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De door Thubert en Kopp gegeven vierde-orde benadering voor het
scheidend vermogen van een klassieke bundelvormer geeft een waarde voor
dit scheidend vermogen, die ongeveer 20 % te groot is. Een zesde-orde
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scheidend vermogen van een klassieke bundelvormer.

Thubert, D. & Kopp, L. {1986), "Measurement accuracy and resolving
power of high resolution passive methods", Proc. EUSIPCO-86 Signal
Processing IIl: Theory and Applications, 1037 - 1040.

De bewering van Schwarz, dat de geisoleerde hoofdlus van een "dirty beam”
ongeschikt is als "clean beam”, is niet van toepassing bij het gebruik van de
"CLEAN" procedure bij het verwerken van passieve "towed-array” sonar
data.

Schwarz, U.J. (1978}, "Mathematical-statistical description of the
iterative beam removing technique (method CLEAN)", Astron.
Astroph., Vol. 65, 345 - 356.

Uit de analogie tussen klassieke mechanica en geometrische optica enerzijds
en quantummechanica en -scalaire- golfoptica anderzijds volgt dat de breedte
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De door Chapline et. al. gebruikte formule voor het berekenen van de
benodigde magnetische veldsterkte in een "fission fragment rocket" is
incorrect en levert een waarde voor de benodigde veldsterkte die ongeveer
een factor 100 kleiner is dan wanneer deze zou zijn berekend met de
correcte formule. De met de correcte formule berekende waarde voor de
benodigde veldsterkte doet de haalbaarheid van het ontwerp teniet.

Chapline, G.F., Dickson, P.W. & Schitzler, B.G. (1988), "Fission
fragment rockets - a potential breakthrough", Proc. International
Reactor Physics Conference, September 18 - 22, Jackson Hole,
Wyoming, USA.

Inhaber stelt "reverse Dutch auction" voor als methode voor het aanwijzen
van bergplaatsen voor nucleair afval. Bij deze "veiling" verhoogt de centrale
overheid telkens het bonusbedrag voor het beschikbaar stellen van een
locatie voor een bergplaats, totdat een locale overheid voor het geboden
bedrag een locatie ter beschikking stelt. Deze methode is echter niet
geschikt voor toepassing in Nederland.

Inhaber, H. (1992), "How to solve nuclear siting problems”,
Kerntechnik, Vol. 57, No. 1, 69 - 71.

Een gaskernreactor biedt goede perspectieven als "actinide burner” en het
verdient derhalve aanbeveling het onderzoek naar dit type reactoren te
intensiveren.

Bij gaskernreactoren, zoals beschreven in dit proefschrift, bieden
thermionische converters goede mogelijkheden voor het benutten van die
fractie van de door kernsplijting geproduceerde energie, die in eerste
instantie uit het reactorgas naar de wand wordt afgevoerd.

Het verdient aanbeveling om in de komende jaren de AOW-gerechtigde
leeftijd te verhogen, teneinde een gezond evenwicht te behouden tussen het

.aantal AOW-premiebetalenden enerzijds en het aantal AOW-uitkerings-

gerechtigden anderzijds.

Bij het bepalen of een potentiee! ouderpaar al dan niet in aanmerking komt
voor KI/IVF met donorzaad, dan wel voor adoptie, zouden dezelfde criteria
met betrekking tot de geschiktheid als ouders moeten worden aangelegd.

Delft, 9 juni 1992

J.C. Kuijper
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(plasma fission) reactor concept was 6500 K, which implies a sufficient degree of
ionization for good conductivity of the plasma. Thanks to this conductivity it is
possible to convert the thermal energy of the fissioning gas directly into electricity
through interaction of the expanding plasma with a magnetic field. The authors
state that "the estimated operating conditions look extreme but not impossible"”.

One of the major problems of such a proposal -and in fact of every high
temperature GCFR- is the corrosive interaction between the fissioning gas and the
surrounding container wall at the prevailing wall temperature of, say, 3500 K (in
the design of Colgate and Aamodt). The solution of this problem was always
sought in low working temperatures and/or a cold, hydrodynamically stable gas
blanket between fissioning gas and surrounding vessel wall [Tho79]. A new
principle was introduced by Kistemaker [Kis78a] with his proposal of using a
reactor vessel that is in thermodynamic equilibrium with the gas and this idea was
the starting point of the Dutch activities in GCFR research.

The central idea of the GCFR research in the Netherlands, which started in
1974 [Kis78a, Nie78], is 3 GCFR, consisting of a mixture of uranium and carbon
fluorides in chemical and thermodynamical equilibrium with the surrounding
graphite vessel wall. Carbon (graphite) seems to be a good wall material from the
chemical, mechanical and reactor physical point of view as well: high sublimation
point (4100 K), largest heat conductivity of all high temperature materials, high
tensile strength and, last but not least, good neutron reflector/moderator properties
[Dud76, Mas76). The approach was shown to be feasible on the basis of an
extensive study, carried out at the FOM-Institute for Atomic and Molecular Physics,
Amsterdam, the Netherlands, of thermodynamic equilibria inside a graphite
container with a ternary uranium-carbon-fluorine gas mixture over a broad range
of temperatures (1000 to 4000 K) and pressures (0.01 to 100 bar) [Nie78,
Kis78b]. The equilibrium gas mixture under the prevailing pressure conditions in a
GCFR consists of approx. 70 % (molar) UF, and 30 % CF, at a wall temperature
in the range of 2000 to 4000 K. This result was an incentive for further analysis
in a broad area with emphasis on the heat transport from the fissioning gas to the
vessel wall [Ker78] and neutronic aspects of a GCFR and led to a conceptual
design for a GCFR with magneto-inductive electricity production [Kis78al.

Since 1978, the Dutch GCFR activities have been aimed towards gaining a
more thorough understanding of subjects related to this conceptual design. A
survey of these activities, up to the end of 1987, is given by Klein [Kle87]. The
thermodynamical properties of the uranium-carbon-fluorine (UCF) gas and its
interaction with the graphite wall were studied using better basic (chemical and
thermodynamical) data and improved computer codes, leading to more accurate
information on the {pressure- and temperature-dependent) equilibrium molecular
composition of the gas (dissociation, ionization, recombination) and its Equation of
State [Kis86, Kis87, Kle87, Boe89b, BoeS0a, Boe90b].

A more fundamental study on neutron transport and heat transport, which
are strongly related in a GCFR, was carried out for stationary, one-dimensional
GCFR geometries by Uleman [Ule82) and van Dam and Hoogenboom [Dam83) at
the Interuniversitair Reactor Instituut (nowadays Interfacultair Reactor Instituut),
Delft, the Netheriands. They utilized the photon diffusion model of Kerkdijk and
Kistemaker [Ker78] for the description of the heat transport from the fissioning gas
(temperature at the centre approximately 10,000 K) to the wall (temperature at the
interface approximately 2000 K}, resulting in a very steep temperature gradient,
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Chapter 1

INTRODUCTION

1.1 General

In present day fission reactors for electricity production the conversion of nuclear
energy into electricity is performed in an indirect way through the use of old-
fashioned steam cycles. For a physicist it is rather frustrating to see how the very
high kinetic energy of the electrically charged fission products is first degraded into
-relatively- low temperature heat and eventually into mechanical energy and
electricity. It is, however, not straightforward to obtain a more direct conversion:
the fission products are strongly ionized and have high kinetic energy, but their
directions of movement are uncorrelated. This implies that we have an inherently
random movement of charges that should be converted into directed movement in
as few stages as possible.

In the early 1950s it was realized that the use of gaseous nuclear fuel in a
so-called Gaseous Core Fission Reactor {from now on to be designated as GCFR)
offers the possibility of -very- high working temperatures and -therefore- more
direct and efficient ways of converting nuclear fission energy into electricity (e.g.
magneto-inductive (M!) or magneto-hydrodynamic (MHD) conversion [Col57,
Tho79, Kle871). Gaseous fuel also offers the advantages of its impossibility to melt
(trivial but important!), homogeneous burn-up of the fuel and the possibility of
continuous reprocessing [Kis78a, Kle87].

In the 1960s a considerable effort was spent in the United States (by the
National Aeronautics and Space Administration) on the development of a nuclear
reactor with a gaseous core, mainly for space propulsion applications [Sch75]. An
excellent review of this development is given by Thom [Tho79], who also gives a
complete survey of the potentialities of the GCFR, such as nuclear pumped lasers,
and also commercial electricity production. In the same period also in the USSR
research was carried out on the same subjects [lye77], but in the beginning of the
1970s in both countries the programs were stopped, as the respective
governments lost interest [Tho79]. However, a group at the University of Florida,
led by Diaz, continued their work on GCFRs, still with a main interest in space
applications [Dia80a, Dia80b, Dug88a, Dug88b, Pan88, Wel88, Pan91a, Pan91b].
At present also GCFR research is performed at other institutions, such as the
Lawrence Livermore National Laboratory in the USA [Ale91]. Also there is classified
research on this subject in both the USA and the USSR.

The GCFR offers the possibility of more efficient ways of converting nuclear
energy into electricity, partly by increasing the temperatures of conventional
indirect conversion processes and partly by introducing direct conversion
processes. Direct conversion is possible because a high level of ionization can be
realized in a fissioning gas (plasma core reactor), which opens the way to magneto-
hydrodynamic (MHD) or magneto-inductive (MI) conversion of heat into electricity.
A GCFR concept utilizing the latter, based on the use of highly enriched gaseous
uranium in a heavy water reflected cylindrical configuration, was proposed by
Colgate and Aamodt [Col57]. The design temperature of the fissioning gas in this



{plasma fission) reactor concept was 6500 K, which implies a sufficient degree of
ionization for good conductivity of the plasma. Thanks to this conductivity it is
possible to convert the thermal energy of the fissioning gas directly into electricity
through interaction of the expanding plasma with a magnetic field. The authors
state that "the estimated operating conditions look extreme but not impossible”.

One of the major problems of such a proposal -and in fact of every high
temperature GCFR- is the corrosive interaction between the fissioning gas and the
surrounding container wall at the prevailing wall temperature of, say, 3500 K (in
the design of Colgate and Aamodt). The solution of this problem was always
sought in low working temperatures and/or a cold, hydrodynamically stable gas
blanket between fissioning gas and surrounding vessel wall [Tho79]. A new
principle was introduced by Kistemaker [Kis78a) with his proposal of using a
reactor vessel that is in thermodynamic equilibrium with the gas and this idea was
the starting point of the Dutch activities in GCFR research.

The central idea of the GCFR research in the Netherlands, which started in
1974 [Kis78a, Nie78], is a GCFR, consisting of a mixture of uranium and carbon
fluorides in chemical and thermodynamical equilibrium with the surrounding
graphite vessel wall. Carbon (graphite) seems to be a good wall material from the
chemical, mechanical and reactor physical point of view as well: high sublimation
point (4100 K), largest heat conductivity of all high temperature materials, high
tensile strength and, iast but not least, good neutron reflector/moderator properties
[Dud76, Mas76]. The approach was shown to be feasible on the basis of an
extensive study, carried out at the FOM-Institute for Atomic and Molecular Physics,
Amsterdam, the Netherlands, of thermodynamic equilibria inside a graphite
container with a ternary uranium-carbon-fluorine gas mixture over a broad range
of temperatures (1000 to 4000 K) and pressures (0.01 to 100 bar) [Nie78,
Kis78b]. The equilibrium gas mixture under the prevailing pressure conditions in a
GCFR consists of approx. 70 % (molar) UF, and 30 % CF, at a wall temperature
in the range of 2000 to 4000 K. This result was an incentive for further analysis
in a broad area with emphasis on the heat transport from the fissioning gas to the
vessel wall [Ker78] and neutronic aspects of a GCFR and led to a conceptual
design for a GCFR with magneto-inductive electricity production [Kis78a].

Since 1978, the Dutch GCFR activities have been aimed towards gaining a
more thorough understanding of subjects related to this conceptual design. A
survey of these activities, up to the end of 1987, is given by Klein [Kle87]. The
thermodynamical properties of the uranium-carbon-fluorine (UCF) gas and its
interaction with the graphite wall were studied using better basic (chemical and
thermodynamical) data and improved computer codes, leading to more accurate
information on the (pressure- and temperature-dependent) equilibrium molecular
composition of the gas (dissociation, ionization, recombination) and its Equation of
State [Kis86, Kis87, Kle87, Boe89b, Boe90a, Boe90b].

A more fundamental study on neutron transport and heat transport, which
are strongly related in a GCFR, was carried out for stationary, one-dimensional
GCFR geometries by Uleman [Ule82) and van Dam and Hoogenboom [Dam83] at
the Interuniversitair Reactor Instituut {(nowadays Interfacultair Reactor Instituut),
Delft, the Netherlands. They utilized the photon diffusion model of Kerkdijk and
Kisternaker [Ker78] for the description of the heat transport from the fissioning gas
(temperature at the centre approximately 10,000 K) to the wall (temperature at the
interface approximately 2000 K), resulting in a very steep temperature gradient,



and therefore an increased density, of the gas near the wall: a dense gas layer
protecting the wall [Kis78a]! Later the model was extended by taking into account
the thermal conductivity and the dissociation/recombination behaviour of the gas
[Kie87, Kis89, Hoo91, Boe91b], leading to somewhat different temperature profiles
in the gas of the (stationary) GCFR.

Parallel to these investigations of the properties of a stationary GCFR a
further step was taken towards a GCFR with magneto-inductive energy extraction.
An initial investigation was carried out by van Dam [Dam88] of the neutron kinetics
of a GCFR with oscillating fuel gas density. However, study of such a GCFR with
magneto-inductive energy extraction calls for a calculational model combining (at
least) neutron kinetics, reactor gas thermodynamics and gas dynamics. This thesis
describes the development of such a combined model.

1.2 Overview of the work

The aim of our work was to investigate the static and dynamic properties of a
GCFR with oscillating (moving) fuel gas. A simplified schematic diagram of such
a GCFR, similar to the concept of Kistemaker [Kis78a], is shown in Figure 1.1. It
consists of a graphite cylinder of, say, 2 m diameter and 10 m length, filled with
a mixture of uranium and carbon fluorides (UCF) at high temperature in ionized
state, in chemical and thermodynamical equilibrium with the graphite cylinder walt
[Kis78a, Kis86, Kle87]. The cylindrical gas space is divided into an active "core"
region, surrounded by an effective (thick} neutron reflector, and a so-called
"expander” region, surrounded by a much less effective (thinner or with neutron
poison) neutron reflector. In operation, part of the fuel gas oscillates back and forth
between core and expander region. With hamogeneously distributed fuel over core
and expander, the reactor is approximately critical. As the fuel gas is ionized, and
therefore electrically conductive, it can interact with the magnetic field, generated
by a current in the coil surrounding the expander. In this way plasma dynamic
compression of the fuel from the expander into the core (rendering the reactor
supercritical) and magneto-inductive energy extraction are possible [Dam89,
Kui89a, Kui89b, Kui90; Kui91a, Kui91b]. The investigation requires the study of
neutron statics, neutron kinetics, reactor gas thermodynamics and gas dynamics,
resulting in a combined calculational model, containing these aspects. In order to
achieve this we followed a step-by-step approach.

In order to obtain more information of the influence of the density
(distribution) of the fuel gas on the reactor physical properties of "our" GCFR, we
performed static neutronics calculations for one-dimensional (sphere) and two-
dimensional (finite cylinder) GCFR configurations. The results of these calculations,
viz. the multiplication factor k., and other reactor physical quantities, are presented
in Chapter 2. We found that the dependence of these quantities on the fuel gas
density (distribution) can be adequately described by means of relatively simple
functions, obtained from so-called "muiti-compartment” GCFR models. These
functions can be conveniently used in the neutron kinetics part (Chapter 3) of the
combined GCFR models {Chapters 5 and 7).

In Chapter 3 we give a description of the neutron kinetics part of the
combined GCFR models to be presented in Chapters 5 and 7. As mentioned, the
necessary reactor physical quantities for these point kinetics models [Dud76] were
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Figure 1.1 Conceptual design of a gaseous core fission reactor with magneto-
inductive energy extraction (possible axial fuel gas density distribution
is indicated by the dotted line).

obtained, in the form of relatively simple functions, from the static neutronic
calculations described in Chapter 2.

Chapter 4 describes the thermodynamical properties of the UCF reactor gas.
We introduce a model gas -"Modelium”- with an artificial, analytical Equation of
State {(EOS), as an approximation for the "real” EOS of the UCF gas. We also
introduce the concept of a so-called "infinitesimal Otto cycle”, by means of which
the efficiency of a finite thermodynamic cycle can be estimated, with reasonable
accuracy, from the thermodynamical properties of the working gas only [Kui91a].

In Chapter 5 we present the combined model of a so-called "solid piston”
GCFR [Kui89a, Kui89b, Kui90, Kui91a, Dam89]. In this model the interaction of
the ionized fuel gas with the magnetic field generated by the coil is represented by
a solid piston, which controls the total volume occupied by the fuel gas. The
extracted energy is then modelled as the mechanical work performed by the gas
on the piston. The model combines neutron kinetics and thermodynamics.
However, no gas dynamics is taken into account, as the fuel gas, occupying the
space controlled by the piston, is assumed to be massless and homogeneous.

Chapter 6 introduces another element of the final combined model: gas
dynamics. As the length of the cylindrical gas space is large compared with its
diameter (about 5:1) we considered one-dimensional gas dynamics in axial direction
only. In order to facilitate the use of gas dynamics in our combined "two-
compartment” model {Chapter 7) we developed a so-called "Two-Compartment gas
dynamics” Model ("TCM") for the GCFR [Kui91b]. The parameters governing this
model are chosen such that the natural oscillation frequency and the momentary
total kinetic energy of the gas in the system are the same as in the "Fundamental
Acoustic Mode” ("FAM") description of the (one-dimensional) gas dynamics of the
system.

A model for a GCFR with autonomously oscillating fuel gas, combining
neutron kinetics, thermodynamics and gas dynamics is presented in Chapter 7. The



conditions will be shown under which, for the case of absence of an energy
extraction mechanism, increasing density oscillations in the fuel gas will occur.
These increasing oscillations are desired when the kinetic energy of the moving,
ionized gas is to be directly extracted by magneto-inductive (MI) or magneto-
hydrodynamic (MHD) means.






Chapter 2

NEUTRON STATICS

2.1 Introduction and overview

As a first step in the development of our combined GCFR models (to be presented
in Chapters 5 and 7), and in order to obtain a better understanding of the influence
of the density and the density distribution of the fuel gas on the reactor physical
properties of our GCFR, we performed numerical static neutronics calculations for
one-dimensional (sphere) and two-dimensional (finite cylinder) GCFR configurations.
We investigated the influence of the fuel gas density and density distribution on
the multiplication factor k.., the neutron generation time A and the core fission
power fraction £, (finite cylinder only). Information on this influence is necessary
in the neutron (point-) kinetics part of our combined GCFR models, to be introduced
in Chapter 3.

Other important quantities for these neutron kinetics models are the effective
delayed neutron fractions B, (delayed neutron precursor time group/;/ = 1,...,6).
Delayed neutrons are fission neutrons which are not released immediately as the
fission process occurs, but which are emitted somewhat later by fission products,
the so-called delayed neutron precursors [Bel70, Dud76, Mas76].

The most convenient way of representing the information concerning g, A
and f, mentioned above for use in the neutron kinetics models, is in the form of
relatively simple fit functions, describing the behaviour of k., A and f, with the
fuel gas density and density distribution, which can be fitted to the results obtained
from the numerical static calculations mentioned above. In Section 2.2 we present
two formal static neutron transport GCFR models: the so-called "chord model"
(Section 2.2.1) and "multi-compartment models" (Section 2.2.2 and Appendix A).
These formal models were developed and studied in order to obtain a better
understanding of the numerical results and to provide for the functional form of the
fit functions mentioned above.

In Section 2.3 we present the results of the (one-dimensional) static neutron
transport and neutron diffusion calculations for a spherical GCFR. We investigated
the influence of the (average) fuel gas density and the radial fuel gas density
distribution on &, and A. We also compare the results, obtained from fine group
neutron transport (187 or 123 energy groups), broad group neutron transport {4
energy groups) and broad group neutron diffusion calculations (4 energy groups).
On the basis of this comparison, and in view of the explorative nature of our
calculations, we decided to use 4-group neutron diffusion calculations for the
investigation of the two-dimensional (finite cylinder) GCFR configuration, as this
requires far less computing resources than -more accurate- fine group neutron
transport calculations.

Resuits of two-dimensional static neutron diffusion calculations for a
cylindrical GCFR are presented in Section 2.4. Like in the one-dimensional case, we
investigated the influence of the {average) fuel gas density on k,,, A and also on
f.. The emphasis of these calculations was, however, on the investigation of the
influence of the axia!l fuel gas density distribution, in view of the use of this




information in the combined GCFR model calculations (Chapter 7).

An overview of the performed static neutronic calculations, for which we
used a well-established set of computer codes, is shown in Figure 2.1. Data
libraries are indicated by rounded boxes, codes by rectangular boxes. Basic nuclear
data for our calculations, such as neutron point cross sections and resonance
parameters, were taken from the ENDF/B-1V [Gar75] and JEF-1 [NEA85] data files.
In Figure 2.1 three calculational routes are indicated.

The first route {indicated by "A"), starting from the ENDF/B-1V data file, was
taken by Dveer [Dve88], using the codes XLACS [NEA73a] (data extraction from
ENDF/B-1V; generation of a so-called AMPX-Master library, containing microscopic
neutron cross section data in 123 fine energy groups and resolved resonance
parameters), XSDRN [NEA73b] (one-dimensional fine group neutron transport
calculation; generation of an ANISN-format library by condensing into 4 broad
energy groups}, ANISN(E) INEA79] (one-dimensional broad group neutron transport
calculations} and DAC-] [NEA72] (calculation of neutron generation time A and
effective delayed neutron fractions f,.,,}. We used the ANISN-format library made
by Dveer [Dve88] for our first one-dimensional broad group neutron transport
calculations by ANISN(E) and DAC-I {Section 2.3; also see [Kui88]). From these
calculations we obtained information on the influence of the fuel gas density on k.,
and A, which was used, in the form of fit functions, in the neutron kinetics part of
the "solid piston” GCFR model (Chapter 5). From these calculations we also
obtained information on 8,4

For the second route (indicated by "B"), starting from the more up-to-date
JEF-1 data file, we used a set of more modern codes, viz. the NSLINK system
[Lee91] (data extraction from JEF-1; creation of an AMPX-Master library,
containing neutron cross section data in 187 fine energy groups and resolved
resonance parameters), NITAWL [NEA87] (creation of a 187-group AMPX-Working
library) and XSDRNPM [NEA87] (improved version of XSDRN; one-dimensional fine
group neutron transport calculations; creation of an AMPX-Weighted library by
condensing into 4 broad energy groups). From the AMPX-Weighted library (which
has the same format as an AMPX-Working library) we generated libraries for
subsequent calculations. We used CONTAC [NEA78] for the generation of an
ANISN-format library, to be used for one-dimensional broad group neutron transport
calculations with ANISN [NEA86a] and DAC-1 [NEA72] {Section 2.3), and OCTAGN
[NEA78] for the generation of a CITATION-format library, to be used for one-
dimensional {Section 2.3) and two-dimensiona! {Section 2.4) broad group neutron
diffusion calculations with CITATION [NEA89]. From these two-dimensional
calculations {route "B") we obtained information on the influence of the (average)
fuel gas density and the (axial) fuel gas density distribution in the cylindrical GCFR
on k,, N and f,, and also information on B,,,, which was used, in the form of fit
functions, in the neutron kinetics part of the "two-compartment” GCFR model
(Chapter 7).

A third calculational route (indicated by "C") starts from the AMPX-Master
library of route "A". This route uses COMET [NEA78] to convert the format of the
AMPX-Master library, so that it can be used by the more modern codes also used
in route "B". We followed this route in order to be able to make a good comparison
between results, obtained with older data and older codes {route "A"), and those,
obtained with more up-to-date data and more modern codes (route "B"; see
Section 2.3). In Appendix B more information can be found on the generation of
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the fine group and broad group constants {neutron group cross sections, neutron
group velocities, fission spectra, etc.).

2.2 Static neutron transport models

In general, the behaviour of neutrons in any medium (thus also in a fission reactor)}
can be described by the time-dependent Boltzmann transport equation [Wil66,
Bel70, Dud76, Mas76], which for neutrons takes a linear form as neutrons do not
interact with each other. In fact, the linear Boltzmann (or neutron transport)
equation is a balance equation for the position- (r}, time- (t), energy- (E) and
direction- (Q) dependent neutron angular density n{r,£,Q,t) {underline "_" denotes
vector). The neutron angular flux density w(r,£,Q,t) (from now on denoted by
"angular flux™) is then defined by:

wir,E,.Q,t) = v(E)nir,E,Q,1) (2.2.1)

{neutron velocity v(F)). The (total) neutron flux (density) @(r,£,t) and the neutron
current (density) Jir,£,t) are defined by:

PlLE = j wir,E.Q,1)dQ (2.2.2)

an
and:

JrED = Igw(l,f.g,t)dﬂ (2.2.3)
an

respectively {infinitesimal solid angle dQ around direction Q).

In order to obtain a time-independent form of the transport equation, the
multiplication factor k_ is introduced [Wil66, Bel70, Dud76, Mas76], which is the
factor by which the (fission) neutron production term in the transport equation has
to be reduced in order to bring it into balance with the neutron loss through
absorption and leakage:

fission neutron production rate (2.2.4)
neutron absorption rate + neutron leakage rate

Without external neutron sources (fission neutron sources only} the time-
independent neutron transport equation is an eigenvalue equation with
(fundamental, i.e. algebraically largest) eigenvalue k., and corresponding
eigenfunction @lr,£,Q). The other possible solutions for the eigenfunction (the so-
called "higher order" modes) correspond to algebraically smaller values of the
eigenvalue. For a system in the fundamental neutronic mode the reactivity p is now
defined by [Dud76]:

kell =

— Kegr — 1
kelf

The codes XSDRNPM [NEA87] and ANISN [NEA86a] solve the time-independent
neutron transport equation numerically, rendering the fundamental eigenfunction
w (angular flux) and the corresponding eigenvalue k., for one-dimensional {(sphere,
infinite cylinder, infinite slab) geometries. The code CITATION [NEA89] solves, for
one-, two- and three-dimensional geometries, the time-independent neutron

(2.2.5)
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diffusion equation. This is an approximation to the neutron transport equation, in
which it is assumed that the neutron current density J is proportional to the spatial
gradient of the total neutron flux ¢ [Bel70, Dud76, Mas76]. CITATION renders the
fundamental eigenfunction g (total flux) and the corresponding eigenvalue k..

Formal static neutron transport GCFR models were developed and studied
in order to obtain a better understanding of the numerical -static- neutron transport
and neutron diffusion calculation results. Using these models, the functional
relationships between several reactor physical properties can be derived. Also these
models render -relatively simple- functions, describing the behaviour of &,,, A and
f, with the fuel gas -average- density and density distribution, which can be fitted
to the results obtained from the numerical static calculations. So, they can be
conveniently used in the neutron (point-) kinetic models to be introduced in
Chapter 3.

2.2.1 Chord model

The first formal GCFR static neutron transport model to be discussed here is the
so-called "chord model”, which was developed by Uleman [Ule82], van Dam and
Hoogenboom [Dam83]. It is based on the assumptions that: (I) a fission neutron,
born in the fuel gas core, travels directly (large mean free path for fast neutrons;
Appendix B) to the surrounding reflector, and has a probability wy,. (Thermalize
and Return to Core) to return to the core as a thermal neutron; (ll) a thermal
neutron travels through the core in a straight line {i.e. very large scattering mean
free path for thermal neutrons; see Appendix B) and is either absorbed in the gas
{low, but nonzero absorption probability; each absorbed neutron produces 7 fission
neutrons) or reaches again the reflector; (lli) a thermal neutron entering the
reflector, will be returned to the core gas with a probability, equal to the reflector
albedo B. Under these assumptions the multiplication factor k., is given by
[Dam83l:

1 - exp(-2,3) (2.2.6)
1 - B exp(-Z,3a)

For the GCFR core, which is a convex body, the mean chord length & is given by
[Cas53l:

Koy = 11 Wrge

= _ 4V
7 =2 (2.2.7)
S
(V = core volume; S = core surface). The reflector albedo £ is close to unity, and
%, 4 is small compared to unity [Dam83], so Eq. (2.2.6) can be approximated by:
1
1+ 1" B (2.2.8)
z,3

In order to take into account the effect of variation of the gas density on the
multiplication factor, the macroscopic absorption cross section %, (which -by
definition- is given at the reference gas density) may be multiplied by a
dimensionless factor n,,, (the relative density). Applying Eq. (2.2.5) we then obtain
for the reactivity (assuming that 1, wyzc and 8 are independent of n,,):

Ketg = N Wrac

11



p=[1- 1 ]-[ 1=8 ) (n)" (2.2.9)

N Wigc n Wype 2, @

If we rewrite Eq. (2.2.9) in terms of the density, relative to the density at which
the reactor is critical (ng4c,: Relative to the Critical Density), we obtain:

- [y -1 - o1 n. )" 2.2.10

d [ 1T Wrgce ! 1l Wrae ( weo ( )
Eqg. (2.2.10) predicts that, in this case, both coefficients of the fitted function have
the same value, which we -to a good approximation- indeed found to be the case
in our numerical calculations (see Section 2.3}.

Generally, the reflector albedo £ depends upon material properties and
dimensions. For a spherical GCFR, with core radius R_,,., infinitely thick reflector,
reflector (thermal) neutron diffusion coefficient D,,, and reflector (thermal) neutron
diffusion length L,,, we find [Gla60]:

1 1
1-20D
o [Llefl ’ R, ]

B = core | (2.2.11)

1+20D,, [L1 * R1 ]
refl core

For the graphite reflector of our spherical GCFR (D,,, = 0.61cm, L, = 76 cm,
R.... = 100 cm [Kui88]) we can approximate:

1-B=4DM[J +R1] (2.2.12)
refl

core

We then find for the critical density of the fuel gas of a spherical GCFR (relative to
the reference gas density, at which %, is defined):

3 Dlefl 1 + 1
za (n WTRC - 1) Rcore L’eﬂ (Rcole)z

In Section 2.3 we will show that the variation of the critical density with the core
radius indeed can be described by a function of the form of Eq. (2.2.13).

n (2.2.13)

rel.crit —

2.2.2 Multi-compartment models

In order to be able to derive fit functions for other reactor physical quantities than
the reactivity only, we developed another type of formal (GCFR) static neutron
transport models: the so-called "multi-compartment” models. Like in nodal methods
{see eg. Ronen [Ron86]), in these models the reactor is considered to consist of
M compartments (indexm = 1,...,M; compartment volumes V,), in each of which
the volume-averaged neutron flux ¢,? (G energy groups; index g = 1,...,G;
neutron group velocities v*¥') is to be calculated. These volume-averaged neutron
fluxes in all compartments and all energy groups are represented by the so-called
flux vector p with (M-G) elements. As is indicated in Appendix A, the multi-
compartment representation for the time-independent neutron transport equation
reads:

12



Q'QE<A§'¥M+£.¥M).Q=Q (2214)
£ = fission matrix; £ =

{H = system matrix ((M'G) x (M-G) elements); £

absorption-, scatter- and transport matrix, V,, = volume matrix; H, £ and £ are
dependent upon the relative densities {n,,,) in the compartments and also on the
scattering and absorption cross sections (£, ,,“*" and Z,l,,,‘”’), the number of fission
neutrons per absorbed neutron (1,) and the compartment-to-compartment
transport coefficients (K,,.,"'); see Appendix A). Eq. (2.2.14) is an eigenvalue
equation with fundamental eigenvector @ and corresponding eigenvalue A
(= 1/ky=1-p)InAppendix A amore extensive description is presented of the
multi-compartment models, including the (approximated) formal expressions for the
reactivity p (or the multiplication factor k), the neutron generation time A and the
fission power fraction f,,, in compartment m. These expressions are rational
algebraic functions of the relative densities n,,,,. We will now discuss some
examples of formal multi-compartment models.

® One-group/one-compartment model for spherical GCFR

The first model, which was also discussed by van Dam [Dam88], is the case of the
one-group/one-compartment (also bare) spherical reactor. For this case we have;
M = 1 (one compartment: the core; compartment index m omitted further on);
G = 1 (one energy group; group index g omitted further on}; w,_,""" = 1 (all fission
neutrons appear in the core; w,_,"" is the fraction of the fission neutrons, born in
the core, which re-appear in the core in group 1; see Appendix A); F = n z,n,
{1 x 1 matrix; group and compartment indices omitted); £ = -Z, n,, - K, (also
1 x 1 matrix; K,,, = K,}). We then find for the inverse of the multiplication factor:

1L Kooy (2.2.15)
,7 nza ( lef)
The {relative) critical density is then given by:
¢
relerit = (2.2.16)
(h-1)s,

And the reactivity can then be given in terms of the density, relative to the critical
denSity (nRCD = nlel / nre/,crit):

= - = - 1 - - 1 -1 (22.1 7)
p = 1 A= 1 —_— 1 — - N7
[ ,7] [ n] ( RCD)

This is the same expression as we found with the "chord model" (Section 2.2.1;
Eg. (2.2.10)), except that there is no factor wy,., as we only take into account
thermal neutrons. The neutron generation time for this one-group/one-compartment
model is given by:

A = —(’7 /;0 1V) (”Rco)-1 (2.2.18)

(neutron velocity v). Van Dam [Dam88] added an extra term to account for the °
time spent in the reflector. In the next model we will see this extra term appearing
automatically, as we will take the reflector into account explicitly.

