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On Gamma Ray Shielding and Neutron Streaming Through Ducts

1. Het argument dat Monte Carlo codes bruikbaar zijn voor ingewikkelde
drie-dimensionale geometrieén, wordt teniet gedaan door het feit dat
de benodigde rekentijd excessief toeneemt met de complexiteit van de
gemodelleerde geometrie.

2. De benaming ”importantie” in Monte Carlo theorie voor de verwachte
detectorbijdrage van een deeltje dat een botsing ingaat of een botsing
uitkomt, wekt verwarring en kan derhalve beter worden vermeden.

3. Bij het gebruik van Monte Carlo methoden voor afschermingsberekenin-
gen dient de uitkomst niet alleen vergezeld te gaan van de standaarddevi-
atie, maar tevens van de mededeling dat de vermelde standaarddeviatie
alleen ten gevolge van het Monte Carlo proces is.

4. De nauwkeurigheid van een reactorfysisch codepakket volgt uit de eind-
resultaten van zogenoemde “benchmark”-berekeningen. Om de kun-
digheid van de gebruikers van dat codepakket te beoordelen kan men
beter de eerste resultaten van benchmarkberekeningen vergelijken.

5. De publieke acceptatie van kernenergie voor elektriciteitsproduktie is
gebaat bij een strikte scheiding van militaire en civiele kerninstallaties.



10.

11.

. Met transmutatie van actiniden kan de benodigde opbergtijd van kern-

splijtingsafval zodanig worden verkort dat ethische argumenten tegen de
produktie van kernsplijtingsafval kunnen worden weerlegd.
Nigel Holloway, ATOM 404, June 1990

Wetenschappelijke ontdekkingen kunnen worden bevorderd door onder-
zoeksgelden meer individueel gericht te verdelen.

Marginale landbouwgebieden rond de Oosterschelde bieden in het kader
van het Natuurbeleidsplan en plan Tureluur, goede grond voor natuur-
ontwikkeling.

. Omdat bij een correct genomen strafschop de doelverdediger onmogelijk

de bal uit het doel kan houden, zou men bij gelijkspel van een voetbal-
finalewedstrijd beter de ploeg kunnen laten winnen die het minst aantal
overtredingen heeft begaan.

"Een goed begin is het halve werk” geldt ook voor een promotie-onderzoek.
Uit de hoeveelheid correspondentie die een promovendus ontvangt met
titulatuur ”Dr.” en "Prof. Dr.” kan worden afgeleid dat ook geldt: "Een
goed begin is een halve titel”.

De meest gebruikte kopieermachines zijn het minst bruikbaar.

J.L. Kloosterman, 23 juni 1992




5 '}']LZ.?) W
5/72/13L/ TR diSS
TR danS 2ol 2080

On Gamma Ray Shielding
and Neutron Streaming
Through Ducts

J.L. Kloosterman

Interfacultair Reactor Instituut van de Technische Universiteit Delft



Cover photograph: a concrete shielding block moving into the irradiation tun-
nel of the research reactor of the Institute of Nuclear Technics of the Technical
University of Budapest.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Kloosterman, Jan Leendert

On Gamma Ray Shielding and Neutron Streaming Through Ducts /
Jan Leendert Kloosterman. - Delft: Interfacultair
Reactor Instituut, Delft University of Technology. - Ill.
" Thesis Technische Universiteit Delft. - With ref. - With
summary in Dutch.
ISBN 90-73861-07-1
NUGI 812
Subject headings: gamma ray shielding / neutron streaming.

Copyright @1992 by J.L. Kloosterman.




On Gamma Ray Shielding
and Neutron Streaming
Through Ducts

Proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus, prof. drs. P.A. Schenck, in het openbaar
te verdedigen ten overstaan van een commissie aangewezen door het College
van Dekanen op 23 juni 1992 te 10.00 uur door

Jan Leendert Kloosterman

geboren te Kapelle
ingenieur in de technische natuurkunde




Dit proefschrift is goedgekeurd door de promotor:
prof. dr. ir. H. van Dam

Toegevoegd promotor:
dr. ir. J.E. Hoogenboom



The research described in this thesis has been performed at the reactor physics
department of the Interfaculty Reactor Institute of the Delft University of
Technology, Mekelweg 15, 2629 JB Delft, the Netherlands.




Aan mijn ouders
Aan Helmieke



Contents

Chapter 1
Introduction

1.1 History

1.2 Outline

1.3 The Transport Equation

Chapter 2
MARMER, a Flexible Point-Kernel Shielding Code
2.1 Introduction
2.2 Calculational Method
2.3 Options in MARMER

2.3.1 Geometry Description

2.3.2 Energy Group Structure

2.3.3 Spectrum Definition

2.3.4 Spatial Source Description

2.3.5 Angular Source Description

2.3.6 Material Composition

2.3.7 Detector Response Functions and Buildup Factors
2.4 MARMER Data Libraries

Chapter 3

Gamma Ray Benchmark Calculations on the TN12
Spent Fuel Shipping Cask by the Point-Kernel
Shielding Code MARMER

3.1 Introduction

3.2 Benchmark Description

3.3 Calculations

3.4 Results

3.5 Conclusions

Chapter 4
Gamma Ray Buildup Factor Calculations for Iron by the
Discrete Ordinates Code XSDRNPM-S

4.1 Introduction

LW e

15
15
17
21
21
23
24
25
26
27
27
30

33
33
34
35
39
43

45
45




4.2 Cross Section Library Preparation
4.3 Buildup Factor Calculations

4.4 Calculations

4.5 Discussion

4.6 Conclusions

Chapter 5

Simple Streaming Methods

5.1 Introduction

5.2 Line-of-Sight Component

5.3 Albedo Component and Bent Ducts
5.4 IRIDUCT

Chapter 6

Neutron Flux Measurements in Straight and Bent Ducts
6.1 Introduction

6.2 Thermoluminescence Measurements

6.3 Multiple Foil Activation Measurements

6.4 Measurement Procedures

Chapter 7

Calculations and Comparison with Measurements
7.1 Calculations

7.2 Comparison with Measurements

7.3 Conclusions

Chapter 8

Importance Iteration in Monte Carlo Calculations
8.1 Introduction

" 8.2 Calculation of Point Values

8.3 Calculation of Importance Functions

8.4 Example

8.5 Conclusions

Bibliography

47
49
50
55
59

61
61
62
68
73

77
77
78
85
92

93
93
106
118

121
121
122
127
129
135

137




Appendix A
Calculational Method of XSDRNPM-S

Appendix B
Correlated Sampling

Summary
Samenvatting
Acknowledgements

Curriculum vitae

147

149

153

155

157

159




Chapter 1
Introduction

1.1 History

The increasing demand of electricity in the mid-eighties, the need for reliable
electricity production plants based on different sources of energy, and the wish
to decrease oil imports, lead to the idea that nuclear energy should play an
important role in the Netherlands. To increase the percentage of nuclear gen-
erated electricity from 5 to 30%, approximately, several large nuclear plants
should be built, which would lead to an increasing appeal to engineering and
consultancy companies to design and validate parts of nuclear plants. In the
field of shielding, however, it was felt that the available software should be
modernized in order to meet present-day requirements. Although the opti-
mism about new nuclear plants in the Netherlands shrinked rapidly after the
Chernobyl accident in 1986, it was still felt that shielding software should be
modernized, because it was expected that interim storage and transportation
of spent fuel assemblies and interim and final storage of highly radioactive
nuclear waste, would require sophisticated shielding studies.

The history of reactor shielding can be divided into several parts [Bol87).
After the second world war, at the introduction of the first commercial nuclear
plants, a large bunch of simplified, semi-empirical and empirical methods for
shielding calculations was developed. By assuring that simplifications lead
to overestimations of the calculated result, and by applying a safety factor
of 2 or higher, conservative results were obtained. It is still rather surprising
that point-kernel and removal-diffusion methods of that period gave such good
results, when it is recognized that neutron fluxes are generally attenuated by 13
orders of magnitude from the reactor core up to the outer side of the biological
shield (about 3 meters of concrete).

However, shielding calculational methodology in general has evolved in
close correspondence with computer science. As computers became faster
and cheaper, a still continuing process, shielding calculations became more




rigorous. Although the Boltzmann transport equation is now already solved
rigorously by discrete ordinates and Monte Carlo codes, which make use of
extensive data libraries, there is still a tendency to more geometrical possi-
bilities, higher accuracy in cross section representation, higher accuracy in
calculational methods, and a more accurate representation of the source, thus
leading to more reliable and accurate results.

This leads us to the stage where we are now. Although very accurate
methods exist and are being used, comparison of results of calculations carried
out by different shielding groups at the one hand, and measurements at the
other hand, lead to the surprising result that disagreements between mutual
calculated results and between calculations and measurements go beyond the
estimated errors of the calculations and measurements. Misuse of rigorous
transport codes, inadequate definition of the shielding problem, cross section
data inaccuracies, input errors, etc. lead to these discrepancies, which are very
difficult to quantify and often severely underestimated. The tendency present-
day is to improve the quality of the calculations by studying the sensitivity of
the calculated results to the input parameters, cross section data and geometry
of the problem. Furthermore, recognizing energy and spatial channels in the
shield, and treating them differently from the bulk shielding calculations, also
improves the quality of the calculations considerably.

Despite all powerfull computers today, the older methods are still attractive
to get an insight into the shielding problem under consideration and to get
quick estimates of gamma dose rates and neutron fluxes in the shield. Using
less sophisticated shielding codes is still common use today, although rigorous
transport codes may be used to check some of the results. Modernizing old
shielding codes may be needed because these codes are often very restrictive
with respect to calculational method, data libraries and input data, which
leads to relatively long input data preparation times and to restrictions on the
type of problems which can be solved.

This thesis describes two ways to modernize shielding methodology. First
the old gamma ray point-kernel shielding code MERCURE-IV [Dev74] is mod-
ernized with respect to geometry description, data libraries, input data and
flexibility, which lead to the shielding code MARMER [Klo90a, Klo90c]. Sec-
ondly, attention has been paid to the streaming problem, which lead to ex-
periments and calculations with two-dimensional discrete ordinates and three-
dimensional Monte Carlo transport codes, thus showing how such streaming
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problems can be approached and how shielding codes perform in these cases.

1.2 Outline

Section 1.3 describes the Boltzmann transport equation, which forms the basis
of transport codes. A formal link between the transport equation and the
point-kernel model is given, from which it is clear which assumptions lead
to this simple approach. The Boltzmann transport equation also acts as a
starting point for the derivation of the integral transport equation, which is
solved in Monte Carlo codes, to show the similarity and differences between
the point-kernel and Monte Carlo methods.

Chapter 2 describes the calculational method, input options and data li-
braries of the point-kernel shielding code MARMER. A part of the validation
of this code is described in Chapter 3, where calculated dose rates around a
TN12 spent fuel shipping cask are compared with measurements described in
literature. Buildup factor calculations are carried out and described in Chap-
ter 4. Especially the difficulties when using discrete ordinates transport codes
for high energy deep penetration gamma ray shielding problems will be set
out.

A short outline of the streaming problem will be given in Chapter 5, to-
gether with some simple methods from literature to tackle such problems.
The simple streaming program IRIDUCT, based on such a method will be de-
scribed shortly. Chapter 6 describes neutron flux measurements in a straight
cylindrical duct and in ducts with a bend of 30, 60 and 90 degrees. These ex-
periments are carried out in cooperation with the reactor physics group of the
Institute of Nuclear Technics of the Technical University of Budapest. Chap-
ter 7 describes discrete ordinates and Monte Carlo calculations from which
the results are compared with the measurements described in Chapter 6. A
method to improve Monte Carlo calculations is described in Chapter 8.

1.3 The Transport Equation

Transport of uncharged particles (e.g. gamma rays and neutrons), can be
described by the Boltzmann transport equation. As time dependence can
often be neglected in shielding problems, the transport equation for a non-

3



multiplying medium reads [Dud76]:

2.g¢(r,E,N)+ Zy(r,E)p(r, E,2) = S(r, E, 2)+

xQ
+ [ [ 20,8 B, 2)4(r, B, @)aB a0y (1.1)
47 0

where 7 is the spatial coordinate, E is the energy, 2 is the direction, ¢(r, E, 2)
is the flux per unit energy and per unit solid angle, Xi(r, E) is the total
cross section, Z,(r, E' — E, 2’ — 2)dEdQ is the scattering cross section for
scattering from energy E’ to dE around E and from direction 2’ to solid angle
d() around £2, and S(r, E, 2) is the fixed source density per unit energy and
per unit solid angle.

This integro-differential transport equation can be solved numerically in
several ways. Treating the energy dependence in groups, discretizing the spa-
tial and angular coordinates, approximating derivatives by finite differences
and integrals by numerical quadratures, one arrives at a discrete ordinates
method. The solution method of the one-dimensional discrete ordinates code
XSDRNPM-S [Gre83] in spherical geometry is given in Appendix A. Further-
more, the integro-differential transport equation serves as a starting point for
the derivation of the point-kernel shielding model, which is used in simple
gamma ray shielding codes, and for the derivation of the integral form of the
transport equation, which is solved in Monte Carlo codes.

The point-kernel model can be derived from Eq. (1.1) by assuming that
the inscattering source term is zero. Eq. (1.1) then simplifies to:

2.vé(r',E, 2) + Zi(r', E)p(r', E, 2) = S(v', E, N2) (1.2)

Here, an arbitrary coordinate ' is introduced which is related to » via »' =
r — Rf2, where R is the distance between r and r'. The first term on the left

hand side (LHS) of Eq. (1.2) is equal to —%%'}%'Q)- . An integrating factor
R

exp (— JZi(r - sn,E)ds) is used to write Eq. (1.2) as:
0

0 (¢(r', E, 2) exp (-— ?2,(1- - an,E)da))
OR -
4




R
= S(v',E, 2)exp (— / Tir — sﬂ,E)ds) (1.3)

Integrating both sides for R from 0 to oo, applying the boundary condition
¢(o0, E, 12) exp <— J Ze(r - sﬂ,E)ds) = 0, and integrating both sides over
0

12 gives:

) R
$(r, E) = / / S(v', E, 2) exp (_ S (r — sﬂ)ds) dRdQ (1.4)

4m 0

Using that an elementary volume in spherical coordinates can be written as
R%*dRdQ) and introducing an isotropic source density, Eq. (1.4) becomes:

S(v', E)exp (— fﬁt(r — sﬂ,E)ds)

!
P dv (1.5)

srB)= [

allV’

The argument of the exponential function is the optical thickness of the shield
between coordinates »’ and ». Two factors can be recognized in this expression
for the uncollided flux: the exponential term which accounts for the attenua-
tion due to the shielding material between »’ and r, and the 1/R? term which
accounts for the geometrical attenuation.

To calculate the requested detector response D(7), the flux is multiplied
with the proper detector resonse function R(E), which is usually of the point
isotropic type, and integrated over energy:

R
o  R(E)S(r,E)exp (—fE,«,(r —~ s.Q,E)ds)
v | °

0 allV’

dV'dE  (1.6)

47 R2

Neglecting the scattering source as was done to derive Eq. (1.6) for the
detector response, is of course not very realistic. Therefore, a buildup factor
is introduced, which is defined as the ratio of the total detector response (due
to both collided and uncollided fluxes) and the detector response due to the
uncollided flux only. Because the total cross section for gamma rays is only
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smoothly dependent on energy and atomic number, the buildup factor for
a specific detector response function is a smooth function of energy, atomic
number and shield thickness. Moreover, the buildup factor is dependent on
the detector response function used. The buildup factor has to be calculated
beforehand by use of transport codes, which do include the inscattering source
term in the solution of the transport equation.

Eq. (1.1) can also be used to derive the integral form of the transport
equation which forms the basis for Monte Carlo codes [Spa69, Dub86]. The
same integrating factor as was used to derive Eq. (1.3) can be used to get
[Wes81al:

7] (qb(r’, E, £2) exp (— fREt(r — 882, E)d.s))
- OR

R
= S(r',E, 2)exp (—/Et(r — sQ,E)ds) +
0

00 R
//23(1", E' S E, 2 - 2)¢(v', E', 2')dE'dY exp (—/Et(r - sQ,E)ds)
0

4w O
(1.7)
Integrating all terms for R from 0 to oo, and applying the boundary condition

#(o0, E, §2) exp (— ofo)}t(r - sQ,E)ds) = 0, gives:
0
00 R
o(r,E, N2) = /S(r’,E,.ﬂ) exp (—/Et(r - s.Q,E)ds) dR+
0 0
+[ [ [ot. B )50 B — B2 - )
0 47 0

R
. exp (— / Zo(r - sn,E)ds) dE'dQdR (1.8)
0

If each term is multiplied with X,(r, E), one gets for the collision density
¥(r, E, 12), the particle density entering a collision per unit energy and per
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unit solid angle around (7, E, £2):

0o R
Y(r,E, 2) = /S(r’,E, 2)T4(r, E) exp (— / T(r — sﬂ,E)ds) dR+
0 0

Tr T 2,(r,E' > E, 2 - 2)
! 4 ! 8 ) )
+f [ [ man =S

0 47 0
R
- By(r, E)exp (— / Zi(r - sﬂ,E)ds) dE'dQVdR (1.9)
0

Introducing the collision kernel:

L,(r',E' > E, 2 - 2)

O, B = B, = ) = =5 00 )

(1.10)

which describes the probability that a particle entering a collision at »' scatters
from energy E’ to dE around F and from direction §2’ to solid angle d? around
02, and the transport kernel:

R
T(r' — r,E) = 3y(r, E)exp (—/Et(r - sﬂ,E)ds) (1.11)

which is the properly normalised probability density function (PDF) for par-
ticle transport from r’ to » at energy E per unit path length, this equation
can be simplified to:

Y(r, E, 2) = / S(»',E,2)T(r' — r,E)dR+
0

00 o
+ / / / W+, B, 2)C(r' B — E, 2 — T(r' — v, E)dE'dVdR (1.12)
0 4 O

The normalisation factor for the collision kernel of a non-multiplying medium
is 4(r’, E')/Z¢(7', E'), which is usually called the non-absorption probability.
Fission, (n,2n), (n,3n) reactions etc., can be easily included in the collision
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kernel, by adding these cross sections with the proper multiplication to the
scattering cross section. The transport kernel is usually written as the prob-
ability for transport from »’ to » per unit volume instead of per unit path
length. A delta function is introduced, therefore, to garantee that only parti-
cles travelling from =’ to » contribute to the collision density at »:

T(r' - r,E) r—r

! = (2 - — .
T(r' - r,E,N) E ) ( T r’\) (1.13)
Note that this transport kernel has an extra argument §2 to distinguish it

from the transport kernel per unit path length, although this latter kernel
also depends on 2.

The expression for the particle density emerging from collisions or the
source per unit energy and per unit solid angle as a function of the collision
density, reads:

X(r, E, 2) = S(r,E, 2) + / / ¥(r, E', 2)C(r, E' - E, ¥ — 02)dE'dY
4w O
(1.14)
Likewise, the expression for the collision density as a function of the emergent
particle density reads:

¥(r, E, 02) = / X(+', E, 2)T(+' — 7, E, 2)dV" (1.15)
allV’

Egs. (1.14) and (1.15) can be combined to form an integral equation for the
emergent particle density:

x(r,E,2) = S(r,E, 2)+

o0
+ / / / X B )T (¢ — v, E', ¥)C(r, E' — E, 2 — Q)dE'dVdV’
allV 4w 0

(1.16)
Both the emergent particle density and the collision density are calculated in a
Monte Carlo code. First the coordinates, energy group and direction cosines of
a particle are sampled from the source density S(»r, E, £2), then the next colli-
sion point is determined by sampling from the transport kernel T(r — 7/, E).

8




If the particle survives the collision with probability X,(»', E)/Z:(r', E), the
new energy group and direction cosines are determined from the normalised
scattering kernel. The transport kernel and the scattering kernel are used to
follow the particle through the system until the particle is absorbed or escaped.
Usually, the particle history is not allowed to terminate by absorption, and
a weight is assigned to the particle, which is reduced by the non-absorption
probability at each collision point. Other means to terminate the particle
history must be used in this case, which is explained in Section 7.1.

The quantity of interest D in a Monte Carlo calculation can often be
represented as an inner product (integration over whole phase space) of the
flux and a detector response function f(», E, £2):

D= / / 7f(r,E,.Q)¢(r,E,.f2)dEdeV (1.17)

allV 47 O

This quantity can easily be converted to an inner product over the collision
density or the emergent particle density:

D= / / / g(r, E, 2)4(r, E, 2)dEdQdV (1.18)
allV 47 O
and: o
D= / / / h(r, E, 2)x(r, E, 2)dEQdV (1.19)
allVV 47 O

where detector response functions f(r, E, £2), g(r, E, 12) and h(r, E, 2) are
related to each other via:

f(r. E,2)

g("" E’ Q) = Et(r,E)

(1.20)

and:
h(r,E, £2) = / T(r — v, E, 2)¢(r', E, 2)dV’ (1.21)
alll”

Several estimators can be used to extract information from the particle
histories. The simplest estimator to be used is probably the collision estimator,
which gives a contribution to the detector response at each collision point.

9



The total number of particles entering a collision in a specific volume and
energy range per unit time, is equal to the collision rate in that volume and
energy range, and the response function g(», E, §2) can be used to convert this
collision rate to other detector responses.

Sometimes it is more convenient, however, to extract information from the
neutron path itself. Two estimators can be used for this purpose: the track
length estimator and the boundary crossing estimator. The first one gives
a detector contribution equal to the product of the particle weight and the
track length of the particle in a zone specified beforehand. The total detector
response is thus equal to the total distance travelled by all particles in that
zone, which is by definition equal to the particle flux integrated over that zone.
The boundary crossing estimator just counts the weights of particles crossing
a boundary specified beforehand, and the total detector response is thus equal
to the integrated particle current through that surface. One can also count
the particle weights divided by the absolute value of the cosine of the particle
direction and the normal to the surface, which gives the particle flux inte-
grated over the surface. It is noted that both the track length estimator and
the boundary crossing estimator can be deduced from the collision estimator
[Dub86]. The response function f(r, E,f2) can be used to convert the flux,
calculated by the track length estimator or boundary crossing estimator, to
other detector responses.

If the detector response is to be calculated at a point, use can be made of
point estimators, which calculate at each collision point the probability that
the outgoing direction of the particle is directed to the detector point, and that
the particle collides at the detector point (per unit volume). These estimators
are usually available in Monte Carlo codes, and because they mostly give an
estimate of the flux at the detector point, the function f(r, E, §2) can be used
to calculate other detector responses.

Introducing the kernels:

L(P' - P)=T(+' > r,E,2)C(r,E' > E, 2 - ) (1.22)
and:
K(P' - P)=C(+',E' - E,? - 2)T(r' - r,E, ) (1.23)

where P’ and P are the six-dimensional scalar coordinates of the particle,
one can write the integral transport equations for the collision density and the
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emergent particle density as (see Egs. (1.12) and (1.16)):

¥(P) = Q(P) + / (P)K(P' — P)dP’ (1.24)
r

with @) being the first collision density, and:

x(P) = 5(P) + / X(P')L(P' — P)dP’ (1.25)
r

The equations, mathematically adjoint to Eqs. (1.24) and (1.25), can be
written as:

¥*(P) = Q*(P) + / 4*(P)K(P — P')dP' (1.26)
r

and:
X(P) = §*(P) + / X (P")L(P — P')dP’ (1.27)
/

where Q™ and §™ are still arbitrary source functions yet, and ¥* and x* are the
solutions of the adjoint transport equations, with a physical meaning depen-
dent on the source functions. The adjoint functions become of use if appro-
priate source functions are chosen. As can be shown, the following definitions
make sense:

Q*(P) = g(P) (1.28)

and:

§*(P) = / T(r — v, E, 2)g(+', E, 2)dV’ = h(r, E, £2) (1.29)
alll’

Multiplying Eq. (1.24) with ¢*(P) and Eq. (1.26) with (P), integrating
both equations for P over whole phase space, and subtracting one equation
from the other, one obtains for D:

D= [o(Pys(Prap = [ QP)w(P)aP (1:30)
r r
In the same way for x and x*, one gets for D:

D= r/h(P)x(P)dP - r/S(P)x“(P)dP (1.31)

11



To distinguish between ¢*(P) and x"(P), the notation from literature will
be used [Tan77, Wes8la]. The event value ¥*(P) then has the meaning of
the expected detector response per particle entering a collision at P, while
the point value x*(P) has the meaning of the expected detector response per
particle emerging from a collision or emitted by the source at P.

It will now be shown that the solution of the adjoint integro-differential
transport equation ¢*, with detector response function f(r, E, §2) as source
function, is equal to the point value as defined by Eqgs. (1.27) and (1.29). The
adjoint form of Eq. (1.1) writes:

~2-v¢*(r, E, 2) + Zy(r, E)¢"(r, E, 2) = f(r, E, 2)+

+ / / So(r, E — E', 2 — 2)¢"(r, E', 2)dE'dY (1.32)
im0
Multiplying Eq. (1.1) with ¢*(r, E, 2) and integrating over whole phase space,
multiplying Eq. (1.32) with ¢(», E, §2) and also integrating over whole phase
space, and subtracting one equation from the other, gives:

D= / f(P)$(P)dP = / S(P)¢*(P)dP = / S(P)x*(P)dP  (1.33)
T r r

The latter equality is valid by Eq. (1.31). The function ¢* is thus equal to
the point value x*.

The physical meaning of the point value was already given in Eq. (1.31).
In particular it will now be shown that the response of an isotropic point
source with unit source strength at (ry, Ey) can be expressed in terms of the
point value at the same coordinates. From Eq. (1.31) follows:

,,_/SP)X(P)dP_///SrE.Q)x(rE.f))dEdeV_

alll" 47 O

f//lil” (r — 70)8(E — Eo)x"(r, E, 2)dEdQdV =
all\" AT O

1 " 1 .
= ZL;/X (1'0, EU, .Q)dﬂ = 4—7—1'X (TU,E()) (1.34)
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The point value used here is the solution of Eq. (1.32), with the angular
dependent detector response function f(r, E, §2) as source. The response of
an isotropic point source is thus seen to be equal to the point value at the
same coordinates, averaged over the angular space 4. If the detector response
function is isotropic, f(r, E) = 4x f(r, E, 2) is often used as a source function
in the adjoint equation, and the angular integrated point value then obtained
is exactly equal to the detector response of an isotropic point source.

Knowledge of the value functions in a given shield configuration can be
used to enhance the efficiency of Monte Carlo calculations. In fact, exact
knowledge of the value functions makes a Monte Carlo calculation redundant,
because the detector response can be calculated from Eq. (1.30). Rough
knowledge of the value functions throughout the shield and over the energy
range of interest, enables one to spend more CPU time in a Monte Carlo
calculation on the important parts of the shield and energy region, thereby
increasing the efficiency of the calculation.
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Chapter 2

MARMER, a Flexible Gamma Ray
Point-Kernel Shielding Code!

2.1 Introduction

Point-kernel codes for gamma ray shielding exist for quite a long time. In
these codes, an exponential attenuation kernel is used to calculate the de-
tector response due to unscattered radiation, while the scattered radiation
is accounted for by use of a buildup factor. The simplicity of the method
leads to low CPU times, compared with more advanced methods like Monte
Carlo and discrete ordinates methods. Furthermore, the input preparation
for point-kernel shielding codes is much easier than for the advanced meth-
ods mentioned above. Nevertheless do point-kernel codes give good results
for many gamma ray shielding problems, even for very detailed geometries.
The method is, however, not in general usable for neutron shielding problems
because of the very irregular neutron cross section as a function of energy
and shielding material. Furthermore, no gamma spectrum information can be
obtained by this method, nor does it give reliable results for oblique incident
radiation, although a correction to the buildup factor can be made in this case,
as is done in the code RANKERN [Mil83].

