be neglected due to the
different time scale). These operators consist of steady and oscillatory components, respectively:

M@, t) = M@® +8M(Tt) and F(,t) = F(®)+8F@1). (A-2)

We now expand the neutron flux density ®(r,t) and precursor concentration C(T,t) in an

infinite number of flux density modes:

D(f,t) = No¢(?>+|§)nk(t>¢k(f),
C, b +i ¢, (0,

A\ k=0 v

(A-3)
and C(1,t) =

where n,(t) and c,(t) are time-dependent expansion coefficients (amplitudes) of the different flux
density modes ¢,. N, and C, are steady-state amplitudes. The right hand side of Eq. (A-3) is
divided by the neutron velocity v, to ensure that the dimension of the precursor concentration is
m™. In equilibrium state, Egs. (A-1) and (A-3) yield C, =v(B/A)FN,.

The lower-order spatial harmonics can be approximated with the static A-modes’:
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M@ = 5-F,@ and <¢',.Fd>=0 (m=k), (Ad)
k

where A, is the eigenvalue of the k-th harmonic mode and ¢, is the solution of the adjoint
equation. Substituting Egs. (A-2) and (A-3) into Eq. (A-1) and rearranging using Eq. (A-4) leads
to an expression that can be multiplied by ¢, (m#0) and integrated over the reactor core to
yield the modal point kinetics equations:

s _ F
dn,® _p°, P 8 (0o, (0 + 0() Z p;\m(t)“n(t)’

dt Am m n=0 'm
de, () B
=—T—n ()-Ac_(1),
i A n, (t)-Ac ()
1
h S =]-—,
where p” A
e S GF OGS,
" <o’ Fo>
<¢*m,&>
and A = ————v~—,
<¢'F, >

(A-5)

where m is the order of the harmonic mode (m=1,2,...), p°, is the subcriticality of the m-th
mode, and p*,, is the excitation reactivity of the m-th mode due to a net change in the n-th mode

vonntiam wnta Kanintine {A_R\ cha fkno the lrinatina

tr1oc o m_th de ia Ae l« hath 4 linanw
rcaction rate. h\.{uauuu Vo) ol uldl uiv Aneuls U ii-u

feedback term, and an infinite summation of nonlinear terms (coupling the m-th mode with all
other harmonics). The nonlinear terms are omitted in the frequency-domain calculations of
Chapter 3. The (orthogonal) spatial modes are then decoupled.

A.2. \-Modes in a (Homogeneous) Cylindrical Reactor Core

To get an impression of the different A-modes in a reactor, we consider, as an example, a
bare homogeneous cylindrical reactor core with (extrapolated) radius R and (extrapolated)
height I:C. In a cylindrical coordinate system, the appropriate form of the one-group diffusion

equation is*:

2 2
10,360,130, 30,

B2¢ = 0, -
ror or 2 g% 9z? ¢ (A-6)

where B’ is the (geometric) buckling. Equation (A-6) is a homogeneous partial differential
equation (the ‘Helmholtz’ equation), and can be solved analytically using separation of
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variables:
$(1,6,2) = RMTO)Z(2). (A-7)
Substituting Eq. (A-7) in Eq. (A-6) and dividing by ¢ yields:

1 PR@M, 1 9R@M, 1 PTO), 1 3°Z@)
R(r) or2 R dr rT(O) 96° Z(2) 9z*

+B% = 0. (A-8)

Introducing a separation constant %, we can solve the axial component of Eq. (A-8):

1 92@) o
o a: (A-9)

The eigenfunctions and eigenvalues of this equation are well known. Applying the axial
boundary conditions Z(z=0)=Z(z=L.)=0 we find:

: 2

Z.(r) ~ sin(z,2) , rf:((‘t—l)”] L i=0,1,2,.. (A-10)
C

Substituting Eq. (A-9) in Eq. (A-8) and multiplying by r* then leads to:

r’ PR@O, r OR(@, 1 aZT(e)Hx2r2
R(® 4r? R@ or T(OB) o6°

=0, (A-11)

where we introduced «2=B2 - t2. Now we can solve the azimuthal component, introducing a
separation constant k*;
1 Jo°T(®
—————(2)=-k2- (A-12)
T® o8
The azimuthal solutions have to be periodic, i.e. T(0 +27) =T(8). Applying this constraint we
find:

T, (0) ~ C;sin(k0) +C,cos(k8), k=0,1,2,... (A-13)

Substituting Eq. (A-12) in Eq. (A-11) and multiplying by R(r) leads to the equation for the radial
solutions R(r):

2 3*R(r) 9RO
or

2 +(ar?-k?)R@) = 0. (A-14)
r

With the appropriate boundary condition R(r = R) =0 we can solve Eq. (A-14). For each value
of k, the general solution of the radial part of Eq. (A-14) can be written as a linear combination
of k-th order Bessel functions of the first kind J, (ar) and J_ (ar) and k-th order Bessel
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functions of the second kind Y, (ar)®:
R(@) = CY, (ar)+C,J (ar) +C,J_ (ar). (A-15)
It is important to realize that J,(or) and J_, (ur) are linearly dependent when k is an integer, so

we can set C; equal to zero. Furthermore, because Y, (ar)- -= as r-0, we also set C; equal to
zero. Applying our boundary condition at r =R, we find:

Vv i+ 2 .
R, ;@) ~ J (o ;1) o5 = (-‘%;1] ,1=0,1,2,.., (A-16)

where v, ;. is the (j+1)-th zero of J,.
Substituting Eqs. (A-10), (A-13) and (A-16) in Eq. (A-7) yields:

(+Dn=

C

c )2 ; 2
and Bzijk ) ka‘l . (l+~1)1'l: .
” R L.

d)i’j’k = Jk( vk’j'lé) sin [C,sin(kB) +C,cos(k0)], i,j,k=0,1,2,...,

(A-17)

The indices 1, j and k denote the i-th harmonic axial -, the j-th harmonic radial -, and the k-th
harmonic azimuthal mode, respectively. It is convenient to label each harmonic mode with a
triple index (i,j,k).

A 3. Importance of the Out-of-Phase Mode

We can relate the geometric buckling of the modes in Eq. (A-17) with their subcriticality
using a simple one-group diffusion theory relationship:

V2 Tll1-p3)-3

where Z, is the macroscopic absorption cross section, v the (average) number of neutrons

released per fission, Z; the macroscopic fission cross section, and D the diffusion constant.
Clearly, mode (0,0,0) has the smallest geometric buckling and is thus the least subcritical (in an
absolute sense). This mode is traditionally called the fundamental mode. In a critical reactor, the
subcriticality of this mode is zero. Rearranging Eq. (A-18) then enables us to calculate the
subcriticality of the higher harmonic modes:

“To be precise, (complex) Bessel functions of the third kind (Hankel functions) are also solutions
of Eq. (A-14). However, because we search real solutions, we do not need to consider these
functions. A detailed description of Bessel and Hankel functions is provided in Ref. 4.
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PP = ;DngBmZ: (A-19)
where AB?_ is the buckling difference between the fundamental mode and the higher harmonic
mode m. Which higher harmonic mode has the least negative psm depends on the actual core
geometry. In general, a large radius to height ratio favors the first azimuthal mode (0,0,1) over
the first axial mode (1,0,0) [see Eq. (A-17)]. By substituting typical BWR values® for R
(2.286 m) and ic (3.708 m), the buckling difference between the fundamental and first
azimuthal mode is equal to -1.703 m™. On the other hand, the buckling difference between the
fundamental and first axial mode is equal to -2.153 m™. Therefore, the first azimuthal mode is
the first subcritical mode. The first azimuthal mode is also called the out-of-phase mode (see
Fig. 1-7). Equation (A-17) shows that the azimuthal harmonic modes are in fact degenerate
eigenfunctions, because the eigenvalue of these modes is not dependent on rotations around the
z-axis. Therefore, a linearly independent azimuthal mode (rotated over 1/2 -radians in case of
the out-of-phase mode in Fig. 1-7) is also a solution of Eq. (A-6).