13



e Two-group/two-compartment model for spherical GCFR

The second muiti-compartment model to be discussed is a two-group/two-
compartment (G = 2: fast{g = 1)andthermal (g = 2); M = 2:core(m = 1)and
{surrounding) reflector (m = 2)) mode! of a spherical GCFR. For this case we
assume: ,,% = O (noabsorptionin the reflector; only in the core), Z,,''""* > 0 (no
scattering in the core; only downscattering in the reflector), n,,, = n,, (variable
relative density in the core), n,,, = 1 (fixed density in reflector), 7, = n (no
fission in reflector; only fission in core by thermal neutrons), w,.,'" = ¥ =1
(only fast fission neutrons, appearing in the core) and K09 = O {core completely
surrounded by reflector). For this case the £ and £ are 4 x 4 matrices. Following
the procedure outlined in Appendix A, we obtain expressions for A and A of the
following forms (denoted by "new fit functions™ in Section 2.3):

A=Ciang +Chy C,\,3(n,e,)“ (2.2.19)

N = Cl\,‘l N + C/\,2 + C/\'g(ﬂ,e,)-1 (2.2.20)

The first term (in both equations) becomes O if no absorbtion of fast neutrons in
the core is taken inta account (so if £,,' = 0), and in that case the equations
simplify to the forms used earlier [Dam88, Kui88) (hence denoted by "old fit
functions” in Section 2.3; also see "chord model" and "one-group/one-
compartment model"}. If we now assume further that: v = o (very high velocity
of fast neutrons), Z,,"’ = O (no absorption of fast neutrons in the core) and
K,.,'" = 0 (no leakage of fast neutrons), we obtain:

A= l . sz(z) K2-om Ki.,? . (n )-1 {(2.2.21)
n Ky? ns,,? K,q? rel

From this we can calculate the reactivity in terms of the density, relative to the

critical density:

N Kypuy2 + Ky o
n Ky,?

1

. (’7/?00)-1

e Kyt @ +K, o
N Kyt

(2.2.22)

This expression corresponds to Eq. (2.2.10), as the factor K, [Kput'? + Kpo?1?
actually is the fraction of the fission neutrons that thermalizes in the reflector and
returns to the core (w,.), because we assumed no fast leakage and no absorption
in the reflector. The expression for the neutron generation time reads:

|

- nKzi® v
1
The first term represents the time that a neutron remains in the reflector after

PO S, + V‘
@ 02
K, ?v

V,

(2}

1 + K2-0
(2

KZ——1

Koy + K,y a
Tl

(2.2.23)
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thermalization, before returning to the core.
® One-and-a-half-group/two-compartment model for spherical GCFR 1

In the next model we attempt to reduce the size of the matrices, while retaining
the effect of fast and thermal neutrons, in the so-called one-and-a-half- group/two-
compartment model. The geometry (M = 2) is the same as in the previous modei,
but only the thermal flux is explicitly calculated (so G = 1; group index g omitted
further on). The effect of the thermalization of fast {fission) neutrons in the
reflector is taken into account by means of w,,.,,,: w,,, = 1 {fission neutrons, born
in the core (m” = 1), re-appear in the reflector (m = 2) as thermal neutrons; no
fast leakage; group index omitted}. Now £ and £ are 2 x 2 matrices, which are
much more manageable than 4 x 4 ones. If we then also keep the remaining
assumptions the same as in the previous model, the expressions for A, p and A turn
out to be the same as the expressions found with the two-group/two-compartment
model (Egs. (2.2.21),{2.2.22) and (2.2.23), respectively; group index omitted). So
the one-and-a-half group approximation seems to be sufficient. In Section 2.3 we
will show that functions of the form(s) given above (one-group/one-compartment-,
two-group/two-compartment-and one-and-a-half-group/two-compartmentmodels;
"old" and "new" functions) indeed describe quite well the dependence of reactivity
and neutron generation time on the fuel gas density of the (one-dimensional,
spherical) GCFR.

® One-and-a-half-group/two-compartment model for spherical GCFR 2

The next model is also a one-and-a-half-group/two-compartment model, but this
time we want to describe the effect of fuel (gas) distribution between a core centre
and a (surrounding) core edge (between core centre and reflector [Kui881). This
time the flux in the reflector is not explicitly calculated (there is no explicit reflector
compartment in the model), but the effect of thermalization of (fission) neutrons
in the reflector and their (possible) return to the core is again taken into account
by means of w,,._,, (group index omitted): w,,., = wyy (fission neutrons, born in
the core centre {m” = 1) or core edge (m’ = 2} have a probability wyze of
thermalizing in the reflector and returning to the adjacent core edge). The leakage
of thermal neutrons from the reflector is simulated by leakage from the core edge
(Ko > 0; group index omitted). The -relative- densities in core centre and core
edge are related to the average core relative density n,,, by:

nle/,1 = Ny [1 - e%] (2.2.24)
1
nreI,Z = n,e/ (1 + 8) (2-2.25)

The variable € describes the density distribution over core centre and core edge
(¢ = 0 means equal densities in core centre and core edge). In we furthermore
assume that wy,. = 1 (i.e. all fission neutron are thermalized in the reflector and
return to the core edge first; no fast leakage and no absorption in the reflector) and
that there exists a strong coupling between core centre and core edge (i.e
(Kisg Vi) 1 {Kpp V3) = Koy 1 Kpp = Zz' - =), then we can approximate the rational
algebraic expressions for A and A by a Taylor expansion to first order in z from
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z = 0, obtaining for the reactivity:

K,V - K e V,-V,)?
p = [1 _ _1_] _ 240 V2 (n,e,)1 _ 20 2 1
n nZ,(V, +V,) n Ky Vi+V,

(2.2.26)

{n,, = average relative core fuel gas density). The fuel distribution variable & can
attain values between -1 (all fuel in core centre) and V, / V, (all fuel in core edge).
From Eq. (2.2.26) we can expect that the reactivity increases as fuel is moved
from core centre to core edge. A maximum reactivity is expected fore = V, / V,,
which is also the maximum value for €. In Section 2.3 we will show that the
reactivity change, caused by fuel redistribution between core centre and core edge
indeed can be described adequately by a function of the form of Eq. (2.2.26).
Following the same procedure, we can obtain a function, describing the
dependence of the neutron generation time A on € (and n,,). Like Eq. (2.2.26), this
function contains terms with € and &2. However, the function does not contain a
term describing the time spent in the reflector after thermalization, before returning
to the core. This can be expected, as in this model (like in the one-group/one-
compartment model) the reflector is not taken into account as an actual
compartment. For an extremely strong coupling between core edge and core centre
(i.e. z —» 0) the influence of fuel distribution disappears and the expressions for p
{(Eq. (2.2.26)) and A from this model simplify to the corresponding one-group/one-
compartment expressions (Egs. (2.2.17) and (2.2.18)).

® One-and-a-half-group/two-compartment model for cylindrical GCFR

The final formal model to be presented is a one-and-a-half-group/two-compartment
(G = 1; group index omitted further on; M = 2) model of a cylindrical GCFR (like
the one in Figure 1.1) consisting of a "core"- (m =1) and an "expander"-
compartment (m = 2) of equal volume (V, = V, = 0.5 V,,; so K., = K,.,; see
Appendix A), both containing fue! gas. In this case we are interested in the
reactivity o, the neutron generation time A and the core fission power fraction 7,
(= f,,) as function of the average relative density (core plus expander) n,,, and the
fuel gas distribution over core and expander. The latter is described by the density
distribution variable €. The relative densities in core and expander are given by:

Dogpr = Ny (1 + 8) (2.2.27)

nreI,Z = n,e/ (1 - e) (2228)

As core and expander have equal volumes, the density distribution variable can
attain values between -1 and 1 (¢ = O denotes a flat density distribution). Like in
the previous model, there is no explicit reflector compartment in this model, but
like in that model the effect of thermalization of fast (fission) neutrons in the
reflector and their (possible) return to the core or expander is taken into account
by means of -again- w,,..,,: it is assumed that all fission neutrons, born in the core
or expander, thermalize in the reflector and return to either the core or the reflector
(no fast leakage and no absorption in the reflector):
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Wm’-m = 6m’,m WTRS + (1 - 6,"/‘,.") (1 ot WTRS) (2.2.29)

Wy is the probability that a fission neutron, born in core or expander, after
Thermalization in the reflector, Returns to the Same compartment (as a thermal
neutron). The leakage (of thermal neutrons) from the reflector is simulated by
leakage from the core (K, > 0) and expander (K,., > 0). In general, the (thermal)
leakage from the reflector part surrounding the core is different from the leakage
from the reflector part surrounding the expander. This is taken into account by
means of a factor ,,, assuming:

Vo Koo = Vi Ko (1 + 64) (2.2.30)

For &, = O we have the so-called symmetric case. For &, > O we have the
situation of a core, surrounded by an efficient reflector, and an expander,
surrounded by a less effective reflector. Following the procedure outlined in
Appendix A, using the algebraic manipulation code package REDUCE [Ray87], we
were able to obtain expressions for p, A and f, in terms of rational functions of the
average relative density n, and the density distribution wvariable €. These
expressions, however, are much too complicated to be useful as fit functions for
the numerical calculation results to be presented in Section 2.4. Therefore, we
approximated these expressions in a way, similar to the way we followed for the
previous model, obtaining expressions of the following forms:

p = Cp.1 nrel + Cp,2 + »3 (nn-sl)_.I + ».4 82 + Cp.5 € (2231)
N=Cring+Cpry+ Chry (”re/)_1 +Cra €2+ Cps5 € (2.2.32)
fo=Cpy + Cpy (nrel)-1 + Cpq (n,e/)-z +C 82+ Cis € (2.2.33)

Note that we have added a term to the expression for the neutron generation time
to take into account the time spent in the reflector after thermalization, before
returning to the core (C, ,}. In the expressions for both p and A we also added a
term describing fast absorption in the fuel gas (like in the two-group/two-
compartment model for the spherical GCFR} (C,, and C,,). For the so-called
symmetric case {J,, = 0) we can expect that, for symmetry reasons: C,; = O,
Crs = 0,C;y =05and G, = C;3 = Gy = 0.1n Section 2.4 we will show that
the results from two-dimensional numerical calculations {(concerning the influence
of the average fuel gas density and the axial fuel gas density distribution in a
cylindrical GCFR) can be described quite well by functions of the form of
Egs. (2.2.31), (2.2.32) and {2.2.33).

2.3 Spherical GCFR

Using the computer codes XSDRNPM [NEA87], ANISN(E) [NEA79], ANISN
[NEA8B6a], DAC-I [NEA72] and CITATION [NEA89], we performed one-dimensional
numerical neutron transport and neutron diffusion calculations for a spherical
GCFR, investigating the influence of several parameters on its static neutronic
behaviour. As a central "point of reference" for these calculations we now
introduce our "Reference Spherical GCFR" (from now on to be designated as RSG).

17



Figure 2.2 presents the characteristics of this reactor. The nuclide densities in the
gas originate from an ANISNI(E) critical density search calculation (for RSG
geometry), using the ANISN-format neutron group cross section library of route
"A" (see Figure 2.1), made by Dveer [Dve88, Kui88]. These nuclide densities are
based on an enrichment of 50 % in 2**U and the molecular composition of UCF gas
in thermodynamical and chemical equilibrium with a graphite wall at 2000 K,
according to Klein [Kle87]: 20.5 % CF,, 25.0 % UF,, 54.5 % UF; (also see
Section 4.1). The same nuclide composition of the fuel gas was assumed for all
our static neutronic calculations (also for our two-dimensional calculations:
Section 2.4). The total mass of the fuel gas in the RSG is then m,,, = 40 kg (i.e.
a mass density of p,, = 9.55:10° g cm™®) and the total mass of the 2*°U is m,; =
13.4 kg. Also in all our calculations the nuclide density in the graphite reflector
was chosen to be 8.55:10%2 ¢cm, which corresponds to 1.70 g cm™. This is based
on the density of CS-312 graphite [UNI59] at a temperature of 1000 K [Ule82].
The bulk temperature of the graphite reflector was assumed to be 1000 K, because
the high-temperature region (1000 - 2000 K) will be limited to a small layer near
the gas core boundary (which is assumed to be at 2000 K), due to heat removal
by refiector cooling [Dam83].

Core radius: Core volume: Reflector thickness:
Regre = 100.0 cm Vigre = 4.189 m3 d.gpy = 100.0 cm
Core gas ruclide densities (cm™3);
T ec 4.1977-10%8
Graphite 19 9.3281-10'°
- 235y 8.1621-10'8
/x‘ \ 238y 8.1621-10'8
R ks lTotal fuel gos maoss:
core ’ —
/ degr Mot = 40 rkg
+ — e mya3s = 13.4 kg
Rver‘ogc core gos femper‘cﬂure:
UucCF Teore = 10,000 K
e

- | Reflector nuclide density (cm3):
Graphite 8.55-1022

/ Average reflector temperature:
\' ///’ Tierr = 1000 K

Figure 2.2 Reference Spherical GCFR ("RSG"): reference geometry for one-
dimensional fine- and broad-group neutron transport and neutron
diffusion calculations.

In the calculations presented in this section, the temperature of the -bulk of
the- fuel gas in the core was assumed to be 7, = 10,000 K. However, the
temperatures of the fuel gas and the reflector influence the group cross sections
in the core and the reflector, and therefore the reactor physical behaviour of the
GCFR. More information on the influence of the temperature can be found in
Appendix C.

The codes XSDRNPM [NEA87], ANISN [NEA86al and ANISN(E) [NEA79]
solve the Boltzmann transport equation numerically (rendering the fundamental
eigenfunction ¢ and corresponding eigenvalue for one-dimensional geometries
(sphere, infinite cylinder, infinite slab; sphere in our calculations), assuming: (I} a
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Table 2.1 Main parameters for fine group static neutron transport and cross

section condensation calculations by XSDRNPM (routes "B" and "C").

General

Calculation type k,n-calculation & cross section

condensation to broad groups

Geometry Sphere {one-dimensional}
Quadrature order S,
Scattering Legendre order P,

Left boundary condition Reflective (centre of sphere)

Right boundary condition Vacuum {outer boundary)

Number of zones 2

Number of spatial intervals 84

Overal convergence criterion 1-10° - 1-10*
Point convergence criterion 1-10*
Nuclide composition As in RSG

Group condensation weighting option Zone weighting

Spatial structure

Zone 1 (core) 2 {reflector)
Spatial interval range 1-34 35 -84
Coordinate range (cmj 0.0 - 100.0 100.0 - 200.0
Interval size (cm} 0.5-10.0 05-5.0
Broad group structure
Basic data Energy range (eV) Fine groups Broad group index
JEF-1 {route 2.0-107 - 1.11-10° 1-49 1
"8°) : ;
(LANL 187 fine 1.11:10° - 4.31410 50 - 76 2
groups) 4.31:10° - 2.38 77 - 137 3
2.38 - 1-10° 138 - 187 a4
ENDF/B-V 14.9-10%-1.11-10° | 1-49 1
(route "C") 5 3
(GAM- 1.11:10° - 4.31:10° | 50 - 62 2
THERMOS 123 | 4.31-10°- 2.38 63 - 92 3
fine groups}
2.38-5.0:10° 93 -123 4

multi-group approach (i.e. using group cross sections and angular group fluxes; the
angular group flux of an energy group is the angular flux integrated over that
energy group [Mas76, Dud76]; (il) numerical discretization of the directional
dependence, replacing integrals over the solid angle by a weighted sum over a
finite number of directions (Sy-method [Bel70, Mas76, Dud76]; S, in our
calculations), (Ill} a finite number of terms of the Legendre (P.) expansion of the
scattering cross section, necessary for the description of the scattering anisotropy
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([Bel70, Mas76]; P, in our XSDRNPM calculations, P, in our ANISN(E) and ANISN
calculations), and (IV) a spatial discretization (i.e. a finite number of spatial
intervals). The main parameters for our one-dimensional neutron transport
calculations can be found in Table 2.1 {123- and 187-group XSDRNPM) and
Table 2.2 (4-group ANISN and ANISN(E)), respectively.

Table 2.2  Main parameters for broad group static neutron transport calculations
by ANISN(E) (route "A") and ANISN ({(routes "B" and "C").

General

Calculation type

k,,-calculation, density search

Geometry Sphere
Quadrature order S,
Scattering Legendre order P,

Left boundary condition

Reflective {centre of sphere)

Right boundary condition

Vacuum {outer boundary)

Number of zones

2 or 3 (see beiow)

Number of spatial intervals

84

Eigenvalue and upscatter convergence criterion

5:10% - 1:10*

Point convergence criterion

110

Core nuclide composition

As in RSG (relative density as specified)

Reflector nuclide density (cm™}

8.55-10% {as in RSG)

Spatial structure (RSG)

Zone 1 (core) 2 (reflector)
Spatial interval range 1-34 35 -84
Coordinate range {cm) 0.0 - 100.0 100.0 - 200.0
Interval size {cm) 0.5-10.0 0.5-5.0

Spatial structure (influence of radial fuel gas density distribution; route "A")

Zone 1 (core centre) 2 (core edge) 3 (reflector)
Spatial interval range 1-29 30 - 34 35 -84
Coordinate range (cm) 0.0 -975 97.5 - 100.0 100.0 - 200.0
Interval size (cm) 0.5-10.0 0.5 0.5-5.0

The code CITATION [NEA89] solves the neutron diffusion equation
numerically (rendering the fundamental eigenfunction ¢ and the corresponding
eigenvalue) for one-, two- and three-dimensional geometries (one-dimensional
sphere in the calculations presented in this section), also assuming: (l) a multi-
group approach (4 groups in our calculations) and (ll}) a spatial discretization. The
main parameters for our one-dimensional neutron diffusion calculations by
CITATION are listed in Table 2.3.

In Figure 2.3 the neutron spectrum (i.e. the spatially averaged neutron flux)
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Table 2.3 Main parameters for one-dimensional broad group static neutron
diffusion calculations by CITATION.

General

Calculation type k,,~calculation, calculation of neutron
generation time and effective delayed
neutron fraction

Geometry Sphere
Left boundary condition Retiective {centre of sphere)
Right boundary condition Extrapolated (outer boundary)
Number of zones 2
Number of spatial intervals 110
Flux convergence criterion 1-10%°
Eigenvalue convergence criterion 1-10°
Total fission power (flux 100.0
normalization) (MW}
Core nuclide composition As in RSG {relative density as specified)
Reflector nuclide density {cm™) 8.55-10%2 (as in RSG)
Spatial structure
Zone 1 (core) 2 {(reflector)
Spatial interval range 1-60 51-110
Coordinate range (cm) 0.0 - 100.0 100.0 - 200.0

in core gas and reflector of the RSG is shown (187-group XSDRNPM calculation;
route "B"; see Table 2.1). Clearly, the neutron spectrum in the core gas is much
"harder" (higher average energy) than the spectrum in the reflector. This can be
seen more quantitatively from the "fast flux-to-thermal flux-ratio" ("FTR"; energy
boundary between fast and thermal neutrons set at 2.38 eV). In the core this ratio
is FTR(2.38 eV) = 1.76, whereas in the reflector this ratio is FTR(2.38 eV) =
0.187. This behaviour can be explained by the fact that the source of high energy
neutrons -fission- is located in the core, whereas the source of low energy neutrons
-moderation- is located in the reflector. However, in both spectra still the fission
spectrum part (high energies) and the thermal spectrum part (low energies) can be
recognized easily.

A demonstration of the moderating and reflecting properties of the graphite
reflector (in the RSG} is given in Figure 2.4 {187-group XSDRNPM calculation;
route "B"; see Table 2.1). We see neutrons of high energies going from the core
to the reflector and neutrons of low (thermal) energies going back into the core.
However, at these low energies almost as many neutrons leak out of the reflector,
as the (RSG) reflector is only 1.0 m, i.e. 1.3 thermal neutron diffusion lengths,
thick. A temperature increase of the reflector also causes an increase of the
average energy with which the neutrons return to the core (or leak out of the .
reflector).

The code XSDRNPM was also used to generate the 4-group neutron cross
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Figure 2.3 Neutron spectrum (neutron flux per unit lethargy) in core and reflector

of the RSG (187-group neutron transport calculation by XSDRNPM,
route "B").
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Figure 2.4 Reflecting and moderating properties of the graphite reflector in the
RSG (net neutron leakage per unit lethargy; 187-group neutron
transport calculation by XSRNPM, route "B"}.

section libraries (see Figure 2.1 and Table 2.1; routes "B" and "C"; also see
Appendix B), necessary for subsequent broad group neutron transport and neutron
diffusion calculations by ANISN and CITATION, respectively. In Figure 2.5 (A} we
show, for the RSG, the four composite broad group fluxes from the 187 to 4 group
cross section condensation calculation by XSDRNPM (route "B"; S,P,}. Note that
XSDRNPM normalizes the flux in such a way that the total fission neutron
production rate is 1 s”'. For all energy groups the neutron flux in the core part is
almost spatially flat, which was expected in view of the large (total and absoption)
mean free path of neutrons in the core gas (10 - 100 metres for neutron energies

22



above approximately 1 eV; see Appendix B). This mean free path is -much- larger
than the dimensions of the gas space in the RSG, wich means that criticality is
based upon muitiple reflections of neutrons by the graphite wall. This requires a
high reflection coefficient {or albedo 8; e.g. see Eqgs. (2.2.11) and (2.2.12)) of that
wall. In the reflector part, the (broad) group 4 reflector peak is clearly visible. This
peak is due to thermalization of neutrons with higher energies {groups 1, 2, 3) in
the reflector.

For a comparison we also show the results of a 4-group neutron transport
calculation {(S,P;; route "B"; see Table 2.2) by ANISN (Figure 2.5 (B)) and a
4-group neutron diffusion calculation (route "B"; see Table 2.3) by CITATION
{Figure 2.5 (C)). ANISN, like XSDRNPM, normalizes the flux in such a way that the
total fission neutron productionrateis 1 s, whereas CITATION normalizes the flux
in such a way that the total fission power has a preset value (100 MW in all our
calculations). Note that, also for these broad group calculations, the neutron flux
in the core is almost spatially flat for all groups, which was expected in view of the
large (broad group) mean free path and diffusion length for neutrons in the core gas
(see Appendix B, Table B.3). The flux profiles obtained from 187-group (S,P,)
neutron transport calculation (XSDRNPM), the 4-group (S,P,) neutron transport
calculation (ANISN) and the 4-group neutron diffusion calculation (CITATION) agree
quite well. Only the group 1 flux (fast flux) in the core, as calculated by CITATION,
is about 18 % lower, and is also more spatially flat, than is calculated by the
transport codes.

We investigated the influence of the core radius R, and the reflector
thickness d,,, on the critical density of the spherical GCFR. We used the density
search option of the code ANISN (route "C") to calculate the critical density Nggg ..,
(i.e. the critical density, Relative to the RSG gas density) for various combinations
of R, and d,,. We varied R_,, and d,, by "stretching” or "squeezing” zone 1
(core) and/or zone 2 (reflector), starting from the spatial structure used in the
ANISN RSG calculations {Table 2.2}, retaining the number of spatial intervals in
each zone. The results of these calculations are shown in Figure 2.6. Note that a
reduction of a factor of approximately 1.3 in critical density can be achieved by
increasing the reflector thickness from 1 m to 2 m (due to less leakage of thermal
neutrons through the reflector). Also an increase of R, reduces the density,
necessary for achieving criticality. E.g. changing R,,,. from 1 m to 2 m reduces the
critical density by a factor of approximately 3.4. This can be explained from the
fact that the mean chord length & in the core increases proportionally with the core
radius R, and a larger chord length results in a higher k., at the same density
{Section 2.2.1: "chord model"; Eq. (2.2.8); constant 1, 8 and wy,. assumed). We
attempted to fit two types of functions to these numerical nggg ,,.{R,,..)-data. The
first function is the one we derived in Section 2.2.1 ("chord model"), viz.
Eq. (2.2.13). The second one is a power function, also used earlier by Kuijper
[KuiB8]. The results of these fitting procedures are listed in Table 2.4 and the
corresponding graphs of the fit functions are shown in Figure 2.6 as well. For each
of the four curves the quantity A is also given, which is defined by:

1/2

Y (vi-vixa)?

A = 7 (2.3.1)

E(yi"V)Z

i
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calculated by: (A) XSDRNPM (composite 4-group fluxes from 1874
condensation), (B) ANISN and (C) CITATION.
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Table 2.4  Influence of cores radius R, and d,,, on the critical fuel gas density
of the spherical GCFR.

d,., (m} Fit function for 1. ..(R.,,,) a Remarks
1.00 0.841(66)°R,,,,” + 0.116(57)'R,,,,' | 0.026 | Eq.(2.2.13)
0.945(25)-R_,,, 787" 0.035 [Kui88])
2.00 0.629(40)R,,,? + 0.112(35}-R,,," | 0.022 | Eq.(2.2.13)
0.733(17}-R,,,, 7" 0.032 [Kui88]
o Od g =1.0m
™ Ddl, = 2.0m |
N “0.841 4 R B+ 0.116 / R,.,
N (a = 0.026)
\'Q + 0,945 R, "t-7E8
2 e = (s = 0.035)
& N * 0.629 / R, 0+ 0.112 / R___
\ (s = 0.022)
I 0.733 R, ~t7¢0

(A = 0.032)

"RAS.crit

- — e T T —T
0.80 1.00 1.20 1.40 1.60 1.80 2.00

F%'_ [m]

care

Figure 2.6 Influence of core radius R_,,, and reflector thickness d,., on the critical
fuel gas density ngg .. of @ spherical GCFR.

(i = index of data point (x,y); y; = value of dependent variable of data point /
(Nags,car IN this case); x; = value of independent variable of data point i (R, in this
case); y{x) = value of fit function at x = x; y = average value of dependent
variable of data points). The small values of A (compared to 1) indicate that both
function types describe quite well the variation of the critical density with the core
radius.

The main part of our calculations on the spherical GCFR concerned the
influence of the core gas density on the reactivity p and the neutron generation
time A of this reactor. We also calculated the effective delayed neutron fractions
B.; (delayed neutron precursor time group /; i = 1,...6; sum B,,), using the codes
DAC-I [NEA72] (neutron transport) and CITATION [NEA79] (neutron diffusion). As
mentioned in Section 2.1, these quantities are important in the neutron (point-)
kinetics models [Bel70, Dud76, Mas76] to be introduced in Chapter 3.

In order to calculate the neutron generation time A, the codes DAC-I and
CITATION require an adjoint function, which is the {fundamental) eigenfunction of
the adjoint transport or adjoint diffusion equation, respectively [Lew65, Bel70,
Mas76]. The adjoint function for DAC-| is calculated by ANISN (routes "B" and
"C") or ANISN(E) (route "A"). The adjoint function for CITATION is calculated by

25



CITATION itself (routes "B" and "C"; same geometry and nuclide densities as for
the "forward" calculation). Furthermore the (broad) group neutron velocities v
(g = 1,...,4) are required [Lew65, Bel70, Mas76} (see Appendix B, Table B.2).

For the calculation of the effective delayed neutron fractions B,,; {and their
sum 8,4, the total effective delayed neutron fractionj it is necessary to supply the
spectrum x,2 of the delayed neutrons, the delayed neutron fractions g, (sum: 8,,,)
and the delayed neutron precursor time constants A; (delayed group 7/ = 1,...,6}
[Bel70, Mas76] (see Appendix B, Table B.4). The spectrum of delayed group 2 was
assumed for all of the six delayed groups, as is often done [Mas76].

For all cases presented (also for our two-dimensional calculations, to be
presented in the next section), we found B,,, = 0.00652(5) (B.,,; / B.y = B; | Bow
because we assumed the same delayed neutron spectrum for all delayed groups},
fairly independent of the density (distribution). This is very close to the value of 8,,,
{= 0.0065; see Appendix B, Table B.4), which can be explained by the fact that
the leakage of fast neutrons is very small (see Figure 2.4) and the fact that the
4-group delayed neutron spectrum does not differ too much from the 4-group
prompt neutron spectrum (see Appendix B, Tables B.2 and B.4}. A "harder™
delayed neutron spectrum would yield a lower value for 8., (e.g. x,/" = 1.0 renders
B., = 0.00647; CITATION, RSG, route "B"}, whereas a "softer" delayed neutron
spectrum leads to a higher value (e.g. x,2 = 1.0 renders 8., = 0.00724;
CITATION, RSG, route "B").

In Section 2.2 we derived ("old" and "new") fit functions to describe the
dependence of the reactivity p and the neutron generation time A on the (relative)
core fuel gas density n,,, (see Egs. (2.2.19) and (2.2.20}). The general form of
these functions is:

P =C,ingps + Cpy + Cﬁ.s(”nns)-1 (2.3.2)

A = Ca1Npgs + Cry + Cas(nars)” (2.3.3)

{nqes = density, Relative to the RSG gas density). Putting C,, and C,, to zero
renders the "old" functions, already used by van Dam [Dam88] and Kuijper [Kui88].

A comparison is made in Figure 2.7 between the results of fine group
XSDRNPM calculations using 123 group ENDF/B-1V data (route "C") and 187 group
JEF-1 data (route "B"). The reactivity p is shown as a function of the relative gas
density nggs. The solid lines are functions, fitted to the calculated p(ngzs)-data using
the code RRGRAPH [Rea88]. We used the form of the "old" fit functions, obtained
from the "chord" and "multi-compartment” GCFR models (see Section 2.2). These
models predict that both coefficients of the function have the same value, provided
that the density variable is taken relatively to the actual critical density: ng,. This
is -to a good approximation- indeed the case (also see Table 2.5). Clearly, the
JEF-1 results for p are somewhat higher (0.010 - 0.015) than the ENDF/B-IV
results. This is in agreement with the differences found more generally, when
comparing ENDF/B-1V and JEF-1 results of k,-calculations [Lee90]. However, the
functional form of the fit functions seems appropriate and there is a good
agreement between the coefficients of the terms of the fit functions, describing the
variation of p with ng,, obtained from calculations with ENDF/B-IV and JEF-1 data.

Using Eq. {2.2.9) (Section 2.2.1: "chord model") we can calculate the value
of wyzc from the first coefficient of the fit function, for the 187-group case. With
n = 2.041 (broad group 4; calculated by the XSDRNPM 187 to 4 group
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Figure 2.7 Comparison of 123-group and 187-group XSDRNPM neutron
transport calculations for RSG geometry: influence of the fuel gas

density on the reactivity.

condensation; route "B"}, we find: wy,. = 0.59. This means that 41 % of the
produced fission neutrons do not even return to the core at least once.
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Figure 2.8 Comparison of "old" and "new" fit function for the reactivity as
function of the fuel gas density (GCFR in RSG geometry; calculations
by ANISN(E), route "A").

In Figure 2.8 we compare the accuracy of the "old" (C,1 = 0} and the
"new" (C,, # 0) fit function for the reactivity p. The p{ng)-data (gas density
Relative to the gas density in the RSG) were obtained from 4-group S,P, neutron
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Table 2.5 Influence of the fuel gas density and radial fuel gas density
distribution on the reactivity of a GCFR in RSG geometry ("old" and
"new” fit functions).

Influence of (relative) density n,,
Calc. route Fit function for p(ng,) Remarks
Code (# groups)
"A" 0.2039{26) - 0.2075(21) 4" "old"
ANISN(E} (4} -0.01531(30) 14, + 0.23572(64) "new"
-0.22052(30)n ges7!
"B" 0.1701(12) - 0.18963(93)n 5" "old"
XSDRNPM (187) -2.5046-10%n 4, + 0.17573 "new"
-0.19195:7,,"
"B" 0.2252(63) - 0.2079(48) npss" "old"
XSDRNPM (4) -1.2830:10% 14, + 0.25408 - 0.21986:n " "new"
"B" 0.2152(66) - 0.2104(50) 114" "old"
CITATION (4) -1.3418:10% 1445 + 0.24532 - 0.22286:n,,5 "new"
“ct 0.1560(26) - 0.1893({19) 14" "old"
XSDRNPM (123) | 5.2133:10%n,, + 0.16776 - 0.19418:n,," "new"
"cn 0.2167(65) - 0.2111(49)np," "old"
XSDRNPM (4) -1.3203:10% 71,0 + 0.24644 - 0.22335n,,,;" "new"
influence of radial density distribution &
Calc. route Fit function for ple) Remarks
Code (# groups}
"A" 3.4(26)-10° + 1.895{19)-10%¢ fit
-1.228(21)-10%¢? -0.5<£<9.0
ANISN 4
SNIE) (4} 2.9(34)-10° + 1.920(67)-10%¢ fit
-1.25(40)-10*:¢? -0.5<£<2.0

transport calculations for the RSG by ANISN(E} (route "A"}. Clearly, both the "old"
and the "new" fit function describe the dependence of g on n1,.5 quite well, but the
"new" fit function is slightly better at higher densities. This is also demonstrated
by the values of A (Eq. (2.3.1); in this case y;, = p and X; = Ngrs). For both curves
the value of A is small (compared to 1), but the value for the "new" fit function is
slightly smaller, which indicates a slightly better fit.

In Figure 2.9 we make the same comparison for the neutron generation time
A (data from the same calculations). Again both functions ("old" and "new") can
be fitted to the numerical data quite well (small values for A). The "old" and the
"new" functions almost produce identical graphs (in the investigated density
range), as the fitted coefficient C,, is very small.

The coefficients of the fit functions can be found in Table 2.5 (reactivity)
and Table 2.6 {neutron generation time). Kuijper [Kui88] also performed these

28



o — : - . -
HO__T [ ANISN(E)/DAC-I caleulations {(route “A")
Y |
+ Y01d” fit Function
A= 4.784:107% + 1.0712:1073 (nppe)”!
- (s = 0.0050)
g 4
‘_U" X “New" fit function
A= 5,310 npas + 4.673-107¢
< + 1.0758°107% (npgg) !
= (s = 0.0043)
~l ]
o
o T T T
0.00 0.50 1.00 1.50 2.00 2.50

faps ]

Figure 2.9 Comparison of "old" and "new™ fit function for the neutron generation
time as function of the fuel gas density (calculations by ANISN(E) and
DAC-|, route "A").
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Figure 2.10 Comparison of reactivity calculation results (reactivity as function of
fuel gas density in RSG geometry). ‘

calculations for other core sizes (R, = 2 m) and other geometries (infinite and
pseudo-finite cylinders) and found that also in those cases the dependence of p and |
A on the core gas density can be described very well by similar fit functions.

