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Chapter 1

Introduction

1.1 Introduction to reload pattern design

More than five decades ago, in 1942, the first nuclear reactor built by Enrico Fermi
achieved a critical fission chain reaction beneath the old Stagg Field football stadium at
the University of Chicago. Since that time, nuclear reactors have evolved from research
tools into large electricity generating units which are generally capable of producing over
1000 MWe of electrical power and satisfy a significant part (approximately 17%) of the
global demand for electrical energy. Basically, a nuclear reactor is a device in which
controlled nuclear fission chain reactions can be maintained. In such a device, neutrons
are used to induce nuclear fission reactions in heavy nuclei. A significant fraction of these
nuclei fission into lighter nuclei (fission products), accompanied by the release of energy
(about 200 MeV per event) plus several additional neutrons, thereby inducing a chain of
fission events.

An essential difference between nuclear power plants and power plants operating on
fossil fuel is that, in a nuclear power plant, the nuclear fuel cannot be fully ’burnt’ since
at least a critical mass of fissile material is required for sustaining the neutron chain
reaction. During the burnup process, the material composition of the nuclear fuel changes
such that the reactor core would eventually become subcritical (unable to further sustain
the controlled chain reaction) if the reactor operation is continued without adding fresh
fissile material. This is why nuclear reactors are periodically partly refuelled with fresh,
unburnt fuel, with the cycle length dictated by the criticality requirement.

With a predetermined desired cycle length and a predetermined target power level for
the nuclear reactor core, one is not absolutely free in configuring the core such that its
economy is maximized. Generally, there are certain safety requirements such as the
existence of an upper limit for the total power peaking factor (which is the maximum
power density in the core divided by the core-averaged power density). This power
peaking factor restricts the degrees of freedom in choosing a refuelling scheme to be
implemented, thus reducing the total solution space to a (still very large) subspace of
reloading patterns satisfying this power peaking constraint. Other examples of safety
constraints that restrict the degrees of freedom are the shutdown margin constraint, the
maximum critical heat flux ratio (MCHFR) constraint and the maximum critical power
ratio (MCPR) constraint.

This thesis focusses basically on calculational optimization techniques for maximizing
nuclear fuel utilization as far as allowed within this constrained solution space.

1.1.1 Nuclear fission reactors

Nuclear reactors have been used for over 40 years in a variety of applications. They
are particularly valuable tools for nuclear research since they produce copious amounts of




Chapter 1. Introduction

radiation, primarily in the form of neutrons and gamma rays. Such radiation can be used
to probe the microscopic structure and dynamics of matter (neutron or gamma spectrosco-
py). The radiation produced by reactors can also be used to transmute nuclei into artificial
isotopes that can then be used, for example, as radioactive tracers in industrial or medical
applications. An example of a typical research reactor is the Hoger Onderwijs Reactor at
Delft University of Technology, which is a small 2MW,, pool-type light water cooled
reactor used primarily to produce neutrons for materials research and activation analysis.
Further, small, compact reactors have been used for propulsion in submarines and ships,
and as compact sources of long-term power in orbiting satellites.

However, yet by far the most significant application of nuclear fission reactors is in
large power plants. The majority of the nuclear power reactors are operated with approxi-
mately 3 % enriched uranium fuel (i.e. 3 % *U and 97% ?*U) and with light water
(H,0, in contrast to heavy water or D,0) as the coolant material. These reactors are
generally referred to as Light Water Cooled Reactors (LWCRs). In this introduction, the
LWCR system characteristics will be only briefly discussed. More detailed technological
and theoretical information can be acquired from various textbooks [Duderstadt 1976].

Generally, an LWCR core is a cylindrically shaped lattice roughly 3 or 4 m in diameter
by 3 or 4 m in height consisting of a large number (100-400) of long fuel assemblies or
bundles. These assemblies consist of a large number of long, narrow fuel pins (typically
17x17), which are generally Zirconium alloy tubes containing the nuclear fuel in the form
of small UOQ, pellets. The height of a fuel pin and so, the height of a fuel bundle, is about
3 or 4 m. In spite of the presence of the necessary spacing material for keeping the fuel
pins in their proper lattice positions, water can flow more or less freely along the fuel pins
to carry the nuclear fission heat. The diameter of a fuel pin is about 1 cm. In the reactor
core, the nuclear fission chain reaction, producing the desired heat, is maintained. The
core itself is enclosed in a much larger container, a reactor pressure vessel, designed to
withstand the enormous pressures of the coolant (up to 155 bar). Naturally, the core is
linked to several coolant loops that circulate the coolant through the reactor to extract the
fission heat energy, and heat exchangers or steam generators that use the heated primary
coolant to turn feedwater into steam.

Two basic types of LWCRs can be distinguished : Pressurized Water Reactors (PWRs)
and Boiling Water Reactors (BWRs). In a PWR, the primary coolant is water maintained
under high temperature and high pressure, allowing high coolant temperatures without
steam formation within the reactor. The heat transported out of the reactor core by the
primary coolant is then transferred to a secondary loop containing the "working fluid" by
a steam generator. In a BWR, the primary coolant water is maintained at a lower pressure
(approximately 70 bar) for appreciable boiling and steam formation to occur within the
reactor core itself. In this sense the reactor itself serves as the steam generator, thereby
eliminating the need for a secondary loop and heat exchanger. Although the BWR seems
simpler, the PWR has advantages with regard to fuel utilization and power density, and
the two concepts have been economically competitive since the 1960s. The BWR fuel is
slightly less enriched, but the PWR fuel produces more energy before being discharged,
so these two properties cancel one another economically. In figure 1-1, the configuration
of fuel and coolant in a typical PWR core is illustrated.
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Fig. 1-1. Cross section of a typical PWR fuel bundle

1.1.2 LWCR refuelling

We recall that the interesting difference between nuclear power plants and power plants
operating on fossil fuels is that for nuclear power plants the *fuel’ cannot be burnt comple-
tely (typically only approximately 60 % of the fissionable nuclides). This is because, in a
nuclear reactor, the energy production requires at least a critical mass for maintaining the
chain reaction of neutrons. An important quantity to be defined here is the burnup. The
burnup is basically proportional to the number of fission reactions that have occurred and
can be specified both for an entire core and for an individual fuel assembly. The physical
unit generally used for burnup is MWdays/kg, in which case the exact definition of the
burnup B of a fuel bundie is the amount of energy delivered by the fuel bundle divided by
the initial mass of all heavy element isotopes in the fuel bundle (in case of LWCR fuel). A
generally known rule of thumb is that two fuel bundles of the same type with the same
burnup have the same material composition. Hence, the burnup can be used to characteri-
ze the material composition of a fuel bundle.

In the core of the reactor, the power distribution is generally not uniform. When, for
example, the entire core is filled with fuel bundles of identical burnup, the radial power
distribution will be approximately umbrella-shaped if the core is roughly cylindrical
(which, mostly, it is). The nonuniformity of the power distribution induces the presence of
variations in the burnup rates of the fuel bundles. During a fuel cycle, less and less
control (control rods in a BWR, soluble boron in a PWR) is required to maintain the reac-
tor’s criticality, due to increasing burnup for each fuel bundle. When the fuel has been
burnt to the extent that the controlled chain reaction of neutrons cannot be further maintai-
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ned, the reactor core needs to be partly refuelled. It is apparent that because of the burnup
differences, only the fraction of bundles featuring the highest burnup need to be replaced
by new, "fresh" fuel bundles when the reactor core is reloaded for the next fuel cycle.
Generally, one third or one fourth of the fuel bundles is discharged from the core, and the
remaining bundles are shuffled to other positions in the core, after which the vacant
positions are filled with "fresh” fuel bundles. When, at each reload operation, a fraction
1/n of the fuel bundles is replaced by fresh fuel, the burnup distribution will be such that
one can distinguish between n different age groups of fuel bundles that will roughly have
the same burnup.

In Fig. 1-2, a possible reload operation is illustrated graphically. Fig. 1-2 reveals some
of the important aspects of the work described in this thesis. It shows a two-dimensional
graphical representation of a nuclear reactor core, partitioned into square, homogenized
nodes that contain the different fuel bundles. In the right bottom quadrant the concept of
enforcing octant symmetry is illustrated by the octant symmetric numbering of the nodes
in this quadrant. The left part of the figure shows the fuel bundle age distribution corres-
ponding to the reload scheme. This age distribution follows from knowledge about the
trajectories as depicted in the right top quadrant along which the fuel assemblies travel
during their lifetime for the case of a repeated application of a 4-batch reload operation.

LJ
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M3e| 112 (3|4 [5(6]|7 (8] 9|10
1 jasbi11(12}13 (16 15| 16{17] 18] 19
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6 (15 2] 203539 |43a| 43|44
7 [16 | 24] 31| 36] 40| 43 [4sb)
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9 [18)26[33] 38|42
10[18) 27

Fig. 1-2. Illustration of a possible reload operation ; the darker the fuel assem-
blies, the higher their burnup.

A very important advantage of a partial replacement of the nuclear fuel in the core is

that a more flat power distribution is realizable, because of the availability of fuel bundles
with different burnup levels. When the power shape is flatter, a higher total power output

4
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could be achieved while satisfying the maximum bundle power limit, which is basically an
engineering constraint kept for avoiding possible melting of fuel bundles. Another impor-
tant advantage of batch refuelling with more batches is that the burnup of discharged fuel
bundles increases with the number of fuel batches n. Several authors have argued by
general analytical methods that the discharge burnup increases roughly with 2n/(n+1)
[Reilly 1970, Silvennoinen 1976, Strawbridge 1979, Parks 1988, De Jong 1995). Simulta-
neously, however, the cycle length (the maximum time at full power) decreases roughly
with 2/(n+1). For LWCRs, the initial fuel enrichment, the total fuel mass of the core, the
total core power and the number of fuel batches are generally such that the reactor core
can be refuelled once a year, though for some present-day reactors reloading only occurs
every 14 or 2 years.

1.2 Reload pattern design

One can exert influence on the time-dependent reactor physical characteristics of the
core by making a particular choice for the discharge-and-shuffling scheme to be imple-
mented at the reloading operation. Optimization of such schemes with respect to certain
target properties of the core during a fuel cycle is called reload pattern optimization, or
core loading pattern design. In many cases, the objective function depending on the
variable reload pattern is a combination of several relevant quantities, such as for example
the burnup of an average fuel bundle at the end of its lifetime, or the neutron leakage.
Obviously, in reload pattern optimization the optimal reload pattern associated with a
maximal or minimal value of the objective function should be found, subject to the pro-
blem constraints.

It should be noted here that, in general nuclear fuel management for LWCRs, a clear
distinction exists between out-of-core fuel management and in-core fuel management. Out-
of-core fuel management optimization focusses on optimizing the general behaviour of a
nuclear power plant, and addresses issues related to, for example, the choice of the
amount of fissile material to be purchased, and the desired material properties (fissile
enrichment, etc.) of the fissile material. In-core nuclear fuel management optimization
involves optimizing the design of the actual core configuration, so the actual positioning
of the different fuel elements in the reactor core. Further, in-core fuel management is con-
cerned with the Burnable Poison distribution design and, in the case of BWRs, with the
control rod program design. Burnable poisons are materials (such as Gadolinium) that are
characterized by very high neutron capture cross sections, especially in the thermal energy
range, but are not fissionable. These are generally added to fresh, unburnt fuel elements
to condition the power distribution during the first months of a reactor cycle. The purpose
of this is twofold : by adding burnable poisons to flatten the power distribution, the power
peaking factor is made smaller and the multi-cycle fuel economy for the reactor can be
enhanced (in accordance with the arguments presented in section 2.4 of this thesis).
Because of burnable poisons have high neutron capture cross sections, they are transmuted
rather rapidly, so that their effect becomes smaller and smaller as the operation cycle
proceeds. By then the power distribution will already be flatter due to the burnup effect.

The subject of this thesis is a study of heuristic search and perturbation theoretical me-
thods for use in in-core fuel management optimization. In the remainder of this chapter, it

5
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will be indicated that this optimization problem is a very difficult kind of optimization
problem from a mathematical point of view, followed by a discussion about the different
possible objective functions and the discrete optimization nature of this problem. Further,
different optimization approaches applied currently and in the past will be briefly descri-
bed. Finally, the specific in-core fuel management optimization problems and approaches
studied in this work will be introduced.

1.2.1 The factorially large design space

The number of different possible choices for the way in which to reload the core is

generally almost astronomically large. If, for example, we consider the core depicted in
Fig.1.2, and enforce octant symmetry, we have in the case of a reload fraction 1/4,
assuming that all unburnt fuel assemblies are similar, the following number of different
reload operations : 48:47....-14+13 = 48!/12! = 2.6-10%2. When a system containing
N fuel nodes is reloaded in an n-batchwise fashion, there are U; = N!/(N/n)! possibilities
for the choice of the reload scheme. In some optimization studies, the fuel assemblies are
classified in n different age groups with the (rather rough) assumption that within one age
group, the physical properties of the fuel assemblies (notably, the degree of burnup) are
approximately the same. Hence these studies make use of simplified models in which
batch properties are considered instead of properties of individual fuel bundles. These
models lack information about variations of burnup properties within the batches. Howe-
ver, because of the simpler nature of the reload scheme representation, which reduces
from a N XN node-to-node assignment matrix to a NXn batch-to-node assignment matrix,
the number of possible reload schemes reduces from U, to U,=Nl/[(N/n)!]".
The majority of standard scientific school calculators are incapable of calculating N! for
N =70, since for N>70, N!=>10'" and the largest power of ten that can be handled by
these devices is 10%. However, for N>70 it is justified to apply the Stirling approximati-
on:

N! = /2xN(N/e)¥ , for large N (.1

By applying Eq. (1.1), it can be derived that

U, - 100Nl ) 1.2
and
U, - 10{(N+—;)logn - %(..-1)10;[2")«1} (1.3)

Table 1.1 lists a number of total reload pattern space sizes for n=4. The largest value of
96 for N listed in table 1.1 is representative of a core containing a total of approximately
800 fuel elements, which is quite normal in present-day BWRs. It should be noted here
that if one explicitly considers rotational degrees of freedom (that is, accounting for the
fact that each individual fuel burnt element can still have four different orientations when
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its position in the core lattice is fixed), the size of the solution space is further enhanced
by a factor of 41N,

TABLE 1.1
N 16 24 32 40 96
U, 8.7178-10"  8.617-10% 6.526-10° 2.2484-10% 1.6-10'%
U, 63063000 2.31-10" 9.956-10' 4.705-10* 6.78-10%

In most reload pattern optimization studies, one resorts to the consideration of an octant
reactor core, assuming octant symmetry for the optimal solution. In this case one has to
bear in mind that the diagonal nodes contain half as much volume as the non-diagonal
nodes, which complicates the calculation of the total number of possibilities. Nevertheless,
the consideration of octant cores results in a very significant reduction of the number of
different reload patterns. It is, however, important to realize that octant symmetry can
never be exactly achieved, except in the case where each fresh fuel bundle that is placed
on a diagonal position remains on the diagonal during the rest of its entire lifetime.
Therefore, in some studies, the occurence of the last-mentioned situation is defined as a
constraint for core geometries in which this is necessary to obtain n-batch reloadings. For
present-day modern PWRs, a total number of 400-600 fuel elements is normal, so the
octant contains approximately 50-75 fuel elements. Thus, when no rotational freedom is
taken into account, solution spaces containing 10%-10% octant-symmetric candidate reload
schemes are common.

1.2.2 Objectives and constrainis

For the core loading pattern optimization problem, different objectives and constraints
can be formulated. These depend on the type of reactor one is dealing with and on the
specific restrictions imposed by safety and operational requirements. For commercial
power plants, one is mostly interested in optimizing fuel economy while satisfying safety
limits. This means that, on average, one wants to extract as much energy as possible from
the fuel assemblies before they are finally discharged from the core, while satisfying the
safety and operational constraints. This objective is quite understandable if one considers
the average price of one fuel assembly : approximately $ 700,000 (in the year 1997).
However, in most optimization studies, a flat power distribution is also highly valued, and
hence sometimes the foral power peaking factor is included in the objective function,
which then becomes a composite objective function. The total power peaking factor can be
defined as the maximum power density in the core divided by the average power density.
For the case in which one works with node-averaged power densities p;, with a total of N
nodes, the power peaking factor p can be mathematically defined as :

max{PI,I=1,...,N}

N
1=1 PI

p=N (1.4)
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Basically, the total power in the reactor core can be increased until the fuel bundle with
the highest power contribution reaches the maximum bundle power limit. So when the
power shape is as flat as possible, i.e. when the power peaking factor p is minimal (the
theoretical minimum is 1, corresponding to a fully flat power distribution), the total power
output of the reactor core can be increased maximally. Nowadays, the total power output
of the reactor core is usually constrained to the desired nominal power that can already be
reached with a non-minimal power peaking factor f;,, which is called the power peaking
limit. So when the power peaking peaking constraint p<f,, is satisfied, the nominal
power output of the reactor can be achieved.

While satisfying the power peaking constraint, a reasonable objective to be chosen is to
maximize the fuel utilization for a given initial enrichment. In practise this is often trans-
lated in maximization of the effective multiplication factor [Duderstadt 1976] of the
uncontrolled core at the start of the operations cycle for a given number of fuel assem-
blies, subject to the safety constraints [Galperin 1989, Mahlers 1991, Smuc 1994, Parks
1996a, Van Geemert 1996). 'Uncontrolled’ means that one considers the core in a fictiti-
ous state without external control such as control rods or soluble boron. Optimization of
the core result in a design in which a smaller number of fresh fuel assemblies is needed
for operation during the forthcoming cycle. Examples of optimization results for large
PWRSs have indicated that fuel cycle savings of several million US dollars can be realized
by application of sophisticated optimization methods [Hager 1997]. Another fuel economy
optimization approach, which is focussed on in this thesis, is to minimize the required
feed enrichment of a predetermined number of fresh fuel assemblies, subject to the opera-
tional and safety constraints (Maldonado 1995, Van Geemert 1997].

1.2.3 Mathematical classification of the in-core fuel management problem

The reload pattern optimization problem can be mathematically classified as an as-
signment problem, which is a general term for all problems in which basically one is
interested in an optimal sequence or ordering of different objects. Specifically, the reload
optimization problem is concerned with the question of how to optimally distribute N fuel
elements over N different core locations such that the utilization of the fuel is maximized.
A classical example of a more famous assignment problem is the rravelling salesman
problem, which is concerned with the quest for the optimal visiting sequence of a fixed,
predetermined collection of cities such that the associated travelling time is minimized. A
solution can generally be presented by a vector x containing N different integers x,,...,x,
indicating the sequential or positional ordering of the elements 1,...,N. For the travelling
salesman problem, x represents the travelling sequence and for the reload optimization
problem x represents the assignment of the different fuel elements over the various core
locations.

The very heart of the complexity of both problems is the fact that no ordering principle
exists for the discrete variables. The purpose of an ordering principle is basically to map
the solution space such that it eventually consists of mathematically identifyable regions of
approximately the same performance with respect to the objective. An ordering law as
described here should, implicitly, contain a lot of the actual physics of the problem in
order to even approximately reconstruct the genuine ordering in objective function values.
If one is interested in top performance solutions, so solutions associated with objective

8
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function values embedded in a narrow top range, the ordering law should be capable of
indicating directly the whereabouts of the region of these solutions in the mapped solution
space. So basically, the ordering law should for this narrow range of function values
correctly dictate the corresponding ordering properties for the top performance solutions
in terms of solution characteristics that are directly and explicitly related to the discrete
variables. For example, for reload optimization the ordering law should provide a unique
indication for the approximate fuel age distribution of the best reload pattern candidates.

It is obvious that such an ordering principle cannot exist if the actual physics of the
problem is characterized by a total lack of fuel age distribution uniformity in the collection
of patterns corresponding to the same narrow range of function values. For the travelling
salesman problem, this can be illustrated graphically in terms of the visual heterogeneity
of the different travelling paths (having about the same length) along the different cities on
a two-dimensional map of the travelling region. For the reload pattern optimization
problem, this can be illustrated analogously by showing the visual heterogeneity of fuel
age distributions corresponding to virtually the same objective function value.

An important difference between the objective functions of both examples is that, for
the travelling salesman problem, an explicit functional form exists that is perfectly linear,
whereas for the reload optimization problem, the objective function is known only in a
very implicit and difficult, and nonlinear form. In order to eventually determine the
objective function value, a lot of iterations must be done in which matrix eigenvalue
equations of rather high dimensions must be solved. Naturally and unfortunately, these
iterative procedures cannot be captured in an explicit functional form. The same applies to
the constraint function for reload optimization (i.e. the power peaking factor).

So, from a mathematical optimization point of view, the properties mentioned here
cause the reload pattern design problem to be characterized by a number of very inconve-
nient and unpleasant features [Stevens 1995] :

- It is well-known in reload pattern optimization that the objective function is general-
ly non-convex (fluctuatory), which means that the solution space features a very
large number of local extrema (instead of only one extremum in case of convexity).
This property is called multi-modality. It is obvious that the global optimum is the
best of the local optima. However, there is no method to predict which local opti-
mum is the best for multi-modal functions without identifying and comparing all
local optima.

- The constraint function is usually non-convex (and thus multi-modal) as well,
which gives rise to the existence of disjoint feasible regions in the solution space.
Furthermore, the mere presence of inequality constraints introduces discontinuity and
nondifferentiability, so that local optima of the constrained problem are unlikely to
occur at an extremum of the objective function.

- Since the basic variable, the reload scheme or assigment operator, is required to be
integer valued, the simple calculus of analytic optimization breaks even further down
since the concept of the infinitesimal necessary for differentiation does not even
exist.
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- In many cases, the objective function is composed of a number of possibly conflic-
ting objectives (multi-commodity). The different components of the objective functi-
on are generally weighted in some manner, and the global optimum depends on the
ratios of these weightings.

- The solution space is extremely large, which enhances the difficulties mentioned
previously here.

All of the first four problem characteristics individually make identification of the
global optimum infeasible and the reload optimization problem, even if restricted to pure
shuffling, has all four of them ! Because of these characteristics, no mathematical optimi-
zation method is known which is capable of solving the reload pattern optimization pro-
blem globally -that is, find the globally optimal solution at limited computational cost. In
mathematical optimization theory, a very essential tool in many optimization methods is a
functional expression for both the objective function and its gradient. However, since
functional forms exist for neither the objective function nor the gradient, the number of
optimization algorithms appropriate for solving this problem is quite limited.

1.2.4 Overview of different optimization techniques

In order to circumvent the mathematical difficulties and infeasibilities associated with
reload pattern design, many people have worked on different types of heuristic search
algorithms that have indeed been successfully applied in generating very good reload
designs. Generally, the heuristic search algorithms have a polynomial time behaviour,
which means that the worst case computational time of the algorithm is a polynomial
function of the problem size N. The heuristic algorithms generally do not require any
inherent ordering principle or gradient information and are known to perform reasonably
well in large combinatoric optimization problems. In many cases, the heuristic algorithms
are based on assessing the effects of a large but limited number of different fuel element
permutations in the core in order to travel along a path of successively improved patterns
in the solution space towards the final reload design, which is very probably a local
optimum. Some variants are somewhat more sophisticated and are not necessarily restric-
ted to successive improvements by allowing (mostly stochastically) transitions to slightly
worse patterns as well. In this way, these variants offer the possibility of escaping from
local extrema.

Perhaps the simplest example of a heuristic algorithm used for reloading pattern design
is the pairwise interchange optimization (PIO) algorithm [Naft 1972, Stout 1973, Lin
1979, Ho 1982, Kim 1987, De Jong 1995, Van Geemert 1997]. In this algorithm, all
possible pairwise fuel element interchanges in an initial reloading pattern x® are conside-

| red to see whether such interchanges yield improvements and, if so, the best interchange
| is applied, yielding a new pattern x. Subsequently this procedure is successively applied,
yielding a series of improved patterns x®,x®,..., until a pattern is found for which none
of the considered pairwise interchanges yields an improvement. Very probably, of course,
this pattern will be a local extreme.

Another example of a heuristic algorithm applied to reloading pattern design is successive
linear programming [Chitkara 1973, Stillman 1989, Mahlers 1991]. The successive linear
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programming method starts with linearizing the objective function F(x) in the 'neighbour-
hood’ of an initial reloading pattern x©. This linearisation is used for setting up a local
linear assignment problem, for which the optimal solution x® can be found by linear
programming techniques. Then the objective function F(x) is linearized near x to get a
following local linear assignment problem with solution x® and so on. Eventually, after
convergence of this process, a local extreme is found.

Two particular heuristic search methods, Simulated Annealing [Parks 1987, Kropaczek
1991, Verhagen 1993, Smuc 1994, Van Geemert 1999] and Genetic Optimization [Poon
1993, Parks 1996a, DeChaine 1996, Axmann 1996], have been very popular during the
last decade and are considered to be quite promising by the reload pattern optimization
community. The most important similarity between these two methods is that they are
both stochastic methods, offering the possibility to escape from local extrema, and that
they are both based on simulating optimization processes that occur in nature.

The Simulated Annealing optimization mechanism is numerically analogous to annea-
ling processes of many-particle systems (such as a crystal). These systems generally also
have a very large and fluctuatory state space, which is even also discrete if the systems
are governed by quantum-mechanical laws. The transition processes can be well described
by statistical mechanics. In annealing processes, many-particle systems gradually find their
way to an energy state corresponding to a very low (if not the lowest) potential energy
through a very gradual decrease in system temperature and stochastically determined
transitions from one (discrete) energy state to another. In reload pattern optimization, this
search technique can be applied in the quest for the pattern corresponding to the highest or
lowest value of an objective function.