Many of the point-kernel shielding codes available are rather aged and have
restrictions with respect to geometry input, source description, etc. In many
cases, for example in the QAD [Cai77] and ISOSHLD [Eng66] codes, volume
sources are divided into volume elements to perform a numerical integration
of the attenuation kernel over the source volumes. This restricts the geometry
of the source and can lead to errors or large CPU times dependent on how
many volume elements are chosen. In PATH [Su83], a check on source points
is made, which enables one to use more complicatedly shaped source volumes.

"This chapter is an adapted version of [Klo88, Klo90c]



Some other codes, RANKERN and MERCURE-IV [DevT74] for example, avoid
this problem by performing a stochastic integration over the source volume.

Some fitting functions to buildup factor data introduce errors for low Z
materials and low energies, for example Taylor’s formula [Chi84] utilized in
ISOSHLD. Therefore, it is recommended that the geometric progression for-
mula [Tru88) should be used (QAD) or tabulated buildup factors which are
interpolated for atomic number, energy and shield thickness (MERCURE-IV).
QAD uses a single-material buildup factor for multilayered shields. This can
lead to errors if the energy spectrum at the calculation point is determined by
more than one shield layer. Other methods, like the methods of Kitazume and
Broder (see Section 2.3.7) give better results in these cases. Furthermore, data
libraries are not always up-to-date. Some codes still use buildup factor data
compiled by Goldstein and Wilkins in 1954 [Gol54], while recently compiled
buildup factors are available [Tru88].

Geometry input is preferably done by use of some kind of combinatorial
geometry, rather than defining (quadratic) surfaces. In combinatorial geome-
try, simple geometrical bodies are combined to complex zones of homogeneous
composition by use of operators. This is utilized in QAD, RANKERN and
PATH, for example. To perform more rigorous calculations, it is desirable
that part of the input for a point-kernel code can be used by a Monte Carlo
code (for example, some input of RANKERN can be used in conjunction with
McBEND [Mil83]).

Some codes, like ISOSHLD and QAD, can handle only isotropic sources.
Sometimes it is required, however, to model a surface source due to contami-
nation or leakage currents (in streaming problems) with a ”cosine to the power
p” boundary source. This option is available in RANKERN. To calculate the
source spectrum, a very useful option to calculate the gamma source spec-
trum due to irradiated fuel by use of a built-in fission product inventory code
(RIBD) is present in ISOSHLD.

The above considerations show that each shielding code has one or more
useful options, but also some weaknesses. To have available a user friendly,
general purpose gamma ray shielding code with many useful options, it was
decided to develop a new code. This code is entitled MARMER, and it is
based on the MARS [Wes84] geometry package, which is also used by the
MORSE-SGC/S Monte Carlo code [Wes81a], and the MERCURE-IV shielding
code. MARMER can be used for gamma ray shielding design of nuclear power
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plants, storage facilities and spent fuel transport casks. Several useful options
(of which some are also available in other codes) are added to make it usable
for many purposes.

2.2 Calculational Method

In point-kernel shielding codes, an exponential attenuation kernel is used to
calculate the unscattered particle flux at a point due to a point source, while
the contribution of the scattered particles is accounted for by use of a buildup
factor. If another quantity is to be calculated, e.g. energy flux, dose-equivalent
rate or energy absorption rate, a detector response function is used which
relates the particle flux to the requested detector response. The detector
response D(r4) at point 74 due to a mono-energetic isotropic point source
at point r, with energy F and source strength §, becomes, according to the
point-kernel aproach:

exp (—X,r)

D(rq) = B(Z, %4, E)R(E)Sy(rs, E) (2.1)

472
where B is the buildup factor, R the detector response function, Z and %; the
atomic number and total cross section of the shield, respectively, and r the
shield thickness along the ray from r, and 4.

Eq. (2.1) can be generalized to multilayered shields and volume sources
with source volume density S,(»s, E, £2) and volume V:

(3or)?

2

i) = [ [ B, BYRE)S (rr B, D22 Dapay (2)

where 7; is the thickness of shield layer i along the ray from », to r4, and 7
is the total optical shield thickness along that ray. The buildup factor is an
effective one, such that the effect of the multilayered shield is accounted for
(see Section 2.3.7).

The integrations over the source volume and energy range in Eq. (2.2) are
done by a Monte Carlo integration method known as importance sampling.
This method is extensively described in literature [Dev74, Klo90a], but will be
outlined here. The base of the method is that the source zone (a zone is a part
of geometry with homogeneous composition) and energy range are sampled

17




according to a probability density function (PDF') calculated beforehand. The
contributions to the detector response of all samples are averaged to obtain
the final value of the integral. If the PDF is properly chosen and the number of
samples is sufficiently large, the variance of the answer can be acceptable small
or (theoretically) even zero. The advantage of this method in comparison with
numerical integration, is that the source zone can be arbitrarily shaped and
that it is rather fast because those parts of the source zone and energy range,
which are not contributing to the detector response, are scarcely sampled.

Source systems are defined to describe the spatial description of the source.
A source system is a coordinate system in either cartesian, cylindrical or spher-
ical coordinates. The outer boundaries of the source system are chosen such
that it encompasses the source zone entirely. The source system is now di-
vided into volume elements and these volume elements are used to describe the
spatial source strength and to calculate the PDF for the integration over the
source volume. It must be emphasized that the volune elements are defined
independently of the source zone and that subsequently the source zone can be
arbitrarily shaped. Furthermore, the volume elements can be crude ones and
the CPU time does not depend very much on the number of volume elements
chosen. Several source systems may be defined and each source system may
contain several source zones. The source description is complete if for each
source system, it is made clear which zone in the source system is a source
zone, the energy spectrum of each source zone is known and the spatial source
strength description is given as a function of the volume elements of the source
sytem.

To sample particles in the source zone, volume elements of each source sys-
tem are subdivided into source and non-source volume elements. Particles are
only sampled from source volume elements. A volume element will be treated
as a non-source volume element if its centre is not in a source zone, otherwise
it will be treated as a source volume element. Because the boundaries of the
source zones do not have to coincide with source system boundaries (volume
element boundaries) non-source volume elements can partly belong to a source
zone. An option in the program is available to search for such volume elements
and, if found, to treat them as source volume elements.

To integrate over energy, the energy range is divided into energy groups.
This is done in MARMER by small energy groups which can be collapsed
to broad ones (see Section 2.3.2). The source volume density in multigroup
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notation in MARMER is then written as:
Sv("s, g, n) = Ss(ja rs)Se(j7m7 g)Sa(j, 'Q) (2'3)

where j, m and g are the indices of the source system, source zone and energy
group, respectively. The first factor on the RHS of Eq. (2.3) is the unnor-
malised spatial source description, given in the input for each source system j.
The second term is the normalised spectrum of source zone m in source system
7. If unnormalised spectra are given in the input, the spectrum is normalised
by MARMER and the source strength of zone m in system j is multiplied
with the total integral of the unnormalised spectrum. The third term is the
normalised angular distribution. If an unnormalised distribution is given in
the input, a normalisation is performed and the spatial source strength of each
zone T in source system j is again multiplied with the total integral of the
unnormalised angular distribution.

The integral, which has to be calculated in MARMER, can then be written
as:

D(rq) = /ZSa(j, 75)5c(jym, 9)Sa(j, R)Gr(|7s — 7al, 9)dV (2.4)

Vs

where G is the response kernel including the buildup factor, detector response
function and attenuation kernel. To evaluate this integral two importance
functions are calculated. The energetic importance function I.(m, g) and the
spatial importance function I,(k). The first one is defined for each source
zone m and is a measure of the relative detector contribution of energy group
g averaged over source zone m. The second one is calculated for each volume
element k and is a measure of the detector contribution of each volume element
per unit source strength.

To perform the Monte Carlo integration in MARMER, a source volume
element is selected according to a PDF calculated beforehand:

G
Py(k) = ASy(j, k) AV, (k) Y Sc(5, m, 9)o(m, g) (2.5)
g=1

where 7. and AV} are the centre coordinates and volume of volume element
k. A is merely a constant to normalize the PDF to one. Subsequently, a point
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in that volume element is sampled uniformly:

1

Pi(rs) = S

(2.6)

and an energy group is selected according to the PDF:
. SC‘ j m g Ie m’
PE(], m’g) = G (], : ) ( g) (2'7)
E S (]7 1gI)I€(m, g,)

g'=1

The coordinates of point », and the energy group sampled, constitute a hy-
pothetical particle and the detector response contribution of this particle is
calculated. The quantity to be evaluated (called X ), is equal to this detector
response contribution divided by the three probability density functions given
by Egs. (2.5), (2.6) and (2.7). The proces of sampling the coordinates and
energy group of a hypothetical particle and calculating X, is repeated many
times in order to achieve reasonable statistics. The process described above,
becomes slightly more complicated, if the fact that source volume elements
can partly belong to non-source zones, is taken into account. This can give
zero contributions to the detector response. The variance can be shown to be
partly due to these zero contributions and partly due to the variance of the
non-zero contributions.

The total number of particles sampled, is divided into L batches each
containing M particles in order to calculate the variance. This is done twofold.
The first method is called the "batch” method. The mean value of the detector
response J; of all particles in batch £ is calculated and the mean value of the
total detector response then becomes:

L
Z (2.8)

hl»—'

An unbiased estimator for the variance of J is

L
52 = L(L—l ; (J¢ — J)? (2.9)

The second way to calculate the variance is called the ”one-particle” method,
because it is based on the variance of the particle contributions itself. An

20




estimator for the variance of the contributions in batch ¢ is:

$%)e = — (Z}ﬂ MJ}) (2.10)

where the summation is over all particles of batch £. The variance of the mean
detector response J, of batch / then becomes:

53, = (3 )t (2.11)

and, by Eq. (2.8), the variance of the mean detector response of all batches
becomes:

, 1 &
52 = F;(Si) (2.12)
=1

Theoretically, the variance of S% according to Eq. (2.9) is larger then the
variance of S% according to Eq. (2.12) [Dub79]. This can be understood
intuitively, because the information of the individual detector contributions of
the particles in a particular batch, is not used in Eq. (2.9). The batch method
has the advantage, however, that a large number of particles contribute to
J¢. Therefore, Jy is normally distributed by the central limit theorem and
the interpretation of the variance of the batch method in terms of confidence
intervals and corresponding levels of confidence, is easier.

The calculation is stopped if the relative standard deviation, calculated
from the maximum of the variances according to Eqs. (2.9) and (2.12), divided
by the mean value of the detector response according to Eq. (2.8), is less than
a level given beforehand in the input or if the maximum number of batches
given in the input is reached.

2.3 Options in MARMER

2.3.1 Geometry Description

Geometry input is described by use of the MARS geometry package which
makes use of combinatorial geometry combined with an array repeating sys-
tem. This package is also used by the MORSE-SGC/S Monte carlo code.
It allows the user to define parts of geometry only once and to repeat them
throughout the geometry.
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In combinatorial geometry, physical structures are described by nine basic
bodies:

1. RPP - Rectangular Parallelepiped
2. SPH - Sphere

3. RCC - Right Circular Cylinder

4. REC - Right Elliptic Cylinder

5. TRC - Truncated Right Angle Cone
6. ELL - Ellipsoid

7. WED or RAW - Right Angle Wedge
8. BOX - Box

9. ARB - Arbitrary Polyhedron

All the bodies may be arbitrarily oriented in space, except for the RPP which
must have its sides parallel to the coordinate axes. These bodies may be
combined to code zones by use of the AND” or "NOT” operator. The AND
operator means that the code zone being described is wholly contained inside
the body, while the NOT operator means that the code zone being described is
wholly contained outside the body. Several code zones may be combined to an
input zone (zone of homogeneous composition) by use of the ”OR” operator,
which takes the union of the code zones.

Parts of geometry may be repeated throughout the geometry by use of
»arrays” and “universes”. An array is a rectangular body in geometry which
can be subdivided in cells along both X and ¥ and Z axes. Subsequently,
a local universe is defined, which fits exactly in one such a cell and where
the contents of one cell is described in detail. Each array cell may now be
filled by the contents of the local universe and in this way the contents of the
local universe are repeated throughout the geometry. The number of arrays
is unlimited and each array may be divided in as many array cells as needed
to describe the problem. Furthermore, an unlimited number of local universes
may be defined and each array cell may be filled with any arbitrary local
universe, provided that it fits exactly in the array cell. Arrays may even be
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Figure 2.1: Sketch of the use of an array to model a PWR core with two
different types of fuel assemblies.

nested, which means that an array can be defined in a cell of another array or
that an array can be defined in a local universe.

The use of arrays is illustrated in Fig. 2.1, where a horizontal cross section
of a PWR reactor core is drawn (in bold). An array with 17x17 cells is modelled
containing the core. Furthermore, two different types of fuel assemblies are
modelled, each in a different local universe. Each type of fuel assemblies may
now be placed at any arbitrary array cell in the core. The array cells outside

the core can be defined vacant.

2.3.2 Energy Group Structure

In MARMER the energy group structure is defined each time the input is pre-
pared. Therefore, the gamma data library contains microscopic cross sections
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for 36 fine energy groups ranging from 0.010 to 14.0 MeV in the VITAMIN-C
structure [Rou79)]. These fine group cross sections may be collapsed to broad
ones with the energy width of each group taken as a weight:

2 0gAE,
og=5—— (2.13)
Y AE,

g9=g'

Here, o is the microscopic cross section of broad group G containing fine
groups ¢’ up to and including g”. AE, is the width of energy group g.

2.3.3 Spectrum Definition

A spectrum in MARMER is defined as the number of particles originating in
each energy group per unit source volume, per unit time (cm™2 s~!). It can
be defined in four different ways:

1. The integrated spectrum (cm™3.s~1) in each energy group may be given.

2. A pointwise spectrum may be defined by giving a number of arbitrary en-

ergy points (MeV) and corresponding spectrum values (cm™3.s7!.MeV~1).

This point spectrum is converted to a group spectrum described above,
by integrating over each energy group linear in lethargy.

3. The spectrum may be calculated by MARMER by reading a binary
file containing nuclide concentrations calculated by the fuel depletion
code ORIGEN-S [Her84]. These concentrations are converted to a group
spectrum by use of the MARMER nuclide library containing gamma
decay energies, yields and half life times for over 1000 nuclides. To
facilitate the use of ORIGEN-S, a preprocessor was written for simple
irradiation and decay problems.

4. This option is very similar to the previous one, except for the nuclide
concentrations, which are now given in the input rather then read from
a binary file. The nuclide identification is given in the input together
with the activity of that nuclide and a delay time. Decay of the nuclide
during that time is accounted for in MARMER.
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2.3.4 Spatial Source Description

As stated in Section 2.2, the spatial source description is done by source sys-
tems divided into volume elements. Source systems may be defined in cartesian
(X,Y, Z), cylindrical (R, ®, Z) or spherical coordinates (R, ©,®). The three
coordinates will be referred to as the (U, V, W) coordinates. The spatial source
description may be done seperately for each coordinate:

S(U,V,W) = F|(U) Fy(V) F3(W) (2.14)

or separately for one coordinate and the other two:

S(U,V,W) = F(U) G(V, W) (2.15)
S(U,V,W) = F(V) G(U,W) (2.16)
S(U,V,W) = F(W) G(U, V) (2.17)

or as a combined function of all three coordinates. Here § is the spatial source
description and F and G are functions which are described hereafter.
Function F' can have the following forms:

1. F can be a constant given in the input.

2. F can be cosine distributed:

F(U) = Acos (M) (2.18)
where the constants A, B and U, are given in the input.
3. F can be exponentially distributed:
F(U) = Aexp (B(U - U,)) (2.19)

where the constants A, B and U, are again given in the input.

4. F can be defined at the boundaries of each interval in direction of U.
The source strength is linearly interpolated between two adjacent points.

5. F can be defined at the centre of each interval in direction of U. The
source strength is supposed constant in this direction for the whole vol-
ume element.
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6. F can be defined at points in direction of U independent of the bound-
aries of the volume elements in direction of U. Again the source strength
is linearly interpolated between two adjacent points.

The function G of two coordinates can be defined by giving the value of G at
each nodal point of the area elements in the (U, V') plane (thus at the crossing
point between four neighbouring area elements) or at the centre of each area
element in the (U, V) plane. The function § of three coordinates can be given
at the centre of each volume element.

2.3.5 Angular Source Description

The angular source description S,(j, 2) for each source system j (see Eq.
(2.3)) is supposed to be azimuthally symmetric around a predefined axis, which
is given in the input and which is defined for each source system seperately:

Salis ) = 5= (h) (2:20)

where f(u) gives the angular dependence on the cosine of the polar angle p,
which must be given in the input and which can have one of the following
forms:

1. f(p) can be isotropic between two angles defined by their cosines y; and
i which must be given in the input:

1
H2 — 1

f(p) = (2.21)

and zero outside that range.

2. f(p) can have a ”cosine to the power p” distribution between two angles
defined by their cosines p; and ps:

(p+1) |p?
|p2 (Pt £ (p|PH!

Fw) = (2.22)
where the + sign in the denominator is used if p; and p, have unequal
sign, meaning that one direction is pointing in the positive hemisphere
and the other in the negative one, and the - sign is used if both cosines
have positive sign, meaning that the two directions are pointing in the
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positive hemisphere. This option is especially useful for calculating the
line-of-sight flux in ducts, where the source at the entrance of the duct
can be represented by a current.

3. f(u) can be given for several discrete angles, whose values must also be
given in the input. The total integral of the distribution is calculated
by linearly interpolating between these values and the spatial source
distribution is multiplied with this integral value (see Eq. (2.3)).

2.3.6 Material Composition

To calculate the interaction coefficients and buildup factors of each shield
material, the composition of each material must be defined. This can be done
in two ways:

1. The number of elements and the atomic number and atomic concentra-
tion (107%* cm~3) of each element in each shield material can be given.

2. The number of elements and the atomic number and occurrence (e.g.
number of atoms in a molecule) of each element in each shield material
can be given, together with the density (g.cm™3) of the shield material.

Furthermore, for each shield material has to be defined whether a buildup
factor (dose-equivalent, energy absorption or both) has to be calculated or not.
If this is the case and the shield material consists of a mixture of elements, an
effective atomic number is obtained by calculating the interaction coefficient
per electron of the shield material for each energy group and interpolating in
a library containing interaction coefficients of elements. The atomic number
of the element with the same interaction coefficient per electron as the shield
material is taken as the effective atomic number of that material. This number
may differ slightly from one energy group to another. After the atomic number
of the shield material is calculated, the buildup factor of that material is
obtained by interpolating in the buildup factor library for the atomic number
calculated and the mean energy of each energy group.

2.3.7 Detector Response Functions and Buildup Factors

Besides the cartesian coordinates of each calculation point detector, it must be
specified for each point which detector response function and which buildup
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factor is used. The detector response function relates the unscattered gamma
ray flux to dose-equivalent rate, energy absorption rate or gamma energy flux.
The buildup factor takes into account the contribution of the scattered radi-
ation. This factor is therefore dependent on the detector response function
used.

Several response functions are used in literature [Chi84]. Kerma is an
acronym for Kinetic Energy of Radiation produced per unit MAss in matter,
and the kerma response function gives the relation between the interacting
gamma rays and the kinetic energy transferred to secondary particles (usual
electrons) in the material. Air kerma is equal to the energy absorbed in air,
and material kerma is equal to the energy absorbed in material, if electronic
equilibrium is valid and bremsstrahlung production is negligible. Exposure
is another response function, which is a measure of the ionization of air per
unit mass. Because the electrons produced by the gamma rays will ionize the
air, and because the ionization energy of air is almost independent of electron
energy (33.85 eV per ion pair), exposure is a measure of energy absorption in
air if electronic equilibrium is valid. If bremsstrahlung production is negligible,
exposure will be a measure of air kerma too.

The dose-equivalent response function is by definition different from the air
kerma and exposure response functions mentioned above. Dose-equivalent is a
measure of biological damage created in tissue, which is especially determined
by the linear energy transfer (LET) of the secondary particles produced. This
is done by defining a quality factor which depends on the LET in water of
these particles. Because gamma rays in tissue mainly produce electrons and
because the quality factor of electrons is independent of electron energy, dose-
equivalent will be proportional to energy absorption in tissue. If electronic
equilibrium is valid and bremsstrahlung is negligible, dose-equivalent will be
a measure of tissue kerma too.

Because the relation between exposure and energy absorption in tissue is al-
most independent of energy, dose-equivalent buildup factors, air kerma buildup
factors and exposure buildup factors are used interchangable, although these
three buildup factors are not equal to each other by definition. Also the flux to
dose-equivalent, flux to air kerma and flux to exposure response functions are
used interchangable. Similarly, the material kerma buildup factors and energy
absorption buildup factors for the same material are used interchangable. It
is interesting to note that generally kerma is easy to calculate, while energy
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absorption is easy to measure.

In the buildup factor library, only air kerma and material kerma buildup
factors are available. The first one may be used as an approximation to ex-
posure buildup factors or dose-equivalent buildup factors, while the second
one may be used as an approximation to energy absorption buildup factors.

Several approximate methods to calculate buildup factors for layered shields
are available in MARMER:

1. The buildup factor of one specific shield layer (usually the last one) with
adapted shield thickness equal to the total shield thickness measured in
mean free paths, can be used. This method gives good results if the
energy spectrum is dominated by that shield layer.

2. The method of Kitazume {Pon74, Klo90a] can be used. This method is
the most advanced one. It tends to approximate the buildup factor of
the last shield layer if this layer is thick enough:

B(m) = Bi(m) (2.23)

B(nn) = Bu(nn) + (B(1n-1) — Bn(n-1))Zn (2.24)

where B(7n,) is the Kitazume buildup factor of the shield up to and
including shield layer n, B, is the buildup factor of shield layer n and
M, is the optical shield thickness along the ray from source point to
calculation point up to and including shield layer n. Z, is a factor
calculated from Kitazume’s coefficients a and 8:

Zn = (1 - ﬂn,n—-l) exp(_an,n—lnn) + ,Bn,n—l (225)

Both a and 3 are tabulated in the buildup factor library for different
energies and atomic numbers.

3. The method of Broder [Pon74, Klo90a] can be used. This method is
very much like Kitazume’s method given above, except for the Z,, factor
which equals 1.0 in Broder’s method. Effectively, the contribution of
each shield layer to the buildup factor is summed to obtain the buildup
factor of the total shield.
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2.4 MARMER Data Libraries

The MARMER gamma data library contains microscopic cross sections, en-
ergy absorption response functions, dose-equivalent response functions and
energy flux response functions. All data is given for 36 energy groups in the
VITAMIN-C [Rou79] energy group structure for (almost) all elements with
atomic number ranging from 1 to 94.

The microscopic cross sections are based on the JEF1.1 library [JEF85],
and are taken as the sum of the cross sections for the photoelectric effect,
Compton scattering and pair production:

Og,tot = Og,ph + Fg,C + Tg,pp (2.26)
Each cross section in Eq. (2.26) is a group averaged one:

J o(E)$(E)dE

Eeg

J ¢(E)dE

FEeg

g =

(2.27)

where the gamma flux ¢(E) is used as a weighting function. Because the flux
is generally unknown, a flat flux approximation is used.

To calculate the energy absorption response functions, it is necessary to
calculate the energy absorption cross sections. This is done by assuming that
both Compton scattering and pair production are partially absorbing, while
the photoelectric effect is assumed to be totally absorbing. The energy ab-
sorption cross section at energy E therefore becomes:

0a(E) = oph(E) + fc(E)oc(E)+ fop(E)opp(E) (2.28)

where fc(E) and fpp(E) are the mean energy fractions absorbed in a Compton
scattering and pair production, respectively. The second term on the RHS of
Eq. (2.28) is calculated by use of the Klein-Nishina formula for Compton
scattering [Chi84]:

Zxr? (In(1+42¢)  2(1+€)(2e? — 26— 1) 8¢?
oE)\ & (11262 3(1+2)
(2.29)
where Z is the atomic number of the nuclide under consideration, r. is the
classical radius of the electron (2.818 1073 c¢m) and ¢ is the photon energy

fe(E)=1-
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expressed in rest mass units, i.e. ¢ = E/0.511 (E in MeV). The third term
on the RHS of Eq. (2.28) is calculated easily if it is asumed that two annihi-
lation photons are produced immediately at the same position where the pair
production occurs:

fop(E)=1-— % (2.30)
The energy absorption response functions are obtained by multiplying the
energy absorption cross sections by energy (MeV) and a conversion factor
k =1.602.10~13 J.MeV~!. Subsequently, this function is averaged over energy
according to Eq. (2.27) with a constant flux, to obtain a group averaged energy
absorption response function. This response function is thus given in J.cm™!
and the energy absorption rate calculated by MARMER is given in W.cm™3.

The gamma flux to dose-equivalent conversion factor is obtained by the
DOSE code [Kni78]. The gamma flux to energy flux conversion factor is equal
to the mean energy of each energy group.

The buildup factor library contains buildup factors taken from the QAD-
CGGP point-kernel shielding code [Tru88|. They are tabulated for 15 shield
thicknesses with optical thicknesses varying from 0.50 till 50 mfp, for 19 ele-
ments with atomic number ranging from 4 till 92 and for 23 energies ranging
from 0.03 till 15.0 MeV. Both air kerma and material kerma buildup factors
are given.

The nuclide data library contains half life times, decay energies and gamma
yields for over 1000 nuclides. All data is taken from the JEF1.1 data file
[JEFS5).
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Chapter 3

Gamma Ray Benchmark
Calculations on the TN12 Spent
Fuel Shipping Cask by the
Point-Kernel Shielding Code

MARMER!

3.1 Introduction

Despite extensive checks and calculations, it is hardly possible to remove all
errors from large computer codes. Especially not if many input options can be
used together with many other ones. Therefore, the oldest codes used already
for many years by different people for all kind of purposes, are generally the
most reliable ones in this respect. Unfortunately, they are generally not very
user friendly and they lack useful input options.

It is very useful, therefore, to check new programs by so-called benchmark
exercises. These exercises are calculations by the code to be checked, from
which the results can be compared with results from other codes or with ex-
perimental values. It is not to be expected, however, that one benchmark
exercise is sufficient to remove all errors from a new code like MARMER
[Klo90a, K1090c]. Many options were checked, therefore, with simple (some-
times unrealistic) problems. Nevertheless, participating in a shielding bench-
mark is very useful to find systematic deviations of absolute dose rates. In
view of this, it was decided to participate in the TN12 shielding benchmark
[Dio89, Klo90b], which was organized by the NEACRP Working Group on
Fuel Flask Shielding, to check the MARMER. code. The benchmark is de-
scribed and the calculated results are compared with measurements, given in
the benchmark.

' This chapter is an adapted version of [K1o90b]




Figure 3.1: Model of a TN12 spent fuel shipping cask.

3.2 Benchmark Description

The TN12 spent fuel shipping cask consists of a steel annulus with inner di-
ameter of 1220 mm and thickness varying from 262 to 302 mm. Areas of the
annulus likely to be contaminated during normal operation are covered with
stainless steel. Inside the annulus, an aluminium alloy basket containing 12 re-
cesses covered with boron carbide plates, is filled with 12 fuel assemblies. Each
assembly is composed of 264 fuel pins, 24 guide tubes and 1 instrumentation
guide tube, but in the shielding calculations they are homogenised in six axial
zones. The outer side of the annulus is covered with over 3000 copper cooling
fins and resin, which are also homogenised in the calculations. The thicknesses
of both top and bottom of the cask are 334 and 387 mm, respectively. The
total outer diameter of the cask is 2500 mm, while the length, excluding the

34




wood filled shock absorbers, which were not present during the measurements,
is 5345 mm.

