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INTRODUCTION

This thesis covers the development and assessment of the time dependent Monte Carlo
Midway method for application to nuclear borehole logging with the primary aim of
providing an acceleration tool for simulating responses on a detailed model parameter space.

Oil detection techniques are becoming more and more sophisticated with the decrease of
available oil reserves; both when locating underground geological formations where oil could
accumulate, and when drilling boreholes for closer inspection of a possible reservoir. Tools
lowered into the borehole can yield information on many parameters of the rock formation by
measuring physical properties like electrical conductivity or the speed of shock wave
propagation. Such measurements allow the identification of the formation type, porosity, oil
content etc. Significant amounts of undetected oil reservoirs may be found at sites that were
already surveyed but not assessed promising; with improved measuring techniques
overlooked reservoirs may be discovered.

Some of the frequently used borehole logging tools apply radiation sources and detectors.
Tools with a gamma ray source yield information on the average density of the formation;
tools with a neutron source and neutron detectors are applied to identify elements that
excessively capture neutrons (e.g. chlorine). This thesis focuses on a neutron-gamma tool (a
tool equipped with a neutron source and gamma photon detectors) that is often used to deliver
information on the ratio of carbon and oxygen abundances in the formation. The importance
of this tool is pronounced when revisiting former oil (survey) wells. To prevent the many
hundred meters deep borehole from collapsing usually a metal casing is put alongside the
borehole wall. This artificial structure (as an example) poses a serious problem for many
conventional measuring techniques: it dampens shock waves and shadows electromagnetic
fields. For the neutron-gamma tool such an obstacle does not seriously damage the
information content, allowing successful measurements even under these circumstances.

Measured raw data must be translated into the quantities of interest, here into formation
properties. This data interpretation is carried out by comparing the measurements to how
the tool responds for various known formations. These reference responses are obtained by
measuring in designated test pits, specifically built for this purpose, comprising different rock
types, porosities, oil saturations etc. These responses can also be calculated by modelling the
underlying physical phenomena. The accuracy of the modelling and the variety of the
corresponding formation properties determine the quality of the data interpretation. To lessen
the reported insufficiencies and inaccuracies of the data interpretation for the neutron-gamma
tool, -as part of the European Commission 5" Framework Programme- the Improved
Radiation Transport Modelling for Borehole Applications project was initiated. The
investigations presented in this thesis are part of this research. '

Our numerical approach the Monte Carlo method is an essential tool to solve radiation
transport problems, such as nuclear borehole logging simulations. Laws of particle transport
are given in a stochastic sense; we cannot predict the exact path that an individual particle will
take, but we know the probability of the possible events happening during the life of a
particle. Transport Monte Carlo calculations are numerical simulations of particles that obey
the same probabilistic laws that a real particle in nature would follow. The simulation is done
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sequentially for many particles using random numbers that determine where and when a
particle is born, in which direction it travels and when it suffers a collision, what interaction
takes place and how its energy and direction get modified, until the particle finally gets
absorbed or escape from the system.

As unlikely as it is that two real particles will travel exactly the same way, as unlikely it is
that a simulated particle follows the same path as a real particle has followed. It is however
rarely of interest to characterise individual particles, it is mostly average quantities such as the
average number of interactions per starting particle we are interested in determining,
Deterministic transport calculations -unlike Monte Carlo simulations- utilise the transport
behaviour of the average of the particle population, in other words the behaviour of the flux.
The average particle population is calculated over finite-sized subdivisions in the phase space
of position, angle, energy and time. This is a result of discretising the governing integro-
differential equation, the Boltzmann equation. This discretisation of the deterministic
transport calculations introduces approximations that are not present for Monte Carlo
simulations limiting the accuracy of the results. On another note, some quantities of interest
may not be calculated as a function of the average particle population, and Monte Carlo
simulations are the only available option.

To obtain sensible computer times, the number of simulated particles is considerably less in
practice than the number of real particles in a measurement. Estimates of measured responses
might be given as an average of a few simulated particles giving counts if the detector is
small, remotely situated from the source or difficult to reach by the transported particles,
resulting in slow comvergence to statistically stable estimates. To speed up the statistical
convergence of the estimated average quantity, the Monte Carlo simulations are often
modified or replaced by another Monte Carlo calculation that yields the same response, but
deviates from simulating transport analogous to nature. The altered simulation should be
statistically equivalent to the original one in terms of yielding the same average value for the
detector reading, but it should reduce the resulting statistical variance of the average (while
consuming the same computation time).

The most commonly used variance reduction techniques focus on increasing the number of
particles travelling towards the detector, and on discouraging transport in other directions,
while compensating the introduced transport bias by assigning a weight to the particles which
changes proportionally. In this way the distance between collisions can be stretched or be
shrunk (path stretching), the angle after a scattering (angular biasing) may be differently
sampled or the population of the particles can be changed by splitting up particles into
independent fragments (splitting) or by rarefying them (Russian Roulette).

A more radical alteration to the regular flow of a Monte Carlo calculation is adjoint Monte
Carlo. Here particles travel in reverse, starting from the detector instead of the source. These
pseudo-particles gain instead of losing energy during collisions, and score at the source. As
stated by the general reciprocity theorem, the response obtained in this way equals the
response obtained from a regular, “forward” Monte Carlo calculation. This approach can be
useful when the source size is considerably larger than that of the detector; thereby the chance
for a score is higher using adjoint Monte Carlo. The population averages of the adjoint
pseudo-particles are related to the adjoint function, which is also called the importance.
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Relocation of the scoring domain to the source is not the only option. It can be proven that the
detector response can also be calculated on an arbitrary surface that separates source and
detector by a surface integral of the importance and the flux over space, energy and angle.
The Monte Carlo interpretation of this response form is called the Midway method. It
comprises a forward calculation with particles starting from the source, and an adjoint
calculation starting from the detector. The scores of both calculations on the surface midway
between source and detector are registered and the two calculation results are coupled to
estimate the surface integral. Since the scoring domains of both calculations have been
replaced by a domain more extensive in size, thus the chance of a hit is increased for both
calculations, this method is more effective than a single forward or a single adjoint
calculation. Based on these arguments, 1. Serov in his PhD research work [9] proposed its
application as a general variance reduction tool, and demonstrated its capabilities for
numerous radiation transport problems, with many of them considered to be challenging for
Monte Carlo simulations.

To obtain the borehole logging tool responses by calculation for measurement interpretation,
the required accuracy necessitate Monte Carlo simulations. Beyond the huge variety of
formation properties for which calculations should be carried out, Monte Carlo simulation of
the neutron-gamma tool in itself is a challenging task because of its slow convergence. This
thesis is dedicated to the investigations of applying the Midway method to speed up the
Monte Carlo simulation of the neutron-gamma tool. The results are presented in five chapters;
each focuses on a different element of the research as described in the following paragraphs.

The neutron-gamma tool is equipped with a time dependent source that is capable of emitting
neutrons in short bursts. The photons created by the neutrons in the formation are measured
time (and energy) dependently. Therefore the Midway method has been extended to handle
time dependent responses. The necessary theoretical developments are treated in Chapter 1.
Also, the same chapter provides a short introduction to the operation modes and working
principles of the neutron-gamma tool. The first chapter concludes with a preliminary
application of the time dependent Midway method to a rudimentary model of the tool based
on the realisation of the method as developed by I. Serov.