In Genetic optimization techniques it is tried to simulate the Darwinian process of
evolution. According to Darwin’s evolution theory, the genetic code of a species gradually
evolves under external influences (such as, for example, gradual changes in climate) such
that, in order to survive, it will automatically eventually adapt to changes in its natural
habitat. This can be regarded as a biological (stochastic) optimization algorithm with the
"Survival of the Fittest" principle as its driving mechanism.

Another heuristic optimization approach is to apply knowledge-based selection rules
[Galperin 1989] for setting up engineering constraints. These selection rules serve to
exclude reload patterns with certain specific characteristics a priori from evaluation as
candidate patterns. In this way, the candidate solution space can be reduced to the extent
that all candidate patterns therein can be evaluated individually within limited computatio-
nal time. Use of selection rules requires a lot of engineering insight as well as caution
since the number of remaining candidate solutions can hardly be reduced to computational-
ly feasible proportions without the risk of unintentionally excluding the best candidates
from computational evaluation. It might be possible that reload patterns exist outside the
subspace defined by the engineering constraints which actually yield good cycle behaviour,
in spite of the fact that they violate one or more of the selection laws.

Other authors have tried to handle the core reloading problem by defining a desirable
EOC (End-Of-Cycle) core state and then tried to find a reverse depletion strategy to find a
BOC (Begin-Of-Cycle) core state where the available fuel bundles are matched [Downar
1986, Alsop 1991, Mahlers 1991]. At EOC, a low critical mass while satisfying the power
peaking limit, is usually the target. Though heuristic methods are known to be capable of
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]

finding very good candidate patterns, they can never guarantee that the best solution found
is truly the globally optimal solution. However, from the results obtained by different
authors [Parks 1996b, De Jong 1995] it may be carefully concluded that, when maximiza-
tion of fuel utilization is chosen as the objective, the optimum is quite *flat’ in the sense
that a lot of ’families’ of patterns exist that are quite dissimilar with respect to their age
distributions but almost equal with respect to their (nearly globally optimal) quality. This
is perhaps the most important reason why the relatively simple search heuristics have been
quite successful in generating very satisfactory reloading schemes.

In sophisticated heuristic search procedures such as the ones described here, thousands
or even millions of different reload patterns must be evaluated, even in the case when one
is considering a very modestly-sized core. This is why, to keep the required computation
time within practical proportions, the availability of a computationally efficient method for
performing core calculations is absolutely necessary. A calculational scheme in which
large storage and execution time requirements are avoided is provided by so-called nodal
methods, of which different variants have been developed. Examples are the 1'%-group
diffusion kernel [Chao 1987, De Jong 1995], and the nodal expansion method (NEM)
[Bennewitz 1975, Finneman 1977, Smith 1985, Maldonado 1995]. Another way to evalua-
te the effects of large numbers of different permutations in a refuelling scheme is to treat
the permutations as perturbations and apply generalized perturbation theory for assessing
their effects on the objective function value [Ho 1982, White 1990, Maldonado 1995,
Moore 1996, Van Geemert 1997, Van Geemert 1998].

A number of authors [Kim 1997, De Klerk 1997, Mahlers 1994, Quist 1999a] have
worked on the development and implementation of gradient based methods for solving the
reload pattern optimization problem. Whereas all of the heuristic search procedures
discussed sofar are inherently independent of ’inside’ gradient information arising from the
core model used, these gradient based methods are characterized by a general mathemati-
cal approach in which the combination of the reload pattern and all the state variables
occuring in the core model is treated as the variational space. The general task description
is then to maximize or minimize some objective function subject to constraints consisting
of the reload operation equation, the core neutronics equations, the depletion equations
and some operational and safety constraints. In this formulation, the problem is non-linear
and non-convex as well, and the solution methods can therefore be denoted as mixed-
integer nonlinear optimization methods. In spite of the need to use only limitedly compli-
cated core models, again no global optimality can be assured. Further, the optimization
results may be rather sensitive to the initial configuration of the problem variables, which
basically means that these methods do not offer the same absolute robustness as some of
the more sophisticated heuristic search algorithms such as simulated annealing or evolutio-
nary algorithms. However, if well implemented and initialized these methods are capable
of yielding rather good results within very limited computation time and, in addition,
constitute a very promising potential for tackling the combined reload pattern and burnable
poison assignment problem [Quist 1999b]. As discussed in chapter 7 of this thesis, burna-
ble poisons are materials with very high absorption cross sections that can be added to
fresh, unburnt fuel assemblies in order to prevent discrepancies in the spatial power
distribution and to serve as instruments for long-term reactivity control. Using them
basically enhances the degrees of freedom in configuring the core while still satisfying the
power peaking constraint. Obviously, when applying only heuristic search methods, the

12




Chapter 1. Introduction

reload pattern optimization problem and the burnable poison assignment optimization
problem are necessarily decoupled. However, when applying mixed-integer nonlinear
optimization methods, it should be possible to tackle both problems simultaneously (and
thus in an integral way) [Quist 1999b].

1.2.5 Equilibrium cycle optimization

A large number of reload pattern optimization studies have focussed on optimizing only
the forthcoming operation cycle. With the fuel inventory which is available at BOC, it is
for example attempted to maximize the length of the forthcoming cycle, given a specific
constant core power level during the operation cycle. This objective does not comply with
maximum fuel utilization, since a high cycle burnup does not necessarily imply a high
burnup of the fuel bundles to be discharged. If one wishes to maximize the cycle length of
the forthcoming cycle, one will find that the fresh fuel assemblies will have to be loaded
in the central region of the core, whereas the burnt fuel assemblies will be placed closer
to the periphery of the core, so as to minimize the neutron leakage from the core. This
type of reloading is generally referred to as Centre-to-Outside Loading (COL). For COLs,
the fresh fuel assemblies are placed as close to the core centre as is allowed by the power
peaking constraint. And for COLs, indeed especially the freshest fuel bundles contribute
to the high cycle burnup. Since for COLs however, the older fuel bundles will have a
relatively high burnup, successively optimizing reloading design for only the forthcoming
cycle can eventually actually lead to shorter cycles.

As nuclear fuel economy is basically a multi-cycle issue, a fair way of evaluating
reload patterns is to consider their performance in the case of an equilibrium cycle [Chit-
kara 1973, Lin 1979, De Jong 1995, Van Geemert 1996, Van Geemert 1997, Yamamoto
1997]. The equilibrium cycle (or cyclic mode) associated with a reload pattern is defined
as the limit fuel cycle which eventually emerges after multiple successive periodic refue-
ling with the same reload pattern. It is interesting to note that for equilibrium cycles, the
objectives of a maximum total cycle burnup and the discharge burnup are the same, since
for an equilibrium cycle refuelling (replacing discharged fuel bundles by fresh fuel bund-
les) exactly compensates the total cycle burnup. So for equilibrium cycles, the objectives
of a maximum total cycle burnup (or maximum cycle length) and a maximum discharge
burnup are equivalent.

1.3 Scope of this thesis

In this thesis, a general description will be given of basic computational methods for
calculating the time-dependent power and burnup distributions in a nuclear reactor core,
with emphasis on PWR physics and geometry. In particular, a Green’s function nodal
kernel method for fast core calculations will be presented that is to be applied in the
evaluation of large numbers of loading patterns in heuristic search procedures. Theoretical
foundations and practical results will be described of optimization based on the 'multiple
cyclic interchange’ approach, according to which the hunt for the best loading scheme can
be decomposed in different stages. In this approach, the transition from the initial stage to
the final stage is characterized by an increase in the degree of locality in the search
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procedure. The general idea is that, during the first stages, the "elite" cluster containing
the group of best patterns must be located, after which the solution space is sampled in a
more and more local sense to find the local optimum in this cluster. The transition(s) from
global search behaviour to local search behaviour can be either prompt, by defining
strictly separate search regimes, or gradual by introducing stochastic acceptance tests.

In order to assess the effects of large numbers of possible changes in refueling schemes
within a practical CPU-time frame, a generalized higher-order perturbation-theoretical
formalism has been developed and implemented as well. Especially in the case of large
PWR cores, for which thousands of fuel element permutations must be evaluated during
an optimization search, use of perturbation theory seems very rewarding.

For fast evaluation of a new pattern to be investigated, the pattern can be decomposed
into the original, unperturbed reloading scheme and the perturbation in the scheme. A
variational technique can be applied to evaluate in first-order approximation the effect of
the perturbation on a selected response vector. Explicit consideration of the higher-order
terms in the response functional expansion results in a very rapidly converging iterative
scheme from which a higher-order estimate of the perturbation in the response vector can
be obtained at very low computational cost. In this iterative scheme, the first-order estima-
te serves as a fixed-source term. The availibility of this higher-order perturbation forma-
lism offers the possibility of fast and (satisfactorily) accurate assessment of the effects
with respect to the chosen objective of selecting different reloading schemes, which results
in a considerable economy of computation time.

In particular, it has been studied how the first-order gradient information can be applied
in fuel management optimization for the equilibrium cycle. For application of perturbation
theory in equilibrium cycle optimization it is necessary to consider perturbations in the
most complex equilibrium cycle parameter, that is, the reload scheme itself. An interesting
property is that a permutation in a reloading scheme for an equilibrium cycle affects the
entire time-dependent nuclide density distribution. Using the mathematical invariance
equation (a two-point, cyclic boundary condition) for the equilibrium cycle and applying
first-order Taylor approximations, very rapidly converging iterative systems were develo-
ped with which the perturbed equilibrium cycles can be reconstructed with satisfactory
accuracy and very low computational effort.

Finally, it will be described how an existing nodal core simulator was incorporated in a
heuristic optimization procedure.

This thesis is stuctured as follows :

In chapter 2, some basic methods for calculating time-dependent power and burnup
distributions in a nuclear reactor core will be briefly described.

In chapter 3, the multiple cyclic interchange search approach to the reload pattern optimi-
zation problem is introduced.

Chapter 4 contains an introduction to generalized perturbation theory (GPT) and a descrip-
tion of how GPT can be applied to reload pattern optimization.

In chapter 5, it is discussed how GPT can be used in equilibrium cycle optimization.
Chapter 6 contains a description of how an existing nodal core simulator was incorporated
in an optimization procedure.

Chapter 7 contains some general conclusions and some recommendations for future work.
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Chapter 2

Basic computational methods for solving the
burnup equations

2.1 The coupled neutron/nuclide field

The way in which a nuclear reactor evolves from BOC to EOC during operation is
governed by two fundamental types of equations in nuclear reactor theory [Duderstadt
1976] : the neutronics equation describing the spatial distribution of the neutron density in
the reactor, and the burnup equations describing the gradual change in the reactor’s
material core composition due to depletion of the nuclear fuel. These equations are cou-
pled : the neutron density distribution is determined by the spatial nuclide density distribu-
tion and the spatial depletion rate distribution is related to the neutron density distribution.
Due to this coupling, time dependence in the nuclide densities induces time dependence in
the neutron flux distribution and vice versa. Since the interdependence can only be impli-
citly formulated, it is impossible to calculate analytically how the combined neutron/nucli-
de field will evolve from BOC to EOC.

However, since the time derivatives are relatively small, it is justified to apply a quasi-
static approach [Duderstadt 1976, Williams 1979] in which the cycle time is divided into a
certain number of equally long time intervals during which the neutron fluxes are kept
constant. These time intervals are chosen sufficiently small with respect to the cycle length
(or, more precisely, to the time scale at which significant changes in the neutron flux
occur due to burnup). During each time interval, the depletion equations can be solved
either analytically or numerically.

The system equations for reactor core analysis are very well documented in the nuclear
reactor physics literature and will be only briefly and generally described here. More
detailed information can be found in various textbooks and papers [Isbin 1963, Almenas
1992, Duderstadt 1976, Williams 1979]. As this study is focused on optimization of large
PWR cores, it is justified to apply the so-called 1%2-group approximation in the neutronics
calculations. Therefore, the burnup equations discussed here will be presented in terms of
the 1%-group PWR core neutronics and depletion model. Nevertheless, extension to a
more general or more detailed, multi-group formalism is quite straightforward, and it
should be stressed that the presence of more complexity in the core calculations will not
significantly influence the applicability of the methodologies presented in the rest of this
thesis.

2.1.1. The 1%-group nodal PWR core neutronics and depletion model
The time evolution of a reactor core is basically described by the energy-, space-, and
time-dependent neutron flux ¢(r,E,t) and by the space- and time-dependent nuclide density

vector N(r,t). In the 1%-group approximation, two neutron energy groups are used,
evidently a fast and a thermal group, and it is assumed that all neutrons released after a
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nuclear fission belong to the fast group (which is group 1). If we consider the stationary
diffusion eigenvalue equation for ¢(r,t) (introducing the eigenvalue k), in which the
material properties are considered quasi-static :

(YD, ¥-Z,(0-2,,()) 0
“$()
Z,.,@ (¥'D, ¥ - 2,@)
. 1 VE"([)) vI,(n) . B 2.1
km[ 0 0 ] (1) = 0

we can neglect the thermal diffusion term VD,V¢, with respect to the thermal absorption
term L, ; in this so-called 1%-group approximation, the thermal flux ¢, can be directly
related to the fast flux ¢, :

$, = $, B, ,/E, 2.2

and thus, in the 1%-group approach, one basically only needs to solve the diffusion
equation for the fast flux distribution :

Y‘(DI(I)Y¢1 (I)) . (2.1(1) * E].:(I))‘bl(l)

1 Z, (@
" V(D) + vE, (1) 2‘.:(0 &, (x) = 0 2.3)

This equation can be written more compactly as
YD, () ¥,(0)) -~ Bp(0) ¢, (1) + kg vEL(D) §,(x) = 0 2.4)

introducing the fast group loss and production cross sections Xy and g, respectively,
Naturally, Eq.(2.4) is accompanied by a set of boundary conditions that require the
solution &(r,t) to vanish outside the reactor at some boundary. The eigenvalue k. is called
the effective multiplication factor [Duderstadt 1976]. If kg=1, the core is critical, if
k.z>1 it is supercritical and if k<1 the core is subcritical. Omitting the time parameter
for the stationary situation and integrating Eq.(2.4) over the entire core volume V, one
obtains

Zpd, (0 dV
Ky = AL 2.5)

- [T (D@,)av + [ 2@ é,@av

By identification of -D,(r)Vé,(r) as the stationary neutron current density J(r) [Duderstadt
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1976] and application of Gauss’ theorem it can be found that the first integral in the
denominator of Eq.(2.5) represents the (fast) neutron leakage from the core volume :

- [,¥ (D, (¥4, ())dV = [ Y- XDV = sf I(t)ndsS 2.6)

This indicates the physical interpretation of k. as being the ratio of the total neutron
production and the total neutron removal rate, the latter being the sum of the total absorp-
tion rate and the total rate of leakage of neutrons from the core. In another physical
picture [Duderstadt 1976}, k. can be regarded as the ratio of the number of neutrons
present in two consecutive neutron generations. After adopting the notation A=1/k.; which
is commonly used in the literature of criticality eigenvalue problems, Eq.(2.5) results in
the lambda eigenvalue equation :

YD, (0 ¥,(0)) - Zp@ ¢, (x) + AvEp(r)dy(x) = 0 @.7

with the boundary condition ¢,(r)=0, r€ {boundary}.

It is obvious that the criticality for a nuclear reactor core in operation changes gradual-
ly due to burnup, and should be controlled such that it remains stable (k.y=1) throughout
the operation cycle. This is realized by externally changing (part of) the core’s material
composition by gradual adjustment of the control rod depths (typical for BWRs) or gradual
adjustment of the homogeneously distributed soluble boron concentration (typical for
PWRs). In order to simulate the effect of control rod motion or soluble boron concentration
adjustment, a control nuclide N can be defined, the value of which is usually found
iteratively by adjusting its magnitude until k.z=1. The concentration of the control nuclide
is thus determined by the constraint k=1 and as such it can be treated as another kind of
eigenvalue. Obviously, for eventually determining the spatial flux shape this procedure is
somewhat different from directly solving the lambda mode eigenvalue equation (in which,
for a given material composition, A is sought from Eq.(2.7)). It is more difficult to solve
numerically but usually slightly closer to reality. However, for most problems the results
will not be very sensitive to the approximation used [Williams 1979]. Therefore, in this
thesis the lambda mode eigenvalue equation will be considered as the criticality equation
to be solved. Since for a PWR core only the radial spatial variations in material properties
are important for optimization, it generally suffices to consider a two-dimensional core
geometry. Decomposing ¢,(x,y,z) into ®y(x,y) cos(xz/H) for an assumed cosine-shaped
axial flux distribution of an cylindrically shaped core with core height H. gives

Iy (x,y) Py (x,y) z
-D, (x,y) 3x2 * ay? * (—H_c] ¥, (x,¥)
+ Bp(x,y) ¥, (x,y) = Av Zp(x,y) ¥, (x,y) (2.8)

in which the term (a/Hc)? is numerically negligible and can therefore be omitted.
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In this study, we adopt the convention that the stationary fast flux distribution &:(D) can
be written as ®y(r). In this product notation, y(r) is the flux density distribution which is
normalized to unity ( § Y(r)dV=1) and & is a power normalization factor chosen such that
dw; § Z@OY()dV=P,,. We note that w, denotes the energy released per fission and P,
the total power produced by the core. The stationary diffusion equation must be solved nu-
merically for a core region such as the one depicted in Fig.2.1, in which each square node
in the core region represents a fuel element position. Basically, each node has its own
node-averaged material properties D,, E,, E,, I.,, vE, and vE, which are assumed
homogeneous in each individual node. In this study, each node was chosen to consist of
10* meshpoints. For numerical solution, one can apply a finite-difference approach in
conjunction with acceleration techniques for speeding up the iterations [Duderstadt 1976].
For theoretical convenience, to become apparent in chapter 4 of this thesis, the A-eigenva-
lue equation can be written compactly as :

L = rF¢ (2.9

with L the loss matrix accounting for diffusion and absorption of fast neutrons, and F the
production matrix. The boundary conditions may consist of actual problem-type boundary
conditions, such as the condition that the flux vanishes at the system boundary (like the
edges of the system geometry in Fig.2.1), but they may also consist of boundary condi-
tions that enable one to use the symmetry properties of the problem under consideration.

fuel 7

water |

Fig.2.1  Example of a system geometry consisting of a fuel region with
different fuel assemblies, surrounded by a water region

For example, if the material composition of the core depicted in Fig.1.2 features quadrant
symmetry, it is possible to model only one quadrant of the core, as shown in the right part
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of Fig.2.2, and impose so-called ’reflected’ boundary conditions. According to these
‘reflected’ boundary conditions, the produced flux profiles for the quadrant must be such
that, when mirrorred in the xz- or yz-plane, they yield perfectly smooth flux distributions
for the entire core. Mathematically, the ’reflected’ boundary conditions require that the
normal vector of the boundary plane and the flux gradient vector are perpendicular to one
another, so that their inner product vanishes :

n-V$ =0 (2.10)

In constructing procedures for solving the eigensystem, it is important to realize that the
matrices L and F are very sparse, that is, most of the matrix elements are zero. In the
diffusion matrix L for example, a meshpoint is directly coupled only with itself and (in
the two-dimensional case) with its four nearest neighbours, such as indicated graphically
in Fig.2.3. Therefore, for each meshpoint (i,j) in a two-dimensional 130x130 mesh corres-
ponding to Fig.2.1, only a limited number of diffusion coupling indicators are necessary.

] (1)

- (i -1 ’j )

(4) (3) (2)
(i'.i'l) (iij] (i,j"'l)
(3)
HEN (i+1,j)
Fig.2.2  Tllustration of a quadrant core Fig.2.3  Neighbour area of the

geometry meshpoint (i,j)

This means that the large sparse matrix L with dim{L}=130" can be compressed to the
compact object L with dim{A}=130%-5. How the element (L-¢);; can be obtained, is
explained in appendix A.

Obviously, from a strictly mathematical point of view, the solution of Eq.(2.10) con-
sists of a superposition of the entire spectrum of eigenstates ¢, corresponding to the eigen-
values \,. However, only the fundamental solution ¢, is relevant in real life, and the
higher modes have meaning only in transition processes or in theoretical applications
[Duderstadt 1976].

2.1.2 The quasi-static approach for solving the burnup equations

In this study, we adopted a physical picture in which each node (fuel bundle) I is repre-
sented by the vector of its node-averaged nuclide densities Ny(t) :

N @® = (N () Npg(t) .. . Ny (0)T 2.11)
where (nn) is the number of different nuclide types considered. The coupling of the time-
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dependent nuclide density field N(t)={Ny(t),I€{1,...,N}} to the time-dependent neutron
flux field $(t)={¢y(t),IE{1,...,N}} is given by :

Lo =2F¢ 2.12)
d
ENI&) = Bl(ul(t)’¢l(t)’ 0) Nl(t) N (213)
(nn)
al 2,00 =3} N ®-0,, 2.14)
q=1

The index g in Eq.(2.18) indicates the neutron process type, and B, is given by

I

B,® = | Ry (o) + R,(0) 3.0
21

$;® (2.16)

where o is the microscopic cross sections matrix and R, (o) are the macroscopic cross
sections matrices for the energy groups 1 and 2. In order to illustrate this approach, we
temporarily assume that the physical behaviour of the reactor is dominated primarily by
the nuclide concentrations of **U, **U and *Pu. All three nuclide types feature decay
rates which are considered negligible, even at the time scale of fuel cycles. When a 2%U
nucleus captures a neutron, it will almost instantly be transmuted to *°Pu ; this process is
generally denoted as fuel breeding. Thus, the nuclide burnup process is given by :

d
ENI(O = By(® N,(® (2.16)

with the operator B,(t) given by :
—ogd® 0 0

B,® = 0 ~0,4$,® 0 , with all o =(0.,_1 +0,, ";1-2,:(?)) ] (2.17)
0 0,00 -0,0,0 o

and the nuclide densities vector Ni(t) given by :

HI ® = ( N] S ® N[)g ® Nl'g (t) ) T (2 .18)

Due to the coupling between the neutron flux field and the nuclide density field, time
dependence in the nuclide densities induces time dependence in the neutron flux distribu-
tion. As the time derivatives are relatively small, it is allowed to apply a quasi-static
approach in which the cycle time t;-t, is divided into a certain number (n) of equally long
time intervals At (such that nAt=t;-t;) during which the neutron fluxes are kept constant.
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These time intervals must be chosen sufficiently small with respect to the cycle length (or,
more precisely, to the time scale at which significant changes in the neutron flux occur
because of burnup). According to this approach, fuel cycle calculations are started with an
initial nuclide densities distribution. This collection of nodal nuclide densities is used to
calculate initial macroscopic cross sections for each node 1. Then the collection of macro-
scopic cross sections is used to calculate the flux distribution for the first time interval. In
the calculation, this flux distribution is kept stationary during the first time interval, so
one is able to analytically solve the nuclide burnup equation for this interval. Thus the
nuclide densities vector N; at the end of the first interval is given by

HI(At) = exp(B,(O) At) HI(O) (2.19)
where
e-aﬂ«tl(O)At 0 0
-04$;(0)At
exp(BAt)=| ° e 0 (2.20)
0 Ocs ( o “Cathi@At _ e-o.,c».(om) o Cuh @bt
[0 JPN R o)

a9 c8

Then the Ny(At) is the initial nuclide densities vector for the second time interval, and the
new’ flux distribution is calculated by solving Eq.(2.12) again with changed cross secti-
ons, etc. This procedure is to be successively applied until the end of the fuel cycle (EOC)
is encountered. Hence the nuclide densities vector for time step n is :

N, (nAD) = ( ﬁ LRI ) N0 @.21)

j=1

In practice it is advisable to also explicitly consider the production of higher isotopes
along the transmutation chain, of which *°Pu is the most important because of its high
neutron capture cross section (see Fig.2.4). For large, complex transmutation schemes,
the operator B consists of much larger matrices, due to which the depletion equations are
much more difficult to solve analytically. However, the matrix exponential exp(BAt) can
be easily calculated by using a Taylor series expansion with prespecified convergence li-
mits :

exp(BAt) = I + BAt + —21—'(BAt)2 b (2.22)

Further, it is essential to take into account the generation of fission products, the most
essential of which are the reactor poison nuclides **Xe and '*Sm. These nuclides are con-
sidered ’poisonous’ because of their extremely high thermal absorption cross sections.
135Xe is produced as a direct fission product and as a decay nuclide of the fission product
135Te (via '**I), whereas '**Sm is merely produced as the decay nuclide of the fission
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fission
products

A

(2.4 days)

LOST

339
Np

(23 min)
238 I 239
u U

Fig.2.4  Example of a transmutation scheme in
which the formation of higher isotopes is
modelled

product "*Nd (via '*Pm). The scheme describing how Xe and Sm are formed from fission
is depicted in Fig.2.5. It is convenient to treat the poison nuclide concentrations separate-
ly, since they relax to equilibrium values in a relatively short time. Thus, it is justified to
treat them as quasi-static quantities [Duderstadt 1976] :

fo o Ot 1t ) B & (2.23)
Xe,
1 Ay, * O xe O1
and
. )
N, - 'Yp:: R (2.24)
2,5Sm

In a realistic reactor calculation, the generation of much more different fission products
should be taken into account. In calculations such as performed in this study, only a limi-
ted amount of the most relevant nuclides have been included in the core model. This is
why, when using realistic values for the microscopic cross sections for the different nucli-
des, less fissionable material is required for a critical core. This effect can be compensa-
ted by defining a pseudo fission product [Hoogenboom 1996] to be added to the modest
set of system nuclides. The yield of this pseudo fission product can then be adjusted until
a good correspondence to the more elaborate calculation of a ’big’ depletion code like
ORIGEN [ORNL] is found. In the transmutation scheme implemented in the depletion model
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applied in this thesis’ study, the transmutation
chain depicted in Fig.2.4 has been extended
with such a pseudo fission product, though for
the methodology to be presented in this thesis
the specific number of nuclides considered is not
very relevant.