The gamma source consists mainly of gamma rays originating in the fissile
part of each fuel assembly due to fission and activation products and gamma
rays originating in zones above and below the fissile part due to activation
products of which °Co appeared to be the most important one. The fuel
assemblies could be subdivided into two groups: one consisting of assemblies 1
to 7 and the other consisting of assemblies 8 to 12. The irradiation and decay
times and the axial burnup distribution are the same for the assemblies of each
group and are given in the benchmark description. The thermal neutron flux
profile above and below the fissile part of the assemblies during irradiation use
in the reactor, needed to calculate the °Co activation at these heights, is the
same for both groups of assemblies and is once again given in the benchmark
description.

3.3 Calculations

The fission products source and the %°Co activation source in the fissile part
of the fuel assemblies are calculated by the fuel depletion code ORIGEN-
S [Her84]. This code needs six data libraries containing decay data, photon
yields, fission yields, cross sections, etc. The cross section data is given in three
energy groups: a thermal group below 0.5 eV, an epithermal group between
0.5 eV and 1.0 MeV and a fast group above 1.0 MeV. In ORIGEN-S, these
cross sections are collapsed to one-group values by use of three spectral input
parameters. These parameters are called THERM, which is used to adjust
the thermal cross sections to thermally averaged ones, RES, which is used to
weight the epithermal cross sections relative to the thermal cross sections, and
FAST, which is used for threshold reactions with energies above 1.0 MeV. If
the thermal spectrum is Maxwellian distributed, THERM can be calculated

according to:
™ T()
T M=/—— 3.1
HER 1T (3.1)

where T is the Maxwellian spectrum temperature and T is 293 K. THERM
can also be calculated from the neutron spectrum if this is not Maxwellian
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distributed:

> $0/VE,
THERM = & — (3.2)
g} ¢9/V Eth

where E;j, is the thermal energy (0.025 eV), ¢, the neutron flux for energy
group g and E,; the mean energy of that group (eV). The summations in both
nominator and denominator are carried out over all thermal energy groups.
The parameters RES and FAST can also be determined from the neutron
spectrum, where RES is the ratio of the epithermal flux per unit lethargy and
the thermal flux, and FAST is 1.45 times the ratio of the fast and thermal
fluxes (the factor 1.45 is the reciprocal of the fraction of the neutron fission
spectrum above 1.0 MeV).

Cell calculations are performed to determine the three spectral parameters.
A 219-groups AMPX master library containing group cross sections averaged
with a fission—1/E-Maxwellian (7=300 K) spectrum is used [Cuc87], except
for *°Co, which was retrieved from the JEF1.1 library [JEF85] and processed
by the NJOY87 code [Mac87]. Resonance shielding calculations for ?**U and
2381J are done by NITAWL-S [Wes81b] by application of the Nordheim integral
method for a fuel temperature of 600 K (the mean moderator temperature,
because resonance absorption takes mainly place in the outer region of the
fuel lump). The cross sections of all other nuclides are infinitely diluted,
which slightly overestimates resonance absorption in the cell. The cylindrical
cell consisted of the fuel lumped into the central region, surrounded by the
clad, moderator and construction materials like tubes and grids. The nuclide
concentrations and cell volumes could be extracted from the benchmark de-
scription. Four cell calculations are performed by XSDRNPM-S [Gre83] in
P;Sg mode and the values of THERM, RES and FAST are determined from
the cell averaged fluxes. The parameters and results of each calculation are
given in Table 3.1. The effective buckling height of 190 cm is found by setting
the axial buckling with the effective height equal to the sum of the axial and
radial buckling with the actual height and radius of the core. This means that
the leakage with the effective height is equal to the leakage of a bare core with
the actual height and radius.

The values of TERM, RES and FAST given in Table 3.1 for cell 1 to
cell 3, are in disagreement with typical literature values for 33,000 MWd/tU
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Table 3.1: Parameters and results of the three cell calculations. In cell 3, the
effective height is decreased to reach criticality, while in cell 4 this is achieved
by adding !B to the moderator.

Cell1 | Cell 2 | Cell 3 | Cell 4
Eff. Height (cm) 190 | 190 | 33 | 190
Water Dens. (g.em™3) | 1.0 | 0.73 | 0.73 | 0.73
VB present no no no yes
kers 132 | 1.30 | 1.00 | 1.00
THERM 0.96 0.90 0.90 0.83
RES 0.17 0.23 0.25 0.30
FAST 1.35 1.67 1.89 2.17

PWR fuel of 0.63, 0.33 and 2.00, respectively [Her84]. Although the values
calculated here are "begin of cycle” values and not cycle averaged ones, these
large discrepancies cannot be caused by the difference in burnup values only,
because a value of THERM of 0.90 corresponds with a Maxwellian flux tem-
perature of about 284 K (see Eq. (3.1)), which is in disagreement with the
actual moderator temperature of about 580 K. The calculated spectrum is
not Maxwellian distributed. The flux in the lowest energy group, extending
from 1075 to 1072 eV, is higher than the corresponding Maxwellian flux of
that group and the logarithmic mean energy of that group is very low, which
gives a large contribution to THERM according to Eq. (3.2). If the upper
boundary of the last group (1072 eV) is taken for the characteristic energy of
that group, a value of 0.67 is obtained for THERM (cell 3). A reason for the
discrepancies found, might be that no 1/v absorber (e.g. '“B) was present in
the cell calculations to achieve criticality, which usually is present in a PWR
core. Instead of such an absorber, the effective height was decreased in cell 3
to enfavour leakage. However, the effect of leakage on the neutron spectrum
is quite different from the effect of a 1/v absorber. Cell 2 (which has correct
leakage) with !°B added to the moderator such that criticality is achieved,
gives a much harder spectrum. Values of THERM, RES and FAST are given
for this case in Table 3.1 for cell 4. Again the last group gives a large contri-
bution to THERM and if 1072 €V is taken as the characteristic energy of that
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group, a value of 0.64 is obtained.

Maybe better would be to use 1/ V'E values averaged with a Maxwellian
spectrum (T=580 K) for all thermal groups instead of logarithmic mean ener-
gies. This leads to values for THERM of 0.68 (cell 3) and 0.65 (cell 4). This
latter value is in good agreement with the actual moderator temperature,
which would give a value of 0.63 for THERM (see Eq. 3.1).

In the ORIGEN-S calculations, a value of 0.63 is used for THERM. Because
the values of the second till the fourth cell calculations were not available in
time, the values of RES and FAST of the first cell calculation were used, despite
the facts that the disagreements between these values and the literature values
are rather large and that the spectrum of the fourth cell calculation seems to
be more correct. Fortunately, the influence of these parameters on the nuclide
concentrations calculated by ORIGEN-S is rather small.

The 3°Co concentration and the profile of the thermal neutron flux in
zones above and below the fissile part of the fuel assemblies, both given in the
benchmark description, could be used to calculate the ®’Co activation source
in these zones. The dose rate contributions due to activation of 5!Fe and
58Ni via (n,p) reactions turned out to be negligible compared with the above
described °Co activation.

The shielding calculations are performed by the point-kernel shielding code
MARMER. Geometry input for this problem is done by 116 bodies, which are
combined to 36 input zones (zones of homogeneous composition). In total 21
different materials are defined: 6 for the fuel and 15 for the shield. The spatial
dependence of the volumetric source density is given by 72 source systems.
The axial dependence of the activation sources in zones above and below the
fissile parts of the fuel assemblies, is taken proportional to the fast or thermal
neutron fluxes in these zones (dependent on which activation reaction is taken
into account). The axial dependence of the fission and activation sources in
the fissile parts of the fuel assemblies, is equal to the burnup profile of the
assemblies. Nuclide concentrations of fission products etc. are calculated by
the ORIGEN-S code and written to a binary file. This file is subsequently
read by MARMER and the nuclide concentrations are converted to source
spectra by use of the MARMER nuclide library, containing half life times,
decay energies and gamma yields for over 1000 nuclides. Both the Kitazume
and Broder buildup factor formulae for multilayered shields were used (see
Section 2.3), but the difference between these two methods appeared to be
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very small. Because the gamma ray shielding of the transport cask is mainly
determined by the 30 cm thick steel shield of the cask, different methods to
account for multilayered shields are expected to give almost similar results.

3.4 Results

First, the influence of the values of THERM, RES and FAST on the source
spectra in the shielding calculations is investigated by varying THERM from
0.63 to 0.96, RES from 0.17 to 0.34 and FAST from 1.35 to 2.70. The source
spectrum changes no more than 25%, and for most energy groups, the change
is far less than 10%. This is especially true for the source strength in energy
group 3 (2.0 to 2.5 MeV), which is the main contributor to the dose rate along
the cask, as will be shown, and which changes no more than 2%.

Calculated dose rates are shown in Fig. 3.2 for several distances from the
outer side of the cask and for one azimuthal angle (in cylindrical coordinates
with the axis of the cylinder equal to the axis of the cask). It is seen that at
7 cm from the outer side of the cask, the dose rate profile is rather peaked,
which is mainly due to the smaller cask thickness at the top and bottom.
With increasing distance from the outer side of the cask, the dose rate profile
becomes flatter and at 200 cm from the cask, it is nearly flat along the cask.

Measured and calculated dose rates are compared with each other in Table
3.2 at several heights and distances from the cask. It is seen that the calculated
dose rates agree with the measured ones within 20% at 7 cm from the cask,
while at 100 and 200 cm from the cask, this agreement is even better. The
dose rates shown in Table 3.2 are determined by energy group 3, extending
from 2.0 to 2.5 MeV, for 75%, approximately. The source strength in this
energy group is due to the nuclide "*Pr with decay energy of 2.1857 MeV, for
93%, so this nuclide contributes to the dose rates shown in Table 3.2 for 70%,
approximately. From this it is concluded that source spectrum calculations
should be based on energy conservation instead of particle conservation, to
decrease the influence of the decay of some dominating nuclides. The number
of gamma rays with a particular energy is then changed to an effective number
of gamma rays with energy equal to the mean energy of the energy group, such
that the total energy emitted is conserved.

Calculated dose rates with and without the contribution of **Co activation
in zones below (zone E) and above (zones A and C) the fissile part of the fuel
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Figure 3.2: Calculated dose rates along the cask for several distances from the
outer side of the cask.

assemblies, along the axial direction of the cask at a distance of 7 cm from
the cask, are shown in Fig. 3.3. Here, it is seen that the calculated dose
rates agree with the measured ones for heights up to 450 cm within 20%, and
that the dose rate peaks at the top and bottom of the cask, at heights of 110
and 410 cm, are due to the smaller thickness of the cask at these heights.
For heights above 450 cm the calculated dose rates overestimate the measured
ones by a factor of 4, approximately. This is due to an overestimation of the
60Co activation source in zones A and C, which can be seen from the fact that
the calculated dose rates without this activation underestimate the measured
ones for heights above 450 cm. This overestimation is due to three reasons:
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Table 3.2: Measured and calculated dose rates for several heights along the
cask (z) and several distances from the outer side of the cask (). The standard
deviations of the calculations due to the Monte Carlo process only are 5%,

those of the measurements 8%.

T z Measured Dose | Calculated Dose | Contribution
(cm) | (cm) | Rates (uSv/hr) | Rates (uSv/hr) | Group 3 (%)
7 118 162 164 71
100 | 108 54 59 67
7 272 97 84 82
100 | 272 49 48 81
200 | 272 33 33 76
7 416 248 226 71
100 | 402 80 81 69
200 | 405 42 40 75

¢ The *°Co concentration given in the benchmark description is highly
overestimated for two types of inconel and one steel grade [Blu82]. This
gives an overestimation of the °Co activity in zone A by a factor of two
and in zone C by a factor of three. The dose rate in point B in Fig. 3.3
is reduced to point B’ if the correct 5°Co concentrations are used.

o The thermal value of the **Co absorption cross section is used to calcu-
late the activation rate of 5°Co. It would have been better, however, to
take a Maxwellian averaged cross section with a "neutron temperature”
equal to the moderator temperature (=~ 600 K). The **Co absorption
cross section is then reduced from 37 to 23 barn (see Eq. (3.1)), which
gives a further reduction of the dose rate in point B from B’ to B”.

e The thermal neutron flux given in the benchmark description is over-
estimated because control rods and boron capture are not taken into
account. This gives a further reduction of the dose rate in point B,
which reduction is difficult to quantify, however.

The 5°Co activation source of zone E is rather small, so the difference
between dose rates with and without activation at the bottom of the assemblies
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(point A in Fig. 3.3) is also small. This difference is in fact even smaller if the
concentration and cross section of °°Co are also corrected in zone E.
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Figure 3.3: Measured and calculated dose rates along the cask at 7 cm from
the outer side of the cask. The meaning of points A, B, B’ and B” is given in
the text.
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3.5 Conclusions

The source spectra used in the shielding calculations do not depend very much
on the neutron spectrum during the irradiation of the fuel assemblies. This
can be concluded from the fact that the source spectra are rather insensitive
to the spectral input parameters of ORIGEN-S, named THERM, RES and
FAST.

The calculated dose rates agree very well with the measured ones. At
7 cm from the outer side of the cask, agreement is within 20%, while at
larger distances, the agreement is even better. The dose rate along the cask
is determined by the fission products source for the major part, while the
contribution of the ®*Co activation source is only important in the zones above
the fissile part of the fuel assemblies. The contribution of the °Co activation
source was highly overestimated in the calculations due to reasons given in
Section 3.4.

In general it can be concluded that the fuel depletion code ORIGEN-S and
the point-kernel shielding code MARMER are very well suited to this kind of
shielding problems.
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Chapter 4

Gamma Ray Buildup Factor
Calculations for Iron by the

Discrete Ordinates Code
XSDRNPM-S!

4.1 Introduction

Buildup factors are used by point-kernel shielding codes to account for the
scattered radiation in the medium. Until a few years ago, data compiled in
1954 by Goldstein et al. [Gol54] was used. This data served as a reference for
all calculations performed since then. The need for more accurate buildup fac-
tors, extended in both energy and shield thickness, lead to a new compilation
of buildup factors [Tru88]. Air kerma and medium kerma buildup factors were
calculated for several materials by Chilton et al. [Chi80] by use of a moments
method code, while air kerma buildup factors for several materials were cal-
culated by Takeuchi et al. [Tak85] by the discrete ordinates direct integration
code PALLAS. Takeuchi compared buildup factors including bremsstrahlung
with those without that contribution. Although both Chilton and Takeuchi
used the same data library, the difference between the two results is 19% at a
shield thickness of 40 mfp and energy of 0.5 MeV. In Fig. 4.1, the air kerma
buildup factors for iron are given together with the results of Goldstein.
Both Chilton and Takeuchi calculated air kerma buildup factors, which are
not equal to dose-equivalent buildup factors due to a slightly different detector
response function. As explained in Section 2.3.7, air kerma is a measure of the
photon energy transferred to kinetic energy of secondary particles in air, while
dose-equivalent is a measure of the biological damage created in tissue by the
incident radiation [Chi84]. Shure [Shu79] compared air kerma buildup factors
with dose-equivalent buildup factors. The discrete ordinates code ANISN was

' This chapter is an adapted version of [Kl092]



10

{ T Ill|l|| 1 T l]l|ll]‘r 1 I||I|Il ¥ T T TTTFHI
10 [Gol54] -
1A [Chig0] i
41+ [Taok85] 1
C . .
Q
[N
C
O
e o]
o . =
¢ 0 mfp]
o ]
[8) - .
Lo \J 1
0 mfpl]
% 1 \\ /
_O - -
5
D g | N £ 20 nfp
g ™ il ]
. N i
< / 10 mfpl
a . / ~ 7
v 2 mf
021 / mt p
10_2 II|I|O_ll ¥ lllllllool T Illlll‘loll T T TTTTIT

Energy (MeV)

1o?

Figure 4.1: Air kerma buildup factors for iron from literature.
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used for this purpose with 57 energy groups, P3 cross section representation
and a P9 angular quadrature set (this set is probably a Gauss Legendre
quadrature set of order 19, thus having 20 angular cones [Alc86]). The dose-
equivalent buildup factors for iron were found to be larger than air kerma
buildup factors for a wide range of energies. However, the difference was less
than 13%, while the difference between the air kerma buildup factors for iron
and the Goldstein compilation reached nearly 30% at a shield thickness of only
20 mfp.

Although not mentioned by Shure, the use of discrete ordinates codes for
gamma ray buildup factor calculations gives rise to serious problems, which
can appear in other gamma ray deep penetration calculations as well. The aim
of this study is to calculate air kerma buildup factors for iron by the discrete
ordinates code XSDRNPM-S [Gre83] and to compare the results with litera-
ture values. Special attention will be drawn to difficulties, which appear when
using discrete ordinates codes for gamma ray deep penetration calculations.

4.2 Cross Section Library Preparation

The VITAMIN-C library [Rou79] together with customized libraries are used.
The latter ones are based on the JEF1.1 file [JEF85], while the Compton
scattering cross section is based on the Klein-Nishina equation [Chi84]. The
angle dependence of the scattering cross sections is developed into a Legendre
series:

(SRR

L
Ba(e ey ps) = 2 Y Saele, &) Pe(pea) (4.1)
=0

where X,(¢c,¢’) is the Legendre expansion coefficient of order £ for scattering
from “rest mass energy” ¢ = E(MeV)/0.511 to ¢’ = E'(MeV)/0.511 and p, is
the cosine of the scattering angle. The scattering cross section can be written
according to the Klein-Nishina equation:

23(5’5,1 /l's) =
1\2 /¢ 1 1,1 1 1 1
=amert (0) (S+5+ G- DG --2)s(1+ -5 )

e ¢ e ete €

where Z and N are the atomic number and atomic density of the nuclide
under consideration, respectively, and r. is the classical radius of the electron
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(2.818 - 1073 cm). The Legendre expansion coefficients are integrated over
energy for groups g and g’ to obtain Legendre coefficients for the scattering

matrix:
J o(e) [ Zoule,e')de'de
29—»9' — eeg eleg’ _
ot [ o(e)de

€eg

Joe) [ _}1 (2L + 1)E, (6, 6", o) Pl )dprode de
= o (4.3)

ceg

The flux #(¢) is used as a weighting function here, but because it is gener-
ally unknown, a flat flux approximation is used. The integration over energy
group ¢’ is performed analytically, over g numerically. However, the numer-
ical integration over group g for high Legendre orders (£ > 8) fails for low
energies. Substituting Eq. (4.2) in Eq. (4.3) and performing the integrations
over p, and £’ leads to a polynomial in 1/¢’ and 1/¢ of maximum orders £+ 1
and £ + 4, respectively. This polynomial is to be numerically integrated over
¢, where the limits of ¢’ depend for some groups on & because of the limited
energy decrement per collision. For low energies both ¢ and ¢’ are small and
the integration fails because the argument of the ¢ integral is the difference
of two very large numbers (for £ = 8 and E < 0.05 MeV of the order of 10'%,
while the difference is less than 10~2), which becomes meaningless because
of limited computer accuracy. Fortunately, the higher order Legendre terms
for low energies are unimportant and can be set to zero, to solve this prob-
lem. A similar problem is expected to appear for very high energies and very
high Legendre orders, where the argument of the ¢ integral is the difference
of two small numbers. However, for the maximum Legendre order (£=9) and
maximum energy (15 MeV) used by the author, no problems arose.

The total scattering matrix is the sum of the Compton scattering matrix
and the pair production cross section multiplied by 2 (because of two anni-
hilation photons). The cross sections are integrated over energy to obtain
group averaged cross sections. The total cross section of a group consists of
the sum of the photoelectric, Compton scattering and pair production cross
section, where the Compton cross section is calculated according to the Klein-
Nishina equation to make the total scattering cross section consistent with the
scattering matrix.
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Two assumption are made in the customized libraries as described above.
Flat weighting is performed for the cross section data. Except the fact that
the introduced error becomes less for smaller energy groups, one can hardly
predict what and how great the influence on the calculated spectrum will
be. Furthermore, it is assumed that the Klein-Nishina equation adequately
describes the Compton scattering process. This is certainly true for high
gamma energies where the electrons in the iron can be considered as free.
For low energies, the Klein-Nishina equation gives an overestimation of the
Compton scattering cross section because of the neglection of electron binding
effects. The influence of this is probably very small for two reasons. If electron
binding effects are taken into account, the coherent scattering cross section
should be included as well, which tend to cancel the electron binding effects
and, as these effects become important, the photoelectric cross section will
usually be larger than the Compton scattering cross section by several orders
of magnitude.

4.3 Buildup Factor Calculations

Buildup factors for an isotropic point source in an infinite medium are calcu-
lated from flux spectra calculated by the one-dimensional discrete ordinates
code XSDRNPM-S in spherical geometry. The calculational method of the
XSDRNPM-S code in spherical geometry is outlined in Appendix A. The
buildup factors are defined as the ratio of the detector response due to both
scattered and unscattered radiation, and the detector response due to unscat-
tered radiation only:

ff é(r, E)R(E)dE
Bl Bo) = 5 Y R(By)

where ¢ is the unscattered flux, and B is the buildup factor for detector
response R, energy F( and shield thickness ».

Because the spectrum is calculated in groups, the numerator of Eq. (4.4)
can be approximated by:

(4.4)

v
(Jmaz

[ 4 EYREYE = 3 ¢4(r)R, (45)
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where ¢, and R, are the group flux and the group averaged detector response
for group g, respectively, and Gpq, is the highest energy group number cor-
responding with lowest energy.

The denominator of Eq. (4.4) can be calculated in two different ways. The
first method is similar to the point-kernel approach for unscattered radiation:

1
¢U(T)R(EU) = m—z‘ exp(—EtGr)Sc;RG (46)
where S¢ is the source strength and I is the group averaged interaction
coefficient of the medium for the source energy group G. The second method
is similar to Eq. (4.5):

¢o(r)R(Ep) = ¢G(r)Rg (4.7)

The unscattered response here is overestimated because of the inclusion of
in-group scattering in the source energy group. For small energy groups and
a well converged calculation, the two methods are expected to give the same
results, because both methods converge to a point energy calculation. The
second method can therefore be seen as a check on the convergence of the
calculation.

The air kerma response function is calculated by assuming that a pair pro-
duction and Compton scattering are partially absorbing, while the photoelec-
tric effect is totally absorbing. The fraction of the photon energy absorbed in
a Compton scattering is calculated according to Eq. (2.29), while the fraction
of the photon energy absorbed in a pair production is calculated according to
Eq. (2.30). The detector response function thus obtained is very much like the
one obtained when using energy absorption cross sections from [Tru88]. The
air kerma response function is often used to calculate exposure rates. This is
only correct, however, if bremsstrahlung production is negligible (see Section
2.3.7). For high energies (E > 5 MeV) and high Z numbers, this assumption
is poor, and the exposure buildup factors are underestimated by the air kerma
buildup factors [Tak85].

4.4 Calculations

Calculations were done by the discrete ordinates code XSDRNPM-S, by using
the default angular quadrature based on a Gauss double Legendre set. An
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Sy calculation then has IV different directions with non-zero weights and one
backwardly directed angle with zero weight (needed for angular redistribution,
see Appendix A).

P5S,s calculations in 36 energy groups using the VITAMIN-C library were
performed. The source with a thickness of 0.01 mfp of the source energy group,
is divided into 3 intervals, while the shield from 0.05 up to 35.05 mfp is divided
into 350 intervals. Buildup factors were calculated up to 30 mfp, which means
that an extra shield layer of 5.05 mfp is used to simulate an infinite medium.
This is sufficient because the flux at 3 mfp from the outer boundary of the
sphere is changed by less than 0.4% if that boundary condition is changed from
vacuum to reflected. Results for the air kerma buildup factors for methods 1
and 2 (Egs. (4.6) and (4.7), respectively) are given in Fig. 4.2 for 2 and 30
mfp, and for over 30 source energy groups. It is seen that the discrepancies
between calculated buildup factors and literature results are very large.

A customized libary in the VITAMIN-C energy group structure was pro-
duced according to Egs. (4.1), (4.2) and (4.3) with a P7 Legendre series ex-
pansion. Calculations in P754s mode were performed to calculate the buildup
factors with this library. The results for both methods are very similar to Fig.
4.2. Again large discrepancies are found between the calculated results and
literature results.

A library with 214 energy groups and P; Legendre order expansion is
made according to Egs. (4.1), (4.2) and (4.3). The energy group structure is
as follows: 0.4 MeV intervals between 14.8 and 6.0 MeV, 0.2 MeV between
6.0 and 1.0 MeV, 0.02 MeV between 1.0 and 0.2 MeV, 0.01 between 0.2 and
0.1 MeV, 0.001 MeV between 0.1 and 0.01 MeV. In addition 25 source energy
groups are chosen with very small widths (e.g. 0.002 MeV at 15 MeV), so that
the ¢ values in Eq. (4.6) are equal to the point energy values. The shield is
divided into 450 intervals from 0.05 to 45.05 mfp and the buildup factors were
calculated up to 40 mfp. The air kerma buildup factors are given in Fig. 4.3
for methods 1 and 2, and for 25 source energy groups. As can be seen, method
1 gives a slight underestimation compared with literature values, while method
2 gives a slight overestimation. In general, the results are much better than
in the previous case with only 36 energy groups, but the discrepancies at the
high energy tail (E > 5 MeV) are still rather large for shield depths of 20 mfp
and up.

To find the reason for the discrepancies at the high energy tail, a 214 groups
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Figure 4.2: Air kerma buildup factors for iron calculated according to meth-
ods 1 and 2 in P5548 mode using the VITAMIN-C library, compared with
literature.
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Figure 4.3: Air kerma buildup factors for iron calculated according to methods
1 and 2 in P7548 mode using a 214 groups library, compared with literature.
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Py library was made, with the same energy structure as the previous library,
but with the Legendre expansion order increased from 7 to 9. It turned out,
however, that this change has only a very minor effect: the air kerma buildup
factor at 10.0 MeV and 40.0 mfp (method 1) changed only from 55.6 to 57.5.

A 211 groups P7 library with a finer energy structure in the high energy
region was made to check whether the discrepancies are still due to a too
coarse energy mesh. The energy mesh intervals are 0.2 MeV between 15.0
and 4.0 MeV, 0.1 MeV between 4.0 and 1.5 MeV, 0.025 MeV between 1.5 and
0.4 MeV, 0.01 MeV between 0.4 and 0.15 MeV and 0.0025 MeV between 0.15
and 0.04 MeV. Because the lower energy boundary (0.04 MeV) is higher than
that in the 214 groups library (0.01 MeV), the number of energy groups is
somewhat reduced, despite the finer energy mesh. This was necessary because
of the limited disk scratch space (60 Mbyte), which restricted the number of
space and angular mesh intervals and energy groups. The influence on the
buildup factors turned out to be negligible, however. The air kerma buildup
factor at 10.0 MeV and at 40.0 mfp (method 1) changed only from 55.6 to
55.5.

Table 4.1: Air kerma buildup factors for iron for E = 10.0 MeV and pz = 10.0
mfp, calculated with different energy group structures and mesh intervals. The
literature values are 4.69 [Chi80] and 4.54 [Tak85]. The maximum energy mesh
and cutoff energy are given in MeV.

Max. | Cutoff | No. of | Ang. | Leg. | Mesh | Method | Method
AE | Energy | Groups | Quad. | Exp. | (mfp) 1 2
0.4 0.01 214 48 7 0.100 4.410 4.971
0.4 0.01 214 48 9 0.100 | 4.489 5.060
0.2 0.04 211 48 7 0.100 | 4.410 4.965
0.4 0.06 158 48 7 0.100 4.410 4.971
0.4 0.06 158 48 7 0.050 4.683 4.904
0.4 0.06 158 48 7 0.025 | 4.783 4.883
0.4 0.06 158 60 7 0.100 | 4.483 4.959
0.4 0.06 158 72 7 0.100 4.532 4.953
0.4 0.06 158 72 9 0.100 4.529 4.950
0.4 0.06 158 72 9 0.025 4.819 4.877
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Figure 4.4: Differential angular integrated Klein-Nishina scattering cross sec-
tion o¢(E, E’) for iron as a function of outgoing energy E’ for several incident

energies E. The VITAMIN-C energy group structure is given along the E’
axis.