For our application the Midway surface integral has to be carried out in space, angle, energy
and time, based on forward and adjoint Monte Carlo scores. This is approximated by
discretising the integral into finite elements of the phase-space in all dimensions, and the
average flux and the adjoint function is calculated on each segment from the respective
scores. Assuming constant behaviour of the flux and the adjoint function on each segment, the
integral can be calculated. Chapter 2 gives the description of this technique and describes
improvements for the variance calculation, for the practical realisation of the method and for
handling the time variable.

Chapter 3 introduces a different way of carrying out the surface integral by using orthogonal
function expansion of the flux and the adjoint function. It is demonstrated that such expansion
is feasible using Monte Carlo samples, and its application is shown for the Midway integral
with special attention to the statistical variance calculation.

The neutron-gamma tool is equipped with scintillation detectors. The response that this type
of detector gives cannot be expressed using the flux and the adjoint function. As both the
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reciprocity theorem and the Midway response form are based on the concept of the flux and
the adjoint function, it is questionable whether an adjoint or a Midway Monte Carlo
calculation would give the same response as the forward one. In Chapter 4 it is
demonstrated, that an adjoint Monte Carlo game is feasible for such situations in a non-
multiplying system.

The way, in which the Midway method works, as a variance reduction technique is essentially
different from conventional methods, as the Midway method delivers an efficiency gain by
altering the transport of neither the adjoint nor the forward Monte Carlo calculations. In
Chapter 5 a demonstration is given, that on top of the efficiency gain of the Midway method,
further improvement can be achieved by applying a combination of splitting and Russian
Roulette for the forward and adjoint Midway calculations resulting in an efficiency
improvement up to a factor 50.




Chapter 1

TIME DEPENDENT MIDWAY METHOD AND
BOREHOLE LOGGING

The basic concept of the Midway method is the estimation of the detector response at a
surface bounding completely either the source or the detector. In a conventional Monte Carlo
simulation, particles arriving at this surface would proceed, and depending on the probability
of reaching the detector, possibly yield a score. This probability could be estimated by an
adjoint calculation: a transport in reverse; by particles originating from the detector, flying
backwards in space and time, while gaining instead of loosing energy at collisions. Scoring
could be relocated then to this surface, and the response estimation would include a forward
and an adjoint calculation. When this technique is applied to enhance the efficiency of the
calculation, it forms the Midway method.

The theory of the time independent Midway response estimation is given by Serov et al. [1],
although the same response form has been also given earlier by Hayashida et al. [2], and most
comprehensively by Williams [3], but with a different derivation. Relocation of the scoring
domain to a volumetric domain instead, has been studied by Cramer [4] for Monte Carlo
applications. Ueki et al. [S] provided a comprehensive study of the possibilities of
combinations of forward and adjoint Monte Carlo games. Aboughantous [6] devised a special
Monte Carlo algorithm based on a combined quantity of flux and adjoint function, called the
Contributon Monte Carlo Method. Densmore [7] used forward-adjoint coupling on a
volumetric scoring domain using perturbation theory as grounds, focusing mostly on
criticality calculations, but using deterministic calculation to obtain the adjoint function. In a
broader sense, replacing the actual detector scoring process by first collision or surface
estimators for scintillation detectors has been studied by Mosher [8], referred to as the
expected value technique. Based on intuition rather than rigorous derivations, countless
Monte Carlo practitioners have been using the same set of particles registered on a surface
around the detector to investigate the behaviour of different types and sizes of counters by just
restarting the calculation from the surface for each scenario (see for example Ref. [14]).
Pulsed sources and time dependent detectors have been considered only by Williams [3], but
have been disregarded in the surface response form.
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The Monte Carlo Midway method as a general variance reduction technique is essentially
based on the doctorate research of Serov [9] whereas the description of the theory of the time
independent Midway method is given, together with its Monte Carlo interpretation, and
application to some test problems that are considered challenging for Monte Carlo
simulations. Our first chapter consists of three parts: the extension of the Midway method for
time dependent responses; description of the realisation of the time dependent Midway
method; and small introduction to nuclear borehole logging measurements together with
results of straight-forward application of the Midway method to a rudimentary tool model.

1.1 Theory of the Time Dependent Midway Method
1.1.1 The time dependent forward response form

The derivation of the time dependent Midway response form begins with the time dependent
Boltzmann equation [10]:

l§¢(£,E,9,t)+VQ_¢(LE,Q,I)+Z (r.E)$(r.E,Qt)=
v

(1.1)
[[2.(0.B'> E.Q'> Q)g(r, E.Q"1)dQ dE"+ S (1. E,Q.1)
EQ

where ¢(r,E,Q,1) denotes the flux, as function of the spatial position r, energy E, direction
Q and time #; ¥, (r,E) stands for the total cross section and £ (r,E'— E,Q'—>Q) for the
differential scattering cross section, and § (K,E ,Q,t) for the source function. The integrals are

carried out on the whole domain of energy and angle and this convention will be applied
throughout this thesis: if integration boundaries are not specified the whole model domain
should be regarded. It should be noted that time dependence is meant to describe the time
dependent behaviour of the particle population, and not of the model parameters. In other
words it is not a dynamic calculation: the cross sections do not change as a function of time.
This holds for all time dependent forms of this text.

To obtain a unique solution to this equation we need to specify the boundary and initial
conditions. In a finite model volume ¥ that is bounded by a surface 4, with surface normal »
directed outwards the boundary condition could be specified as:

#(r,E,Q,1)=0for re A and nQ <0 (1.2)
and an initial condition for an initial time #; (before the source is turned on) as
#(r,E,Q,1)=0forr <y, (1.3)

A response R, most commonly the reading of a detector, is defined as a linear functional of
the flux by

R=[[[[P(r.E.Q.1)4(r. E.Q.1)drdEdQas (1.4)
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where D(g,E,Q,t) is the detector function. This form will be referred to as the time

dependent forward response form.

In practice, a real detector would observe a particle if it had a reaction within, therefore the
detector function would be zero outside the detector and proportional inside to the cross
section of some reaction the detector is sensitive to. This spatial limitation of the detector
function to a finite volume is essential for the derivation of the Midway response form.

Not every counter used for measurements behaves in a way that can be described by Eq.(1.4),
as the flux might not contain enough information to allow calculation of the actual detector
reading. Such responses are called non-Boltzmann tallies. In Chapter 4, we will discuss
models for such counters. The D detector function is not strictly related to detectors, more to
detecting particles; and also the detector response R might also stand for any desired abstract
quantity, as long as it can be described as a linear functional of the flux.

The Monte Carlo interpretation of the forward response estimation will be outlined in Chapter
4, heuristically we can say here that it consists of simulating particles originating from the
source, following their transport through chains of collisions that generally decrease their
energy, until the particles get captured or escape from the system; meanwhile tallying their
contribution to the response at the detector.