In Figure 2.10 we compare the results of reactivity calculations for RSG-
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Table 2.6 Influence of the fuel gas density and the radial fuel gas density
distribution on the neutron generation time of a GCFR in RSG
geometry ("old" and "new" fit functions).

Influence of {relative) density f.,

Calc. route Fit function for Alng. (s) Remarks
Codels) (# groups]
A" 4.784(18):10* + 1.0712(14):10%n o5 "oid”
ANISN(E)/DAC-] 5.3(26):10%n,,, + 4.673(53)-10* "new”
(4) - 1.0785(25): 10 715"
"B" 6.8450(59)-10* + 1.59509{45):10° 'ng," "old"
CITATION 1.2000:10° 0, + 6.818:10™ “new"
(4) - 1.5962- 1071446
Influence of radial density distribution &
Calc. route Fit function for A(el (s} Remarks
Codel(s) (# groups)
"A" 1.548610(79)-10° - 6.268{58)-10%¢ fit
+ 3.918(64)-107-¢* -0.5<£<9.0
AN E)/DAC-I
'SN‘M))/ 1.548599(61)-10° - 6.45(12)-10°%¢ fit
+ 4.68(71)-107-¢* -0.5<£<2.0

geometry of different codes and different calculational routes (see Figure 2.1}:
ANISN(E) (4-group S,P, neutron transport; route "A"), XSDRNPM (4-group S,P,
neutron transport; routes "B" and "C") and CITATION (4-group neutron diffusion;
route "B"). We also included the results of the 187-group (route "B") and
123-group (route "C") S,P, neutron transport calculations by XSDRNPM reported
earlier. In the figure also the corresponding fit functions ("new") are plotted and in
Table 2.5 these fit functions are listed. Apart from the differences to be expected
when comparing ENDF/B-IV and JEF-1 results [Lee30], we see that, in general,
broad group calculations render a higher value for the reactivity than fine group
calculations (better description of leakage by fine groups). Also P,-calculations
render a somewhat lower value than P,-caiculations, although the difference is
small: less than 0.001. This was found by comparing the results of 4-group S,P,
ANISN calculations (routes "B" and "C"; not shown in Figure 2.10) with those of
the 4-group S,P, XSDRNPM calculations. The values found by the broad group
diffusion calculations (CITATION, route "B") are approximately 0.01 lower than the
corresponding values from the broad group transport calculations (XSDRNPM,
route "B"). This difference may seem small, but it leads to a prediction of the
actual critical density (at which p = O exactly}, which is 6 % higher for the
CITATION calculations. However, the differences are small compared to the
differences imposed by the expected variation of the average density of the fuel
gas.

We make a simitar comparison for the neutron generation time A (no fine
group results) in Figure 2.11. The corresponding fit functions are also shown in the
graph ("new" only) and are listed in Table 2.6. Clearly, both the results from the
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Figure 2.11 Comparison of neutron generation time calculation results (neutron
generation time as function of fuel gas density).

S,P, neutron transport calculation by ANISN{E)/DAC-I (route "A") and the results
from the neutron diffusion calculation by CITATION (route "B") can be described
quite well by both the "old"” and the "new" fit function. However, the values
rendered by the ANISN(E)/DAC-I calculations (route "A") are too low by a factor
of approximately 1.5. This was expected in view of the differences in the neutron
group velocities v!* and v'*, resulting from the group condensation calculation by
XSDRN (route "A") and XSDRNPM (route "B"; see Appendix B, Table B.2).
Unfortunately, we used these A-values (or rather the corresponding fit function) for
the neutron kinetics part of our "solid piston” GCFR model (Chapter 5), as they
were the only data available at that time. We also calculated the neutron
generation time (for the RSG) by ANISN/DAC-I and CITATION, using data
originating from JEF-1 (route "B") and ENDF/B-1V (route "C") and using the correct
broad group neutron velocities (Appendix B, Table B.2). We found A = 2.29:103 s
in all of the four cases. This is in line with the values, calculated by van Dam
[Dam871, for the time required for neutrons to thermalize in the graphite reflector
and to return to the core.

We have seen that, for the cases presented here, viz. the RSG broad group
neutron flux shape and the dependence of p and A on the fuel gas density, the
results of broad group neutron diffusion calculations approximate quite well the
results of broad and fine group neutron transport calculations. Therefore, and in
view of the explorative nature of our calculations, we decided to use the neutron
diffusion code CITATION also for our static neutronic investigations of a cylindrical
(also two-dimensional) GCFR (Section 2.4). This is also favourable from the point
of view of the requirement of computing resources. A typical CPU-time (DEC
VAXstation 3100 Model 786) required for the iterations in an XSDRNPM 187-group
S,P; calculation (see Table 2.1 for calculational parameters) for the RSG is
170 minutes. For a XSDRNPM 4-group S,P; calculation for the same system the
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required CPU-time is already much less, viz. 2.4 seconds. A 4-group CITATION
calculation for the same system (see Table 2.3) requires even less CPU-time:
8.9:10? seconds. If we then consider that a typical CPU-time required for the two-
dimensional CITATION calculations {Section 2.4) is 100 minutes, then it is clear
that two-dimensional 187-group neutron transport calculations, which are certainly
more accurate than 4-group neutron diffusion calculations, would be extremely
time-consuming indeed.

"
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Figure 2.12 Influence of the radial fuel gas density distribution on the reactivity of
a GCFR in RSG geometry {(ANISN(E} calculations, route "A").

A final item in these one-dimensional calculations is the influence of the
radial fuel gas density distribution on the reactivity and the neutron generation
time. We investigated this influence in a two-zone core geometry (see Table 2.2).
In Figure 2.12 we show the influence of the radial fuel gas density distribution
(specified by the density distribution variable €; Eqgs. (2.2.24) and (2.2.25}) on the
reactivity p (calculations by ANISN(E}; route "A"}. Obviously, the effect of fuel gas
displacement from the core centre to the core edge is a -small- increase of the
reactivity. Uleman [Ule82], van Dam and Hoogenboom [Dam83] also report these
small reactivity effects. In Section 2.2.2 we derived a function to describe this
effect,viz. Eq. {2.2.26). This function predicts a maximum reactivity for the
maximum possible value of g, viz. € = V.. / Vg = 12.7 (also at empty core
centre). The actual maximum is found, however, at € = 7.7. However, the effect
is quite well described by a function of the form of Eq. (2.2.26), viz. a second
order polynomial in €, as is also demonstrated in Figure 2.12 by the second graph
line. This is the graph of a fit function of the same form, but only fitted to data
points for which -0.5 < ¢ = 2.0. Clearly, the reactivity at € = 9.0 is predicted
quite well by this function. Both fit functions are listed in Table 2.5.

The fit function mentioned above (Eq.(2.2.26)), was derived in
Section 2.2.2 using a one-and-a-half-group/two-compartmentmodel for a spherical
GCFR. It is also possible to understand the behaviour of the reactivity with & from
the point of view of the "chord model" (Section 2.2.1), as was already done by
Uleman [Ule82], van Dam and Hoogenboom [Dam83]. The governing parameter is
the average "optical” path length for thermal neutrons crossing the core. The
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optical path length is the path length measured in units of mean free path, thus a
dimensionless quantity. For a homogenous core, the average optical path length
is given by 2, 4, neglecting scattering events. In curved geometries a piling up of
fuel near the wall gives a decrease of optical path length for neutrons flying
through the central core region and an increase of optical path length for neutrons
moving along short chords. On the basis of a classical analysis of chord length
distributions it can be shown that the latter effect more than compensates for the
first effect; i.e. on the average, the neutrons "see" a higher fuel density. This
implies that the average optical path length increases due to fuel pileup near the
wall, giving rise to a positive reactivity effect (see Eqs. (2.2.6) and (2.2.8)). Details
of an analytical treatment based on chord length distributions are given by Uleman
[Ule82].
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Figure 2.13 Influence of the radial fuel gas density distribution on the neutron
generation time of a GCFR in RSG geometry (ANISN{(E)/DAC-I
calculations, route "A").

In Figure 2.13 we demonstrate the influence of the radial fuel gas density
distribution on the neutron generation time A (calculations by ANISN(E) and DAC-I;
route "A"). The influence of fuel gas displacement from the core centre to the core
edge on A is small but negative. We also fitted a function of the form of
Eq. (2.2.26), viz. a second order polynomial in €, to the data points. Clearly, A(€)
is reproduced quite well by this function. We again tried to fit a function of the
same form to only those data points, for which -0.5 < € < 2.0, but this second
function predicts a value for A at € = 9.0, which is approximately 5-10® s too
high. Both fit functions are listed in Table 2.6. However, the variations in p and A,
caused by radial fuel re-distribution, are quite small compared to the variations
caused by the expected variations of the average core fuel density.

2.4 Cylindrical GCFR

We investigated the influence of the average fuel gas density and the axial fuel gas
density distribution on the static neutronic behaviour of a cylindrical GCFR by two-
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dimensional neutron diffusion calculations using the one-, two- and three-
dimensional diffusion code CITATION [NEA79], with broad group cross sections
originating from JEF-1 (route "B"). As indicated in Figure 2.14, the GCFR
configuration studied here consists of a cylindrical gas space (length L,,, =
10.0 m; radius R,,, = 1.0 m), surrounded by a refiector (zone 11). This gas space
is divided into a "core” section {zones 1 - 5) and an "expander"” section (zones
6 - 10} of equal. volume (V. = V,, = 0.5 V_,). Three different (reflector)
geometries were studied: () "symmetric” (reflector thickness around expander
O,onexp = Teflectorthickness aroundcore d, g ... = 1.0 mj, (i} "slightly asymmetric™
(derexe = 0.60 m) and (lll) "asymmetric” (d,.4.,, = 0.20 m). The main parameters
for these calculations are listed in Table 2.7. The reduction of d,,.,,, for the
asymmetric cases was achieved by replacing part of the reflector by a "black
absorber" (zone 12) (also indicated in Figure 2.14). We only investigated the effect
of the axial density distribution, as we expect the influence of the radial distribution
to be relatively small {(see Section 2.3). Furthermore, in the calculations presented
in this section we assumed a value of 10,000 K for the temperature of the fuel gas

and 1000 K for the temperature of the reflector (like in the RSG; see Section 2.3).
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\l/ dr‘e{l,ccre l \ drerl,exp

11 v 11 _or 12
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Reflector
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|
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Figure 2.14 Structure of the cylindrical GCFR maode! for two-dimensional neutron
diffusion calculations by CITATION,

Using the CITATION density search option, we calculated the critical density
Ngaas.cir (Relative to RSG gas density), for a flat density distribution of the fuel gas
(also the same n,,, for m = 1,...,10) in the configurations ("I, "lI" and "Hi")
mentioned above. The results of these calculations are listed in Table 2.8. Note
that for case "I" ("symmetric") and case "II" ("slightly asymmetric") the critical
density is smaller than for the RSG, whereas for case "llI" ("asymmetric") the
critical density is much larger. This can be explained by the enormous neutron
leakage through the part of the reflector, surrounding the expander. This reflector
part is only 20 cm thick, i.e. 1/4 thermal neutron diffusion length. Note that,
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Table 2.7 Main parameters for two-dimensional broad group static neutron
diffusion calculations by CITATION.

General
Calculation type k,,-calculation, density search, calculation
of Aand 8,,,
Geometry Cylinder: radial (R}, axial {Z)
Left boundary condition (R) Reflective {cylinder axis}
Right boundary condition (R) Extrapolated (outer boundary}
Top boundary condition (Z) Extrapolated (outer boundary: core end)
Bottom boundary condition {Z) Extrapolated {(outer boundary: expander end}
Number of zones 11 or 12 (see below)
Flux convergence criterion 1-10°®

Eigenvalue convergence criterion | 1-10°®

Total fission power (flux 100.0
normalization) (MW,,)
Fuel gas nuclide composition As in RSG
Reflector nuclide density {cm™®) 8.55:10%2 (as in RSG)
Spatial structure
Zone Radial Radial Axial Axial
interval coordinate | interval coordinate
range range (cm) | range range (cm)
1 {core gas) 1-27 0-100 33-59 100 - 200
2 (core gas} 1-27 0-100 60 - 69 200 - 300
3 (core gas) 1-27 0-100 70-79 300 - 400
4 (core gas) 1-27 0- 100 80 - 89 400 - 500
5 (core gas) 1-27 0-100 90 - 99 500 - 600
6 {expander gas} 1-27 0-100 100 - 109 | 600 - 700
7 (expander gas) 1-27 0-100 | 110-119 700 - 800
8 (expander gas) 1-27 0-100 120 - 129 800 - 900
9 {expander gas) 1-27 0-100 130-139 900 - 1000
10 (expander gas) 1-27 0-100 140 - 166 1000 - 1100
11/12 (reflector; zone 1-59 0-200 1-32 0-100
12 is black absorber) 28 - 59 100 - 200 | 33-166 100 - 1100
1-59 0 - 200 167 -198 | 1100 - 1200

because the mean free path and the diffusion length are proportional to the inverse
of the nuclide density, the mean free path and the diffusion length in the gas for
case "llII" will be much smaller {for a critical reactor) than for case "I", case "Il" or
even the RSG (see Appendix B).

In Figure 2.15 (A) the broad group axial flux profiles are shown for the
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Figure 2.15 Broad group fluxes along the axis of cylindrical GCFRs with "flat” fuel
gas density distribution: (A) "symmetric" GCFR (case "I") and
(B) "asymmetric" GCFR (case "lll").

symmetric case ("I1") with flat fuel gas density distribution. Note that the neutron
flux (all groups) in the gas is almost spatially flat, which was expected in view of
the large mean free path and diffusion length for this case. For a comparison in
Figure 2.15 (B) the broad group axial flux profiles are shown for the asymmetric
case {"lli"}, also with flat fuel gas density distribution. Note that all group fluxes
drop off quickly by going from the core part to the expander part. This is due to
the very large leakage of neutrons through the thin reflector surrounding the
expander. In this case the neutron diffusion lengths (in the gas) for group 1and 2
are of the same order of magnitude as the length of the gas space, whereas the
diffusion lengths for group 3 and 4 are (much) smaller. The radial flux profiles are
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similar to the profiles in the spherical GCFR (see Section 2.3).

The main part of our two-dimensional neutron diffusion calculations was
dedicated to the investigation of the influence of the average fuel gas density and
the axial fuel gas density distribution on the reactivity p, the neutron generation
time A and the core (zones 1 - 5B} fission power fraction f.. In view of the large
mean free paths and diffusion lengths (especially in cases "I" and "lI") we can
expect that small scale (spatial) density variations within the core or expander part
will not have a large influence on these quantities. We therefore describe the fuel
density distribution over the core and the expander zones in terms of a single fuel
density distribution variable €, which is given by:

m,,.V,

e = core ¥ tot  _ 1 = 2 mcale - 1 (2.41)
V.,.m m

core tot tot

(m,,, = mass of the fuel gas in the core part (zones 1 - 5); m,,, = total mass of
the fuel gas; V.= V., = 0.5 V,). This definition is consistent with
Egs. (2.2.27) and (2.2.28). This "two-compartment” description of the fuel gas
density distribution agrees with the "two-compartment” cylindrical GCFR model
introduced in Section 2.2.2 and is also favourable in view of the coupling with gas
dynamics in the combined "two-compartment” GCFR model to be presented in
Chapter 7. In fact, the description of the distribution of the fuel gas in terms of &
is an approximation of the (axial) Fundamental Acoustic Mode {"FAM").

Bearing this in mind, we expect that the influence of the axial fuel gas
density distribution (&) and the variation of the average fuel gas density (n,,) on the
reactor physical quantities p, A and f, can be described by the fit functions, derived
from the one-and-a-half-group/two-compartment model for the cylindrical GCFR
(Section 2.2.2), viz. Eqs. {(2.2.31), {2.2.32) and {2.2.33). In these equations the
influences of n,,, and € are independent. This means that for the determination of
the coefficients it is sufficient to perform CITATION calculations for varying
average fuel gas density density n, (or ng,: the spatially averaged density,
Relative to the Critical Density; ngc, = n,,/ n,,...) at flat density distribution
(¢ = 0) and for varying axial density distribution € at average critical density
(Npep = 1).

Table 2.8  Critical fuel gas densities and critical total fuel gas mass for cylindrical
GCFRs with homogeneous ("flat") fuel gas density distribution.

GCFR geometry N pgs,crit Mo 1KG)
"symmetric” {"I") 0.42038 125.1
"slightly asymmetric™ {"lII") | 0.68429 173.9
"asymmetric” ("HI") 4.04503 1204

In order to verify the validity of the description of the axial fuel gas density
distribution by a single variable €, we performed these calculations for two
different types of axial density distributions, both consistent with Eq. (2.4.1). The
first type is the so-called "rectangular distribution", for which the (relative)
densities in the gas zones (Figure 2.14) are given by:
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] i (1 + e) nrel m = 1,---15 (2.42)

rel.m
(1-€n, m=6..10
(also see Egs. (2.2.27) and (2.2.28)). The second type is the so-calied "triangular
distribution™, for which the relative densities in the gas zones are given by:

n =11+ %(11 - 2m)8 N,y m=1,...,10 (2.4.3)

rel.m

Table 2.9 Influence of the fuel gas density and axial fuel gas density distribution
on the reactivity, the neutron generation time and the core fission
power fraction of the symmetric cylindrical GCFR (case "I").

Quantity Fit function Remarks
PlENgp) -1.0466-102' 1, + 0.30551 - 0.29345-0,," rectangular
- 5.063(58)-10%-¢? distribution

-1.0466:102'n,,, + 0.30551 - 0.29345:n,.," triangular
-7.7617-102¢? distribution

A&, 2.2733:10%n,,, + 6.0107-10* rectangular
+ 3.0004:10% 0,5, + 4.556(45)-10%-¢* distribution
2.2733:10%n,, + 6.0107-10* triangular
+ 3.0004:10%n,,," + 7.680-10"-¢2 distribution

fol€.Nacp) 0.5000 + 0.459{16}-¢ rectangular
distribution

0.5000 + 0.3988-¢ triangular

distribution

These two density distributions are both approximations to the FAM (axial} density
distribution (at a certain moment in time), which can be described by a sine-
function (see Section 6.2.1).

So, we performed two-dimensional broad group neutron diffusion
calculations with CITATION (route "B") for the three reflector configurations and
for both axial density distribution types mentioned above, varying n,,, and €. We
then determined the coefficients of the fit functions, Egs. (2.2.31), (2.2.32) and
{2.2.33) for p, A and f,, respectively, using the code RRGRAPH [Rea88]. The
results are listed in Tables 2.9, 2.10 and 2.11. Note that for the symmetric case
("1"), for symmetry reasons, the functions for p and A only contain an e2-term and
the function for f, only contains an &-term to describe the influence of g-variation.

In Figure 2.16 we make a graphical comparison, for the three reflector
configurations, between the "rectangular” and "triangular” CITATION calculation
results for the reactivity o (for varying € and ng, = 1). In Figure 2.17 and
Figure 2.18 we do the same for the neutron generation time A and the core power
fraction £, respectively. Also the graphical representations of the corresponding fit
functions are shown and in Figure 2.18 also the variation of £, with € is shown for
the case of a spatially flat neutron flux distribution, which is given by:

38



Table 2.10 Influence of the fuel gas density and axial density distribution on the
reactivity, the neutron generation time and the core fission power
fraction of the "slightly asymmetric" cylindrical GCFR (case "lI"}).

Quantity Fit function Remarks
P& N L) -1.3257-10%npg, + 0.26374 - 0.24977:n,," rectangular
+ 6.184(87):10%¢ - 6.804{30):10°2-¢? distribution
-1.3257-10%n, + 0.26374 - 0.24977-n,5," triangular
+ 7.2702:10%-¢ - 9.7642:10:¢* distribution
AEnNgey) | 6.5284:10% 04, + 5.3224:10*% + 2.1052:10%n,,," rectangular
- 8.73(94):10%¢ + 4.01(22):10*:g? distribution
6.5284:10°% 14, + 5.322410* + 2.10562:10%nz,," triangular
- 1.0600:10%¢ + 7.4400:10*-¢? distribution
fol€,ncp) 0.54112 - 3.0583:10 %1, + 7.4611:10% 0,2 rectangular
+ 0.424(11)-¢ - 0.016{25)-¢ distribution
0.54112 - 3.0583-10 %0, + 7.4611:10% 04,2 triangular
+ 0.34940-¢ - 0.0408-¢2 distribution
fo = _;_(1 + €) (2.4.4)

For the other cases the variation of f, with € is always smaller, due to thermal flux
depression in the compartment with the larger fuel density. Obviously, the effect
of an g-variation in the "rectangular” density distribution is not exactly the same
as in the "triangular” density distribution. However, the effects are of the same
sign and the same order of magnitude. We can also conclude that a single variable
€ gives a fair description of the influence of the (axial) fuel gas density distribution
on the reactivity p, the neutron generation time A and the core power fraction 7.
We used this results (in the form of the fit functions; Table 2.9; "rectangular") in
our combined "two-compartment” GCFR model, to be presented in Chapter 7.
For the asymmetric case ("llI") the core fission power fraction 7, is relatively
close to 1 and fairly independent of the fuel gas distribution over core and
expander (0.76 =< f, < 0.87 for -0.4 < ¢ = 0.4; "rectangular" distribution;
Ngep = 1), as can be concluded from Figure 2.18 and Table 2.11. This means that
almost only the fuel gas in the core takes part in the fission chain reaction.
Furthermore, there exists a strong resemblance between the graphs describing the
influence of the axial fuel gas density distribution variable € on p and A for the
cylindrical GCFR (Figures 2.16 and 2.17) and the graphs describing this influence
of the core fuel gas density in the spherical GCFR {Section 2.3; Figures 2.8 and
2.9). Therefore, we also attempted to use the fit functions for the one-dimensional
case (Section 2.3; Egs. (2.3.2) and (2.3.3); "old" fit functions; substitute:
ngs = (1 + €)) for the description of the effect of the axial fuel gas density
distribution in the asymmetric cylindrical GCFR (case "llI"). The results of the fitting
procedures, which are also listed in Table 2.11 ("1-dim. form."), show the
feasibility of this approach, which in fact treats the cylindrical GCFR as if only the
fuel gas in the core takes part in the fission chain reaction and, therefore, has
influence on the reactivity and the neutron generation time. We made use of this
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Table 2.11 Influence of fuel gas density and axial fuel gas density distribution on

the reactivity, the neutron generation time and the core fission power
fraction of the asymmetric cylindrical GCFR (case "lll").

Quantity Fit function Remarks
PlENagp) 0.022{11)'n,4, + 0.074(48) - 0.099(15) 14" rectangular
+ 0.0441{19)-¢ - 0.0333(42)-&? distribution
0.022(11)'n4, + 0.074(48) - 0.099{15) 114" triangular
+ 0.0408{13)-¢ - 0.0573(87}-¢? distribution
ple) 0.0308{12) - 0.03012(65):{1 + &) rect. distr.
{1-dim. form.)
=1
nco ’ 0.0383(14) - 0.038%(14)-(1 + & triang. distr.
(1-dim. form.)
AE NG -3.628(87)-10%n,,, + 7.651(37)-10* rectangular
+ 4.023(12)-10% 4" distribution
-3.64(17)-10%¢ + 3.03(39):10*-¢*
-3.628(87):10%:n,,, + 7.651{37):10* triangular
+ 4.023(12):10%n4.," distribution
-4.172(95)10%¢ + 5.63(64)-10*-¢°
Ale) 8.91(11)-10* + 2.432(58)10*(1 + &) rect. distr.
{1-dim. form.)
=1
(Paco ) 7.39(12)-10* + 3.98(11)-10*{1 + ¢)" triang. distr.
{1-dim. form.)
ol €N pcp) 0.9457(41) - 0.1527(68)npy" + 0.0220(16) N1pcp? rectangular
+ 0.1336{72)'€ - 0.021(16)-¢* distribution
0.9457(41) - 0.1527{68)n,," + 0.0220(16) 0402 triangular
+ 0.0809(10)-¢ - 0.0160(69)-¢* distribution

approach, utilizing the results of the one-dimensional neutron transport calculations
by ANISN(E) and DAC-I {route "A"; see Tables 2.5 and 2.6) in the neutron kinetics
part of our combined "solid piston” GCFR model, to be presented in Chapter 5.
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Figure 2.16 Influence of the axial fuel gas density distribution on the reactivity of
the cylindrical GCFRs (cases "I", "ll" and "WN"; ngep = 1).
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Chapter 3

NEUTRON KINETICS

3.1 Point kinetics for solid piston GCFR model

In the "solid piston™ model, to be presented in Chapter 5, we assume the GCFR to
be asymmetric (see Section 2.4: case "HI"). This means that almost all the fission
power P, is produced in the core part, because almost only the fuel in the core
takes part in the fission chain reaction. For the derivation of the neutron kinetics
model, we go one step further and assume that only the fuel in the core takes part
in the fission chain reaction. Consequently, all the fission power P, is produced
in the core and the reactivity p and the neutron generation time A are assumed to
depend only on the fuel gas density in the core. As was shown in Section 2.4, this
dependence can be described by the fit functions used for the one-dimensional
{spherical) case:

p=C,, + Culn,) (3.1.1)

A = Cpp + Cpyln ! (3.1.2)

(n,, = relative density of the gas in the core; "old" fit functions).

In the "solid piston” GCFR model {Chapter 5} the interaction between the
ionized gas and the magnetic field, generated by the current in the coil surrounding
the expander (see Figure 1.1), is represented by a solid piston, which moves in the
expander and -externally- controls the volume V,,(t) occupied by the fuel gas. It
is assumed that:

V,

Viore < /g" sV, 0t sV (3.1.3)

tot

(Veore = core volume; V,,, = maximum volume of fuel gas; K = compression ratio).

Following van Dam [Dam88], we will derive the one-group/one-compartment
neutron kinetics equation for the "solid piston” GCFR. First of all we assume a
homogeneous density distribution of the fuel gas over the momentary gas volume
Ve This means that gas dynamical effects are not taken into account. The
relative density of the gas (in both core and -part of- the expander) is then given
by:

Vv,

nlt) =n,, —°_ (3.1.4)
rel /,0 vaEI ( f)
(n,c = relative density of the fuel gas at maximum fuel gas volume Vier = Virs

N, is proportional to the total mass m,,, of the fuel gas). The fuel gas volume V,,,
and consequently n,, is assumed to be a periodical function of time (period r;
frequency f = 1 /7).

In one-group/one-compartment approximation the time-dependent multi-
compartment neutron transport equation (see Appendix A, Eq. (A.4) and
Appendix D, Eq. (D.1)) for the core reads, including delayed neutrons (see e.g.
[Dud76}):
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V-1 % = (1 _Beff)nzanrelw - Zn”na/‘p - Kow + Sd (3'1'5)
(p = average -thermal- neutron flux in the core; v = velocity of -thermal- neutrons;
B., = effective delayed neutron fraction; n = average number of fission neutrons
produced per absorbed neutron in the fuel gas; K, = leakage coefficient = K,
{(see Appendix A); S, = delayed neutron source density in the fuel gas). Using the
one-group/one-compartment expressions for the reactivity o and the neutron
generation time A (see Appendix A, Egs. (A.16) and (A.17)), this can also be
written as:

dyp _ P=Bu 3.1.
Gt T APV 3.1.6)
The envisaged oscillation frequency f of the fuel volume sequence V,,(t) (and,
consequently, of n,) is so high (= 50 Hz) that the oscillation period 7 is much
shorter than the half-life of the shortest living delayed neutron precursor (= 0.23 s;
see Appendix B, Table B.4). It seems physically reasonable that in this period of
a few oscillations the delayed neutron precursors (which are generated in the core)
will be homogeneously distributed over the entire fuel gas volume [Dam88, Kui89a,
Kui89b], which means that the -homogeneous- delayed neutron source density is
given by:

8
S, =LY AC (3.1.7)
Vfuel i=1
(C; = number of delayed neutron precursors of delayed group /; A, = decay
constant of delayed neutron precursors of delayed group /; see Table B.4). The
balance equation of the delayed neutron precursors of delayed group / reads:
d_C:i = Beffinzanlelvcwe‘p - AiCi (318’
dt ’
(B.; = effective delayed neutron fraction for delayed neutron precursors of
delayed group i; delayed neutron precursors are generated in the core, hence V).
According to Eq. (A.12) {Appendix A), the total fission power is given by:

Pﬁss(t) = %nzn nrel(t) vcare ‘p(t) (3'1'9)
f

{v, = average number of neutrons released per fission event; Q, = average thermal
energy produced per fission event; only fuel gas in the core takes part in the fission
chain reaction, hence V). Using Egs. (3.1.6), (3.1.7), {3.1.8) and {3.1.9), we
derive:

0Py, P =B 1 dn,, Q,V,
iss . e rei P core A C (3110)
dt R Tl BT 2y NP E

And:

d_ci _ ViBen.i
dt Q,

It is also possible to derive these equations, starting from a more general one-

P = AC; i=1,....6 (3.1.11)
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group/two-compartment description of the neutron kinetics. This is shown in
Appendix D.

Following van Dam [Dam88], we assume that the fission power P, and the
number of delayed neutron precursors C, can be written as a product of a periodic
component (P’{t) and C,’(t), respectively; period 7) and a trend component (e*!):

Pty = P(t) e** (3.1.12)
And:

Cilt) = C/lt) e“* i=1,..,6 (3.1.13)

(w=1/T, T = reactor period). Combining Egs. {3.1.11), (3.1.12) and (3.1.13)
and averaging over an oscillation period r renders:

VfBe/f.i <PI>7
Q, w+4;

(<...>, = average over oscillation period 7). Because of the high osciilation
frequency, the number of delayed neutron precursors will not follow the
oscillations. We therefore can approximate [Dam88]: C;" = <C,’>,. Applying this
approximation, we can derive a single equation for the oscillatory component P’ of
the fission power P,_:

<C/>, = i=1,..6 (3.1.14)

_ﬂ’_/ = p—ﬂe:‘f = 1 dvfuel -w! P+ Vcore<Pl>r ze: Bglf,iAi
dt A Ve dt N H w+i

(3.1.15)

fuel

For a given value of w (or the desired reactor periad T = 1/ w), and a given,
periodic, fuel volume sequence V,,(t) (V1) = V,,(0)}, the total fuel gas mass
m,,,, which is proportional to n,,,,, is adjusted iteratively, until P(r}) = P"{0). The
fission power P, is then known as a function of time [Kui89a, Kui89b]. Examples
of the solution of P, for several pumping schemes V,, (t} will be shown in
Chapter 5. It is also possible to solve Egs. {3.1.10) and (3.1.11) directly by
numerical integration, as was done by Stekelenburg in his GCFR simulators
[Stek88, Stek90].

3.2 Point kinetics for two-compartment GCFR model

In the "two-compartment” GCFR model, to be presented in Chapter 7, we assume
the cylindrical gas space of the GCFR (total volume V,,} to consist of two

compartments of equal volume: the core (V,,,.} and the expander (V,,):

1
SV, =V, =V, =1y (3.2.1)

2 tot

Like in the final example treated in Section 2.2.2, for a given average relative
density n,,, of the fuel gas, which is proportional to the total mass m,, of the fuel
gas, the relative densities in core and expander are given by:

Moy = N1 + €) (3.2.2a)

V,

core
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Nz = Nkl - €) (3.2.2b)

(¢ = density distribution variable; also see Egs. (2.2.27) and (2.2.28)).

In one-group/two-compartment approximation the time-dependent multi-
compartment neutron transport equation for this system reads, including delayed
neutrons (see Appendix A, Eq. (A.4) and Appendix D, Eq. (D.1)):

1de

V' Sar - (1-B.Ele)- Y -0 +Ele)- VY -0+ V -fle)S,

(3.2.3)

(v = neutron velocity; £ = fission matrix; £ = absorption-, scatter- and transport

matrix; @ = (¢,,9,)" = time-dependent neutron flux vector; S, = average delayed
neutron source density; £, = distribution of delayed neutron sources over core and
expander; dimensionless; superscript "T" denotes transposed vector or matrix). The
-average- delayed neutron source density is given by:

8
S, = - Y AC (3.2.4)

Vrot i=1
(C; = number of delayed neutron precursors of delayed group 7; A, = decay
constant of delayed neutron precursors of delayed group /; 6 delayed neutron
precursor time groups; see Appendix B, Table B.4). From Eq. (3.2.3) the
corresponding time-independent one-group/two-compartment neutron transport and
adjoint equations can be derived (see Appendix A, Eqgs. (A.8) and (A.15), and
Appendix D, Eq. (D.4)), with -fundamental- eigenvectors @, = (@, 1,80, ,)" (static
neutron flux vector) and w,* = (¥, *,¥,.,") (adjoint function vector), respectively.
We assume that, at any moment, the higher order neutronic mode
components in the neutron flux are negligible compared to the fundamental mode

(see Section 3.3), so that the time-dependent neutron flux can be written as:

e = Q) (3.2.5)

(Q = dimensionless function of time). Assuming that both the static neutron flux
vector g, and the adjoint function vector p,* are strictly time-independent (see
Appendix D), we can write:

@ _ , 49 (3.2.6)
at " %ar
By muitiplying both sides of Eq. (3.2.3) by {©,*)", substituting the expressions for
the reactivity p and the neutron generation time A from Appendix A (Eqgs. (A.16)

and (A.17); fundamental eigenvectors i, and ©,*} and applying Eq. (3.2.6) we
obtain:

aQ _ p_BeI(Q + ] (5‘200 '¥M'fd

dat A

s, (3.2.7)

>|

According to Eq. (A.12) the total fission paower generated in this system is given
by:
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Paclt) = 20T, (10 (€)Vi0oy + () Vowos] QU (3.2.8)
f

(Q, = average thermal energy produced per fission event; v, = average number of
neutrons released per fission event). The normalization of the static flux vector is
assumed to be chosen in such a way that the term between square brackets
("(...]")is independent of the density distribution variable €. This means that, in the
static calculation, the total fission neutron production rate in the system is
assumed to be constant. This is e.g. the case in the numerical static neutronic
calculations by XSDRNPM, ANISN(E), ANISN and CITATION, presented in
Chapter 2.