Two 158 groups libraries with P; and Py Legendre order expansion are
made with the same energy structure as the 214 groups library described
earlier, but with a lower cutoff energy of 0.06 MeV instead of 0.01 MeV.
This, together with a reduction of the shield thickness, enabled us to calculate
with much smaller mesh intervals without exceeding the available disk scratch
space. From the earlier calculations it was found that the contribution to
buildup factors at 10.0 MeV due to the energy region below 0.06 MeV is
negligible. Some results of these calculations, compared with results from
previous calculations are given in Table 4.1.

4.5 Discussion
From Fig. 4.2 it is seen that the VITAMIN-C gamma data library is not very

suited to buildup factor calculations (and to anisotropic gamma ray deep pen-
etration calculations in general). Because of the broad energy group structure,
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the fluxes in the source energy groups are by far not equal to the unscattered
fluxes, which leads to quite large differences between methods 1 and 2. There
are two reasons why the energy group structure should be much finer. Be-
cause cross section weighting is done by a flat flux approximation (see Egs.
(2.27) and (4.3)), the cross sections become more accurate as the energy group
widths decrease. Secondly, because of the limited energy decrement per col-
lision, a gamma ray upon collision can only scatter to a limited number of
energy groups. To represent gamma ray downscattering accurately, the num-
ber of energy groups should be sufficiently large, thus leading to the condition
that the energy group width should be much smaller than the maximum en-
ergy decrement per collision. In Fig. 4.4, the differential angular integrated
Klein-Nishina scattering cross section is given for several energies, together
with the VITAMIN-C energy group structure. As can be seen, the scattering
cross section for low energies has only a non-zero value for a small energy range
and the VITAMIN-C group structure does not fulfil above mentioned condi-
tion for energies below 0.5 MeV (at 0.45 MeV, a gamma ray can only scatter
to 4 groups, at 0.2 MeV only to 2 groups and below 0.1 MeV only to 1 group).
Downscattering (and thus absorption in low energy groups) is underestimated
and buildup factors according to method 1 give an overestimation, while those
according to method 2 give an underestimation. Both discrepancies are due
to the reason that the fluxes in the source energy group and nearby groups
are overestimated.

The 214 groups library does fulfil above mentioned conditions on the energy
group structure. In Fig. 4.3, the buildup factors according to the two methods
are shown together with literature values. This figure is only meant to see the
qualitative differences between the results of the two methods. As can be
seen, method 1 gives a slight underestimation, while method 2 gives a slight
overestimation of buildup factors, compared with literature values. Above
5 MeV, the discrepancies become serious and neither a Legendre expansion
increase from P; to Py, nor a finer energy mesh give better results.

In Fig. 4.5, a polar diagram of the angular Klein-Nishina scattering cross
section o¢(E, p,) is given. For high energies, the cross section is highly for-
wardly peaked, and it is unlikely that a P; Legendre expansion is sufficient to
represent the angle dependence of the scattering cross section accurately. In
fact, it is not as can be seen in Fig. 4.6, which gives the angular Klein-Nishina
scattering cross section and the P; and Py expansions (Eq. (4.1) integrated
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Figure 4.5: Polar diagram of the differential energy integrated Klein-Nishina
scattering cross section o¢(FE, p,) for iron for several incident energies. The
cross section value at 0° (the arrow in the figure) is 12.97 barn.

over ¢') as a function of the incident energy. It can be seen that both the P+
and Py cross section representations are poor for forwardly directed scattering
angles (u > 0.9) compared with the exact Klein-Nishina cross section. Despite
the fact that the Py representation is already much better than the Py, still
large defects are present for scattering cosines larger than 0.95, which can lead
to errors because the scattering cross section is highest at these angles.

Because the scattering angle depends on the energy decrement per colli-
sion, the angular mesh cannot be chosen independently from the energy group
boundaries. Angular redistribution [Mik77] requires a fine angular mesh, de-
pendent on the energy group widths. This means that a particle scattering
from one group to another, must be able to scatter from one angle to another
as well. For the 214 group structure as mentioned above, this requires an
extremely fine angular mesh, which can hardly be realized in practice. In fact,
even the S;o quadrature set does not meet these requirements.

Probably the energy widths in the high energy region can be chosen some-
what larger than in the 214 and 158 groups libraries, because the maximum
energy decrement per scattering is very large above 5 MeV. The pair pro-
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Figure 4.6: Angular scattering cross sections for iron as a function of incident
energy for several scattering angles.

duction cross section, however, is highly dependent on energy in this region,
which limits the width of the energy groups. Note that the use of the 211
groups library, with finer energy groups at the high energy tail, makes the
angular redistribution requirement even more severe. No better results have
to be expected therefore by using this library.

From Table 4.1 it is seen that a finer spatial mesh has a large influence on
the calculated buildup factors. Especially near the source, the 1/7% dependence
requires an extremely fine mesh in order to describe this behaviour accurately.
It can be seen that for a mesh width of 0.025 mfp, the buildup factors according
to methods 1 and 2 are almost equal to each other, which implies that the
source energy group flux is a good representation of the uncollided flux.

At this moment, it is not quite clear how the above mentioned arguments
can explain the calculated buildup factor behaviour as a function of energy
above 5 MeV (see Fig. 4.3), and only a tentative explanation will be given. As
the energy increases above 5 MeV, the Compton cross section becomes more
and more forwardly peaked, which is not correctly represented by a truncated
Legendre expansion. The underestimation of the forwardly directed scattering
cross section leads to an underestimation of buildup factors at high penetra-
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tion depths. At 10 MeV, the Compton scattering cross section is extremely
forwardly peaked, but also severely underestimated by a Legendre expansion.
But due to a too coarse angular mesh, particles that do scatter are not redis-
tributed to other angles, which probably leads to an overestimation of the flux
in the most forwardly directed angle(s). Furthermore, the influence of pair
production becomes important (the pair production cross section at 10 MeV
is about as large as the Compton scattering cross section), whose contribution
is correctly calculated, which may lead to more correct buildup factors.

It must be emphasized that all changes in the energy group structure, Leg-
endre expansion order, angular mesh and spatial mesh have an effect on the
buildup factor at 10.0 MeV and 10 mfp of 10% only. However, changes which
have only a weak effect at 10 mfp, may have a large effect at deep penetration
distances. Deep penetration calculations are expected to be sensitive to cross
section values because of the exponential attenuation, which requires small
energy groups (although buildup factors are found to be relatively insensitive
to cross sections [Chi80]). A correct angular mesh, however, which meets the
angular redistribution requirements, is important as well at large shield thick-
nesses, thus leading to the condition of broad energy groups or an extremely
fine angular mesh.

A fine energy group structure and fine spatial and angular meshes not only
lead to long CPU times. If computer memory is too small, cross section data,
flux moments, etc. will be stored externally (e.g. on disk), which delays the
execution of the program enormously because of slow communication with
that external device and page swapping in memory. In fact, limitations on
all calculations described in this paper are imposed by restrictions on the
total disk scratch space of 60 Mbytes. The CPU time on a VAX3100 M30
workstation for a PgS.g job with 214 energy groups and 454 spatial intervals,
with the source in group 15, is about 14 hours, while the elapsed time is about
90 hours.

4.6 Conclusions

Buildup factors below 5 MeV are in agreement with literature values [Chi80]
within 10%, approximately. This is reasonable for such large shield thicknesses,

because differences between mutual literature values are of the same size (see
Fig. 4.1).
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To calculate buildup factors with a discrete ordinates code like XSDRNPM-
S, many energy groups and extremely fine space and angular meshes are
needed, to get accurate results at large shield thicknesses and high energies.
It is shown that a space mesh of 0.10 mfp and an angular quadrature of S,g
is not sufficient. Much accuracy can be gained by reducing the space mesh
intervals to values below 0.025 mfp near the source. This is even necessary for
energies where the cross section is rather flat as a function of energy (e.g. at
10.0 MeV). Because it can be expected that the flux in low energy groups is
much more isotropically distributed then the flux in the source energy group,
improvements with respect to CPU time can possibly be achieved by using en-
ergy group dependent quadrature sets, such that the quadrature order for the
source energy group and nearby groups is higher than the quadrature order
for low energy groups. Another improvement may be to use biased quadrature
sets for the source energy group and nearby groups [Alc86]. Furthermore, it
is noted that for point, plane or line sources in an infinite medium, moments
method codes, as used in literature to calculate buildup factors [Gol54, Chi80],
perform better. However, such codes are not generally applicable to shielding
problems because of geometrical restrictions.
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Chapter 5
Simple Streaming Methods

5.1 Introduction

In the early years of shielding calculations, neutron and gamma ray streaming
through ducts was simply described by the line-of-sight component of the
radiation, for which formulae can be found in literature [Pri57, Sch73, Chi84].
Simple albedo concepts were introduced to account for reflections against walls
of the duct for both neutrons [Sim56] and gamma rays [LeD59], for straight
and multibent ducts. Unfortunately, accurate albedo data was lacking at that
time.

Gamma ray streaming in two-legged ducts can also be described reasonably
well (within a factor of two) by the single scattering method [Num88, Yam88],
but neutron streaming cannot so easily be calculated by simple methods, and
much attention has been given to find approximate formulae. Miura derived
empirical formulae for the neutron flux distribution in annular [Miu83] and
cylindrical ducts [Miu89]. Shin [Shi89] derived a general formula which is
applicable to several geometries and sources. When applying these methods,
however, the strength, spectrum and angular distribution of the source has
to be known in advance, which requires sophisticated transport calculations.
Furthermore, the albedo values used in simple methods are often corrected
by an experimentally derived factor, which is difficult to generalize to other
geometries and energy regions.

The other way to solve streaming problems is to use rigorous transport
codes. Although these codes cannot be used at a first design stage because
of their long CPU times, they are attractive for special streaming geome-
tries like irradiation tubes of research reactors and cavity streaming through
the annulus around the reactor pressure vessel [Tra78, Bar88]. However, the
performance of transport codes in such circumstances is not straightforward.
Two-dimensional discrete ordinate codes, for example, fail in annular ducts
of small width [Miu81, Oka86]. Three-dimensional discrete ordinates codes



perform better, but require longer CPU times [Bar91]. For all problems holds
that only a simplified or restricted geometry can be modelled.

The Monte Carlo method also requires rather long CPU times. Albedo
Monte Carlo codes are generally more effective but very large data files con-
taining differential albedo data are necessary, which are only available for a
limited number of materials. It is also difficult to prepare correct albedo data
because of their dependence on curvature, while albedo values for slabs are
found to give an overestimation in cylindrical ducts and an underestimation in
annular ducts [Shi82, Shi84]. The reemitting area must also be much smaller
than the duct dimensions.

Streaming problems are usually divided into subproblems to calculate the
strength, spectrum and angular distribution of the source separately from
the streaming calculations. The final solution is then obtained by bootstrap-
ping codes, e.g. using the DOT-DOMINO-MORSE [Tra78, Bar88] and DOT-
DOTTOR-TORT sequence [Chi88). In these cases, a two-dimensional discrete
ordinates code (DOT) is used to calculate the angular flow rate at the outer
side of a reactor vessel, for example. A conversion program (DOMINO or
DOTTOR) is then used to convert these angular flow rates to a source term for
the three-dimensional shielding calculations, which are done by a Monte Carlo
code (MORSE) or a discrete ordinates code (TORT). To judge the capabilities
of transport codes in real streaming problems (steel-walled ducts in concrete,
irradiated by a typical reactor spectrum), experiments were performed, which
are described in Chapter 6. In Chapter 7, rigorous calculations are described
and the calculational results are compared with the measurements.

This chapter deals mainly with simple formulae to calculate the flux at
the exit of a duct. Handformulae to calculate the line-of-sight component of
the flux are described in Section 5.2, and the model of Shin to calculate the
albedo component is exposed in Section 5.3. A program IRIDUCT is described
in Section 5.4, which combines these methods to calculate the total flux at the
exit of a cylindrical, rectangular or annular duct.

5.2 Line-of-Sight Component
Besides the strength of the source at the duct entrance, one has to know the
angular description and the spectrum of the source as well. These qualities

are of course known if transport codes are used for the source calculation,
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but these codes consume too much CPU time to use at a first design stage.
Simpler methods give the source strength and spectrum at the duct entrance,
but no information about the angular distribution. Therefore, the angular
dependence is supposed to be azimuthally symmetric around the duct axis.
The dependence of the source on the polar angle is then described as a power
of the cosine of this angle [Chi84, Klo89al:

P
in(r @) = (n- D)i(rs, ) = EEDE (0 (51)
where 7, is a coordinate on the source plane, n is the normal to the source
plane, u is the cosine of the polar angle with respect to this normal (z = n- )
and j,(r,, 2)d is the total number of particles per unit source plane area
in dQ? around §2. The integration of the angular flow rate over the azimuthal
angle from 0 to 27 and over the cosine of the polar angle from 0 to 1 gives the
total flow rate j,(r,). The power p will be energy dependent since the fast
flux will be more forwardly peaked than the thermal flux. Determination of p
for some practical situations is discussed later.
The flux at the duct exit can be determined from the angular flow rate at
the duct entrance. If no attenuating material is present in the duct, one can
write for the line-of-sight flux at the duct exit:

Jn(rs, 2)
|y — ral?

¢(ra) =

“ts

dA (5.2)

where 74 is the detector coordinate at the duct exit and A, is that part of the
source plane area, visible from the duct exit. For cylindrical ducts with r4 on
the duct axis, Eq. (5.2) becomes:

i

1. 1, ?
#ra) = TE2gur) (1 7 | 2 i (3) 69)

(1+(®)?)

where a and L are the radius and length of the duct, respectively. The ap-
proximation is valid for @ < L. For annular gaps, Eq. (5.2) becomes:

+ 1 j0(rs)A,
p(ra) = pz—ﬂ_l*(—iz)— (5.4)
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It is assumed here that the gap length is much larger than the width of the
gap, which is the difference of the outer and inner radius of the gap. This
leads in general to an overestimation of the flux. For the visible area A, holds:

a; a,
Ay = (ag - a?) arccos (E) + a? arccos (a_) — a;jy\/ak — a? (5.5)

(]

where a; is the inner radius, a, the outer radius and r4 a position at the gap
exit between a; and a,. It can be seen from Eq. (5.5) that the visible area
increases, if 74 is moved from the inner radius to the outer radius. The mean
value of 4, is exactly two times the visible area for r4 = a; and the visible
area for 74 in the middle of the gap is approximately equal to this mean area.
Thus to calculate the mean flux at the gap exit, one only has to calculate the
flux in the middle of the gap at 7y = (a; + @,)/2. For a rectangular gap, one
cannot integrate Eq. (5.2) analytically, but if the height and width of the gap
are nearly equal to each other, it is very unlikely that the answer will be very
different from a cylindrical duct with equal visible source area.

The above formulae for cylindrical ducts become somewhat more compli-
cated if the duct is filled with attenuating material, but the recipe to derive
these formulae is the same [Chi84, Sch73]. For annular and rectangular gaps
filled with attenuating formulae, no simple equations can be derived, but a
point-kernel code like MARMER [Klo90a] can be used to calculate the line-
of-sight flux in such a case. Point-kernel codes can also be used to calculate
the wall penetrating flux [Klo89a] at the end of the duct. In this case one has
to define a disk source at the duct entrance. The source can be defined as in
Eq. (5.1).

The power p of the source angular distribution in Eq. (5.1) has to be
derived yet. It is difficult to derive expressions, which are generally applicable.
Here, a derivation will be presented, which is valid if the duct entrance is
close to the reactor core. The situation is shown in Fig. 5.1. A reactor
core surrounded by a reflector acts as the source. It is supposed that the
volumetric source strength of the core increases linearly with the distance in
the core measured from the core-reflector boundary. This is roughly valid for
the first few mean free paths for fast neutrons if the fission distribution is
cosine shaped. The number of uncollided particles at P in dl4 around 42 is:

/Sv(:c, £2) exp (_M;M) dA,dQqdz =
0
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Figure 5.1: Geometry to derive the power of cosine p.

oo exp (_ ﬂxtc-’€+2¢rd)
- / S.(z, £2) £ ) dA,dAqde (5.6)
d (=)’

where z is the distance in the core, d is the reflector thickness, and X,. and
Y, are the total cross sections of the core and reflector, respectively. §, is
the volumetric source strength of the core, which is supposed to have the
form: S,(z,82) = S,($2)z. The number of particles at P in df}, per unit
area perpendicular to §2 is obtained by dividing the RHS of Eq. (5.6) by the
detector area dA,;. This number is the contribution to the angular flux at P
coming from solid angle df2,:

oo _Liex+¥ed
¢(‘Q)dns = /Sa(n)wexp ((M)I; ) dAsd:L' (5'7)
o u

Using dQ, = pdA,/((z + d)/u)?, one gets for the flow rate at P:

Yo »d
lcm_{'zl )d:c

in(92) = (£2-n)p(02) = 750(9):0 exp (— p
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- sa(mzi;- exp (~Zerd/ 1) (5.8)

The exponential term can be further simplified for p close to 1.0 to:

exp (—Z¢-d/p) = exp (—Zrd) exp (E"d(l - i)) =

1 Terd
= exp (— X d) (exp <1 - —)) ~
p

1
~ exp (- Zpd) (1+1 - ;)Ewd ~ exp (— B¢ d) p=rr? (5.9)
Substituting Eq. (5.9) in (5.8), one gets for the angular flow rate at point P:
M‘Z-}'-Eg,.d
n(£2) = 54(£2) ( 52 ) exp (—Z¢rd) (5.10)
te

It can be seen that an angular flow rate distribution with p ~ 2 4+ X;.d is
obtained. Above theory is valid for uncollided neutrons only, and will fail
for thermal neutrons because the uncollided flux approximation is not valid
in this case. Fortunately, the distribution of thermal neutrons diffusing in a
finite medium can be described by a Fermi distribution [Pri57]:

(”+\/§”2) ~ ¢ 2.54 54
x(1+2/v3) * o

where ¢, is the thermal neutron flux at the outer reflector boundary. The
approximation holds for u close to 1.0, and it can be seen that p ~ 1.5 for
forwardly directed angles for the thermal neutron flux.

The above derived rules-of-thumb have been checked by a discrete ordinates
calculation. The neutron flux in a cylindrical core with reflector layers of water,
carbon and aluminium with total thickness of d ~ 25 cm (see Figs. 5.2 and
6.1) was calculated by the DOT3.5 code [Rho73] in 25 energy groups. Details
of this calculation are given in Section 7.1. The angular fluxes at the reflector
boundary at core midplane (corresponding to point P in Figs. 5.1 and 5.2),
were converted to a boundary source, and the dependence of this flow rate
on the cosine of the emergent angle, was fitted to a distribution given by Eq.

in(92) = den (5.11)
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Figure 5.2: Vertical cross section of a quarter of a reactor core surrounded by
a reflector. The ”empty” layer is graphite, the shaded layer is aluminium and
the waves denote water. Core midplane is at z=0 cm.

(5.1). A weighted linear least squares fit was used and only cosine values larger
than 0.5 were taken into account. The weights were proportional to g, which
gives larger weights to forwardly directed angles, but the results are not very
sensitive to the weighting function.

The power p of the flow rate distribution as a function of neutron energy
is given in Fig. 5.3. Here it is seen that the fast flow rate has a much more
forwardly peaked distribution than the flow rate with energy below 1.0 MeV.
The value of p for the first energy group (highest energy) is 5.5, approximately,
which corresponds very well with the rule-of-thumb value of Eq. (5.10), be-
cause the reflector thickness for that group is about 3.5 mfp. Furthermore, it
is seen that the value of p decreases for lower energies to the value predicted
by the Fermi distribution.
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Figure 5.3: Power of cosine p at core midplane level (z=0) as a function of

energy.

5.3 Albedo Component and Bent Ducts

The albedo component of the radiation in the duct is the flux due to particles,
which have scattered in the walls of the duct. Shin [Shi89] derived a model
for the calculation of this component, which will be exposed here because of
its usage in the IRIDUCT program.

The flux at the duct exit is expanded in a series of one-time scattered flux,
two-times scattered flux, etc:

¢(rq) = i S(ry)a"y"G™(r) (5.12)

n=0

where S is the source strength, a the albedo, v an empirically derived albedo
correction factor and G(™) the n—time scattered flux at distance r = |r, — rg|
from the source, for the special case of unit albedo and unit source strength.
Because the G(") functions have to be calculated and parametrized beforehand,
it is assumed that the series can be represented by only three terms: the
unscattered flux, a few-times scattered flux and a multiscattered flux. The
second term is approximated by the two-times scattered flux, while the third
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term is approximated by the eight-times scattered flux. This gives:
$(ra) = 5(rs)GO(r) + S(rs) (va + 7%a® + 10*) GD(r)+
+5(rs) (‘74014 + 7% + ) GO(r) ~
4
=~ S(r,) (G(O)(r) + (a +a?+ as) 763 (r) + __lc: a‘YSG(s)(")) (5.13)

The function G(®) is the unscattered flux per source particle, for which the
line-of-sight flux can be used. Because gamma ray albedo values are generally
smaller than those for neutrons (this is very much true for the dose albedo),
the multiscattered flux contribution for gamma rays (the term with the G(S))
is neglected and G(?) is replaced by G(1). The correction factor v depends on
the albedo data, and is fixed for all calculations with the same albedo library.
It is chosen such that the flux at the duct exit fits best with measurements.

The one-, two- and eight-times scattered fluxes were numerically calcu-
lated for cylindrical ducts, while they were derived by a Monte Carlo code for
both rectangular ducts with different width to height ratios, and annuli with
different ratios of the inner and outer radii. In general, these functions will
be dependent on the source condition. Therefore, they were derived for both
an isotropic point source and a flow rate at the duct entrance. The angular
dependence of the flow rate distribution is described by two angular bins with
respect to the duct axis: one forwardly directed bin with 0.879 < u < 1 (bin
1) and one with 0 < g < 0.879 (bin 2). The functions were fitted to an empir-
ical formula. The obtained fitting parameter values can be found in literature
[Shi89].

This method is also applicable to bent ducts. For 90 degrees bent ducts, a
method is applied by Shin, which is very similar to methods earlier derived for
fast neutrons [Sim56] and for gamma rays [LeD59]. The flow rate incident to
area I in Fig. 5.4 (A; in the left picture) is assumed to be totally absorbed. A
re-emmitted flow rate proportional to the product of the incident flow rate and
the albedo is taken for the source in the second leg, which is supposed to have
a cosine angular distribution. Furthermore, Shin adds the flow rate incident
to area II to the flow rate in the second angular bin (0 < p < 0.879). An
empirical factor is introduced to give the best fit of the results to measured
data. This method for 90 degrees bent ducts cannot easily be applied to
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Figure 5.4: Geometry for calculating the source at the entrance of the second
leg of a 90 degrees bent duct (left) and a 60 degrees bent duct (right).

general bent ducts, unless one introduces meaningless empirical correction
factors. Although such factors are almost unavoidable for simple streaming
methods with a very restricted data library, the use of such factors is not very
satisfactory. Therefore, another method is proposed.

As the angle of a bent duct (8 in Fig. 5.4) increases from 0 to 90 degrees,
the flux at the entrance of the second leg is determined more and more by
multiscattered particles. This leads to three effects: the flow rate at the
entrance of the second leg will be less forwardly peaked, its magnitude will
decrease and its spectrum will soften. These effects will be accounted for by
the following method.

Up to now, the angular distribution of the albedo was assumed to be
cosine shaped with respect to the normal to the wall. This is reasonable if the
particles in the wall scatter isotropically or the scatterings are so numerous
that the particle flux can be assumed isotropic. In the same way as Eq. (5.10)
was derived, it can be found that the emergent angular flow rate has a cosine
distribution if d = 0 and the volumetric source density S,($2) is isotropic and
uniform.

The angular dependence of the albedo can also be assumed, however, to be
due to both single scattering and multiple scatterings in the wall. The single
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scattering albedo a, can be written as [Chi84]:

EEAB(E,EI, HBs) 1

(B

as(E, Hy E’a /1"1 ¢I) = (514)

where F and E’ are the energies of the incident and emergent particles, respec-
tively, u and p' are the cosines of these particles with respect to the normal to
the wall, ¢' is the azimuthal angle with respect to this normal and y, is the co-
sine of the scattering angle in the laboratory system (LAB). It is assumed here
that the volumetric source density of scattered particles in the wall decreases
exponentially along the incident direction.

If the energy decrement per collision is small, the ratio of the total cross
sections of the incident and emergent particles can be assumed to be unity
and the energy integrated single scattering albedo writes:

SIAB(E,p,) 1
2rE(E) 1+ 4

as(E’ My .U'/’ ¢,) = (515)

For neutrons, it is assumed that elastic scattering is dominant, and that
the scattering is isotropic in the centre of mass system (CM). The relation
between the scattering cross sections in the LAB and CM systems writes
[Chi84, Dud76):

+ 2= 4 1)3/2
1+ £

1
SEAR(B, 1) = 5O (B, )22 (5.16)
where . is the cosine of the scattering angle in the CM system and A is the
atomic mass of the scatterer. The relation between u. and pu, is given by:

= l(1— )+ (1 1(1— 2))]/2 (5.17
He = A /“.y) Hs _A2 g : )

For gamma rays, the Klein-Nishina equation [Chi84] can be used for the scat-
tering cross section in Eq. (5.15). This cross section is obtained by integrating
Eq. (4.2) over energy ¢'.

The angular dependence of the albedo is now taken as a linear combination
of a single scattering and cosine albedo:

a-"(E’ Hy M,’ ¢/) p'l
el N )
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where f is an empirical fraction to be determined yet. By numerically inte-
grating over all outgoing directions, the flow rates in the two angular bins at
the entrance of the second leg due to emerging particles from area I, ]ﬁ) and

,z§ ,), can be determined:

1.0 27 o0

9@y = [ [ [amE 8505 dEd¢zd#2 (5.19)
0879 0 O
and:
0.879 27 oo
WEy= [ [ [amew,il @5 dEd¢2d#2 (5.20)
0 0 0

where y’ is the cosine of the polar angle with respect to the normal to the wall
of area I (Fig. 5.4, right picture), and ¢’ the azimuthal angle. u, is the cosine
of the polar angle with respect to the duct axis of the second leg (vector v,
in Fig. 5.4, right picture), and ¢; the azimuthal angle. _1( ) is the flow rate in
the first leg incident to area I.

From the flow rates in the two angular bins, the power of the source can
be determined by calculating the fraction of the flow rate directed into the
second angular bin and the power of the distribution corresponding with this
fraction:

(2)
p=In (T]ﬂ—(z—)) / In(0.879) — 1 (5.21)
hr t3
1/ 21

Besides scattering against area I, there will also be a contribution to the
flow rate directed into the second leg from radiation emerging from areas
perpendicular to areas I and II (the floor and roof of the duct in Fig. 5.4).
It is assumed that one half of the flow rate of these areas is directed into the
second leg. Following Shin, the flow rate incident to area II is added to the
flow rate into the second angular bin. These contributions determine the flow
rates at the entrance of the second leg in angular bins 1 and 2, which are used
to calculate the one-, two- and eight-times scattered fluxes at the exit of the
second leg. To determine the line-of-sight flux at the exit of the second leg,
the total flow rate is assumed to have a distribution with power p as given
by Eq. (5.21). The flow rate directed into the second leg without scattering
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against any wall is added to the total flow rate. Summarizing, the flow rates in
the two angular bins used to calculate the one-, two- and eight-times scattered
fluxes, are:

iP(E) = 2;3(B)
ISUE) = 25{)(E) + 5P (B) (5.22)

and the total flow rate used to calculate the line-of-sight flux is:
iD(E) =2 (i(B) + i) (B)) + $7(E) cos g (5:23)

where 3 is the angle between the centrelines of the two legs of the duct (see

Fig. 5.4), ]” is the flow rate incident to area II and ¢(!) is the flux at the
end of the first leg. The flow rate j(?) is assumed to have a cosine angular
distribution with power p according to Eq. (5.21).