We can explicitly calculate the subcriticality of the out-of-phase mode when we combine
Egs. (A-17) and (A-19):

S _ .8 D 1 2 2
Py = Poony = 5 =5 Yo1 "V} A-20
sz RZ[ ] ( )

. This simple expression reveals that the
extrapolated core radius (m) P P

subcriticality of the out-of-phase mode is
o 1 2 3 4 5

inversely proportional with the square of the core-

a0 L 1 L L . . .

%’ radius and inversely proportional to the
E 05 - macroscopic  fission  cross-section.  The
o subcriticality of the out-of-phase mode as a
g 214 ABWR function of the core radius is shown in Fig. A-1.
% BWR/6_ f spwR We use D=1.0x10" m and vZ, = 2.0 m"' in this
g -157 figure. We furthermore assumed that 3=0.0056,
E to express the subcriticality in Fig. A-1 in § (data
3 -2 from Ref. 6). Notice the rapid decrease of the

Figure A-l. Subcriticality of the out-of-phase subcriticality (in an absolute sense) as the core

(0-0-p) mode as a function of the core radius radius increases.
[calculated with Eq. (A-20)]. Typical (homogenized) It
BWR data have been used (see Ref. 6). The
subcriticality of the o-0-p mode for a BWR/6, dependence of subcriticality on control rod
ABWR and the (abandoned) SBWR concept are
shown as well.

is important to emphasize that the

patterns, burnup, the presence of burnable
poisons, etc., is not incorporated in this simple
(homogeneous) reactor model. Furthermore, three-dimensional harmonics code calculations®
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show that the buckling difference between the fundamental mode and the first harmonic mode,
as calculated with Eq. (A-17), could be an overestimation, indicating that a small subcriticality
(in absolute sense) of the first harmonic mode is possible, New BWR designs like the ABWR
have a larger core radius than the currently operational BWR/6 (to reduce the power density),
which leads to an even smaller damping of out-of-phase oscillations in the neutronic subsystem,
see Fig. A-1.

One important question remains to be answered here: How can a subcritical mode be
sustained? In the linear approximation, the only remaining reactivity feedback term in Eq. (A-5)
is pf,, (we denote the out-of-phase mode as mode m=1). The (time- and space-dependent)
oscillation operator (8F - M) (7, t) is mainly determined by thermohydraulic state-variables as
the void fraction and fuel temperature. During out-of-phase oscillations, this operator therefore
has a spatial distribution similar to the m=1 mode:

(OF -6M)(r,2,0,t) ~ JI(\)l ];] sin| =2 sin(0)sin(wt). (A-21)
'R i

The excitation reactivity p*,, of the out-of-phase mode now becomes:

pF, ~ <d',.(BF -6M)(r,2,0, >

u

L 2n , (A-22)
J —| 2nrd d in“(0)d0 sin{wt).
f ( ] O(VOI R) r rfsm ( LC) zfsm )dO sin(wt)

z=0 6=0
The terms under the integral-signs are all non-negative in the domain of integration, and
therefore the excitation reactivity of the out-of-phasc modc is non-zero [and proportional to
sin{wt)]
REFERENCES

1. K. Hashimoto, “Linear Modal Analysis of Out-of-Phase Instability in Boiling Water Reactor Cores,” Ann.
Nucl. Energy, 20, 789 (1993).

2. K. Hashimoto, A. Hotta, and T. Takeda, “Neutronic Model for Modal Multichannel Analysis of Out-of-Phase
Instability in Boiling Water Reactor Cores,” Ann. Nucl. Energy, 24, 99 (1997).

3. J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, New York (1976).
M. Abramowitz and L.A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York
(1965).

5. Y. Takeuchi, Y. Takigawa, and H. Uematsu, “A Study on Boiling Water Reactor Regional Instability from the
Viewpoint of Higher Harmonics,” Nucl. Technol., 106, 300 (1994).