2.2 Using nodal methods in reload pattern
optimization

Fig. 2.5 Formation of the poisonous
nuclides Xe and Sm As argued in chapter 1, there are extremely

many possible choices for the way in which to
reload the core. Although it is possible to eliminate large parts of the reduced solution
space (which are thought to contain only poor-performing patterns) by using knowledge-
based selection rules, the number of remaining candidate solutions cannot be reduced to
computationally feasible proportions without the risk of excluding the best candidates from
computational evaluation. In more intelligent search procedures (such as the ones descri-
bed in chapter 3), thousands of different reload patterns must be evaluated as well, even in
the case in which one is considering a very modestly-sized core. When one has no alterna-
tive but to use a code that solves the diffusion equation in a fine mesh, one will have to
tolerate the large storage and execution time requirements of the direct finite difference
treatment of the diffusion equation, which leads to unacceptably long computation times
for evaluating large numbers of different reload schemes. A calculational scheme in which
the large storage and execution time requirements are avoided is provided by so-called
nodal methods [Bennewitz 1975, Finneman 1977, Smith 1985, Chao 1987, De Jong
1995].

The general idea of nodal methods is to decompose the reactor core into relatively large
subregions or node cells in which the material composition and flux are assumed uniform
(or at least treated in an average sense). One then attempts to determine the coupling
coefficients characterizing node cell to node cell leakage and then to determine the node
cell fluxes themselves. Nodal methods require far less computation time than finite-diffe-
rence methods, due to which reload pattern optimization procedures in which nodal
methods are used in the evaluations of different schemes are capable of evaluating vast
amounts of candidate patterns during relatively limited computation times. The mathema-
tics of nodal methods also allows for straightforward development of a generalized pertur-
bation theory formalism, as is described in chapter 4, which offers the possibility of
increasing the computational efficiency even further.

2.2.1 Green’s function diffusion kernel method

By using the Green’s function diffusion kernel method [Chao 1987, De Jong 1995] for
1%4-group diffusion theory, particularly fast core calculations can be done. The principal
reason for this is that the dimensions of the operators and variables in the kernel eigenva-
lue equation are significantly reduced due to node cell homogenization. We recall that we
chose to abandon the subscript 1 for the fast flux ¢ and note that, according to Green’s
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function theory, the neutron diffusion eigenvalue equation for the 1'4-group approach
“¥D@IPQ) + Z(0) (1) = AvEL() d(r) (2.25)

can be written formally as the kernel relation
o) = A [G@)v 2, (1) $(X) AV (2.26)

with G(z,r") the diffusion kernel or Green’s function for the particular geometry of interest
that satisfies

[-¥'D,0Y + 2®] G wr) = Gt-1) @.27)

G(r,r’) can be interpreted physically as the flux resulting at a position r from a unit point
source at r’. If we now adopt the picture in which the reactor core is divided into N node
cells, and integrate the kernel equation over the volume V; of the I" node cell :

[ewav-af[[ Gur)yve, () $(x) av']av
Vi v

J=1

N
=3 ) ffG(x,t’)v Zp ) o()dv/av (2.28)
v, Vv,

[ B4 ]

we see that a balance equation emerges in which the neighbouring nodal fluxes can be
interrelated in an algebraic way. In order to obtain a kernel relation relating the different
node-averaged fluxes to each other, it is necessary to define a number of spatial averages
over the nodal cells, such as the node-averaged fast flux

@ =+ [o@av (2.29)

1,

the node-averaged production rate density

(VEed), = o [VE@O@V 2.30)

1V,
and the internodal coupling coefficient

Y fw fv, G(r.r) vEg (1) $(r) dV'dv

T [ vE@) o) av

vy

(2.31)

In the model adopted in this study, no spatial variations of the material properties within
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one fuel element were considered and all nodal volumes are equal, which reduces the
expression for Ty to

. I, fv, G(r,r) d(r)dV'dV

(2.32)
! [ 4@ av’
vy
Using these expressions for the nodal averages, Eq.(2.28) can be condensed to
N
(¢) = 1122 Ty (vEed), 2.33)

The coupling coefficient Ty; defined here is related to the probability that a fast neutron
’born’ in cell J will eventually be captured or downscattered in cell 1. However, perfor-
ming dimension analysis on Eq.(2.33) yields that T, cannot be dimensionless, and thus
cannot be considered an exact probability. However, if both sides of Eq.(2.33) are multip-
lied with <Xge>/<¢ >, we obtain

N
<ER¢>I =2 ,}:1 P, <VEF¢>, (2.34)

with the elements of the matrix P defined by :
T,

P, = o

()

Obviously, Eq.(2.34) can be interpreted as a balance equation, in which the Py are dimen-
sionless quantities. In the calculational core models developed in this study, a generally
applied approximation is to disregard variations in nuclide densities within the square
nodes representing the fuel elements. This means that products like <Zz¢$>, can simply
be written as Iy <¢;>. Further, for reasons of notational simplicity the brackets indica-
ting that one works with nodal averages will from now on be omitted in this chapter, as
well as in the rest of this thesis. In order to argue that the P, can be regarded as diffission
probabilities, we should consider the sum of both sides of Eq.(2.34) over all node celis I :

N N N
122 Baabr =2 Iz; J):l P, vIg 4, (2.36)

(Z0), (2.35)

Assuming that, in the dynamic equilibrium effected by the A-reset, no neutrons leak from
the system under consideration (for example, a system containing a core and a sufficient
number of water nodes surrounding the core), the total fast neutron removal rate should
exactly match the fast neutron production rate multiplied by the A-eigenvalue :
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N N
IZ; Dby = A 12; vEp; by, 2.37)

Combining Eqs.(2.36) and (2.37) yields that the Py must have the property

N
P, =1 V] (2.38)
I-1

Thus, the Py are really dimensionless probabilities, and an individual element Py (alterna-
tive notation : P.;) can be interpreted as the probability that a fast neutron ’born’ in node
I is eventually captured or downscattered in node I. In a PWR, the removal probabilities
are mainly determined by downscattering of fast neutrons to the thermal energy group via
collisions with hydrogen nuclei. The downscattering cross section I,., is almost perfectly
uniform and time-independent, as the concentration of the only material significantly
contributing to I,,, (that is, H,0) is, naturally, burnup-independent (In reality, this
concentration is not strictly uniform as the temperature distribution in the core is not
uniform. This effect, which requires thermal-hydraulic analysis for a realistic description,
is assumed to be small and is not considered). Further, the variations in the fast absorpti-
on cross sections due to burnup are very small compared to the total values of the nodal
removal cross sections. Hence, the effect of burnup in the kernel equation can be nearly
fully described by the changes in the fission cross sections and, thus, by the changes in
the node-averaged infinite multiplication factors.

Using the 1%-group nodal Green’s kernel method as described here enables one to
nicely reconstruct the diffusion theory core physics in the sense that the ordering of
different core configurations in terms of the eigenvalue A and the power peaking factor fis
well-preserved. This is indicated in Fig.2.6 and Fig.2.7. As expected, the numerical
results for the power peaking factor reconstruction indicate that for patterns featuring high
power peaking, solving the diffusion equation yields a higher power peaking factor than
solving the kernel equation. This is caused by the inherent property of the kernel method
that it does not account for tilts in the intranodal power distributions. The interesting
aspect of this property is that for patterns featuring high power peaking, a very accurate
reconstruction of the power peaking factor is not that relevant since they will not be
feasible anyway. A description of how the diffusion probabilities could be obtained
numerically can be found in appendix A. For a calculationally efficient solution of the
kernel equation

N
D1t = A-JZ; P jvEg; 0, (2.39)

it is very convenient to define neighbour regions for each individual node I containing
only the neighbouring nodes from which a significant contribution in the summation on the
right part of Eq.(2.40) is received. Naturally, the number of neighbour nodes contained in
such a region depends on the size of the nodes with respect to the fast diffusion length L,,
and on the criterion determining when a contribution is not considered relevant anymore.

In practise, when the set of diffusion probabilities {P,;I,J €{1,...,N}} is known, a

30




Chapter 2. Basic com ion h for solving th m ion

neighbour region for node I can be defined as Q()={JE{1,...,N}|P.;=¢&} with & the
selection criterion (for example, £=0.0001). For the core geometry considered in this
study, the neighbouring regions for central nodes contain 37 nodes (including, of course,
the central node itself) for the convergence criterion=0.00005.

diffusion theory

Fig.2.6

Fig.2.7
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solving the finite difference diffusion equation and solving the nodal
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2.3 Equilibrium Cycle Optimization

Since nuclear reactors are operated for multiple successive fuel cycles, a reasona-
ble way to evaluate reload patterns is, as argued in section 1.2.5, to consider their
performance in the case of an equilibrium cycle [De Jong 1995, Van Geemert 1996,
Van Geemert 1997, Van Geemert 1998]. The equilibrium cycle associated with a
reload pattern is defined as the limit fuel cycle that eventually emerges after multiple
successive periodic refueling with the same reloading pattern. The reload operation
can be specified by a square binary matrix X. The elements of X are defined by :

Xy =1 if the fuel bundle that has resided in node J is located in
node I after reloading
0  otherwise

If £X;=0 then obviously the fuel bundle which has resided in node J is to be
discharged. If X;X;;=0, then apparently none of the older fuel bundles which were
already present in the core will be placed in node 1. In that case a fresh fuel bundle
will be placed in node 1. If the fuel bundles are characterized by their nuclide densi-
ty vectors, the invariance of the equilibrium cycle with respect to the reload operati-
on can be mathematically defined as :

N N
NE(0) = 37 Xy N&™(T) + [l - Xy )Hﬁe-h : (2.40)
1 i

in which N denotes the number of fuel assembly positions. The equilibrium cycle
can be determined iteratively using this invariance condition.

Actually, reload schemes for N-node systems featuring n age groups for the fuel
bundles (batches) lead to N/n fuel bundle life history trajectories which represent the
sequences of nodes which act as hosts for a particular fuel bundle. The collection of
all such history trajectories can be a convenient representation of the associated
reload pattern. A handy notation for such a representation is

i0 i A P

H={" = (2.41)

The first row of H denotes the first fuel bundle life history trajectory :
fresh fuel bundle —» node i, - node i, - ... node i, - discharge (2.42)
In this denotation, each arrow represents a shuffling operation, as is indicated in

Fig.2.8. The unit elements in the binary shuffling matrix X associated with H fol-
lows from
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. N
= = - = = 2.43
X'“"“’q 1foralm=1,..,n-1,j=1,.., o ( )

fresh fuel A simulation module has been develo-

ped in which the equilibrium fuel cycle
from BOC to EOC is determined iterative-
ly using the nodal 1%-group model des-
aldfuel  cribed in this chapter. All nuclide types
discharge  occurring in Fig.2.4 are present in the
calculations. The fuel cycle is divided in a
number of equally long intervals during
which the nodal fluxes are assumed con-
stant (in conformity with the quasi-static
approximation). Starting with an initial
nuclide density field, the corresponding
Fig.2.8  Graphical illustration of how a initial fast flux distribution is calculated

: S N |

—‘-k

fuel element is positioned from by iteration, and normalization with res-
one place to the other during its  pect to the total core power, and the
lifetime trajectory effective multiplication factor of the core

is calculated. Then the depletion equations
are solved and the changes in the nuclide densities are calculated. The nuclide density
field at the end of the time interval determines the nodal macroscopic cross sections
required for the fast flux distribution calculation for the next interval. This sequence is
continued until the EOC is encountered, after which a reload operation is applied, yiel-
ding the initial nuclide density field for the nex: fuel cycle. These calculations are conti-
nued until sufficient convergence to an equilibrium cycle has been achieved.

Thus, the simulation module features the following forward algorithm to evaluate the
equilibrium cycle performance of some specific reload operator X :

#1  The initial nuclide density field {N(m=1,h=1} for the first step (m=1) of the
h® cycle is known.
m:=0

# m:=m+1
The initial nuclide density field {N(m,h)} for the m™ step of cycle h is known.
Now, the nodal macroscopic cross sections are determined by :

(an)
= 2.44
ol Bygn = T Nign 0y (2.44)

with the indices q and g indicating different nuclide and process types, respec-
tively. These nodal cross sections are used in the kernel relation to perform an
iterative calculation of the fast flux distribution :
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#3

#4

#5

with the indices q and g indicating different nuclide and process types, respec-
tively. These nodal cross sections are used in the kernel relation to perform an
iterative calculation of the fast flux distribution :

A N
b= —— P,,vE. ¢ (2.45)
I 2.1,[ + 2’1-2,] J;l I-J BRJY]

in which the fast fluxes are normalized such that

N

we ) Zpit = P (2.46)
I=1

which represents the requirement of a constant power level during operation of

the reactor. The prefactor w; represents the energy released per fission.

Then the analytical solution of the depletion equations with constant {¢} is

used to calculate the changes in the nuclide densities, yielding the nuclide

densities vectors at the end of the m™ time step :

N (m+1)At,h) = exp(B™ At) N (mAt,h) ,VI € (1,..N)} (2.47)

with nAt=T, the total cycle length.

If m < n go to #2 (n is the total number of time steps in which one fuel cycle
is divided).

If m = n perform the reload operation :

N T N
N (1,h+1) = 12; Xy Ny(CA6h) + |1 -5 X, IN VI (2.48)

J=1

and increment h :

h:=h+1

if the h® nuclide density field iterand N(1,h) does not sufficiently resemble its
predecessor N(1,h-1), go to #2

24 Represeniation of the reload pattern solution space by a set of pseudo-ran-

domly generated candidates

In chapter 1, it is argued that in order to evaluate the ’quality’ of a reloading

scheme, one should not study the associated fuel economy for only the forthcoming
cycle. Instead, some method should be available to gain some indication about the
scheme’s multi-cycle performance, knowing that for example a high total core
burnup of the forthcoming cycle might prevent the following cycles from being
economical. The easiest and most obvious multi-cycle evaluational method is to
study the equilibrium cycle behaviour. An easy and convenient method for gaining
information about the objective and constraint function value ranges is to evaluate
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the equilibrium cycle characteristics of a large number of fully randomly generated
candidate loading schemes. In this way, some insight can be acquired into what
values of the objective and constraint functions are normal, and what can be gained
by optimization. Further, good solutions can be extracted from the random sample
which may serve as starting points for the more sophisticated heuristic search proce-
dures discussed in chapter 3. The random sample can be viewed as a representation
of the solution space in terms of performance and constraint parameters. In other
words, the collection of performance and constraint parameters can be regarded as a
projection of the solution space on the performance and constraint parameter space.
In Fig.2.9, an example is shown of a random sample of 2000 reload patterns for the
large test PWR core shown in Fig.2.1 and Fig.2.2. Obviously, this sample is projec-
ted on the two-dimensional performance plane spanned by k“°(EOC) and the
power peaking factor. As indicated, the power peaking constraint f,, < 1.8 can be
represented by a horizontal line, and it turns out that in fact this constraint is viola-
ted by the majority of the randomly generated candidate schemes. The operational
constraint k0 (EOC)=1 can be represented by the vertical line crossing the hori-
zontal axis at the value 1. Violation of this constraint would mean that the target
cycle time would be infeasible since the core would become subcritical before the
end of the cycle is reached.

As discussed in section 1.2.3, no ordering principle exists for the reloading
schemes or, in other words, it is not possible to map the solution space into regions
(of comparable performances) which can be easily defined in terms of the variables
of the reload operator. However, it seems that it is possible for equilibrium cycles to
establish some rough link between the shape of the power distribution and the
equilibrium cycle fuel economy. Utilizing a simplified but elegant analytical model
[De Jong 1995], it can be shown that equilibrium cycles are generally more econo-
mical when they are characterized by power distribution shapes which are flat with
regard to both space and time. Via Haling’s theorem (stating that an operation
cycle's total maximal power peaking factor during the cycle is minimal in the case
of a constant power distribution shape) this general correlation can be translated into
the following rough property : loading schemes, which are economical in terms of
the equilibrium cycle, generally give rise to rather constant and flat power distri-
butions which thus yield rather low maximal power peaking factors.

Obviously, knowledge of the existence of this general correlation does not reduce
the complexity of the loading pattern optimization problem in any way since it
seems virtually impossible to establish an easy mathematical relationship between the
way in which the core is configured and the resulting time-dependent power distribu-
tions (interesting attempts in this direction are reported in [De Jong 1992]). Two
extreme examples of loading pattern types, depicted in Figs.2.10 and 2.11 are the
Centre-to-Outside (COL) loading and the Outside-to-Centre loading (OCL). In the
case of COL loading, the fresh fuel assemblies are placed in the centre of the core,
whereas the burnt fuel assemblies will be placed closer to the periphery as their
burnup increases. In the case of OCL loading, the reverse happens. Generally, in the
equilibrium situation they will both give rise to non-optimal operation cycle behavi-
our with an additional unacceptably high power peaking factor in the COL case. In

35




hapter 2. ic com ional meth fi lvin ion

applied in this study for handling the loading pattern optimization problem.

power peaking factor
»
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effective multiplication factor of the uncontrolled core at EOC

Fig.2.9 A random sample of reload patterns for the test core of Fig.2.1.
The diamond and the triangle denote the COL and the OCL
patterns illustrated in Fig.2.10 and Fig.2.11, respectively.

Fig.2.10 A Center-to Outside Loading Fig.2.11 An Outside-to-Center Loading
structure structure
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Chapter 3

The Multiple Cyclic Interchange Approach

3.1 Introduction

As argued in chapter 1, the reload pattern optimization problem is characterized by a
number of very unpleasant features such as non-linearity, non-convexity, a very implicit
and difficult form of the objective function and a total lack of any ordering principle in an
almost astronomically large solution space. This is why, during the past two decades,
search algorithms have been applied that do not require any gradient information and
which are known to perform well in large combinatoric optimization problems. Well-
known examples of these are Simulated Annealing (SA) [Parks 1990, Kropaczek 1991,
Verhagen 1993, Smuc 1994, Stevens 1995, Van Geemert 1996] and Genetic Algorithms
(GA) [Axmann 1997, DeChaine 1996, Poon 1993, Parks 1996].

In this chapter, a number of alternative reload pattern optimization procedures are
proposed that are fundamentally based on the multiple cyclic interchange approach,
according to which the search for the reload pattern associated with the highest (or lowest)
objective function value can be thought of as divided in multiple stages. The transition
from the initial to the final stage is characterized by a decrease in the magnitudes of the
considered reload pattern changes. The general idea is that, during the first stages, the
melite" cluster containing the group of best patterns must be located, after which the
solution space is sampled in a more and more local sense to find the local optimum in this
cluster. The transition(s) from global search behaviour to local search behaviour can be
either prompt, by defining strictly separate search regimes, or gradual by introducing
stochastic tests for the number of fuel bundles involved in a cyclic interchange. Equili-
brium cycle optimization results are reported for test PWR reactor cores of three different
sizes.

Further, an optimization method is proposed featuring the implementations of ideas that
are characteristic for both SA and GA. In this method, called the Population Mutation
Annealing (PMA) method, it is attempted to incorporate the advantageous features of both
SA and GA, while removing the disadvantageous features of both methods.

3.1.1 The Multiple Cyclic Interchange Approach

The approaches developed in this chapter consist of the use of multiple cyclic inter-
change algorithms [Van Geemert 1996, Van Geemert 1998], in which the search for the
reload pattern associated with the lowest objective function value can be thought of as
divided in multiple stages. The cyclic interchange procedures used can be classified in
groups according to the degree of locality or globality of the procedures. This degree is
determined by the number of fuel assemblies involved in one cyclic interchange and by the
way in which candidate patterns are generated between each acceptance decision. Local
search algorithms are based on assessing all possible modest changes (for example,
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pairwise interchanges of fuel assemblies) in one search step and searching the best pattern
by successive local improvements, until no improvement is found. In global search algo-
rithms, larger changes are considered in similar search procedures. It is obvious that an
intermediate regime of algorithms exists in which the algorithms are neither local nor
global because of their intermediate locality degree. For a special class of global search
algorithms, the search consists of the generation of random trajectories in the reload
pattern space (by successive application of cyclic shuffling schemes in which the fuel
assemblies involved are chosen randomnly), starting from successively improved reference
patterns. Obviously, this is different from the consideration of, for example, all possible
binary permutations to find a new reference pattern. All patterns in such a trajectory are
evaluated, yielding a best pattern that becomes the new reference pattern if its associated
function value is higher (or lower) than the highest (or lowest) value found in the previous
trajectory. This procedure terminates when no improvement is found. When applying only
a local search algorithm of this type, the quality of the best pattern found generally de-
pends on the quality of the initial, "trial" reload pattern because of the intrinsic high
probability of getting stuck in a local extremum when accepting only improved patterns as
new reference patterns.

The concept of distance for reload patterns can be defined in terms of differences
between the BOC reactivity distributions. The degree of dissimilarity Dyy [Parks 1996)
between two loading patterns X and Y can be mathematically defined as

N
Dyy = > (6 -kf @3.1)

with the k’s indicating the node-averaged multiplication factors. Obviously, the distributi-
on of the k’s is determined by the choice of the loading pattern. A cluster of reload pat-
terns surrounding a specific pattern can be thought of as the collection of patterns that are
close to this specific pattern in terms of this distance concept.

A global search can be regarded as an attempt to locate the ’cluster’ in reload pattern
space that contains the near-optimal patterns, and, hopefully, the optimum pattern. When
such a cluster has been located by the termination of a global search in a pattern that is
embedded within this cluster, a local search (for example, by applying a pairwise inter-
change optimization algorithm) can be performed to search for the best pattern within this
cluster. A very simple example of this concept is the case where a random sample of
reload patterns is evaluated to supply a good trial pattern for initiating a pairwise inter-
change optimization procedure. Another possibility is the application of a stochastic search
concept, leading to a Simulated Annealing approach [Parks 1990, Kropaczek 1991, Van
Geemert 1996] in which the transition from global search behaviour to local search
behaviour becomes more or less gradual. This gradual transition is effected by the intro-
duction of a stochastic test determining whether a newly examined reloading scheme is
accepted as a new reference scheme. Finally, a stochastic search concept is proposed
which can be denoted as a "population mutation annealing" approach. The general idea of
this method is to combine the advantageous properties of genetic algorithms and the
simulated annealing algorithm in one method, and simultaneously filter out the disadvanta-
geous characteristics of these algorithms.
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From the results obtained in this study, it can be concluded that all of the search concepts
discussed in this chapter, featuring intelligent global to local search behaviour transitions,
constitute a robust and reliable reload pattern design procedure.

3.2 Definition of the proposed optimization procedures
3.2.1 Local Cyclic Interchange Search Procedures

In the local cyclic interchange search procedures proposed, all C(N,n) =N!/(N-n)!n!
possible n-fold fuel bundle interchanges in the reference pattern are considered to see whe-
ther such interchanges yield improvements, and, if so, the best interchange yielding a
pattern still satisfying the power peaking constraint is applied, yielding a new reference
pattern. Obviously, the changes in terms of Parks’s distance concept discussed in section
3.1.2 will be small for modest values of n and for this reason these procedures can, in
case of small n, be called local. These search schemes can be successively applied until
none of the interchanges yields an improvement. The interchanges applied are cyclic. We
can, for example, distinguish between binary (pairwise) interchanges, triple or quadruple
cyclic interchanges, respectively :

127 1«17 [<L
N/ vt
K J-K
binary triple quadruple
exchange interchange interchange

In Fig.3.1, a logical flow structure diagram of the procedure is given. In this diagram, the
it reference reload pattern is denoted as H;, and its corresponding objective function value
as z(H) ; the permutation operator associated with the j* considered n-fold cyclic inter-
change is denoted as P,. Obviously, these procedures have a polynomial time behaviour,
since the total calculational time required is directly proportional to C(N,n), which is a
polynomial function of N for fixed n. The simplest and most widely used variant is the
one for the case n=2, and is better known as the pairwise interchange optimization
algorithm. Needless to say, the total calculational time required also very much depends
on the quality of the initial, starting pattern. If, for example, the procedure is started from
a local extremum (defined as a local extremum in the sense that none of the C(N,n)
interchanges yields an improvement), the procedure will already terminate after one
’sweep’.