The factor f is to be determined yet. It is clear that this factor should
be 1 for straight ducts and 0 for 90 degrees bent ducts. It turned out that
f = cos B works well.

5.4 IRIDUCT

Based on the methods described above, a program was written to calculate
fluxes in straight and bent ducts. The line-of-sight flux at the duct exit is
calculated according to Eq. (5.3) for cylindrical ducts and Eqs. (5.4) and
(5.5) for annular gaps. Eq. (5.2) is numerically integrated for rectangular
ducts.

The albedo component of the flux at the duct exit is calculated according
to the method of Shin [Shi89]. For rectangular ducts, the fitting parameters
are given for width to height ratios of the duct of 1.5, 2.0 and 4.0. For ducts
with width to height ratios between these values, a polynomial fit of second
order for the one-, two- and eight-times scattered fluxes is performed to obtain
these fluxes for the requested ratio. For ratios less then 1.5, the fluxes for a
ratio of 1.0 are calculated by using the scattered fluxes of a cylindrical duct
with the same cross sectional area and interpolating again for the fluxes. For
annular gaps, the fitting parameters are given for ratios of the inner and outer
radius of 0.5, 0.75, 0.87 and 0.95. For ratios between these values, a second
order polynomial fit for the scattered fluxes is performed.
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Both fluxes and dose-equivalent rates are calculated by the program. Dose-
equivalent rates are obtained by multiplying the fluxes by dose-equivalent con-
version factors, which have been calculated by the DOSE code [Kni78]. In
addition, four response function can be given by the user in the albedo data
file.

For multilegged ducts, the method described above is used to calculate the
source at the entrance of the second leg. Maximal five legs can be specified in
the input and for each bend, the atomic mass of the scatterer must be given.
For mixtures, the atomic mass weighted with the scattering cross section will
be energy dependent, which is not very practical, and the atomic mass of the
lightest nuclide can be used, which will lead to an overestimation of the power

p.
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Figure 5.5: Fast flux (E > 1.0 MeV) per source neutron in a two legged
cylindrical duct in concrete. The radius is 5 cm, the length of the first leg 50
cm. The percentage standard deviations of the MORSE-SGC/S results at the
end of the second leg are about 25%.

To demonstrate the program, an albedo matrix is calculated in P3Sg mode
by the one-dimensional discrete ordinates code XSDRNPM-S [Gre83| for 25
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energy groups with boundaries given in Table 7.1. An incoming flow rate,
homogeneously distributed in the three most oblique incident angles (the Sg
quadrature set has four incident angles with non-zero weight) was defined,
and the ratio of the emergent and incident flow rates was taken for the total
albedo. Note that the calculation of the total albedo this way, is quite easy
compared with the calculation of differential albedo values. Because the values
of the total albedo thus obtained are slightly smaller then the ones calculated
by Shin, which is probably due to the fact that Shin calculated them for a
more oblique incident angle, ¥ = 1.0 is used in Eq. (5.13) for the customized
albedo library.

Results of the program are shown in Fig. 5.5, which gives the fast fluxes
(E > 1.0 MeV) in a straight duct and in ducts with two legs with angles of 45
and 90 degrees. An isotropic point source is located at the duct entrance with
energy in group 3 (1.0 to 2.23 MeV). It can be seen that the flux in the 90
degrees bent duct is slightly underestimated, while the flux in the 45 degrees
bent duct is overestimated, compared with results from the MORSE-SGC/S
Monte Carlo code [Wes81a]. This latter effect is partly due to the fact that
A = 1 was used for the atomic mass of the scatterer, which overestimates the
power p of the source distribution. A value of 16 (oxygen) is more realistic for
concrete in the fast energy region, and the flux at the exit of the 45 degrees
bent duct is reduced from 6-1078 to 31078 cm~2 s~!, while the power p is
reduced from 2.0 to 0.6.

Care must be taken not to abuse the IRIDUCT program. A simple method,
which consumes only some tens of seconds of CPU time for a problem like
Fig. 5.5, is not expected to give as good results as Monte Carlo codes, which
consume about 24 hours of CPU time for such a problem. In general it can
be said that fluxes, which depend highly on the material used, or on the
geometry of the system, cannot be calculated accurately by IRIDUCT. Indeed
the thermal flux in the problem of Fig. 5.5, which is only due to downscattering
of fast neutrons, is badly represented by IRIDUCT. Just like a point-kernel
shielding code, IRIDUCT can only account for the geometry and materials
between the source and calculation point. Any influence of the geometry and
materials behind the calculation point is not accounted for by the program.
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Chapter 6
Neutron Flux Measurements in
Straight and Bent Ducts

6.1 Introduction

To judge the capabilities of transport codes in real streaming problems (steel-
walled ducts in concrete, irradiated with a typical reactor spectrum), exper-
iments were carried out at the nuclear reactor of the Institute of Nuclear
Technics (NTT) of the Technical University of Budapest, in cooperation with
the reactor physics group of NTI. Neutron reaction rates were measured in
cylindrical ducts (straight and with bends of 30, 60 and 90 degrees) by use
of coupled pairs of °LiF and "LiF thermoluminescence dosimeters (TLD) and
multiple foil activation methods. The research reactor at NTI has a large
irradiation tunnel with length of 200 cm, with its centerline through core mid-
plane. The geometry from core centre to the tunnel entrance is given in Fig.
6.1.

The concrete block containing the cylindrical steel-walled duct, could be
placed in the tunnel up to 25 ¢m from the tunnel entrance. At the back
of the large concrete block, a small block containing the second leg of the
duct with a bend of 0, 30, 60 or 90 degrees, could be positioned, with the
second leg upwardly directed (see Fig. 6.2). In this way four different duct
geometries were created (see Fig. 6.3). Because the upper side of the block
touched nearly the ceiling of the tunnel, the second leg of the 60 degrees bent
duct was partly closed and that of the 90 degrees bent duct was fully closed.
The backscattering from the ceiling of the tunnel is taken into account in the
calculations. About 21 cm behind the last detector position in the 30 degrees
duct measured along the duct axis, a shielding door filled with water was
present, which was also accounted for in the calculations. This shielding door
was neglected in the straight duct, because the last detector position in this
duct was positioned further away from the shielding door and the thermal
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Figure 6.1: Horizontal cross section of the core and shields up to the tunnel
entrance. The squares are assemblies with size of 7.2 x 7.2 cm?. The half
core is in bold, the other "empty” assemblies constitute the graphite reflector,
while the waves denote water. The layer with thickness 2.1 cm is made of
aluminium. The active core height is 50 cm.

neutron flux was much higher in this duct due to the large contribution of the
uncollided flux.

The inner and outer diameters of the steel liner of the duct were 11.8
cm and 12.7 cm, respectively. The detector holders consisted of aluminium
disks with thickness of 1.5 mm, which fitted precisely in the duct and which
were kept at a constant distance from each other by thin aluminium bars.
The detectors could be placed on the disk at four positions on a straight line
through the disk centre at distances of 2.5 and 5.0 cm from the centre. The
foils were irradiated in a small aluminium capsule with thickness of 0.5 mm,
or in a cadmium capsule with thickness of 1 mm. The detector positions in
the ducts are given in Fig. 6.3.

6.2 Thermoluminescence Measurements

Measurements were performed by use of thermoluminescence dosimetry. This
method makes use of TLD samples, made of crystalyne material dotated with
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Figure 6.2: The concrete blocks containing the straight duct.

some impurities to create so-called trapping centres with energies between the
valence and conduction bands. If the samples are irradiated, the absorbed
ionizing radiation produces free electrons and holes, which may be trapped in
the trapping centres of the material. After the irradiation, the TLD samples
are heated, and the trapped electrons and holes are released. If they recombine,
a photon in the visible region is produced (if the energy gap between the
valence and conduction band is about 3 to 4 V), which may be detected by
a photomultiplier. In this way, a plot of the measured light intensity versus
the temperature of the TLD sample is obtained, which is usually called a
glowcurve. The integrated count yield of the glowcurve is proportional to the
absorbed energy in the sample during the irradiation (if no saturation effects
occur).

Measurements were carried out by pairs of °LiF (TLD600) and “LiF (TLD-
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Figure 6.3: Vertical cross section of the four different duct geometries as de-
scribed in the text. The detectors (marked by an asterisk) are numbered from
left (core side) to right as in the 30 degrees duct. The distances between the
detectors are the same for all geometries except for detectors 2 and 3.

700) TLD samples with size of 3.1 x 3.1 x 0.89 mm?3. All samples of each group
of TL materials were equally sensitive to gamma rays within 3% (percentage
standard deviation), while all the TLD600 samples were equally sensitive to
neutrons within 5%. The gamma ray sensitivity of the TLD600 samples is
about 1.7 times as large as that of the TLD700 samples. This may be caused
by different impurity concentrations of the two types of materials [Bos92]. The
neutron sensitivity of TLD600 samples is much higher than that of TLD700
samples by means of the (n,a) 1/v capture reaction in ®Li (o ~ 940 barn at
0.025 eV). Although the (n,a) cross section of "Li is zero, the presence of a
small amount of °Li in TLD700 leads to a low neutron sensitivity of TLD700.
The consequences of this will be described later. The TLD samples were read
out twice with a heating rate of 6 K.s~' and the counts of the second reading
were subtracted from the first one to correct for zero dose counts and signal
noise in the photomultiplier equipment, etc. The annealing procedure, needed
to restore the trapping centres before each irradiation, was the same for all
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samples: one hour at 400 “C and two hours at 100 °C.

Because the TLD samples were irradiated pair wise (two TLD600 samples
at the one side of the disk and two TLD700 samples at the other side, sym-
metrical with respect to the centre of the disk), both the gamma dose and
the neutron reaction rate could be determined. If Cg and C; are the count
yields of a TLD600 and TLD700 sample at the same measurement position,
respectively, it is straightforward to find that:

Cs — BC
071 = —Ga““ﬂ'r (6-1)
and:
Cen = Cs it 0077 (62)

where C7, is the count yield of the TLD700 sample due to gamma rays and
Cén is the count yield of the TLD600 sample due to neutrons. The calibration
factors a and @ are defined as follows:

a=—"and f = — (6.3)

where S¢., 574, Sen and S7, are the sensitivities of the TLD600 and TLD700
samples to the gamma ray and neutron fluxes, respectively. These sensitiv-
ities are determined by °Co and PuBe sources. The count rate due to the
gamma background of the PuBe source was determined by the difference of (a)
TLD700 samples enwrapped completely by TLD700 and (b) TLD700 samples
enwrapped completely by TLD600. From this measurement it was found that
about 90% of the TLD700 count rate at the neutron calibration was due to
the gamma background. Parameter S can thus be calculated if a is known.
The value of a, found from the gamma calibration, is within the range 1.6 to
1.9, while g is within 185 to 249. The variation in these numbers is due to
the fact that TLD samples within one batch are selected on their sensitivity
within certain limits (usually within 10%). The value of « is determined for
each pair of TLD600 and TLD700 samples separately, but 8 is measured for
only two pairs of TLD samples. The error in # may therefore be rather large.
The neutron sensitivity of the TLD700 samples is very small, however, and
the neutron count yields of the TLD600 samples are rather insensitive to 3.
This follows from Eqs. (6.1) and (6.2) for 8 > a.
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To avoid fading effects, which could have affected the count rate of the
TLD samples, the time lag of two weeks, which was present between the mea-
surements and analysis of the TLD samples, was also present at the calibration
procedure of the TLD samples. Because the actual dose at the neutron calibra-
tion was unknown, the neutron response of each TLD600 sample is normalised
with respect to the average neutron response of all TLD600 samples. To find a
value for the error of this relative response, two additional neutron calibrations
were performed (without a time lag of two weeks) and the neutron responses of
TLD600 sample i for these two calibrations (z; and y;, respectively) were cal-
culated together with the mean values of all responses (Z and g, respectively).
For the mean value of the difference then holds:

_ 1 ¥ 1
A=glai=y

where N is the number of TLD600 samples. The value of A thus found is
taken for the error of the relative neutron response of each TLD600 sample.
The same procedure as described above is used for determining the relative
gamma response of the TLD600 and TLD700 samples. The errors thus found
are about 5% for the neutron sensitivities and slightly less than 1% for the
gamma sensitivities. Implicitly, it is assumed here that both a and § are
spectrum independent. This assumption is valid for a, because gamma rays
only interact with the electrons in the TLD sample and no energy dependence
due to different Li isotopes is to be expected. The assumption is not valid for
B because of self shielding in TLD600 samples, which leads to a distortion of
the 1/v capture cross section for low energies of these samples and thus to a
spectrum dependent value for 3 as will be shown further on. Fortunately, this
has no significant influence on the neutron results, because of the insensitivity
of these results with respect to 3.

The energy sensitivity of the TLD samples is obtained from an adjoint one-
dimensional discrete ordinates calculation with XSDRNPM-S [Gre83]. The
sample is modelled as an infinite slab of 0.89 mm thickness and the (n,a)
cross section of ®Li is taken for the source spectrum. The point value x™ at
the boundary of the TLD sample is taken for the energy sensitivity of the
detector. This is equal to calculating the response of the TLD sample to an
isotropic point source with unit source strength, positioned just near the TLD
sample (see Section 1.3). An approximate expression for this response can be

:-;i - %’—. (6.4)
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obtained by neglecting scattering in the TLD sample. The response for energy
group ¢ in this case becomes:

L
PP L e (o ) Piage 2 ,
R, = /0//27r exp (—Ec #) p dedzdy = 5 [1 — Eo(ZiD)) (6.5)
0

where R, is the response function, D is the total thickness of the TLD sample
(0.89 mm), =/u is the distance in the sample along the ray with azimuthal
angle ¢ and polar angle cosine g and XY and ¥¢ are the total and capture
cross sections of the TLD sample, respectively. E; is the exponential integral
function of the second order [Chi84]. The capture cross section is assumed to
be only due to the (n,a) reaction in ®Li. In Eq. (6.5) scattering in the TLD
sample is neglected, while this is taken into account in the adjoint XSDRNPM-
S calculation.

Another possibility to calculate the energy sensitivity of a TLD sample
is to calculate the response to a point source with unit source strength and
cosine angular distribution. This leads to:

R, =

1
0

D 2n

g g
/ f P exp <—zg f) 28 dgdwdy = ZE[1 — 2B,(50D)]  (6.6)
oou T r/ )y

where Ej is the exponential integral function of the third order.

The energy sensitivities calculated above, can be viewed of as the proba-
bilities that a neutron of a point source positioned just near a TLD sample
(isotropic or cosine distributed) is captured in the sample by °Li. In Fig. 6.4
the capture probabilities for TLD600 and TLD700 samples are shown, accord-
ing to the adjoint XSDRNPM-S calculation and to Eqs. (6.5) and (6.6). The
difference between the adjoint calculation and Eq. (6.5) is very small, but the
difference between these two methods and Eq. (6.6) is rather large. The cosine
distributed point source is more forwardly directed to the TLD sample, which
leads to a smaller effective thickness of the sample and therefore to a smaller
capture probability in the TLD700 sample and in the TLD600 sample for high
energies. For low energies, the TLD600 sample is still completely black and
no difference is seen between the isotropic point source and the cosine point
source.

It can be seen in Fig. 6.4 that the TLD700 sample has a real 1/v depen-
dence. This relation is distorted for TLD600 at low energies because of self
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Figure 6.4: Capture probabilities for TLD600 and TLD700 samples, calculated
by XSDRNPM-S and from Egs. (6.5) and (6.6).

shielding in the sample. The ratio between the TLD600 and TL.D700 responses
is the factor 8 again, which is seen to be energy dependent due to this self
shielding effect. The values of 8 calculated by XSDRNPM-S, range from about
60 for low energies to 1400 for high energies. This latter value is equal to the
ratio of the ®Li nuclide concentrations in the TLD600 and TLD700 samples.
The values of @ averaged with the calculated fluxes in the ducts (see Section
7.1) as a weighting factor, range from 96 to 113 for the energy sensitivity ac-
cording to Eq. (6.5) and from 194 to 215 for the energy sensitivity according
to Eq. (6.6). The differences between the 3 values of the two methods, is due
to the fact that the energy sensitivity of TLD700 in the latter case is smaller
over the whole energy range by a factor of two, approximately.
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Which energy sensitivity curve of Fig. 6.4 is correct depends on the angular
flux distribution in the ducts during the irradiation, which is unknown. The
TLD700 measurements are only used to correct the TLD600 count yield for
the gamma ray contribution and this correction is only slightly dependent
on (3. This means that only the TLD600 energy sensitivity curve is used for
the comparison of the calculations and measurements. Because the calculated
and measured results are compared in a relative way (the response of a TLD
sample in the duct is normalised to the response of the TLD sample at the
duct entrance), the differences between the three methods turned out to be
negligible, compared with the measurement errors. The values of # measured
at the neutron calibration (185 to 249) were used to calculate the measured
TLD600 neutron count yield (Cgn in Eq. (6.2)).

It is noted that the interpretation of the gamma ray count yield of the
TLD samples is quite different from the interpretation of the neutron count
yield. Gamma rays only interact with the electrons in the TL material, and the
number of electron-hole pairs created in the TL material will be proportional
to the energy deposited in the TLD sample. The gamma ray count yield is
thus proportional to the gamma dose in the TLD sample.

The neutron count yield will be a measure of the number of (n,a) reactions
in the TLD sample during the irradiation. If the cross section for the (n,a) re-
action would have a 1/v dependence over the whole energy range, the neutron
count yield would be a measure for the neutron density during the irradiation.
This is the case for TLD700 over a large energy range (see Fig. 6.4), but not
for TLD600 because of selfshielding in the sample. The interpretation of the
TLD600 count yield is therefore not so easily understood.

6.3 Multiple Foil Activation Measurements

Neutron flux spectra at different measurement positions were determined by
multiple foil activation measurements. Foils were irradiated in the ducts and
the activities of the foils were measured. From these activities, the saturation
activity per target nucleus of the foils were calculated, which were used in the
SANDBP neutron spectrum adjustment code [Zso82]. The input spectra were
calculated beforehand by discrete ordinates and Monte Carlo shielding codes
described in Section 7.1.
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The activity of a foil after an irradiation time T; writes:
o0
A(T,) = AN(T,) = No(1 — exp(=ATy)) f $(E)o(E)dE (6.7)
0

where ) is the decay constant of the nuclide under consideration, Ny is the
initial number of target nuclei before the irradiation, and o is the neutron
reaction cross section of the nuclide. The integral on the RHS of Eq. (6.7) is
the saturation activity per target nucleus, which is to be determined from the
measurements.

After the irradiation with duration T, and a cooling period with duration
T., the activities of the irradiated foils were measured during a time interval
Ty,, which varied from several minutes to several hours, dependent on the half-
life of the nuclide. The measurements were done by two HPGe (High Purity
Germanium) detectors. The pulse heights of these detectors were recorded by
4096 channels pulse height analysers. From the spectra thus obtained (number
of detected gamma rays versus gamma ray energy), the measured saturation
activity per target nucleus can be obtained. If the nuclide decays via several
decay modes, the saturation activity per target nucleus calculated from peak
i in the measured gamma spectrum becomes:

m _  bik exp(ATe)
P Tmnivi No(1 — exp(—AT))

(6.8)

where P; is the number of counts of peak i (also called the peak area), k is
the dead time correction factor, 7; is the efficiency of the detector and 7v; is
the gamma yield of the nuclide. The change of the nuclide activity during the
measurements was automaticaly accounted for, but generally this correction
was negligible. If the nuclide decays via several decay modes, a weighted mean
saturation activity per target nucleus of the nuclide is calculated:

YAl o}

Am =t
Y 1/0?

(6.9)

where o; is the standard deviation of the activity of peak %, which is in practice
mainly determined by the variance of the peak area and to a lesser extent by
the variance of the detector efficiency.
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One well-type detector and one detector with adjustable foil-detector dis-
tance were used. The first one was mainly used for low activity foils, while
the latter one was used for high activity foils. Foil-detector distances of 10,
50 or 150 mm were used, in such a way that the dead time correction could
be done automatically by the live-time option of the measurement system.
This correction was generally less than 5% for all foils. The efficiency of the
detector with adjustable foil-detector distance was determined at 150 mm by
11 calibration sources. A power series on double logarithmic coordinates was
used to fit the detector efficiency as a function of energy:

Inn(E) =Y an(lnE)" (6.10)

where a,, are the fit parameters. Two different fits were made for the low and
high energy regions, respectively, and the joining point around 100 keV was
found by trial and error, such that the sum of squared deviations between
measured and known activities was minimized. In this fit, n ranged from 0 to
3 for the low energy region and from 0 to 4 for the high energy region. The
detector efficiencies corresponding with other foil-detector distances and with
the well-type detector, were determined by measuring the same foils at both
detectors and at all distances of interest.

After the saturation activity per target nucleus of each foil was calculated,
spectrum adjustment calculations could be done by SANDBP using cross sec-
tions from refs. [Koc90, Cul85, Zij84]. The 640 groups cross sections of these
libraries were collapsed to 50 groups ranging from 1071° to 20 MeV, by use
of a typical neutron spectrum measured in the irradiation tunnel beforehand.
This 50 groups structure has a fine enough structure to give adequate spec-
trum information, while more energy groups would have made the adjustment
procedure more difficult because of the increase of the number of freedoms.
Input spectra for the unfolding procedure were provided in a 25 groups struc-
ture by calculations described in Section 7.1. The fluxes of these calculations
were converted to point energy spectra by dividing each group flux by the
energy width of the group and using the logarithmic mean energy as the char-
acteristic energy of that group. Using a log-log interpolation scheme, and the
extrapolation routines from the SANDBP program, these point energy spectra
were converted to the 50 groups structure used for the adjustment procedure.
The low end of these spectra were extrapolated by a Maxwellian spectrum
with neutron temperature of 306 K, and the 1/ E-Maxwellian joining point at
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0.185 eV. The high end of these spectra were extrapolated by a Watt fission
spectrum.

At each iteration step, these group spectra are normalised to obtain reac-
tion rates, which fit best with the measured data. If the activities of different
foils are uncorrelated, the sum of squared deviations of the relative differences
between measured and calculated activities writes:

N (4 - g A5)
o-3! iy )

n=1

(6.11)

where A™ are the measured activities of nuclide n, and A% are the calculated
activities based on the neutron spectrum of the k* iteration. Before the first
iteration (k = 0), the calculated input spectrum is used. Minimizing e? with
respect to fi leads to the expression for the normalization factor f; [Zij83]:

1 X o4m
==Y In 12
T N &~ 4k (6.12)

At each iteration, the group fluxes are adjusted exponentially:

gé'g“"’l = ¢: exp(C:) (6.13)
with Cg equal to:
N
> Wk, In (47 /4%)
k n=1
C, = ~ (6.14)
2_:1 erf,g

where Wr’f,g is a weight factor for nuclide n and group g, which was chosen
equal to:

Ak 1)°
k )
Wn,g = ;ﬁg (“Z_l_—:) (6.15)
with o, the standard deviation of the measured activity A}'. The adjustment
procedure is stopped if the standard deviation of the measured to calculated
activity ratios (A™ — AX)/Ak is less than a value determined beforehand, or
if the maximum number of iterations defined in the input is reached.
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Table 6.1: Foils used for the measurements of the fast neutron spectra. The
energy response intervals given in the table account for 90% of the nuclide
activities. All foils are infinitely diluted. The thicknesses of the foils are about
0.1 to 0.25 mm.

Reaction Cadm. | Energy Positions
Cover | (MeV)
56Fe(n,p)**Mn No | 5.5-12.5 | 00.1 00.3 00.4 00.5 30.2
60.2 60.3 90.2 90.3
54Fe(n,p)**Mn No | 2.3-10.0 | 00.1 30.2 60.2 90.2
%8Ni(n,p)®*®Co No |2.3-10.0 | 00.1 00.4 30.1 60.3 90.1
5In(n,n’)'™In | No | 1.0-6.7 | 00.1 00.2 00.3 00.4 00.5
30.1 30.3 30.4 30.5
60.1 60.2 60.3 60.4 60.5
90.1 90.2 90.3 90.4

Tables 6.1 and 6.2 give listings of the foils used, together with the irradia-
tion positions (00.1 means the first position in the straight duct, 30.3 the third
position in the 30 degrees duct, etc.). Both bare and cadmium covered foils
were used. The measured activities of the cadmium covered foils are much less
than those of the bare foils and the energy response intervals of the cadmium
covered foils are shifted to higher energies, because of the absorption of almost
all thermal neutrons (£ < 0.4 eV) in the 1 mm thick cadmium cover. The
cadmium covered cross sections are accounted for in the SANDBP program
by use of effective cross sections, which include the absorption of thermal neu-
trons in the cadmium cover by exponential attenuation. All the foils used
were infinitely diluted, except the *3Sc(n,y) foils, for which self shielding in
the foil is accounted for by use of Eq. (6.6). It is noted that the energy
response intervals given in the tables, depend on the neutron spectrum and
thus on the position in the ducts. As can be deduced from Tables 6.1 and 6.2,
at many positions in the ducts, only a small number of activation foils could
be evaluated, which was not enough to do meaningful spectrum adjustment
calculations. Therefore, measured and calculated activation rates should be
compared with each other. It can also be seen that no detector responses
for the energy range from 1.0 keV to 1.0 MeV were present. Generally, it is
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Table 6.2: Foils used for the measurements of the thermal and resonance
parts of the neutron spectra. The energy response intervals given in the table
account for 90% of the nuclide activities. All foils are infinitely diluted except
the 5Sc(n,y) foils. The thicknesses of the foils are less than 0.1 mm.

Reaction Cadm. Energy Positions
Cover (eV)
5Mn(n,7)**Mn | No | 0.001-0.255 | 00.1 00.4

30.1 30.2 30.3 30.4 30.5
60.1 60.2 60.3 60.4 60.5
90.1 90.2 90.3 90.4 90.5
5Mn(n,7)**Mn | Yes 0.55-1600.0 | 00.1 00.2 00.3

30.1 30.2 30.3

60.1 60.2 60.3 60.4

90.1 90.2 90.3 90.4
97Au(n,7)'""®Au | No | 0.001-6.3 00.1 00.3 00.4 00.5

30.1 30.3 30.4 30.5

60.1 60.3 60.4 60.5

90.1 90.3 90.4 90.5

197 Au(n,y)'%8Au | Yes 2.8-6.3 00.1 00.3 00.4 00.5

30.3 30.4 60.1 60.3

90.1 90.3 90.4
15S¢(n,y)*%Sc No | 0.001-0.115 | 00.1 00.3 00.5

30.3 30.4 30.5

60.3 60.4 60.5

90.3 90.4 90.5
15S¢(n,y)*Sc Yes | 0.255-1600.0 | 00.1 00.3 00.4 00.5
186W (n,y)!8"W No | 0.028-30.0 00.2

186W(n,y)!8"W | Yes 13.5-30.0 | 00.1

139La(n,y) "La No | 0.001-135.0 | 00.3 00.4 00.5 30.4
139La(n,y)!*’La Yes 0.55-1600.0 | 00.1 00.2
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difficult to cover this energy range with activation detectors, because it is too
high for resonance detectors and too low for threshold detectors. Detectors
suitable for this energy range (e.g. 2>’Np(n,f) and **Nb(n,n’) reactions) gave
no adequate responses in the ducts.