6. J. March-Leuba and E.D. Blakeman, A Mechanism for Out-of-Phase Power Instabilities in Boiling Water
Reactors,” Nucl. Sci. Eng., 107, 173 (1991).




Appendices 145

APPENDIX B: EQUATIONS OF THE HIGH-PRESSURE BWR MODEL

The dimensionless model equations for the high-pressure BWR model have been derived
systematically in Chapter 2. This model is extended in this appendix, by including the effect of
nonuniform (but symmetrical) axial power distributions in the equations. Furthermore, we
account for the influence of nonuniform void distributions over the channel cross-section. This
effect is incorporated in the void distribution parameter C,.' Finally, the original mixed system
of algebraic relations and ODEs, see Chapter 2, is rewritten as a system consisting of ODEs
only.

B.1. Neutron Kinetics

AN P e eys Bl N _
dt’ A (t) A*[ (t) ( )]7 (B 1)

ac t) -

N*@tH-C ("], -
m [Nt -C )] (B-2)

cf. Egs. (2-1) and (2-2). The different components of the reactivity term in Eq. (B-1) are
described in detail in Eq. (2-3). The dimensionless variables and parameters in Egs. (B-1) and
(B-2) are defined as follows:

v - N muny - CED 4o o AMg L ALep
Ny = M ey 2 S pe L D e Zoel (B-3)
N C Leps M,
B.2. Fuel Dynamics
d<q”(t" e 1 s .
—““‘“C‘=_‘ <q’(t )>e-<q "ty |
dt” T
M, . . <q'(t7)> <q"(t)>
with ’C; = ﬁ, <q’(t*)>C = $’ and <q//(t‘)>é = _.CL_(_/_)_C
L.ps <q’> <q">.
(B-4)

cf. Eq. (2-4). Because <q'(t")>¢ = N'(t"), Egs. (B-4) and (B-1) are directly coupled.
We assume that q/(z",t ") and q”/(z*,t ") can be written as the product of a time-dependent
and a space-dependent term. We furthermore assume that the axial profile of the linear power

production is approximately a sine-profile superimposed on a space-independent term®’:
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q'(z",t)=<q'(t")>¢ AP(f,,z"),

-2
T

with AP(f,,z") = _1”[[ 1 ‘%) +(fp_ l)Sin(ﬂ:z *)}, (B-5)

where we introduced the (normalized) function AP(f,,z") that depends on the (normalized) axial
position z~ and the axial peaking factor f- '

B.3. Boiling Boundary Dynamics

dZy(t" . . . . . . N
b (t ") _PL M (t ')[l SIN( ,)] _[1 7ot .)]<q Y3 Ngy - Zab ()0 () Nzu . (B-6)
d

sub

dt*

cf. Egs. (2-29) and (2-33). The factor P, characterizes the influence of the axial peaking factor
on the dynamic behavior of the boiling boundary. Applying the symmetrical power profile in
Eq. (B-5), this factor becomes’:

p 14275 (1 1 Z'\ ith x f,-1
ot T gz iy = 2 _
(1+Yzbb 23 21_2_fp (B-7)
T

The J, function in Eq. (B-6) is defined as in Eq. (2-30):

e N Y y on
2,c\t u I\‘sub}‘ (B-0)

B.4. Core Void Dynamics

(S l"[-'z‘.c(t )+ ‘] dZy,(t")

P e . . . 1
[1 ~Zy(t )]NZu<q “(t 12 ~Jac ()M (t )"'C"‘

dxcet) X 1) e
dt* - - - : ' * ,
L R RS TR I KA R | BN R (R
E;(NZ{NS“")[I "Il )] [ = Jz](t[){zjc ¢ ~)+]] - } (B-9)
2,C 2.C _

cf. Egs. (2-30) through (2-33).
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B.5. Void Dynamics for the n-th Riser Node

Ban®) |5, Jara®) Dot *)A]]dxé,n.l(t )
dt” 1+) g (t7) J dt*

N 10 0 a1 3 Ot 1500 Me ).