We now assume that, at any moment, the relative source strength
distributions of prompt and delayed neutrons are equal, so that:

F-V -
v £ - =t (3.2.9)
Vi ™M NEZ,nu[(1+6) Vo, + (1-8) V,0,,)
For a spatially flat flux (i.e. @, = @, ;) this is equivalent to the assumption of

homogeneously mixed delayed neutron precursors. This is physically reasonable in
the application of this neutron kinetics model in the combined "two-compartment"”
GCFR model (Chapter 7), as the envisaged oscillation frequency of ¢ is so high
(= 30 Hz) that the oscillation period r is much shorter than the half-life of the
shortest living delayed neutron precursor (= 0.23 s; see Appendix B, Table B.4).
However, even in the case of the symmetric cylindrical GCFR (Section 2.4,
case "I", and Chapter 7) the neutron flux is not exactly spatially flat, and therefore
Eg. {(3.2.9) is not fulfilled exactly, not even with homogeneously mixed delayed
neutron precursors. For our GCFR models we expect, however, that the
assumption of homogeneously mixed delayed neutron precursors still provides a
good approximation for the requirement stated in Eq. (3.2.9).

Therefore, using Egs. (3.2.7), (3.2.8) and (3.2.9), we can derive the
following equation for the produced fission power as a function of time:

6
dPpss _ 0 =By P, + Q, Y AC (3.2.10)
at A ’ V{/\ i=1 o

And the balance equations for the delayed neutron precursors read (like
Eq. (3.1.11)):

d_C:/ = Vf‘BBff.i Plr'ss - Afci
dat Q,

It is also possible to derive these equations, starting from a somewhat more
general description of one-group/two-compartment neutron kinetics. This is shown
in Appendix D.

According to Eq. (A.13) (Appendix A), the fission power generated in the

i=1,...,6 (3.2.11)

core (P,,) and expander (P,,,) are given by, respectively:
Pcole(t) = fP(C) Pﬁss(t) (3.2123)
Poplt) = [1 = Fole)] Py (t) (3.2.12b)

(fo = core fission power fraction; see Section 2.2.2).

49



In the "two-compartment” GCFR model (Chapter 7), Egs. (3.2.10), (3.2.11),
(3.2.12a) and (3.2.12b) are combined with equations describing the gas dynamical
behaviour of the system (density distribution variable €(t); fixed value of n,,,, which
is proportional to the total mass of the fuel gas m,,). In the application of this
neutron kinetics model in the combined "two-compartment” GCFR model, the
delayed neutron contribution (Eq. (3.2.11)) is assumed to depend on the cycle-
averaged total fission power <P, >, {oscillation period r = 1/ f) only, as the
envisaged oscillation period (r = 0.02 s) is much shorter than the half-life of the
shortest living delayed neutron precursors (7,, = 0.23 s; see Appendix B,
Table B.4).

3.3 Accuracy of point kinetics models

In Section 3.2 we assumed that, at any moment, the higher order mode
components of the neutron flux are negligible compared to the fundamental mode.
This means that the rate constants of the higher order modes (w; / > 0) must be
-algebraically- small compared to the rate constant of the fundamental neutronic
mode {w,} and that the difference in rate constant between the fundamental mode
and the higher order modes must be large, compared to the frequency of the
density oscillations in the fuel gas. In this section we will estimate the difference
in rate constant between the fundamental mode and the first higher order mode
(modes of higher order have -algebraically- smaller rate constants: w,,, < w)) for
a cylindrical GCFR (in one-group/two-compartment approximation).

Like in the one-group/two-compartment GCFR kinetics model treated in
Section 3.2, we assume that the cylindrical gas space {(volume V,,; length L ;
cross sectional area S, = 7 R, radius R,,,) consists of two compartments of
equal volume (V, = V, = 0.5 V,,,, s0K,., = K,., = K, length L__/2). We further
assume: (I} a spatially flat fuel gas density distribution (n,, = n,,, = n,); (I} a
symmetrical or asymmetrical GCFR (see Section 2.2: K, = K, Ky, =
Ko (1 + 6,.)); (1)) prompt fission neutrons only; (IV) separability of the neutron flux
in time and "position™:

alt) = (p,,0,)7 e (3.3.1)

The one-group/two-compartment time-dependent neutron transport equation
(Appendix A, Eq. (A.4)) for this system can then be written as:

%m = [tn-112%,n,, - Ky - K]0, + K., (3.3.2a)

Lo, = [(0-115,0, - Ko(1484) - K.]os + Ko (3.3.2b)

In order for this system of equations to have a non-trivial solution, the following
requirement {(on w) must be met:

[(0—1)zanle/_K0_Kc_%] [(0—1 )Zanle/~K0(1 +6th)—Kc~%] - [Kc]2 = O

(3.3.3)
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Solving Eq. (3.3.3) renders two possible values for the rate constant (or time
eigenvalue) w, corresponding to the fundamental neutronic mode {wy; ¥,, ©, > 0)
and the first higher order mode (w,; ¢, and @, have opposite sign), respectively:

Wy =V [(’7‘1 1Z,n- Ko (1 +%6th) "Kc"'lzv O K2 +4 K2 (3.3.42)
w'l =V [(,’_1 )zanleI_K0(1 +%6th) —Kc-%v 6!h2K02+4K::2 (3.3.4b)

The difference in rate constant between the fundamental mode and the first higher
order mode is then given by:

Aw = Wy -~ w, = V1’6,h2K02+4K=2 (3.3.5)

In the following we assume a symmetric GCFR (so ,, = 0). For a numerical value
of Aw, we must estimate K_. In the one-group diffusion approximation (see e.g.
[Dud786]) the net neutron current from compartment 1 {("core") to compartment 2
("expander”) is given by:

J=-p2¢ (3.3.6)
ax
(D = thermal neutron diffusion coefficient in the gas; ¢ = neutron flux; x = axial
coordinate). The flux gradient at the interface between the compartments can be
approximated by:

dp ¥~
Ix 1 (3.3.7)
ELues

In the two-compartment description, the net neutron transport from compartment 1
("core™) to compartment 2 ("expander") is given by:

IS = ViKia0, - VoKpq0, =V, Kc(‘lh “Pz) (3.3.8)

{see Appendix A}, We can now derive an -approximated- expression for K in terms
of the thermal neutron diffusion coefficient D and the length of the cylindrical gas
space L_,:

(3.3.9)

For the symmetrical GCFR in critical state {with spatially flat fuel gas distribution),
for which (see Chapter 2 and Appendix B): v = 4761 m s (thermal group
velocity), L,,, = 10 mand D = 2.86 m, we find: Aw = 1090 s™. This is an order
of magnitude larger than the characteristic density oscillation frequency in our
GCFR (approximately 30 Hz), which is an indication that we may neglect the
influence of the higher order neutronic modes in the neutron kinetics model for our
GCFR, at least in the symmetric case ("I"). For the {"slightly") asymmetric GCFRs
(cases "lI" and "llI"} the value for Aw will be smaller, because D will be smaller due
to the necessary increase in 7., to achieve criticality. But in those cases also &, will
be > O, because the wall around the expander is assumed to be thinner, and
therefore less effective as a neutron reflector, than the wall around the core. This
again causes an increase in Aw, according to Eq. (3.3.5).
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Chapter 4

REACTOR GAS THERMODYNAMICS

4.1 Reactor gas composition

One of the main characteristics of our GCFR is that the graphite reflector wall is
part of the chemical system. This means that this wall, in order to stay intact (at
least on average), must be in chemical and thermodynamical equilibrium with the
reactor gas mixture, which consists of uranium, carbon and fluorine (UCF). This
chemical solid-gas system was thoroughly investigated by Klein [Kle87, BoeS0a],
using the computer codes SOLGASMIX and SAGE (calculation method: Gibbs free
energy minimization [Eri75, Eri89]). It was found that a graphite wall at 2000 K
will be in equilibrium with a gas mixture, consisting of 20.5 % CF,, 54.5 % UF,
and 25 % UF, (molar) at a pressure of 25 bar. This composition is, at a
temperature of 2000 K, not sensitively dependent upon the pressure [Kle87] and
corresponds to a ratio of atomic densities in the gas of [UL[CIL:(F] =
0.70 : 0.18 : 4.00. If the wall temperature increases, the relative amount of carbon
in the equilibrium gas mixture increases as well, which means corrosion of the wall
[Kie87, Boe90a]. So, in all of our investigations we assumed the temperature at
the gas-solid interface to be kept constant at 2000 K {and the reflector bulk
temperature at 7., = 1000 K: RSG conditions; see Chapter 2), and the ratio of
atomic densities in the fuel gas to be as specified above. At 2000 K and 25 bar
(the reference conditions for the UCF gas) the molar mass of the UCF gas is then
M, = 0.277 kg.

In our GCFR, where the envisaged bulk temperature of the gas is much
higher than 2000 K (RSG: 7,,,, = 10,000 K), this is the situation within a few mm
off the wall, as a strong temperature gradient exists in the gas close to the wall
[Kle87, Hoo91], and an increase of temperature causes dissociation of UF, UF,
and CF, into lower valent uranium- and carbon fluorides [Kle87, Boe89b, BoeS0b].
Keeping the ratio of atomic densities at the value specified above, Klein calculated,
using the computer codes SOLGASMIX and SAGE, the (molecular) composition of
the fuel gas for various temperatures (between 2000 and 10,000 K) and pressures
(between 1 and 100 bar) [Kle87]. In Figure 4.1 (major components) and Figure 4.2
(minor components, ions and electrons) the equilibrium molecular composition of
the UCF gas is shown as function of the temperature for a pressure of 10 bar.
Note that, for increasing temperature, first dissociation of UF; and CF, occurs,
causing an initial increase in the amount of UF,. When the temperature increases
further, also the UF, dissociates. At higher temperatures (above approximately
5000 K) we also see ions and free electrons becoming part of the equilibrium
mixture, which increases the electrical conductivity of the gas [Kle87, Boe89b].
This is favourable in view of the envisaged magneto-hydrodynamical (MHD) or
magneto-inductive (Mi) energy extraction from a GCFR in oscillatory operation.

In a GCFR in oscillatory operation, the -bulk- temperature and the pressure
of the fuel gas change with time. Consequently, the equilibrium composition of the
gas also must change with time. However, at the envisaged reactor gas
temperatures the necessary chemical reactions take place extremely rapidly (half-
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Figure 4.1 Equilibrium composition of UCF gas at a pressure of 10 bar (major
components).

life 107 to 10° s [Kie87, Boe90al). So, in view of the envisaged time scale of the
pressure- and temperature variations in our GCFR (about 0.02 s), we may consider
the equilibrium molecular composition of the gas to be attained instantaneously.

4.2 Reactor gas properties

As we have seen in Section 4.1, the composition of the UCF fuel gas mixture
changes with temperature T and pressure p, due to dissociation, recombination and
ionization. As a consequence, the total amount of gas particles (molecules, ions,
electrons) N{p,T) (mole) also changes with temperature and pressure. From the
calculations of the equilibrium compositions [Kle87] the total number of particles
at given temperature and pressure can be calculated easily {given the amount of
gas N, (mole) at the reference temperature, 2000 K, and pressure, 25 bar; N, = 1
{"original"} mole corresponds to m,,, = M,). The Equation Of State ("EOS") of the
UCF gas is then given by {Kle87, Kui89a, Kui89b, Kui91al:

(gas volume V; universal gas constant R = 8.3144 J K' mole™). In Figure 4.3 the
so-called dissociation function g of the UCF gas is given as a function of the
temperature T at pressures of 1, 10 and 100 bar. Contrary to the case of a perfect
gas (for which g = 1), the pressure increases more than proportionally with the
temperature (at constant volume), e.g. by going from 2000 to 10,000 K, the
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Mole froction [-]

Temperature [K]

Figure 4.2 Equilibrium composition of UCF gas at a pressure of 10 bar {minor
components, ions and electrons).

pressure increases from 3 to 100 bar. In Figure 4.3 also the dissociation function
of "Modelium" is shown. "Modelium" is a model gas, which is an intermediate step
between non-dissociating perfect gas and UCF gas (see Section 4.4).

UCF gos ot 1 bar
UCF gaos at 10 bar
UCF gos ot 100 bar
Model ium ot 1 bar
#  Modelium at 10 bar
- Modetlium at 100 bar

T T

8.0 10.0
+ 10
Temperature [K]
Figure 4.3 Dissociation functions g (i.e. N(p, ) / N,) of UCF gas and Modelium
at pressures of 1, 10 and 100 bar.

As can be seen in Figure 4.3, UCF exhibits two major dissociation regions
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when its temperature is increased from 2000 to 10,000 K. Forp = 1 bar, the first
region (dissociation of UFs and CF,; see Figure 4.1} occurs at approximately
3000 K and the second one (dissociation of UF, and lower valent uranium- and
carbon fluorides) at approximately 5000 K. These regions shift towards higher
temperatures if the pressure is increased, i.e. increasing pressure suppresses
dissociation.

UCF gas ot 1 bar
UCF gas ot 10 bar
UCF gos at 100 bar
Model ium ot 1 bar
Mode! ium ot 10 bar
Model ium ot 100 bar

OxX+D>0O

[J Mole™! K™1]

Cc

lTemperature [K]

Figure 4.4 Specific heat at constant pressure ¢, for UCF and Modelium as
function of temperature at pressures of 1, 10 and 100 bar.

The thermodynamical complexity of the UCF gas is also reflected in the
internal energy U and the specific heats of the gas at constant volume, c¢,, and
pressure, ¢,. These quantities also resulted from the calculations by SOLGASMIX
and SAGE [Kle87, Boe89a, Boe90b]. In Figures 4.4 and 4.5 the specific heat at
constant pressure ¢, and the c,/c,-ratio k of UCF gas (and Modelium) are shown
as a function of the temperature T at pressures of 1, 10 and 100 bar. Note that
these curves exhibit local maxima in the neighbourhood of the dissociation regions
mentioned above. At high temperatures (fully dissociated state) ¢, and k approach
the values for a monatomic perfect gas (i.e. ¢, = (6/2)R and « = (5/3),
respectively).

Klein also calculated many other parameters of the UCF gas, such as degree
of ionization, electrical conductivity, thermal conductivity and viscosity, which are
of importance for GCFR operation [Kle87, Boe89b, Boe91a, Boe91bl. For pressures
between 1 and 100 bar, the dynamic viscosity varies between 0.75:10* (for T =
2000 K) and 1.6-10* kg m* s (for T = 6000 K). The thermal conductivity A,
{including translational, reactive and internal contributions [Boe91a, Boe91b])
varies between 0.05 and 1 W m" K. Like the specific heats ¢, and ¢, the thermal
conductivity 4,, (as function of T) exhibits local maxima in the vicinity of the
dissociation regions mentioned above.
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O UCF gas at 10 bar
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- Modelium ot | bar
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Figure 4.5 Ratio of specific heats k = ¢, / ¢, of UCF and Modelium as function
of temperature at pressures of 1, 10 and 100 bar.

4.3 Heat transport

In a GCFR, all the heat that is produced in the gas by nuclear fissions, and that is
not extracted by "direct” means (such as MHD and M), will be transported to the
wall, surrounding the gas, and can subsequently be used as "input” for a more
conventional energy conversion system (such as a steam cycle or -possibly- a
thermionic converter [Wol90]). Van Dam and Hoogenboom [Dam83] elaborated a
model, developed by Kerkdijk and Kistemaker [Ker78], for the description of this
heat transport (radiative transport by photon diffusion) from the fissioning gas to
the wall in a stationary GCFR.

The basic equations for radiative transport by photon diffusion read {Ker78,
Dam83l1:

) = ~Dpple) Vulr) (4.3.1a)
with:
40
ulry = — 28 T (4.3.1b}
ph
and:
- Condell) G 4.3.1c)
Dorla) 3 30,,N,ni0 (

(J,..4f} = radiative heat flux density vector (dimension: [W m2]) at position r;
D, (n) = radiativediffusion coefficient {dimension: [m? s7'1); ulr) = radiationdensity
(dimension: [J m®)); c,, = velocity of light (= 299,792,468 m s); 04, = Stefan-
Boltzmann’s constant (= 5.67-10° W m? K*); A,,(r) = photon mean free path;

o,, = average photon absorption cross section for white light (= 2.5-10%' m?
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[Par68]); N, = Avogadro’s number (= 6.022:10% mole'); nlr) = gas density
{dimension: [mole m™3])).

In the model they assumed: (l) a stationary GCFR (i.e. the total produced
fission power Py, is equal to the radiative heat transport P,,, to the wall), (ll) a one-
dimensional GCFR geometry (i.e. sphere, infinite cylinder or infinite slab; geometry
parameterq = 2, 1 0orO, respectively), (lll} a perfect gas (dissociation functiong =
1in Eq. (4.2.1)), (IV) a uniform pressure p (and consequently a gas density n{r)
varying with the temperature T(r)}, and (V) a spatially flat neutron flux (so that the
fission power density Q,,(r} ~ n(r)), and arrived at the following equation for the
temperature profile in the fissioning gas:

474 ﬂ + TS d_2.7_— + gg_T = - 30"” X P’i”R°°"2p2 = -q
dz dz? z dz 16k?20gN, N
(4.3.2a)
(z = r!/ R, = reduced coordinate; R, = radius of sphere (g = 2) or cylinder
{g = 1), or slab halfwidth (g = 0); kK = Boltzmann’s constant = 1.38:10% J K,

N = total amount of gas (mole)). The boundary conditions for this equation are:
T(z=1) =T, (4.3.2b)

{fixed wall temperature)
9T(2=0) = 0 (4.3.2¢)
az
{symmetry)

Eq. (4.3.2a) was soilved numerically by Uleman, van Dam and Hoogenboom [Ule82,
Dam83], rendering the temperature profile T(r) for given values of the total fission
power P, and the amount of gas V. The solutions show a rather flat temperature
distribution over a large part of the core gas and a steep temperature gradient, and
therefore an increased density, close to the wall: a dense gas layer protecting the
wall [Kis78a]!

An approximative analytical solution, which was also given by van Dam and
Hoogenboom [Dam83], can be obtained by changing the coefficient of the first
term of Eq. (4.3.1) to 5, resulting in:

To(2) = q3+"1 . Tt (4.3.3)

This, however, is not an explicit expression for the temperature, because the
parameter a contains the square of the pressure, which is temperature dependent.
In view of the development of our combined GCFR models we are interested
in the radiative heat transfer in terms of the bulk temperature of the gas. Therefore,
following van Dam and Hoogenboom [Dam83], we introduce an effective
temperature T, which is the hypothetical uniform core gas temperature which
would give the correct pressure for a given N (also the bulk temperature). So:

pV = NRT,, (4.3.4)

{V = core gas volume). For "normal” (high enough) power densities the centre
temperature 7, (at z = 0) can be approximated by:
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1/6
T, - lﬂ] (4.3.5)
g+1

According to van Dam and Hoogenboom [Dam83], the ratio @ = T,/ T, only
varies in a limited range. For an infinite cylinder, © varies from 5/6 (for very high
a)to 1 (fora =0:T7,, = Tir) = T,,). We can now derive an expression for the
radiative energy transport to the wall of a stationary one-dimensional GCFR, in
terms of the effective temperature of the fuel gas [Stek88]:

p —p - 1604,(g+1) V2T,
rad fiss 9 Uph NA 06 R 2 N

core

(4.3.6)

This expression was used by Stekelenburg [Stek88] to describe the radiative
energy transport to the wall in his GCFR simulator. Because the core in that
simulator model (and also in our "solid piston” model; see Chapter 5) is a finite
cylinder, the numerical values for ¢ and © were assumed to be between those of
a sphere and an infinite cylinder, also g = 1.5 and © = 0.8130 [Stek88, Dam83].
Eq. (4.3.6) can then be written as:

Prad = Crad ‘V2 Tef/4 (4'3.7,
N
With C,,, = 5.80:10"° W mole m® K*(R_,,. = 1 m). We also used this in our "solid
piston” GCFR model (Chapter 5).

Later the stationary heat transfer model was extended by taking into account
the thermal conductivity (translational, reactive and internal components), (free)
convection {by multiplying the thermal conductivity by a "convection factor” C)
and the dissociation/recombination behaviour of the gas [Kle87, Kis89, Hoo91,
Boe91b], leading to somewhat different temperature profiles (at the same total
fission power), with lower values for T, and 7, for a given value of P,,,. However,
for the sake of simplicity, in our combined GCFR models {see Chapters 5 and 7)
we only assumed radiative heat transfer, which can be described by formulas like
Eq. (4.3.7).

In the stationary heat transport model described above, the pressure p is
assumed to be uniformly distributed {(Uniform Pressure Diffusion Model, "UPDM"
[Ker78]). A somewhat more simple approach, which was taken by Kerkdijk and
Kistemaker as well [Ker78], is to assume a uniform gas density n{r) = n (Uniform
Density Diffusion Model, "UDDM"). Assuming a uniform density n (= N/ V), and
retaining the other assumptions of the UPDM (I, ll and Ili; see above), the following
equation for the temperature profile in the fissioning gas of an infinite cylindrical
GCFR (¢ = 1) can be derived:

oI (G 18T -Gl Pat
dz z dz

dz dz 160, V2
{4.3.8)

Assuming the same boundary conditions (Eqs. (4.3.2b) and (4.3.2¢)) as in the
UPDM model, we find for the temperature profile:
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4 4
T2 sz - [Twa (4.3.9)
To To
The effective (in this case the volume-averaged) temperature is then given by:
4 7% - T
5 T04 - Tw.//a

So, for high T, we obtain: T,/ T, = © = 4/5. For high 7, the radiative heat
transport from the gas to the waill is then given by:

- 16 Ogg v (';' Rcare Saut) Te!14
3 aph NA OA Rcolez N

Tetr = (4.3.10)

V(% Rcam Sour ) T0114

=C
rad N

rad

(4.3.11)

(S,,. = area of the wall surrounding the gas). For a long cylinder, we have: V =
0.5 (R,,,. S,.), SO in that case Eq. (4.3.11) reduces to Eq. (4.3.7), but with a
different value of C,,,, viz. 4.90-107"° W mole m® K* (R_,,, = 1 m). However, the
values of C,,,, found with the UPDM and UDDM radiative transport models differ
by less than 20 %. We used the UDDM radiative transport model, viz. Eq. (4.3.11),
in our combined "two-compartment” GCFR model {Chapter 7).

Besides the radial radiative heat transport, treated above, in the "two-
compartment” combined GCFR model! (cylindrical GCFR; see Chapter 7) also the
axial heat transport P,_, from core (compartment 1) to expander (compartment 2}
is taken into account. In the combined "two-compartment” GCFR model the axial
heat transport consists of two contributions: heat conduction and photon diffusion.
Convection is not taken into account in the axial heat transport, because in the
"two-compartment” description of the GCFR gas dynamics the fuel gas is assumed
not to go through the movable "imaginary wall" (see Section 6.3) between the
compartments. Applying the same description for the photon diffusion process as
was used for the radial radiative heat transport (see [Ker78, Ule82, Dam83]), we
can derive the following expression for the axial heat flux density:

40 art a7
J o= —__""58 Ul _ 4 Y7 (4.3.12)
q.axial 3nN,0,, dx *dx

(Jouiw = axial heat flux density; n = (average) gas density; A, = thermal
conductivity; x = axial coordinate; derivatives with respect to x are taken at the
interface of compartments 1 and 2). For a cylinder with length L, we can
approximate:

a7’ T,/ -Ty
ax 1 (4.3.13)
iLgas

{i = 1 for heat conduction; / = 4 for photon diffusion). The axial heat transport
from compartment 1 to compartment 2 can now be approximated by:

ZLSWS [Cndtaxial( T14 - T24) * Ath(T1 - Tz)] (4.3.14)

gas

P, =
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(S,.. = cross sectional area of the cylindrical gas space = 7 R,,.> = m R,,,2). If we
assume that the average density is givenbyn = N/ V,, (V,, = total volume of the
gas space = S, L ), then the constant C,,.., €an be written as:

gas Tges
4 VrotOSB

Crad.oxiar = INN O

AT

If we further assume that the temperature and the pressure in both compartments

are not too far from the mean temperature 7 and the mean pressure p of the entire
gas space, we can approximate:

(4.3.15)

dkog T
3aphp
E.g. 7 = 10,000 K and p = 50 bar renders: C,

rad, axial

c = (4.3.16)

rad,axial

= 8.35:10" W m" K*.

4.4 Modelium

In Sections 4.1 and 4.2 we have seen that the UCF reactor gas exhibits a quite
complicated thermodynamical behaviour, for which a description is only available
in tabular form [Kle87, Boe89a]. We therefore developed the model gas
"Modelium”, which is an intermediate step between the non-dissociating perfect
gas and the UCF gas [Kui89a, Kui89b, Kui91a]. As is the case with a perfect gas,
its behaviour can be described by analytical functions. Contrary to UCF gas, which
exhibits a "step-wise” dissociation behaviourin two dissociation regions, Modelium
was designed to exhibit a smooth dissociation behaviour. Its dissociation function
g(p, T) is defined by [Kui89a, Kui89b, Kui91al:

- P
T C4 Inpuﬂh (4'4'1)

glp.T) = C, + C,arctan
3
{Pu.ie = 1 Pa). The values of the constants C,,...,C, have been determined by fitting
to the dissociation behaviour of UCF gas (see Table 4.1). As is shown in Figure 4.3
the dissociation behaviour of UCF gas is approximated quite accurately by
Modelium, especially at intermediate temperatures and pressures.

Table 4.1 Modelium parameters.

c, 3.50

C, 1.59

C, 1000 K

C, 400 K

Po 2.5-10° Pa (25 bar)

A general thermodynamic relationship reads [Cal60]:
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c -CV=I[@]V[8T] . [ ] (4.4.2)

g N |37
(%],

The specific heats at constant pressure (c,) and volume (c,) are given by,
respectively:

c = V1|94 (4.4.3a)
» N|3T,

- 1|au (4.4.3b)
Cv N[ar]v

(H = enthalpy; U = internal energy = H-p V; N = N, gip,T); specific heat per
"actual” mole). From this it can be derived that, for a general, dissociating gas:

2112, 1%9.) (2,

Nic, -cy) =
(4.4.4)
. gz] [@] v a_V] ‘
ar), | o)+ ) -
The combination of Eqs. (4.4.2) and (4.4.4) renders:
9H| . av (4.4.5)
%), l5),

Combining Eq. (4.4.5) with Egs. (4.2.1) and (4.4.1), we find for Modelium
[Kui89a, Kui91al:

ap C, ap

From this an expression can be derived for the enthalpy H of an amount of A,
“original” (i.e. non-dissociated)} moles of Modelium:

lﬁ] . -NART [ ] - NRT [2&] (4.4.6)

Hp,T) = Ho(T) + [g(p T) - g(po. T (4.4.7)

As mentioned in Section 4.2, the curves for ¢, and k as function of T for UCF gas
(Figures 4.4 and 4.5) exhibit local maxima in the vicinity of the dissociation
regions. The enthalpy Hy(T) at the reference pressure p, was chosen such that
Modelium shows a similar behaviour, inciuding the correct limits for high
temperatures (fully dissociated state) [Kui89a, Kui89b, Kui91a}:

2
Hy(T) = 16 N,RT + NoRC, [ln Po ] [9(po. ) - Cy] (4.4.8)

unit

In Figures 4.4 and 4.5 the behaviour of ¢, and « of Modelium as a function of the
temperature T is shown for pressures of 1, 10 and 100 bar.
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From Egs. (4.4.7) and (4.4.8) analytical expressions for other
thermodynamic variables can be derived in a straightforward manner. The internal
energy of an amount of V, "original” moles of Modelium is e.g. given by:

Ulp,T) = H(p,.T) - NgRTglp,T) (4.4.9)
And the volume of the same amount of Modelium (i.e. its EOS) is given by:

Vip,T) = MTPQ‘JZ (4.4.10)

Expressions for the specific heats ¢, ¢, and the ratio of specific heats x, which can

be obtained by applying Egs. (4.4.3a) and (4.4.3b), will be given in Section 4.5.
For a non-dissociating, perfect gas (dissociation function g = 1) the

expressions for the thermodynamic variables are much simpler, e.g.:

Ulp.T) = U, + Nye, T (4.4.11)

{U, = internal energy at zero temperature; constant c,).

4.5 Finite and infinitesimal thermodynamic cycles

With our "solid piston” GCFR model (Chapter 5) we performed thermodynamic
cycle calculations for a predetermined volume sequence (or compression scheme)
V(t) (time 7). In this section we will discuss some features of thermodynamic
cycles. One of the compression schemes to be studied is a pseudo "Otto" scheme.
An ideal Otto cycle consists of adiabatic compression, isochoric heating (i.e.
heating of the working medium -the gas- at constant volume), adiabatic expansion
and isochoric cooling in order to return to the initial state [Cal60]. The Otto scheme
is the most efficient scheme for a system cycling between two preset volumes
(V.. and V. ). In case of such an ideal Otto cycle, applied with a perfect (i.e. non-
dissociating) gas, the work fraction (or efficiency) n is given by [Cal60]:

D=1 - [1] a1 [1] (4.5.1)

K= V,,/V,, = compression ratio). This is also an upper bound for the
efficiencies that can be attained by non-ideal (Otto) cycles (for perfect- or non-
perfect gases), such as in our "solid piston" GCFR model.

For non-perfect, dissociating gases there is no such simple expression for the
work fraction of a finite (Otto) cycle. However, in order to gain a better
understanding of our finite cycle calculation results with our "solid piston” GCFR
model (with perfect and non-perfect gases), especially of the influence of the
thermodynamic properties of the gas, we studied the so-called "infinitesimal Otto
cycle" [Kui91a]. As shown in Figure 4.6, an infinitesimal Otto cycle is an Otto
cycle in which variations of volume AV, pressure Ap and temperature AT are small,
compared to the volume V, the pressure p and the temperature T at the Beginning
Of the Cycle ("BOC"). The compression ratio K approaches 1 and the adiabatic
compression and expansion phases can be approximated by straight lines in the
plV)-diagram. The work fraction An for such an infinitesimal cycle is then given by
[Kui91a]:
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Pressure p
Ap

AV << Vv ot soc BPOC

Ap << p ot BOC

Volume V

Figure 4.6 Pressure as function of volume for the infinitesimal Otto cycle.

_Ap. TI AV

anp = -2vE T2V (4.5.2)
D{p,T)
with:
D(p.T) = A,(p,T) B,p.T) - Bylp.T) Aylp,T) (4.5.3)
and:
A p.T) = [%;] B,(p.T) = [%%]
. T (4.5.4)
au U
A T = | = B , T = | 2=
ulp.T) [ar]p wlp, T) [ap],

For Modelium, the derivatives A, A,, B, and B, can be calculated in a
straightforward manner from the expressions for U(p,7) and V{p.T) (Egs. (4.4.9)
and (4.4.10), respectively), for given values of the pressure p and the temperature
T.

The so-called "infinitesimal efficiency factor" ¢ of an infinitesimal Otto cycle
is now defined as [Kui91al:

. An .
= v=L = An(K
= lim Vay = imank g

(compressionratio K = V / (V - AV)). With Eq. (4.5.2), this can also be written as:

K (4.5.5)

(- _Adp.T) Vip,T) (4.5.6)
Dip,T)

(EOS: Vi(p,N). So, ¢ is completely determined by the properties {EOS and Ul(p, 7))
of the gas.
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Applying Egs. (4.4.3a) and (4.4.3b)}, we can write the specific heats ¢, and
¢y, and the ¢, /¢ ratio «, for a dissociating gas in terms of the derivatives defined
in Egs. (4.5.3) and (4.5.4):

1
= A A 4.5.7
e gNo( vPAY) ( @
1 B,A,
- A - (4.5.7b)
eV g, [ ¢ 8,
k=50 - By(Ay+pAy) {4.5.7c)
Cy D

Furthermore, from Eq. (4.4.5) the following expression can be derived, using
Eq. (4.5.4):

B,=-TA, -pB, (4.5.8)

Using these expressions, the infinitesimal efficiency factor {can also be written as:

14 VA,
- 1) = - (4.5.9)
TAV(K ) ghNy,Bycy

For a (non-dissociating) perfect gas (constant ¢, and «) this simplifies to:

{ =

t=xk-1=21 (4.5.10)
Cy

[

]

2.0 4.0 6.0 8.0 103.0
] - 10
TempoPQTure [K]

Figure 4.7 Infinitesimal efficiency factor ¢ for Modelium as function of
temperature at pressures of 1, 10 and 100 bar.

For Modelium it is also possible to derive a -quite complicated- analytical expression
for {, e.g. using Eq. (4.5.9). In Figure 4.7 the infinitesimal efficiency factor for
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Modelium is shown as function of temperature for pressures of 1, 10 and 100 bar.
Note that below T = 5000 K, { is almost independent of temperature and
pressure.

In Chapter 5, where we present our finite thermodynamic cycle calculations
with the "solid piston” GCFR model, we will demonstrate that the infinitesimal
efficiency factor {, which is completely determined by the gas only, provides a
reasonable estimation n° of the attainable work fraction n of a (finite) Otto cycle,
according to:

oo k-1 (4.5.11)
n 4 7
This also means that the infinitesimal efficiency factor { can be used to estimate
those BOC conditions (temperature and pressure), where a finite cycle can be
expected to render a maximal work fraction.
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Chapter 5

SOLID PISTON GCFR MODEL

5.1 Introduction

The first combined mode! to be presented is the so-called "solid piston” GCFR
model. The origin of this model is the asymmetric GCFR with magneto-inductive
{MI) energy extraction, as is shown in Figure 1.1. The description of the interaction
between the -(partly) ionized- fuel gas and the magnetic field, generated by the
current in the coil, surrounding the expander, is quite complicated and requires -in
principle- the full set of magneto-hydrodynamical equations (see e.g. [Cra73]).
However, when the density of free electrons in the gas is sufficient (7 > 5000 K,
see [Kle87]), the magnetic field basically acts like a piston: when the magnetic
pressure {which is proportional to the square of the magnetic field strength) is
larger than the kinetic pressure of the gas, the gas will be compressed and pushed
out of the expander into the core (a magnetic field of 1 Tesla will be in equilibrium
with a gas/plasma at a pressure of approximately 4 bar [Kle87]); but when the
kinetic pressure is farger than the magnetic pressure, the gas/plasma will expand
against the magnetic field in the expander, thereby performing work on that
magnetic field [Kle87], and reducing the field strength.