To compare measured and calculated reaction rates, cross sections are re-
trieved from the JEF1.1 data file [JEF85] and processed by the NJOY89 code
[Mac87], to obtain infinitely diluted cross sections. The activation rates of
cadmium covered foils are obtained by use of effective cross sections, which
account for the shielding in the cadmium cover. This shielding factor is calcu-
lated for each group according to Eq. (6.6). Reaction rates are then obtained
by multiplying the cross sections of a particular group with the corresponding
calculated group flux and summing over all groups. The differences between
the Au and Mn reaction rates thus obtained, and those from the SANDBP
output before the first iteration, is about 10-15%. This is generally within one
standard deviation of the calculated reaction rates. For the *°Fe(n,p)°*Mn re-
action this difference is about 35-40% (3 to 4 standard deviations). Because
the differences are systematic (they have the same sign and same magnitude
for each particular reaction) they are likely to be caused by the coarse energy
group structure in the calculations, which can lead to errors due to different
cross section treatment and spectrum conversion. Calculating the reaction
rates in 25 broad energy groups cannot be very accurate of course, because
the cross sections are weighted with a Maxwellian—1/E—fission spectrum. On
the other hand, converting the calculated spectrum from 25 broad energy
groups via a continuous spectrum to 50 fine energy groups, as is done in the
SANDBP code, also introduces errors. This may also explain the large dis-
crepancies for the 56Fe(n,p)**Mn reaction. The cross section of this threshold
reaction is only non-zero above 5 MeV. Because the flux in this energy region
is calculated by MORSE-SGC/S in only one energy group (4.5-19.6 MeV),
and the logarithmic mean energy of this group is rather high (9.39 MeV), the
actual flux level of the fission spectrum in SANDBP before the first iteration,
is overestimated. If 8.5 MeV is used for the characteristic energy of the first
group, a nice agreement is found between the calculated reaction rates of **Fe
and those from the SANDBP output before the first iteration. The influence
of this modification on the adjusted spectrum turned out to be only a few
percent. To avoid discrepancies due to spectrum conversions like this, more
fast groups in the shielding calculations are required. For the *¥Ni(n,p)**Co
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reaction, which is sensitive to lower energies (E > 2 MeV), the discrepancy is
only a few percent.

Because no uncertainty was assigned to the reaction rates from the SANDBP
output, the values obtained in the way described above (by use of the infinitely
diluted cross sections from the JEF1.1 data file) were used to compare mea-
sured and calculated reaction rates in Section 7.2, without presuming that
these values are better than the ones from the SANDBP output before the
first iteration. For the '°In(n,n’)!!*™In reaction the SANDBP output is used
because no correct cross sections were available from the JEF1.1 data file. It
must be emphasized that the uncertainties in the reaction rates thus obtained,
are only due to the standard deviations of the calculated group fluxes. The
errors due to the cross sections and their treatment are not included.

6.4 Measurement Procedures

The measurements were performed in January 1991, after the reactor was shut
down for 3 weeks. By means of a few test irradiations, the necessary irradiation
times for the TLD samples at all positions were determined. Because the TLD
responses at the first and second detector positions differed already by a factor
of 50, these two detector positions were measured separately from the second
till the fifth ones. The TLD samples at the first and second detector positions
were irradiated for 5 minutes and at a reactor power of 10 W, while the ones
at the second till the fifth positions of the straight duct were irradiated for
30 minutes with the same power, and in the bent ducts for 30 minutes with a
power of 50 W.

The foil activation measurements were performed at the maximum power
of 100 kW for 10, 11, 12 and 15 hours for the 0, 30, 60 and 90 degrees bent
ducts, respectively. For the straight duct, two irradiations were performed
to avoid difficulties of measuring too many foils with short half-life. After
the irradiations, the concrete blocks were kept in the irradiation tunnel for a
cooling period of 1.5 hours. Despite this cooling period, the exposure rate at
the front side of the concrete blocks was about 25 R.hr~!, due to activation of
nuclides in the concrete and in the painting of the concrete blocks. Directly
after this cooling period, the activaties of the foils were measured in the way
described in Section 6.3. The integrated reactor power was monitored with
aid of Au activation detectors.
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Chapter 7

Calculations and Comparison with
Measurements

7.1 Calculations

Calculations are performed by different computer codes. First the cross sec-
tions of the core and shield layers are generated by the SCALE-3 system
[Gre81, Wes81b, Gre83], by collapsing cross sections from 172 fine groups to
25 broad groups. These collapsed cross sections are used for the shielding
calculations. The neutron angular fluxes at the tunnel entrance are calculated
by a two-dimensional discrete ordinates code. These angular fluxes are subse-
quently used to calculate the source for the duct shielding calculations, which
are performed by a three-dimensional Monte Carlo code.

Cross sections are collapsed from a 172 groups library, which is based on
the JEF1.1 data library [JEF85] and prepared by the NJOY87 code [Mac87).
Unresolved resonance treatment according to the Bondarenko method is done
by the BONAMI-S code [Gre81] for 23°U and 23®U. Resolved resonance treat-
ment for these two nuclides and iron is done according to the Nordheim method
by the NITAWL-S code {Wes81b].

To generate core cross sections in 25 groups, a microscopic cell calculation
was done by XSDRNPM-S [Gre83] in cylindrical geometry. The cell contained
fuel, cladding, moderator and aluminium with radii of 0.35, 0.50, 0.989 and
1.016 cm, respectively. The aluminium was included in the cell to account
for the aluminium wall of the fuel assemblies. Also the water layer is slightly
enlarged to account for the water between adjacent assemblies. The height of
the cell was decreased to 23.4 cm to increase the leakage in vertical direction to
meet the criticality condition. The energy boundaries and lethargy increments
are given in Table 7.1.

The cross sections of the reflector and shield layers are obtained by a
macroscopic cell calculation in plane geometry. The cell consisted of a core
zone of 18 cm with a reflective boundary at the one side and reflector and



Table 7.1: Energy group boundaries and the lethargy increment per group for
the 25 group structure used for the streaming calculations.

Group Energy Au | Group | Energy | Au
1 19.60 MeV | 1.47 14 75.7eV | 0.71
2 4.49 0.70 15 37.3 1.00
3 2.23 0.80 16 13.7 1.00
4 1.00 0.70 17 5.04 0.76
5 497.9 keV 1.00 18 2.36 0.75
6 183.2 1.00 19 1.12 1.03
7 67.4 1.00 20 0.40 0.74
8 24.8 1.00 21 0.19 0.64
9 9.12 1.00 22 0.10 0.69
10 3.35 1.00 23 0.05 0.69
11 1.23 1.00 24 0.025 0.92
12 454.0 eV 0.80 25 0.010 4.51
13 204.0 1.00 0.00011

shield zones at the other side. These latter zones contained water, carbon,
water, aluminium, iron and concrete with thicknesses of 7.2, 7.2, 9.0, 2.1, 0.45
and 10.0 cm, respectively (see Fig. 6.1). The last two zones represent the iron
liner and the concrete of the blocks. Only one cross section set for each shield
material is obtained. For deep penetration calculations, it is widely accepted,
that different cross sections should be used for different parts of the shield,
despite the fact that the shield is of homogeneous composition. To keep the
cross section data set as small as possible to avoid ”supergrouping” in the
MORSE-SGC/S Monte Carlo code [Wes81a], which would make it impossible
to calculate the point values in a forward Monte Carlo run (see Section 8.2),
only one cross section set for each shield material is used. The introduced error
is difficult to estimate. For duct streaming calculations, the first shield layer
around the duct, which is the most important one with respect to scattering in
the duct, is irradiated to a first approximation by the line-of-sight flux, which
can hardly be calculated by a one-dimensional code.

The collapsed libraries from both the microscopic and macroscopic cell
calculations do not include upscattering, because the library produced by
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Figure 7.1: Fast fluxes in the core and shield up to the tunnel entrance for
several core radii. The last point of each curve is at the tunnel entrance. The
fluxes are normalised to the measured fast flux in the core centre obtained
from [Zso91].

XSDRNPM-S is a so-called ANISN libary, which differs slightly from the for-
mat used by DOT3.5 [Rho73] if upscattering is included. In the DOT3.5
format, the total upscattering cross section is present, which is absent in the
ANISN format, but which is calculated by ANISN from all partial upscatter
cross sections and which is then placed at the end of the library.

Two-dimensional discrete ordinates calculations are carried out by DOT3.5
in P35, mode to calculate the angular fluxes at the tunnel entrance. DOT3.5
is suited to this kind of problems, because it makes use of cross section libraries
produced by XSDRNPM-S (the microscopic cell calculation for the core cross
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Figure 7.2: Thermal fluxes in the core and shield up to the tunnel entrance
for several core radii. The last point of each curve is at the tunnel entrance.
The fluxes are normalised to the measured fast flux in the core centre obtained
from [Zso91].

sections, the macroscopic cell calculation for the cross sections of the shield
layers) and because the calculated angular flux distribution at the tunnel en-
trance can be converted to a boundary source for the Monte Carlo shielding
calculations.

The XY geometry given in Fig. 6.1, is converted to the RZ geometry of
Fig. 5.2, to be able to get spatially distributed angular fluxes at the tunnel
entrance. The normalisation factor in the DOT3.5 calculations corresponded
with a reactor power of 100 kW as in the experiments (see Section 6.4). There
are several possibilities to choose the radius of the core: (A) radius equal to
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Table 7.2: Calculated and measured fluxes (cm~2.s7!) at the core centre and
tunnel entrance, and the k.;;. The differences between the calculations are
explained in the text. Both the calculated and measured fluxes are for a
reactor power of 100 kW. Measured fluxes from [Zso091].

R Core Centre Tunnel Entrance
(Cm) ¢fast ¢thermal ¢fast (/’thermal kef_f
Case A 18.0 | 1.6 1012 { 2.3 1012 [ 2.7 10° | 5.8 10° | 1.103
Case B 19.9 | 1.5 10'2 | 2.0 1012 | 2.8 10° | 6.0 10° | 1.047
Case C 22.9 | 1.3 1012 | 1.7 10*2 | 2.8 10° | 6.1 10° | 0.957
Case D 18.0 | 1.710'2 | 2.3 102 | 3.310° | 7.1 10° | 1.006
Case E 19.9 | 1.310'? | 1.5 102 | 3.310° | 7.1 10° | 1.001
XY 1.310'2 | 1.9 1012 { 4.3 10° | 1.1 10'° | 1.166
Measured 1.810'2 | 2.710'%2 | 4.4 10° | 1.2 10'° | 1.000

half width of the core (R = 18.0 cm) to get the distance from core centre to
the tunnel entrance correct, (B) radius such that the cross sectional area of
the core is conserved (R = 19.9 cm) to conserve the nuclide densities in the
core, and (C) radius such that the perimeter of the core is conserved (R =
22.9 cm) to get the leakage area correct. The nuclide densities in case B are
equal to the actual ones, while those in cases A and C are higher and lower,
respectively, to conserve the total amount of fissionable material in the core.
A calculation is also done for case A with nuclide densities equal to those in
XY geometry. This case will be denoted by D. All calculations in RZ geometry
have an active half core height of 25 c¢cm, and 20 cm of water as a reflector
above the core. The bottom boundary condition was reflective to simulate a
core with actjve height of 50 cm.

Several other possibilities to choose the radius of the core could have been
used. One is to conserve the buckling to get the leakage correct, which gives
a radius of 19.5 cm for unreflected cores. Another possibility would be to
conserve the power produced per unit core height. Again for unreflected cores,
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this gives according to one-group diffusion theory [Dud76]:

L/2 LJ2 R
Tz T o7
/ / cos (T) - cOs (fy) dzdy = fJU(—l:;z—)%rrdr (7.1)
—L/2-L/2 0

where Jy, is the Bessel function of the first order, and vy is the first zero of
this function. This method gives a radius of 19.7 cm. Both radii are almost
similar to case B.

Results for the fast (E > 1.0 MeV) and thermal (E < 0.4 eV) fluxes
are given in Figs. 7.1 and 7.2, respectively, for cases A, B, C and D. The
calculated fluxes are normalised to the measured fast flux at the core centre:
Gfast ~ 1.8-10'2 cm~2.57! obtained from [Zso91]. From these figures it is
seen that a larger core seems to lead to higher fluxes at the tunnel entrance.
The difference between cases A and D is due to the fact that the optical
thickness of the core in case A is higher, which leads to a more peaked power
distribution and thus to lower fluxes at the core boundary and the tunnel
entrance. Unnormalised fast and thermal fluxes at the core centre and tunnel
entrance are given in Table 7.2, together with measured values obtained before
[Zs091]. Here it is seen that the fluxes at the tunnel entrance do not change
that much as was suggested by Figs. 7.1 and 7.2. From this table, it is also
seen that the calculated fluxes do not correspond with the measured values.
A calculation in XY geometry was performed, therefore, and the results are
also given in Table 7.2. It must be emphasized that this calculation is for a
slice of 1 cm core height without leakage in vertical direction. One way to
incorporate this leakage would be to enlarge the absorption cross sections by a
D B? term, where D is the diffusion coefficient and B? the buckling in vertical
direction, but this is rather unpractical and still approximate because of the
introduction of a diffusion coefficient in a discrete ordinates calculation. It
is likely that the actual fluxes of the XY calculation at the core centre are
slightly higher if the reactor power remains fixed due to a cosine shaped axial
flux distribution.

To include the effect of control rods to make the core critical, a new cal-
culation in RZ geometry was done with !B added to the central core region.
Furthermore, some small geometrical changes were made, which had no large
effect on the fluxes at the tunnel entrance (some water in the shield was re-
placed by aluminium, and some carbon by water). The inclusion of '“B lead
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Figure 7.3: Fast flux (lower curve) and thermal flux (upper curve) in the core
and shield up to the tunnel entrance, for a calculation with B added to the
central core region. Both curves are normalised to the measured fast flux in
the core centre obtained from [Zso91].
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to a flatter flux profile in the core and thus to higher fluxes at the core bound-
ary and tunnel entrance, while the geometrical changes also lead to slightly
higher fluxes at the tunnel entrance. The results are again given in Table 7.2
(case E). The fast and thermal fluxes in the core and shield of this calcula-
tion are shown in Fig. 7.3, both normalised to the measured fast flux at the
core centre. Although the actual flux level is not in correspondence with the
measurements, each RZ calculation from Table 7.2 can be used to calculate
the source for the Monte Carlo calculations, because the spectra of the RZ
calculations at the tunnel entrance are almost equal to each other (the ratio of
fast and thermal fluxes at the tunnel entrance, for example, varies only from
0.459 to 0.470 for calculations A till E). The results of calculation E without
any normalisation, were used to calculate the boundary source for the Monte
Carlo duct streaming calculations.

The total leakages in the XY calculation and in the radial direction of the
RZ calculation (case E), are 9.8 -10'3 s~! and 1.17- 10" s~!, respectively. If
it is taken into account that the leakage in case E also includes some leakage
from the 20 cm reflector layer above the core (see Fig. 5.2), these two numbers
may be rather close to each other.

The angular fluxes for outgoing directions at the tunnel entrance are writ-
ten to a binary file and converted to a boundary source for the MORSE-SGC/S
Monte Carlo code by the DOMINO code [Emm?73]. Because both the DOT3.5
and MORSE-SGC/S calculations can be run in forward or adjoint mode, the
DOMINO output file can be used as a source or scoring function, dependent
on which calculation is in forward mode, and which one in adjoint mode.
Here, both DOT3.5 and MORSE-SGC/S are used in forward mode, and the
DOMINO output file is used as a source in the Monte Carlo calculations. Be-
cause of symmetry reasons, only one half of the core was described by the
DOT3.5 calculations. Therefore, a mirror image of the angular flux file was
added to the flux file for the bottom half of the core. The angular flux file
then obtained is converted to cumulative density functions (CDF), which are
used by the MORSE-SGC/S code to sample the source particles. Four CDFs
are made by DOMINO: one to sample the energy group, one to sample the
spatial interval for a given energy group, one to sample the polar angle for
a given spatial interval and energy group, and one to sample the azimuthal
angle for a given polar angle, spatial interval and energy group. The final
source coordinates are uniformly sampled within the spatial interval, and the
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Figure 7.4: Horizontal cross section of the straight duct geometry. The small
layer around the duct is steel, the other three layers are concrete, and the
waves denote water. Each shield layer is divided in axial direction in regions.
D1 to D5 are boundary crossing detectors (in bold). Distances are in cm.

final direction cosines are uniformly sampled within the angular interval. The
normalization factor is the total leakage. To make the DOMINO routines,
which are used by MORSE, compatible with the newest version of MORSE

used here (MORSE-SGC/S), considerable changes to these routines had to be
made.

The duct streaming calculations are done by the MORSE-SGC/S Monte
Carlo code to get the neutron spectrum at the five detector positions in each
duct in Fig. 6.3. A horizontal cross section view of the straight duct geometry
is given in Fig. 7.4. Boundary crossing detectors are modelled in the duct
on positions D1 to D5. The duct itself is surrounded by a steel liner with
thickness of 0.45 cm, and three layers of concrete. The concrete block is
rectangular shaped with size (length x width x height) of 187 x 80 x 101 cm?.
The second leg of the 30, 60 and 90 degrees bent ducts, is upwardly directed
in Fig. 7.4, and starts at the position of the third detector, approximately.
The shield around the duct is divided into regions as shown in the figure (a
region is a collection of geometrical zones with one set of biasing parameters;
a zone is a part of the geometry with homogeneous composition).

The water layer around the tunnel entrance had only an effect on the first
detector position. The collided fast flux at this position increased by 10%,
while the collided thermal flux increased by a factor of 3, approximately. The
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effect of the water on the other detector positions turned out to be negligible.

Although the smallest transversal dimension of the shield (~ 34 cm) is only
5 mfp for very fast neutrons (E> 4.5 MeV), this is supposed to be sufficient,
because the source neutrons are injected to the shield in axial direction. The
system cannot be choosen much larger, anyhow, because of CPU time con-
siderations. Although a Monte Carlo code can principally be used to model
three-dimensional geometries accurately, it was found that in fact CPU time
considerations limit this possibility. The more different geometrical zones are
modelled, the worse the performance of the code. In fact, restrictions on the
size of the shield regions are imposed here by this phenomenon.

Several methods to increase the efficiency of the calculations were used to
get statistically acceptable results. The efficiency is usually measured by the
”Figure of Merit” F:

1

where o? is the variance of the calculation and Tcpy the CPU time. From
this equation it is seen that not only a variance reduction, but also a CPU
time reduction leads to a more efficient calculation. In fact, several methods
lead to an increase of the variance per history, but also to a reduction of the
CPU time per history. If this latter effect is large enough, the efficiency of
the calculation is still increased. The mostly used combination of methods to
increase the efficiency of the calculation is survival biasing, Russian roulette
and splitting.

The simplest of these methods is survival biasing, which implies that the
particle is not allowed to terminate by absorption. Therefore, the weight of
the particle is reduced by the non-absorption probability each time it collides.
This method is usually default in Monte Carlo codes, because it is easily
applied and it can hardly be abused.

To avoid that too much CPU time is spent on particles with negligible
weight (and thus negligible detector contribution), Russian roulette can be
played. Each time a particle collides with a weight below a value set before-
hand (WTLO), a random number is drawn and dependent on that number,
the particle survives with a weight set beforehand (WTAV), or it is killed.
The survival probability Psu,, of the particle depends on the weight before
collision (WTBC), and the WTAV value of the geometrical region and energy
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group the particle is in:
(7.3)

Except for statistical deviations, the total weight is conserved in this process.
The parameters WTLO and WTAYV can be set such that only a small fraction
of the particles survive in uninteresting regions of phase space, which can lead
to a considerable decrease of the CPU time per source particle, and thus to
an increase of the efficiency of the calculation.

A variance reduction device commonly used, is splitting. If the particle
collides with a weight above a value set beforehand (WTHI), it is split into
two particles with each one half of the initial weight. This may happen for
instance if the particle collides in an important region of phase space. Because
these two progenies may also be split if their weights are still above WTHI, a
large number of progenies may be created from one source particle. This is to
be avoided because of the considerable increase of CPU time. Furthermore,
the particles scoring in the detector may be correlated, which can lead to a
wrong interpretation of the variance.

Another biasing scheme frequently used is exponential transform. The
total cross section of the shield is artificially reduced to X = (1 — C)X,,
(0 < C < 1), and the intercollision distance, as sampled from the transport
kernel (see Section 1.3), is increased. The parameter C is usually directional
dependent in such a way that particles are directed to important geometrical
regions, which can be favourable if more particles give a detector contribution.
To keep the outcome unbiased, a correction is applied to the weight of the
particle, equal to the ratio of the unbiased and biased transport kernels:

T(z) . Xiexp(-%,2) W,

Wit = W) = Wis e ((Zi )~ (1-0)

exp(-C Z,z) (7.4)

where W; and W, are the original and adapted weights of the particle emerg-
ing from collision 7, ¥, is the total cross section of the shield and z is the
intercollision distance sampled from the biased transport kernel 7.

For reasons explained later, boundary crossing estimators were used to
calculate the fluxes in the ducts. This made it possible to slightly reduce the
variance when exponential biasing was used, by making use of the conditional
probability that a particle crossed the detector [Spa69]. The variance of an
estimator is composed of two parts: the variance due to the number of parti-
cles reaching the detector, and the variance due to the weight of the particles.
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In an analog run, no biasing at all is used and the weight of the particles is
always unity. If the exponential transform is used, the number of particles
reaching the detector is enlarged, which tend to decrease the variance due to
the first component. However, the weights of the particles become randomly
distributed, which can give rise to an increase of the variance due to the sec-
ond component. If a particle scores in a boundary crossing detector, the exact
intercollision distance is not important, but only the fact that the particle
reached the detector. Therefore, it may be profitable to score the expected
contribution of a particle crossing the detector, instead of the actual contri-
bution. Instead of scoring W, of Eq. (7.4), each time a particle crosses the
detector it may be better to score:

W, = Wi exp(—C %, D) (7.5)

where D is the distance between either the collision or the source and the
detector surface. The exponential in Eq. (7.5) is just the ratio of the unbiased
and biased probabilities for crossing the detector surface. Both W;y and W/,
are unbiased estimators for the particle weight crossing the boundary:

oo o0
/WH.]E;‘ exp(—Xj;z)dz = /W,-'H 3} exp(—X;z)dz = W,exp(—X:D) (7.6)
D D

The estimator of Eq. (7.5) was programmed in the MORSE-SGC/S code and
used for all calculations. No improvement was found with this estimator for
the collided flux contribution, which is to be expected because the weights of
the particles in the shield are already very dissimilar, and the distance between
the collision and the detector is different for each collision. But the variance
of the uncollided contribution decreased by 25%, approximately, which is due
to the facts that the distance between the source plane and the detector is
more or less constant, and the source particles of a specific energy group have
equal weights.

Two variance reduction methods almost similar to each other, are source
energy biasing (SEB) and energy biasing at collision sites (EBC). The first
method changes the PDF of choosing the energy group of source particles,
while the second one changes the PDF of choosing the energy group of particles
at collision sites. For SEB, the relative importance of each energy group of the
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source region must be given, and the biased source distribution then writes:

Syl
Sy =22 (7.7)
2 Solg
g=1

where §, is the natural source distribution, and I, is the relative importance
of energy group g of the source region. The summation in the nominator is
over all energy groups. For EBC, the relative importance of each group and
each shield region must be given beforehand, and the biased PDF of choosing
an energy group at collision sites is similar to Eq. (7.7) for a particular shield
region. The weight correction for both SEB and EBC is equal to the ratio of
the original probability and the biased one.

Parameters for Russian roulette, splitting and exponential transform were
manually set for the 30, 60 and 90 degrees bent ducts. For the straight duct,
use was also made of an automatic biasing procedure, described in Sections 8.2
and 8.3. In all cases, Russian roulette was used to kill particles in uninteresting
regions close to the source, while splitting was used to enlarge the number of
particles close to detector 5 (see Fig. 7.4). The parameter C of Eq. (7.5) was
chosen such that the exponential transform favoured particles travelling along
the duct axis in direction of detector 5. The automatic biasing procedure
easily allowed the use of SEB and EBC, which favoured fast neutrons above
thermal ones.

Despite all these variance reduction devices, it was still cumbersome to
calculate the fast neutron flux in the second leg of the 30, 60 and 90 degrees
bent ducts. Therefore, calculations with thermal cutoff were performed, which
increased the efficiency of the calculations with a factor of two. The variance of
the thermal neutron flux in the second leg of the 60 and 90 degrees bent ducts,
was rather low, because of many contributions of backscattered neutrons in
the ceiling of the tunnel.

It turned out that point detectors, as available in the MORSE-SGC/S code,
are not very efficient in large and complicated geometries, because at each
collision point an estimate of the detector contribution is made. Collisions far
away from the detector require much CPU time while the expected detector
contribution is negligible. This can drastically worsen the efficiency of the
run. To avoid this, next-event estimation probabilities [Tan88] can be used
or other estimators. Here, boundary crossing estimators were used for all

105



detectors, and each time a particle crossed the detector surface, a score equal
to the particle weight according to Eq. (7.5), divided by the absolute value of
the cosine of the angle between the particle direction and the normal to the
detector surface, was scored. Because the CPU time per source particle is much
smaller for boundary crossing detectors than for point detectors, much more
particles are tracked and the detector response consists mainly of uncorrelated
contributions, which is favourable of course. Finally, the detector response is
divided by the cross sectional area of the duct. Because the TLD samples and
the foils were not irradiated on the axis of the duct, but 2.5 or 5.0 cm from the
duct centreline (see Section 6.1), it is assumed that the calculated responses
are comparable with the measured ones.

7.2 Comparison with Measurements

The measured and calculated spectra at position 00.1 are compared with each
other in Fig. 7.5, in the 25 groups structure used for the Monte Carlo calcu-
lations (see Table 7.1). The fluxes in the 50 groups structure of the SANDBP
program were collapsed to these 25 groups, by assuming a constant differen-
tial energy flux in each group of the SANDBP group structure. First, it can
be observed that the calculated integral flux is lower than the measured one
by 30%, approximately. This is not surprising of course, because the flux at
the tunnel entrance calculated by DOT3.5 showed already large discrepancies.
In Table 7.2, it was already seen that the calculated fast flux at the tunnel
entrance (case E) is lower than the measured one by 25%. The size of the
discrepancy suggests that the fluxes calculated by DOT3.5 in XY geometry
(see Table 7.2) are better than the ones calculated in RZ geometry.

Apart from this discrepancy, it can be seen that the calculated and mea-
sured spectra in Fig. 7.5 are similar. As will be shown further in Table 7.4,
the calculated ratio of the fast and thermal fluxes (E > 1.0 MeV and F <
0.4 eV, respectively) at this position is in agreement with the measured ratio
(¢fast/Peh = 0.21). In the fast energy region, the calculated spectrum seems
slightly harder than the measured one. It is not clear whether this is signif-
icant, and what the reason might be. The calculated spectra at the tunnel
entrance in RZ geometry (cases B and E) and XY geometry in Table 7.2, are
quite similar for the fast energy region. Because the average energy decrement
per elastic scattering for 2C and 60 is only 10 to 15% of the incident neutron
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Figure 7.5: Comparison of measured (SANDBP) and calculated (MORSE)
spectra at the duct entrance (position 00.1). The bars give the energy response
intervals accounting for 90% of the activation. The numbers after MORSE and
SANDBP give the integral fluxes.
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Table 7.3: Fractional contribution of the uncollided flux for both fast and
thermal fluxes obtained from the MORSE calculations. The numbers between
parenthesis give the percentage standard deviations (see Appendix B). The
calculation marked with an asterisk contains water around the tunnel entrance,
the others not.