* 2cnx * *
LR (NZu_Nsub)[l +J2,R,n(t .)] AR (B-]O)

cf. Egs. (2-34) through (2-39). The szR,“ function in Eq. (B-10) is defined as in Eq. (2-35):

Topn(t?) = Xt INZ, ~Nyy). (B-11)

Variables labeled with a subscript ‘n-1" in Eq. (B.10) are evaluated at the ‘inlet’ of the n-th riser

node. The subscript ‘n’ denotes the n-th node ‘outlet’. The J, , function, appearing in the

equation for the first riser node (n=1), is equal to J, .

B.6. Mass Flux Density Dynamics

All pressure drop terms accounted for in the model are summarized systematically in
Table 2-1. Using Egs. (B-1) through (B-11), and manipulating, a (complicated) ODE for M(;,e

was generated with the Mathematica package. For brevity, this expression is not reported here.
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APPENDIX C: DIMENSIONLESS NUMBERS AND VARIABLES IN THE LOW-
PRESSURE BWR MODEL

The dimensionless numbers and variables in the high-pressure BWR model have been
presented before in Egs. (2-25) through (2-28) and Eqgs. (B-3) and (B-4). The definition of the
pressure-dependent numbers and variables needs to be refined in the low-pressure BWR model.
In this model, see Chapter 5, the vapor and liquid densities (p, and p,) and the evaporation
enthalpy (hy,) are assumed to be constant in the flow loop. These properties are evaluated at the
core inlet in Eq. (C-1). However, alternative definitions, for instance with respect to the local
pressure at the riser exit, are also possible. Because the pressure dependence of the saturation
enthalpy is accounted for in the low-pressure model, the dimensionless subcooling of the fluid
with respect to the riser exit, Nsubh, will differ from the core-inlet subcooling Nsubc‘i. The
difference between N, and N, . is equal to the flashing number Ng,,. This number is
assumed to be zero in the high-pressure model developed in Chapter 2 and Appendix B (i.e.
N =N

subp . - subc‘i)'

L q/ P Py /'*c/pf )2 P
C C A . .
Nzu - Ci c,, Npr _\ C.i . Np - c.|’
AcMg by o P g.Lc ey
h h, —h
. fei e Pri Pegy _ ke I Proi Pec,
sube; h > Tlsubp, h ’
fBe,i pgc| fgc pEc,i
h, ~h -
N _ = fes fre pr,i psc,i
flash subg; subg . ?
fec,i Be,i

Lepy, M,
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h*(tt) = an’ p *(t;) P(t*) ,
— 2
e fei Mc,/p.
A* = AMC,i A*E)"chf
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APPENDIX D: COEFFICIENTS OF EQ. (5-26)

The coefficients of the ordinary differential equation (5-26) for the boiling boundary are listed
in this appendix. The partial derivatives of the saturation enthalpy, see Eq. (5-20), are used to
simplify the expressions for these coefficients:

aﬁhf*(Zb*b,s )
CZ.O = (1 _bR)NZu +Nﬂash N
98Z(s ")
1{ « .
Ci = CZ,OE(TWC H'—ld>.R)~
) 1. .
Czo = CZ,OZT1¢,CTI¢,R’
Coo = _NZuT;d),C’
_ 1 * *
Cou = NZUETId),CT]d:,R’
. 98h (Zy,s ")
Camo = NzyTige "Nggy————
SGMCJ(S ")

—

* * * l * *
Cvy = E(Tld),c + Tld),R)(CM,O ”Nzﬂlq;,c)‘ NZu511¢,ch¢,R’

| .
Cyvaz = '4-Tl¢,CTl¢\R(CM‘O_NZutldJ,C)' (D-1)