1.1.2  The time dependent adjoint response form

In a given model geometry, the probability that a particle reaches a certain (phase-space)
position is determined by the source characteristics and it is independent of the detector
function. In the same way we can define a quantity that is independent of the source function
and relates to the detector, namely the probability that a particle at a certain (phase-space)
position would contribute to the detector reading, i.e. the importance of a position regarding a

contribution. This quantity is called the adjoint function ¢* (r_,E,Q,t), and the equation it
obeys, is adjoint to Eq.(1.1) [11]:

__l_-g—t¢+ (.’Z,E,Q,I)—V@+ (LEJQ:I)""Z, (_’_',E)¢+ (E,E,Q,t) _
v

1.5)
[[Z(nE—>E.Q> Q)¢ (r.E,Q'1)dQ'dE"+ D(r, E. Q1)
E'Q
The boundary condition is usually given by
¢' (r.E,Q,1)=0forre Aand Q>0 (1.6)

and the initial condition now for a time # (some time after the detector stopped measuring) is
¢ (r,E,Qt)=0fort>1, (1.7)

To shorten the formulae we proceed now using P as a symbol for all phase space variables
except time. This will be followed throughout this thesis: P will stand for all phase space
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variables except those that are explicitly written out. In the same way, if the spatial integration
domain is not specified as a surface, it is meant to be a volumetric integral.

If we multiply Eq.(1.1) by @™ and subtract Eq.(1.5) multiplied by ¢ and integrate over all
phase space variables in the model volume, and from time # to ¢, we get

J.tflg—(¢(P,t)¢*(P,t))det+ '[[]v(gzs(P,t)qﬁ*(P,r))det:

Jvor
' (1.8)

= [5(P,c* (P.o)apat— [ [D(P.1Yp(Pot) e

Note, that the second term on the RHS of Eq. (1.8) is nothing else than the response R.

The LHS of Eq.(1.8) can be rewritten by evaluating the time integral for the first term, and
transforming the volumetric integral on V¥ of the second term into a surface integral on 4 using
the Gauss theorem:

I%(¢(P,tf)¢+(P,t/)—¢(P,t,.)¢+(P,t,.))det+IQ(_M(P,t)(]ﬁ*(P,t)det (1.9)

The first term of Eq.(1.9) will vanish because of the initial conditions (Eq. (1.3) and Eq.(1.7)),
and the second term because of the boundary conditions (Eq.(1.2) and Eq. (1.6)). Finally we
obtain the time dependent adjoint response form:

R= j]S(P,z)¢+(P,t)dez (1.10)

Again, in a source-detector system, S will be nonzero only on a domain where the source is
located, and the volumetric integration is reduced to an integral on the source domain. The
adjoint response form can be interpreted as an integral of the source function with the
probability of scoring from a phase space point. The equality between the forward and adjoint
response forms is often referred to as the general reciprocity theorem.

The Monte Carlo interpretation of the adjoint equation and response would be further
investigated in Chapter 4, but it is worthwhile to mention that during an adjoint Monte Carlo
game adjoint pseudo particles start at the detector (the adjoint source), gain energy at their
collisions, while time is flowing backwards, and contribution to the response will be tallied at
the source.

1.1.3  The time dependent Midway response form

The adjoint response form enables the relocation of the integration domain of the response to
the detector volume, but that is not the only option. If both detector and source functions are
such that they are nonzero in finite volumes and the source and detector domains are disjoint,
the response R can be relocated to a surface fully encompassing either the source or the
detector or to the volume bounded by this surface.
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Figure 1. : Integration domains for the Midway response form

This enclosure is sketched on Fig.1, now encompassing the detector. We will refer to it as the
Midway enclosure. Most of the theorems to be applied are interchangeable regarding forward
and adjoint, and respectively source and detector: the enclosure around the source yields
similar theorems as enclosure of the detector. This freedom of choice will not be mentioned
later on, but regarded as obvious. If we repeat the procedure to arrive to Eq.(1.8), but we
integrate only on the volume ¥, of the Midway enclosure, we obtain

I']V(@(P,t)gﬁ* (P.1))dPdt = - J.’].D(P,t)gi(P,t)det (1.11)

as the integral of the time derivatives will vanish again, and also - as the Midway enclosure
does not contain any parts of the source domain,- the term containing S disappears too. The
LHS of Eq.(1.11) is again an alternative expression for the response R, as the RHS is the
forward response form. Such a form is not simple to interpret in Monte Carlo terms, and is not
frequently used. Promising attempts have been presented by Ueki et al [5] and Cramer [4].
Volumetric forward-adjoint integrals as estimators for the response have been investigated by
Densmore [7], using deterministic adjoint solutions.

Applying the Gauss theorem to the LHS of Eq.(1.11) yields the time dependent Midway
response form:

iy Iy
[ [29p(P,0)¢" (P,t)dPdt =~ [ [D(P.0)p(P,r)dPat (1.12)
Ayt Vi 1;
where A4, denotes the surface bounding V,, . If the detection is restricted to a single time

moment, for example, the detector function would be D(P,t)=D(P)5(r-t,), and the

response at time t, would become
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R(,)= [D(PY(P.,)dP=—| [a00(Pa)* (PP (113)

where the adjoint function is calculated according to an adjoint source which is active at time
tn (see Fig. 2).

adjoint
flux function
t time
t, source active m

Figure 2. : Skefch of adjoint and forward functions in time

The time dependence of the adjoint function is relative to the starting time #,. If ¢’ (P,z ) is
known, the response at #z can be expressed as

i

R(1s)= [ [nQg(P.0)¢" (P.1+(1, ~1,))dPdt (1.14)

4 Ay
Forms for utilisation of these results will be shown in Chapter 2, Section 3.

Monte Carlo interpretation of the Midway response form would consist of an adjoint and a
forward game, where scores are made at the surface 4,,, and the two results will be folded to
give an estimate of the surface integral, and with that, to the response.

1.1.4 The time dependent Midway response form for coupled neutron-
photon calculations

The Midway response form is the same for neutrons and photons, so are the adjoint and
forward equations. In a coupled neutron-photon case, with a neutron source and photon
detector, two pairs of adjoint and forward transport equations can be specified, and for each
pair additional source specifications would connect the equations. To simplify formulation we
write the Boltzmann equation in operator form with B, and B, neutron and photon, and with
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B*, and B, adjoint neutron and photon Boltzmann operators, excluding the streaming term
and the time derivative:

VL%¢"+QV¢H +B,g, =38, (1.15)
18 ~
v—5¢,,+Q.V¢,,+B,,¢,, =S, (1.16)
P
1 a + + + 1+
—;—5% -QV¢ +B 4, =D, (1.17)
l a + + + g 8
—75¢” ~QV¢ +B, ¢, =D, (1.18)
P

The forward equations are connected by the definition of the photon source term:
S,(P.t)= [ |2, (nE' > E.Q - Q)4,(r.E\Q\1)dE"dY’ (1.19)

with Z,, the production cross section for photons. The adjoint equations are coupled by an
equation adjoint to Eq.(1.19):

D,(P,t)= ”zpr (LE—>E\Q—Q")g, (r.E'Q't)dE'dQ (1.20)