. une ¢l.nu:c
Position Zth —fast
ben Prast

00.1% | 0.32 (3) | 0.71 (2)
00.1 | 0.57 (1) | 0.76 (1)
00.2 | 0.29 (5) | 0.48 (5)
00.3 | 0.60 (6) | 0.78 (5)
00.4 | 0.67 (7) | 0.88 (4)
00.5 | 0.81 (4) | 0.90 (4)

energy, and the width of the first energy group is much larger, it was checked
whether the selfscatter cross section of the first group is overestimated. One-
dimensional calculations with 172 and 25 groups revealed no large differences
in flux values, however. Although the calculated flux of the first energy group
is relatively too high, its influence on the total fast flux is only modest, because
the fluxes of the other fast groups are much higher. From Fig. 7.5 it can be
seen that the epithermal flux (~ 1-500 eV) is underestimated by 15%, while
the thermal flux is underestimated by 30%, approximately. These discrepan-
cies are most likely to be due to the underestimation of the source strength

by the DOT3.5 calculations.

In Fig. 7.6 the calculated and measured spectra at position 00.4 are shown.
Comparing these spectra with the ones of Fig. 7.5, it can be seen that the
spectrum deep in the duct is considerably hardened. This is mainly due to
the fact that the fast flux at the duct entrance is highly forwardly peaked
into the duct, while the thermal flux is nearly isotropic (see Fig. 5.3). In
Table 7.3 the fractional contribution of the uncollided flux in the straight duct
is given. The determination of the error of this fraction is shortly outlined
in Appendix B. The value of this fraction is seen to increase in the straight
duct. At position 00.4, the uncollided component of the thermal neutron flux
contributes for 67%, and of the fast flux even for 88%. Because the fast flux is
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more forwardly peaked into the duct than the thermal and epithermal fluxes,
the spectrum becomes harder deep in the duct.

Although the calculated integral flux in Fig. 7.6 is again lower by 30%,
approximately, the discrepancy at the high energy tail is much larger than
for thermal and epithermal energies. Apparently, the fast flux in the duct is
underestimated. This can also be deduced from Table 7.4, where the ratios of
fast and thermal fluxes in the ducts are given. The determination of the error
of the values in this table calculated by MORSE is outlined in Appendix B. For
the measurements (SANDBP), values are only given at positions where at least
two foils in the fast energy region are used (of which one must be '5In because
this foil is sensitive for energies just above 1.0 MeV), and two foils in the
thermal energy region. It can be seen that this ratio increases in the straight
duct and in the first leg of the bent ducts, for both the calculations (MORSE)
and the measurements (SANDBP). The calculated and measured values at the
duct entrance agree very well with each other (0.23 and 0.21, respectively),
but disagree by 25 to 35% at positions 00.3, 00.4 and 00.5. This is caused by
the fact that the angular flow rate distribution at the tunnel entrance, which
served as a boundary source in the Monte Carlo calculations, is not correctly
represented. It was calculated in a discrete structure of 20 outwardly directed
angles, and the initial directions of source particles were uniformly sampled
within each angular bin. This can lead to an underestimation of the uncollided
flux if the flow rate at the tunnel entrance is in reality highly forwardly peaked.
This could have been avoided by using more angles in the DOT3.5 calculations
for the source, or by non-uniform sampling of source particles within each
angular bin. Unfortunately, the first solution is not very practical because of
the increase of CPU time, while the second solution is only possible if more
knowledge about the angular distribution is available beforehand.

The calculated and measured reaction rates for the 1'*In(n,n’)!!*™In reac-
tion in the straight duct, are shown in Fig. 7.7, together with the C/E values.
It can be seen that the C/E value decreases from 0.77 at the duct entrance to
0.54 at the duct exit. A similar decrease of the C/E values in the straight duct
is found for the *®Fe(n,p)**Mn and *®Ni(n,p)*®*Co reactions. The C/E values
of 115In(n,n’)!15"In at the fourth position of the bent ducts (in the second leg)
also ranges from 0.5-0.7.

Because the calculated fast flux is attenuated too much in the ducts, the
calculated epithermal and thermal fluxes are expected to be overestimated.
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Table 7.4: The fraction of the thermal flux due to thermal source neutrons
(Fin) and the ratio of fast and thermal fluxes in the ducts for both the mea-
surements (SANDBP) and the calculations (MORSE-SGC/S and IRIDUCT).
The numbers between parenthesis give the percentage standard deviations (see
Appendix B). The calculations marked with an asterisk contain water around
the tunnel entrance, the others not.

Position Flh ¢jast/¢th

MORSE | SANDBP | MORSE | IRIDUCT
00.1* | 0.83(1)| 021 |0.23(3)
00.1 | 0.94 (1)
00.2 | 0.57( 3) 054 (3) | 0.78
00.3 |081(3)| 110 |075(6)| 0.3
004 |090(2)| 118 |o080(8)| 097
005 |094(1)| 123 [0.93(10)| 1.00
30.1F | 083(1)| 022 |[023(3)

30.1 | 0.94(1)

30.2 | 0.53 ( 4) 0.50 ( 6) 0.78
30.3 | 0.83( 3) 0.70 ( 8) 0.95
30.4 | 0.61(7) 0.32 (14) |  0.72
30.5 | 0.40 (14) 0.87 (26) |  0.78

60.1* | 0.83(1)| 021 |0.23(3)
60.1 | 0.94 (1)

60.2 | 0.53 ( 4) 0.55 ( 3) 0.78
60.3 | 0.85(2)| 1.02 |0.66(8) 0.95
60.4 | 0.36 (15) 0.14 (13) | 0.53
60.5 | 0.26 (19) 0.15 (18) |  0.61

90.1* [0.83(1)| 022 |023(3)
90.1 | 0.94 (1)

90.2 | 0.54 ( 4) 0.52 ( 5) 0.78
90.3 | 0.85(2)| 1.02 |0.55(10)( 0.95
90.4 | 0.43 (11) 0.10 (15) |  0.32
90.5 | 0.17 (19) 0.09 (15) | 0.27
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Figure 7.7: Reaction rates for '°In(n,n’)!!5™In in the straight duct. No un-
certainty was assigned to the SANDBP output. The standard deviations of
the measurements are about 5%. The inner diameter of the duct is 11.8 cm.

This can be seen in Fig. 7.8, where the 5*Mn(n,y)**Mn reaction rates for
both bare and cadmium covered foils in the 30 degrees bent duct are given.
Especially the increase of the calculated reaction rates at the second detector
position is considerable. From Table 7.3 second column, it is seen that the
thermal flux at position 00.2 is due to collided neutrons for 71%. This is
much higher than for any other position in the straight duct. Because the
contribution of fast neutrons, which thermalize in the concrete of the shielding
block before entering the duct (the so-called wall penetrating component), is
expected to be largest somewhere between the first and second detector, and
because the fast flux in the duct is attenuated too much, which leads to extra
thermalized neutrons in the duct, this effect is very significant. In Table 7.4,
the fraction of the thermal flux due to thermal source neutrons is given, and it
can indeed be seen that this fraction is relatively small at the second detector
position of each duct, which confirms that the calculated thermal flux due to
downscattered neutrons at these positions is rather large.

The influence of the water layer around the tunnel entrance on the thermal
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Figure 7.8: Measured and calculated reaction rates for 3°Mn(n,y) in the 30
degrees duct. The standard deviation of the measurements is 8%. The vertical
bar at each calculation point denotes one standard deviation due to the Monte
Carlo process only.

neutron flux at the first detector position, can be seen in Tables 7.3 and 7.4
as well. The contribution of the uncollided flux decreases from 57 to 32%
(Table 7.3, second column), while the contribution of downscattered neutrons
increases from 6 to 17% (1-0.94 and 1-0.83 in the second column of Table
7.4). From these numbers it is seen that the total thermal flux increases by a
factor of 2, approximately, due to the water.

The relative neutron responses of the TLD samples for all geometries are
given in Fig. 7.9. The responses are normalised to the response of the first
detector of each geometry. The calculated responses were obtained by using
the energy sensitivity from the adjoint one-dimensional discrete-ordinates cal-
culation by XSDRNPM-S (see Section 6.2). Again, it can be seen that the
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calculations overestimate the measurements at the second detector positions.
For the 60 and 90 degrees ducts, the calculated responses are given for both
open and closed ducts. In the second leg of the 60 degrees duct, it is seen that
the calculated response in the open duct correspond better with the measured
value, while for the 90 degrees duct, the calculated response in the closed duct
correspond better with the measured value. This behaviour in the 90 degrees
duct seems in contradiction with the results of the *Sc(n,y), '*"Au(n,y) and
55Mn(n,y) reaction rates, which show better agreement with the calculated
reaction rates in the open 90 degrees duct. This is shown in Fig. 7.10, which
shows the measured and calculated reaction rates for Au and Mn. The fact
that the calculated reaction rates in the closed ducts of 90 degrees ducts,
overestimate the measured ones, is probably due to an overestimation of the
backscattering in the ceiling of the tunnel. The reason for this is not quite
clear. Maybe the gap between the shielding blocks and the tunnel ceiling was
underestimated (2 cm was used in the calculations), or maybe the hydrogen
contents of the concrete was overestimated.

The ratios of calculated fast and thermal fluxes for the bent ducts in Table
7.4 (MORSE), exhibit an interesting behaviour. From positions 00.3, 30.3, 60.3
and 90.3, it is seen that this ratio decreases as the angle of the duct increases.
This is due to a higher thermal flux at the end of the first leg if backscattering
becomes more important there. More interesting is the behaviour of this ratio
in the second leg of the ducts. In the 30 degrees duct, it has still a value of
0.32 and it increases again to 0.87. For the 60 and 90 degrees bent ducts, this
ratio is between 0.10 and 0.15 and it does not increase anymore. Although
these values are for closed ducts, the same trends can be seen for open ducts.
Apparently the fast flux at position 30.3 is more forwardly peaked into the
second leg than the thermal flux, which gives an increase of the ratio of fast
and thermal fluxes again. In the 60 and 90 degrees bent ducts, the angular
distribution of the fast and thermal fluxes at the entrance of the second legs
are similar and the ratio of fast and thermal fluxes in the second leg of these
ducts hardly changes. There seems to be a critical value for the angle of the
bend, below which the fast flux is strongly forwardly peaked into the second
leg, while the fast flux is almost isotropically distributed for ducts with angle
above this value.

This is what was tried to model in the IRIDUCT program, by use of a
single scattering albedo (see Section 5.3). Although the angular flow rate
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Figure 7.10: Measured and calculated reaction rates for °7Au(n,y) and
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Figure 7.11: The value of p of the angular distribution of the flow rate at
the entrance of the second leg of the bent ducts calculated in IRIDUCT, as
function of the angle of the duct and the atomic mass of the scatterer.

distribution at the entrance of the second leg is not dependent on energy in
IRIDUCT, it is strongly dependent on the angle of the bend. Fig. 7.11 gives
the p value of the angular flow rate (see Section 5.3) as a function of the angle
and atomic mass of the scatterer. Because the flow rate at the entrance of the
second leg is divided into two bins, p first increases because the fraction of
the flow rate in the forwardly directed bin (0.879 < u < 1.0, with x being the
cosine with respect to the axis of the second leg) increases. After 30 degrees
approximately (corresponding with g = 0.879), p decreases, until the cosine
albedo becomes dominant and p increases again to unity. If the atomic mass of
the scatterer increases, elastic scattering becomes much less forwardly peaked,
which leads to a more isotropic flux. The flow rate with respect to the normal
to the reflecting wall becomes cosine shaped in that case, which leads top < 1
for ducts not perpendicular to the wall, because a smaller fraction of the flow
rate is directed into the forwardly directed bin in such a case.
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The ratios of fast and thermal fluxes calculated by IRIDUCT are also
given in Table 7.4. For the straight duct, the values are in agreement with
the measurements. In fact they are closer to the measured values than the
MORSE ones, which is probably due to the fact that the line-of-sight flux in
IRIDUCT is more forwardly peaked, because of the continuous representation
of the angular flow rate distribution at the duct entrance (the p values of
Fig. 5.3 are used). The values at the fourth and fifth detector positions in
the 60 and 90 degrees bent ducts are quite different from the MORSE ones,
which is especially due to the fact that the thermal flux in the second leg of
these ducts is seriously underestimated by IRIDUCT. Fig. 7.12 gives the dose-
equivalent rate in the ducts without backscattering at the end of the second
legs, calculated by IRIDUCT and MORSE-SGC/S. It can be seen that the
dose-equivalent rate is underestimated by IRIDUCT at the second detector
position, which may be due to neglection of the wall penetrating flux and
other contributions. In general the agreement is quite satisfactory, which is
due to the fact that the fast fluxes are fairly well represented by IRIDUCT,
and that the dose-equivalent rate is mainly determined by the fast fluxes.

7.3 Conclusions

To calculate spatially distributed fluxes at the tunnel entrance, two-dimensional
discrete ordinates calculations were performed in RZ geometry. It turned out
that the conversion from XY to RZ geometry is not straightforward and that
considerable errors can be introduced. Criteria usually applied to microscopic
cell calculations (fuel cell homogenization) are not applicable to shielding cal-
culations and attention must be put to other functionals, like the flux or flow
rate distribution at the outer side of the shield.

The number of angles in the discrete ordinates calculation must be chosen
with further use of the calculated flow rate distribution in mind. The flow
rate was used here to calculate the streaming through a long duct and an
underestimation of the strongly forwardly peaked fast flux in the duct was
observed, which made clear that more forwardly directed angles would have
been preferable in this case. Because of CPU time considerations, this is not
always possible.

The source strength at the tunnel entrance, as calculated by DOT3.5, is too
low by 25%, approximately (see Table 7.2). Aside from this underestimation,
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the calculated fluxes are in good agreement with the measured ones. Some
discrepancies could be accounted for by the angular description of the source
in only 20 outwardly directed angles, which lead to an underestimation of the
fast flux in the ducts and subsequently to an overestimation of the thermal
flux in the ducts. The ceiling of the tunnel at the end of the 60 and 90 degrees
bent ducts had quite a large influence on the thermal flux in the second leg
of these ducts. Backscattering from the tunnel ceiling was overestimated in
the Monte Carlo calculations. The reason for this is not quite clear at the
moment.

The results of the IRIDUCT program are in satisfying agreement with the
MORSE-SGC/S calculations. It turned out that the use of a single scattering
albedo reasonably well reproduces dose-equivalent rates in the second leg of
bent ducts.

The results of the TLD measurements are generally in agreement with the
foil measurements. The use of TLD samples for thermal neutron flux mea-
surements may be advantageous because the analysis of the TLD samples can
be done several weeks after the irradiation (if fading effects are small), and
irradiated TLD samples are not radioactive, which facilitates transportation
and package. A disadvantage is the sensitivity of the samples to gamma rays,
which requires corrections to the measured results. Also the extensive cali-
bration procedure is quite cumbersome, although it has the advantage that
each TLD sample can be used several times without a cooling period, which
is necessary for some foils. Activation foils can be very advantageous because
of their insensitivity to gamma rays and because multiple foils can be used to
get more spectral information.

119



4
0

E ' N | MORSE
. O IRIDUCT 00
] O IRIDUCT 30 A
o A IRI 60
o & IRI 90 |
E 3
A ]
L o
s 73 E
[6p) 7 :
£ -
0 o
S e —
s 3 E
5 ] :
5 ] j
> %
A E
o -1 4
b ] ]
@ - .
O 1
o 2
é 3
3 ]
- -
$O— Leg 1 Leg 2 ]
= —T T — T
0.0 40.0 80.0 120.0 160.0

Distance in Duct (cm)

200.0

Figure 7.12: Calculated dose-equivalent rates in the open ducts. The vertical
bar at each calculation point denotes one standard deviation due to the Monte

Carlo process only. The atomic mass of the scatterer is 1.
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Chapter 8

Importance Iteration in Monte
Carlo Calculations

8.1 Introduction

To enhance the efficiency of Monte Carlo calculations, biasing schemes are
used to modify probability density functions (PDF) in Monte Carlo codes,
such that important parts of the geometry and energy range are more often
sampled, while other parts are scarcely sampled. A biasing scheme which
makes use of importance functions is generally called importance sampling
or importance biasing. It is well known that properly chosen importance
functions can lead to zero variance schemes for last event estimators [Cov67]
and collision estimators if the particle is not allowed to terminate [Hoo79].
Although such zero variance schemes are highly theoretical because knowledge
of the final solution is required in advance of the Monte Carlo calculation,
approximations to the optimum importance functions are likely to reduce the
variance in Monte Carlo calculations.

Optimum importance sampling requires knowledge of both the event value,
the expected detector response of a particle entering a collision, and the point
value, the expected detector response of a particle emerging from a collision or
the source. Calculating these value functions exactly and performing a Monte
Carlo calculation with biased PDF's is generally less efficient than an unbiased
Monte Carlo calculation only. An often employed calculation scheme, there-
fore, is to calculate point values by use of a one- or two-dimensional discrete
ordinates code in an approximate geometry or by use of an approximate cal-
culational method in an exact geometry. If the proper source function is used
(see Section 1.3), the point value is equal to the ”adjoint flux” in the output
of such a code, and this point value can be used to calculate input biasing
parameters for the subsequent Monte Carlo calculation. For source energy bi-
asing and energy biasing at collision sites, the optimum importance function is
equal to the point value and this function can directly be given in the input of



the Monte Carlo code. For selection of the collision site by use of exponential
transform, the event value is the proper importance function, and the point
value serves only as an approximation to this function. An extension of this
method, therefore, is to calculate the event value by a discrete ordinates code
as well, although this function is not part of the standard output of such a
code [Tan77).

For some geometries, the above mentioned method to get insight into the
value functions of the problem under consideration, fails because of geomet-
rical difficulties like voids and ducts. In case of complex three-dimensional
geometries, one- or two-dimensional discrete ordinates codes cannot even be
used to get approximate answers to the value functions and other approximate
methods or physical insight must be used to bias Monte Carlo calculations
properly. One method is to estimate volume averaged value functions in the
forward Monte Carlo run itself. These point values can then be used as a bias-
ing function in the next Monte Carlo run to enhance the efficiency of that run.
Booth defined the point value in the MCNP Monte Carlo code as the ratio of
the total score due to particles and their progenies leaving a cell, and the total
weight leaving the cell [Boo82] (or the same definition with particles entering
a cell [Boo83]). Section 8.2 describes a method to calculate volume averaged
point values and event values in a forward Monte Carlo run. The way to cal-
culate biasing parameters from point values is given in literature [Tan88] and
is shortly outlined in Section 8.3. Finally, an example and practical problems
and possibilities are described in Section 8.4.

8.2 Calculation of Point Values

The aim of this section is to derive an expression for the point value of a specific
geometrical zone and energy group, which can be used in a subsequent Monte
Carlo run to set the weight window for that zone and group. The weight
window is defined by an upper limit (WTHI) and a lower limit (WTLO)
for the particle weight. If the weight of a particle emerging from a collision
is larger than WTHI, the particle will be split into two particles with each
one half of the original weight. If the particle weight is lower than WTLO,
Russian roulette will be invoked, and the particle is killed or it survives with
weight WTAV (see Section 7.1). Both WTHI, WTLO and WTAV must be
determined beforehand in the input of a Monte Carlo code for each zone and
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energy group. If the point value is known for the whole geometry and energy
range, the weight window limits of a zone and energy group can be set in
correspondence with the point value of that zone and group.

A particle entering a specific zone and group will be killed or split if its
weight is outside the weight window. It is likely that this happens only the
first time the particle emerges from a collision in that zone and group, because
the weight of the particle during all further collisions is only reduced by the
non-absorption probability, which is a number fairly close to 1.0 (for concrete
the non-absorption probability is larger than 0.93 for all energies ranging from
thermal to fast). As the first collision in a specific zone and group is the most
important one with respect to Russian roulette and splitting, it makes sense
to calculate point values averaged over a zone and group, which are weighted
by the firstly emitted particle density. This is the density of particles in a
zone and group emitted either from the source or from collisions while their
previous collision was in another zone and group.

Point of departure to derive such point values will be the integral transport
equations for the emergent particle density x(P) and the point value x*(P)
(see Section 1.3):

X(P) = 5(P) + f X(PL(P' = P)dP' (8.1)
r

X (P) = h(P) + / X“(P)L(P — P")dP' (8.2)
r

where § is the particle source and h is the detector response function for the
emerging particle density. The integration of both equations extends over the
whole phase space I', which is supposed to consist of two mutually exclusive
subspaces I'y and T', such that I'y + ', = I'. Multiplying each term of Eq.
(8.2) by x(P) and integrating over I'; (the meaning of this subspace will be
explained later) yields:

[xPx(Pyap =
I's

/ X(P)h(P)dP + / / X(P)L(P — P'YdP| x*(P')dP'  (8.3)
Ty r |,
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where the integration order of P and P’ has been reversed in the second term
on the RHS. The term between the square brackets on the RHS of Eq. (8.3) is
the number of particles emerging from a collision at P’ per unit phase space,
which were emitted previously in I',. A shorthand notation for this number
will be:

[ X(P)L(P — PP = [x(P), (8.4)
I,
The second term on the RHS of Eq. (8.3) is now split into two parts:

[ (@, (PP = [ (e(Pr, x* (PP + [ (P, x" (P')dP
r r, Iy

(8.5)
Eq. (8.5) is substituted in Eq. (8.3) and the first part of the RHS of Eq. (8.5)

is transported to the LHS of Eq. (8.3). One then obtains:

[ (x(P) = x(P))r,) X' (PP = [ x(PIR(®)P + [ (x(P)lr, x(P)P
Ly r, Ty

(8.6)
We will now specify the subspace I'; as the volume of a geometrical zone Z,
the energy span of group G and the whole angular space 4x. To define an
average point value for zone Z and group G, Eq. (8.6) is written as:

Xz [ ((P) - (P),) dP = [ x(PYW(P)AP + [ (x(P)]r, x"(P)aP
s T, Tp 1)
' I (x(P) - X(P),) x*(P)dP
Xz6 = L (8.8)
' I (x(P) - x(P),) dP

8

Each term of Eq. (8.7) has a plain physical meaning. x7% . is the point value
of zone Z and group G, the integral on the LHS is the firstly emitted particle
density (the total weight of particles emitted in zone Z and group G, minus the
weight of particles emitted previously in zone Z and group G), the first term
on the RHS is the expected present detector response of particles emitted in
zone Z and group G, and the second term on the RHS is the expected future
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detector response of particles emitted in zone Z and group G. From Eq.
(8.8) it is seen that x} ; is properly weighted by the firstly emitted particle
density. Note that the point values thus obtained, are not only averaged over
the volume of zone Z and the energy span of group G, but also over the whole
angular space 47. The meaning of these point values is, therefore, very much
like the detector response of an isotropic point source with unit strength, as
can be deduced from Eq. (1.34). Practically spoken, Eqs. (8.7) and (8.8)
read:

_ Total detector score of firstly emitted particles in (Z,G)
Xz2.6 = Total weight of firstly emitted particles in (Z,G)

(8.9)

where the score of a progeny of a particle must be added to the score of the
parent particle itself. Note that this definition of a zone averaged point value
is similar to the ones defined by Booth (see Section 8.1). The same derivation
as above can be given for the event value and one obtains:

Vi [ (9(P)- W(PIr,) 4P = [w(P)g(P)P + [ (P, w(P)aP
T, Cp

Iy
(8.10)
where g is the detector response function for the collision density (see Section
1.3) and 97 ; is the event value of zone Z and group G. The integral on the
LHS of Eq. (8.10) is now the firstly collided particle density (the total weight
of particles entering a collision in zone Z and group G, minus the weight of
particles collided previously in zone Z and group G). The RHS of Eq. (8.10)
is again the sum of the expected present and the expected future detector
responses of the particles collided in zone Z and group G.
For the calculation of x*, the weight of particles emerging from a collision
is used as a weighting factor, while for ¢* the weight of particles entering a
collision is used. Because the non-absorption probability is close to one (at
least for concrete), the zone averaged point value and event value for a specific
energy group will not differ very much. The relation between the event value
and the point value outside the detector phase volume in multigroup notation
reads [Tan77]:

26(r)S¢C (r, 2 - £2)
Yo(r, £2) = / 7 . . xer(r, $2/)dQY 8.11
D=2 )56y mew e e
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The relation between the angular integrated value functions for a simple one
speed problem outside the detector phase volume then reads:

vr(r)= [¥(r,2)d0 =

- To(r) By(r, 2 - ') ooy — Ss(r) .
_4[4/ S Ey X () = S (n) (8.12)

and the two value functions differ only by the non-absorption probability.
When the value functions are calculated by a Monte Carlo code in the way
described above, the statistical uncertainties are expected to be much larger
than the differences between the two value functions. For practical purposes,
therefore, it is sufficient to calculate only one of the two value functions, and
to set the event value and point value equal to each other for each zone and
group.

The fact that the event value and point value for a specific zone and group
are similar, is quite different from the situation described in literature [Tan77],
where the angular event value and angular point value along a neutron path
differ by one or two orders of magnitude. This is because a neutron entering
a collision has a value of ¥5(r, 2), which is related to the point value of the
neutron leaving the collision in the same group G and same direction §2 by:

G(p) TC—C(p. 2 —
Wolm ) = SEA RS Dir) (319

The angular event value is thus seen to be much smaller than the angular point
value along the same trajectory because of the non-absorption probability and
the scattering kernel.

The above mentioned method can easily be implemented in a Monte Carlo
code, although this method imposes some restrictions on the number of pro-
genies of a particle and the number of energy groups and zones. For this
purpose, the MORSE-SGC/S Monte Carlo code {Wes81a) is used, because of
its multigroup energy structure (although no use can be made in this case of
the supergrouping facility because of bookkeeping difficulties, so older versions
of the MORSE code can be used as well). The weight of each firstly emitted
particle is added to a WEIGHT array, which contains the sum of the weights
of such particles per zone and group. Note that a particle which emerges from
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the source or a collision in zone Z and group G, enters another zone and/or
group, scatters to zone Z and group G again and emerges from a collision
there, is counted twice. In that case, however, the detector contribution of
that particle must be counted twice, too. Therefore, a NUMBER array is
bookkeeped, which contains the number of times a particle contributes this
way. Each time a particle or one of its progenies scores in the detector, its
score is multiplied by the NUMBER array and added to a SCORE array,
which contains the sum of all scores of each zone and group. At the end of
the Monte Carlo calculation, the WEIGHT and SCORE arrays are written to
a file, which can be read again when the Monte Carlo calculation is restarted.
Dividing the elements of the SCORE array by the corresponding elements
of the WEIGHT array gives the estimate of the point value of each zone and
group, which can be used to bias the PDFs and to calculate the weight window
and the exponential transform parameter for each zone and group.

8.3 Calculation of Importance Functions

If the point value is known for each geometrical zone and energy group, the
importance functions for biasing Monte Carlo calculations can be calculated
[Tan88]. The calculated point values of the source zone can directly be used to
bias the PDF for selection of the energy group of the source particles (source
energy biasing, see Section 7.1). The point values of each zone of the shield can
be used to bias the PDF for selection of the energy group of the particles at
collision sites (energy biasing at collision sites, see Section 7.1). Furthermore,
the average particle weight for each zone and group (called WTAV 7 ;) is taken
inversely proportional to the point value of that zone and group, which implies
that all contributing particles have similar weights. This is likely to reduce
the variance of the non-zero contributing particles. This leads to:

S X5

WTAV ¢ = (8.14)

3 £ 3
S¢ Xz.G

where S and S¢; are the original and biased PDFs for source energy group
selection and x5 and X7 are the point values for the source zone S and
shield zone Z, respectively. Note that, if no source energy biasing is used, the
average weight is just equal to the ratio of the point values of the source region
and the shield zone. The weight limits below which Russian roulette will be

127



invoked (called WTLO) and above which splitting will occur (called WTHI),
can be set as a function of the WTAV value in that zone and energy group
(e.g. WTLO = 0.1. WTAV and WTHI = 10- WTAV), or as function of the
WTAYV value of neighbouring zones.