3.2.2 Global Random Chain Search Algorithms

It is obvious that a local cyclic interchange algorithm, allowing only changes in the pat-
tern that yield a decrease in the objective function value, might very well cut off search
paths that actually lead to the region where the global optimum is to be found. A major
obstacle for finding a very good reload pattern from an arbitrary starting pattern is the
power peaking constraint (PPC). As indicated in Fig.2.9, the majority of randomly chosen
reload patterns generally do not satisfy a reasonably chosen PPC. It is to be expected that
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an initial pattern featuring a rather high power peaking factor cannot possibly result in a
loading candidate satisfying the PPC due to only a minor cyclic permutation of fuel
elements. In order to overcome this problem, a global search should be performed first,
enabling the local search procedure to start in a pattern which is already very good in
terms of the objective function and which does satisfy the PPC. In a

initial reference pattern H,(1)

d
o~

calculate all z(P"H,(i)) N
with j=1,...,C

Hy(i) =P, o, "Hy (i-1)

‘max{z(P"Hy(i)),j=1,...,%¢}
2 z(Hg(i)

the search procedure ends ;

By =Hg(i)

Fig.3.1  Logical flow structure diagram of a local
cyclic interchange maximization procedure ;
H denotes a reload pattern and P® an n-fold
permutation operator.

global search procedure as proposed here, a large number of successive random cyclic
interchanges £ are performed in one search step, thus generating a random search chain
of £ reload patterns. Of all the patterns generated in the chain, the best pattern is selected
as the reference pattern for the next search step. This global search procedure ends when
none of the reload patterns generated in the chain gives an improvement with respect to
the best pattern found in the previous chain. In this procedure, indicated in Fig 3.2, the
initial reference pattern may be chosen arbitrarily. The set of n-fold cyclic permutators
{P®, =1,...,%-1} generating a random chain {H,H,,...,Hy ,,Hy} of & reload patterns by
successive random permutations, is chosen fully randomly. Hence, each chain is related to
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the reference pattern at the start of the search step by :

q
H, = H PHuy -9=L..9. 3.2

We note that P,®=1, so H,=Hg(1). In this global search it is recommendable to choose
the chain length for the next search steps to be smaller than the chain length used in the
first search step, for calculation economy purposes. This is justified since the first search
step should yield a good pattern for the following search chains to depart from, whose
quality will be less inferior to the quality of the patterns in the elite cluster than the initial
trial pattern’s quality.

initial reference pattern Hx(l)

R7

[ =1 n=n0:pe=1 |

N N2 < H=P"H,,
calculate z(H;)
H.()=H, ... a random permutation
* operator P® is generated
N\

— max{z(H),j=1,.... £}
i=itl > z(Hq()

the search procedure ends ;

H,..=Hy(®)

Fig.3.2  Logical flow structure diagram of the global
chain search maximization procedure ; H denotes
a reload pattern and P a permutation operator.

3.2.3 Stochastic Multiple Cyclic Interchange Optimization Procedures
These methods consist of a Simulated Annealing (SA) approach [Parks 1990, Kropac-
zek 1991, Verhagen 1993, Smuc 1994, Stevens 1995, Van Geemert 1996] in which the

transition from global to local search behaviour becomes more or less gradual. The
gradual nature of this transition is realized by the introduction of a stochastic test determi-
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ning whether a newly examined reloading scheme is accepted as a new reference scheme.
The SA approach is generally initiated with the definition of an initial reference pattern
H,, after which one randomly permutes a stochastic number N of fuel assemblies and
assesses the effect of this permutation on the objective function value. The number N of
fuel assemblies involved in the permutation can be chosen to be stochastic in the sense that
it obeys a Boltzmann-like probability distribution tending to gradually favour lower values
of N as the search procedure proceeds. In SA, an improvement is generally effected by a
decrease in the objective function value, in analogy with minimization of the potential
energy. For each search step i, N, is determined by :

N,(t‘)=2+int[(Nuux'1)'min(exp(*—zy;;"l—‘z'),tl)] (3.3)

i-1

The input variable r; is obtained from a random number generator producing random
numbers that are uniformly distributed on the interval [0,1) ; Zyewi-1~Z; S the best function
value improvement found sofar with respect to the function value associated with the
initial, “trial” pattern. Thus, Eq.(3.3) represents a probability distribution. The annealing
temperatures T; are determined by the initial annealing temperature T, and by the recur-
rence relation T;=aT;,, with the "cooling parameter" « a number between 0 and 1
(typically, 0.995 < « < 1). Obviously, in an early stage of the search procedure, when
the annealing temperature is still high, N; will be uniformly distributed between 2 and N,
(such as is the case in Fig.3.3 for N,,, = 10) ; as the procedure proceeds, the probability
that more than two fuel bundles are involved in the cyclic interchange decreases (Fig.3.4).

P(N) PN |
1 235‘}55°E7:°:°:1°:N 1 zisifs:e:?:aTTN
Fig.3.3  Probability distribution for Fig.3.4.  Probability distribution for
N at a relatively high N at a relatively low
annealing temperature annealing temperature

The newly generated pattern is accepted as the next reference pattern with acceptance
probability

Pr, = min{exp[ - T,'(z, - z_,)1,1} (3.4

This means that, if the permutation results in an improvement of the objective function
value, the newly generated pattern automatically becomes the next reference pattern. In
the case of a decrease, a random number g, is generated, and a stochastic acceptance deci-
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sion follows in which the newly generated pattern is rejected if a; > exp[(z- /T

Satisfaction of the PPC by the final result can be achieved by the implementation of a
technique called bounds cooling in the search procedure. According to this approach, the
PPC can be made temperature-dependent such that the probability that a high PPF reload
pattern is rejected increases with falling temperature, until it finally becomes practically
unity near the end of the annealing process. This can be very simply achieved by applica-
tion of the artificial, temperature-dependent PPC

psf+taT (3.5)

instead of the hard PPC : p<fy,. The constant a should be chosen such that, at T=T,,
none of the patterns can be rejected because of the PPC. The physical idea behind this is
to gradually push the search process in the *direction” of the regions in the solution space
where the PPC is satisfied.

At the heart of the simulated annealing method is an analogy with thermodynamics, as
is illustrated in Fig.3.5. At high temperatures, the molecules of a liquid move freely with
respect to one another. If the liquid is cooled slowly, thermal mobility is lost. The mole-
cules are often able to line themselves up and form a pure crystal that is completely
ordered over a distance up to billions of times the size of an individual molecule in all
directions.

Fig.3.5 An annealing process in nature

This crystal is the state of minimum energy for this system. The amazing fact is that, for
slowly cooled systems, nature is able to find this minimum energy state. In fact, if a
liquid metal is cooled quickly or "quenched”, it does not reach this state but rather ends
up in a polycrystalline or amorphous state having a slightly higher energy. Thus, for
ensuring that a low energy state is achieved, it is essential to cool slowly, allowing ample
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time for redistribution of the molecules as they loose mobility. This is the technical
defintion of annealing. The so-called Boltzmann probability distribution

e-E,/k,'r
P(Ei:T) = W (3.6)
j

expresses the idea that a system in thermal equilibrium at temperature T has its energy
probabilistically distributed among all different energy states E,.

Even at low temperatures, there is a chance, though very small, of the system being in a
high energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favour of finding a better, more global one. The quantity kg
(Boltzmann’s constant) is a constant of nature relating temperature to ’freedom of change’.
In other words, the system sometimes goes uphill as well as downhill ; but the lower the
temperature, the less likely the occurrence of a significant uphill excursion.

3.2.4 Some results obtained by application of different search procedures

Starting from randomly chosen initial, poor-performing reload patterns that neither
yield economical fuel use nor satisfy the power peaking constraint, we have searched for
4-batch reload patterns associated with the best equilibrium cycle behaviours for PWR test
cores of three different sizes, containing 96, 224 and 384 fuel assemblies, respectively.
The objective was to find the pattern yielding the highest k**(EOC) while satisfying the
constraint that the power peaking factor remains below 1.8. Octant symmetry was enfor-
ced on the fuel distributions, and the following search methods or combinations of search
methods were applied :

1 A successive random chain search with & = 2000.

2 A multi-stage, global-to-local search method consisting of the successive appli-
cation of method 1 with £=2000 and a binary interchange successive local improve-
ment search.

3 A stochastic multiple cyclic interchange (simulated annealing) search with N, =2,
initial annealing temperature T,=1.0, cooling parameter «=0.998 and annealing
chain length £ = 5000.

4 A stochastic multiple cyclic interchange (simulated annealing) search with N, =M
("total number of fuel elements in octant"), initial annealing temperature T,=1.0,
cooling parameter «=0.998 and annealing chain length £ = 5000.

The obtained objective and constraint function values for the three test PWR cores are
listed in tables I, II and III, respectively. The fuel age distributions of the obtained final
patterns are shown in Figs 3.6-17. In these distributions, the fuel burnup (or age) levels
are proportional to the darkness in the different nodal colours. The final results found by
all four applied search methods for the largest core, core 3, are plotted in terms of their
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performance parameters in Figs. 3.18 along with a random sample cloud of 2000 random-
ly generated patterns for core 3.

TABLE I

List of obtained optimization results for PWR core 1

method Kett poc™ maximal power peaking factor
1 1.03382 1.7563
2 1.03497 1.7633
3 1.03613 1.7658
4 1.03502 1.7809
TABLE 11
List of obtained optimization results for PWR core 2
method Kegt soc™ maximal power peaking factor
1 1.0200 1.7764
2 1.0246 1.7785
3 1.0212 1.7424
4 1.0202 1.7658
TABLE III
List of obtained optimization results for PWR core 3
method Kot poc™ maximal power peaking factor
1 1.01524 1.6454
2 1.01868 1.5113
3 1.01619 1.6220
4 1.01612 1.7214
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Fig.3.6 Fuel age distribution of the Fig.3.7 Fuel age distribution of the
best pattern found by search best pattern found by search
method 1 applied to core 1 method 2 applied to core 1

Fig.3.8 Fuel age distribution of the Fig.3.9 Fuel age distribution of the
best pattern found by search best pattern found by search
method 3 applied to core 1 method 4 applied to core 1

Fig.3.10 Fuel age distribution of the Fig.3.11 Fuel age distribution of the
best pattern found by search best pattern found by search
method 1 applied to core 2 method 2 applied to core 2
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Fig.3.12 Fuel age distribution of the Fig.3.13 Fuel age distribution of the
best pattern found by search best pattern found by search
method 3 applied to core 2 method 4 applied to core 2

Fig.3.14 Fuel age distribution of the Fig.3.15 Fuel age distribution of the
best pattern found by search best pattern found by search
method 1 applied to core 3 method 2 applied to core 3

Fig.3.16 Fuel age distribution of the Fig.3.17 Fuel age distribution of the
best pattern found by search best pattern found by search
method 3 applied to core 3 method 4 applied to core 3
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Fig.3.18 Plot of the search results listed in table III, along with a
sample of 2000 randomly generated patterns.

In conformity with what was argued in the introduction, the multi-stage global-to-local
search method (method 2) yields the best result for most of the cases (except for the
smallest core, corel, for which method 3 gave the best result). The patterns found by the
methods 2 and 3 have equal fuel age distributions, but are different in the placement of
the individual fuel assemblies within the fuel age groups. This indicates the importance of
treating all fuel bundles individually in core loading pattern optimization.

3.3 The population mutation annealing algorithm
3.3.1 Ordering reload patterns in terms of selection probabilities

The results of the different types of heuristic search procedures discussed sofar seem to
indicate that the solution space contains elite ’families’ of patterns that are all very close
to one another in terms of their (top) performances, though they may be very dissimilar in
terms of the fuel assignments in the core. In other words, it is suspected that the optimum
1s quite *flat’, due to which the (theoretically present but untrackable) global optimum is
not expected to be more than only marginally superior to the best result of the heuristic
search algorithms. The search methods discussed in section 3.2 are generally characterized
by the following property : after transition to local search stage, the search trajectory
consists of a chain of successive candidate reload patterns that are correlated to one
another in terms of their associated fuel age distributions. This almost automatically means
that in the final search stage of all of these procedures it will be very likely that one will
eventually get stuck in a local extremum in the specific final search region.

We would like to have a method available featuring a transition from global to local
search behaviour without the necessity of performing this local final search in a specific
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subregion of the solution space in terms of the fuel age distribution. A very interesting
search approach in addition to the groups of search methods discussed in this chapter sofar
is the following stochastic search concept, which can be denoted as a *population mutation
annealing” approach. The general idea of this method is to combine the advantageous pro-
perties of the GA and SA algorithms in one method, and simultaneously filter out the
disadvantageous characteristics of these algorithms. It is generally known that both the
advantage and disadvantage of GAs is that they effect general improvements in large
groups (denoted as populations in terms of their biological analogon) of reload patterns,
rather than to gradually search more and more locally along one Markov chain for the
best individual, as is the case in the SA algorithm. This property can be considered an
advantage as it enables one to gain insight into the heterogeneity of the ’elite’ families of
reload patterns in terms of the spatial fuel assignments. Basically, due to the inherent
heterogeneity of the patterns in the population, the solution space sampling occurring
during the search is in fact expected to consist of a large number of 'weak’ local searches,
which is good from a theoretical point of view. However, this property can also be
considered a disadvantage since in the end one wants to really search locally within one or
more elite clusters for the best pattern within the cluster. As in the SA approach (section
3.2.3), the concept of a decreasing temperature as a process parameter is adopted :

T, =aT;, 3.7

The method is started at a high annealing temperature To=1 and a randomly chosen initial
reload pattern Hy. This pattern is evaluated, yielding the objective function value z,, and
the power peaking factor p,. Like in the SA method, a "bounds cooling” technique can be
applied to the power peaking constraint ; the temperature dependent constraint

psf, +BT, (3.8)

is used instead of the hard’ constraint

p<f, (3.9

Based on whether the *hard’ power peaking constraint is satisfied for the initial pattern,
the value of the penalty parameter {, is

¢ - 1 if py21fy, (3.10)
0 0 otherwise

Then, a certain number N, of randomly chosen elements in H, is permuted, yielding the
second pattern H, for which z,, p, and {; are determined as well. For obtaining H,, a
stochastic test determines if H, or H, is selected as the pattern that, after permutation of a
certain number N, of randomly chosen elements, results in H,. For generating the i®
pattern H;, a stochastic test is performed, resulting in one of the patterns H,, H,, ..., H;,
to be selected and to serve as the pattern yielding H; after permutation of N; randomly
chosen elements. In this test, the proposed probability that pattern H,, is chosen from the
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collection {Hy, H,, ..., H;,} is defined as

Zm " Zyay L To_l
i e |

P, = ! . (.11
exp| 21 Zmax gl=2 -1
j=1 T T

with z,,,=max{z,,z,,...,z,;} and the penalty parameter {u defined as :

. ={ 1 ifp >f, 3.12)
" 0 otherwise

In actually performing this stochastic test, a random number r, with 0<r;<1 is generated
and use is made of the cumulative selection probability function, defined as

6, =3 P, (3.13)
j=0

The stochastic test itself is performed as follows : if ©,, <r;<O,, then the m™ pattern H,,
is selected as the ’input’ pattern for permutation of the N; randomly chosen elements.
Since ©,-6,,,=P,, the probability of 8, ,<r,<0, is directly proportional to P,,. This is
exactly what we want with this test. In a time-dependent picture, one can compare this
stochastic test with using a *wheel of fortune’ that gets more and more different radially
oriented regions (corresponding with patterns) associated with selection outcomes. Of
course, the total radial area of the wheel will remain constant. So the number of different
regions is incremented with one after each emergence of a new pattern to be evaluated. At
a high annealing temperature, the areas of the different regions on the wheel will be more
or less the same. However, as the annealing temperature decreases the total area occupied
by the ’better’ regions (associated with the patterns that have high values of z and satisfy
the hard power peaking constraint) will become larger and larger ! The proposed tempera-
ture dependence for the number N, of elements to be permuted, is

N(T;) = Ny + int[(Nyy =Ny + 1) *T,] (3.14)

with N,;, generally chosen as a small number (preferably 2) and N,,, chosen as a large
number (For example : N,, =N-2, the total number of fuel elements in the system minus
2). If N,,,, is chosen close to N then the generated patterns will, notably in the early stages
of the optimization process, be fully random : each pattern will be uncorrelated to its
predecessor. We note that the expression (3.14) represents a temperature-dependent
Junction, fixing N as a function of the annealing temperature, whereas the expression (3.3)
used in the SA approach represents a probability distribution. The difference between
Eq.(3.14) and Eq.(3.3) basically arises intuitively from the difference in search concept
between SA and PMA. In SA, through implementation of the Metropolis acceptance test,
a Markov chain is set up leading to a region in the search space that contains good soluti-
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ons. Large pattern changes are generally effected by modes subsequent stochastic permuta-
tions. So in SA there will generally be relatively large correlations between a pattern and
its successor and predecessor. According to this Markov chain search concept of SA, the
magnitude of the permutations should not be fixed to large values in order to preserve the
occurrence of clear correlations between a pattern and its successor and predecessor, and
thus not to disturb the Markov chain concept too much. In the early stage of PMA, the
idea is rather opposite : we wouldn’t like a pattern to be too much correlated to its succes-
sor and predecessor to ensure global sampling in the "Wheel of Fortune" picture. So we
would like to guarantee that, at the early stage, large changes are applied and that at the
final stage, small changes are applied. This is why Eq.(3.14) prescribes a fixed N.

Patterns that do not satisfy the power peaking constraint are not allowed to enter the
population. However, like in the SA method discussed in section 3.2.3, the bounds
cooling technique can be applied to this constraint such that

psf, +aT, ’ (3.15)

at the i evaluation step. Due to this, in the early stages of the process no patterns will be
rejected because of their high power peaking factors, ensuring a rather uniform sampling
of the search space at the start. The population mutation annealing process proposed here
features continuous updating of the probability distribution that stochastically determines
the selections of the input patterns for the mutations.

From the definition of the probability distribution (Eq.(3.11)), it can be seen that, at
the start of the optimization procedure, featuring the high annealing temperatures T=T,,
each pattern will have approximately the same selection probability. Also at the high
annealing temperatures at the start, the influence of the penalty term in the exponent will
be negligible. However, at the extremely low annealing temperatures near the end of the
procedure, the selection probability for a pattern which is ranked very low and/or which
does not satisfy the power peaking constraint, will have become very small. In accordance
with the elite-cluster property, it can be expected that near the end of the procedure, an
melite" collection will have been formed with approximately the same objective function
value, but with possibly entirely different core fuel age distributions. In other words, the
procedure is expected to boil down to a more or less probabilistic ’parallel’ search from
different elite locations in the search space.

Due to Eq.(3.14), the final search behaviour of this procedure will be such that only
modest changes in the best patterns are evaluated, which is more or less the definition of a
local search. The advantage with respect to the simulated annealing method is that, becau-
se of the heterogeneity in the ranking of the best performing patterns (in terms of the BOC
reactivity distributions), the final (local) search stage will not be confined to a specific
region in the solution space. Instead, this final search will be conducted in large numbers
of distant elite clusters throughout the search space (with distance defined in terms of
differences in the fuel assignments). The obvious advantage with respect to the genetic
algorithm is that the final search stage really consists of local searches throughout the
solution space, whereas standard genetic algorithms are incapable of really searching
locally. From the results obtained in this study, this "population mutation annealing”
algorithm is found to be rapidly convergent and quite successful, and it is not that difficult
to program its stochastic dynamics.
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3.3.2 Some results obtained by applying the population mutation annealing algorithm

Starting from the same randomly chosen poor-performing patterns that neither yield
economic fuel use nor satisfy the power peaking constraint, we have searched for the
reload patterns associated with the best equilibrium cycle behaviours for the same PWR
test cores as considered in section 3.2.4, containing 96, 224 and 384 fuel assemblies,
respectively. Again, the objective was to find the pattern yielding the highest k.,**(EOC)
while satisfying the constraint that the power peaking factor remains below 1.8. The PMA
process parameters were chosen as : N, =2,N_,,=46 en for the annealing parameter we
again chose the value a=0.998. The results are listed in table IV. From the results obtai-
ned here, it can be concluded that this method promises to be a better and more appropria-
te optimization tool for reload pattern optimization than any of the other methods which
were discussed in section 3.2. The PMA method performs according to expectation and,
for all three PWR cores considered, the best optimization results were obtained. In Figs.
3.25-27, the best PMA search results are illustrated for cores 1,2 and 3.

It is very interesting to observe how the cumulative selection probability distribution
evolves as a function of the annealing temperature. Since each annealing temperature
value is uniquely determined by T;=o'+T,, one could also say that the cumulative selecti-
on probability distribution is plotted as a function of the number of patterns selected sofar.

TABLE IV

List of obtained optimization results for the three PWR cores

core Kot goc™ maximal power peaking factor
1 1.0365 1.7705

2 1.0247 1.7834

3 1.0201 1.7906

In Fig.3.19 and Fig.3.20 this distribution is plotted for two different annealing tempe-
ratures characterizing the different search stages, from the initial search stage (almost
linear curve) via intermediate search stages to the final search stage. Clearly, the patterns
become better as the search proceeds, since the cumulative selection probability distri-
butions become steeper and steeper. This is, of course, in contrast to the evolution of the
best function value found, which stagnates as the improvements become smaller and
smaller, as indicated in Fig.3.21. The actual selection probability distributions are plotted
in Figs.3.22 and 3.23 at annealing temperatures T=0.00045:T, and T=0.000052-T,,
respectively. Finally, in Fig.3.24 the improvement path of the PMA search for core 3 is
plotted along with the random sample cloud of 2000 randomly generated patterns. Visual
comparison with Fig.3.18 reconfirms the numerical comparison between table III and table
IV indicating that the PMA result is significantly better for this case than the results of
any of the other search procedures discussed in section 3.2.4,
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Fig.3.25 Fuel age distribution of the Fig.3.26 Fuel age distribution of the
best pattern found by the PMA best pattern found by the PMA
method applied to core 1 method applied to core 2

Fig.3.27 Fuel age distribution of the best pattern found 1
: by the PMA method applied to core 3.
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3.4 Conclusions

We conclude that all of the search methods that were applied here lead to relatively
good solutions of the reload pattern optimization problem for the modestly-sized core that
was considered, even when using a very bad initial trial pattern. It should be noted that
the PMA search algorithm presented in section 3.3 is clearly the best optimization method
in terms of the objective function values. It is important to note here that the procedures
were deliberately started from a bad initial trial pattern to test their reliability. All of the
search procedures have proved capable of finding their way from any starting point in the
disordered search space towards the 'region’ of nearly optimal patterns. In this sense all of
the search concepts evaluated have proved their robustness.

We would like to stress here that, especially with regard to the stochastic optimization
procedures treated in sections 3.2.3 (SA) and 3.3 (PMA), a lot of separate work can be
done on optimization of the search process parameters to further improve the performance
of the searches. And of course other variants can be developed as well, incorporating
additional ideas originating from statistical physics or biology to further enhance their
optimization ability.

As is generally known, genuine global optimality of the pattern found can hardly be
guaranteed, but the quality of the results can be visualized by plotting the obtained pat-
terns along with a plot of a large sample of randomly generated reload patterns in a
performance plane.

Application of heuristic search methods as described here allows for a black box ap-
proach in which gradient information is not required, and in which the system equations
governing the behaviour of the reactor core system do not have to be implemented in the
optimization procedure. In the optimization procedure, the system equations are isolated in
an external simulator module that generally simply returns the objective function value and
informs the optimization shell about whether or not any reactor physics constraints are
violated. In particular the PMA search approach presented in section 3.3 has proved to be
insensitive to the lack of a well-defined ordering principle for reload matrices, and there-
fore constitutes a robust and reliable method for finding a good fuel distribution in a
nuclear reactor core.
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Chapter 4

Application of Generalized Perturbation Theory to
In-Core Fuel Management

4.1 Introduction to Generalized Perturbation Theory
4.1.1 Efficient evaluation of permutation effects

In reload pattern optimization, search algorithms are very often based on assessing the
effects of permutations in the reloading scheme, followed by acceptance decisions in
which the permutation yielding the largest increase in the objective function to be maximi-
zed (while satisfying the reactorphysical constraints) is chosen to determine the next refe-
rence scheme in the search procedure. Generally, the exact value of the objective function
for an operation cycle can only be determined after the completion of an iterative proce-
dure to obtain the cycle solution from BOC (Begin-of-Cycle) to EOC (End-of-Cycle).
This implies that reload pattern optimization methods in which large numbers of different
refueling schemes must be evaluated in this way are quite expensive from a computational
point of view. However, for fast evaluation of a new reloading scheme to be examined, it
is possible to decompose this scheme into the original, unperturbed reloading scheme and
the perturbation in the scheme. A spatial extension of a variational technique that was
introduced by Pomraning [Pomraning 1967] and defined for depletion perturbation theory
by Gandini [Gandini 1975] and Williams [Williams 1979] can be applied to evaluate in
first-order approximation the effect of the perturbation on a selected response vector.
The theory on which the variational technique is based is generally referred to as
generalized perturbation theory (GPT) [White 1990, Maldonado 1995, Moore 1997, Van
Geemert 1998]. Explicit consideration of the higher-order terms in the response functional
expansion results in a very rapidly converging iterative scheme from which the exact
perturbation in the response vector can be obtained at very low computational cost. In this
iterative scheme, the first-order prediction of the response vector perturbation serves as a
fixed-source term. The availibility of this perturbation formalism offers the possibility of
fast assessment of many different reloading schemes. This results in a considerable econo-
my of computation time for any heuristic reload pattern optimization procedure based on
assessing the effects of permutations in the candidate loading schemes.