The -envisaged- operation of this GCFR is now as follows (see [Kis78a,
Kle87, Kui89a, Kui89b, Kui90, Kui91a]). In fully expanded state of the fuel
gas/plasma the reactor is subcritical. An increase of the magnetic field will then
compress the fuel gas and push it into the core, thereby driving the reactor highly
supercritical. The increasing fission power will also cause an increase of the fuel
gas temperature and, therefore, of its kinetic pressure. This will lead to expansion
of the fuel gas/plasma into the expander. The work done on the magnetic field
during this expansion appears as electrical energy in a resonant "LC"-circuit, which
consists of the coil, surrounding the expander, and a capacitor bank (not indicated
in Figure 1.1). In this way, part of the kinetic energy of the plasma is extracted in
a purely inductive manner. This energy can be extracted from the "LC"-circuit by
a load over the capacitor bank. However, a -large- part of the energy has to be
stored in the "LC"-circuit, to provide for the increase of the magnetic field in the
expander, necessary for compression of the gas in the next "stroke".

In our "solid piston” model of this GCFR, we simulate the interaction
between the fuel gas/plasma and the coil ("LC"-) system by a solid piston, which
moves in the expander and -externally- controls the volume V,,, occupied by the
fuel gas, as is indicated in Figure 5.1. The extracted energy is then modelled as the
mechanical work performed by the gas on the piston. Certainly, this approximation
is quite crude, but for the moment we are primarily interested in the neutron
kinetical and thermodynamical behaviour of the system. Therefore, we also did not
take gas dynamics into account in this model and assumed the fuel gas to be
homogeneous and massless.

We investigated the influence of several parameters (such as fuel gas type
(dissociating or non-dissociating), fuel gas -initial- temperature T, {"Beginning Of
Cycle”), pumping frequency f, compression ratio K, cycle-averaged fission power
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Figure 5.1 Solid piston GCFR model.

<P,.>, loscillation period 7 =1/f) on the neutron kinetical and
thermodynamical behaviour of the system, and especially on the attainable work
fraction (or conversion efficiency) n, which is defined by:

net extracted energy in one cycle (5.1.1)

n= produced fission energy in one cycle

We also investigated several types of fuel volume sequences (or pumping schemes)
V,.At), such as a harmonic scheme or a -pseudo- Otto scheme (anharmonic
scheme) [Kui89a, Kui89b, Kui90, Kui91al. This, however, does not imply that
these sequences are necessarily feasible with magnetic pumping.

5.2 Model description

Two major components of the "solid piston™ GCFR model are neutron kinetics and
thermodynamics. The neutron kinetics part is essentially a one-group zero power
point kinetics model [Dam88], which was introduced in Section 3.1. For a given
(periodical) fuel volume sequence V,,(t), a given value of the reactor period T
(= 1/ w; Egs. (3.1.12), {3.1.13)) and a given value of the cycle-averaged fission
power <P, >, it calculates the total fission power Py, as a function of time, and
also the total mass m,,, and the total amount Ny = m,,, / M, ("original” mole) of the
fuel gas, necessary to maintain the requested value of w. As the GCFR is
asymmetric, we assumed that the reactivity p and the neutron generation time A
only depend on the fuel gas density in the core (see Sections 2.4 and 3.1). We
further assumed that this dependence can be described by the "old" formulas used
for the one-dimensional spherical GCFR {see Chapter 2, Tables 2.5 and 2.6;
route "A"):

0.2039 - 0.2075 Ny

RS
n

(5.2.1)

4.784-10" + 1.0713-1073 ngye™
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{ngss = density, relative to the RSG gas density; see Section 2.3). Note that, as
already mentioned in Section 2.3, the values of A rendered by Eq. (5.2.1) are too
low by a factor of approximately 1.5. However, we used these {"old"} fit functions
in our "solid piston" GCFR model, as they were the only ones available at that
time. The main characteristics of the "solid piston” GCFR model are listed in
Table 5.1.

Table 5.1 General parameters of the "solid piston” GCFR model.

Core radius R, 1.0 m (RSG)
Core volume V,,,, 4.189 m® (RSG)
Total volume V,, 1257 m®
Fuel gas composition {molar) 25.0 % UF,
(at 2000 K, 25 bar) 54.5 % UF,

20.5 % CF,4 g
Enrichment 50 % U (RSG)
Critical core nuclide densities 4.1977-10% c¢m™ '2C
(RSG) 93.281:10"® cm™® °F

8.1621:10" cm™ %y
8.1621:10"® cm #8y

Reflector material graphite
Reflector nuclide density (RSG) 8.55:102 cm™ C

Reflector thickness (around core} d,, 1.0 m {(RSG)

Average reflector temperature 7, 1000 K (RSG)

We investigated two different volume sequences V/,,(t}, viz.: {l) a harmonic
cycle, for which:

Vel t) = V,, {ﬁthl . %cos(ant)] (5.2.2)
(Vi = maximum volume of fuel gas; K = compression ratio; f = pumping
frequency), and (ll) a -pseudo- Otto cycle, consisting of a fast (approximately
adiabatic) compression phase, an compressed isochoric phase, a fast
(approximately adiabatic) expansion phase and an expanded isochoric phase {see
[Kui89a, Kui89b, Kuig0, Kui91a] and Section 4.5). Examples of these cycles are
shown in Figure 5.2.

For the thermodynamics part of the model it is assumed that the system only
passes through stable equilibrium states [Cal60, Hat79]. Under this assumption the
internal energy (V) balance of the fuel gas is given by:

Y = Pott) = Put) = pUU, Vi) x LYo (5.2.3)

at
The momentary total fission power P, is supplied by the neutron kinetics part of

the model. The momentary heat transport P,,, from the gas to the wall is given by
Eq. (4.3.7) (Section 4.3; substitute V = V,,, and T,, = 7). The final term on the

right hand side of Eq. (5.2.3) represents the momentary mechanical working-power
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Figure 5.2 Volume sequences for GCFR harmonic and Otto cycles (compression
ratio K = 2 in these examples).

P,.. on the piston, which represents the directly convertible energy by magneto-
inductive (Ml) means [Kui91a]. The cycle averaged value of P, should be positive
in order to get net work (i.e. directly converted energy by Mi} out of the system.

In order to integrate Eq. {5.2.3), the pressure p, the temperature 7 and the
total amount of gas V must be known as functions of the internal energy U and the
momentary fuel volume V,.. These relationships can be obtained from the
"original" (non-dissociated) amount of fuel gas N, the dissociation function g{p, 7},
the Equation Of State V,(p, ) and the internal energy function Ulp, T of the fuel
gas under investigation. We performed calculations, considering a perfect gas
(several values of k), a Modelium-type gas and a "real” UCF gas.

Numerical integration of Eq. (5.2.3) over one pumping cycle renders, among
other things, the totally produced fission energy W;,, {= P, integrated over one
cycle), the total heat loss W,,, (P, integerated over one cycle), the net amount of
mechanica!l work W (P, integrated over one cycle) and the internal energy Ugyc
at the End Of the Cycle (= Uz + integral of (dU / dt) over the cycle). The work
fraction n (= W/ W, see Eq. {5.1.1)) can then be calculated. In general, U is
not equal to Uy, SO there exists a (positive or negative energy) "gap” (calculated
by integration of (dU / dt) over the cycle), which still has to be closed in order to
return to the original BOC state [Kui89a, Kui89b, Kui90, Stek88, Stek90]. This
"cycle closure” can be achieved by applying e.g. magneto-hydrodynamical (MHD)
energy extraction after the magneto-inductive (Ml) one.

5.3 Finite cycle calculation results

Some results of the finite (i.e. compression ratio K > 1) GCFR neutronic and
thermodynamic cycle calculations are given below. In Figure 5.3 some examples
of P, (1) are presented, for the volume sequences (harmonic and Otto) shown in
Figure 5.2 (f = 10 Hz; K = 2.0). For the Otto cycle the -approximately-
exponential power increase in the compressed (isochoric) phase (between 10 and
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50 % of the cycle}, due to neutron multiplication, is clearly demonstrated, as is the
-approximately- exponential power decrease during the expanded (isochoric) phase
(between 60 and 100 % of the cycle). This effect is less important for higher
pumping frequencies [Dam89]. In case of the Otto cycle, the fission power P, (f)
is also non-zero during other cycle-phases than the compressed isochoric heating
one, which causes the work fraction / to be smaller than in the case of an ideal
Otto cycie (Eq. (4.5.1)). A comparison with Figure 5.2 shows the existence of a
time lag between the moments of maximum compression and maximum power.
This time lag also decreases with increasing pumping frequency (see Figure 5.4).
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Figure 5.3 Fission power (relative to the cycle-averaged fission power) as
function of time for harmonic and Otto cycle (f = 10 Hz; K = 2.0}.

In Figure 5.4 the influence of the pumping frequency on the power history
Pg..(t) is shown for the harmonic cycle (K = 2.0). At lower frequencies the neutron
population gets more time to increase in an exponential-like manner, so the power
excursions are more pronounced than for higher pumping frequencies, where the
neutron population is more constant, so that the fuel volume sequence V,(t) and
the power history P, () will be in anti-phase.

As already mentioned earlier (Sections 2.3 and 5.2) the values of A used in
these calculations are too low by a factor of approximately 1.5, which means that
the influence of the (p-B,,)/A-term in Eq. (3.1.10) is overestimated in the
calculations presented here. Using the "correct" values for A will cause the
variations in the fission power not to be as pronounced as is shown here.
However, for higher pumping frequencies (30 - 50 Hz), at which we performed
most of the following calculations, the influence of the (0-8,,)/A-term on the power
history will be small, as, at these frequencies, the neutron population is almost
constant already.

In Figures 5.3 and 5.4 the non-linearity of the neutron kinetics is clearly
demonstrated. This non-linearity is already known from studies on strong reactivity
oscillations in reactors with stationary fuel mass [Akc58, Smi65). It is, however,
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Figure 5.4 Fission power (relative to the cycle-averaged fission power) as
function of time for several pumping frequencies (harmonic cycle;
K = 2.0).

more pronounced in a system with oscillating fuel mass because of the synchronic
but in anti-phase oscillation of the neutron generation time [Dam88, Kui90].
Another consequence of the non-linearity is shown in Figure 5.5, where the cycle-
averaged prompt reactivity <p,>, is shown as function of the compression ratio K
for "stationary"” (i.e. w = O) pumped operation. The prompt reactivity p, is defined
as [Dam88]:

e, =1- 1 - PP (5.3.1)
keff(1 _Belf) 1 —Beff
As can be seen in the figure, the cycle-averaged prompt reactivity is negative and
decreases with increasing compression ratio K. For K-> 1 (i.e. V= V. no
pumping) the value of the cycle-averaged prompt reactivity becomes:

v, Ber
<p,>, > - oo Dett (5.3.2)
i v!at 1 _Beﬂ

(see Egs. (3.1.10) and (3.1.11); zero time-derivatives). The factor (V. / V)
follows from the "complete mixing” assumption for the delayed neutron precursors,
stated in Eq. (3.1.7). For the case presented here this implies that the effective
delayed neutron fraction 8, will be reduced by a factor of 3 (at K — 1}, because
of the total-to-core volume ratio (V,, / V,,,.) of 3 (see Table 5.1).

In Figure 5.6 the necessary total fuel mass m,,,, necessary for maintaining
the specified value of w (0.0 and 1.0 s, respectively), is shown as function of the
compression ratio K (harmonic cycle, f = 30 Hz). It is clear that, in order to
increase the average fission power <P, > (i.e. w > 0), either the compression
ratio K or the total mass of the fuel gas m,,, has to be increased. It should also be
noted that stopping of pumping (i.e. K- 1) will lead to an immediate and strong
power decrease (negative w; see [Dam89, Kui89a, Kui89bl).
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Figure 5.6 Necessary total fuel mass m,, to maintain specified inverse reactor
period w as function of compression ratio K (harmonic cycle;
f = 30 Hz).

The pressure versus volume (p(V,,)-) diagrams for the harmonic and Otto
cycle are shown in Figure 5.7 (the volume sequence V,,(t) is shown in Figure 5.2;
<Pss>, = 100 MW; perfect gas; x = 1.40; Tz = 3000 K; radiative heat
transfer "switched off": C,,, = 0). Note the compressed isochoric heating phase
in the Otto cycle. Also the existence of a cycle "closure gap"” (see Section 5.2} is
clearly demonstrated, as the pressure at EOC (hence the temperature and the
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Figure 5.7 Pressure as function of volume for harmonic and Otto cycle (perfect
gas; kK = 1.40; Tz = 3000 K; C,,, = O, <P, >r = 100 MW),

fuel

internal energy) is not equal to the pressure at BOC. The total amount of
-mechanical- work W produced in one cycle is given by the area of the p(V,,)-
diagram. For equal compression ratio, this area is larger for the Otto cycle than for
the harmonic cycle, so the Otto cycle renders a larger work fraction n than the
harmonic cycle. If Modelium or UCF gas is used instead of non-dissociating perfect
gas, W (hence n) will become smaller, because of the "damping” influence of
dissociation and recombination on the pressure- and temperature variations and
hence on the area of the p(V,,)-diagram [Kui89al.

The starting point of the following parametric study is the so-called "basic
cycle”, the parameters of which are listed in Table 5.2. In each of the following
cases one of the parameters was varied, whereas the others were kept fixed on
the values in the "basic cycle" (uniess stated otherwise).

For the first cases we "swith off" the radiative heat transfer from the gas
to the surrounding wall {Eq. (4.3.7): C,,;, = 0). In Figure 5.8 the effect is shown
of variation of the compression ratio K on the work fraction n. At higher
compression ratios the work fraction is also higher. Furthermore the Otto cycle
seems to be more efficient than the harmonic cycle (also see Figure 5.7). in the
same figure also the wark fraction n for an ideal Otto cycle is shown, calculated
using Eq. (4.5.1). The work fraction for the GCFR Otto cycle is lower than in the
ideal case because in the GCFR Otto cycle the volume changes are not adiabatic.
Furthermore, an increase in the ¢ /c,~ratio « also causes an increase in 17, which can
also be expected from Eqg. (4.5.1) (also see [Kui89al).

The temperature at the beginning of the cycle T, also influences the
attainable work fraction 7 in the case of the dissociating gases Modelium and UCF,
as is shown in Figure 5.9. In absence of heat transfer from the gas to the wall
(C,.s = 0.0) the work fraction increases with increasing Tz except for the
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Table 5.2 "Basic cycle" parameters.

Gas type non-dissociating, perfect
c,/c ratio k 1.40

Pumping scheme V(1) harmonic (Eq. {5.2.2))
Pumping frequency £ 50 Hz

Compression ratio K 2.0

Gas temperature at BOC 7, 5000 K

Cycle-averaged fission power <P, >, 100 MW

Inverse reactor period w 0.05s"

Radiation constant (Eq. (4.3.7)) C,,, 5.80:107"° W mole m™® K*

A

[S] e
. AT
v -
(S : P
S - - T o /ﬁj
- T /a/
S P AT -
<) 7 P
o L '/LHT‘/ e b
=

T _
%,4: (1 LEPR harwonic cycle
P BCFR O Ttto cycle
lvieal Utto cyele

L [IEY 1.80 2.00

b

Figure 5.8 Work fraction 1 as function of the compression ratio K for idea! Otto
cycle, GCFR harmonic cycle and GCFR Otto cycle (perfect gas).

"hump"” in the UCF curve at Ty, = 4000 K, which is related to the first
dissociation step (Chapter 4, Figure 4.3). In Figure 5.9 it is furthermore
demonstrated that, also in the case of dissociating gases, the GCFR Otto cycle is
more efficient than the GCFR harmonic cycle. The attainable work fraction,
however, is much lower than in the case of a perfect gas (compare with
Figure 5.8). Furthermore, Figure 5.9 gives an indication that Modelium
approximates the behaviour of UCF gas quite well, especially at high temperatures.
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Figure 5.10 Cumulative energy fractions as function of average fission power
<P, >, for the "basic cycle" (Tzoe = 5000 K).

For the remaining cases the radiative heat transfer from the gas to the wall
is “"switched on" again (Eq.(4.3.7): C,, = 5.80-10"° W mole m® K*). In
Figure 5.10 the energy balance of a pumped GCFR is shown as function of the
average fission power <P, >, . In the vertical direction the cumulative energy
fractions for work (direct Ml conversion), radiative transfer to the reactor wall and
"closure gap" of the thermodynamic cycle are indicated. For <P, >, below
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approximately 0.14 MW (for Tz, = 5000 K) the reactor cools down due to the
intense heat radiation at 5000 K, the work fraction is negative and so is the
closure gap. With increasing <P,,>, the work fraction becomes positive and
increases, whereas the radiative fraction (i.e. the radiated energy relative to the
produced fission energy) decreases strongly, which means that there is an
increasing cycle closure gap. At high powers, where the radiative fraction becomes
very small, the work fraction approximates the value of 13.6 %, which was
calculated for the case of absence of radiative heat transfer (see Figure 5.8:
harmonic cycle, K = 2.0). At an average fission power of 0.17 MW a peculiar
situation arises: there is a positive work fraction of approximately 3 % and an
exact closure of the cycle. This means that the p(V,,)-diagram has a small positive
area, but the cooling down during the expansion phase due to heat radiation is just
sufficient to return to the BOC state.

In Figure 5.11, which shows the cumulative energy fractions as function of
Tsoc: the average fission power <P, > is kept constant at 1.0 MW. At relatively
low temperatures there is a large positive cycle closure gap: the reactor heats up
until it reaches an equilibrium temperature of approximately 7845 K, at which the
closure gap is zero. At this temperature the work fraction is again a few percent,
and the remaining part of the produced fission energy is radiated to the wall, This
part can be converted into electricity by more conventional means (like a steam
cycle or -possibly- a thermionic converter).
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Figure 5.11 Cumuilative energy fractions as function of the temperature at BOC

for the "basic cycle" (<Pg,,>, = 1.0 MW).

Further cycle calculations (see [Kui89al) show, among other things, that
Otto cycles (and Diesel cycles [Stek88, Dam89]) render a larger work fraction than
the harmonic ones, but that for dissociating (Modelium, UCF) gases only a much
lower work fraction (approximately 4 %) can be attained than for non-dissociating
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perfect gas [Kui89a, Dam89]), an effect that can only be explained partly by the
fact that the cycle-averaged x for Modelium and UCF (approximately 1.25) is lower
than 1.40 (the value chosen for the calculations with perfect gas}. However, from
these calculations it can furthermore be concluded that Modelium approximates the
behaviour of UCF quite well.

A final remark in this section concerns the very high so-called "basic
pumping power" circulating in the magnetic coil system, which is modelled (in the
"solid-piston” GCFR model) as the instantaneous working power P,,,, which is
given by:

= px IV 5.3.3
Pyore = P X 5t { )
(also see Eq. (5.2.3)). For a "solid piston" GCFR with V,,, = 12.57 m?, running at
50 Hz (harmonic cycle: Eq. {5.2.2)) with a compression ratio of K = 2, and
assuming a pressure of approximately 15 bar, the maximum working power is
approximately 1.48 GigaWatt. A small loss factor in the magnetic coil system (e.g.
due to ochmic losses) will iead to a severe deterioration of the conversion efficiency.
It might even render magnetic pumping useless, if the loss is of the same order as
the MI energy extraction. A possible way of avoiding this problem is using
autonomous gas density oscillations in a GCFR, driven by nuclear fissions. We
investigated this possibility in the form of the "two-compartment” combined GCFR
model, to be presented in Chapter 7.

5.4 Comparison with infinitesimal cycle

In order to gain a better understanding of the finite cycle calculation results {e.g.
presented in the previous section), especially of the influence of the
thermodynamic properties of the gas, we studied the so-called "infinitesimal Otto
cycle”, which was introduced in Section 4.5 (also see [Kui91a]). We can make a
comparison between the results of a finite cycle calculation and those of the
corresponding infinitesimal one by comparing the infinitesimal efficiency factor {
with the so-called "efficiency factor™ { (for finite cycles with completely externally
controlled volume sequence, such as an Otto cycle), which is defined by:

v K

= e (6.4.1)
Results for finite and infinitesimal cycle calculations for a non-dissociating perfect
gas are given in Figures 5.12 and 5.13. Figure 5.12 shows the (infinitesimal)
efficiency factors as a function of the compression ratio K for the same cycles as
in Figure 5.8. Figure 5.13 gives results as a function of the ¢, /c,ratio x. The
factors increase with increasing K and . As expected, the ideal Otto cycle has a
higher efficiency (see Eq. (4.5.1)) than the GCFR Otto cycle; the latter is more
efficient than the GCFR harmonic cycle. The infinitesimal efficiency factor is
somewhat smaller than the real efficiency factor for a finite ideal Otto cycle; for
the other cycles it represents an overestimation. This is caused by the fact that,
for the real GCFR cycles, fission energy is also generated in the fuel gas during
other parts of the cycle than the isochoric heating phase (Otto cycle). This lowers
the conversion efficiency. It is evident, however, that the infinitesimal efficiency
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factor provides a reasonable estimate (of the upper limit) of the efficiency of finite

cycles, without performing elaborate calculations as are needed for obtaining the
exact efficiency.
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Figure 5.13 (Infinitesimal) efficiency factor as function of ¢ /cratio (perfect gas;
K = 2.0).

Efficiency factors for Modelium are shown in Figure 5.14 as a function of
the BOC temperature. It is seen that the infinitesimal efficiency factor provides a
good estimate for the actual cycle efficiency; there is no big difference between
the infinitesimal efficiency factor calculated at average cycle pressure and
temperature (denoted by "(<p>,<T>)") or at BOC temperature and pressure
{denoted by "(p,7) at BOC"). An assessment of efficiency on the basis of
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Egs. (4.5.1), (4.5.10) and (5.4.1), using cycle-averaged values for ¢, and «
(denoted by "<c¢,>" and "<c,/c,>", respectively), gives gross under- and
overestimation, respectively. The figure shows clearly that {, evaluated at BOC
conditions, provides a good accuracy, without the need of a lengthy cycle
calculation. Obviously, the infinitesimal efficiency factor can also be used to
estimate those BOC conditions (7goc 8nd pgoc), Where a finite cycle can be
expected to render an optimal work fraction. From Figure 4.7, which shows the
infinitesimal efficiency factor (for Modelium) as a function of T, it can then be
concluded that a high work fraction n can only be expected at high temperatures
{(far above the dissociation region) where the gas approximates a monatomic
perfect gas.
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Figure 5.14 Comparison of several (infinitesimal) efficiency factor values for
Modelium as function of Tz,

The results for Modelium show that, even in the case of a dissociating
medium, ¢ at Ty, and pgo. provides a reasonably accurate estimation n (by
Eq. (4.5.11)) of the cycle efficiency n. It is therefore expected that the same is
valid for UCF, where { can be calculated from EOS-data and the U(p, T)-function,
which are available in tabular form [Boe89a].

80



5.5 Conclusions

Neutron kinetic and (finite and infinitesimal) thermodynamic cycle calculations have
been performed for the "solid piston” model of a -magnetically- pumped GCFR, in
order to investigate the influence of several parameters on the reactor physical and
thermodynamical behaviour of the system.

The neutron kinetics is highly non-linear, which is reflected in the fact that
the cycle-averaged (prompt) reactivity is negative and decreases with increasing
compression ratio (at constant cycle-averaged power). The non-linearity is
enhanced by the synchronic but in anti-phase oscillation of the neutron generation
time. From the safety point of view, however, it is important to note that stopping
of pumping (i.e. compression ratio K - 1) will lead to an immediate and strong
power decrease.

From the finite cycle calculations it can be concluded that for a pumped
GCFR with dissociating fuel gas a direct energy conversion efficiency 7n is
attainable of only a few percent {in the investigated parameter range). Comparison
of these finite cycle calculations with so-called infinitesimal Otto cycle calculations
leads to the conclusion that it is possible, even in the case of non-ideal,
dissociating gas, to obtain a reasonable estimation of the attainable conversion
efficiency of a finite cycle from the so-called infinitesimal efficiency factor { of the
fuel gas, evaluated at the BOC (beginning of the cycle) state. This infinitesimal
efficiency factor is completely determined by the properties of the gas.

However, a big problem is posed by the very high so-called "basic pumping
power”, circulating in the magnetic coil system, which is modelled (in the "solid
piston” GCFR model) as the instantaneous working power. A smali loss factor in
the magnetic coil system (e.g. due to ohmic losses) will lead to a severe
deterioration of the conversion efficiency. It might even render magnetic pumping
useless, if the loss is of the same order as the MI energy extraction. A possible
way of avoiding this problem is using autonomous density oscillations in a GCFR,
driven by nuclear fissions.
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Chapter 6

GAS DYNAMICS

6.1 Introduction

One of the important parts of the combined "two-compartment" GCFR model -to
be presented in Chapter 7- is the description of the dynamical behaviour of the fuel
gas in the cylindrical GCFR gas space. In this chapter we will present two models
for the description of the GCFR gas dynamics. In these models we assume that the
length (L,,,)} of the gas space is much larger than its radius (R,,,), so that we only
need to consider one-dimensional gas dynamics in axial direction. Furthermore, we
neglect friction effects (i.e. we assume zero viscosity of the gas), as is often done
in -low velocity- gas dynamics studies [Roh85].

The most appropriate gas dynamics model from the fundamental, physical
point of view is a model, based on the well-known conservation equations for mass
(continuity equation), momentum (Navier-Stokes or Euler equation) and energy
{first law of thermodynamics), and the equation of state (EOS) Vi(p,T) and the
internal energy U{p, T of the gas (see [Lan63, Bir63, Roh85]). Such a model
renders the mass density distribution {p,,}, the temperature (7), the pressure (p) and
the velocity (v) as function of position (x) and time (), given the local fission power
density Qg (x,t) and the (radiative) heat loss to the wall (see Section 4.3). In a
combined GCFR model, the fuel gas density distribution is then used as input for
the neutronics part of the model. The neutronics part on its turn calculates the
fission power density distribution and the circle is closed. In the case that a
stationary solution is desired, an iterative procedure can be used, similar to the one
applied in the "solid piston” mode! {see Chapters 3 and 5). In Section 6.2 we
present the basic equations of this gas dynamics model (for the one-dimensional
case) together with an -approximative- analytical treatment. In this analytical
treatment we assume the variations of the variables (pressure, temperature, mass
density) to be small ("acoustic” or "small signal™ approximation), and the initial
velocity distribution to be as in the Fundamental Acoustic Mode ("FAM").

However, the model mentioned above, which employs partial differential
equations for position- and time-dependent (thermodynamical) quantities, is quite
complicated. For use in the combined "two-compartment” GCFR model we
therefore developed an alternative and more simple description of the GCFR gas
dynamics. In this so-called "Two-Compartment” Model ("TCM") we imagine the
gas space to be divided into two compartments, of which the thermodynamic
variables (pressure p, temperature 7, volume V) are described by ordinary
differential equations. The parameters in this gas dynamics model are chosen such
that -for small amplitudes- the natural oscillation frequency () and the momentary
(total) kinetic energy (£, (?)) have the same values as in the fundamental acoustic
mode (FAM). In Section 6.3 we introduce this description. We also give an
-approximative- analytical treatment of this model, for a comparison with the
acoustic gas dynamics model.

Furthermore, in Section 6.4 we estimate the attainable conversion efficiency
{n), for the case that an energy extraction mechanism -modelled as a friction force,
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proportional to the velocity- is present in such a way that the amplitude of the
density {and velocity) oscillations is constant (i.e. in the "stationary” state).

6.2 Acoustic model

As mentioned above, the basis of the acoustic model consists of the well-known
conservation equations for mass, momentum and energy, combined with the EOS
and the internal energy function of the (fuel) gas [Lan63, Bir63, Roh85]. Assuming:
(1) one-dimensional gas dynamics (axial position -L,/2 = x < L_/2; time t},
(1) horizontal flow (i.e. no gravitation effects), (lil) total gas space volume V,,
(=nm R,,, L,,.) and (IV) a total amount of fuel gas Ny (= m,,, | Mo; My = "original”
molar mass; general, dissociating gas; see Chapter 4}, these equations take the
following form:

ap,, av , ,30m _ (6.2.1a)

at T Pmax dx ax

{mass conservation: continuity equation)}

oo v, 8v| _ _9p {6.2.1b)
at ax dx
{equation of motion: Navier-Stokes or Euler equation; no friction)}
v
9U.,8Y) - p2Y (x.t (6.2.1¢c)
Lo (20 BY] = p 2+ Ouin
(energy balance: first law of thermodynamics}
o) = e et (6.2.1d)
V[p(x, 0,Tix,0)

(EOS)

(Vip, 7 is the volume and Ulp, T) is the internal energy of N, "original” moles of
gas; see Chapter 4). For the net power density Q,,(x,t) we assume: (I) a constant
and spatially flat neutron flux, so that the fission power density Qglx,t) is
proportional to the mass density p,(x,?), (ll) a constant (radiative) heat transport
(to the wall) per unit volume, in such a way that the total radiated power is in
balance with the (constant) total fission power P, and (lil) absence of heat
transport in axial direction. We then obtain:

mtot V

QuerlX, ) = P, [Pm(x,t) 1 ] (6.2.2)
tot
It must be noted, however, that assumption “{ll}” has limited validity for the case
that increasing density oscillations in the gas occur.
We also assume rigid walls at the boundaries (x = /2), so that the

gas
boundary conditions on the velocity v read:

v(ilsz,n =0 (6.2.3)
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For the initial conditions (at t = 0) we assume:

px,0) = <p> Tix,0) = <T>
- mrot =
P,(x,0) = v Q,.ix,0) =0 (6.2.4)

gas

- mx dv -
vix,0) vocos[L ] 5?(x,O) 0

{fundamental acoustic mode (FAM); angle brackets "<...>" denote space- and
time-averaged value of variable). Furhermore, it is obvious that:

L,,12
VI<p>,<T>) = V,, MR,z J’ poix.0)dx = m,, (6.2.5)
-L./2

As mentioned, for the analytical treatment of this model, we assume the variations
in the variables to be small, compared to the average value:

p=<p>+p T=x<T>+T
m (6.2.6)
P = = * By = <Pp> + Py v=v
tot
(tiide "~" denotes varying component of the variable; <v> = 0). Under this

assumption, and using the partial derivatives A4, B, A, and B, evaluated at
{<p>,<T>)(see Chapter 4, Eq. (4.5.4); N, "original" moles), the basic equations
can -in first order approximation- be written as:

% ov _ _<pu> (4 oF , g 05 ov
o <p,> = = - m A9 L B 9P <p > 9V .
at i o ax Vlol Vat ’ Vat * Pm ax
{6.2.7a)
<p,>3v - .2 (6.2.7b)
at 'S
1 aT ap av
A== + B,ZE| = -<p> L + Qlx,t (6.2.7¢)
sz [ Uat * Uaf] P ox + nn(x )
b = -=Ln7 (4,7 + B,p) (6.2.7d)
ot
P,. .
Onet(x't) = —Epm (6-2.7e)

tot

Laplace-transformation (see e.g. [Spi65]) of these equations, using the initial
conditions stated in Eq. (6.2.4), yields:

1
1%

tot

QO
<»

(AysT + Bysp) = Ix (6.2.8a)

x
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<p,> [sv - vocos[”x]] --9 (6.2.8b)

L, dx
1 i 5) = av
(AysT + Bysp) = -<p> 22 + Q,,(x,s) (6.2.8c)
Vtot Ix
B = —%(Avf + Bp) (6.2.8d)
A Pliss s
Onet(xls) = —pm(X:S) {6.2.8e)

tot

(transformation: t - s; circonflexe "*" denotes Laplace-transform of varying
component of variable). From this set of equations we can derive an expression for
the Laplace transform of the velocity v:

29 4 YellAvtAv<p>) 220 _ o o fmx] 1 Veor AvPris av
NoMo(A,B,-B,A,)-ax? ° gas s (AyBy-ByA )N, M, dx?
(6.2.9)

Using the expression for the infinitesimal efficiency factor { (see Section 4.5,
Eqg. {(4.5.6)), this can be written as:

sy - 222V . svocos[ "X] + l(P”'“ﬁ (6.2.10)
Ix? Lyas s m,, dx?
In which the velocity of sound (c) in the gas is given by:
c? = - Vtarz(AU+Av<p>) - Vtotzl( - KR<T> 1
NyM(A,B,-B,A,) NyM, B, [_%] [1 _ <p>@]
g g op

(6.2.11)

(g = dissociation factor of the gas at (<p>,<7T>); see Chapter 4, Eqs. (4.2.1),
(4.5.4) and (4.5.7c)). For a perfect, non-dissociating gas (g = 1), this reduces to
the well-known formula:

KR<T>

AL 6.2.12
W, ( )

If this "perfect gas”-formula is used for the caiculation of the velocity of sound in

a non-perfect dissociating gas (using an adapted value for the molar mass, viz.