In words, the source of photons is coming from photon production at neutron interactions, and
the adjoint neutrons are generated at adjoint interactions of adjoint photons. The boundary
conditions stay the same for both types of particles, and the initial conditions should also read
the same for both. The response is given by

R, = “Dp (P,t),(P.1)dPdt (121)

Eq.(1.15) multiplied by ¢,” and subtracted from Eq.(1.17) multiplied by ¢ ,, then integrated
over all phase space variables on the Midway domain, yields:

i

j (10,4, dPdr = ] [s,4:dpdt~ [ [D,g,dPdr (1.22)

1

i

Repeating the same procedure for the photon equations give:

] [n04,8;dPdr = ] j S ¢ dPdt —[/j |D,8,dpa (1.23)
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The second term on the RHS of Eq.(1.22) equals the first term of the RHS of Eq.(1.23)
because of Eq.(1.19) and Eq.(1.20); and S, is zero in the current Midway enclosure, therefore
adding Eq.(1.22) to Eq.(1.23) yields

R, = —r/j I@nqﬁ;det—rj‘ jn£_2¢p¢; dPdt (1.24)

Eq.(1.24) is the time dependent Midway response form for neutron-photon problems,
expressing a dual sum for the response that involves both photons and neutrons for a photon
response estimation.

1.1.5 Virtual surface source and the black absorber technique

As the theories to be mentioned here will be used later, it is worthwhile to show their
derivations. Both theorems, as described by Serov [9] are based on the fact, that the derivation
of the Midway response forms make use of an integral on the Midway enclosure alone.

Firstly, we consider the Midway response perturbation theory, providing basis for the black
absorber technique. When deriving the Midway response form with the operator notation like
in Eq.(1.15), we make us of the fact, that

j¢*B¢dP= j ¢B*¢*dP (1.25)

This holds also for the whole system domain, but the equality is only required in the Midway
enclosure. Repeating the steps of the derivation yielding the time dependent Midway response
estimate, would not be affected by changing B or B” (i.e. changing the cross sections) outside
the Midway enclosure. These alterations, however, would have an effect on the flux and the
adjoint function. To obtain the detector response on the RHS, like in Eq.(1.12), we must keep
the flux unperturbed, meaning that the B operator should be unchanged; but we can perturb

B" outside the Midway domain resulting in the 5 perturbed adjoint function. We obtain then
Eq.(1.26), with the detector response on the RHS, and the Midway response estimate with the
perturbed adjoint function, i.e. the Midway response form would still give the response
correctly:

j nQpd dP = — jD¢dP (1.26)

Ay
Changing the cross section outside the system domain can be arbitrarily radical; it could be
even replaced by a black absorber. In practice it means, that one of the two (forward or
adjoint) calculations is performed only in half of the geometry, allowing saving computing
effort. It has been also proposed to introduce an ideal reflector instead. The Midway
perturbation theory seems to contradict intuition, and even hard to believe, though numerical
calculations never questioned its validity.

The second theorem we discuss, concerns a rather theoretical detail. Although it will be used
in Chapter 5, its derivation is repeated only for the sake of completing the formulation given
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by Serov [9]. We now consider replacing the actual source with a surface source on a surface
bounding a Midway enclosure ¥,, in a form of:

S, =-nQp(P) ifre 4, (1.27)

while keeping the boundary conditions and cross sections intact. This obviously would not
affect the adjoint equation at all. The flux will change, and the solution of the transport

equations with the new surface source term will be denoted by #. The equivalence of adjoint
and forward responses states:

[D(P)§(P)dP= [s, (P)¢"(P)dP= [nQp(P)¢" (P)dP (1.28)

4,

The last term on the RHS is the Midway response; it is equal to the original detector response.
Eq.(1.28) expresses that :;5 equals ¢ in the detector domain as the response in the detector

using the original and the perturbed flux are equal for an arbitrary detector function. Now let
us define a new Midway enclosure V,, around the detector that is inside 4,. If we regard now
S, as our new source, we can write its Midway response form:

[D(P)p(P)dP= [nQp(P)¢ (P)dP (1.29)

Comparing Eq.(1.28) and Eq. (1.29), and recall that the new Midway enclosure is still an
enclosure for the original system with the original source, we see that

J.n_Q¢(P)¢* (P)dP- [nQp(P)¢" (P)dP=0 (1.30)

4
for an arbitrary domain, therefore in volume of ¥, with an open boundary:
p=pifreV, (1.31)

Eq.(1.31) verifies that the real source can be replaced by a surface source on a Midway
enclosure, and this will keep the flux unchanged within the Midway volume.
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1.2 Monte Carlo estimation of the Midway response

Particles starting at the source have to hit the detector to give a contribution to the response
estimate, and if the chance for it is small, relocation of the scoring domain should be
considered. The adjoint response form offers a possibility to choose the source as a scoring
domain and play adjoint Monte Carlo, the Midway response form allows scoring at an
arbitrary large surface while needing scores from both adjoint and forward games.

The potential of the time independent Midway method to increase the efficiency of scoring,
therefore to increase the efficiency of the Monte Carlo game has been discovered and
attempted to put in practice in the early 1980’s by Hayasida et al [2], and its capabilities as a
variance reduction technique investigated. Their way of realising the Midway coupling
assumed isotropic azimuthal angular dependency. In the 1990°s Serov and Hoogenboom [1]
refined the Midway coupling model by taking properly into account the angular variables, and
incorporated it into the general Monte Carlo code MCNP [12] The formulae to be mentioned
here, are extensions of their findings for time dependent situations.

1.2.1 The Monte Carlo Midway Response Estimator

Time dependent Midway response form (Eq. (1.12)) poses a challenge for Monte Carlo
interpretation. In general, as to be further described later on, a Monte Carlo estimator is in a
form of

R= [ (x)h(x)dx (1.32)

o represents here a probability density function (pdf) of x, and % stands for some arbitrary
scoring function. If N number of (w,x;) samples are drawn from g, where w stands for a
statistical weight, and x for some coordinate, the estimator for R may be given by:

Rz—iw}.h(xj) (1.33)

When playing a Monte Carlo game, each forward particle reaching the Midway surface can be
considered as a sample from an implicitly given pdf, and the scoring function would be the
adjoint function, which is yet also undetermined. This implies that some form of an
approximation is necessary. Hayashida [2] and also Serov [1] made use of a discretisation
scheme, meaning the division of the phase-space domain into small segments, and on each the
functions as integral averages are calculated.

Using this phase-space segmentation technique (we will refer to it as the segmentation
technique from now on) relies on the following approximation:

R= [nQgg'ap = jJ¢+dpsz&szR=f [Jap [¢drian =R, (134)
A 4, i i AR AR
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where J = n{2¢ denotes the radiation current, AP; stands for the i™ phase space segment size
on the surface, and AP; =AE; AAx Ay AB,, At,, where AE stands for the width of the energy
group, A4 for the size of the surface, Ay for the polar, A6 for the azimuthal angle interval
width, and ¢ for the time. This approximation might be crude sometimes, especially in energy,
when the spectrum is often a discontinuous and irregular function. An analysis on the
accuracy of this estimate is given in Chapter 2. An alternative approximation for the response
is discussed in Chapter 3. As indicated earlier, in accordance with Eq (1.14), the time
dependent Midway response allows the utilisation of the arbitrariness of the starting time of
particle: an adjoint and a forward calculation yields not only one, but possibly a series of time
dependent responses. For that, three possible forms is given in Chapter 2.