4.1.2 The generalized variational approach

The time evolution of a PWR core is basically described by the energy-, space-, and
time-dependent neutron flux &(t) and by the space- and time-dependent nuclide density
matrix N(t). Generally, since the neutronic and depletion equations are coupled, a quasi-
static approach, featuring a number of time steps i, must be adopted for numerical simula-
tion of how the core evolves from BOC to EOC. In this approach, it is assumed that the
neutronics eigenvalue equation, determining the spatial flux shape ¥(t) can, after omitting
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the time dependence for notational convenience, be written compactly as
(L-AF)y =0 “4.1)

where the eigenvalue A\ is the reciprocal of the effective multiplication factor of the
uncontrolled (i.e. without external reactivity control) core ks and L and F are the loss
and production operator, respectively. A possible choice for the normalisation require-
ment for the spatial flux shape vector is

bl =3 ¥ =1 “4.2)

with the index I denoting the different core nodes in the system geometry. In the 1%-
energy group approximation adopted in this study, there is effectively only one energy
group, but this formulation can be easily extended for incorporation of multiple energy
groups. An extension of the perturbation theoretical method proposed by Williams
[Williams 1979] has been developed and applied which eventually provides the possibility
to assess the exact influence of a variation in the nuclide density field on the flux distri-
bution in the core for a certain time step. In conformity with the variational approach,
this can be realized by treating the quasi-static equations as constraints on the response,
and appending them to the response function using Lagrange multipliers. In the formalism
to be presented here, many inner product definitions occur, which can be most conve-
niently written using the Dirac bracket notations :

(3“!) = E; a b, (4.32)

and
(alClb) =} 8, ), Cyb, (4.3b)

with a and b denoting vectors and C denoting a matrix. In appendix B, more examples
will be given on how to interpret the notations in this chapter. For each response quantity
A, the following functional # can be defined, in which the quasi-static equations are
appended to the response function using the Lagrange multipliers I',” and a, :

9t=A—(L‘A|L-xF|¢>-aA(<1|m>—1) 4.9

with 1 a vector with all components equal to 1. If A and y satisfy Eq.(4.1) and Eq.(4.2),
the value of the functional equals the value of the response quantity A. We note that the
second term in Eq.(4.4) can be written as :

((L*—).F*)r;m} 4.5)

with L" and F* the adjoint operators of L and F, respectively. We note that these adjoint
loss and production operators are directly dependent on the nuclide density distribution :
L=L(N) and F=F(N). If the nuclide density distribution N is perturbed (N-N’=N-+4N,
resulting in LN)—L’(N’)= LN)+5L and FQN)-~F (N’)=F(N)+4F), this influences % :
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® - & (N,y,A), 4.6)
where the prime variables refer to their perturbed values. Again, if A’ and Y’ are exact

solutions to the perturbed equations, then ®’=A’. Substracting the expressions for the
perturbed and the unperturbed response 'functional and ordering the terms gives

69t=aA-(1:;|bL-AaF|¢>+M<D‘A|F|¢>
((L -AF) +aA1|61u> (1* order)
—<12;|6L—16F—6).F|61u> * ax(r;m«* m) (2 order)

+ 61(]:;[61“[6;&) (3 order) 4.7

Of interest is the choice of the nodal flux , in node J as the response quantity A. Noting
that 5A =8y, =y,’-y, can be written as < §;|dy >, with the Kronecker delta vector defined
as the vector of which the J® element equals unity and all other elements are zero,
Eq.(4.7) can be written for this case as :

5R = 6¢,=—<E;‘|6L-k6F|_¢>+5K<L;|F|¢>
~((L*-AF" )T} +a;1-8, [o4)
~(T; | SL-A3F-3AF | dy) + 8A(L;|OF | )

+ 61(2; | 8F | 5¢> 4.8)

with 8% simply replaced by dy;, assuming that dA and 8y are such that the perturbed
equations are satisfied. The second and the third term on the right of Eq.(4.8) will vanish
if I, satisfies the adjoint flux shape equation

(L —).F')'E; = ‘axl*‘ﬁ; EQ; 4.9)
and the orthogonality condition
<E;|F|3|[> =0 4.10)

with a, still to be determined. For argueing how this combined objective can be realized,
it is worthwile to consider the eigenset {\,",¥,";n=0,1,2,...} of the adjoint equation :
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(L* -2 F) -y =0 (4.11)

Generally, \',=\,. The fundamental adjoint flux shape y," (conventionally written
simply as ¥°) is a very important quantity. The basic reason for this is the validity of a
mathematical orthogonality property that can be proved in the following way : after
premultiplication of Eq.(4.1) with the m® eigenvector y,°, recalling the commutativity
property <y, |L|¥,>=<L", |{,> and employing Eq.(4.11), we obtain

Ao (U IF L) = A, (wr |F ¥ ) 4.12)

Hence, since A, #X\,, in the case m=n, the inner product <y,’|F|y,> should vanish for
the case m=n. Thus, the validity of the well-known.property

(g[; |F |3“..> =c, b, (4.13)

has been established. The implication of this property is that, if some adjoint flux shape
I" is to be orthogonal to the fission rate distribution Fy,, it should not contain any
component of y,’, i.e., it should be orthogonal to ¥,". So, Eq.(4.10) basically requires
that the Lagrange multiplier ;" is not allowed to contain any component of the funda-
mental solution of the homogeneous adjoint equation (L’-AF')y'=Q. This fundamental
mode is the only eigenstate which does nor yield zero when multiplied with Fy, since the
eigensets {y,’,n=0,1,...} and {y,,n=0,1,...} obey the general orthogonality property
(4.13). Thus, <y,"|F|¢> unequals zero only in the case n=0. More specifically, if L’
is the particular solution to Eq.(4.9) satisfying Eq.(4.10) such that <L,|F|¢> vanishes,
where ¥ is the fundamental solution to the homogeneous equation, then LS +by isalsoa
solution of Eq.(4.9) for all b. However, due to Eq.(4.10) the value of & is fixed to be
zero, so that " will not be ’contaminated’ with the fundamental solution ¥'. Hence, there
is only one unique solution satisfying both Eq.(4.9) and (4.10). In each step in the iterati-
ve process of solving Eq.(4.9), this can be effected by application of a filtering operation,
written in program language style as

*:=1 ;EJ |F Illlz * “4.14)

= I - ¥
T (W |F )

The choice for the multiplier a; is determined by the fact that Egs.(4.1) and (4.9) specify
that {¢|Q,") =0. This becomes obvious when analysing the inner product {(¢|Q,") :

(y;lg;)=<¢|v-m*|z;> = <(L-lF)3u 1:;) = <Q 1:;) =0 (4.15)
Using this result and using <1|y¢> =1, a, is obtained :
8 = (8, |¥) =¥ (4.16)

If Egs.(4.9),(4.10),(4.16) are satisfied by I}’ and a,, the expression for the first-order
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prediction of the change in the response flux 8y;, denoted by 6y, is
sUR = 6“’¢:=-(1?; | 6L—A6F|3u> 4.17)

Obviously, it is possible to treat e/l nodal fluxes in the system as response quantities.
The collection of all associated Lagrange multipliers I"={I,",[,",...,I'\"}, with N the
number of nodes in the system geometry, can then be used to obtain a first-order estimate
of the perturbation in the entire nodal flux distribution :

8OR = 3Wy = —<g' | 8L - A 8F |¢) (4.18)

If Eqs.(4.9),(4.10) and (4.16) are satisfied, the exact expression for 8y can be written as :
5m=a(1>3u-<g‘ | SL-8(AF) | 6m> + 81 <g‘ | 8F m) 4.19)

with SQ\F)=\F+\SF+08N\0F. As the unknown spatial perturbation 8y appears on both
sides of the equation, Eq.(4.19) represents an iterative solution scheme for obtaining 3y.
This iterative scheme features the first-order estimate 6Vy as a fixed-source term, and has
the pleasant property that it can converge very rapidly. It is apparent that, in order to
implement this scheme, a formula should be available to estimate the change in the
eigenvalue SA\. After each calculation of an improved estimate of the perturbed spatial
flux distribution ¥’®, the eigenvalue perturbation estimate SA™*? can be obtained after
premultiplication of the perturbed flux eigenvalue equation with the fundamental adjoint
flux distribution ¥~ and using the property (L™-AF)y =0 :

_ w8 |y ™) - Ay | 3F |¢'®) (4.20)

sAED
(w" [F/[9/)

with A the unperturbed eigenvalue. Thus, with the node-averaged flux distribution as the
response vector, Eqs.(4.19) and (4.20) eventually yield a higher-order, rapidly converging
iterative scheme containing the source term 3y, from which the exact perturbed node-
averaged flux distribution can be obtained at low computational cost :

6m(n+l)=5(1)¢_<£* | 6L—6(A(")F) | 5m(n)> + 61.(")<E’ | 8F |J|L(")>

<Jl!' I 5L - A 3F lml(ﬂ) .21

(u |F' | w'®)

3ACD =

The convergence properties of this iterative scheme depend on the magnitude of the
considered perturbation in the nuclide density distribution and thus basically on the
magnitude of the perturbation in the operator AF. For example, for modest octant-
symmetric permutations in the core depicted in Fig.1.2, involving 4 fuel elements per
octant, not more than 4 iterative steps were needed to achieve an accuracy consistent with
the accuracy of 10* in the calculated flux distributions. In the forward calculations, no
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less than about 50 iterative steps are required to reconstruct the perturbed flux distribution
and eigenvalue. The execution of one step in the iterative scheme (4.21) takes about 25%
more CPU-time than the execution of one iterative step in the *forward’ scheme (without
use of Lagrange multipliers). Hence, for permutations of this modest magnitude, a
calculational speed-up of a factor of about 10 can be realized.

Using scheme (4.21), rather large perturbations can be treated as well, but the
convergence rate will then be somewhat lower, with which the speed-up factor is reduced.
For very large perturbations involving the more or less random permutations of all fuel
elements, the iterative scheme (4.21) may even not converge at all, but diverge in an
oscillating way !

It is not very trivial to predict mathematically when (4.21) will converge and when it
will diverge, since 8(AF) will generally contain both positive and negative elements and
thus is not a positive-definite operator. Therefore in this study we obeyed the conservative
rule of not using GPT for evaluating perturbations consisting of simultaneous (octant-
symmetric) shufflings of more than a quarter of the total number of fuel elements.

In Figs.4.1a and 4.1b respectively, examples are given of a small and a large spatial
nuclide density perturbation in terms of the *U concentrations in the big PWR core
containing 384 elements. In Fig.4.1a, four randomly chosen unity elements in the reload
operator X, corresponding to different fuel ages were cyclically permuted in each octant,
whereas in Fig.4.1b twelve randomly chosen unity elements, three of each different fuel
age, were randomly permuted. Of course, for the equilibrium cycle this means that
basically all nuclide densities in all positions are affected. The resulting spatial flux
perturbations are shown in Figs.4.2a and 4.2b.

N N W
o o Q

o

O

\

relotive change in U235 density (%)
relative change in U235 density (%)

\
N
e}

Fig.4.1a Fig.4.1b
Modest spatial Z*U density perturbation Large spatial **U density perturbation
due to octant-symmetric permutation of 4 due to octant-symmetric permutation of 12
unity elements in the reload operator X, unity elements in the reload operator X,
plotted in percentage changes with respect plotted in percentage changes with respect
to the ?*U concentration in fresh fuel. to the 2*U concentration in fresh fuel.
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chonge n normalized flux (10r-3)
change in normatized flux (10~-3)

Fig.4.2a Fig.4.2b
Spatial flux perturbation due to the Spatial flux density perturbation due to the
modest octant-symmetric permutation of 4 large octant-symmetric permutation of 12
unity elements in the reload operator X. unity elements in the reload operator X,
We note that the core-averaged normalized We note that the core-averaged normalized
flux density for this case is 0.0104. flux density for this case is 0.0104.

Obviously, the perturbation in Fig.4.2b is more oscillatory since the alternations between
positive and negative elements in the operator 8(\F) will be more frequent. In tables I and
1I the qualities and computational requirements of the GPT reconstructions for 8\ and &y
are compared to the results and computational burden of using the plain forward iterative
calculation scheme. The convergence criterion for both methods was set to the value 10,

TABLE 1

A comparison of the CPU-requirements and results (\-eigenvalue and
power peaking factor change Ap) of the GPT iterative method and the
standard forward iterative method for the perturbation shown in Fig.4.1a.
The listed required CPU-times were obtained for a DEC-a600 5/266.

iterative method SN Ap number of iterative steps | required CPU-
required for ¢ = 10 time(s)
GPT 1.9-10° | -0.0931 4 0.0072
forward 1.9-10% | -0.0922 50 0.0700
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TABLE II

A comparison of the CPU-requirements and results (\-eigenvalue and
power peaking factor change Ap) of the GPT iterative method and the
standard forward iterative method for the perturbation shown in Fig.4.1b.
The listed required CPU-times were obtained for a DEC-a600 5/266.

iterative method 2N Ap number of iterative steps | required CPU-
required for ¢ = 10* time(s)
GPT 0.00656 | 0.5417 8 0.00144
forward 0.00657 | 0.5435 50 0.0700

In this study, the use of this higher-order formalism has been combined with an
equilibrium cycle iterative perturbation theoretical method (to be discussed in chapter 5).
In this way, the limit cycle iterations involved in a heuristic equilibrium cycle optlmlzatl—
on procedure can be fastened significantly ([Van Geemert 1997]), as will be descibed in
chapter 5. Of essential importance in the equilibrium cycle iterative perturbation theoreti-
cal method is the use of so-called burnup sensitivity operator S which can relate, in first-
order approximation, the perturbation in the equilibrium cycle BOC nuclide density
distribution to the perturbation in the equilibrium cycle EOC nuclide density distribution,
with the perturbation occurring due to a change in the reload operator : X — X’. This
specific iterative method has the major advantage that it will always converge due to the
fact that the sens1t1v1ty operator S is positive-definite and fixed, and furthermore has a
norm ||S| which is by definition smaller than unity. The disadvantage of the method is
that it does not feature higher-order accuracy, so it basically serves to provide an initial
estimate for the perturbed equilibrium cycle. However, since burnup is a rather linear
process in a nuclear reactor, these initial estimates are generally remarkably good. And
the method can be used for fast prediction of the perturbed power peaking factor which,
if indicating an inadmissibly high power peaking, may serve to exclude a lot of uninteres-
ting candidate patterns from evaluation. In this way, considerable amounts of calculation
time can be saved.

In the next section, it will be described how the different burnup sensitivity coefficients
can be determined by applying a spatial extension of the variational technique introduced
by Williams [Williams 1979].

4.2. Depletion Perturbation Theory
4.2.1 Sensitivity theory for coupled neutron/nuclide fields

Generalized perturbatlon theory as described in section 4.1.2 provides a powerful,
rapidly convergmg iterative scheme with which the effects on the flux distribution of
perturbations in the nuclide density distribution can be predicted with higher order

accuracy and low computational cost. For purposes which will become apparent in
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chapter S, it is also very convenient to have a sensitivity matrix indicating, in first-order
approximation, how the EOC nuclide density distribution is affected by a change in the
BOC nuclide density distribution. Since the time dependent neutronics field and the
nuclide density field implicitly depend on one another, a spatial perturbation in the BOC
nuclide density field at BOC (so at t=t,;) will perturb the entire neutron/nuclide field for
the forthcoming cycle. In depletion perturbation theory (DPT) [Gandini 1975, Williams
1979], it is always assumed that the BOC nuclide density distribution is known exactly.
The major problem to overcome is that, due to the fact that the neutronics field and the
nuclide density field are governed by a set of coupled (differential) equations, it is
impossible to calculate directly how a perturbation in the combined neutron/nuclide field
will propagate from BOC to EOC. Nevertheless, in conformity with what has been
described in section 4.1.2, a variational approach can be applied to a more general
response functional as proposed by Williams [Williams 1979] consisting of all system
equations for all time steps, including the nuclide transmutation equations. Again, these
equations can be treated as constraints on the response, and appended to the response
function using Lagrange multipliers. This eventually provides the possibility to assess
directly, in first-order approximation, the influence of a small variation in the initial
(BOC) core state on the final (EOC) state of the core. The interesting case will be treated
of the response being the concentration of nuclide type q in node J at the end of the
operation cycle, so defined at t=t;". In order to stress that the response is defined at t=ty,
the response quantity is denoted as Nj (t;). In analogy with what has been described in
section 4.1.2, a general response functional can be defined, in which the quasi-static
equations are appended to the response function using Lagrange multipliers. Naturally, in
this more general picture a number of additional system equations must be included in the
functional, i.e. the nuclide transmutation equation and the constant power level equation.
The transmutation equation dictating the time evolution of the nuclide density field can be
written as

N0 - (s0®u® + D)N® 4.22)

with & denoting the absorption cross sections matrix and D the decay operator. We note
that the operators active in the nuclide type space are marked with a hat, and that an
implicit product in the nuclide type space occurs when the operators & and D appear in
combination with the nuclide density field N(t) (see appendix B). The fast flux can be
written as a product of the time dependent shape function y(r,t) (which is normalized
such that § y(r,t)dV = 1 v t) and a time dependent power normalisation factor &(t). This
allows for convenient implementation of the condition that the reactor power is restricted
to remain at a constant level. Using the inner product notation this condition can be
written as :

WD (6 ( Z(0) | (1)) = Py forall e (4.23)

-

Applying the Lagrange multipliers P*; and N'(t), the general response functional can

be written as :

= i
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T-1
N, (tr) + ¥ L'M(g*(t)l 60,y +D -ai |§(t)>dt
i=0 "4 t

T-1 T-1
“2 (L L - -Y P _ 4.24
12-; <[‘i |L| MFiI!l[i> §Pi (Wf°i<z-p,i lﬂi) Pc) ( )

If N, & N and &; are exact solutions to the quasi-static burnup equations, then
R=N, (tr). If the BOC nuclide density distribution N(t,*) is perturbed (N(t,*)=N’(t,*)),
this influences R :

® - ®(N'(1),¥,0,1), (4.25)

where the prime variables refer to their perturbed values. Again, if N’(t), ¥’;, &, \; are
exact solutions to the perturbed quasi-static equations, then |’=N’; (t;). Expanding %
about the unperturbed state and neglecting second-order terms, we have :

tr
logs [[9R +3 (2R % 9% (4.26)
* =R f<am)m()>dt ?E(a 1, v 2300, <ami|m‘>]

Like in section 4.1.2, most of the contributions can be forced to vanish by defining the
Euler-Lagrange equations for the adjoint fields [, P°; and N'(t). When these equations
(which will be plainly called the adjoint equations) are satisfied, a relatively simple first-
order perturbation expression remains that directly relates the perturbation in the final
time response response 8N;  (t;) to the perturbation in the initial nuclide density distributi-
on 3N(t;*). For example, the functional derivative with respect to &; is :

aﬂ - tIﬂ » A - .
o f'i (N'(®)] 83, N®))dt - Plwy (2 |4,) (4.27)
For this expression to vanish, the multiplier P; should be chosen such that :

P = e (E ) 1|¢ 5 [

sy N(t) >dt 4.28)

Employing the commutativity property of adjoint operators, the functional derivative with
respect to y; can be written as

41
= f (N*(t) | 6 @, N(t))dt - (L;" - &, F)I7 - w, P @, I, (4.29)

i

In analogy with Eq.(4.9), this partial derivative will vanish if I\ satisfies the inhomoge-
neous adjoint flux shape equation
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I =Q (4.30)

(Li. - )..F-‘) i i

with the adjoint source

Y1
Q = f(ﬁ'(t) | 6@ ﬂ(t)>dtv- w, P ®.Z,, 4.31)
Y

and L’ and F" the adjoint operators of L and F, respectively. The requirement that IR/ON;
vanishes results in the same orthogonality condition as Eq.(4.10) :

(L 1%, |,) = 0 4.32)

and forces ['; to be orthogonal to the fission source at t=t,. The Euler condition corres-
ponding to a variation in N(t) is more complex than for the other variables. This is
basically because N(t) is the only ’forward’ quantity that is allowed to vary continuously.
Due to this, a significant part of its contribution in the variation functional is embedded in
an integral, while the other part consists of terms defined at discrete equidistant moments
t, containing the ’snapshots’ N(t) of the nuclide density fields. To derive the Euler
condition for N'(t), the variation of % with respect to SN(t) must be considered :

Ty
9 .
SR[IN(D)] = ———-N SN(t) \dt
[8N(D)] {<3_H_m J,q(t«r)‘ E()> '
T-1 |41
* g +D —ﬁ -Ir f_lﬁ_ aFi .
0.
- th;<Di<y_i aNF-‘>~6§i 4.34)

Using the adjoint matrices o' and D" and partial integration with respect to t yields

f:.l <§. ®

A d _ e - _ LT +
2o+ D-2[aNw)at = (N6 [BNG) - (') 18N(D)

+ f:<6 N(t)

AT AT 8
604 +D * 3

g‘(t)>dt (4.35)

Hence, all integral terms in the summation for dR[SN(t)] will vanish if the following
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adjoint transmutation equation is satisfied during the time intervals {t,t,,,}, i=0,...,T-1 :

( ¢¢+D+—)m()+ (N, D) = 2 (4.36)

ON(t)
which reduces the expression for the differential of R to :

BRISN(D] = .=o{ (M () [3N'(tL)) + (N () | 8NG))

<1:' %> BN } (.37

aN
We point out that

Mo} =8

Jq

dL, oF,

iy i

laN

-‘H) ‘SN(t) - w,P; °1(3!i

8 (t- 4,
au(t) (t-ty) 4.38)

with the delta function &(t) defined as

Al -—A<t<0

87(t) = . (4.39)
AlO o, otherwise
and the elements of the Kronecker delta-object §,, defined by :

L3 = .
[‘Iq]g { 0  otherwise
Development of the summation gives :

oL,

SRISN(H] = N'(t;) - <£0 ET aN

> 8N(15)

- P(; Wi 4’(! <ﬂo

N > Ny) ¢ {mt;) -N) - <r:

-0

L OF, .

_p;w,dn(“!nw'» BN() + ... - (N'(tp) | 8N(e) 4D
1

For further reduction of the expression for the differential of R, most of the terms
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containing the SN(t), except the ones at the boundary points t=t,* and t=t;’, can be
forced to vanish if the adjoint nuclide densities are allowed to be discontinuous at the time
boundaries t; :

Y TP - al"l aFi * az‘F,i
g (ti) = E (ti) - <r| @ T Ay @ ﬂi> - Pi wf¢i ﬂi -—aE> (442)
The last term can be forced to vanish by simply demanding that :
N;(t,-) =Q forall I (4.43)

The presence of the delta time function in the source term of Eq.(4.38) basically sets the
final time boundary condition for N'(t) :

N*(ty) = dt

AlQ

tr-A
=0+ m f [—g,qb'(t—t.r)+&¢i3ui+f) d-3 (4.44)

Thus, all integral terms in the summation vanish if the adjoint transmutation equation is
satisfied,

(6T¢i3|[i + D"+ -(%)_E‘(t) =0, tsts<t,, Vielo,..,T-1} (4.45)

with the final time condition

N'(t;) = 0

ImN*(t) =
tity

(4.46)

If the adjoint nuclide transmutation equation is satisfied, the only term remaining in the
development of dR/86N;(t) is the zeroth one, from which it follows that the sensitivity for
variations in the initial state is given by

oL, oF,

“hoSag
aN’l,O aNI,D

5, = N -(r;

ax
uzo> PO w, ¥, al_\;m (4.47)

S, is the sensitivity vector that relates variations in Ny(t=t,) to the resulting variation 8A,
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chosen here as ON,,. Hence, for variations in the entire system, the object S can be
defined :

S = {899|J=1,...,N ; q=1,...(mn)} (4.48)

The columns of the sensitivity matrix S are the sensitivity vectors S, ; the rows of S
correspond to the different nuclide types considered. Thus, the prediction by first order
depletion perturbation theory of the change in the functional resulting from a perturbation
in Ni(t=ty) is :

N
SN [3N(V] = (S|8N ) = IEI 88N (4.49)

This rather complex formalism provides the adjoint field equations for the quasi-static
approximation. A set of adjoint equations exists that corresponds to the entire set of
system equations, consisting of the nuclide transmutation equation, the flux shape
equation and the power constraint equation. Additionally, it is convenient to impose
further restrictions on the adjoint fields -namely, that I'"; be orthogonal to the fission rate
distribution and that N'(t) be discontinuous at each time boundary. The adjoint . field
equations, listed in Eqs.(4.28), (4.30) and (4.36) are mathematically coupled, linear
equations containing the unperturbed forward values for N(t), ¥, \; and &,

4.2.2. Solution of the adjoint quasi-static equations.

The practical utility of the adjoint equations, like that of the forward quasi-static equati-
ons, depends on how easily they can be solved numerically. It turns out that the calculati-
onal flow for solving the adjoint equations is quite similar to that for the forward solution,
except that it proceeds backward in time. As is shown in Eq.(4.31), the flux adjoint
source Q" at t, depends on an integral of N'(t) over the firure time interval [ti,tisd.
Further, the final value of N at the end of each time interval is fixed by the "jump"
condition (Eq.(4.42)). Its magnitude depends not only on the future behaviour of N but
also on [" and P" at the final time of the interval. Thus, the adjoint equations have to be
solved backward in time. For solving the adjoint equations, the flow chart as proposed by
Williams [Williams 1979], shown in Fig.4.3, can be implemented.

In Fig.4.4a, a very simple example is given of a local BOC nuclide density perturbati-
on, consisting of a local increase of the *U density in the central nodes of the large
PWR core. Naturally, the direct result of this is that these central nodes and their
surrounding (neighbouring) nodes will have a larger power density. As the total core-
integrated power is constant, this means that the power densities in the other nodes will
(have to) decrease. Thus, as the burnup proceeds the U in the central nodes will be
more rapidly depleted, so that their surplus of 2°U will be smaller at EOC than at BOC.
In the directly neighbouring nodes, in which the power density was raised as well, the
more rapid depletion due to the increased power density eventually results in a lower 25U
density (negative peaks). In the more peripherically positioned nodes, the fuel will be less
rapidly depleted with respect to the unperturbed case, with the result that the 2**U density
in those nodes will be somewhat higher with respect to the unperturbed case. In Fig.4.4b,
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the resulting EOC nuclide density perturbation is plotted. This effect can be calculated by
either the computationally expensive way of repeating the neutronics- and burnup-
calculations from BOC to EQOC, or by the computationally cheap way of calculating the
inner product <S|8Npoc>. When one considers the CPU-time required for performing
many neutronics and depletion calculations, the advantage of using DPT is evident.