M, ! g), the value found will usually be too high, as the derivative of g with respect

to p will usually be negative (like in UCF and Modelium; see Chapter 4, Figure 4.3).

c? =

6.2.1 Adiabatic case

If we "switch off" the fission power production and the radiative heat transport to
the wall (Q,,, = O: adiabatic case), then Eq. (6.2.10) reduces to:
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dx?

sty - 2 22V =svocos[fx (6.2.13)
gas

From this we can conclude, by inverse Laplace transformation [Spi65]:

vix,t) = v, cos(2mft) cos [Z’X] (6.2.14)
ges
This is the fundamental acoustic mode (FAM) standing wave, with oscillation
frequency £, given by the well-known formula:

f=_¢_ (6.2.15)
2L,,,

The mass density distribution p,.(x,t) for the FAM can then be derived, using
Eqg. {(6.2.7a), resulting in:

onlx,t) = Dot [1 + %sin [27"] sin(2nft)] (6.2.16)

tot g8s

In the combined "two-compartment” GCFR model (Chapter 7) we assume the gas
space to be subdivided into a core part (-{,,,/2 < x < 0) and an expander part
0 < x = L,,/2)ofequalvolume vV, = V,,, = V,/2.Inthe fundamental acoustic
mode (FAM) standing wave, the mass of the fuel gas in the core part is then given
by:

Meelt) = L m, [1 - Zﬁsin(znm] (6.2.17)
2 mc

Using Eqg. (2.4.1), we can now calculate the density distribution variable & for the
FAM:

e = -2 sin@2nrn (6.2.18)
mc
The momentary kinetic energy £,,{t) of the gas can be calculated, using
Egs. (6.2.14) and (6.2.16). We find:
Lol 2

7R’ [ 3oabxtilvixn] dx
a2 (6.2.19)

Ekin(t)

+Meo Vo COS? (21 £1)

tot

6.2.2 Non-adiabatic case

Using the solution for v(x,t} from the adiabatic case, viz. Eq. {6.2.14), we can also
calculate an approximated solution of Eq. (6.2.10) (the general, non-adiabatic
case}, by means of (first order) perturbation theory. The term of Eq. (6.2.10),
describing the fission power density and the radiative heat transfer, must then be
considered as a (small) perturbation on the adiabatic case (Eq. (6.2.13)). The
approximated solution then consists of an unperturbed contribution v'®(x,t) {the
solution for the adiabatic case: Eq. {6.2.14)), and a perturbed contribution
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u vilix,n:

R 20 _ mx 1, Ppres 920
s?y - cz_a7 = SV,CO0S [Lpn] + ”;(mm xZ (6.2.20a)
vix,s) = vO(x,s) + u v (x,s) (6.2.20Db)

(dimensionless perturbation parameter u). Substitution of Eq. (6.2.20b) into
Eq. (6.2.20a), dividing left hand side and right hand side by ¢ and putting i to zero
renders an ordinary differential equation for the Laplace transform of the perturbed
component. The solution of this equation is given by:

vit) Pﬁss m z VO mx
vilix,s) = -¢ 5 oS | =
mtot Lgas 2 Lﬂas (6. 2 . 2 1 )
s? + Jc
Lﬂu
From this we can obtain the approximated solution for the non-adiabatic case
(inverse Laplace transformation; g — 1 in Eq. (6.2.20b)):

vix,1) = v, cos [ 71X cos(2mfe) + (PﬂSS 2nftcos(2nmft) - sin(2nft)
L m,, 4nfc?

gas

(6.2.22)

Clearly, the amplitude of v (and consequently also the amplitudes of the other
variables: p, 7, p,,) increases with time, and this increase occurs more rapidly with
larger values of the specific power P, / m,, and/or the infinitesimal efficiency
factor ¢ of the gas.

6.3 Two-compartment model

As mentioned in Section 6.1, for the combined "two-compartment” GCFR model,
to be presented in Chapter 7, we developed a more simple description of the GCFR
gas dynamics, the so-called "Two-Compartment” Model ("TCM"). As is shown in
Figure 6.1, in the TCM the total gas space (volume V,,) is divided, by a movabie
imaginary wall (area S,,, = nR,,f), into two compartments, containing equal
amounts of fuel gas (m, = m, = m_J/2; Ny, = Ny, = Ny/2). The momentary
position of this imaginary wall is indicated by the variable x,
(-L,/2 = x,, < L,,/2). The imaginary wall controls the volumes of the "core™
(subscript “1" in TCM description: V,(t)) and "expander” (subscript “2": V,(?);
Vi) + V(1) = V).

The gas in both compartments is considered to be homogeneous and
characterized by the pressure (p,,p,), the temperature (7,,T,), the volume (V,,V,)
and the "actual" amount of gas (N;,/V,). In both compartments the "general”
equation of state (EOS: see Chapter 4, Eq. (4.2.1); dissociating and non-
dissociating gas) is assumed to apply:
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Figure 6.1 Two-compartment gas dynamics model.

Nilpy TIRT, _ NoaRTiglp, 7)) _ MeRTigl0y T))
Py P P4

Vilo,. T,) =

{6.3.1a)

Nolpo T RT, _ NoaRTogl0, T,) _ $MoRT2905.T)

V0, Ty) =
srae 1] P2 P2

(6.3.1b)

The rates of change of the internal energy {U) of core {f = 1) and expander {j = 2)
are given by:

Y. [_;: U(p,.,T,-)] = Pry + =1V ;S T (6.3.2

dt dt n dt

{Ulp,T) = internal energy of NV, "original” moles at (p, 7).
The net power supply P,..; 10 compartment j is given by:

P P. - P @ * (_1)/’ ,Dh2 (6.3.3)

netj = J ra

P, is the fission power generated in compartment j (see Figure 6.1). In the
combined "two-compartment” GCFR model this is, in general, a time-dependent
quantity, which is calculated by the neutron kinetics part of the model (see
Section 3.2). However, for the approximative analytical treatment presented in the
remainder of this chapter, we assume a constant, spatially flat neutron flux, so
that: Py = P, = P, /2.

The axial heat transport P,, from core gas to expander gas (see Figure 6.1)
is determined by photon diffusion and heat conduction (see Section 4.3,
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Eqg. {(4.3.14)). This heat transport, however, is small compared to the transport to
the surrounding wall. For the analytical treatment it is assumed to be zero.

In the combined "two-compartment” GCFR model (Chapter 7} we assume
the (radial) heat transport P, to the surrounding wall (see Figure 6.1: P,,,)) to be

determined by photon diffusion, according to Eq. (4.3.11) (substitute: R,,,. = R,
Sot = Sowjy Tew = T; N = N). For the analytical treatment in this chapter,
however, we use two different models for the radiative heat transport to the
surrounding wall. In the first model, like in the acoustic model {Section 6.2:
Eq. (6.2.2)), we assume constant (radiative) heat transport per unit volume, in
such a way that the total radiated power (P,,, + P,y is in balance with the
{constant) total fission power P, (= P, + P,), so that:

Vi
vV

tot

Posj = Prss (6.3.4a)

In the second modei we assume the (radial) radiative heat transport to be given by
Eq. (4.3.7) (substitute: V = V; T, = T; N = N), where the constant C,, is
chosen in such a way that the total radiated power at average temperature and
pressure {<p>, < T>)is in balance with the (constant) total fission power Py, so
that:

5
Progy = Prue <22 Yili (6.3.4b)
Vo <T>% P

tot

Like in the "acoustic model” (Section 6.2), however, it must be noted that the
assumption of balance between the (constant) total fission power and the total
radiated power (at average temperature and pressure) has limited validity for the
case that increasing density oscillations in the gas occur.

For a complete description of the TCM gas dynamics, we furthermore need
an equation of motion for the imaginary wall, separating the compartments. If we
assume that a fraction a of the total mass m,,, of the fuel gas is attributed to the
imaginary wall, we obtain:

a’x dx
——dtzw = (p1 - pZ)Sgas - zrmror?iv_v (63'5)
The mass parameter ¢ is chosen in such a way that, for small amplitude, the
natural oscillation frequency in the TCM model is equal to the FAM value, given by
Eq. (6.2.15). It therefore {see Section 6.3.1) has the value (2/m)? (= 0.41).

The term containing I is a model for an energy extraction mechanism. In the
numerical calculations with the combined "two-compartment” GCFR model (see
Chapter 7) this term is assumed to be zero, because no energy extraction
mechanism is taken into account there. However, in Section 6.4 we will present
an analytical treatment of the effect of energy extraction, as described by the I-
term.

am

tot

For the set of equations, describing the dynamical behaviour of the gas in
TCM description, we assume the following initial conditions:
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x,(0) =0 €=0

pfi0) = <p> T0) = <T>
Vi0) = %v Py = O (6.3.6)
dx dv
= ¥ > 2wy =0
v, (0} 7t (0) 0 - (0)

{v,, = dx,/ dt = velocity of the imaginary wall). These initial conditions are
consistent with the FAM initial conditions, stated in Eq. (6.2.4).

In the combined “two-compartment” GCFR model {see Chapter 7) it is
necessary to make a connection from the gas dynamics part to the neutron kinetics
part of the model. As was stated in Sections 2.4 and 3.2, the two-compartment
point kinetics model expects information on the fuel gas density distribution in the
form of the (FAM) density distribution variable €, which is defined by Eq. (2.4.1).
To establish the connection, we assume that the relationship between x,, (TCM-
description of the gas) and € (FAM-description of the gas) is given by:

e = —gXw 6.3.7)
L

gas

The parameter ¢ is chosen such in such a way that, for small amplitude, the
momentary kinetic energy £,,.(t) of the gas has the same value in both TCM and
FAM description (Eq. (6.2.19)). It therefore (see Section 6.3.1) has the value
(4V2)/m (= 1.80).

6.3.1 Adiabatic case

Like in the acoustic model (Section 6.2.1) we first "switch off” the fission power,
the (radiative) heat transport (Eq. (6.3.2}): P, = O} and the energy extraction
mechanism (Eq. (6.3.5): ' = 0). Following the same procedure as in Section 6.2
{small signal approximation; Laplace transformation) we can derive an expression
for the Laplace transform of the position x,, of the imaginary wall:

: . 4SS, Ay+A, <p>) P

s2% = v _(0) (6.3.8)

v amrar(BuAv_Aqu) v

The natural oscillation frequency f of the system is given by:

172

1 4Sgasz (AU+AV<p>) — c (63.9)

f=_=
2n | amy, B A, -A,B,) nia

(c given by Eq. {(6.2.11)). The mass parameter a is chosen such that f has the
same value in TCM and FAM description. So, using Egs. (6.2.11), {6.2.15) and
(6.3.9), we can calculate: @ = (2/m)?

From Egs. (6.3.8) and (6.3.9) we can calculate, applying inverse Laplace
transformation:

v, (0}

i (6.3.10)
T sin{2mft)

x,{t) =
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Differentiation yields the velocity of the imaginary wall:

v, lt) = v, (0)cos(2nft) (6.3.11)
And for the momentary kinetic energy of the gas we find:

El) = Lam, v, (12 = 2 m,, [v,(0)12 cos?(2m 1) (6.3.12)
n

When we compare this with the FAM result, viz. Eq. (6.2.19), and assume equal
momentary kinetic energy £,,(t) in both descriptions, we obtain:

Vo = 2\/5‘, (0) (6.3.13)
” w

{vy, V,(0) > 0). Combination of Egs. (6.2.15), (6.2.18), (6.3.10) and (6.3.13)
then renders:

e - -2 X, (6.3.14)
m L

gas

So, the parameter ¢ in Eq. (6.3.7) has the value (4V/2)/r. We use this result in our
numerical calculations with the combined "two-compartment” GCFR model
(Chapter 7), where, however, the amplitude of the variables is not necessarily
small.

6.3.2 Non-adiabatic case

In the same way as in the acoustic model (Section 6.2.2}), we can use the solution
of the adiabatic case, viz. Egs. (6.3.10) and (6.3.11), to approximate the solution
of the non-adiabatic case (Eq. (6.3.3): P, + P, = P, > 0 and/or Eq. (6.3.5):
I > 0), by applying first order perturbation theory. In the non-adiabatic cases,
presented in this section, we keep I' = O (i.e. no energy extraction}, and we only
consider the influence of fission energy production and (radiative) heat transport
to the surrounding wall. For the first radiative heat transport model (Eq. (6.3.4a))
the first order perturbation procedure then yields:

v (1) = v.(0) | cos2mfe) + (h 2rftcos(2mft) - sin(2mft)
Mior 417sz

(6.3.15)

This is consistent with the FAM result, viz. Eq. (6.2.22), which indicates that the
two-compartment gas dynamics model is, also in the non-adiabatic case, a good
approximation to the fundamental acoustic mode.

For the second radiative heat transport model (Eq. {6.3.4b)), we followed the
same procedure, but, for the sake of simplicity, only for a non-dissociating perfect
gas (g = 1; { = «- 1; Eq. (4.5.10)). We obtained the following result:

Vult) = v,(0) | cos(2mrr) « D (k- 1) (3-24) 27fLCOS2NIY — sin(2mfl
My 4nfc?

(6.3.16)
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The momentary kinetic energy £,,,(t) is then given by:

Ek,-,,(t) = %amwt [vw‘t)]z

=~ 2 My [VW(O)]2 cos(2mft)
”2

x | cos2mfe) + Lis qx-1) (3 -24) 27ftC0s(21F1) - sin(2mf1)
My Admfc?

(6.3.17)

(square of perturbed contribution omitted).

The rate of change of the cycle-averaged kinetic energy <E, (1) > is small
compared to the oscillation frequency f (= 1/7). Therefore, using
<cos®(2mft)>, = 1/2and <cos(2 7 ft) sin(2 7 f t)>, = 0, the cycle-averaged
kinetic energy can be approximated by:

2 21 Pres (K-1)(3-2k)
<Ekin(t)>r =~ ";zmrox[vw(o)] [7 + m;m——?_t (6-318)

The relative rate of change of the cycle-averaged kinetic energy can then be
approximated by:

1 d<E(t)>, ~ P_fiss_Z(K—1)(3—2K)
<E,;(0)>, dt my, c?

- Piss  2(k-1)(3-2k)
NoR<LT> K

(6.3.19)

From Eq. (6.3.19) it can be concluded that the maximum rate of change will be
attained if k = V/(3/2). For larger values of « the variations of T, and T, will also
be larger, which, for x > 3/2, will render the net heat supply (Egs. {6.3.3) and
(6.3.4b)) to a compartment negative during compression. This leads to a decrease
in amplitude, as the "direction" of the cycle in the p(V)-diagrams (of both
compartments) will be counter clockwise. For smaller kx, the variation of the
temperatures will also be smaller and will be compensated by the variation of the
volumes (V; and V,) of the compartments. For x - 1 <E,,(f)> is constant as all
the extra heat (loss) is taken up (or supplied by) the gas, due to its large heat
capacity {see Chapter 4, Eq. (4.5.10)). In Chapter 7 we will compare this result
(Eq. (6.3.19)), which was obtained for small amplitude, with the numerical results
of the combined "two-compartment™ GCFR model calculations (constant, flat flux
approximation: Section 7.3), for which, however, the amplitude of the oscillations
is not necessarily small.
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6.4 Energy extraction

in the TCM description of the gas dynamics, it is also possible to describe the
effect of the presence of a -"direct”- energy extraction mechanism (e.g. MHD). For
this we assume that the (time-dependent) force, exerted by this mechanism on the
imaginary wall, is proportional to the velocity v,{t), but has opposite sign (like a
friction force): the I-term in Eq. {6.3.5) with [ > 0. The momentary extracted
power is then given by:

PAt) = 2T my, v i) (6.4.1)

ext

Again applying first order perturbation theory, we find for a general, dissociating
gas, assuming the first radiative heat transport model (Eq. (6.3.4a)):

v it) = v (0} cos(2nrft)
P 1 mr
0 fis 1 -IV2nft 2nf
+ v, )[{m,°,4nfcz Sf] mftcos(2mfit)
P 1 nfr]
- vul0 s A 2nft
vul0) l:(mmt 4ppfe? ” Sf] sin(2mfa)

(6.4.2)

If we now assume that the system is stationarily oscillating (i.e. the amplitude of
the oscillations does not change with time), then the relationship between the
(constant) total fission power P,, and the energy extraction parameter T is
necessarily given by:

P,~ = M (643)
liss 2 (
From Egs. {6.4.1) and (6.4.2) we find for the cycle-averaged extracted power:
2
<Pe"(t)>7 = rmtot[vw(o)]z 1 + 2( Pﬁss — 1
Meore 4 f02 (6.44)

~ T m[v.l0)]’

{c? given by Eq. (6.2.11); the term containing { is small compared to 1 for
"normal” values of P,.). Combining Egs. (5.1.1), (6.4.3) and (6.4.4), we can
calculate the conversion efficiency for the stationarily oscillating GCFR in TCM
description {(general, dissociating gas; radiative transport mode! according to
Eq. (6.3.4a)):

<P..>, _ 2¢ [vu0))® (6.4.5)
n= e’y 28 4.
Pﬁss ”2 c

Using Eq. (6.3.13), we can also express the conversion efficiency in FAM
quantities:
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4 | c

Obviously, if the first radiative heat transport mode! (Eq. (6.3.4a)) is assumed to
apply, high values for the conversion efficiency can only be attained with high
values for the infinitesimal efficiency factor { and/or the velocity amplitude v,
(FAM) or v, (0) (TCM), respectively. Colgate and Aamodt [Col57] e.g. assume
Vo = 2cC.

For the second radiative transport model (Eq. (6.3.4b)) with perfect, non-
dissociating gas, we can follow the same procedure, obtaining:

I ¢ [EJ ’ (6.4.6)

v, (t) = v (0)cos(2mft)

vy (0) | Pis 2-0B-260 _ 1T 5. ¢4 cosi2nfe)
v Mot 47fc? 8r

— v 0y | Pres 2-1(3-26 | 7T gini2mf0)
” M, 47 fc? 8f

(6.4.7)

For a stationarily oscillating GCFR, the relationship between the (constant) total
fission power P, and the energy extraction parameter I’ is then given by:

p, < T MaC?l (6.4.8)
“ 4(k-1)(3-2k)
And the cycle-averaged extracted power is given by:
2
<P€XI>T = rmiaf[vw(o)]z 1 * is_ (K—1) (3_2,()
Mg mfc? (6.4.9)

= m,, [VW(O)]2

{(c? given by Eq. (6.2.12); the term containing x is small compaired to 1 for
"normal” values of P, ). From Egs. (6.3.13), (6.4.8) and (6.4.9) we can again
calculate the conversion efficiency for a stationarily oscillating GCFR, expressed
in FAM (v,) or TCM (v,(0)) quantities (perfect, non-dissociating gas; radiative
transport model according to Eq. (6.3.4b)):

2
A -1)(3-2x) [Zw_@]
m? c

n
(6.4.10)

2
1 Vo
— (k-1 -2 =
2(K ) (3 K)[C]

When we compare Egs. (6.4.10) and (6.3.19), we can conclude that, if the second
radiative heat transport model (Eq. (6.3.4b)) is assumed to apply, n has a
maximum for the value of k, for which, in absence of an energy extraction
meachanism, the rate of increase of the kinetic energy also has a maximum.

For both energy transport models (Egs. (6.3.4a) and (6.3.4b}) it is clear that

95



a practical conversion efficiency can only be attained for velocity amplitudes (TCM:
v,.[0); FAM: v,), which are higher than the velocity of sound c in the gas. However,
for those cases the validity of the analytical treatment presented here is
questionable.
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Chapter 7

TWO-COMPARTMENT GCFR MODEL

7.1 Introduction

In Chapter 5 we stated that a possible way of avoiding the problem of the very
high "basic pumping power" in an actively -magnetically- pumped GCFR, is using
autonomous fuel gas density oscillations, driven by nuclear fissions. If the kinetic
energy of the moving (ionized) fuel gas is to be directly extracted by magneto-
hydrodynamical (MHD) or inductive (MI} means, then these oscillations should be
increasing for the case that such an energy extraction mechanism is not present.
In this way active compression of the fuel gas into the core region is not necessary
anymore.

For the analysis of such a system, we developed a calculational model,
combining neutron kinetics and gas dynamics, the so-called combined "two-
compartment” GCFR model. In Section 7.2 we give a description of this
calculational model. Its various parts (neutron statics, neutron kinetics,
thermodynamics, heat transport, two-compartment gas dynamics) have already
been introduced in the previous chapters.

In Section 7.3 some results of calculations are presented for the case of a
constant, spatially flat neutron flux (i.e. neutron kinetics part "switched off"}. We
compare the numerical results obtained for this case with the results, obtained
from an analytical treatment of the problem, applying first order perturbation
theory, which was already presented in Section 6.3. it will be shown that, for
velocity amplitudes which are not too high, the analytical approach yields values
for the rate of increase of the cycle-averaged kinetic energy of the gas, which
approximate quite well the numerical results.

Some resuits obtained from calculations with the "full" combined "two-
compartment” GCFR model (neutron kinetics part "switched on" again) are
presented in Section 7.4. In all our numerical calculations, we assume absence of
an energy extraction mechanism, and therefore expect increasing density
oscillations.

However, in Section 7.5 we give a qualitative description of the influence
of the presence of a -direct- energy extraction mechanism on the behaviour of the
GCFR, based on analytical considerations presented in Section 6.4.

7.2 Model description

For the construction of the combined "two-compartment” GCFR model we assume
a symmetric, cylindrical GCFR (see Chapter 2, Figure 2.14, Case "I™), with a
cylindrical gas space {volume V,,) of length L, and radius R,,,. This gas space is
assumed to be filled with an amount of A, moles of UCF gas (see Section 4.1),
with total mass m,,, (= N, M, My, = 0.277 kg), which, however, is considered to
behave as a non-dissociating, perfect gas (dissociation function g(p,7) = 1; see
Section 4.2). An overview of the most important parameters of this GCFR is listed
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in Table 7.1

Table 7.1 General parameters of the "two-compartment" GCFR model.
Reactor geometry Symmetric (case "i"}
Gas space geometry Cylinder
Length of gas space (L) 100m
Radius of gas space (R} 1.0m
Gas space cross section (S,,.} 3.14 m?

Total gas space volume (V,,) 314 m
Core wall thickness (d, ...} 1.0m
Expander wall thickness (d,,, .., 1.0m s, = 0)
Reactor gas composition (molar) 20.5 % CF,

25.0 % UF,

54.5 % UF,
Enrichment 50 % 2**U
c,/cratio of the fuel gas () As specified
Total mass of the fuel gas at& = O and ng, = 1 125.1 kg
(Mot 0rit)
Heat transfer coefficient (C,,,) 4.90:10° W mole m*®K*
Axial photon diffusion heat transfer coefficient 8.35:- 10" wm™ K*
(C o, aniadd
Heat conductivity (4,,) 03wWm'K'

The gas space is assumed to be subdivided into a core part and an expander
part of equal, constant volume V,,,, = V. = V,/2 (FAM description of the fuel
gas distribution; see Sections 2.4 and 6.2). The momentary distribution of the fuel
gas over core and expander can be described in terms of the (FAM) density
distribution variable €, defined in Chapter 2 by Eq. (2.4.1), which for this case
(Ve = V..,) takes the form:

exp

g =2 looe g
m?ol

(7.2.1)
(-1 < &€ < 1; m,, = (time-dependent) mass of the fuel gas in the core part).

As indicated in Figure 7.1, the main components of the combined "two-
compartment” GCFR model are neutron kinetics and gas dynamics. The (two-
compartment} neutron (point-} kinetics model, which was introduced in
Section 3.2, renders the momentary total fission power £, (¢) and the distribution
of the total fission power over core (P, (1)) and expander (P, (1))

6
_9% _sv,c (7.2.2)
v, A(e) 5 !

ore

dPﬁss - p(e) _Beff P

fiss +
dat Alg)
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Figure 7.1  Structure of combined two-compartment GCFR mode! (corresponding
equations indicated between brackets).

dCi _ ViBey, ,
— = T P > - A.C =1,..., (7.2.3)
dt Qf Pllss T i I 6
Pooelt) = fole) Py (1) (7.2.4a)
Poolt) =[1 = £o(€)] Pyylt) (7.2.4b)

(see Section 3.2, Egs. (3.2.10), (3.2.11), {3.2.12a) and {3.2.12b)}. The delayed
neutron contribution (Eq. (7.2.3)) is assumed to be dependent on the cycle-
averaged total fission power <P, >, (oscillation period 7 = 1 /) only, as the
envisaged oscillation period (r = 0.02 s) is much shorter than the half life of the
shortest living delayed neutron precursor (7, = 0.23 s; see Appendix B,
Table B.4).

The neutron kinetics part is controlled by the reactor physical quantities p
(reactivity), A (neutron generation time}, f, {core power fraction) and B..; effective
delayed neutron fraction for delayed group /}. These quantities are dependent upon
the fuel gas distribution over core and expander, described by the variable €, and
also on the average (relative) density of the fuel gas (n,.,; relative to the critical
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average density), which is proportional to the total mass (m,,) of the fuel gas. For
the symmetric, cylindrical GCFR (Section 2.4, Figure 2.14, case "I"), an average
relative density n,,, = 1 corresponds to m,, = 125.1 kg (see Section 2.4,
Table 2.8). This dependence can be described by relatively simple functional
relations, obtained from a "multi-compartment” static GCFR neutronic model (see
Section 2.2, Egs. {2.2.31), {2.2.32) and (2.2.33), and Appendix A). The
coefficients of these functional relations were obtained from two-dimensional static
neutron diffusion calculations (see Section 2.4, Table 2.9). Assuming a symmetric,
cylindrical GCFR (case "1") and a "rectangular® density distribution (see
Section 2.4, Eqg. (2.4.2)), the following expressions were found for the reactor
physical quantities p, A and 75

0 = -1.0466:10"2n,c, +0.30551 - 0.29345 1y, - 5.063 - 10722

(7.2.5a)

A = 2.2733:1075n,,, + 6.0107-107* + 3.0004 - 103n,.," + 4.556- 10-*¢2
(7.2.5b)
7, = 0.5000 +0.459%¢ (7.2.5¢)

For the effective delayed neutron fraction, we used: B, = 0.00652 (see
Section 2.3).

For the gas dynamics part of the combined "two-compartment” GCFR model
(Figure 7.1) we utilized the two-compartment gas dynamics model (TCM), which
was introduced in Section 6.3. As is indicated in Figure 6.1, in this model the total
gas space is assumed to be divided into two parts with equal mass (instead of
equal volume, like in the FAM description; see Section 6.2), by a movable
imaginary wall with momentary position x,. Because we assume a non-
dissociating, perfect gas, Eqs. (6.3.2) and (6.3.3), which describe the rate of
change of the internal energy of the (TCM) compartments, can be written as:

NJ‘CV%—? = id% = P = Py + (-1 [Pl-»z * P; Sges %] (7.2.6)
(/ = 1denotes core;j = 2 denotes expander (TCM description); ¢, = specific heat
at constant volume of the fuel gas; 7, = temperature in compartment j; p; =
pressure in compartment j; P, = produced fission power in compartment j; P,,,;
heat transport from compartment j to the surrounding graphite wall (areas S, , and
S,..2» respectively); P,,, = heat transport from core to expander by photon
diffusion and conduction; see Figure 6.1).

The produced fission powers in core and expander in TCM description
(Figures 6.1 and 7.1: P, and P,, respectively) are related to the produced fission
powers in FAM description (Figure 7.1: P, and P,, respectively) by the
assumption that the ratio of the specific powers in core and expander is the same
in both descriptions:

p. - (1-€)
| =
(1-€)f, + (1+€)(1-1,)

P... (7.2.7a)

(1+€)

P, = P
T =elf, + (+e)(1-F) ™

(7.2.7b)

p
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In case of a constant, spatially flat neutron flux (for which £, = 0.5 {1 + ¢&);
Eq. (2.4.4)) we then obtain: P, = P, = 0.5 P,__.

As was stated in Section 4.3, the axial heat transport P,., from core to
expander (in TCM description; see Figure 6.1 and Figure 7.1) is assumed to be
determined by heat conduction and photon diffusion {(heat conductivity A,),
according to:

ZLSWS [Cmd,axia/ (T4 =Tp*) + A (T, - Tz)] (7.2.8)

gas

Py, =

(also see Eq.{4.3.14)). For our calculations we assumed Credaxio) =
8.35-10" W m™" K* (see Section 4.3) and 4,, = 0.3 Wm" K [Boe91b]. This heat
transport, however, is small compared to the transport to the graphite wall
surrounding the fuel gas. It was assumed to be zero in the analytical treatment,
presented in Section 6.3.

The heat transport from core and expander to the surrounding graphite wall

is assumed to be determined by photon diffusion, according to:

1
\/j [_Z’Ryns Sauf./] 7;4 (72,9)
P rad,j = Crad . N

j

(N; = No/2; also see Section 4.3, Eq. (4.3.11)). However, for demonstration
purposes, and to account for the effect of conduction and convection, we used a
ten times larger value for C,, than was given in Section 4.3, viz.
4.90-10° W mole m® K,

Under the assumption of absence of an energy extraction mechanism, the
equation of motion for the imaginary wall in the TCM description of the gas
dynamics (Section 6.2, Eq. {6.3.5})) becomes:

d?x
Mgy~ = (D1 = P2) S (7.2.10)
As mentioned in Section 6.3, the mass parameter a is chosen such that the natural
oscillation frequency in the TCM description is equal to the frequency in the FAM
description. It therefore has the value (2/m)? (see Section 6.3.1).
The relationship between the x, -variable in the TCM description and the &-
variable in the FAM description is given by:

g€ =-g 2w (7.2.11)
gas
{see Eq. (6.3.7)). As stated in Section 6.3.1, the parameter o is chosen such that,
for small amplitude, the momentary kinetic energy £,;,, of the gas has the same
value in the TCM and FAM descriptions. It therefore has the value (4V'2)/r.
In Table 7.2 the initial conditions for our combined "two-compartment"
GCFR model calculations are listed. These initial conditions are in agreement with
those, used in the analytical treatment (Eq. (6.3.6)).
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Table 7.2 Initial conditions and auxiliary parameters for combined ™"two-
compartment” GCFR calculations.

Total mass of the fuel gas (m,,,) As specified

Initial core gas temperature (7} 10,000 K

Initial expander gas temperature (T,) 10,000 K

Initial core gas pressure (p,) 11.89 bar

Initial expander gas pressure {p,} 11.89 bar

Initial "division wall" position (x,(0}) 0

Initial "division wall" velocity (v,{0)) As specified {> 0)
Initial total fission power {(P,,) 118.83 MW

7.3 Constant flat flux approximation

Using the values given in Table 7.1 for the reactor parameters and assuming a
constant, spatially flat neutron flux (i.e. constant Py, and P, = P,; neutron kinetics
part "switched off"), we calculated the behaviour of the system, starting from the
initial conditions (and parameters) listed in Table 7.2. The total fission power Py,
was given the value 118.83 MW, because this is approximately equal to the heat
transported to and through the surrounding wall, when the gas temperature is
10,000 K.

In Figure 7.2 an example is shown of the behaviour of several system
variables as a function of time (between 0.0 and 0.1 s). The oscillatory nature of
the behaviour is clearly demonstrated. At the given parameter values the oscillation
frequency is approximately 31 Hz. This is in agreement with the value found from
analytical considerations (see Section 6.2, Eq. {6.2.15)). The oscillation frequency
is not sensitively dependent upon the initial velocity, as long as this initial velocity
is less than the sound velacity {approximately 613 m/s for the case presented in
Figure 7.2; see Section 6.2, Eq. (6.2.12)).

Figure 7.3 demonstrates the influence of the c,/c, ratio « of the fuel gas on
the rate of change of the cycle-averaged kinetic energy <E£,,(t)>, (approximated
by the relative change in 1 second). For «-values higher than approximately 1.50,
<E,(t)>, decreases with time, which means that the density oscillations are
damped out. This is caused by the fact that, at high «, the variations of the
temperatures T, and T, are also high, which renders the net heat supply (fission
power minus heat leakage) to a compartment negative during compression. This
leads to a decrease in amplitude (see Section 6.3.2). For smaller « the variation in
T, (and T,) is smaller and is compensated by the variations in S,,,, (and S, ,) and
V, (and V,) and the net heat supply to the compartment during compression is
positive. For k > 1, <E,, > is constant as all the extra heat (loss) is taken up (or
supplied by) the gas due to its large heat capacity. Figure 7.3 also shows that, at
high {1000 m/s) velocity, increase of the amplitude, although smaller than for
lower velocities, still occurs, provided that « is in the correct range.

In the figure also the analytical results are shown, which were obtained from
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Figure 7.2 Constant, flat flux calculation results (z is a dimensionless vertical
scale variable).

first order perturbationcalculations (see Section 6.3.2, Eq. (6.3.19)}. The analytical
solution predicts that <£,,(t)>, decreases with time for k > 1.50 (exactly). For
the numerical calculations, the cycle-averaged kinetic energy already decreases for
k-values which are somewhat lower than 1.50. This is caused by the fact that, in
the numerical treatment, axial heat transport (P,.,,; Eq. (7.2.8)) has been taken into
account, which decreases the net heat supply to a compartment during
compression. This is not the case in the analytical treatment. The analytical
solution also predicts a maximum rate of increase of <E, (1)>, for x = V/(3/2)
= 1.22. Altogether, from Figure 7.3 it can be concluded that the numerical results
are approximated quite well by the results from first order perturbation theory,
especially for initial velocities which are not too high.

7.4 Combined model calculation results

Having the neutron kinetics part of the combined "two-compartment” GCFR model
"switched on™ again, we performed calculations for the case of a symmetric GCFR.
For this configuration the reactivity p and the neutron generation time A are even
functions of £ (Eqgs. (7.2.5a) and (7.2.5b)).