The Monte Carlo surface crossing estimator for the current density is given by

7, =Ly M (1.35)

where w;; denotes the weight of the sample that falls in the ™ interval, coming from the i
sample out of N total number of samples. The adjoint function is estimated by

At 1 N W+a,j //J,

é,; 7 21: AP (1.36)
where w;;" stands for the weight of the i" adjoint particle out of the N* total samples, that
crosses the Midway surface with ; polar angle within the ;" segment. Using Eq.(1.35) and
Eq.(1.36) the necessary quantities can be obtained for the response estimate. This separate
calculation of the adjoint and forward quantities is not always the most effective way, Chapter
2 will comment on the alternatives.

1.2.2 Propagation of the statistical error

Statistical error is always associated with Monte Carlo estimates, and it is also subject to
estimation. Of the several forms available, the most widely used is an estimator of the relative
variance [12]:

iqf
L @
(54

where g; is a sample for the quantity Q. For the current at the ™ segment (Q: =J;) the sample
is g;/=w;/AP; , and for the adjoint function qi=w"/1/AP;. The statistical error of the Midway
response estimate then is caused by the statistical error of the individual estimates of the
quantities per mesh.
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As indicated by Hayasida et al [2] and Serov [1], the relative error of the product of the
adjoint function and the current at mesh j is obtained by summing up their relative variances,
as the adjoint and forward calculations are independent:

rZ(J,;sj)=r2(3,)+r2(;ﬁj) (1.38)
The variance (D?) of R, might be calculated from the variance of the response per mesh by
i~ at N~ 2 a2
Dz(Rm)zz:rz(quﬁj)szgéj AP? (1.39)
~

Here, the sum of the segment-wise variances should also include for a coupled calculation
possible neutron and photon responses.

The relative variance of the final response is
r*(R,)=D*(R,)/R} (1.40)
Critics to this statistical model will be formulated in Chapter 2.

The Figure of Merit (FOM) was originally used to measure how trustworthy a Monte Carlo
calculation is: if the value of FOM stabilised and did not fluctuate with the number of starting
samples, the estimator was converging to a creditable estimate. Later it became also a
measure of the efficiency of a simulation.

2
7

FOM = L (1.41)
T
As Eq.(1.41) shows, the FOM is inversely proportional to the computer time (7) spent on a
calculation and to the relative variance. As computer time is proportional to the number of
samples started (), and the relative variance usually shows a //N dependency as predicted by
the central limit theorem, the FOM should be around a constant value, but this constant
specific to the given computer system and Monte Carlo simulation.

1.2.3 Realisation of the time dependent Monte Carlo Midway method

The time independent Midway method has been incorporated into the widely used general
Monte Carlo code MCNP (Briesmeister [12]) by Serov and Hoogenboom [1] in a user-
friendly manner. Subsequent versions of MCNP have been also modified the same way from
version 4A to 4C. The latest implementations included the time dependent Midway response
form.

The MCNP Midway versions needed modification of several subroutines. The Midway
method worked together with most of the standard MCNP options, and the free Midway
parameters could be controlled from the generic input file. The segmentation of the phase
space on the Midway surface could make use of the built in tally segmentation options of
MCNP, except the azimuthal angle which needed additional modifications. The spatial
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discretisation of the Midway surface into small facets was far from being automatic. Before
version 4C only meshes of regular second order surfaces with the Midway surface could be
provided to define the segments (i.e. there was no way to cover the surface e.g. by squares),
and also the areas of such facets had to be provided. Serov developed a so-called fish-scale
technique, using the intersections of cylinders with the surface forming small areas bounded
by segments of circles somewhat similar to scales of a fish (see Fig.3).

Figure 3. : Area segment resembling a fish-scale

The spatial segmentation had an additional rule set by MCNP, that an already covered area
could not be segmented any more, and belonged to the facet that first claimed it. As MCNP
up till the current version 5 is not capable of continuous energy treatment of the adjoint
calculation, the segmentation in energy was determined by the multigroup energy structure of
the cross section library. The angular divisions were set according to the cosine of the surface
normal for the polar angle, and like the azimuthal angle, were divided into small bins. The
later developed time dependent Midway version required equidistant binning in time,
allowing the calculation of multiple time dependent responses.

The results of the first (forward or adjoint) calculation for the segment were stored in a file
together with their relative variance, and the second calculation was responsible for the
coupling of the forward and adjoint results, reading in the file from the previous run. Control
parameters were introduced to MCNP to distinguish between the first and the second run, and
the type (forward or adjoint) calculation determined the type of function (current or flux) to be
estimated. This utilisation ensured a general applicability of the method, but it required the
modification of each new version of MCNP. Moreover for the time dependent calculations the
number of segments grew higher than the computer could afford in memory at that time. The
memory for the segment bins needed to be allocated together with the memory space for cross
sections, posing a serious limitation for Midway set-ups. To allow an easier spatial division
and to handle the memory problem, from MCNP version 4C the time dependent Midway
method obtained a different realisation scheme.

Utilising the so-called PTRAC (particle trajectory) files of MCNP, the Midway quantities are
calculated independently of MCNP from the raw score data. The coordinates of the particles
at a surface crossing are printed out into the PTRAC files in binary format by a standard
instruction in the input file, and a separate program does the sorting of the scores into phase
space bins, and estimates the Midway response. This coupling of scores happens after both
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runs are done. Such independent coupling allows the investigation of many details of the
Midway response estimate, and creates an easy platform for spatial segmentation. With this
realisation portability of the coupling code to other operating systems and possibly to other
Monte Carlo codes, became possible. Printing out raw scores twice takes more computer time
than printing out one coupling file as before, but the difference was found to be insignificant.
Also, a score file might be used with different segmentation structures to analyse their
behaviour, if the accuracy of the Midway response estimate is questioned. And last but not
least it has proven to be a research tool to investigate the Midway coupling characteristics.

Further analysis and refining of the time dependent Midway response calculation induced
fundamental alterations to the coupling code; therefore it will be discussed more in detail later
on, in Chapter 2.

1.3 Basic concepts of nuclear borehole logging

Borehole logging, or wireline logging is a geophysical exploration technique to investigate
formation properties around a borehole. It is an essential tool for exploration of mineral
reservoirs such as oil. Based on different physical disciplines (static electricity,
electromagnetic waves, seismic waves, etc.), many types of tools have been constructed and a
fair share is given for nuclear techniques. Such a tool may be equipped with a neutron or
photon source, and neutron or photon detectors, referred to as neutron-neutron, gamma-
gamma, neutron-gamma (n-3) tools.

The n-y tool, sometimes referred to as the RMT (Reservoir Monitoring Tool), as the RST
(Reservoir Saturation Tool) or as the RPM (Reservoir Performance Monitoring) tool, contains
a time dependent fast neutron source and multiple gamma detectors. Photons generated at
inelastic collisions of neutrons have a characteristic energy specific to the hit nucleus. Energy
dependent measurement of the generated photons (the so-called C/O operation mode)
provides information on the elemental composition of the surroundings of the borehole. If
used to account for photons emitted at neutron capture, the tool detects high capture cross
section elements in the vicinity of the borehole (Sigma operation mode).