And, due to the more or less linear nature of the (slow) depletion processes, the quality of
the first-order DPT prediction is quite good for modest perturbations. The EOC nuclide
density perturbation illustrated in Fig.4.4b could be predicted with DPT featuring an
accuracy of 6 % in the predicted change.

Solve the adjoint nuclide transmutation equation (4.45)
for t,<t<t,,,, with the final time condition :

N'() = 8,
v

Calculate P*; using Eq.(4.28)

|

Calculate the {Q"} using equation (4.31)

\A

Calculate the {I";} using Eq.(4.30) and
the orthogonality relation (4.32)

\:

Calculate the discontinuities in the adjoint
nuclide densities by using Eq.(4.42).

false

The sensitivity vector is defined by Eq.(4.46)

Fig.4.4
William’s backward algorithm for solving the adjoint equations
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Fig.4.4a Fig.4.4b
A local BOC nuclide density perturbation Spatial EOC U density perturbation
consisting of a local increase of the 2’U due to the BOC nuclide density pertur-
concentration in the central nodes, plotted bation illustrated in Fig.4.3a, plotted
in percentage change with respect to the in percentage change with respect to
35U concentration in fresh fuel. the Z*U concentration in fresh fuel.
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Chapter 5

Perturbation Theory for the Equilibrium Cycle

5.1 Development of sensitivity analysis for the cyclic mode

We recall that, as argued in section 2.3, since nuclear reactors are operated for
multiple successive cycles, a reasonable way to evaluate reload patterns is to consider
their performance in the case of an equilibrium cycle. The equilibrium cycle associated
with a reload pattern is defined as the limit fuel cycle that eventually emerges after
multiple successive periodic refueling with the same reload pattern. In reload pattern
optimization, solution algorithms are often based on the assessment of the effects of
permutations in the fuel bundle shuffling scheme, followed by acceptance decisions in
which the permutation yielding the largest improvement in the objective function value
(while satisfying the reactor physics constraints) is chosen to determine the next reference
pattern in the search procedure. Generally, the exact value of the objective function for an
equilibrium cycle can only be determined after the completion of a forward iterative
procedure to obtain the equilibrium cycle solution from BOC to EOC. This implies that
reload pattern optimization methods in which large numbers of different refueling
schemes must be evaluated in this way are quite expensive from a computational point of
view. However, it is possible to obtain sensitivity information, linking variations in the
EOC nuclide density distribution to variations in the BOC nuclide density distribution, by
using the variational techniques discussed in section 4.2. The availibility of this sensitivity
information, in combination with the neutronics generalized perturbation theoretical
iterative method discussed in section 4.2, offers the possibility of fast assessment of the
effects with respect to the chosen objective of choosing modestly different reloading
schemes, which results in a considerable economy of computation time.

A lot of work (see references chapter 4) has already been done in the field of applying
perturbation theory to fuel management, but most of it is dedicated to non-equilibrium
cycle fuel management. Yang and Downar [Yang 1989] did develop perturbation
theoretical methods for the equilibrium cycle, in order to assess the effects of changes in
reactor-physical parameters on the required feed enrichment or on the cycle length for a
constrained equilibrium cycle. Constrained here means that either the feed enrichment or
the cycle length are dictated by the condition that the effective multiplication factor
k. “?(EOC) of the uncontrolled core (without external reactivity control, such as control
rods or soluble boron) at EOC is fixed at a certain value (usually unity). In their paper,
either the feed enrichment is fixed, whereas the length of the equilibrium cycle is subject
to this EOC condition, or vice versa.

However, for application in loading pattern optimization, it is necessary to consider
changes in a more abstract equilibrium cycle parameter, which is the reload pattern itself.
It is important to realize that, since one is studying equilibrium cycle behaviour, a change
in the shuffling scheme affects the entire BOC fuel density distribution [Van Geemert
1997, Van Geemert 1998]. This is different from the situation in non-equilibrium cycle
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optimization, in which the reload operator can be simply interpreted as a fuel assembly
assigment matrix rather than as a node-to-node shuffle-and-discharge matrix ; in non-
equilibrium cycle optimization, a change in the reload operator only affects the BOC fuel
density field in a limited number of nodes.

In this chapter, iterative schemes are developed that offer the capability to calculate the
perturbed fuel density distribution with first-order accurracy and very limited computatio-
nal effort. This is basically done by using the sensitivity information obtained by applica-
tion of the depletion perturbation theoretical method discussed in section 4.2 for linking
the variations in the EOC nuclide density distribution to the variations in the BOC nuclide
density distribution. In section 5.1.3 it will be illustrated how the combined technique
mentioned above can be used in a procedure to minimize the feed enrichment subject to
the EOC criticality condition k4“>(EOC)=1 while the equilibrium cycle length is kept
fixed.

5.1.1 The two-point boundary condition for the forward nuclide density fields

We recall from section 2.3 that the equilibrium cycle is the limit fuel cycle that
emerges when a specific refueling pattern is applied many times in succession, with a
constant cycle length between each pair of successive reload operations. The refueling,
which is applied after termination of the reactor operation cycle, consists of a discharge
of the oldest fuel bundles, followed by a permutation of the remaining fuel bundles in the
core, after which the remaining vacancies are filled with fresh fuel bundles that are all
identical. Like in section 2.3, we define :

Xy=1 if the fuel bundle which has resided in node J is located in
node I after reloading
0 otherwise

If the fuel bundles are characterized by their nuclide density vectors N, the invariance
of the equilibrium cycle with respect to the reload operation can be written as :

N N
N (1) = ¥ X;; N (t7) + (1 -Y x, )up. G.1
I=1 I=1

with N denoting the number of fuel assembly positions, N the fresh fuel nuclide density
vector and t,* and t; the times just after and before the refueling, respectively. As
discussed in chapter 2, the equilibrium cycle can be determined iteratively using this
invariance condition, which can be mathematically classified as a rwo-point boundary
condition.

A very interesting fundamental property of the equilibrium cycle is that any perturbati-
on in the reload operator X (X - X'=X+06X), irrespective of its magnitude, will
propagate itself such that basically the entire equilibrium operation cycle is affected. The
only way to find the exact difference between the perturbed and the unperturbed equilibri-
um cycle is to repeat the equilibrium cycle iteration for the perturbed reload operator X’.

However, in the next few sections it is investigated in what way a variational approach
and the use of the DPT formalism discussed in section 4.2 can help in developing a
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method enabling one to rapidly predict how a reload operator perturbation will affect the
equilibrium cycle.

5.1.2 An equilibrium cycle two-point boundary condition for the adjoint fields

The two-point boundary condition (5.1) is the key formula in the iterative process of
obtaining the forward equilibrium cycle for a given cycle length. In equilibrium cycle
sensitivity analysis, a two-point boundary condition can be defined for the time-dependent
adjoint fields as well. For this, it is necessary to add the reload operation term to the
nuclide transmutation equation, such that the nuclide transmutation equation for n
different successive reload operations becomes :

2N® = (20O + D)NO -

Yo (I XN @1, XN -Nw -y G2
with &(t) defined as in Eq.(4.39). As discussed earlier, the equilibrium cycle is the limit
operation cycle that emerges when a specific refueling pattern is applied many times in
succession (so Xy™=X, for all m), with a constant cycle length between each pair of
successive reload operations. In order to derive the cyclic mode condition, we will for
simplicity assume that the time-dependent A-eigenvalues and the time-dependent flux- and
power distributions will not be significantly different from the unperturbed ones. Thus,
for the sake of temporary convenience we will omit the associated constraint equations
and Lagrange multipliers ['";, P"; and a; and regard the infinitesimal change in the value of
the reduced functional R, due to an infinitesimal change in the time-dependent nuclide
density field of the equilibrium cycle :

T-1 bt
JA
SR _[8N(t)] = <8N _(t)dt
ma[BN(O] = 3 f o) (Dt +

[

-

-1

N N
Y N { (a o, 4, +D -%]m!(t) +[2 (Xys-3y) 6HI(t)] 6'(t—Ll.)}dt ¢.3)
J

I=1 =1

1

[l
o

We note that the second term of Eq.(5.3) can be written as

1 a1

[

T

)

i=0

N N
yy u‘l(t)-{bu (Mi ll';,ﬁﬁ—%)+(X,,—6,,)6'(t—tr)}GN,(t)dt (5.4)

I=1 J=1

Using the property
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{6" (a ®, ¥, +D —%)+(Xu—6")6’(t—t.r)} -
4% (6T‘x’i "I.i*ﬁr*gi]*(xn“&u)a-(tr") 3.3

all integral terms can be shown to vanish if :

A = ) T 9 . .
oN (1) +§ {6" (GT‘D‘W"’+DT+5) * (Xn = 8)® (t_L')}H m=0 6O

For the delta type EOC response functions, defined at t=t;", we have :

dA  _ oA
N, BN (tr)

3 (t-t,) .7

Hence, the adjoint nuclide transmutation equation is

dA

3 (-t (5.8)

3 * AT » * ol -
5 (0 = - (870, 9y~ DT)N;(0) + | N; 1) R HORSS

1

One can see that actually this equation is the same as the forward depletion equation,
but with the time running backward instead of forward. Obviously, during the subsequent
’in-cycle’ intervals the adjoint equation

~ A a = i
(o%i% +D" + a)p_rl(t) =0 foralli=T-1,...0 (.9

must be satisfied. Further, one can simply derive the two-point boundary condition for the
adjoint fields by straightforward integration from t;* to t; :

dA

o * Ik t’l—‘ a * - . + - » N
Ni(tr) - Ny(t) =[5 = Ni(t) dt = NJ(tr) Yo XaNj@r) N (1) (5.10)
from which the two-point boundary condition for the adjoint fields follows :
N
Nt = Y X, Ni(ty) + —2A (5.11)
I=1 aNI(t,r )

If, like in section 4.2, we again focus on the choice of N, ,(t;) as the response quantity,
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we will (again) have

JA _ .
= 3(t-
aﬂl(t) ) » (t-tp) 5.12)

with the elements of the object §. . defined as in Eq.(4.42), and Eq.(5.11) becomes :
N
Ni(tp) = ¥ XyNj(tp) + 808, (5.13)
J=1

When the adjoint fields N'(t) satisfy Eq.(5.13) for this case, they will indicate precisely
how small perturbations in the BOC nuclide density distribution will propagate throughout
the burnup process and the successive identical reload operations. The solution N°(t) of
Eq.(5.13) can be used to calculate directly how, for example, a small variation in the feed
enrichment will propagate in the equilibrium cycle EQC fuel density distribution :

8N(t;) = (g‘(t;) 1-X |6NP> (5.14)

5.1.3 Evaluating the effects of the reload operator perturbation XX’

Substracting the forward invariance condition Eq.(5.1) for the perturbed and the
unperturbed case yields the difference equation

N N N
3N (tg) = I):; Xy SN, (t7) + J}:l 8%y (N (tr) - N, ) + If; 8X,, 8N, (t7) (5.15)

As it turns out, major problems are encountered when trying to treat changes in the
reload operator, X - X’=X+8X with cyclically solved adjoint functions. The change in
the reduced response functional can be written as :

B8, = (N'(tp) | X [3NGD ) + (N'(tp) | X |Nep) -18N, )

+ (N'(4) | 8X |8N(tp) ) (5.16)

The basic property that spoils the application of these adjoint fields is that, on the
essentially perturbed nodal positions, the contribution to the response functional difference
R’-R due to the first term in Eq.(5.16), which is forced to vanish by having the Nt
satisfy Eq.(5.13), is never the most important term in the development of R’-% ! In the
flux Generalized Perturbation Theory treated in section 4.1, we had the fortunate property
that, for modest perturbations, the expression <I"|L-(AF)|8y| > (the term that is nicely
forced to vanish) is larger in magnitude than the residual term <I|8L-8(AF)|y+0y|>.
Due to the discrete nature of X, this is not the case for the term <N'(ty)|X|N(tr)>
with respect to <N'(t;)|6X|N(tr)-1Ng>+ <N'(ty)|6X|N(ty) >, and therefore this
“first-order prediction’ term will not reliably indicate what the real perturbation will be
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like. And of course, this unfortunately also means that no setup of any converging higher-
order iterative system like described in section 4.1 will be possible.

In the next section, a new approach will be presented with which one will yet be able
to iteratively predict with reasonable accurracy how the equilibrium nuclide density
distributions at BOC and EOC are effected by a change X - X’ =X+5X.

5.1.4 Ierative determination of the perturbed nuclide density distributions

We propose the following method for predicting the effect on the equilibrium BOC
nuclide density distribution N(t,*) of the simultaneous change X™ —» X’, NNy’ in the
reload operator and the fresh fuel composition : in order to obtain the perturbation
equation we define N/'(t*) = Nity*) + ONi(t,*) as the perturbed equilibrium BOC
nuclide density distribution associated with the perturbed reload operator X’ and fresh fuel
composition Ni’. The equilibrium cycle two-point boundary condition for the perturbed
situation is

N N
N =Y XN +(1-Y XHN, 5.17)
I=1 J=1
which can also be written as :
N N
N (1) +3N (&)=Y XN, (1) + 8N, (1)1 + (1 - 1" X/) [N, + 8N ] (5.18)
I=1 J=1

After substracting Eq.(5.1) from Eq.(5.18) and application of the first-order DPT
approximation

N
SN(t)) = ¥

a1

8N (tr)
8N, (t5)

BN,(5) (5.19)

the following perturbation equation is obtained :

N N [ 8N (t)
+ - E / E J +
BNI(to ) I=1 X" { I: 6N11(to) ‘ GN)'(t(l )}

1a1

N N
+ Y 8Ky (N, () -N) + (1-Y XyyeN,  (5.20)
I=t =1

The second and third term on the right act as source terms for the perturbation effect.
For determining the sensitivities [8N,(t;')/6N,(t,*)], one can apply the DPT method
described in section 4.2. Figs.5.1a,b and 5.2a,b illustrate two examples of spatial
perturbations in the equilibrium cycle **U density field due to the application of an N-fold
octant-symmetric permutation in the trajectory representation (Eq.(2.46)) for the large

82




Chapter 5. Perturbation Theory for the Equilibrium Cycle

PWR core illustrated in Fig.2.1, predicted directly by solving Eq.(5.20) and calculated
exactly by repetition of the full equilibrium cycle iteration (with the changed reload
pattern implemented), respectively. Figs.5.1a,b and 5.2a,b are characterized by the values
N=4 and N=12, respectively.

The resemblance between the calculated spatial perturbation shapes for each N indicates
that the result obtained by the computationally efficient application of sensitivity analysis
complies very satisfactorily with the result obtained by the computationally expensive re-
execution of the equilibrium cycle iteration. The lack of any clear visual dissimilarity
between Figs.5.1a, 5.1b and Figs.5.2a, 5.2b indicates this convincingly. For the specific
case shown in Figs.5.1a,b, the highest peaks were reconstructed with a 4 % relative
deviation in the calculated density change, whereas the lower peaks featured deviations of
not more than 8 %. For the case shown in Figs.5.2a,b, these relative deviations were 5
% and 10 %, respectively. In Figures 5.3a and 5.3b, the absolute relative change
distribution divided by the maximum nodal density change is plotted for the cases shown
in Figs.5.1a,b and 5.2a,b, respectively. We note here that the magnitudes of the BOC
257 changes plotted in Figs.5.1a,b and 5.2a,b correspond to percentage changes of up to
30 % of the fresh fuel 25U-density.
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PREDICTED change in BOC U235 density (%)
EXACT change in BOC U235 density (%)

Fig.5.1a Spatial perturbation effect predic- Fig.5.1b Spatial perturbation effect predic-
ted by ’quick’ solution of ted by re-execution of the equili-
Eq.(5.17) for N=4. brium cycle iteration for N=4,
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Fig.5.2a Spatial perturbation effect predic- Fig.5.2b Spatial perturbation effect predic-
ted by ’quick’ solution of ted by re-execution of the equili-
Eq.(5.17) for N=9, brium cycle iteration for N=9,

Fig.5.3a Absolute relative change Fig.5.3b Absolute relative change
distribution for N=4 " distribution for N=9
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5.1.5 Fastening the equilibrium cycle iterations

The combined system of Eq.(5.20) and Eq.(4.21) has been applied in this study for
fastening the equilibrium cycle iterations. Firstly, of course, a full reference forward
equilibrium cycle iteration must be done, involving solving Eq.(4.1) for several successi-
ve time steps with computationally cheap depletion calculations in between and application
of reload operations at each EOC, until sufficient convergence has been achieved. After
this, all the adjoint equations must be solved systematically, using the forward equilibrium
cycle solution. In this way, the depletion sensitivity coefficients [3N,(t)/0N;-(t,*)] to be
used in Eq.(5.20) and the adjoint fields [" to be used in Eq.(4.21) are determined. When
all the sensitivity information is available, the solution of Eq.(5.20) yields a good estimate
of the change in the equilibrium cycle BOC nuclide density distribution as a result of
some perturbation to be assessed. Using the system (4.21), the neutronics equations for
the different consecutive time steps in the perturbed situation can be solved very rapidly,
with computationally cheap depletion equations in between. Basically, Eq.(5.20) simply
supplies a good initial estimate for the perturbed BOC nuclide density distribution, after
which all neutronics calculations are performed by solving the iterative system (4.21).

However, the convenient advantage of the availability of the first-order estimate
8PNgoc for dNpoc resulting from solving (5.20) is that one can almost directly estimate
the perturbed maximal power peaking factor (PPF) of the perturbed equilibrium cycle,
without even having to perform an equilibrium cycle iteration using the fast GPT system
(4.21). ’Almost directly’ means that, based on 6Nz, one neutronics calculation (either
with or without using Generalized Perturbation Theory) can be performed to estimate the
perturbed PPF. If this perturbed PPF exceeds a certain threshold value, conservatively
chosen somewhat higher than the PPF limit, further evaluation of the candidate pattern
involved can be terminated, thus further saving valuable calculation time (almost 90% of
the time needed for a GPT equilibrium cycle iteration). The best quality indication for the
fast predictive power of applying the solution of Eq.(5.20) can be found in the good
correlation between the quickly predicted perturbed PPFs and perturbed PPFs obtained by
repetition of the Equilibrium Cycle iterations. This correlation is plotted in Fig.5.4.
Application of the combined formalism represented by Eqs.(5.20) and (4.21) yields a
considerable reduction of the computational costs for the limit cycle iterations. The price
to be paid, of course, is that an extensive set of adjoint equations must be solved a few
times during the search procedure. However, the time needed for this is in the order of
only a limited number of forward reference limit cycle iterations. In the implementation
described in the next section, for example, obtaining all the required adjoint field
solutions takes about five minutes CPU-time on a DEC-a600 5/266. A high accuracy
equilibrium cycle iteration requires about 9 seconds on the same processor, and hence a
full feed enrichment iteration like described in the next section takes 9 seconds times the
number of feed enrichment iterations required. In the end, in terms of the overall
reduction in CPU-time requirements, the investment of solving the adjoint equations pays
off easily in the case of heuristic search procedures featuring evaluations of several
thousands of different candidate loading schemes. In the next sections, an example will be
given of how the formalism can be implemented in a heuristic search approach as
discussed in section 3.3. Further, the CPU-time savings due to the application of the
perturbation theory methods discussed here will be quantified for this specific example.
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Fig.5.4 Correlation between the quickly predicted perturbed PPFs and perturbed PPFs
obtained by repetition of the Equilibrium Cycle iterations

5.2 An adjusted PMA approach

Encouraged by the fact that, in principle, successive modest reload operator perturbati-
ons may set up a trajectory in the search space leading to the best regions, it was decided
to adjust the PMA approach discussed in section 3.3 such that it will be suitable for
incorporation of the GPT method treated in section 4.1. Because of the apparent necessity
of not considering too large changes in the reload operator for the iterative system (4.21)
to converge, we adjusted this search approach somewhat. In this adjusted PMA approach,
successive populations of reload patterns are generated in search processes similar to the
one described in section 3.3.1. However, the number of random permutations involved in
generating a new candidate member of the population is constrained to an upper limit,
ensuring convergence of the iterative system (4.21), and faster cooling is applied. In this
way, GPT can be applied for fast evaluation of the new population members, in the
subspace defined by the N<N,, constraint. For the case that, under this constraint, yet a
candidate be encountered yielding oscillatory divergent behaviour, an ’escape’ procedure
has been added that terminates the evaluation of this specific candidate, and initiates the
generation of a new candidate in the procedure. In this particular case, one may safely
assume that the non-convergent candidate involved inherently features high power peaking
and thus would not be fully evaluated anyway. When the annealing temperature has fallen
below a certain threshold value, the best pattern obtained sofar becomes the next referen-
ce pattern for which the new adjoint fields will be calculated, the annealing temperature is
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re-set to its initial value, and another constrained PMA search starts. This algorithm is
successively applied until no improvement is obtained in the last constrained PMA search,
which marks the end of the entire procedure.

For the large 4-batch refueled PWR core illustrated in Fig.2.1 and starting from a
fixed initial, mediocre-performing reload pattern that satisfies the power peaking con-
straint PPF<1.8, we have searched for the loading scheme associated with the lowest
required feed enrichment (FE) subject to the power peaking constraint PPF<1.8 and the
EOC constraint K.rpoc™=1. The adjusted PMA approach was applied, and the search
results are illustrated graphically in Fig.5.5, along with a projection of a randomly
generated sample on the performance plane. If the direct solution of Eq.(5.20) indicated
that PPF>1.82 for a pattern under consideration, the full evaluation of this pattern was
terminated (which happened in more than half of the cases, thus further reducing the total
time required for the search).

We should point out here that, since for each (fully evaluated) candidate pattern the
minimal required equilibrium cycle feed enrichment (MRFE) was calculated, several limit
cycle iterations had to be performed within a loop of iteratively determining MRFE
(generally from 5 up to 9). The final search resuit (that is, the reload pattern correspon-
ding to the lowest encountered MRFE subject to PPF<1.8) is plotted in Fig.5.6. The
MREFE iterations were done using the scheme :

-k
G-1) G- (FEi-l_FEi-z) (5.21)

,EOC ,BOC

FE := FE,_, +

1

In table I, some search information is listed. The CPU-times listed are valid for the
DEC-a600 5/266 processors available in our institute. We note that a significant contribu-
tion to the cumulative CPU times in the third column arise from the computational efforts
invested in solving the adjoint field equations (about 400 s for each reference pattern and
thus about 400 s at the start of each cooling process).

TABLE 1

Listing of search information ; the CPU-times are valid for a DEC-a600 5/266.

cumulative number best improved cumulative CPU cumul. CPU time
of cooling processes MRFE time (sec) with PT (sec) without PT
0 2.0677 % 0 0
1 2.0572 % 859 60000
2 2.0502 % 2392 120000
3 2.0404 % 4617 180000
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Fig.5.5 PMA search trajectory for feed enrichment for the constrained equilibrium cycle
with PPF <1.8, plotted along with the projection of a collection of randomly
generated patterns. The squares indicate the consequtive improvements.

Fig.5.6 The reload pattern corresponding to the lowest encoun-
tered MRFE (subject to PPF<1.8)
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5.3 Conclusions

We conclude that the perturbation methods described in chapters 3 and 4 are well
applicable to heuristic equilibrium cycle optimization procedures that are based on
assessing the effects of many different permutations in the loading scheme. Application of
the combined formalism represented by Eqgs.(5.20) and(4.21) yields a considerable
reduction of the computational costs for the limit cycle iterations. The price to be paid,
the necessity of solving an extensive set of adjoint equations a few times during the search
procedure, is very modest if the evaluations of several thousands of candidate schemes
can be significantly accelerated using the adjoint fields. The solution of Eq.(5.20), to be
obtained at low computational cost, generally agrees satisfactorily with the actual
perturbation in the equilibrium cycle BOC nuclide density field. Furthermore, this
solution can be directly applied in a quick, one time-step GPT neutronics calculation to
check if a newly considered reload scheme will satisfy the power peaking constraint, and
thus to save valuable CPU-time when this is not the case.
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Chapter 6

Core Design Optimization by Integration of a Fast 3-D
Nodal Code in a Heuristic Search Procedure

6.1. The Hoger Onderwijs Reactor

The Hoger Onderwijs Reactor (HOR) is a 2MWth pool-type research reactor situated at
the Interfaculty Reactor Institute in Delft, the Netherlands. Its main purpose is to serve as
a scientific facility for reactor physical experiments and to supply neutron beams for use
in neutron scattering experiments and neutron activation analysis. It contains highly
enriched MTR-type fuel elements, and features a core dimension of approximately 47 cm
X 57 cm x 60 cm. The core grid plate has 42 positions, normally loaded with fuel ele-
ments including control elements and several reflector elements, containing Be-metal, as
is indicated in Fig.6.1. The reactor is operated continuously 5 days a week. The maxi-
mum licensed excess reactivity is 6%, which requires replacement of a few elements and
reshuffling at a three-month interval. We will assume here that the reshuffling operation
consists of discharging one fuel element (sometimes, two fuel elements are discharged)
with the highest assembly-averaged burnup, followed by a permutation of a limited
number of fuel elements such that the vacancy in the core created by discharging the
highly-burnt fuel element travels to a position somewhat nearer to the central region in
the core, where it is filled with a fresh fuel element. An automated design tool is being
developed optimizing the core loading patterns for the HOR. As a black box evaluator,
the 3-D nodal code SILWER, which up to now has been used only for evaluation of pre-
determined core designs, is integrated in the core optimization procedure. SILWER
[Paratte 1996] is a part of PSI’s ELCOS computer code package and features optional
additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows
for fast and accurate evaluation of different core designs during the optimization search.
Special attention is paid to handling the input- and outputfiles for SILWER such that no
adjustment of the code itself is required for its integration in the optimization programme.
In this chapter, the optimization objective, the safety and operation constraints, as well as
the optimization procedure, are discussed.