The last coefficient, Cy,,, is set equal to zero in the calculational model.
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Nomenclature

l. LIST OF MOST IMPORTANT SYMBOLS

A = cross-sectional flow area (m?)
relative atomic weight
AP(z) = axial power profile
B? = geometric buckling (m™)
bg = bg=0 if boiling occurs in the core;
bg=1 if boiling only occurs in the riser
C = precursor concentration (m™)
Co = void distribution parameter
steady-state amplitude in Eq. (A-3) (m™*s™)
c = expansion coefficient (amplitude) in Eq. (A-3) (m™s™)
D = hydraulic diameter (m)
diffusion constant (m)
F = production operator (m™)
f = frequency (s')

Darcy-Weisbach friction factor

f, = axial peaking factor

G, = thermohydraulic transfer function

G; = fuel heat transfer function

Gy = zero-power reactor transfer function

Gr = closed-loop reactor transfer function

Gyx = transfer function from x to y

G, = auxiliary thermohydraulic transfer function [see Eq. (2-18)]
g = gravitational acceleration (m/s?)

h = enthalpy (J/kg)

L = effective resonance integral (m?)

Iy = k-th order Bessel function of the first kind

J, J,, ¥, = auxiliary dimensionless functions (see Chapter 2 and Appendix B)
k = local pressure drop coefficient

separation constant
ke = effective multiplication factor
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= heat transfer coefficient (J/s-m*K)
= length (m)
= equivalent inertia length of the downcomer (m™)
= mass flux density (kg/m?s)
destruction (or “migration”) operator (m™")
= neutron number density (m™)
= total number of nodes in the core
= total number of nodes in the riser
= steady-state amplitude of the neutron flux density (m?-s™)
= k-th expansion coefficient (amplitude) of the neutron flux density (m?-s')
= pressure (kg/m-s?)
= auxiliary function [see Eq. (B.7)]
= thermal reactor power (J/s)
= resonance escape probability
= linear power produced in the fuel (J/s'm)
= heat flux density from fuel to coolant (J/s'm?)
= core radius (m)
= radial component of §(r,0,z)
= radial coordinate (m)
= spatial coordinate (m)
= void reactivity coefficient
= void reactivity coefficients

= adinated vnid reactivity

nato. coetfinrian
aGjusith VOIG 1aluvidy COCII

= Doppler reactivity coefficient (K)
= adjusted Doppler reactivity coefficient
= Laplace variable (s™')
= temperature (K)
oscillation period (s)
= fuel temperature (K)
= fluid subcooling (K)
= azimuthal component of ¢(r,0,z)
= time (s)
= volume (m?)
= neutron velocity (m/s)
= eigenvector of the linearized system
= state vector
= k-th order Bessel function of the second kind

= boiling boundary position (m)
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Z(z) = axial component of $(r,0,2)

z = axial position (relative to the core inlet) (m)

Greek

o = void fraction

B = delayed neutron fraction
characteristic coefficient

B, = expansion coefficient

6(z) = Dira¢’s delta function

€ = oscillation amplitude

0 = azimuthal angle (rad)

A = generation time (8)

frictional number

A = bifurcation parameter

precursor decay constant (s™)
Ay = eigenvalue k-th harmonic mode

= bifurcation parameter

My = expansion coefficient
v = average number of neutrons released per fission
Vi = j-th zero of J,
3 = mean lethargy gain per collision

heated perimeter (m)
p = density (kg/m’)

reactivity
oFin = excitation reactivity m-th mode, due to a change in the n-th mode reaction rate
ps. = subcriticality m-th harmonic mode
Z, = macroscopic absorption cross-section (m™")
) = macroscopic fission cross-section (m™")
c = microscopic cross section (m?)

standard deviation
O noise = noise source strength
T = time constant (s)

transit time (s)

separation constant
T, = expansion coefficient

T = fuel time constant (s)
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) = neutron flux density (m™?s™)
¢ = flow rate (kg/s)
flux density shape
¢ = two-phase friction multiplier
X = quality
W = angular frequency (rad/s)
Subscripts
a = void
C = core
C = critical
D = downcomer
Doppler
e = exit
ext = external
f = saturated liquid
fg = difference between vapor and (saturated) liquid properties
fuel = property of the fuel
fw = feedwater
g = vapor
1 = inlet
i = liquid
m = moderator
R = riser
res = resonance
s = scattering
sat = saturated
t = total
0 = base
I = out-of-phase mode
1¢ = one phase
20 = two phase
Superscripts