It is shown [Tan88] that the input parameter for exponential biasing can
be calculated by fitting an exponential function through the event values as
function of the optical thickness from the source region to the detector. For
the reason explained earlier, the point value is used here instead of the event
value, which does not abuse the method principally. Along the line from source
to detector, one obtains for the fitted point value of zone Z and group G:

D
Xz = A exp (C/E?(s) ds) (8.15)

0

where D is the distance from the source to the centre of zone Z. For each zone
and group, the total cross section and the point value is known, so the fitting
parameters A and C can be obtained. This is done by a linear least squares
method. Taking the logarithm of Eq. (8.15) and writing 7z, for the optical
thickness from the source zone § to shield zone Z, and B for In(A), one gets
for the sum of squared deviations:

=Y (In(xt,6) - B~ C nzg) (8.16)
zZ

where the summation is over each zone along the line from source to detector.
Differentiating this equation with respect to B and C, leads to two expressions
for these two fitting parameters. C can directly be used as an input parameter
for the MORSE-SGC/S code, to bias the transport kernel by exponential
biasing (this parameter is called PATH).

As stated before, the point values calculated this way, are likely to suffer
from large statistical variations. If it is seen that the point values fluctuate
considerably from one energy group to another, they can be smoothed some-
what by collapsing energy groups together. This is done by taking the sum of
the SCORE array for these groups and the sum of the WEIGHT array, and
using the ratio of these two sums as the average point value for the energy
groups collapsed together. In fact, this is the same as taking a weighted aver-
age of the point values of these energy groups. If groups G’ to G” are collapsed
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together, one obtains for the average point value:

GH
) ¢ wW(Z,IG) 8(Z,IG) (g (B 16)
XzG6 = Z G W(Z IG) = Tan (8'17)
I6=6"\ % W(z,JG) Y W(z,IG)

JG=G' I1G=G'

where W and S are shorthand notations for the values of the WEIGHT and
SCORE arrays, respectively. The x7 . value thus obtained is the same for
each energy group ranging from G’ to G”. The validity of this procedure can
easily be seen from Eq. (8.7). As the subspace I'; can be chosen arbitrarily,
it can contain the energy range of several energy groups together instead of
only one.

If the point values fluctuate from one zone to another, they can be smoothed
by using point values calculated from the fitting parameters A and C in Eq.
(8.15). It must be emphasized that the original and smoothed values should
be compared carefully, because wrong value functions will only worsen the
efficiency of the Monte Carlo calculation instead of improving it.

8.4 Example

The method can best be illustrated by an example. In Fig. 8.1, the geometry
of a straight duct in concrete with a 1 cm thick steel liner is shown. A plane
source calculated by the DOT3.5 code in 25 energy groups, and converted to
MORSE-SGC/S format by the DOMINO code (see Section 7.1), irradiates
the duct with length of 100 cm and radius of 5 cm. A boundary crossing
detector is positioned at the end of the duct. The importance regions (a
region is a collection of geometrical zones with one set of biasing parameters)
are concentric around the duct axis and numbered from 1 to 40 (regions 1 to
10 are steel, 11 to 40 concrete).

The first calculation is done by manual setting of biasing parameters
(WTAV, WTLO, WTHI and PATH). Neither source energy biasing, nor en-
ergy biasing at collision sites are used in this calculation, because of the lack
of knowledge of point values. If source energy biasing would have been used,
however, the weight windows for all zones and energy groups should have been
set in accordance with the weights of the source particles. It is rather cumber-
some, however, to give all these parameters in the input. Now, all the biasing
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Figure 8.1: Horizontal cross section of a straight duct in concrete with a 1
cm thick steel liner. The regions 1 to 10 are steel, 11 to 40 concrete. The
boundary crossing detector is in bold (D), distances in cm.

parameters are the same for each energy group. The WTAYV of region 1 is 1.0,
and is divided by 2 for each region along the axial direction (thus regions 2, 3
and 4 have WTAYV values of 0.5, 0.25 and 0.125, respectively), and multiplied
by 2 along the radial direction (thus regions 11, 21, 31 have WTAYV values of
2.0, 4.0 and 8.0, respectively). In the first calculation, PATH is 0.5 in axial
direction towards the detector for all groups and all zones (note that these
values of PATH, and the choices to divide and multiply the WTAV values in
axial and radial directions by 2, are quite arbitrary). The second calculation
is equal to the first one except for the CPU time, which is about 6 times as
large. The third calculation is also equal to the the first one, except that no
exponential transform was applied.

The point values from the first calculation were averaged over fast (E >
1.0 MeV), intermediate (0.4 eV < E < 1.0 MeV) and thermal groups (E <
0.4 eV), according to Eq. (8.17), and an exponential fit according to Eq.
(8.15) was used to smoothen the spatial behaviour of the point values. The
point values for energy groups 3 (1.0-2.23 MeV) and 23 (0.025-0.05 eV) for
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the 3 concrete layers are shown in Figs. 8.2 and 8.3, respectively, together
with point values obtained from an adjoint one-dimensional discrete ordinates
calculation with XSDRNPM-S [Gre83]. For the latter calculation, a 100 cm
thick infinite concrete slab without a duct was modelled, with a boundary
source at the right boundary. The spectrum and angular distribution of this
source correspond with the response of the boundary crossing detector in the
forward Monte Carlo calculation, i.e. the inwardly directed adjoint boundary
flux at the right hand side of the concrete block in Fig. 8.1 ¢*(42), given
in the input of XSDRNPM-S, was taken proportional to (2 - n)~! for each
group. The normalization of the source was such that the angular integrated
point value calculated this way (the ”adjoint flux” in the output of the code)
is comparable with the point value calculated in a forward Monte Carlo run
X7 (apart from differences due to averaging).

From Figs. 8.2 and 8.3, it is seen that the point values obtained from
the XSDRNPM-S calculation are much larger than the MORSE-SGC/S ones.
This is due to the fact that the slab and the adjoint source in the XSDRNPM-
S calculation are infinitely large, while the radii of the shield and detector
in the MORSE-SGC/S calculation are only 36 and 5 cm, respectively. The
probability to score in the detector of the one-dimensional system is therefore
much larger. It is also seen that the range of the XSDRNPM-S point values
is larger than that of the MORSE-SGC/S ones. This is probably due to the
presence of the duct in the MORSE-SGC/S calculations.

The plateaus in the point value curves, which seem to appear in concrete
layers 1 and 2 (in Fig. 8.2 at 6 mfp, and in Fig. 8.3 at 20 mfp), are due to the
spatial and angular characteristics of the source, and to the weighting of the
point value with the firstly emitted particle density. They disappear when the
source is changed to a point source with the same angular distribution, or when
the source is changed to an isotropic boundary source, or when the duct is
filled with concrete. A tentative explanation for this phenomenon will be given.
The shield is irradiated with a boundary source calculated by DOT3.5, with
an angular representation of 8 polar angles and a variable number of azimuthal
angles per polar angle (20 solid angle intervals in total). The initial particle
direction is uniformly sampled within the solid angle interval determined by
the polar and azimuthal angles. The number of source particles can change
considerably from one solid angle to the other. It may happen, therefore, that
a region is irradiated by particles in a solid angle, which stream for a large part
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Figure 8.2: Point values for group 3 (1.0-2.23 MeV) as function of the optical

shield thickness for both MORSE-SGC/S and XSDRNPM-S calculations, and
the linear least squares fit.

through the empty duct. This can lead to a high point value of that region if
the beam irradiates mainly the most important part of that region (important
with respect to the detector). The region adjacent in axial direction, may be
fully irradiated by the beam, which gives a relatively low point value because
of self shielding in that region. By means of this ray effect, plateaus in the
point value curves can appear.

The point values of the first calculation thus obtained, were used to set
the parameters for the weight window, exponential transform, source energy
biasing and energy biasing at collision sites of calculations 4 to 9. Because the
point values were averaged over fast, intermediate and thermal groups, only
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Figure 8.3: Point values for group 23 (0.025-0.05 eV) as function of the optical
shield thickness for both MORSE-SGC/S and XSDRNPM-S calculations, and

the linear least squares fit.

crude energy biasing could be performed. The values of 4 in Eq. (8.15) of
the point values in the steel liner, were used for the point values of the source
particles.

A short overview of all calculations performed, is given in Table 8.1, while
the collided fluxes of the calculations are given in Table 8.2. The collided
thermal flux due to downscattered fast and intermediate neutrons is given
separately in the one but last column of Table 8.2.

From Table 8.2, it is seen that the fast fluxes are calculated much more
efficiently in calculations 4, 5 and 6, than in calculation 1 and 3. This is mainly
due to source energy biasing and energy biasing at collision sites, which favours
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Table 8.1: Biasing parameters for the calculations. The point values for cal-
culations 4 to 9 are obtained from the first calculation and are averaged over
fast, intermediate and thermal groups. SEB means source energy biasing,
EBC energy biasing at collision sites. Calculations 1 and 2 differ only in CPU
time.

Calc | WTAV | WTHI | WTLO | PATH SEB EBC

1 input 10 0.1 0.5 no no

2 input 10 0.1 0.5 no no

3 input 10 0.1 no no no

4 autom. 2 0.5 autom. | autom. | autom.
5 autom. b 0.2 autom. | autom. | autom.
6 autom. 10 0.1 autom. | autom. | autom.
7 autom. 2 0.5 no autom. | autom.
8 autom. 5 0.2 no autom. | autom.
9 autom. 10 0.1 no autom. | autom.

fast neutrons above others. This leads to undersampling of thermal neutrons,
which can be seen from the erratic thermal flux behaviour of calculations 4,
5 and 6. This behaviour is due to thermal source neutrons, which stream
through the duct without collisions untill they hit the steel liner deep in the
duct. Because of the very high weight of thermal source neutrons (~ 10),
and the very low WTAV of the steel liner deep in the duct (= 2-1073 to
51073 for the thermal groups), an avalanche of highly correlated progenies
is created (max. 1024 per source particle), which gives a large contribution to
the thermal neutron flux at the end of the duct. Apparently, this streaming
path in phase space has a low probability with a high detector contribution,
which is not effectively accounted for in the automatic biasing procedure.

It can furthermore be seen that calculations 7, 8 and 9 are even more effi-
cient, although no exponential transform is used. Similar results for spent fuel
casks can be found in literature [Cra86], where it is stated that the exponential
transform is not effective if the weight window is automatically set from point
values calculated beforehand. Maybe this is due to the fact that the weights
of particles with stretched path lengths are reduced and a fraction of such
particles is killed by Russian roulette in important regions, while the weights
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Table 8.2: Collided fast, intermediate, thermal and total fluxes per unit source
strength in units of 1077 cm~2.s~!. The numbers between parenthesis are the
percentage standard deviation. The CPU time for each calculation is given in
minutes on a VAX3100 M76 workstation. The one but last column gives the
thermal flux due to downscattered neutrons only.

Calc | CPU Fast Interm. | Thermal | Thermal Total

Time Flux Flux Flux Downsc Flux

200 | 3.6 (30) | 4.4(17) | 2.2(26) | .90 (11) [ 10.3 (13)
1200 | 2.6 (12) | 5.0 ( 8) | 2.5 (10) 10.2 ( 6)
200 | 2.9 (35) | 4.3 (17) | 2.3 (26) 9.50 (15)

200 | 2.4 (14) | 5.1 (12) | 5.8 (73) | .96 (22) | 13.3 (32)
200 |2.1(17) | 4.8 (17) | 7.0 (64) | .88 (18) | 13.9 (34)
200 | 2.3 (15) | 5.3 (14) | 1.7 (19) | .77 (14) | 9.25 (10)
200 | 1.8 (13) | 4.1(8) | 1.4 (21) | .90 (12) | 7.37( 7)
200 | 2.3 (14) | 4.8 (11) | 2.1(22) | 1.2(25) | 9.15 ( 8)
200 | 2.1 (14) | 5.7 (16) | 3.4 (30) | 1.6 (43) | 11.2 (13)

WO oo~ b W

of particles with shrunk path lengths are enlarged and a fraction of these par-
ticles is split in less important regions. Another reason might be that the
weights of the particles crossing the detector are more randomly distributed
when exponential transform is applied (see Section 7.1).

It is not quite clear from Table 8.2, which weight window performs best, as
the variances of the calculations are estimates too, which suffer from statistical
variations as well. According to literature [Dub86], estimates of percentage
standard deviations of 26% and higher might be wrong by as much as 100%.
However, there seems to be a tendency that calculations with smaller weight
windows (calculations 4 and 7) are slightly more efficient than their counter-
parts with larger weight windows (calculations 5, 6 and 8, 9)

8.5 Conclusions

To improve the efficiency of Monte Carlo calculations, knowledge of the im-
portant parts of the shield and energy range is necessary, to bias the Monte
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Carlo calculations properly. The point values per zone and energy group can
be estimated from a forward Monte Carlo run, and it is shown that the effi-
ciency of a Monte Carlo run can be improved if these point values are used
in subsequent runs. It is also shown, however, that some channels in phase
space may be undersampled, which can lead to an erratic behaviour of the
variance. Each time a particle is sampled in these scarcely sampled phase
space channels, it will give a large detector contribution and the mean detec-
tor contribution and the variance of the calculation will increase significantly.
If the calculation is stopped before any particles are sampled in these phase
space channels, the detector response may be underestimated and the variance
may be artifical low. To avoid this, care must be taken to ensure that such
phase space channels are sampled frequently enough.

To smoothen the point values estimated in a first Monte Carlo run, over
energy and space, considerable programming is necessary, which depends on
the problem under consideration, and which requires a thorough knowledge of
the code used. A considerable portion of this programming can be avoided by
using only energy averaged point values. Care must be taken in this case to
ensure that the point values are non-zero for each region.

A general applicable, fully automized biasing procedure, is difficult to es-
tablish because of the above mentioned problems. It is also questionable
whether the lower CPU times compensate for the extra input preparation
time in view of the relative cheap CPU time nowadays. If a long sequence of
Monte Carlo runs is to be done, however, with only slight input differences,
it may be profitable to use point values from the first run(s) to enhance the
efficiency of the following ones.
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Appendix A
Calculational Method of
XSDRNPM-S

The one-dimensional transport equation in spherical geometry writes [Gre83,
Alc86):

8(r? ol
LAt A stgsm = i) (A1)

where p is the cosine of the angle with respect to the radius r, ¢4 is the group
integrated flux and T is the group averaged total cross section for group g. In
the absense of fission, the source S, consists of a scattering term and a fixed
source term:

G
Sg(ryp) =27 Z /zg’_.y(r, 2 - 2)pgy(r, 2')dV + S 4(r, 1) (A.2)
g'=1l4n
The scattering cross section of the first term on the RHS of Eq. (A.2) can be
expanded into a Legendre series, leading to:

2 Z / R9'=9(r, 7 — D)y (r, 2)dY =

g'=1yx
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Z st Ny (r, 1)y’ =

=0
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SR T | 1_,
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g'=14{=0

where Efj;_'g are the Legendre expansion coefficients, and P; is a Legendre
function of order {. Note that this equation also requires the Legendre mo-
ments of the flux, ¢,, being calculated. In fact, Eq. (A.3) could also have
been derived by expanding the flux in Eq. (A.2) into a Legendre series, of
which only one term gives a non-zero contribution due to the orthogonality
property of Legendre functions.




An angular quadrature is chosen with M angles u,, and weights w,, to
perform the angular integration. Furthermore, a geometrical quadrature is
chosen with I intervals. The angular loss term due to the curvilinear geometry
(the second term in Eq. (A.l)) is accounted for by angular redistribution,
which serves to change the direction of the particle as it moves from one radial
position to another. Angular redistribution is imposed by several restrictions.
First, there can be no net gain or loss of particles if the angular redistribution
term is integrated over all directions. Secondly, the cosine value of the direction
of a particle can only increase up to the value p = 1. Finally, particles with
direction cosine g = 1 or g = —1 need not to be angular redistributed.

The discrete ordinates expression in spherical geometry then becomes:

wmﬂm(Ai-l»l Dg,i+1,m — Ai¢g.i,m)+

+0i41/2,m4+1/2Pg,i+1/2,m+1/2 — Xig1/2,m—1/2Pg,i+1/2,m—1/2F
+ mef‘i+1/2W¢g,,‘+1/2,m = wm‘/isg,i+1/2,m (A4)

where 7 and m are the indices for the spatial and angular meshes, respectively,
A and V are the area and the volume of the mesh intervals, respectively, and
a is an angular redistribution coefficient. The source term becomes:

ngi+1/2’m = Sf’g!i+1/21m+

G L M

24 -I— 1_ .5
E z g gP[(l/'m) E : Pl(#’m’)¢y i41/2,m' Wm! (A.5)
'=14£=0

m'=1

The cell averaged fluxes are related to the cell edge values by a weighted
diamond difference model, which ensures positivity of all fluxes.

The solution of the transport equation is obtained by sweeping over the
spatial and angular meshes {inner iterations) for each energy group and sub-
sequently sweeping over all energy groups (outer iterations).
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Appendix B
Correlated Sampling

Correlated sampling is a collective noun for techniques which make use of
correlation between statistical variables. It is especially useful to calculate dif-
ferential effects or ratios of statistical variables by Monte Carlo codes [Spa69].
Usually the method consists of using the same particle trajectories for both
the original and perturbed problem, or starting each particle trajectory by the
same random number in both the original and perturbed problem.

If the ratio of two statistical variables is to be calculated, it may be ad-
vantageous to calculate both nominator and denominator in the same Monte
Carlo run. Because the same particle trajectories are used to calculate both
nominator and denominator of the fraction, these two numbers may be posi-
tively correlated, which leads to a reduced variance of the requested fraction.
Suppose the ratio p is defined as:

T
zT+y

(B.1)

z
p:—:
r4

where z and y are statistical variables with standard deviations ¢, and oy,
respectively, then holds for the variance of p approximately:

1\? z\? z
2 2 il 2 —
o, R (;) o; + (22) o; —2 por cov(z, z) (B.2)

Because z = z + y, the covariance of  and z can be written as cov(z,2) =

g2 + cov(z,y), and the variance of z as 02 = o2 + o2 + 2 cov(z,y). For the

squared fractional standard deviation of p then holds:

()= [ (-] -
-O[E) G @)

where 7., is the correlation coefficient between z and y.



If z and y are uncorrelated, this simplifies to:

(@) =)@+ (@] <)+ (%) o
P z z y T z
The term on the RHS of Eq. (B.4) after the < sign, is the squared fractional
standard deviation of p if 2 and z would have been uncorrelated, The < sign
is valid if = and y are both positive, which implies y < z. From Eq. (B.4), it is
seen that the standard deviation is reduced if z and z are positively correlated.
To derive Eq. (B.4), it was assumed that # and y are uncorrelated. Gen-
erally, this will not be the case, and it depends on the sign and magnitude of

the correlation coefficient how large the squared fractional standard deviation
of p will be. For the worst case, z and y are fully anticorrelated (rz, = —1),

which leads to: ) ) )
()~ (' (%)
p z z y

In Table 7.3, the fractional contribution of the uncollided flux was calcu-

lated as: pune une
rp= ¢ = ¢unc + ¢col

Because both ¢“"¢ and ¢° are positive, and the nominator and denominator
of fraction p are positively correlated, Eq. (B.4) is valid. Unfortunately, the
uncollided and collided fluxes are likely to be correlated. If the uncollided flux
in the duct is underestimated because the angular description of the source is
too coarse, as is the case in Section 7.2, more neutrons are scattered in the
wall of the duct, and the collided flux is expected to be overestimated. Due to
this process, the correlation coefficient 7, , is expected to be negative, and Eq.
(B.4) gives a lower bound for the fractional standard deviation. Therefore, Eq.
(B.5) was used to calculate the fractional standard deviation of this fraction,
which gives an upper bound for the error.

In Table 7.4, the fraction of the thermal flux, only due to thermal source
neutrons is given. This fraction writes:

_ S _ %
¢th ﬁh + ¢;1h
where ¢!, and ¢Z, are the thermal fluxes due to thermal source neutrons and
downscattered neutrons, respectively. In reality, these two fluxes are also likely

(B.6)

(B.7)
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to be correlated, but it is again quite difficult to estimate the sign and mag-
nitude of the correlation. As the source spectrum is normalized to unity, an
increase of the thermal source implies a decrease of the non-thermal source,
thus leading to a negative correlation between ¢!, and ¢¢,. But the correlation
due to the transport process from source to detector can be negative or posi-
tive, and other effects may lead to a correlation between ¢!, and ¢g, as well.
The sign and magnitude of the correlation is therefore difficult to estimate,
and Eq. (B.5) was used to calculate the fractional standard deviation of this
fraction as well.

The standard deviation of the fractions given above, calculated in only one
Monte Carlo run was usually still too large. More runs were necessary, and
the mean value of the fractions had to be calculated. It can be shown that the
standard deviation of the mean value of p is minimized, if the inverse variance
is used as a weighting factor. Thus:

%ij e (B.8)

and: 1
s = (B.9)
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The values of § and o5/p are the ones given in Tables 7.3 and 7.4.
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Summary

To modernize shielding software, the gamma ray point-kernel shielding code
MARMER has been developed, which combines several useful options not
available in other codes. Furthermore, the geometry package and data libraries
have been renewed. The code is validated with an experimental benchmark
on a TN12 shipping cask. The results of the code are generally in agreement
with the measurements, and the dicrepancies found could be accounted for. It
turned out that the code is very suitable to these kind of shielding problems,
but other options make the code usable for a much larger class of gamma ray
shielding problems as well.

Gamma ray buildup factor calculations were performed for iron, with a
one-dimensional discrete ordinates code. Large discrepancies with literature
occured, when libraries with too broad energy groups were used. Customized
libraries performed better, but the increase of CPU time due to more energy
groups and higher Legendre orders, was considerable. It turned out to be
very hard to calculate buildup factors accurately up to 40 mean free paths in
the shield for source energies above 5 MeV, because of the strongly forwardly
peaked flux. The problems arising when performing deep penetration gamma
ray calculations are described.

Neutron streaming through bent ducts is often difficult to calculate. An
introduction to this problem is given, together with simple methods to calcu-
late the angular distribution of the source at the duct entrance, and at the
entrance of the second leg of bent ducts. These methods are applied in the
IRIDUCT program, which calculates in a fairly fast and simple way, the fluxes
in empty multibent ducts, making only use of total albedo values of the duct
wall.

Experiments were performed in cooperation with the reactor physics group
of the Institute of Nuclear Technics of the Technical University of Budapest.
Concrete blocks containing a straight duct and two-legged ducts with bends
of 30, 60 and 90 degrees, were placed in an irradiation tunnel at a distance
of about 50 cm from the outer side of the reactor core. The maximum power
of the reactor was 100 kW. The neutron spectra at different positions in the
ducts were measured by multiple foil activation and thermoluminescence mea-
surements.



Rigorous calculations with two-dimensional discrete ordinates and three-
dimensional Monte Carlo calculations are described, and the results are com-
pared with the measurements. The performance of such codes in complex
three-dimensional geometries turned out to be good, although large CPU
times are required. It was found that reducing three-dimensional geometries
to two-dimensional ones can introduce rather large errors. Also the discrete
representation of the angular flux distribution may cause errors, if the flux
is in reality strongly forwardly peaked, as is often the case in empty ducts.
In view of the much lower CPU time used by IRIDUCT, the results of this
program are quite satisfactory.

A method to enhance the efficiency of Monte Carlo codes is described.
Point values are calculated in a forward Monte Carlo run, and subsequently
used to set the biasing parameters of the following runs. The method worked
well, but considerable problem dependent programming was necessary, which
makes a complete automatic biasing procedure not straightforward.
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Samenvatting

Om programmatuur voor afschermingsdoeleinden te modernizeren is de gamma-
afschermingscode MARMER. ontwikkeld. In deze code zijn verschillende in-
voeropties gecombineerd, die niet beschikbaar zijn in andere codes. Ook
zijn het geometriepakket en de databibliotheken vernieuwd. MARMER is
gevalideerd door dosistempo’s rondom een TN12-transportvat te berekenen,
en deze te vergelijken met de metingen die in de literatuur zijn beschreven.
Over het algemeen zijn de resultaten goed en de verschillen die aanwezig waren
konden worden verklaard. MARMER bleek erg geschikt voor dit soort pro-
blemen, maar de code kan voor vele andere soorten afschermingsberekeningen
worden gebruikt.

Gamma-opbouwfaktoren zijn berekend voor ijzer met een één-dimensionale
discrete ordinaten code. Grote afwijkingen met literatuurwaarden traden op,
wanneer databibliotheken met te brede energiegroepen werden gebruikt. Zelf-
berekende gammadatabibliotheken met meer energiegroepen en een hogere
Legendre orde ontwikkeling, gaven betere resultaten, maar de benodigde reken-
tijd nam aanzienlijk toe. De berekening van opbouwfaktoren voor afscher-
mingsdikten van 40 gemiddeld vrije weglengten en energieén boven 5 MeV,
bleek moeilijk door de sterk voorwaarts gerichte gammaflux. De problemen die
optreden met gamma-afschermingsberekeningen voor dikke afschermingslagen
zijn beschreven.

Een introductie tot stromingsverschijnselen van neutronen door doorvoer-
ingen is gegeven, met simpele oplossingen om de hoekverdeling van de bron
aan de ingang van de doorvoering en aan het begin van het tweede been van
geknikte doorvoeringen te berekenen. Deze methoden zijn toegepast in het
IRIDUCT programma, dat op een snelle en eenvoudige manier de neutron-
en gammafluxen in lege, geknikte doorvoeringen kan berekenen, met gebruik-
making van alleen de totale albedo waarden van de wand van de doorvoering.

Experimenten zijn beschreven, die zijn verricht in samenwerking met de
reactorfysicagroep van het Institute of Nuclear Technics van de Technische
Universiteit van Boedapest. Betonblokken met een rechte doorvoering en
geknikte doorvoeringen met hoeken van 30, 60 en 90 graden, zijn op een afs-
tand van 50 cm van de reactorkern geplaatst, in een speciaal daartoe ingerichte
bestralingstunnel. Het maximum vermogen van de reactor was 100 kW. De



neutronspectra op diverse posities in de doorvoeringen zijn gemeten met folie-
activeringsmetingen en thermoluminescentiemetingen.

Transportberekeningen met twee-dimensionale discrete ordinaten en drie-
dimensionale Monte Carlo codes zijn uitgevoerd en de resultaten zijn vergeleken
met de metingen. De resultaten zijn goed, maar de benodigde rekentijden
waren aanzienlijk. Een gesimplificeerd twee-dimensionaal model van de drie-
dimensionale kern en reflector is een belangrijke bron van afwijkingen. De
discrete representatie van de hoekverdeling van de neutronflux aan het begin
van de bestralingstunnel leidt ook tot afwijkingen, die zich vooral uiten als
de flux in werkelijkheid sterk voorwaarts gepiekt is, zoals dikwijls het geval
is in doorvoeringen. Gelet op de veel kortere rekentijd voor het IRIDUCT
programma, zijn de resultaten van dit programma redelijk goed.

Een methode om Monte Carlo berekeningen te versnellen, is beschreven.
Hiertoe is de gemiddelde detectorbijdrage van deeltjes die in een bepaalde zone
en energiegroep uit een botsing komen, berekend in een voorwaartse Monte
Carlo berekening. Deze gemiddelde detectorbijdragen zijn vervolgens gebruikt
om kansdichtheden, die in Monte Carlo codes worden gebruikt om deeltjes door
het systeem te volgen, te veranderen zodanig dat de variantie en/of de rekentijd
van volgende berekeningen afneemt. De volgende berekeningen kunnen dan
efficiénter worden uitgevoerd. De efficiency van dit “importantie iteratie”
schema hangt in sterke mate af van de benodigde tijd om dit iteratie schema
te programmeren. Probleem afhankelijke zaken maken het moeilijk om dit
importantie iteratie schema te automatiseren.
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