6.1.1 Optimization objective and constraints for the HOR

In this study, we are interested in optimizing the trajectory along which the fuel element
vacancy travels to a position near or in the central region, and find the loading scheme
associated with the highest allowable value of the effective multiplication factor of the
uncontrolled core k"(BOC) (that is, the core with all control rods fully withdrawn) at
Begin-Of-Cycle. Successive maximization of k“*(BOC) for each forthcoming cycle may
lead to longer cycle lengths, or to a smaller multi-cycle-averaged number of fresh fuel
assemblies to be fed into the core. The safery constraints are the maximum core reactivity
constraint, the shutdown margin constraint and the power peaking constraint. The maxi-
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mum core reactivity constraint dictates that k.;**(BOC) at Begin-Of-Cycle should remain
below 1.06. The shutdown margin constraint requires that it should at all times be possi-
ble to shut the reactor down by inserting the two control rods with the least reactivity
worth, with the other two rods fully withdrawn. This last mentioned constraint usually
requires that a fresh fuel element be placed in the vicinity of a control rod. The power
peaking constraint (defired in section 2.4) can be derived from thermal-hydraulic
analysis. The operation constraints are first of all related to a target cycle length of about
three months, which requires a minimum core reactivity at BOC. There is also a con-
straint on k“*(EOC), which should be larger than 1.03 for compensating the equilibrium
xenon poisoning effect, the temperature effect, and the short-lived fission product buildup
effect.

6.2. SILWER : A Fast 3-D Nodal Diffusion Code

The heart of the automated design procedure consists of the fast 3-D nodal code SIL-
WER, which is a part of the LWR core analysis code system ELCOS [Paratte 1996] of
PSI (Paul Scherrer Institute, Villigen, Switzerland). As is generally known, nodal codes
are powerful tools for full core (three-dimensional) reactor calculations such as criticality,
burnup, etc. In ELCOS the modules CORCOD and SILWER are used for nodal calculati-
ons. CORCOD computes interpolation coefficients based on few-group homogenised
macroscopic cross sections prepared by the cell code SCALE. A set of subroutines called
SSLINK (SCALE_SILWER_LINK) [Leege 1997) has been developed to extend the
capabilities of the SCALE code system with the nodal method used in SILWER. These
macroscopic cross sections are generated for several independent state variables, which
can be : power density, burnup, water density, water temperature, fuel temperature, etc.
The data stored for each group comprise homogenized macroscopic cross sections (total
scattering, absorption, production and fission) as well as the fission spectrum, flux,
neutron mean velocities and the microscopic absorption cross section of **Xe. The fit
coefficients, the degrees of approximation and the interpolation coefficients are stored as
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well. The output file of CORCOD is produced once, and can be read by the SILWER
code. SILWER simulates the reactor core in steady state operation by three-dimensional
neutronic and thermal hydraulic calculations. Two different nodal diffusion modules are
available : one with polynomial expansion (multi-group, more than two) and the other
with analytical solutions (two-group) of the diffusion equation in each node. The multi-
group method is important for small reactor cores with high leakage where a two-group
treatment is not sufficient. The HOR research reactor in Delft is a typical example of
such a small high leakage core for which the module based on polynomial expansion
should be used. In the multi-group picture, a five-group approach was adopted.

6.2.1 The Automated Design Procedure

The optimization control structure is shown in Fig.6.2. The heuristic optimization shell
consists of a number of separate modules which can be used to set up a multiple cyclic
interchange [Van Geemert 1997)] search procedure. Core configurations to be evaluated
are stored compactly and can be read by the module SINFIG (Silwer Input File Genera-
tor) which then produces an input file to be read by SILWER. The files containing the
core configurations also contain data indicating what type of core calculation is to be
performed by SILWER.

INTTIAL BOC CORE

CONFIGURATION

CURRENT BOC CORE
CONFIGURATION

HOR input file for
specific calculation type reset calcul type
index to 1
1
SILWER yes
proceed with
search ? no EXIT

HOR output file for
specific calculation type

CONSTRAINT
VIOLATION ?
no

increment
calculation type index
have all necessary
no calculations been done ?

Fig.6.2 The optimization control structure.

CALL to optimi-

yes \ tion of a new BOC core
configuration
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Basically, 5 different types of calculations can be distinguished which are relevant for the
optimization process :

1 The BOC ’clean core’ calculation in which the effective multiplication factor of the
clean core is calculated, in order to check whether the BOC reactivity constraint
is satisfied. "Clean core’ means : zero power level, no xenon or short-lived fission
products present, and all control rods withdrawn.

2 Six different rod drop calculations in which all six different combinations of two
out of four control rods are fully inserted in the core with the other two rods fully
withdrawn, in order to check if for each of the six cases the shutdown margin
constraint is satisfied.

3 The criticality search calculation in which the uniform critical depth of the control
rods is determined (in the 2 MWth operational mode), yielding the nodal power
distribution and the power peaking factor, in order to check if the power peaking
constraint is satisfied.

4 The burnup calculation at a 2MWth power level, performed in a number of time
steps and aimed at calculating the EOC configuration of the core.

5 The EOC °clean core’ calculation in which the effective multiplication factor of the
clean core is calculated, in order to check whether the EOC reactivity constraint is
satisfied.

Naturally, if during the course of performing these calculations it turns out that for a
specific core configuration one of the constraints is violated, the evaluation of this specific
pattern is immediately terminated. This is realized by the program COVIMO (Constraint
Violation Monitor). The objective considered by us is to maximize k.*?(BOC) subject to
the different safety and operational constraints. If k,“(BOC) is maximal, the operation
cycle length is maximal as well, which guarantees maximal discharge burnup of the fuel
elements to be removed from the core.

6.3 Results

From the results obtained by us it turns out that, if one wishes to realize the target cycle
length of three months, it seems indeed absolutely necessary to implement a center-to-
outside loading. The constraints imposed by the physics of the problem appear in fact to
leave very little space for combinatorial freedom in adjusting the core configuration. This
is why a number of engineering constraints have been programmed which force the core
configuration to be evaluated not to differ too much from a reference core configuration
which was found to satisfy all operational and safety constraints. Within the constrained
candidate space defined by these engineering constraints, a more local search could be
performed in order to investigate whether better core configurations can be found. In
Fig.6.4, it is indicated that, when no engineering constraints are used, the probability of
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encountering worse patterns due to random permutations is much higher than the
probability of finding improved patterns. In the right, dense part of the cloud in Fig.6.4,
the results encountered in a pairwise interchange optimization (PIO) search [Van Geemert
1996] performed in this constrained candidate space are shown. The PIO procedure
indeed manages to find a slightly better core configuration in terms of the objective
function than the reference core configuration that was used in actual practice. In
Figs.6.3a and 6.3b, both the reference core configuration and the improved core configu-
rationi are shown. The different burnup levels of the fuel elements are ordered in terms of
raking numbers, starting with low burnup (1) up to the highest burnup (26). We note that
the fuel elements in the control positions R1-4 were kept fixed.

O

26 (20 | 6 [13 918 26 20 | 6 |13 |19 [18
121 [R1| 5 [R2]12 21 [R1| 5 [R2[12
14(3[1]2]10 1431|210
115 [R3| 4 [R4|17 15 |R3|4 |R4|17
25(16]7 (8|9 |24 25(16(7 |8 |9 |24
22| 1123 2 11|23 |

Fig.6.3a The reference core configuration Fig.6.3b The improved core configuration
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6.4 Conclusions

The operational and safety demands on the fuel cycle for the HOR more or less seem to
dictate that a Center-to-Outside loading should be implemented, with only very limited
combinatorial freedom allowed in choosing the core configuration. In spite of this, it has
turned out to be possible to find a slightly better core configuration by using a heuristic
search procedure than by application of a trial-and-error method. To this end, an automa-
ted design tool has been constructed in which the validated PSI nodal code SILWER is
embedded as a black box simulator in a simple heuristic optimization shell. At IRI, the
option is studied to condition the modular programs such that it will become possible to
apply the optimization procedure in the design of future transitional cores containing both
HEU (High-Enriched Uranium) and LEU (Low-Enriched Uranium) fuel elements, for
which the optimization studies may be expected to yield more improvement.
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Chapter 7

General Conclusions and Recommendations

From a practical point of view, the reloading pattern optimization problem has been
solved in the sense that heuristic procedures such as the ones presented or referred to in
this thesis are capable of producing very good and economic reloading schemes without
the necessity of inpractically large computational efforts. Perturbation theoretical techni-
ques like described in chapters 4 and 5 can be applied for achieving considerable speed-up
of the core burnup equations, thus further limiting the computational efforts or allowing
for even more elaborate searches within the same computation time. In this thesis, a study
is presented on how to use perturbation theory and heuristic search algorithms for
optimization of equilibrium cycles. From the obtained results, it can be concluded that
these formalisms and methods are very convenient tools in reload pattern design.

However, from a theoretical point of view, the reloading pattern optimization problem
has not been adequately solved at all in the sense that no optimization method (other than
the evaluation of all possibilities, which is computationally infeasible) -yet- exists which
can eventually guarantee global optimality of its final result. From this theoretical point of
view, it is to be feared that the reloading pattern optimization problem will never be
really globally solved. As indicated in chapters 1 and 3, the main difficulty arises from
the inherent property that no easily definable mathematical ordering principle exists. The
purpose of such an ordering law is basically to map the solution space such that it will
eventually consist of mathematically identifiable regions of approximately the same
objective and constraint function values. In reload pattern optimization, both the objective
and the constraint functions are known only in a very difficult, nonlinear and nonconvex
form, which makes the acquisition of higher-order gradient information very difficult if
not impossible. Actually, the perturbation methods discussed in chapters 4 and 5 do
produce direct first-order derivative information. However, due to the discrete nature of
the problem variable, the changes to be evaluated are far from infinitesimal, and generally
much too large for their effects to be evaluated by first-order approximation only.

An approach in which first-order derivative information is very useful and can actually
be used to guide the search process (although no global optimality of the final result can
be guaranteed), is provided by the mixed-integer non-linear optimization methods [Quist
1999a] that are discussed and referred to in section 1.2.4. In this approach, the reload
matrix X can be ’relaxed’ (i.e. made continuous, with 0<X,<1 instead of X;= 0 or 1)
and thus subsequent small variations of the relaxed matrix can be estimated well using
locally valid gradient information. Unfortunately however, the basic drawback of this
methodology is that it seems limited to the use of simplified core and burnup models.

Thus, due to the fact that in heuristic search algorithms the discrete nature of the
reload matrix is maintained, the first-order derivative information cannot be used to direct
the search process. Although in the perturbation-theoretical framework described in
section 4.1.2 of this thesis, a procedure emerges that can be applied for achieving higher-
order accuracy and a considerable speed-up of the reload pattern evaluations, this can not
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be used for indicating the appropriate local search direction, since this method is inherent-
ly iterative in nature. Further, generation of direct higher-order derivative information is
probably extremely complicated if not impossible since more Lagrange multipliers would
be needed and a larger number of coupled and (far) more complicated adjoint equations
would have to be solved. In spite of this, heuristic algorithms like the ones described in
this thesis have fortunately proven to be very appropriate tools for reload pattern optimi-
zation, featuring a lack of need for any gradient information, indifference with respect to
the core model complexity and a high level of robustness.

It is a generally known fact that research is never really finished. Especially in
computational research, it is never that difficult to come up with ideas and suggestions for
improving the accuracy, efficiency and validity of computational models that have been
studied. A useful (and inevitable) suggestion is to fully exploit the present-day potential of
parallel computing for boosting the speed with which the methodology described in this
thesis can be run on computers. Parallellization can be introduced in the implementations
of both the heuristic search methods and the methods for solving the generalized adjoint
equations in the GPT-formalism. Most of the heuristic search procedures described in this
thesis can be very easily parallellized, such as the local cyclic interchange and global
random chain search procedures discussed in section 3.2. Another example of an easily
parallellizable optimization procedure, obviously, is the genetic algorithm [Axmann
1997]. It is interesting to note that the simulated annealing method and the PMA algo-
rithm described in this study are inherently sequential optimization algorithms, as
annealing basically boils down to generating one single Markov search chain that is
supposed to eventually concentrate in one specific nearly-optimal cluster and end in the
best pattern therein. Naturally, the generalized adjoint equations can be solved parallelly
as well, since their number is directly proportional to the number of response (fuel) nodes
in the core system.

Further, it is always possible to enhance the degree of sophistication and accuracy of a
computational model to describe a system governed by the laws of physics, such as a
nuclear reactor. The majority of the general computational methods described in this
thesis (such as GPT) have been formulated such that they can also be applied to models
featuring for example a more advanced nodal expansion approach, more energy groups,
3-D instead of 2-D calculations, a finer mesh (allowing for the consideration of orientati-
onal degrees of freedom in the positioning of the fuel assemblies), adding thermal
hydraulics to the system equations, etc.

An interesting issue that has not been adressed in this thesis is the burnable poison
optimization problem. Burnable poisons are materials with very high absorption cross
sections that can be added to fresh, unburnt fuel assemblies in order to prevent discrepan-
cies in the spatial power distribution and to serve as instruments for long-term reactivity
control. These discrepancies can be prevented by simply designing the core configuration
such that the power distribution is relatively uniform, but the use of burnable poisons is
suspected to enhance the degrees of freedom in configuring the core while still satisfying
the power peaking constraint. In cooperation with the Operations Research group of the
Mathematics department of Delft University of Technology, some work has been done on
studying whether the fuel assembly assignment problem and the burnable poison distribu-
tion optimization problem can be solved simultaneously (and thus in an integral way)
[Quist 1999b]. Solution of the combined problem is complicated as the general variable
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becomes a composition of a discrete quantity (the fuel assembly assignment or reload
operator) and a continuously variable distribution vector indicating the concentrations of
the burnable poisons in the various fuel elements. This complexity is the basic reason why
in previous studies [Zavaljevski 1990] the two components of the problem have been
decoupled. The approach adopted by the Operations Research group is based on the
application of mixed-integer non-linear optimization solvers and a problem formulation in
which the entire hyperspace of all state variables occurring in the system equations is
treated as the solution space [Quist 1999a].

A very useful suggestion for adding an interesting search property to the stochastic
optimization algorithms discussed in this thesis is to set up a probabilistic engineering
constraint approach. In reload pattern optimization practise, the concept of engineering
constraint utilization is broadly applied [Galperin 1989, Bruggink 1994, Van Geemert
1995]. Engineering constraints generally consist of knowledgde-based rules that serve to
exclude some classes of reload patterns a priori from evaluation as candidates. As such,
they are basically used to cut off a lot of combinatoric branches in setting up the search
space, thus reducing the search space size and increasing the optimization convergence
rate. Obviously, the formulation of reliable engineering constraints requires a lot of core
design knowledge as well as some caution, since theoretically it will be possible that the
set of logical rules may actually exclude patterns that should not be excluded based on
their physical properties.

The idea of probabilistic engineering constraints is to allow the search process to
gradually teach itself about the relation between fuel age distribution and fuel cycle
performance, by simply archiving the distributions and their associated performances. For
achieving this, we propose to incorporate the idea of stochastically accepting or rejecting
mutated schemes based on their fuel age distributions. To this end, the following tempera-
ture dependent acceptance probability could be used :

- k5 -6

N . 7.1
P, (T) = De N 7-h
I=1

relating the reactivity distribution {k, ™,I=1,...,N} to the distribution of the best pattern
found sofar. T, is the annealing temperature. Naturally, the probability distribution should
feature a number of process parameters, indicated here with 8 and «, to be tuned to get
optimal search characteristics. The actual implementation of the probabilistic engineering
constraints by using random numbers and acceptance criteria can be done in conjunction
with and analogous to the method described in section 3.3.1 of this thesis.

Obviously, one will obtain the expected behaviour of the search procedure that, at the
start, no pattern will be stochastically rejected because of their fuel age distributions. As
the temperature decreases further and further however, less and less patterns which are
very dissimilar from the best patterns obtained sofar will be accepted as candidates. And
of course, the powerful property is again that the age distribution that serves as input for
the mutation can be completely different. Due to this, no undesired convergence to a
fixed distribution structure associated with a local optimum will occur.
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Appendix A

Numerical procedures for solution of the flux shape
equations and determination of internodal diffusion
probabilities

In this appendix, the numerical procedures utilized for solving the flux shape eigen-
value equations are briefly discussed. Further, the adjoint flux shape equation will be
introduced, the solution of which plays an important role in standard perturbation
theory and in solving the generalized adjoint flux shape equations discussed in
chapter 4. Finally, the method used for numerical determination of the internodal
diffusion probabilities for use in the kernel equation (2.39) is presented.

A.1. Numerical solution of the two-dimensional 1%-group diffusion equation for a qua-

drant core system

As discussed in chapter 2, the 1%4-group diffusion eigenvalue equation is :

- YD, (0 ¥, (@) + (E,(0) + Z,(0)) 6, (1) = A vEL(D) ¢(D) (a-1)

In the 1%-group diffusion approxi-
mation, the thermal flux distribution
follows from ¢,=E,.,/E,¢,. This
eigenvalue equation must be solved
numerically for a two-dimensional
quadrant core region such as the one
depicted in Fig.A.l, in which each
square node in the core region repre-
sents a fuel element position. Basi-
cally, each node has its own node-
averaged material properties D,, L,;,
L2, Liws VvEn and vI, which are
assumed homogeneous. It is assumed
that the fuel loading, and thus the

@ —

m &)}

Y

@
Fig.A.1 Quadrant core region

flux distribution in the system, is quadrant-symmetric. The numerical implementation
adopted by us is such that each node consists of 10> meshpoints, so the system depicted in
Fig.A.1 corresponds to a mesh field containing 1307 meshpoints. In a two-dimensional
geometry, the 1%2-group diffusion lambda eigenvalue equation can be written as :

-D, (x,y)

Fo,(x,y) . & d,(x,y) .

ax? dy?

(Zu(xy) + Z,,(x,y)) ¢, (x,y)
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= A vIp(x,y)9,(x,y) (A-2)

The central difference formula can be used to approximate :

(aﬁ_t] - B 2 (A-3)
ax ey (Ax)
(_32 4; ] L B2 %2* 1501 (A-4)
9" Ly, (Ay)
Using these expressions at the meshpoints (x;,y;), it is found that
- h[(‘h innj T OLim1g) T @500 Dy ij—l)]
(Ax)? o ’ o T
2t 12 *2D1, L. L dyij
RH »1,) »1.) (AX)Z) (Ay)Z AN
= A vEg b, (A-5)
For boundaries (3) and (4) the following boundary conditions must be obeyed :
d’i,N =0, ¢N.j =0 , (A-6)

and for boundaries (1) and (2) the ’reflected’ boundary conditions must be implemented :
¢, = ¢z,j » b = b (A-7)

In the two-dimensional mesh, the mesh points (i,j) can be labelled as : (i,j) = k(,j)
with k(i,j) = i+(-1) Ny, with N, the number of meshpoints in the x- and y-direction
(in our case, N,.,=130). Eventually, the system of equations can be written in matrix
form as :

(L-AF)-¢ =0 (A-8)

This eigenvalue equation features a large number of eigenvalues A, and corresponding
eigenvectors or "modes” ¢,. Thus, basically, the diffusion eigenvalue equation should be
written as :
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(L-2,F):¢ =0 (A-9)

The eigenvalues are ordered such that |Ag| < |A| <|X;| S |As] <... . For the purpose
of the work described in this thesis, we focus on how to obtain the fundamental mode,
which is the mode corresponding to the smallest eigenvalue A,. We note here that, physi-
cally, Ao=1/k, with k. the effective multiplication factor of the system. We also stress
beforehand the fact that all the different modes are orthogonal, i.e. <g,|d,>=0 if
n#m. In the finite difference picture, the inner product <¢,|¢,> is defined as :

(4,10,) = X, X, 67 ¢ (A-10)

The iterative procedure is generally started with an initial "guess" for the spatial
neutron flux distribution ¢,*™. This "guess” will usually not equal the fundamental spatial
mode &, and, therefore, $,“™" can theoretically be approximated retrospectively as a
weighted sum of all spatial modes. Especially for large dimensions of A, F and ¢, such as
is the case here (dim{A}=130*dim{F}=130* and dim{¢}=130%), this theoretical series
expansion will almost perfectly match ¢, :

o = ¥ . (A-11)

i=0

In solving the eigenvalue equation iteratively, obtaining the fundamental solution
corresponding to the smallest value of A (and, thus, the largest value of k), the physical
picture of simulating the nuclear chain reaction is adopted. In this method, successive
neutron flux "generations" are calculated from their preceding generations, and the total
neutron flux generations are kept stationary in an artificial way, by stepwise renormalisati-
on of the total core power level. This implies that a distinction can be made between
*inner’ and ’outer’ iterations. In the inner iterative procedure, the solution is found of the
equation

L .g!gm*l) =F .an) (A-12)
with ¢,™*? the neutron flux ’generation’ succeeding ¢,™. In order to solve this equation,

one must realize that F is a diagonal matrix, but L is not. However, L can be written as
the sum of its diagonal part L, and non-diagonal part Ly, :

(LD + LND)'Q:,W” = F-an) (A-13)
Thus, Eq.(A-12) can be solved in the following iterative way :
+ + -1 +1),i -
ng D+l _ L; ( F'dlgm) - LNDng 1),1) (A-14)

with ¢,™* the i* iterand for ¢,™*". This inner iteration procedure can be terminated if
the convergence criterion
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I%m*l),hll - nﬁ(()m*l),li
abs
g+

i satisfied. Subsequently, the ¢,™*" is normalized such that the total power level con-
straint is obeyed :

¢'()m+l) .=

(A-15)

seﬁmu

P, @enin
mel)iv (A-16)
we (2 14gm Y &

Finally, it is checked if

(m+l)y _ (m+l)||
] 19500 - 180N ]

(A-17)
16

€ uter *

If not, the value of m is incremented, and Eq.(A-12) is solved again until satisfactory
convergence in the outer iteration procedure has been achieved. The eigenvalue \, follows

from
Ao = %ngd) ILQ:EM;f (A-18)
Qam‘l) I F Qom#

Several acceleration mechanisms [Duderstadt 1976] exist which can be implemented for
achieving considerable speed-up of the convergence processes, for both the inner and the
outer iterations. Well-known examples are the successive overrelaxation (SOR) method for
acceleration of the inner iterations and the source extrapolation method for acceleration of
the outer iterations, both of which have been implemented in the software developed in
this study.

In analogous iterative procedures, each of the higher modes ¢, could be obtained by
adding a filtering operation prior to each outer iteration m. In this filtering operation, all
components present in ¢, of the modes ¢;,6,,9,,...,8,., are removed from b, :

Fﬂt{ﬂ!im)} ,,,Q(nm) _ E ciQi with ¢ = <¢. Ishim)> (A-19)

i=0

Thus eventually, since ¢, is the mode corresponding to the smallest eigenvalue A\, of
the subset {A\,,A\,,;,Au;2,...}, this procedure yields ¢, as the dominant mode in the subset
{Sa:8a+1Pas2,-+.}. Basically, the filtering procedure simply ensures that each of the outer
iterates ¢, is orthogonal to each of the lower modes ¢, 0,,,,...,6,,. The same procedu-
res as described above could also be applied to obtain the eigenset {\S,8.5n=0,1,2,...}
of the adjoint flux shape A-eigenvalue equation :
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(L*-2,F )¢ =0 (A-20)

Generally, \*,=A,. The fundamental adjoint flux shape &, is a very important quantity in
the field of generalized perturbation theory (see chapter 4). The basic reason for this is the
validity of a mathematical orthogonality property which can be proved in the following

way : after premultiplication of Eq.(A-9) with A;", recalling the commutativity property
<¢,'|Ld,>=<L'¢, |$.> and employing Eq.(A-20), we obtain

Ao (L 1F8) =2, (4 |F8,) (a-21)

Hence, since A, A, if m#n, the inner product <g¢,'|F¢,> should vanish for the case
m#n. Thus, the validity of the property

<¢; |F¢n> =c, 8, (A-22)

has been established. The physical significance of this property is that, if some adjoint
flux shape I is to be orthogonal to the fission rate distribution Fdy, it should not contain
any component of ¢,’, i.€., it should be orthogonal to ¢,". This is usually effected by the
filtering operation

" |F
r':=r - g—‘—%—) sh; (A-23)
(417 4,)
Another convenient application of the fundamental adjoint flux shape is in a straightfor-

ward mathematical expression for the efficient calculation of the perturbation S\ in the
eigenvalue due to a perturbation in the operators L and F :

51 - (QS | 8L - ASF | gb_’“> (A-24)
(95 1F &)

When writing numerical procedures for solving the eigensystem, it is important to
realize that the matrices L and F are very sparse, that is, most of the matrix elements are
zero. In the case of the matrix F we are even dealing with a diagonal matrix in which all
matrix elements off the diagonal are zero. In the diffusion matrix L, a meshpoint is
directly coupled only with itself and (in the two-dimensional case) with its four nearest
neighbours, such as indicated in Fig.2.2. Therefore, for each meshpoint (i,j) in the two-
dimensional mesh, only diffusion coupling indicators are necessary. This means that the
large sparse matrix L with dim{L}=130* can be compressed to the compact object L with
dim{L}=130%-5. The element (L-¢);; can be obtained as follows :

(Lod), = Xy L@y = Lijabiony * Lija G * Liga b
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* i'i.jA bijor * fq,j,s b ; (A-25)

Since the adjoint matrix L’ can be defined by ‘

Lt = Ly (A-26)
the element (L’- ¢);; can be obtained by application of
(L..Q)l.j = 1jt L,f’j/;i,j ‘bil’j/ = f‘i-l,j,:! ¢i—1,j + f‘i'el,j,l d)i*l,j + f‘i,j-l,z ¢i,j—1
+ f‘i,j+1,4 ¢1,j+1 + I:i’“ o; ; (A-27)

The splendid computational power of the kernel method introduced in chapter 2 arises
not only from the fantastic reduction of the dimensions of the system matrices, but also
from the fact that, in the kernel equation, L is diagonal instead of F, due to which no
inner iterations are needed. The adjoint kernel equation is characterized mathematically by
a simple exchange of the indices I and J with respect to the 'normal’ kernel equation :

ER,I¢I‘ = A E:‘., PHVEF,I¢;

A.2 Solving the generalized adjoint flux shape equation

The equation to be solved here is
(L"AOF‘)'E' - Qt (A-28)

with A, and Q" known (as well as, of course, L" and F). This equation is a fixed source
equation with the peculiarity that the operator on the left side is singular. We hereby
recall that, when the criticality calculations are based on A-reset processes, the solution '
of Eq.(A-28) must satisfy the orthogonality requirement

(T IF,) = 0 (A-29)

in conformity with what is argued on page 64 in chapter 4.