* = normalized
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T = adjoint
Operators
A = difference
(steady-state) riser node height, see Eq. (5-4)
) = fluctuating part
deviation from the critical value
~ = extrapolated
<> = average
<> = integration over reactor core

Dimensionless numbers

Np, = Froude number
Niash = flashing number
N = subcooling number
N, = Zuber number

N, = density ratio number

Il. LIST OF ABBREVIATIONS

ABWR = advanced boiling water reactor

BWR = boiling water reactor

CIRCUS = Circulation at Startup

CRIEPI = Central Research Institute of Electric Power Industry
CWI = “Centrum voor Wiskunde en Informatica”

(National Research Institute for Mathematics and Computer Science)
DESIRE = Delft Simulated Reactor

DR = decay ratio

ESBWR = European simplified boiling water reactor

f.p. = full power

GE = General Electric

GKN = “Gemeenschappelijke Kernenergiecentrale Nederland N.V.”
HB = Hopf bifurcation

HEM = homogeneous equilibrium mixture model

HRTL = heating reactor test loop

INET = Institute of Nuclear Energy and Technology
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IRI
i-p
KEMA
LDA
N.A.
NAPSD
NEA
NRC
NWO

ODE
OECD
0-0-p
PINK

SB
SBWR

Il

Interfaculty Reactor Institute

in-phase mode

= “N.V. tot Keuring van Electrotechnische Materialen”
= Laser Doppler Anemometry

= not available

normalized auto-power spectral density

I

Nuclear Energy Agency

= U.S. Nuclear Regulatory Commission

= “Nederlandse Organisatie voor Wetenschappelijk Onderzoek™
(Netherlands Organization for Scientific Research)

= ordinary differential equation

il

Organisation for Economic Co-operation and Development

out-of-phase mode

= “Programma ter Instandhouding van Nucleaire Kompetentie”
stable

I

= stability boundary

simplified boiling water reactor
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Summary (in Dutch)

De dynamica van kokendwaterreactoren (BWRs) is bestudeerd met vereenvoudigde
analytische modellen. We richten ons op de dynamische instabiliteiten die worden veroorzaakt
door de nucleaire en thermohydraulische processen in het reactorvat van een BWR. Onze
analytische modellen vergroten het fysisch inzicht in de complexe processen die de stabiliteit
van een BWR bepalen. Ze zijn ook zeer geschikt voor het uitvoeren van snelle (lineaire en niet-
lineaire) parameterstudies (in tegenstelling tot grootschalige BWR-codes, die vaak uiterst
tijdrovend zijn). Een breed scala van stabiliteitsproblemen wordt onderzocht: gekoppelde
neutronica-thermohydraulica, niet-lineaire dynamica, plaatsafhankelijke oscillaties, natuurlijke-
circulatie BWRs en dynamica bij lage drukken.

Eerst wordt een theoretisch model voor de hogedrukstabiliteit van natuurlijke-circulatie
BWRs besproken. Dit thermonucleaire model bestaat uit benaderende modellen voor de
neutronenkinetiek, splijtstofdynamica en thermohydraulica. Deze systemen zijn met elkaar
gekoppeld door de invloed van stoomvorming en het nucleaire Doppler-effect op het
reactorvermogen. De vergelijkingen in het model zijn getransformeerd naar dimensieloze
cobrdinaten om de expliciete drukathankelijkheid in de modelvergelijkingen te elimineren.