In Figure 7.4 an example is shown of the behaviour of several system
variables as a function of time (between 0.0 and 0.1 s), starting from the initial
conditions stated in Table 7.2. The total fuel mass m,, (and consequently the
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Figure 7.3 Influence of c,/c,-ratio x on the kinetic energy behaviour for constant,
fiat flux.

average relative fuel gas density n,,,) was chosen such that, for € = 0 (i.e.
spatially flat fuel gas density distribution), the reactivity p(0) has the value 2-10*.
Again the oscillatory behaviour of the variables is clearly demonstrated. The density
distribution variable € and the core fission power P, oscillate at approximately 31
Hz and have the same phase, because, for the case of the symmetric GCFR, the
neutron flux in the fuel gas is approximately spatially flat (see Section 2.4,
Figure 2.15). The reactivity p, which is an even function of &, oscillates at the
double frequency. The total fission power P, consists of a small oscillatory part
superimposed on a trend function part. The oscillatory part, which is determined
by the prompt neutrons (see Eqs. (7.2.2) and (7.2.3)), oscillates at the same
frequency as the reactivity (phase lag of 90°). Its local minima and maxima
correspond to the zero crossings of the reactivity. The trend function part is
decreasing, as the cycle-averaged reactivity is more negative than is required for
stationary operation [Akc58, Smig5h].

We also studied the influence of the initial velocity v, (0), and the reactivity
plO) at spatially flat (¢ = 0) fuel gas density distribution, on the behaviour of the
{cycle-averaged) kinetic energy of the fuel gas, for a ¢ /c\-ratio k = 1.25 (other
parameters and initial conditions as stated in Tables 7.1 and 7.2). Figure 7.5
presents the results of these calculations. In all cases shown the rate of change of
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Figure 7.4 Combined "two-compartment™ GCFR calculation results (symmetric
GCFR; z is a dimensionless vertical scale variable).

the (cycle-averaged) kinetic energy decreases with increasing v,,(0). For v,(0) =
1000 m/s (which is higher than the sound velocity in the gas, given by
Eq. (6.2.12)) the rate of change becomes rather small, but even in this case it
stays positive.

The flat fuel density distribution reactivity p(0) does not seem to have much
influence on the rate of change, except for the case of p(0) = 2-10°2. In this case
the reactor is initially prompt supercritical (because p(0) > B., = 0.00652) and
even prompt supercritical on average {(except for the case of v {0) = 1000 m/s)
and the total fission power P, increases rapidly, which also causes a rapid
increase of the (cycle-averaged) kinetic energy. This can also be expected from
analytical considerations (Egs. (6.3.17} and (6.3.18)). For v_(0) = 1000 m/s the
reactor is -on average- not prompt supercritical and the increase of the total fission
pawer and of the (cycle-averaged) kinetic energy takes place much more gradually.

For all cases shown {(except for the case of p(0) = 2:10°2) the rate of change
of the kinetic energy is somewhat smaller than for the reference case (constant,
spatially flat neutron flux and, consequently, constant total fission power), which
is also shown in the figure. This is caused by the fact that, in the combined model,
the variation of the core fission power fraction f, with € (Eq. (7.2.5c); FAM
description) is smaller than for the case of a constant, spatially flat flux
(Section 2.4, Eq. (2.4.4)). In the TCM description of the gas dynamics, this causes
the produced fission power in a compartment (Eqgs. (7.2.7a) and {7.2.7b)) during
compression to be smaller than in the case of a constant, spatially flat flux. This,
on its turn, decreases the net heat supply to a compartment during compression,
which again lowers the rate of increase of the cycle-averaged kinetic energy.
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Figure 7.5 Influence of initial reactivity and initial velocity on the kinetic energy
behaviour.

However, the behaviour with increasing initial velocity v, (0) is similar, and we
expect that this also will be the case for other values of « than 1.25.

For these cases (p(0) # 2-10°?) also the total fission power is limited, as, for
increasing amplitude of v,, and &, the cycle-averaged reactivity will become
negative (Eq. (7.2.5a)). If, however, p(0), and consequently m,,, is too high (e.g.
2:10?), then the increase of the amplitude of &, as € is limited between -1 and 1,
can not lower the reactivity below zero sufficiently and the reactor will be
supercritical on average.

A remark must be made about the neutron point kinetics model, applied in
the combined "two-compartment” GCFR model. In the neutron kinetics model,
which was introduced in Section 3.2, it is assumed that the total number of
neutrons in the system, required for a given total fission power, is independent of
the fuel density distribution (variable €). In Appendix D, however, it is shown that
this is not exactly the case {(see Egs. (D.6), (D.7) and (D.8]}}, not even for the
symmetric, cylindrical GCFR. The effect gives rise to an extra term in the equation
for the total fission power (compare Eqgs. (7.2.2) and (D.11)} and further
investigation of the influence of this term on the neutron kinetical behaviour of the
system is necessary. However, we expect that the influence of this extra term on
the {(cycle-averaged) total fission power will be small, so that the rate of increase
of the oscillations will only slightly be altered.
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7.5 Influence of energy extraction

Up tilt now we performed calculations for the case of absence of a -direct- energy
extraction mechanism, which show that, provided that x is in the correct range,
increasing (density, velocity, kinetic energy) oscillations occur {assumed: perfect,
non-dissociating gas). In Section 6.4 we presented an analytical treatment (first
order perturbation theory) of the effect of the presence of an energy extraction
mechanism, modeilled as a friction force proportional to the velocity (Eq. (6.3.5):
M-term; [ > 0). An expression for the conversion efficiency n was derived for the
case that the system is stationarily oscillating (Eq. (6.4.10); assumed: second
radiative transport model: Eq. (6.3.4b}; constant cycle-averaged fission power). In
this case, the relationship between the constant (cycle-averaged) total fission
power P, and the energy extraction parameter I" will be given by Eq. (6.4.8). The
cycle-averaged reactivity will be slightly negative, as was the case for the "solid
piston™ GCFR (see Chapter 5, Figure 5.5; also see [Akc58, Smi65]).

If the demanded extracted power P,,, is increased (i.e. ' increases:
Eq. (6.4.9)) we expect the following behaviour. An increase of I will cause a
decrease of the oscillation amplitude of the velocity v, (Eq. (6.4.7)) and,
consequently, of €. For the symmetrical GCFR, this will cause an increase of the
cycle-averaged reactivity (Eq. (7.2.5a)), which will cause the cycle-averaged total
fission power to increase (Eq. (7.2.2)). This will again cause an increase in the
oscillation amplitude until the cycle-averaged fission power is again in balance with
I (Eq. (6.4.8)) and the cycle-averaged reactivity has again returned to its old value
(i.e. the oscillation amplitude has returned to its old value). The latter is only
possible if m,, is not too high, because € can only attain values between -1 and 1.
If this condition is met, the (cycle-averaged) total fission power will follow the
demanded extracted power.

7.6 Conclusions

Numerical model studies have been performed for a symmetric, cylindrical GCFR,
using a "two-compartment” GCFR model, which combines neutron kinetics,
thermodynarics and (two-compartment) gas dynamics. For these calculations we
assumed absence of a -direct- energy extraction mechanism (such as MHD or Ml),
and we also assumed the fuel gas to behave as a non-dissociating, perfect gas.
The calculations show that increasing autonomous density oscillations of the fuel
gas are possible, provided that the c¢,/c,ratio « is in the correct range, viz.
1 <k < 1.5.

For velocities, which are not too high (less than the sound velocity ¢ in the
gas) it was found that rate of increase of the oscillations can be predicted quite
well by an analytical formula, which was derived in Chapter 6 by applying first
order perturbation theory to the two-compartment gas dynamics model.

On the basis of these analytical considerations it can be expected that, in
the case that a -direct- energy extraction mechanism is present, the (cycle-
averaged) total fission power wili follow the demanded extracted power, provided
that the total fuel mass m,, is not too high.

107



108



EPILOGUE

In the investigation of a futuristic, conceptual system, such as the GCFR described
in this thesis, usually a number of more or less questionable assumptions are made,
and the investigation of the validity of all of these assumptions is a necessary
condition for having even the slightest possibility of ever reaching the stage of a
practical realization of such a system. Furthermore, it is inevitable that there are
numerous questions and problems connected to the development of such a
system, which haven’t even been mentioned in the previous chapters. In this final
section we will comment on some of these assumptions, questions and problems.

One of the main assumptions is that of chemical and thermodynamical
equilibrium between the UCF fuel gas and the graphite container wall. However,
the existence of this equilibrium has only been investigated for the case of a
stationary (i.e. non-oscillating) GCFR and it is certainly not impossible on
beforehand that, in an oscillating GCFR, serious corrosion of the wall will occur.
This might not only be a problem for the GCFR with oscillating fuel gas, but also
for a stationary GCFR, in which spontaneous convection of the fuel gas occurs.

In our investigations, the UCF gas is assumed to be "fresh”, which means
that we assume the absence of fission products in the gas and that we also do not
take into account the effect of depletion of the fuel. However, except for the very
first moment of operation, fission products (such as xenon and samarium) will be
present in the gas, which necessitates the investigation of their influence on the
neutron physical, chemical and thermaodynamical behaviour of the GCFR.
Continuous "on-line" reprocessing will reduce the amount of fission products in the
fuel gas and will also supply the fresh fuel, necessary for operation.

In our numerical and analytical model calculations, it was assumed that the
GCFR was already "running”. However, a GCFR with oscillating fuel gas is not
"born™ that way, and it is important to investigate how a GCFR can be brought
safely from the cold, stationary state to the hot, oscillating state.

From calculations using the "solid piston” GCFR model, we found that a
conversion efficiency of only a few percent can be reached, if it is required that the
thermodynamic cycle is closed by itself. It is also interesting to investigate whether
a closed cycle with higher conversion efficiency is possible as well. This can
possibly be achieved by maximizing the fission energy production during the
compressed state, by careful selection of the volume sequence V,,(t), combined
with external reactivity control.

The gas dynamics model used in the combined "two-compartment” GCFR
model is a quite crude, one-dimensiconal, two-compartment model. For a more
detailed investigation of the GCFR gas dynamics it is necessary to use also a more
detailed gas dynamics model, which is capable of calculating in more detail the
space- and time-dependent distribution of the density {(and other thermodynamic
variables) in the fuel gas. This can aiso be connected to a more accurate neutron
statics/kinetics model than the model based on the single density distribution
variable €, which was used in our model calculations.

We did not investigate in detail the interaction between the moving -ionized-
fuel gas and the magnetic field generated by the coil system and it is not beyond
doubt that magneto-inductive energy extraction is possible. An alternative for the
magneto-inductive energy extraction scheme might be a system, which makes use
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of the mechanical forces exerted by the oscillating {(moving) gas on the graphite
container.

It is clear that, concerning this highly unconventional but nevertheless
promising nuclear reactor concept, still many problems remain unsolved and many
questions unanswered. They present, however, a challenge for continued
investigations.
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Appendix A

MULTI-COMPARTMENT NEUTRON TRANSPORT

In order to obtain a better understanding of the numerical -static- neutron transport
and neutron diffusion calculation results (see Chapter 2) and to derive (formal)
functional relationships between several reactor physical properties of a GCFR (e.g.
fit functions for the reactivity and the neutron generation time as function of the
fuel gas density), so-called "multi-compartment” neutron transport models were
developed and studied. Like in nodal methods (see e.g. Ronen [Ron86]), in these
models the reactor is considered to consist of M compartments (index m =
1,...,M), in each of which the volume-averaged neutron flux ¢, (G groups; index
g = 1,...G) is to be calculated. The (volume-averaged) neutron fluxes in all
compartments and all energy groups are represented by the so-called flux vector
@ with (M-G) elements:

{‘P}uo-um o = 9,9 (A.1)

(curly brackets "{...}" denote element of matrix or vector). The volumes V,, of the
M compartments are represented in the (diagonal) volume matrix V,, (double
underline "_" denotes matrix) with (M-G) x (M-G) elements:

(A.2)
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(d,, is the Kronecker delta). The neutron group velocities v'¥' are represented in the
(also diagonal) velocity matrix ¥'¥ with (M-G) x {M-G) elements:

{A.3)
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We now introduce the multi-compartment representation of the time-dependent
neutron transport equation:
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{exponent "-1" denotes inverse of the matrix; £ = fission matrix; £ = absorption-,
scatter- and transport matrix; S = external source density vector; assumed to be
zero further on).

The fission matrix £ is also a (M-G) x (M-G) matrix in which each element:

- ) 2] 9 A.5
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represents the contribution of the group g’ flux in compartment m’ to the rate of
increase of the the number of group g neutrons in compartment m by means of
fission: w,,.,? is the fraction of the fission neutrons, born in compartment m’,
which re-appear in group g in compartment m; 1,9’ is the number of fission
neutrons produced per absorbed group g’ neutron in compartment m’; n,, .. is the
-dimensionless- relative density in compartment m’; £,,""is the macroscopic
group g’ absorption cross section (at the reference density) in compartment m’.

The absorption-, scatter- and transport matrix £ is a (M-G) x (M-G) matrix
in which each element:
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represents the contribution of the group g’ flux in compartment m” to the rate of
change of the number of group g neutrons in compartment m by means of
absorption, scattering and transport: K, is the probability per unit path length
that a group g neutron leaves compartment m and enters compartment m’;
K., is the probability per unit path length that a group g neutron will leak out of
the system from compartment m; Z,,,%™ is the macroscopic scattering cross
section (at the reference density) in compartment m’ for scattering from group g’
to group g.

Under the assumption that the net transport of group g neutrons from
compartment m’ to compartment m is zero if the group g neutron fluxes have the
same value in both compartments, a reciprocity relation can be derived for the
compartment-to-compartment transport coefficients K. ¥ and K,__,.2, viz.:

m—m

V. K 9=V K., @ (A7)

om

The compartment-to-compartment transport coefficients K, ¢’ are assumed to be
independent of the relative densities 7,,,,,. Furthermore, K, is assumed to be
zero if compartment m’ is not adjacent to compartment m, and K, is assumed
to be zero if compartment m is not on the outer boundary of the system or if a
reflective boundary condition is to be imposed.

In the same way as in the "normal” neutron transport equation (see e.g.
[Dud76]), we can introduce the multiplication factor k., (or rather its inverse: A) to
obtain a (time-independent) eigenvalue equation (eigenvalue A, eigenvector g}, the
multi-compartment equivalent of the time-independent neutron transport equation:

g.QEA[::.:_\{M.Q+£.¥M.Q=Q (A.8)

In order for this equation to have a non-trivial solution (i.e. a non-zero eigenvector)
the determinant of the system matrix 4, defined in Eq. {A.8), must be zero. Solving
the equation:
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detH = 0 (A.9)

renders the eigenvalue(s) A and the corresponding eigenvector(s) @ in terms of all
the system parameters mentioned above (group cross sections, relative densities,
etc.). For simple models (e.g. one-group/one-compartment) a formal solution can
be obtained by a "hand calculation” (see e.g. Section 2.2.2), but for the problems
with more groups and/or more compartments we utilized the algebraic manipulation
code package REDUCE [Ray87]. However, the results obtained by the built-in
equation solver of REDUCE can be very complicated indeed and if M and/or G is/are
too high, no solution is found at all.

But, as we are only interested in the fundamental eigenvalue (and the
carresponding eigenvector), we can make use of the fact that det 4 is a polynomial
in A and approximate the true solution for the eigenvalue A {which does not differ
very much from unity for the -approximately- critical reactor) by:

(detH)
A= “-n
A
[ d(detH) (A.10)
dA A=1
which is a rational algebraic function of the relative densities n,,,, in the

compartments (m = 1,...,M). The approximated value of the reactivity can then

(see Eq. (2.2.5)) be written as:
(detH)
A=1)
d(det__/—!)
dA h=n

The corresponding approximation for the eigenvector @ can then be obtained by
substituting the approximated eigenvalue into Eq. {A.8), removing one equation
from the corresponding system of equations (retaining (M-G) - 1 independent
equations with (M-G) unknowns: g, "), and solving the remaining system.

The total fission power produced in the system can then be calculated:;

?

p=1-A4
{A.11)

/lss O Z E [’ V ”,e/mzam(‘”(ﬂ @ (A'12)

And the fraction of the total fission power produced in compartment m is given by:
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{Q,; = average thermal energy produced per fission event; v,“’ = average number
of neutrons released per fission event, caused by a group g neutron; we assume
the same Q; and v, in all compartments where fission occurs).

Another important reactor physical quantity, from the point of view of
neutron kinetics (see Chapter 3 and Appendix D) is the neutron generation time,
which can be defined as:

113



= total number of neutrons (A.14)
fission neutron production rate

(see e.g. [Dud76]). This quantity, too, can be calculated if the flux vector is
known.

However, the computer codes DAC-I [NEA72] and CITATION [NEA79]
calculate the neutron generation time A by also taking into account the neutron
importance (or adjoint function), which is the (fundamental} eigenfunction of the
(time-independent) adjoint neutron transport or adjoint neutron diffusion equation
(see e.g. [Lew65, Bel70]). To be more in line with this way of calcutation, we now
introduce the multi-compartment analogue of the time-independent adjoint
equation:

H -9 =0 (A.15)

(superscript "T" denotes transposed matrix or vector; g* = adjoint function (or
neutron importance) vector). As this equation has the same eigenvalue(s) as the
"forward” equation (Eq. (A.8)), we can approximate @* in the same way as @.
Taking the neutron importance into account, the neutron generation time A is then
given by:

Ry -
A (@) .(¥(G)) ‘Y e (A.16)
AT
(@) - £-¥, e

Furthermore, the reactivity can also be written as:

p = = (A.17)

(fundamental eigenvectors g and g*). This expression for the reactivity was used
in the derivation of the neutron point kinetics equations {see Chapter 3 and
Appendix D).

We now have obtained {approximated) expressions for A (and thus for k,,;
and p}, A and f,,,, which are rational algebraic functions of the relative densities
N, in the compartments. In Chapter 2 (Section 2.2.2) some examples are given
of multi-compartment neutron transport models.
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Appendix B

NEUTRON GROUP CONSTANTS

All of the static neutron transport and neutron diffusion calculations, presented in
Chapter 2, were performed by means of computer codes (viz. XSDRNPM [NEAS7),
ANISN [NEA86al, ANISN(E) [NEA79], CITATION [NEA89], DAC-1 [NEA72]}, which
follow a multi-group approach for taking into account the dependence of neutron
cross sections (and other quantities such as the fission spectrum and the neutron
velocity) on the neutron energy (see e.g. [Dud76]). So, group constants (viz.
neutron group cross sections, group fission spectrum, neutron group velocities) had
to be calculated, starting from basic data (neutron point cross sections, resonance
parameters), taken from the ENDF/B-IV [Gar75] (routes "A" and "C"; see
Section 2.1, Figure 2.1) and JEF-1 [NEA85] (route "B") data libraries.

In the following, we will first describe the generation of so-called fine group
constants (in fine group libraries), necessary for fine group (one-dimensional)
neutron transport calculations by XSDRN (route "A") and XSDRNPM (routes "B"
and "C"). Subsequently we will describe the generation of the so-called broad
group constants {in broad group libraries), necessary for subsequent broad group
neutron transport and neutron diffusion calculations. This generation was also
performed by the codes XSDRN {route "A") and XSDRNPM (routes "B" and "C"}
by a so-called group condensation calculation (from 123 to 4 in routes "A" and
"C"; 187 to 4 groups in route "B"). Finally, we will list some data on delayed
neutrons, which is necessary for the calculation of the effective delayed neutron
fractions B, by the codes DAC-l and CITATION (see Chapter 2).

Following route "B" from the JEF-1 data library onward, we used the code
system NSLINK [Lee91] to generate a fine group AMPX-Master library. The most
important part of the NSLINK system is the code NJOY [NEA86b], which contains
modules for data extraction (from ENDF/B and JEF data files), unresolved
resonance energy self-shielding [Wil66, Bel70, Mas76], Doppler broadening
[Bec62, Wil66, Bel70, Dud76, Mas76], group cross section generation, etc. Group
cross sections are cross sections, which are averaged over an energy interval (the
group), using the neutron flux as a weighting function [Dud76]. The resuiting
AMPX-Master library contains (micrascopic) neutron group cross sections for
selected nuclides at selected temperatures (see Table B.1) in the LANL 187 energy
group structure [NEA8Gb], together with resolved resonance parameters (to be
processed later by NITAWL}. This 187-group structure has the advantage over the
GAM-THERMOS 123-groupstructure [NEA78], usedinroutes "A" [Dam88, Dve88,
Kui88] and "C", that its neutron energy range is wider (1-10° eV to 20.0 MeV for
the LANL set; 5-10° eV to 14.9 MeV for the GAM-THERMOS set). Furthermore,
in the thermal energy range the LANL set has a finer energy group structure.

Subsequently, the code NITAWL [NEA87] was used for resolved resonance
energy self-shielding treatment and Doppler broadening (resonance nuclides -#°U
and 2°®U- only) according to the Nordheim [Nor62] method and the generation of
a 187-group AMPX-Working library, which contains (microscopic) neutron group
cross sections only (no resonance parameters anymore) for the nuclides, present
in the AMPX-Master library, at the same temperatures. This resonance treatment
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Table B.1

(routes "A" and "B").

Parameters for JEF-1 and ENDF/B-IV data extraction, fine group
neutron cross section generation and resolved resonance treatment

Calculational route "A" ("old") "B" ("new")
Basic data library ENDF/B-1V JEF-1
Energy group structure GAM-THERMOS LANL
# fine energy groups 123 187
Energy range (eV) 5:10° - 14.9-10° 110 - 20.0-10°
# thermal groups 30 52
Upper energy of first thermal group | 1.86 3.059
(eV)
Weighting function 1/E Fission spectrum-
1/E-
Maxwellian
Core gas composition {molar %) "old" "new”
30 % CF, 20.5 % CF,
70 % UF, 25.0 % UF,
54.5 % UF,
Enrichment 50 % **U 50 % U
Core gas nuclide densities 2c 6.64 2c 4.1977
{108 cm™) 9F 88.5 °F 93.281
sy 7.74 =5y 8.1621
238 7.74 238 8.1621
Core gas temperature(s} (K) 10,000 2000, 5000,
10,000, 20,000
Reflector material graphite graphite
Reflector bulk temperature(s} (K) 1000 1000, 2000
Resolved resonance treatment Nordheim Nordheim
method
Resonance nuclides 28y, =8y i VA V]
"Absorber lump" geometry sphere sphere
"Absorber lump” radius (cm) 100.0 100.0
Dancoff factor C {0.0 = single fuel | 0.0 0.0
lump surrounded by infinite
moderator)

is necessary, as the succeeding multigroup neutron transport code XSDRNPM can
only use group cross sections as data and no parameters, describing the (resolved)
resonance cross sections. NITAWL updates the group cross sections in the
resolved resonance energy range so that the effect of these -sharply peaked- cross
section resonances is taken into account in the succeeding neutron transport
calculation by XSDRNPM. NITAWL only needs to process the resolved resonances,
as the NSLINK system has already taken care of the unresolved ones. For the
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resolved resonance treatment, the GCFR was considered as a single, spherical fuel
(absorber)} lump, surrounded by an infinite moderator {Dancoff factor in NITAWL
= 0.0 [Nor62, Dud76, Mas76]), which is a close approximation for a sperical
GCFR. In Table B.1 the most important parameters for these calculations are listed.
Note that we used nuclide densities, based on the composition of UCF gas in
chemical and thermodynamical equilibrium with a graphite wall at 2000 K,
according to Klein {1987): 20.5 % CF,, 25.0 % UF, and 54.5 % UF; (50 %
enriched in 2*°U; RSG "new" gas composition: see Sections 2.3 and 4.1).

In route "A", the code XLACS [NEA73a] was used to create an ("old"
format} AMPX-Master library, containing GAM-THERMOS 123 energy group
neutron cross sections and resolved resonance parameters. The subsequent
resolved resonance processing according to the Nordheim method was performed
by a part of the XSDRN code [NEA73b], which also performs the fine group
neutron transport calculation [Dve88, Kui88]. Consequently, no AMPX-Working
library was generated. The important parameters for these calculations are listed
in Table B.1 as well. Note that nuclide densities were used, based on a UCF gas
composition of 70 % UF, (50 % enriched) and 30 % CF, ("old" gas composition)
[Dam83, Dve88, Kui88].

In route "C" first the "old" format AMPX-Master library {route "A") was
converted by the COMET code [NEA78], resulting in a ("new" format) AMPX-
Master library, still containing GAM-THERMOS 123 energy group neutron cross
sections and resolved resonance parameters. Subsequently an AMPX-Working
fibrary was produced by NITAWL, using the "new" gas composition. The remaining
parameters were chosen as in route "A" (see Table B.1).

The fine group AMPX-Master and AMPX-Working libraries contain so-called
microscopic cross section data (dimension [m?]). However, in the computer codes
applied for the neutron transport and neutron diffusion calculations, so-called
macroscopic cross sections (dimension [m™']} are used. In general, a macroscopic
(group) cross section Z; (reaction type j: t = total, @ = absorption, s = scattering,
etc) for a mixture of nuclides is defined in terms of the microscopic {(group) cross
sections 0;, and the densities n; of the nuclides (index 7} in the mixture by:

3 = E n;o;; (B.1)

In Figure B.1 the macroscopic total (£,) and absorption (Z,) neutron group cross
sections of the fuel gas (Table B.1, route "B") are shown as function of the
neutron energy, for a gas temperature of 10,000 K, the gas temperature at which
most of our static neutronic calculations were performed. As expected [Dud76] for
low energies both cross sections display a £'2-behaviour. For these low
energies (below approximately 0.1 eV}, absorptionis the largest contribution to the
total cross section. For high energies (above approximately 1.0 keV) scattering is
the main contribution (note the '9F scattering resonances between 2-10* and
1-10% eV). In the intermediate energy range (approximately 1.0 - 1-10% eV) the
resonances of 2*°U and 2°®U (e.g. the 6.7 eV resonance of 2%%U) are clearly present.

In general, the mean free path 4, for a certain nuclear reaction j (scattering,
absorption, total, etc.) is given by:

A = (%) (B.2)

From Figure B.1 it can be concluded that, for neutron energies above approximately
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Figure B.1  Macroscopic total and absorption fine group cross sections for UCF
gas ("new" gas composition; RSG gas density).

1 eV, both the total and the absorption mean free path are of the order of 10
(total} or 100 (absorption) metres, strongly dependent upon the neutron energy.
This is -much- larger than the -assumed- dimensions of the gas space of our GCFR
(see Chapter 2), which implies that criticality is based on multiple "reflections™ of
neutrons by the graphite wall, requiring a high reflection coefficient of that wall.

As mentioned above, XSDRNPM (routes "B" and "C"; main calculational
parameters are listed in Chapter 2, Table 2.1) was also used to generate the broad
group cross section libraries, necessary for subsequent neutron transport and
neutron diffusion calculations by ANISN/DAC-1 [NEA86a, NEA72] and CITATION
[NEAB89], respectively. The broad group neutron cross sections are calculated (by
XSDRN and XSDRNPM) by averaging the flux-weighted fine group cross sections
over the broad group energy range and over the spatial zone to which the resuiting
broad group cross sections are to apply. In this way also spatial shielding is taken
into account in the broad group cross sections, as these cross sections will depend
on the spatial zone ("core" or "reflector” in the -spherical- GCFR; see Figure 2.2)
for which they are calculated.

For the subsequent broad group calculations it is also necessary to know the
broad group fission spectrum x* and the broad group neutron velocities v (broad
group index g}. The latter are calculated by XSDRNPM by averaging the flux-
weighted inverse of the neutron velocity v(£) over the energy range of the broad
group concerned, and by subsequently calculating the inverse of this average
[Bei70]. In Table B.2 the results of these broad group averaging caiculations
(routes "B" and "C") are listed. We also show the results of Dveer [Dve88], who
used XSDRN (route "A").

Note that there exists a discrepancy between the {group 3 and 4) velocities
calculated by XSDRN (route "A") on one hand and those calculated by XSDRNPM
(routes "B" and "C") on the other. We suspect that XSDRN does not calculate the
broad group velocities in the correct way, like XSDRNPM, but unfortunately we
used these velocities in our first ANISN(E}/DAC-1 calculations {Kui88), rendering
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Table B.2 Results of XSDRNPM (and XSDRN) cross section condensation

calculations.
Calculational route Broad group Broad group Broad group
index fission spectrum velocity
g X(a) V(m (IT\S")
A" 1 0.98286 1.054-107
ENDF/B-IV -2 6
GAM-THERMOS 123 2 1.7003-10 2.156-10
fine groups 3 1.37-10% 1.304-10°
XSDRN
4 0.0 7.009-10°
"B" 1 0.984403 1.085-107
JEF-1 164733107 °
LANL 187 fine groups 2 ' 1916110
NITAWL 3 1.23994:10* 9.000-10*
XSDRNPM
4 1.59074-10° 4.761-10°
"c" 1 0.982859 1.078:-107
ENDF/B-IV > .
GAM-THERMOS 123 2 1.7003-10 1.916-10
fine groups 3 9.102:10% 9.102-10*
NITAWL
XSDRNPM 4 1.102:10° 4.837-10°

values of the neutron generation time A which are too low by a factor of
approximately 1.5 (see Section 2.3). The values for v\, calculated by XSDRNPM
from LANL 187-group data ("B") and GAM-THERMOS 123-group data ("C") agree
very well. The differences are less than 2 %. The wider energy range of the LANL
187 group set can be noticed in the v being slightly higher and the v'* being
slightly lower than the corresponding values found with the GAM-THERMOS 123
group set. In all three cases presented, most of the fission neutrons (more than
98 %) appear in group 1.

Table B.3  Broad group (route "B") mean free paths and diffusion lengths in the
RSG core fuel gas.

Broad group index A, (m) A, (m} L (m)
1 18.6 696 78.8
2 12.5 330 40.9
3 8.62 1.7 6.24
4 3.72 4.88 2.43

In Table B.3 the broad group values of the (total and absorption) mean free
path and the diffusion length (route "B") in the fuel gas (nuclide densities as listed
in Table B.1) are listed. Note that for the higher energy groups (1 - 3) these values
are again -much- larger than the -assumed- dimensions of the gas space of our
GCFR (see Chapter 2).
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Table B.4 Delayed neutron parameters for 2%y,

Delayed group | Yield g A Tz Broad group X2

index / (%) (s™) s) index g {-)
1 0.021 0.0126 55 1 0.93
2 0.142 0.030 23 2 0.07
3 0.128 0.112 6.2 3 0.00
4 0.257 0.301 23 4 0.00
5 0.075 114 | 0.61
6 0.027 3.01 0.23

B = 0.650 %

For the calculation of the effective delayed neutron fractions B,,, (delayed
neutron precursor time group /; i = 1,...6; sum B, the total effective delayed
neutron fraction), it is necessary to supply the spectrum x,® of the delayed
neutrons, the delayed neutron fractions g; (sum: £,,) and the delayed neutron
precursordecay constants A, [Bel70, Mas76]. These quantities were taken from the
JEF-1 library (delayed fractions §; and decay constants A; for 23°U) and Stephenson
[Step86] (delayed neutron spectrum x,'). The spectrum of delayed group 2 was
assumed for all delayed groups, as is often done [Mas76]. In Table B.4 the
necessary information on delayed neutrons is listed.
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Appendix C

TEMPERATURE INFLUENCE

The neutron transport and neutron diffusion calculations, by the codes XSDRN
[NEA73b]l, XSDRNPM [NEA87], ANISN(E} [NEA79], ANISN [NEA86Ga], DAC-I
[NEA72] and CITATION [NEA89], on spherical and cylindrical GCFRs (reported in
Chapter 2) were all performed using group cross sections for a fuel gas
temperature of 10,000 K and a reflector temperature of 1000 K. However, as
indicated in Appendix B (Table B.1}), in the 187-group AMPW-Working library (route
"B"; see Chapter 2, Figure 2.1) microscopic neutron group cross sections are
available for fuel gas temperatures of 2000, 5000, 10,000 and 20,000 K, and for
reflector (bulk) temperatures of 1000 and 2000 K. This gives the opportunity to
show the effect of a temperature change on these group cross sections.

AR M et i mRER e aaA At Bt Bt B st MR SR B
187 enecgy groups

reg 4.1977-1018 cm-3
e 19¢ 9.3281-10'° ¢cm~3 |
2%y 8.1621:1018 cm-3
238y 8,1621-10!% cm™3

z7.20‘000 K /Zf.ZOOO K

SN At e R e B B R B AL R IR e L
-5 Sh -3 2 - 4 1 2 3 4 S 6 7 8
10 10 10 10 10 10 10 10 10 10 10 10 10 10

Crnergy [eV]

Figure C.1 Influence of a temperature increase of the core fuel gas from 2000 to
20,000 K on the macroscopic total group cross sections.

Figure C.1 demonstrates the influence of the core gas temperature on the
macroscopic total group cross section Z, (see Appendix B, Eq. (B.1) for the
definition) of the fuel gas mixture {("new" composition: see Appendix B, Table B.1),
when its temperature in increased from 2000 to 20,000 K. Clearly, at high neutron
energies (far above the resolved resonance energy and thus much higher than &T;
T = temperature, k = Boltzmann’s constant = 0.861735:10%eV K") the
temperature change from 2000 to 20,000 K has no influence on the total cross
section, as the neutrons have a much higher velocity than the core gas nuclei. At
low neutron energies (below approximately 0.1 eV) the cross section increases
with temperature. In the resonance region of 2*°U and *®U (approximately between
1.0 and 10* eV) the ratio of the total group cross sections varies around 1.0. This
is due to Doppler broadening [Bec64, Wil66, Bel70] of the resonances, which
causes some group cross sections to be decreased and other -neighbouring- group
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cross sections to be increased by the NITAWL [NEA87] resonance treatment (see
Appendix B).

The influence of a (bulk) temperature increase of the graphite refiector on its
macroscopic total group cross sections is demonstrated in Figure C.2 (nuclide
density 8.55-10%2 ecm™). Again for high neutron energies no changes can be seen,
but for low energies (below approximately 1 eV) the macroscopic total group cross
section increases with temperature.
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Figure C.2 Influence of a temperature increase of the reflector from 1000 to
2000 K on the macroscopic total group cross sections.