In developing the iterative solution procedure for the finite difference treatment of
Eq.(A-28), we have to cope with the unfortunate property in the finite difference treatment
of the adjoint diffusion operator L’ that it is not a diagonal matrix, and should therefore
be split into its diagonal part Ly, and non-diagonal part Ly, matrix. After writing L* as the
sum of its diagonal part and its non-diagonal part, Eq.(A-28) can be rewritten as :

r=L! (Q" + (A F*" - L) I ) (A-30)
Thus, the iterative scheme to be adopted in case of a finite difference treatment is :
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L, =Ly (Q + (&F - L) L") (A-31)
In the case of the nodal kernel approach, the operator L will be diagonal, so Lyp=0.

The orthogonality requirement (A-29), combined with the general orthogonality relation
(A-22), requires that " has no component of the fundamental adjoint mode ¢, (in the
case that the criticality calculations are based on A-reset processes). Therefore, prior to
each iterative step i, a filtering operation is to be applied in which the component of the
mode &, is removed from ['; :

Filt{T;} =T - ¢, With ¢, = (4 Juy (A-32)

Naturally, the iteration can be terminated when a certain convergence criterion is satisfied,
for example :

IIIIi! - Ilnl—l" <e. (A.33)
[

abs

A.3 Numerical determination of the internodal diffusion kernel coupling coefficients.

As derived in chapter 2, the formal mathematical expression of the internodal coupling
coefficients Ty, occurring in the kernel is

[, [, st e @

'\ —— (A.34)
[, diera
with G(z,r’) the Green’s function or kernel satisfying
[-¥'D, (D YG(L,L) + B, (1) + By, ]Gxr) = 8-1) (A-35)

In the nodal mesh field picture depicted in Fig.A.1, Ty can be calculated numerically as

E(i,j)el E(k.l)el Gi»j;k.l d)kl (A-36)
E(i.j)el ¢ij

Ty, =

with the numerical kernel G; defined as the solution of
LG =0 (A-37)
i, i.j

which can be written in more numerical detail as the solution of
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1, (k1) =G.j) )
E/’j/ Lk.l;i’,j’Gi’.j’;k,l = 5k,m,j = {0 otherwise (A-38)
In the iterative solution algorithm for Eq.(A-38), we have to cope with the unfortunate
property in the finite difference treatment of the adjoint diffusion operator L' that it is not
a diagonal matrix, and should therefore be split into its diagonal part Ly, and non-diagonal
part Ly, matrix. After writing L" as the sum of its diagonal part and its non-diagonal part,
Eq.(A-28) can be rewritten as :

(i+1) ._ b _ Welo)] -
Gy Lo (Qu' Lw Gy ) (A-39)
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Appendix B

A few comments on the compact inner product
notations used in chapters 4 and 5

In the chapters 4 and 5, the nature of the equations, their detailed
contents and the nature of the results of the defined inner products are
generally not mentioned strictly or explicitly, though the surrounding text
does describe what these equations and inner products represent. In this
appendix, a few examples of the most important types of these equations
and compact inner product notations will be treated in more detail, in
order to give a more elaborate picture of their actual contents.

B.1 A few notes on the most important types of compact equations and inner
product notations

For the sake of simplicity and convenience, the equations and inner products in the
chapters 4 and 5, relating different vectors and matrices, have been written in a rather
compact way, such that the actual contents of the various equations is not revealed or
highlighted in too much detail. This serves to indicate the generality of the presented
formalisms -that is, to show that the general mathematical shape of the equations is more
essential than their small-scale details. Further, this helps to prevent the distracting
presence of an abundant amount of summation symbols and indices in the equations and
definitions. In this appendix, a few examples of the most important types of compact
inner product notations adopted in chapters 4 and 5 will be mentioned and analysed in
more detail.

The most important point that should be indicated here is that an implicit product in the
nuclide type space occurs when the operators ¢ and D occur in combination with the
nuclide density field N(t). A good example is Eq.(4.22) :

2 N0 - (30 uw + D)N® (4.22)

which is a compact way of writing

3 (nn)

SN = @ORO T (Tgqr* Dog) Nig(® (B.1)
q'=1

for all fuel nodes I and nuclide types q (We note that the subscript qq’ serves to indicates
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processes in which nuclide type q’ is converted into nuclide type q). With this information
it is not very difficult to write the full expression for the product <N'(t)|sy¥:.N(t)>,
appearing in Eq.(4.27) :

N (on) (an)
(O] sy, ND) =Y v, ¥ N () ¥ 0, /Ni(t) 4.27)
1-1 q=1 q'=1

Apparently, this inner product yields a scalar. However, there are cases (notably when
the nuclide density distribution is missing in the ket of the inner product, and the implicit
product in the nuclide type space is absent) when the inner product can actually be a
vector. For example, <I\"|(dF;/dN,)y;>, appearing in Eq.(4.34), can be written in more
detail as

aFfy
N,
oF, NN oRY NN 5
Olog &)=Yy ~ 2y, -y, v ®-2
<’ oN, '> oM H aN® i 12:: l'lJZ; . H
JFyy
aN

(nn),I

In Eq.(4.34), this vector is used in an explicit product with the perturbation in the nuclide
density distribution for time step i, 8N;, in order to obtain a scalar term contributing to
the scalar change §R[SN(t)] in the response functional value,
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1. List of most important symbols

| | unity operator

1 vector containing nothing but unity elements

a Lagrange multiplier with respect to flux normalization
A response quantity (dimension : not fixed)

B transmutation operator (s)

C, fourier coefficient corresponding to n™ eigenstate

D decay matrix (s')

D’ transposed decay matrix (s)

D, diffusion coefficient for the fast group (cm)

D, diffusion coefficient for the thermal group (cm)

Dyy degree of dissimilarity for two patterns X and Y

F(x) general notation for a function with vector x (dimension : not fixed)
fim power peaking factor limit

F neutron production matrix (cm™)

F adjoint neutron production matrix (cm™)

G(r-r’) diffusion kernel or Green’s function (cm?)

Hc reactor core height (cm)

Hi(®) reference pattern i (trajectory notation)

€19 node I, nuclide type q

I neutron current density (cm?2s™)

k, node-averaged infinite multiplication factor of node I
ke effective multiplication factor

kg Boltzmann’s constant (J K'')

L neutron loss matrix (cm™)

L’ adjoint neutron loss matrix (cm'")

L, diagonal part of neutron loss matrix (cm™)

| non-diagonal part of neutron loss matrix (cm™)

& search chain length

N number of fuel elements in the system

N(r,t) space- and time-dependent nuclide density vector (cm™)
Ne nuclide density vector for fresh fuel element (cm™)
N() time-dependent nuclide density distribution (cm)
N'(t) adjoint nuclide density distribution (dimension : not fixed)
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n number of fuel age groups or fuel batches

(nn) number of nuclides under consideration

N number of fuel elements involved in a permutation

p power peaking factor

P* adjoint power normalization factor (dimension : not fixed)

P(N) probability that N fuel elements are involved in the permutation

P, node-averaged power density in node I (W cm™)

pe n-fold permutator

P, probability that pattern m is selected in PMA

Q° adjoint source (dimension : not fixed)

r spatial position vector (cm)

I i® random number

/4 response functional (dimension : not fixed)

Reea reduced response functional (dimension : not fixed)

S sensitivity matrix (dimension : not fixed)

t time (s)

At duration with time interval (s)

T; annealing temperature for i" step of the annealing process

T, initial annealing temperature

Ty coupling coefficient that couples the node-averaged neutron flux in
node J to the node-averaged neutron flux in node I.

tr t : t?t; (time moment infinitesimally prior to t;) (s)

trt t : t¥t; (time moment infinitesimally after to t;) (s)

U number of possible reload operations

\Z fast group neutron velocity (cm s)

\2 thermal group neutron velocity (cm s™)

W energy released per fission (J)

X reload operator or matrix

Xy element of reload matrix (see definition on page 30)

Zy objective function value associated with reload pattern m (dimension :
not fixed)

Greek
cooling parameter

™ generalized adjoint flux (solution of Eqs.(4.9),(4.30)) (dimension : not
fixed)

Yq yield factor from fission for nuclide q
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o(r-r’) spatial delta function representing a unit point source at r’ (cm™)
o(t-t) special time delta function selecting function values at t1t, shH
9 Kronecker delta (see Eq.(4.40))

€ convergence criterion

Cn penalty function value associated with reload pattern m

A lambda eigenvalue (reciprocal of k)

Ay time-decay factor for nuclide q (s*)

v neutron multiplication factor

i microscopic absorption cross sections matrix (cm?)

o transposed microscopic absorption cross sections matrix (cm?)

Oal microscopic absorption cross section for the fast group (cm?)

O microscopic absorption cross section for the thermal group (cm?)

oy microscopic fission cross section for the fast group (cm?)

Op microscopic fission cross section for the thermal group (cm?)

01 microscopic scattering cross section for downscattering from the fast

group to the thermal group (cm?)

L macroscopic absorption cross section for the fast group (cm™)

Lo macroscopic absorption cross section for the thermal group (cm™)

Ta macroscopic fission cross section for the fast group (cm™)

Z, macroscopic fission cross section for the thermal group (cm™)

L macroscopic scattering cross section for downscattering from the fast
group to the thermal group (cm™)

d power normalization factor (dimension : not fixed)

¢(r,E, ) energy-, space- and time dependent neutron flux (cms™)

¢, fast neutron flux (cm?s™)

¢, thermal neutron flux (cm?s™")

¥ normalized neutron flux

¢ adjoint flux (solution of Eq.(4.11)) (cm™s™)

I1. List of abbreviations

MMAm Americium-241

BOC Begin of Cycle

BP Burnable Poison

BWR Boiling Water Reactor
COL Centre-to-Outside Loading

CORCOD Correlation Code
COVIMO Constraint Violation Monitor
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CPU
DEC
DPT
ELCOS
EOC
FE

241Pu
242Pu
PWR
SA
SCALE
SILWER
SINFIG
149Sm
SOR
SSLINK
135’1"e
235U

238U

Central Processing Unit

Digital Equipment Corporation (TM)
Depletion Perturbation Theory

Eir LWR Code System (Eir : former name of PSI)
End of Cycle

Feed Enrichment

Genetic Algorithms

Generalized Perturbation Theory
High-Enriched Uranium

Hoger Onderwijs Reactor
Iodium-135

Interfaculty Reactor Institute
Low-Enriched Uranium

Light Water Cooled Reactor
Maximum Critical Heat Flux Ratio
Maximum Critical Power Ratio
Minimal Required Feed Enrichment
Nodal Expansion Method
Outside-to-Center Loading

Pairwise Interchange Optimization
Population Mutation Annealing
Power Peaking Constraint

Power Peaking Factor

Paul Scherrer Institute (Switzerland)
Perturbation Theory

Plutonium-239

Plutonium-240

Plutonium-241

Plutonium-242

Pressurized Water Reactor
Simulated Annealing

Standardized Computer Analysis for Licensing Evaluation
LWR Simulation Code

SILWER input file generator
Samarium-149

Successive Overrelaxation
SCALE-SILWER-LINK
Tellurium-135

Uranium-235

Uranium-238
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Summary

A nuclear reactor core generally consists of a population of nuclear fuel elements that
can be divided into fuel age or burnup level groups. At the end of the core operation
cycle (which normally lasts from 12 up to 18 months), the oldest group is discharged
from the core, and the remaining fuel elements are given a new position in the core grid.
After this, the remaining vacant positions are filled with new, unburnt fuel elements. This
is the description of a process generally referred to as reloading, and a popular name for
the fuel element assignment scheme is reload patrern. The work described in this thesis
has been aimed at the development of calculational methods for optimization of reload
patterns for batch-refuelled nuclear reactors.

Basically, the goal has been the methods development for an algorithm that is efficient,
flexible with respect to the choice of the objective function, capable of supplying the user
with a very well performing reload scheme and not requiring enormous computational
efforts. In the work that has been done, two important research subjects can be distinguis-
hed :

1) The development and application of a number of heuristic search strategies capable of
generating high-quality candidate patterns with limited computational effort and relatively
insensitive to the lack of an easily definable mathematical ordering principle for reload
patterns. These strategies generally comply with the "Multiple Cyclic Interchange’ search
concept, according to which the hunt for the best reload pattern can be divided into
multiple stages. The transition from the initial stage to the final stage is characterized by
an increase in the degree of locality in the search procedure. The general idea is that,
during the first stages, the "elite" cluster of the best candidates must be identified, after
which the solution space can be sampled more and more locally in order to locate the best
pattern in this cluster. The transition from ’global’ to ’local’ search behaviour can be
either prompt, by defining strictly separated search regimes, or gradual by introducing
stochastic acceptance tests.

Application of the heuristic search methods as described here allows for a black box
approach in which gradient information is not required, and in which the system equations
governing the behaviour of the reactor core system do not have to be implemented in the
optimization procedure. In these search procedures, the system equations are simply
isolated in an external simulator module which generally simply returns the objective
function value and informs the optimization shell whether or not any reactor physics
constraints are violated.

From the results obtained in this study, it can be concluded that the proposed search
procedures are indeed relatively insensitive to the lack of a well-defined ordering
principle for reload operators, and therefore constitute a reliable and robust method for
finding high-quality reload patterns for a reactor core.

It should be noted that none of the heuristic search procedures is capable of guarantee-
ing global optimality and, in general, the patterns produced by these procedures are
unlikely to be the global optimum. However, the results of different types of these
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heuristic search procedures seem to indicate that the solution space contains elite ’fami-
lies’ of patterns which are all very close to one another in terms of their (top) performan-
ces, though they may be very dissimilar in terms of the fuel assignments in the core. In
other words, it is suspected that the optimum is quite 'flat’, due to which the (theoretical-
ly present but untrackable) global optimum is not expected to be more than only margin-
ally superior to the best result of the heuristic search algorithms.

2) The other important part of this study has been dedicated to the development and
implementation of a general higher-order perturbation theoretical formalism for realizing
the availability of higher-order gradient information. Especially for large reactor cores,
the use of perturbation theory is absolutely necessary if one wants to evaluate the effects
of thousands of fuel element permutations within a practical calculational time frame. For
fast evaluation of a new reload pattern, this pattern can be split into the original, unper-
turbed reference reload pattern and the perturbation in the reference pattern which yields
this new pattern. A variational technique, in which Lagrange multipliers are utilized, can
be applied for calculating the first-order estimate of the perturbation effect on any
response quantity of interest. Explicit consideration of the higher-order terms in the
development of the response functional results in a very rapidly-converging iterative
scheme with which an accurate, higher-order estimate of the perturbation effect in the
response quantity can be obtained within very short CPU-time. In addition, a Depletion
Perturbation Theoretical (DPT) formalism has been implemented with which burmup
sensitivity information can be generated for first-order accurate calculation of the change
in the End-Of-Cycle nuclide density distribution due to a change in the Begin-Of-Cycle
nuclide density distribution.

In particular, it has been studied how the first-order gradient information can be
utilized in fuel management optimization for the cyclic mode or equilibrium cycle. For the
application of perturbation theory in equilibrium cycle reload pattern optimization, it is
necessary to consider perturbations in the most abstract equilibrium cycle parameter,
which is the reload pattern itself. In this, it is very important to realize that, for the cyclic
mode, a permutation in the reload scheme perturbs the entire time-dependent nuclide
density field in the core. From the mathematical reload operation invariance condition,
very rapidly converging iterative schemes have been developed (incorporating the DPT
sensitivity information) with which the perturbed equilibrium cycle solutions could be
reconstructed very well and within relatively short cPU-time.

Further, an automated design tool has been developed for the Hoger Onderwijs Reactor
(HOR) in Delft, the Netherlands. As a black box evaluator, the 3-D nodal code SILWER,
previously used only for evaluation of pre-determined core designs, was integrated in the
core optimization procedure. SILWER is a part of the Swiss Paul Scherrer Institute’s
ELCOS package and features optional additional thermal-hydraulic, control rods and
xenon poisoning calculations. This allowed for relatively fast and accurate evaluation of
different core designs during the optimization search. Special attention has been paid to
handling the input- and outputfiles for SILWER such that hardly any adjustment of the
code itself was required for its integration in the optimization programme.
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Samenvatting

Een reactorkern is in het algemeen opgebouwd uit een populatie van splijtstofelementen
die verdeeld kan worden in leeftijds- ofwel opbrandgroepen. Aan het einde van de reactor-
bedrijfscyclus (normaliter 12 2 18 maanden) wordt de oudste groep uit de kern verwijderd,
waarna de overige splijtstofelementen een nieuwe positie in het kernrooster krijgen. De dan
overblijvende vacatures worden met verse, nog ongebruikte splijtstofelementen gevuld. De
handeling van het (her)rangschikken wordt herladen genoemd, en een populaire benaming
voor het splijtstofelementtoewijzingsschema is herlaadpatroon.

Het werk beschreven in dit proefschrift is gericht geweest op de ontwikkeling van reken-
methoden voor optimalisatie van herlaadpatronen voor lichtwaterreactoren. De te
ontwikkelingen zoekalgoritmen dienden efficiént en flexibel met betrekking tot de doelfunctie-
keuze te zijn, en in staat om voor de gebruiker een zeer goed herlaadpatroon te genereren
zonder daarbij van extreme rekenkracht gebruik te moeten maken. De kern van het
onderzoek is te onderscheiden geweest in de volgende zwaartepunten :

1) De ontwikkeling en toepassing van enkele alternatieve heuristische zoekstrategieén die
in staat zijn binnen beperkte hoeveelheden rekentijd kandidaatpatronen van hoge kwaliteit te
genereren en die relatief ongevoelig zijn voor de afwezigheid van een mathematisch
definieerbaar ordeningsprincipe voor de herlaadpatronen. Het belangrijkste voorbeeld hiervan
is het zogenaamde 'Multiple Cyclic Interchange’ concept, waarin de jacht op het beste
herlaadpatroon verdeeld kan worden gedacht in meerdere fasen. De overgang van de startfase
naar de eindfase wordt gekenmerkt door een toename in de mate van lokaliteit in de
zoekprocedure. Het algemene idee is dat, gedurende de eerste fasen, het "elite” cluster van
beste kandidaten moet worden geidentificeerd, waarna de oplossingsruimte steeds lokaler
wordt afgezocht om in dit cluster het beste patroon te vinden. De overgang van ’globaal’
zoekgedrag naar ’lokaal’ zoekgedrag kan prompt zijn, door de definitie van strikt gescheiden
zoekregimes, of geleidelijk door de introductie van stochastische acceptatietests.
Toepassing van de heuristische zoekalgoritmen zoals beschreven in dit proefschrift staat
een black box benadering toe waarin gradientinformatie niet vereist is, en waarin de
systeemverge- lijkingen die het gedrag van de reactorkern dicteren niet in de optimalisatie
procedure geimplementeerd hoeven worden. De systeemvergelijkingen zijn geisoleerd in een
externe simulator module die in het algemeen simpelweg de doelfunctiewaarde van het te
beschouwen patroon geeft en de optimalisatie-shell informeert over eventuele schending van
veiligheids- of bedrijfsconstraints. Gezien de resultaten verkregen in deze studie kan
geconcludeerd worden dat de voorgestelde zoekprocedures inderdaad relatief ongevoelig zijn
voor de afwezigheid van een goedgedefinieerde ordeningswetmatigheid en daarom een
betrouwbare en robuuste methode representeren voor het vinden van goede herlaadpatronen.
Het moet opgemerkt worden dat geen van de heuristische zoekprocedures in staat is
globale optimaliteit te garanderen and dat in het algemeen de patronen die door deze
procedures worden gegenereerd worden niet het globale optimum zullen zijn. Echter de
resultaten van verschillende typen zoekprocedures lijken aan te duiden dat de zoekruimte
*elite families’ in zich heeft die elkaar in doelfunctiewaarde erg dicht benaderen hoewel zij,
wat betreft de ruimtelijke splijtstofburnupverdeling, behoorlijk verschillend kunnen zijn. Met
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andere woorden, we vermoeden dat het optimum tamelijk 'vlak’ is. Hierdoor zal ver-
wachtingsgewijs het (theoretisch aanwezige maar praktisch niet localiseerbare) globale
optimum niet meer dan slechts marginaal beter zijn dan het beste resultaat van het beste
zoekalgoritme.

2)  Het andere belangrijke deel van het onderzoek is gericht geweest op de ontwikkeling
en toepassing van een algemeen hogere-orde verstoringstheoretisch formalisme om de
beschikbaar- heid van hogere-orde gradiéntinformatie te realiseren. In het bijzonder voor
grote reactorkernen is het gebruik van verstoringstheorie absoluut noodzakelijk indien men
de effecten van duizenden splijtstofelementpermutaties wil berekenen binnen normale
rekentijdproporties. Voor snelle evaluatie van een nieuw te onderzoeken herlaadpatroon kan
dit patroon worden gesplitst in het originele, onverstoorde referentiepatroon en de verstoring
in het referentiepatroon die het nieuwe patroon oplevert. Een variationele techniek, waarin
gebruikt wordt gemaakt van Lagrange multiplicatoren, kan dan worden toegepast voor eerste
orde schatting van het effect van de verstoring op een willekeurige te beschouwen respons-
grootheid. De theorie waarop de variationele techniek is gebaseerd worden in het algemeen
aangeduid met gegeneraliseerde verstoringstheorie. Expliciete beschouwing van de hogere-
orde termen in de ontwikkeling van de responsfunctionaal resulteert in een zeer snel conver-
gerend iteratief schema met behulp waarvan een nauwkeurige, hogere-orde schatting van het
verstoringseffect in de responsgrootheid kan worden verkregen binnen zeer korte rekentijd.

In het bijzonder is bekeken hoe de eerste-orde gradiéntinformatie kan worden gebruikt in
fuel management optimalisatie voor de cyclische mode ofwel evenwichtscyclus. De even-
wichtscyclus geassocieerd met een herlaadpatroon is gedefinieerd als de limiet bedrijfscyclus
die uiteindelijk tevoorschijn komt na meerdere successievelijke implementaties van hetzelfde
herlaadpatroon. De interesse voor de evenwichtscyclus stamt voort uit het idee dat, daar
splijtstofeconomie een multicycli-aangelegenheid is, herlaadschema’s het best te evalueren
zijn door te kijken naar het gedrag waartoe ze aanleiding geven in het geval van een even-
wichtscyclus. Voor toepassing van verstoringstheorie in evenwichtscyclusoptimalisatie is het
noodzakelijk om verstoringen te beschouwen in de meest abstracte evenwichtscycluspara-
meter, namelijk het herlaadpatroon zelf. Hierbij is het van belang te bedenken dat een
permutatie in het herlaadschema het gehele nuclidendichthedenveld in de reactorkern ver-
stoort. Gedurende dit onderzoek zijn vanuit de mathematische herlaadoperatie-invariantie-
conditiec met behulp van verstoringstheoretische benaderingen zeer snel convergerende
iteratieve stelsels ontwikkeld waarmee de verstoorde evenwichtsoplossingen heel goed en
binnen korte tijd kunnen worden gereconstrueerd.

Verder is géwerktaan een geautomatiseerde ontwerptool voor de Hoger Onderwijs Reactor
(HOR) te Delft, Nederland. Als ’black box’ evaluator is de gevalideerde 3D-nodale diffu-
siecode SILWER toegepast. SILWER is een deel van het ELCOS pakket van het Zwitserse
Paul Scherrer Instituut (PSI) en biedt opties om thermo-hydraulische, regelstaaf-en xenon-
gifberekeningen te doen. Met SILWER kunnen relatief snelle en nauwkeurige evaluaties
worden gedaan van verschillende kernontwerpen gedurende de optimalisatieprocedure. In het
construeren van de ontwerptool is speciale aandacht geschonken aan het omgaan met input-
en outputfiles zodanig dat de code zelf voor integratie in de optimalisatieroutine niet hoefde
worden aangepast.
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