The information on the formation properties should be extracted from the measured data. The
inversion procedure that translates measurement results to model parameters, compares
simulations (or measurements) on known models to the acquired data. Many simulations have
to be performed to cover the model space of the n-y measurements. The quality of model
parameter prediction relies on the resolution of the simulations; in case of a Monte Carlo
estimation, this might be a challenging task. The basic design of the tool is directed towards
high spatial resolution and good signal-to-noise ratio; in other words only informative particle
paths are encouraged to enter the detector. This is a relatively small subset of the particles
generated, and it causes the Monte Carlo simulation to be highly ineffective, and implies the
use of some variance reduction method, the time dependent Midway method for one.

This section is aiming at an introduction to borehole logging concepts and models, and most
importantly at providing an enumeration of key problems that are specific to this application
of the time dependent Midway method, and need to be handled.
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1.3.1 The borehole environment

The most important model constituent of the borehole geometry is the lithology. Major oil-
bearing matrices are sand (SiO2), limestone (CaCO;) or dolomite (MgCOs). Hydrocarbons
accumulate in free spaces within the formation, such as pores, -or less frequently-
discontinuities (fractures or karst dissolutions), and taking up 10-30% of the volume of the
rock. The upward migrating hydrocarbons are blocked by non-permeable formations, like
clay, silt or shale: formations of fine grain size, mostly silicates. For nuclear transport
modelling the atomic constituents are of importance. The most abundant element is oxygen,
followed by Si, Ca, Mg, Al, and Fe. Hydrocarbon (CH,), presence can be detected by the
increased C content, though carbon is also present in carbonates. The formation pores if not
with oil or gas, are filled with saline water, where Cl is the most important indicator for
nuclear measurements.

The drilling process has a considerable influence on the borehole environment. Special
borehole fluid (brine) is circulated in the hole during drilling, to transport the fractioned rock
to the surface, and to keep the layer pressure in balance. The borehole fluid is a brine solution
with fine grain size solids and heavy salts (e.g. BaS0,). If indeed a porous material is being
drilled, the brine infiltrates the rock leaving some of its solid content on the borehole wall that
sometimes forms a so-called mudcake. The brine invades the formation, and forces the
original pore fluids to withdraw, forming the invaded zone.

Wireline logging is performed usually after a new length of hole is lowered. To prevent the
hole from collapsing and to stop the exchange of fluids, the borehole is covered from inside
by a metal casing and the gap between casing and formation is filled with cement, before the
drilling proceeds. When an oil deposit is found, casing and cementing are perforated for the
production phase at convenient spots to access the reservoir.

The production phase would inevitably change the fluid content of the reservoir, and the place
of the mined oil will be taken gradually by groundwaters. This is an elaborate process to be
controlled and therefore monitored. For that, a separate system of tubes is put in the borehole,
where measurement tools can pass. The measurements of the monitoring should account for
the many artificial elements in the hole, disqualifying many conventional tools. A metal
casing for example shields all electrical and magnetic tools, and even seismic devices,
increasing the importance of nuclear tools.

The time dependent Midway method has been applied to two borehole models, and all results
presented later are based on these two. The first one we will refer to as the “Shell” model, the
second one as the “Generic” Model. Table 1 shows the respective parameters.
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“Shell” Model “Generic” Model
Inner radius 0 0
Brine Outer radius 7.74 7.858
constituents H,O+ 120mg/l NaCl H,O+ 120mg/l NaCl
density 1.0 1.0
Inner radius 7.74 7.858
Casing Outer.radius 8.89 8.89
constituents Fe Fe
density 7.86 7.56
Inner radius 8.89
Cement Outer radius absent 10.16
constituents Class C Cement
density 3.14
Inner radius 8.89 10.16
Outer radius 80 88.9
Formation constituents SiO,+H,0+NaCl (120g/1) | SiOz+H,O+NaCl (120g/1)
density 2.3 2.3
porosity 23% 19%
Model bounds height 200 168
radius 80 88.9

Table 1. : Model parameters (distances are in cm, densities in g/cm’)
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1.3.2 Neutron-gamma tool geometries

When a potential oil field is being explored, the decision of
drilling a borehole is made on the reasonable minimisation of
the chance of missing an oil reservoir and not on the
maximisation of the number of successful drillings. As oil
prices are constantly growing with the decreasing amount of oil
left in the deposits, the word ‘reasonable’ in the above sentence
is changing its interpretation too. Exploration sites declared
empty now may be revisited and measurements might be
redone, but again, the majority of the tools cannot cope with
cased boreholes. Neutron-gamma tools are powerful anyway,
but hard to substitute in these situation.

All major vendors provided the oil industry with their version
of the neutron gamma tool, but exact designs are not public,
though some vendors publish [15] more details than others, but
as far as it can be known, the tools share several common
features. The tool is contained in about half a centimetre thick
tube, of length about a meter. The tools are equipped with a D-
T neutron source of 14MeV, with the neutron burst lasting for
some times 10us. Slim tool designs have an outer radius of
around 3cm, including half a centimetre thick metal housing.

Usually two (sometimes three) photon detectors measure the
signals; the near detector is around 20, the far detector is
around 40 (up to 70) cm away from the source. The detector
crystals are BGO (Bismuth Germanate) or Nal scintillators.
Because of the better energy resolution, BGO detectors are
superior to Nal scintillators, but being very sensitive to
temperature, they require constant cooling. Keeping in mind
that borehole temperatures above 100°C are not uncommon,
the insulation for BGO’s should be taken into account when
modelling the nuclear transport. Detector crystal radii are about
1.5cm, far below the size commonly used for laboratory
measurements. Each detector has a phototube attached to their
ends on the opposite side of the source, and at the other ends -
to avoid many direct scores from the source- thick metal
shieldings are placed.

From the available geometry data, two models have been
constructed for use in Monte Carlo simulations. The simpler
“Shell” tool model served diagnostic purposes for the
application of the Midway method, the more sophisticated
“Generic” tool model (see Fig. 4) aimed at approximating
actual measurement situations. Table 2 gives the tool
parameters for both settings.

.03

Phototube

| ——58.41

Far Detector

Phototube

. Near Detector

Figure

4.