Dit analytische model voorspelt dat twee instabiliteitstypen met name van belang zijn voor
BWRs. BWRs zonder schoorsteen (bv. BWRs die worden gekoeld door middel van geforceerde
convectie) zijn gevoelig voor zogenaamde Type-II instabiliteiten. Dit instabiliteitstype wordt
veroorzaakt door fasedraaiingen tussen de eenfasige en tweefasige frictiedrukvallen in de
reactorkern. Deze stromingsinstabiliteit wordt in belangrijke mate versterkt door de nucleaire
terugkoppelingsprocessen. Type-Il instabiliteiten zijn vooral van belang wanneer het
reactorvermogen hoog is en het koeldebiet gering. Natuurlijke-circulatic BWRs zijn tevens
gevoelig voor zogenaamde Type-/ instabiliteiten. Type-I instabiliteiten worden veroorzaakt door
de gravitatiedrukval over de schoorsteen van een natuurlijke-circulatie BWR. Instabiliteiten van
het Type-I treden op bij een gering reactorvermogen en een lage druk (bv. bij het opstarten van
de reactor). De invloed van plaatsathankelijke ‘uit-fase’ oscillaties op de Type-I en Type-II
stabiliteit is onderzocht.

Het analytische model is geanalyseerd in het niet-lineaire domein met behulp van een Hopf-
bifurcatieprogramma en numerieke tijddomeinsimulaties. De twee belangrijkste bifurcatietypen
in BWRs, de superkritieke en de subkritieke Hopf-bifurcatie, zijn bestudeerd in uiteenlopende
systemen (zuiver thermohydraulische systemen versus reactoren, geforceerde koeling versus
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natuurlijke circulatie). De bifurcatiekarakteristicken zijn gevoelig voor de sterkte van de
nucleaire terugkoppeling, de bedrijfscondities en de toegepaste nodalisatie in het model. Het
tijddomeinmodel voorspelt verder dat ‘diep’ in het Type-II instabiliteitsgebied een opeenvolging
van periodeverdubbelende bifurcaties optreedt (na de eerste superkriticke Hopf-bifurcatie).

Vervolgens is een model ontwikkeld dat de dynamica van natuurlijke-circulatice BWRs bij
een lage druk beschrijft. Dit model beschouwt de invloed van (axiale) drukverschillen in het
koelmiddelcircuit op de verzadigingsenthalpie van de koelvloeistof. Bij een lage reactordruk is
de verzadigingsenthalpie in sterke mate drukafhankelijk. De afnemende hydrostatische druk in
de stroomrichting (wanneer het koelmiddel omhoog stroomt door de kern en schoorsteen)
veroorzaakt in dit geval een sterke afname van de verzadigingsenthalpie. Dit kan mogelijk zelfs
leiden tot een plotselinge stoomvorming. Een parameterstudie laat zien dat, tijdens het opstarten
van een natuurlijk-circulatie BWR, voornamelijk stoomvorming in de schoorsteen plaatsvindt
(en niet in de verhitte reactorkern). De invloed van nucleaire terugkoppeleffecten is, naar
verwachting, in dit geval klein. Bij lage drukken neemt de gevoeligheid voor Type-I
instabiliteiten sterk toe, omdat het stoomvormingsproces in de schoorsteen bij lage drukken een
instabiel verschijnsel is. Dit bevestigt de recente zorg over de stabiliteit van natuurlijke-

circulatie BWRs gedurende de opstartfase.

De ontwikkelde analytische modellen zijn met succes gevalideerd aan de hand van
meetgegevens uit een natuurlijke-circulatie BWR (de Nederlandse Dodewaard-reactor) en

hand van grote vermogensoscillaties, gemeten in de Dodewaard-reactor. Oscillaties die in deze
reactor gemeten zijn bij lage vermogens en drukken (het Type-I gebied) zijn gesimuleerd met
het lage-druk BWR-model. Een evaluatie van deze experimenten toont aan dat stoomvorming
in de schoorsteen inderdaad van belang is bij lage reactordrukken, in overeenstemming met de
theoretische voorspellingen.




Summary (in Japanese) 159

Summary (in Japanese)

b AR TRE K AF BWR) DEVFsME % — BOTHRNTE 70 % WD TRET L7z, AR
Feid BWR P OEE LUK NBRIC LV E L 2B AL ERLERRE L,
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