As the temperatures of the core fuel gas (7, .} and reflector (7,,,) influence
the group cross sections, it can be expected that they also influence the neutron
spectrum and the multiplication factor. The influence of core and reflector
temperature on the neutron spectrum in the GCFR core (RSG geometry; 187-group
XSDRNPM calculation, route "B"; see Chapter 2) is demonstrated in Figure C.3. At
high energies, no change of the spectrum with 7, or T, can be detected, which
is expected as the neutron energies are much larger than k7. Also at low (thermal)
energies the influence of T, on the spectrum is very small: in Figure C.3 the
influence of a change from 10,000 K (RSG) to 20,000 K can only be noticed as
slightly thicker graph lines in the low energy region. The influence of the reflector
(bulk) temperature T,, on the neutron spectrum (in the core) is much greater. An
increase of from 1000 K (RSG) to 2000 K causes an easily detectable shift of the
local maximum in the thermal region from approximately 0.20 eV to 0.40 eV. So
the thermal part of neutron spectrum in the core is mainly determined by the
reflector temperature.

The influence of the core and reflector temperature on the effective
multiplication factor k., (of the RSG) is demonstrated in Figure C.4 (187-group
XSDRNPM calculation, route "B"). As expected [Dam83], an increase of the
reflector (bulk) temperature causes a decrease in k.., which can be explained by
the fact that an increase of the reflector temperature causes a hardening of the
thermal part of the spectrum (see above), which on its turn lowers the effective
absorption cross section of the fuel gas (see Appendix B, Figure B.1). An increase
of the core temperature causes a decrease in k_, as well, but the influence of the
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core temperature is much smaller than that of the reflector temperature, because
the (thermal part of the) neutron spectrum is hardly influenced by a change of 7,
(see above). Following van Dam and Hoogenboom [Dam83] we used a fit function
to describe this temperature influence, but we also included the influence of the
core temperature:

keff.RSG Tcare,RSG T,

refl, ASG
We found: a;, = -7.06-10° and a;, = -7.48-10°% Clearly, Eq. (C.1) gives a good
description of the influence of 7, and T, on the multiplication factor, which is

Kot _ { Teore ]%x[ Tren ]a" (C.1)
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also demonstrated quantitatively by the low value of A {defined in Chapter 2 by
Eq. (2.3.1)): A = 0.08. This indicates a good fit. Van Dam and Hoogenboom
[Dam83] found a somewhat different value for a,; viz. -9.0-102, but their
calculations were performed for a core radius of R_,,, = 2 m and a lower density
of the fuel gas. However, the variations of k,,, due to variations of the core gas
temperature, are small compared to variations of k., caused by the expected
variations of fuel gas density and density distribution in the "solid piston"
(Chapter 5) and "two-compartment” (Chapter 7) model caiculations. Furthermore,
in those calculations the reflector temperature is assumed to be kept constant at
1000 K. Therefore, temperature feedback is not taken into account in the
neutronics parts of those models.
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Appendix D

TWO-COMPARTMENT NEUTRON KINETICS

In Chapter 3, two neutron kinetics models were derived to be used in the "solid
piston" (Chapter 5) and the "two-compartment" (Chapter 7) combined GCFR
model, respectively. It is also possible to derive both models from a more general
description of two-compartment neutron kinetics. Starting from the multi-
compartment time-dependent neutron transport equation {Appendix A, Eq. (A.4)),
we can derive a one-group/two-compartment (G = 1, M = 2; group index g
omitted further on) neutron transport equation, including delayed neutrons:
1de
=M'7W_EF'L/M.QJ(E"——/M'QJ'!M'QS" {D.1)
(v = neutron velocity; £, = (1 - B,,) £ = prompt fission matrix; 8,, = effective
delayed neutron fraction; @ = (g,,9,)" = time-dependent neutron flux vector; S, =
average delayed neutron precursor density; f, = distribution of delayed neutron
precursors over the two compartments; all matrices are 2 x 2; see Appendix A).
The average delayed neutron precursor density is given by:
6
S, = ] T AC {D.2)
Vier 133
(Vir = Vi + V,; = total volume; C; = number of delayed neutron precursors of
delayed time group /; A; = decay constant of delayed neutron precursors of delayed
time group /; 6 delayed neutron precursor time groups; see Appendix B, Table B.4).
The balance equation for the delayed neutron precursors of delayed group / reads:

dac; 2
— = Bel/[n Za E nre/,m Vm wm - A,-C; (D'3)
dt ’ m=1
(B.1; = effective delayed neutron fraction for delayed time group /7 = 1,...,6;n =
number of fission neutrons per absorbed neutron; 3, = macroscopic absorption
cross section at the reference density; n and £, are assumed to have the same
value for both compartments; n,,, = relative density in compartment m
(dimensionless); see Appendix A).
The corresponding time-independent one-group/two-compartment neutron
transport equation reads:
Ag-:\{M-g +EV w0 =0 (D.4)

0 =py -~

(see Appendix A, Eq. {A.8)). SolvingEq. (D.4) renders the -fundamental- eigenvalue
A and corresponding eigenvector @, = (i, ,,9,,)" (static neutron flux vector). From
this equation the time-independent two-compartment adjoint equation can be
derived (see Appendix A, Eq. (A.15)), with -the same- eigenvalue A and eigenvector
@* = (o170, (adjoint function vector).

We now assume that, at any moment, the higher order mode components
of the neutron flux are negligible to the fundamental mode (see Section 3.3), so
that the time-dependent neutron flux vector can be written as:
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@ = g Q1) (D.5)

(Q = dimensionless function of time). The relative densities (n,,,,; m = 1 or 2) in
the compartments are assumed to be functions of the density distribution variable
€ (e.g. see Section 2.2.2), which is time-dependent in our combined GCFR models
{Chapters 5 and 7). Because the relative densities are functions of €, also the static
flux vector g, and the adjoint function vector @,* are functions of €. We can also
write:

d
ge _ , dalt) | g4 2% de (D.6)
at dt de dt
By multiplying both sides of Eq. (D.1) by {©,*)7, substituting the expressions for
the reactivity p and the neutron generation time A from Appendix A (Egs. (A.16)
and (A.17); fundamental eigenvectors @, and w,*) and applying Eq. (D.6) we
obtain:

S, (D.7)

with:

T on
o) -2, 32 (D.8)
Zlg) = - —————— :
() ¥, 2,
The Z-function takes into account the fact that, for a given fission neutron
production rate (or total fission power) in the system, the total number of neutrons
in the system to obtain this production rate is dependent upon the density
distribution (g).

According to Eq. (A.12) the total fission power produced in the system is
given by:

amni,
Vs

Pyes = [num(S) Vigoqle) + n,,le)V, ‘Po.z(e)]n(t) (D.9)

The normalization of the static flux vector is assumed to be chosen in such a way
that the term between square brackets ("[...]"} is independent of the density
distribution variable ¢, and -therefore- independent of time. This means that, in the
static calculation, the total fission neutron production rate in the system is
assumed to be constant. This is e.g. the case in the numerical static neutronic
calculations by XSDRN, ANISN(E), ANISN and CITATION, presented in Chapter 2.
We now assume that, at any moment, the relative source strength
distributions of prompt and delayed neutrons are equal, so that:
FeV -
1y g, = =t % (.10)
Viee ™ ng, [”:;/.1 Vi + Ny V, U’o,z]
For a spatially flat flux (i.e. @y, = @, ) this is equivalent to the assumption of
homogeneously mixed delayed neutron precursors.
Combining Egs. (D.3), (D.7), (D.9) and (D.10), we can now derive:
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ap, P~ By de Q, ¢ '
iss  _ e. Z P, C. (D.11)
dt T I V;'Aiz=1: A Ci
And:
dC; _ Vv, B.y; .
= ip  _AC =1,..., D.12
"‘—dt O/ fiss ICI / 6 ( )

From this general description of one-group/two-compartment neutron kinetics it is
possible to derive the neutron kinetics models, presented in Chapter 3, by applying
certain approximations.

For the case of the "solid piston" model! (see Section 3.1) we assume that
the GCFR is asymmetric and that all the fission power P, is produced in the core
{(m = 1; see Sections 2.4 and 3.1). So the core fission power fraction f, = 1 (see
Appendix A, Eq. (A.13)). The relative density {n,) in the core is given by:

n/el = nreI,O (1 * 8) (D'13)
(also see Section 3.1, Eq. (3.1.4)). Consequently, the flux in the expander (m = 2)
is given by ¢, = 0 and the static flux in the core is given by:

0oy = X1+s (D.14)

(normalization constant X). in the same way the adjoint function can be calculated
and, applying Eq. (D.8), we find:

Ze) = (D.15)
1+¢
Substitution into Eq. (D.11) and applying Eq. {(D.13) renders:
[
dP, _ P - By . Ldﬂ,e/ P, + Q, Z/‘icf (D.16)
dat N n.. dt vi\ {5

This is the same expression as was found in Section 3.1 for use in the "solid
piston” GCFR model (Eq. (3.1.10}), except for the delayed neutron term on the
right hand side. The difference can be explained by the fact that in the derivation
presented here, all delayed neutron precursors are assumed to be in the core,
because the relative source strength distributions of prompt and delayed neutrons
are assumed to be the same (see Eqg. (D.10)). On the other hand, in Section 3.1 it
was assumed that the delayed neutron precursors are distributed homogeneously
over the entire (time-dependent) fuel gas volume, so that a factor (V,,, / V,.)
appears in the delayed neutron term of Eq. (3.1.10).

For the case of the "two-compartment™ model (see Section 3.2), we assume
that the static flux vector g, (and also the adjoint function vector g,*) is strictly
time-independent, so that Eq. (D.6) reduces to:

de _ , dQ (D.17)
dt dt
In this case it can be derived that Z(e) = 0O, which is equivalent to the assumption
that the total number of neutrons in the system, required for a given total fission
neutron production rate, is independent of £. Under this assumption Eq. (D.11)
reducesto Eq. (3.2.10) (Section 3.2). However, even for the symmetric, cylindrical
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GCFR (see Section 2.4, case "I", and Chapter 7) this is not exactly the case. This
is demonstrated in Figure D.1, in which a comparison is made, for the symmetric,
cylindrical GCFR (Section 2.4, case “I", and Chapter 7; "rectangular” axial density
distribution), between the (p - 8,,)/A-term and the Z(e)-de/dt-term of Eq. (D.11).
In the figure also the Z(g)-function for this case is shown. For low frequencies (e.g.
f = 2 Hz) the (p - B.,)/\-term is dominant: the sum of both terms (indicated by
"Sum") is largely determined by the {(p - 8.,)/A-term. This means that at low
frequencies the assumption stated above is valid. However, at higher frequencies
(e.g. f = 30 Hz) the Z(¢)-de/dt-term becomes more important. This means that the
oscillating component of the total fission power P, {see Section 7.4, Figure 7.4)
will become more and more determined by the Z(€)-de/dt-term, which was also the
case for the "solid piston” GCFR model (see Section 5.3; f = 30 - 50 Hz). For a
frequency of 30 Hz the amplitude of the variation of both terms is of the same
order of magnitude and therefore we expect that the amplitude of the oscillating
component of the total fission power will not be very much different from the
amplitude for the case that Z(¢) = O (see Section 7.4). Furthermore, we expect
that the cycle-averaged total fission power will still be determined by the
{p - B.,)/N\-term, because for the symmetric, cylindrical GCFR the cycle-averaged
value of the Z(€) de/dt-term will always be zero. Altogether we therefore expect
that the influence of the Z(g)-de/dt-term on the gas dynamics, and especially on the
rate of increase of the density oscillations, will be small. Further investigations,
however, remain desirable.
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Figure D.1 Comparison between the (o - 8,,)/A-term and the Z(€)-de/dt-term of
Eg. (D.11) for the symmetric, cylindrical GCFR (case "I").
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SUMMARY

In this thesis we present a -numerical and analytical- investigation of the static and
dynamic properties of a -conceptual- gaseous core fission reactor (GCFR) with
oscillating (moving) fuel gas. In Chapter 1 we give a description of such a GCFR
concept. It consists of a graphite cylinder of, say, 2 m diameter and 10 m length,
filled with a mixture of uranium- and carbon fluorides (UCF) at high temperature
(several thousands of K) in ionized state, in chemical and thermodynamical
equilibrium with the graphite cylinder wall. The cylindrical gas space is divided into
an active "core" region, surrounded by an effective (thick) neutron reflector, and
a so-called "expander" region, surrounded by a much less effective neutron
reflector. In operation, part of the fuel gas oscillates back and forth between core
and expander region. With homogeneously distributed fuel over core and expander,
the reactor is approximately critical. As the fuel gas is ionized, and therefore
electrically conductive, it can interact with the magnetic field, generated by a
current in the coil surrounding the expander. In this way plasma dynamic
compression of the fuel gas from the expander into the core (rendering the reactor
supercriticall and magneto-inductive energy extraction are possible. The
investigation of such a system requires the study of neutron statics, neutron
kinetics, reactor gas thermodynamics and gas dynamics. We develop two
calculational models combining {some of) these aspects: (I} the “solid piston”
model presented in Chapter 5 (combining neutron statics/kinetics and
thermodynamics; no gas dynamics) and (ll) the "two-compartment" model
presented in Chapter 7 {combining neutron statics/kinetics, thermodynamics and
gas dynamics). In the development of these models we follow a step-by-step
approach.

A study of the static neutronic properties of spherical and cylindrical GCFRs
is presented in Chapter 2. We investigate the influence of the fuel gas average
density and the fuel gas density distribution on the reactivity, the neutron
generation time and the core fission power fraction {cylindrical GCFR) by means of
one- and two-dimensional static neutron transport and neutron diffusion
calculations. The dependence of these quantities on the fuel density (and the
density distribution) is used in the description of the neutron kinetics of the GCFR
{Chapter 3). It is shown that this dependence can be adequately described by
relatively simple functions of the (average) fuel gas density and/or a single variable
€, describing the distribution of the fuel gas over the gas space. The forms of these
functions are obtained from "chord" and "multi-compartment" GCFR models, also
presented in Chapter 2 (and Appendix A). We also investigate the influence of the
temperatures of the fuel gas and the reflector on the reactivity of the GCFR and it
is shown that an increase of either one of these temperatures causes a decrease
of the reactivity (Appendix C). This is favourable from the safety point of view. The
influence of the reflector temperature is much larger than that of the gas
temperature.

The neutron kinetics parts of the combined GCFR models are introduced in
Chapter 3. We assume the applicability of point kinetics (fundamental neutronic
mode) and we use the expressions for reactivity, neutron generation time and core
fission power fraction obtained from the static neutronic calculations, presented
in Chapter 2. In order to check the applicability of point kinetics we also estimate
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the difference in rate constant between the fundamental and the first higher order
neutronic mode (for the case of a critical, symmetric cylindrical GCFR). The value
we find for this difference is an order of magnitude larger than the characteristic
density oscillation frequency in our GCFR (about 30 Hz), which is an indication that
we may indeed neglect the higher order neutronic modes.

The thermodynamic properties of the GCFR, and of the fuel gas in particular,
are treated in Chapter 4. One of the main characteristics of "our" GCFR concept
is that the graphite refiector wall is part of the chemical system. This means that
this wall, in order to stay intact (at least on average), must be in chemical and
thermodynamical equilibrium with the reactor gas mixture (uranium, carbon,
fluorine: UCF). At 2000 K and 25 bar the wall will be in equilibrium with a UCF gas
mixture, consisting of 20.5 % CF,, 54.5 % UF; and 25.0 % UF, (molar) (i.e.
[ULI:[C):IF] = 0.70 : 0.18 : 4.00). This equilibrium composition is (at a temperature
of approximately 2000 K) not sensitively dependent upon the pressure. In all our
investigations we assume that the temperature at the gas-wall interface is 2000 K.
However, the temperature in the centre of the gas will be much higher (say
10,000 K) and at this temperature the "original" CF,, UF; and UF, will have
dissociated into lower valent uranium- and carbon fluorides (and even single atoms,
jons and electrons). This behaviour is also reflected in the dependence of the
specific heat of the UCF gas (at constant pressure or constant volume) on the
temperature and the pressure.

Because of this complexity we introduce a model gas "Modelium™ with an
artificial, analytical equation of state (EOS), as an approximation for the "real” EOS
of the UCF gas, which is only available in tabular form. From the postulated EOS
of Modelium we derive expressions for other thermodynamic quantities (such as
the enthalpy H), using general thermodynamic relationships. It is shown that these
quantities for Modelium and UCF gas show a similar behaviour with temperature
and pressure.

In Chapter 4 we also introduce the concepts of the "infinitesimal Otto cycle”
and the so-called "infinitesimal efficiency factor” {. This quantity can be directly
calculated from the thermodynamical properties of the gas (for Modelium it is
possible to derive a -quite complicated- analytical expression for {) and it can be
used to estimate, with reasonable accuracy, the efficiency n of a finite
thermodynamic cycle. We demonstrate this in Chapter 5.

In Chapter 5 we present the combined model of a so-called "solid piston™
GCFR. In this model the interaction of the ionized fuel gas with the magnetic field
generated by the coil is represented by a solid piston, which controls the total
volume occupied by the fuel gas. The extracted energy is then modelled as the
mechanical work performed by the gas on the piston. The model combines neutron
kinetics and thermodynamics. However, no gas dynamics is taken into account, as
the fuel gas, occupying the space controlled by the piston, is assumed to be
massless and homogeneous.

Using this model, we investigate the influence of several parameters, such
as volume sequence type (harmonic or Otto cycle), compression ratio K, pumping
frequency £, gas type (non-dissociating, perfect gas; Modelium; UCF), ¢,/c  ratio
k (in the case of a perfect gas), cycle-averaged fission power <P, >, heat
leakage (on/off), on the thermodynamic cycle behaviour of the GCFR and on the
attainable efficiency in particular. In general, a harmonic cycle is less efficient than
an Otto cycle. Also the use of a dissociating gas (UCF or Modelium) lowers the
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efficiency, because of the "damping" influence of the dissociation- and
recombination processes on the temperature- and pressure variations. Modelium
turns out to approximate the behaviour of UCF gas quite well. It is also shown that
the actual efficiency rendered by this kind of thermodynamic cycle calculations
indeed can be estimated, with reasonable accuracy, from the infinitesimal
efficiency factor { of the gas (for both perfect and dissociating gas), evaluated at
the BOC (beginning of the cycle) state.

A big problem is posed by the very high so-called "basic pumping power"
circulating in the magnetic coil system, which is modelled (in the "solid piston"
GCFR model) as the instantaneous working power. A small loss factor in the
magnetic coil system (e.g. due to ochmic losses) will lead to a severe deterioration
of the conversion efficiency. It might even render magnetic pumping useless, if the
loss is of the same order as the energy extracted by induction. A possible way of
avoiding this problem is using autonomous gas density oscillations, driven by
nuclear fissions.

For the investigation of such a system it is necessary to introduce a gas
dynamics model. In Chapter 6 we discuss two different (one-dimensional) gas
dynamics models. The first model, the "acoustic model”, is based on the well
known conservation equations for mass (continuity equation), momentum (Navier-
Stokes or Euler equation) and energy (first law of thermodynamics) and the
equation of state and the internal energy of the gas. The second model, which was
developed especially for use in the "two-compartment" GCFR model (Chapter 7),
assumes the cylindrical gas space to be subdivided into two compartments,
containing the same amount (mass) of fuel gas, by a movable imaginary wall
(position x,}, to which a fraction ¢ of the total fuel gas mass is attributed. The
parameters of this two-compartment gas dynamics model are chosen such that,
in absence of fission energy production in the gas and heat transport to or from the
gas (adiabatic case}, the natural oscillation frequency and the momentary kinetic
energy of the fuel gas are the same as in the fundamental acoustic mode (acoustic
model). In case of presence of fission energy production and heat transport, the
rate of increase of the cycle-averaged kinetic energy of the gas is then also the
same in both gas dynamics models. One of the determining factors of this rate of
increase is again the so-called "infinitesimal efficiency factor” ¢ of the gas, which
is equal to « - 1 for a non-dissociating, perfect gas.

With the two-compartment gas dynamics model we also perform an
-analytical- investigation on the influence of the presence of an energy extraction
mechanism -such as MHD or induction- of the behaviour of the system. It is found
that a practical conversion efficiency can only be obtained with very high
(supersonic) velocities of the gas.

A model for a GCFR with autonomously oscillating fuel gas, combining
neutron statics/kinetics, thermodynamics and (two-compartment) gas dynamics is
presented in Chapter 7. In this calculational model we assume the absence of an
energy extraction mechanism and it is shown that, provided that the ¢ /c ratio k
(assuming a perfect, non-dissociating gas) is in the correct range, increasing
{density, velocity, kinetic energy) oscillations occur. For velocities, which are not
too high (less than the sound velocity ¢ in the gas), it is shown that the rate of
increase of the oscillations can be predicted quite well by an analytical formula,
which was derived in Chapter 6 by applying first order perturbation theory to the
two-compartment gas dynamics model. The presence of an energy extraction
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mechanism {such as MHD or induction) will render the oscillations stationary and,
provided that certain conditions are met, the (cycle-averaged) total fission power
will follow the demanded extracted power.
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SAMENVATTING

Dit proefschrift beschrijft een numerieke en analytische studie naar de statische en
dynamische eigenschappenvaneen-conceptuele- gaskernreactor (GCFR: "Gaseous
Core Fission Reactor") met oscillerend splijtstofgas. In Hoofdstuk 1 wordt een
beschrijving gegeven van zo’'n GCFR concept. Het bestaat uit een grafiet cilinder
(afmetingen: diameter ongeveer 2 m, lengte ongeveer 10 m), gevuld met een
mengsel van uranium- en koolstoffluoriden (UCF: Uranium, Carbon, Fluorine). Dit
gasmengsel heeft een hoge temperatuur {enkele duizenden K) en bevindt zich
derhalve in een geheel of gedeeltelijk geioniseerde toestand. Aangenomen wordt
dat het gas in chemisch en thermodynamisch evenwicht is met de omringende
grafietwand. De cilindrische ruimte, waarin het splijtstofgas zich bevindt, is
onderverdeeld in een "kern"- en een "expansie"-gedeelte. Het kerngedeelte is
omringd door een effectieve (dikke) neutronenreflector, terwijl het expansiegedeelte
omringd is door een -veel- minder effectieve (dunnere) reflector. Bij homogene
verdeling van het splijtstofgas over de kern en het expansiegedeelte is de reactor
ongeveer kritiek. Het splijtstofgas is geioniseerd, en derhalve electrisch geleidend.
Hierdoor is interactie mogelijk met een magnetisch veld, gegenereerd door een
stroom door de spoel om het expansiegedeelte. Op deze wijze (plasmadynamische
compressie) kan het splijtstofgas van het expansie- naar het kerngedeeite worden
bewogen, waardoor de reactor superkritiek wordt. Verder is hierdoor ook magneto-
inductieve energie-extractie mogelijk. In het onderzoek komen diverse aspecten van
de GCFR aan de orde: neutronenstatica, neutronenkinetica, thermodynamica van
het splijtstofgas en gasdynamica. Er werden twee GCFR modellen ontwikkeld, die
ieder (enkele van deze) aspecten combineren: (l) het "zuiger" model
{neutronenstatica/kinetica en thermodynamica; geen gasdynamica) and (ll) het
"twee-compartimenten” model (neutronenkinetica/statica, thermodynamica en
gasdynamica).

Een onderzoek naar de statische reactorfysiche eigenschappen van
bolvormige en cilindrische GCFR’s wordt beschreven in Hoofdstuk 2. Door middel
van statische één- en twee-dimensionale neutronentransport- en
neutronendiffusieberekeningen werd de invloed onderzocht van de dichtheid en de
dichtheidsverdeling van het splijtstofgas op de reactiviteit, de
neutronengeneratietijd en de fractie van het totale vermogen dat in het
kerngedeelte geproduceerd wordt (voor de cilindrische GCFR). Informatie over deze
verbanden is noodzakelijk voor de beschrijving van de neutronenkinetica van de
GCFR (Hoofdstuk 3). Het blijkt dat deze verbanden op adequate wijze kunnen
worden beschreven met relatief eenvoudige functies van de gemiddelde
gasdichtheid en de dichtheidsverdelingsvariabele €. De vorm van deze functies kan
worden afgeleid m.b.v. zogenaamde "koorden"- en "muliti-compartiment™ GCFR
modellen, welke eveneens beschreven staan in hoofdstuk 2 {en Appendix A).
Verder werd de invlioed onderzocht van de temperatuur van het splijtstofgas en de
reflector op de reactiviteit van de GCFR (Appendix C). Een verhoging van deze
temperaturen blijkt te resulteren in een afname van de reactiviteit, hetgeen gunstig
is vanuit het oogpunt van veiligheid. Verder is de invioed van de
reflectortemperatuur veel groter dan die van de gastemperatuur.

Het neutronenkineticamodel van de beide GCFR modelien staat beschreven
in Hoofdstuk 3 (en Appendix D). Er wordt verondersteld dat de reactor zich op
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ieder moment in de fundamentele neutronische mode bevindt (puntkinetica) en er
wordt gebruik gemaakt van de uitdrukkingen voor de reactiviteit, de
neutronengeneratietijd en de vermogensfractie in de kern, die waren afgeleid in
Hoofdstuk 2. Ter controle van de toepasbaarheid van het puntkineticamodel wordt
een schatting gemaakt van het verschil in tijdconstante tussen de fundamentele
neutronische mode en de eerste hogere orde mode. Dit verschil blijkt een orde van
grootte kleiner te zijn dan de karakteristieke periode van de dichtheidsoscillaties in
de GCFR (ongeveer 0,03 s). Dit is een indicatie dat de hogere orde neutronische
modes inderdaad verwaarloosd mogen worden.

De thermodynamische eigenschappen van de GCFR -in het bijzonder die van
het splijtstofgas- worden behandeld in Hoofdstuk 4. Een van de voornaamste
eigenschappen van "ons" GCFR concept is dat de reflectorwand van grafiet een
onderdeel is van het chemische systeem. Dit betekent dat deze wand, om
(tenminste gemiddeld) intact te blijven, in chemisch en thermodynamisch
evenwicht moet zijn met het splijtstofgasmengsel (UCF). Bij een temperatuur van
2000 K en een druk van 25 bar is de wand in evenwicht met een UCF gasmengsel,
bestaande uit 20,5 % CF,, 54,5 % UFgs and 25,0 % UF, (molair) (d.w.z.
[U):ICL:[F] = 0,70 : 0,18 : 4,00). Deze evenwichtssamenstelling is, althans bij een
temperatuur van ongeveer 2000 K, niet erg gevoelig voor de druk. In alle
berekeningen is bij het gas-wand grensvlak een temperatuur van 2000 K
verondersteld. De temperatuur in de bulk van het gas zal echter veel hoger zijn (in
de orde van 10.000 K) en bij deze temperatuur zullen de "originele" UFs-, UF,- en
CF,-moleculen zijn gedissociéerd tat lager valente uranium- en koolstoffluoriden en
zelfs tot losse atomen, ionen en electronen. Dit gedrag is ook terug te vinden in het
verband tussen de soortelijke warmte van het UCF gas (bij constant volume of
constante druk) en de druk en de temperatuur.

Vanwege dit complexe gedrag wordt, eveneens in Hoofdstuk 4, het
modelgas "Modelium” geintroduceerd, als een benadering van het "echte"” UCF
gas. Modelium heeft een analytische toestandsvergelijking (Equation Of State:
"EQS"), terwijl de EOS van UCF gas alleen beschikbaar is in tabelvorm. M.b.v.
algemene thermodynamische relaties worden uit de analytische EOS van Modelium
andere thermodynamische grootheden afgeleid, zoals de interne energie U en de
enthalpie H. Uit vergelijking blijkt dat deze grootheden voor UCF en Modelium een
zelfde soort gedrag vertonen als functie van druk en temperatuur.

In Hoofdstuk 4 worden ook de zogenaamde "infinitesimale Otto cyclus” en
de daarmee samenhangende "infinitesimale efficiéntiefactor” { geintroduceerd.
Deze grootheid kan rechtstreeks worden afgeleid uit de thermodynamische
eigenschappen van het gas en kan worden gebruikt voor de schatting, met redelijke
nauwkeurigheid, van het rendement n van een eindige thermodynamische cyclus.
Dit wordt gedemonstreerd in Hoofdstuk 5. Voor Modelium is het mogelijk een
-tamelijk ingewikkelde- analytische uitdrukking af te leiden voor {.

In Hoofdstuk 5 wordt het "zuiger” model voor een -magnetisch- gepompte
GCFR behandeld. In dit model wordt de interactie tussen het geioniseerde
splijtstofgas en het magnetische veld, opgewekt door de spoel, gerepresenteerd
door een zuiger, die het volume van het splijtstofgas bepaalt. De geéxtraheerde
energie wordt dan gerepresenteerd door de mechanische arbeid, die door het gas
op de zuiger wordt verricht. In het model worden neutronenkinetica en
thermodynamica gecombineerd. Er wordt echter geen rekening gehouden met
gasdynamica: het splijtstofgas wordt massaloos en homogeen verondersteld.
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Met dit model wordt de invioed onderzocht van diverse parameters, zoals de
wijze van volumeverandering (harmonische of Otto-cyclus), de
compressieverhouding K, de pompfrequentie 7, het soort gas (niet-dissociérend,
ideaal gas; Modelium; UCF), de ¢,/c~verhouding «, het cyclus-gemiddelde nucleaire
vermogen <P, >  en de warmtelek (aan/uit), op het thermodynamisch
cyclusgedrag van deze GCFR, en op het bereikbare rendement in het bijzonder. Het
blijkt dat, in het algemeen, een harmonische cyclus minder efficiént is dan een
Otto-cyclus. Ook het gebruik van een dissociérend gas (UCF of Modelium) heeft
een negatieve invioed op het bereikbare rendement, vanwege de “dempende”
invioed van de dissociatie- en recombinatieprocessen op de temperatuur- en
drukvariaties. Het blijkt verder dat Modelium het gedrag van UCF gas goed
benadert. Ook blijkt het mogelijk om, met redelijke nauwkeurigheid, het rendement
van een eindige thermodynamische GCFR cyclus te schatten uit de infinitesimale
efficiéntie factor van het gas, berekend bij de thermodynamische condities aan het
begin van de cyclus.

Een groot probleem vormt het zogenaamde "basis pompvermogen" ("basic
pumping power"), dat circuleert in het magnetische spoelsysteem, en welke (in het
"zuiger” GCFR model} wordt gerepresenteerd door het momentane
arbeidsvermogen. Een kleine verliesfactor in het spoelsysteem (bijvoorbeeld door
ohmse verliezen) zal leiden tot een zeer grote vermindering van het rendement.
Magnetisch pompen zal zelfs volkomen zinloos zijn als de verliezen van dezelfde
orde van grootte zijn als de energie, geéxtraheerd door middel van inductie. Een
mogelijke manier om dit probleem te omzeilen, is het gebruik van autonome
dichtheidsoscillaties in het gas, die worden aangedreven door kernsplijting.

Voor het onderzoek naar zo'n systeem is een gasdynamicamadel nodig. In
Hoofdstuk 6 worden twee gasdynamicamodellen behandeld. Het eerste model, het
zogenaamde "acoustische model”, is gebaseerd op de bekende behoudswetten
voor massa (continuiteisvergelijking), impuls (Navier-Stokes of Euler-vergelijking)
en energie (eerste hoofdwet van de thermodynamica), en de toestandsvergeljking
en de vergelijking voor de interne energie van het gas. Het tweede model, dat
speciaal werd ontwikkeld voor het gebruik in het "twee-compartimenten" GCFR
model (Hoofdstuk 7), neemt aan dat de cilindervormige ruimte, waarin het gas zich
bevindt, is onderverdeeld in twee compartimenten, die ieder dezelfde hoeveelheid
(massa) gas bevatten). De scheiding tussen deze twee compartimenten wordt
gevormd door een denkbeeldige, beweegbare wand, waaraan een fractie a van de
totale massa van het gas wordt toegekend. De parameters van dit twee-
compartimenten gasdynamicamodel zijn zo gekozen, dat in het adiabatische geval
(d.w.z. geen energieproductie in het gas en geen warmtelek van of naar de
buitenwereld) de natuuurlijke oscillatiefrequentie dezelfde is als in de fundamentele
acoustische mode (acoustisch model). In het geval dat er energieproductie in het
gas is en warmtelek, is dan ook het tempo van toename van de cyclus-gemiddelde
kinetische energie voor beide gasdynamicamodellen gelijk. Eén van de bepalende
factoren voor dit tempo is wederom de zogenaamde “infinitesimale
efficiéntiefactor" {van het gas, die voor een niet-dissociérend, ideaal gas, gelijk is
aank - 1.

M.b.v. dit twee-compartimenten gasdynamicamode! werd een analytische
studie verricht naar de invioed van de aanwezigheid van een energie-
extractiemechanisme -zoals MHD of inductie- op het gedrag van het systeem. Het
blijkt dat een praktisch bruikbaar rendement slechts kan worden verkregen bij zeer
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hoge (supersone) snelheden van het gas.

InHoofdstuk 7, tenslotte, wordt het gecombineerde "twee-compartimenten”
GCFR model behandeld. In dit model worden neutronenstatica/kinetica,
thermodynamica en (twee-compartimenten) gasdynamica gecombineerd. Een
energie-extractiemechanisme wordt niet aanwezig verondersteld en het blijkt dat
aangroeiende (dichtheids-, snelheids-, kinetische energie-) oscillaties optreden, mits
de c,/c,verhouding «, in het juiste bereik ligt, bij aannamevan een niet-
dissociérend, ideaal gas. Voor snelheden kleiner dan de geluidssnelheid ¢ in het gas
blijkt het aangroeitempo van de oscillaties goed te voorspellen te zijn door middel
van een analytische formule, welke werd afgeleid in Hoofdstuk 6 door het
toepassen van eerste orde storingsrekening in het twee-compartimenten
gasdynamicamodel. Bij aanwezigheid van een energie-extractiemechanisme (zoals
MHD of inductie) worden de oscillaties stationair. Het cyclus-gemiddelde totale
nucleaire vermogen zal, vooropgesteld dat aan enkele voorwaarden is voldaan, het
gevraagde (geéxtraheerde) vermogen volgen.
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