The generic tool model
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Shell tool model | Generic tool Model
radius 1.27 o]
height 5 0
Source distance from (centre of the) source -2.5 0
material constituent vacuum 0
density 0 0
radius 1.27 1.667
height 22 15.24
Near shielding | distance from (centre of the) source 2.5 6.35
material constituent w Fe
density 19.3 7.86
radius 1.27 1.508
height 5.0 7.62
Near detector |distance from (centre of the) source 27.5 21.59
material constituent Nal Nal
density 3.67 3.67
radius 1.667
height 7.62
Near phototube|distance from (centre of the) source absent 29.21
material constituent void
density Q
radius 1.27 1.667
height 45 3.175
Far shielding |distance from (centre of the) source 32,5 40
material constituent w Fe
density 19.3 7.86
radius 1.27 1.508
height 5.0 15.24
Far detector |distance from (centre of the) source 775 4318
material constituent Nal Nal
density 3.67 3.67
radius 1.667
height 7.62
Far phototube |distance from (centre of the) source absent 58.42
material constituent void
density 0
radius 1.667->2.143
height 119.7
Housing  [distance from (centre of the) source absent 2.5
material constituent Fe
density 7.86
Non-accounted material constituent Fe
Space absent
Inside tool density 3.93
Table 2. : “Generic” and “Shell” Tool Model parameters

(distances in cm, densities in g/cm’)
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1.3.3 C/O logging

The first of the two basic operation modes of the neutron-gamma tool is the C/O
(Carbon/Oxygen) logging, based purely on photons generated at inelastic collisions, it could
also be named as the inelastic mode. Inelastic neutron scattering is dominant for high-energy
neutrons (>1-2MeV). The 14MeV source neutrons slow down in a couple of microseconds to
that energy, therefore the inelastic scattering gamma measurement is done during, or shortly
after the neutron burst. The emitted gamma rays are specific to the nucleus, for example to
Carbon or Oxygen.

Most important inelastic gamma energies of oxygen are the 6.14, 6.92 and 7.12MeV lines,
and 4.43 for carbon. For formation evaluation, mostly the Sigma operation mode is used, but
inelastic gamma energies of formation qualifier Si (1.8MeV), Ca (3.73, 3.9MeV) and
Mg(1.37MeV) are also detected, sometimes referred as the Ca/Si logging, though it is not a
separate operation mode.

The spectral measurement of the photon energies is not an ideal process. Only interactions on
the detector can deliver information on the photons. Therefore if the energy of a photon is to
be measured, it must release its full energy in the detector. The requirement of a slim tool for
post-drilling-phase measurements, limits the detector size, and this increases the chance for
partial energy release of the photons. In other words this increases the escape chances of
photons from the detector crystal. The crystals applied here are unusually small, and the
measured spectrum is far from being restricted to discrete lines. Additionally, photons
arriving to the detector might have lost from their energy between their birth place and the
detector, and even if measured ideally, would not contribute to the frequency count of the C/O
energy lines.
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Figure 5. Simulated scintillation detector spectra
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Fig.5 shows comparison of an ideal photon energy spectrum and a scintillation detector
spectrum for the Generic tool model (normalised for better comparison). The prominent
oxygen-line at 6.13MeV of the photon flux indicates a significant number of photons arriving
to the detector with this energy, but the scintillation crystal is hardly detecting it at all. In
practice in place of identifying peaks, broad energy ranges are defined to pick up the
signatures of carbon and oxygen. On Fig 5. we indicated with rectangles a possible choice for
the carbon (3.21-4.77MeV) and oxygen energy windows (4.8-7.05MeV). The peaks in a
realistic measurement are so much smeared out, that the actual information is only a few
percent of the measured data. Data can be extracted only with at low signal to noise ratio,
where the actual information is a variation of less than 10%. Simulations, therefore, has to be
accurate within a few percent.

Theoretical formulation of energy dependent photon detection responses of such small
scintillation crystals is far from being obvious. First of all, the response of a scintillation
detector is a typical example of a non-Boltzmann response, and because of the small crystal
size, not many of the Boltzmann-type detector functions approximate it well enough. The
Monte Carlo methods may cope with more difficult responses, but lack of formulation denies
any possibilities for variance reduction application, and also of the Midway method. Many
attempts have been reported that constructed a well functioning estimator in Boltzmann terms,
but even the Monte Carlo estimator gives an inaccurate estimate when comparing it with
measured data. Chapter 4 provides a detailed explanation of this problem, and attempts to lay
down the foundations of adjoint sampling of the scintillation detectors.

1.3.4 Sigma logging

The other operation mode of a neutron-gamma tool is the sigma mode, where sigma stands for
the capture cross-section of the formation. This operation mode measures a time series of
responses, and sometimes utilises energy dependent windows too. Capture of neutrons can
also be associated with emission of photons that are characteristic to the nuclei. The rate in
which the neutron population decreases yields an estimate to the total capture cross section of
the formation. The time evolution of the neutrons can be further characterised by the domains
where they are located, when their capture induces a photon: early capture events (<200us)
are located mostly in the borehole and the tool, later responses come from domains in the
vicinity of the borehole wall (<400-500us), and the latest events happen mostly in the
formation domain.
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Figure 6. Time evolution of capture photons: faster decrease indicates presence of high

capture cross section elements in the formation

Figure 6 shows a comparison of two simulated sigma measurements for the near detector in a
lin-log plot with a model containing a 5 cm thick mudcake and in one of the simulations this
mudcake contains 3™% (mass-percent) boron carbide. In a homogenous medium the plot
should show a near linear decrease, in both graphs a more complicated effect can be seen. The
response when boron is not present in the system is apparently not a single linear function, the
slope changes around 200-300ps. Adding the heavy neutron-absorber Boron to the mudcake,
at least three different slopes belonging to different domains can be identified with radically
changing cross sections.

The sigma operation mode is a primary tool for lithology evaluation, especially when
combined with energy dependent windows accounting for the separate elements. If simulation
of the energy spectrum is not needed, the special behaviour of the scintillation detectors pose
less of a problem.

Both graphs of Fig 6. show a definite increase of statistical spread for the high time bins even
though a vast amount (10%) of particles were used for the simulation. Keeping in mind that
these results were obtained for the near detector, which usually gathers ten times more scores
than the far one, some form of an efficiency increasing technique is a must for realistic
calculations.
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1.3.5 Straight-forward application of the time dependent Midway method to
sigma logging

As reported by Serov and Hoogenboom [13], application of the time independent Midway
method to a neutron-neutron logging tool is advantageous in terms of calculation efficiency.
The above described neutron-gamma tool is a more sophisticated problem of the same sort.
Similarities in the geometry are substantial, and application of the time dependent Midway
method is destined to induce an efficiency improvement. This is demonstrated here, with the
intention of pointing out key features and problems that is investigated in the remaining
chapters of this thesis.

The results presented here, have been calculated using the time dependent extension of the
Midway method as incorporated in MCNP version 3. The Shell model was used with a 100us
long source pulse with 20 measuring intervals, up to 500 ps. The Midway surface was
selected as a plane perpendicular to the model axis, meshing the near shielding 15cm away
from the source centre. 155 fish-scale segments formed the spatial segmentation, 10 and 15
bins the angular divisions, and the standard MCNP ENDF-VI multigroup library structure
provided the 30 neutron and 12 photon energy boundaries.

The Midway response estimates were compared to a full forward reference calculation both
for accuracy and efficiency. For the reference calculation, only implicit capture, and weight
cut-off (i.e. Russian Roulette below a certain weight) was used. The FOM of the Midway
method in units of the FOM of the reference calculation (Efficiency Gain) for the near
detector can be seen on Fig.7.
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Figure 7. Efficiency Gain of the Midway method for the Near detector: for higher times
the efficiency of the Midway method is 20 times higher then that of an unoptimised forward
calculation
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The results show a promising minimum efficiency gain of a factor 7, i.e. the Midway
Response estimate converges 7 times faster than an autonomous forward calculation. The gain
varies with time, due to a reason to be clarified in Chapter 5. The results were only presented
until the 13™ time bin, as the variance of the reference calculation for the remaining time bins
exhibited the limit where results can be considered reliable.
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Figure 8. Comparison of response estimates

As promising the efficiency gain the Midway method showed, as discouraging is the
comparison of the responses, as can be seen in Fig.8. Symbols connected with solid line are
flux estimates at the near detector. Associated statistical errors are not shown, as error bars
would be smaller than the symbols representing results. On a relative scale, the statistical
errors are below one percent for the first ten bins for the Midway method, and below 2
percents for the reference calculation. The dashed line shows the deviation of the Midway
results relative to the reference, and it is obviously out of the range of statistical uncertainty.
Deviations of such magnitude are of course not acceptable, and the reasons for it must be
found and eliminated, if possible. Chapter 2 is mainly concerned with that problem, and
Chapter 3 aims at a solution of this deviation.
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ANALYSIS OF THE MIDWAY COUPLING WITH
PHASE-SPACE SEGMENTATION

The time dependent Midway method is a variance reduction technique that estimates the
detector response by coupling forward and adjoint Monte Carlo simulations. Of the many
questions that can be asked about this sentence, three will be dealt with in this chapter,
focusing on the words estimate, variance and coupling. The previous chapter provided
formulas on the techniques: how to calculate the estimate, how to calculate the variance and
how to do the coupling. Here we investigate the quality of those techniques: how good the
estimate for the response is, how good the statistical model of the variance is, and how the
computing technique of the coupling can be improved.

It is not only the technical nature of these investigations, that explains why to cover them in
the same chapter. As we have seen in Section 1.4.5, results of the application of the time
dependent Midway method showed discrepancies when compared to unbiased reference
results, beyond statistical error. Reasons for those discrepancies could originate from an
erroneous response estimate or an erroneous variance estimate or both;, while any
modification to these estimators should be feasible in terms of programming, without
radically increasing the computing effort.

The topics of this chapter have been researched neither by Serov[1,9], nor Hayasida et al. [2].
Regarding the accuracy of the Midway responses estimate, the need thereof was not apparent
or not reported, as deviations of such extent were not present in the time-independent form.
As, clearly, introducing a new dimension for the surface integral increases the inaccuracy of
the Midway response estimator.

2.1 Analysis of the response estimate

2.1.1 Coupling on Discretised Base Functions

We have seen in Chapter 1 that the Midway response form is given by

R= [J(P)¢"(P)dP @2.1)
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where both J and ¢ are unknown, but respectively (P, w;) and (P;",w;) samples of them are
given. P; stands for the phase-space coordinates of the particle when crossing the Midway
surface. An analogue forward calculation can be considered as direct simulation of possible
paths of real particles. In this case, a sample would have a weight (w) of 1 or zero. When the
analogue calculation is replaced by a medified, but statistically equivalent game, w might get
any positive value, but usually between 0 and 1.

The adjoint and forward Monte Carlo calculations are statistically independent; we might note
this by writing the integral of Eq.(2.1) in the form of

R, = [ [J(P)L(P,P)g"(P)dPdP (22)

where the linking function L(P,P’) stands for a yet non specified function, introduced to
emphasise that the connection of the two quantities must be established. The only way to have
R, = R is to choose L(P,P’) = §(P-P’). That means that the phase-space positions of particles
of a forward simulation crossing the Midway surface should exactly be the same as for the
adjoint calculation: they have to cross the Midway surface at the exact same position, with the
same energy, time, and angle (note that the flight direction of the adjoint particles is reversed).
This will normally not happen at all. Given a set of forward crossing coordinates, both the
forward and the adjoint particles should be forced to cross at the same positions or a different
h (as in Eq.1.32) function should be chosen. The response can be estimated conveniently by
independent Monte Carlo calculations, if L is separable in its two variables, therefore if it can
be written in a form of

L(P,P)=f(P)g(P) (2.3)

To put in this term the coupling technique as described in Chapter 1, let us divide the
integration domain into K small segments, using a characteristic function for the i segment,

IT,(P), which function is unity on the i interval, and zero otherwise; and let us further

specify that these divisions are completely covering the integration domain, with each two of
them being disjoint, i.e.:

jf I,(P)dP = [dP and [ T, (P)T,(P)P =5, [T} (P)dP (24)

Now we define L as

L(P,P") =§%§~(§)— 23)

and substitute in Eq.(2.2),
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[s(P de¢ "dP'

~ X HI(P)H (P') \ S A7
R, ”J ‘ IH,(P "\dP'dP = Zl AE (2.6)

R, takes a similar form to Eq.(1.34). Introducing this notation, might seem more
sophisticated than necessary, but unifies the formulation with some later expressions. We will
refer to this form of the response estimate as the segmentation technique.

The Monte Carlo interpretation is now obvious: it is enough now that P and P’ fall in the
same segment. It is also trivial, that such a choice of L would only yield exact results if
AP—0 and with that K0, as long as ¢and ¢” can be integrated:

lim R, = lim Z j—dP j ¢—dPAP [s(P)g" (PP 2.7)

The response estimate is exact with finite X if for J(P) holds that
J(P) Zj P"YdPTI,(P) (2.8)

or a similar equation for ¢". In another way of saying if the orthogonal system (as established
by Eq.(2.4)) of II,(P)’s would be complete. Eq.(2.8) only holds for constant functions,

therefore if both functions have higher order components, the estimate of Eq.(2.6) is not
exact. This error is referred to as the truncation error.

It is also possible to interpret L as a function describing the spatial sensitivity of the coupling.
An adjoint and a forward sample are regarded the same, as long as they fall in the same
segment, and the correction of this approximation is given by the division by the interval
width.

If we represent J(P) as given by Eq.(2.8), the better this representation is, the better the
quality of the segmented coupling estimate will be. Given a number of samples crossing the
Midway surface, the best estimate is given by the highest number of intervals as long as the
statistical estimate on each remains valid. These two criteria need to be balanced: a certain
accuracy of the response estimate requires 2 certain amount of segments, and a certain amount
of segment requires enough scores

2.1.2 One-Dimensional Considerations

A known deviation of the response can be handled in two basic ways: the residual can be
estimated or it can be minimised. As the response estimate is exact if both functions are
constant, the first term that causes a deviation is the linear term. To investigate the first non-
vanishing error term, let us consider one-dimensional linear functions with the constant terms
B and B being actually zero:

¢(x)=Ax+B; and ¢" (x)=A4"x+B" (2.9)
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having 4 and 4" the slope of the functions. Taking an interval from a point a to ¢ gives for the
exact response estimate:

R= Cf¢(X)¢* (x)dx= Agf (¢-a) (2.10)

a

Using the segmentation technique, if we do not divide this interval, the estimate is given by

1 “ . a4 (¢ =a)
Rm1=—c—::1—!¢(x)dxj¢ (x)dx= R—— 2.11)

and therefore the residual read:

+ + 2_,2 2
AR, A4 (oo ) A4 (¢*-a')

= (2.12)

4 c—a

The Monte Carlo estimator for Ry, given (x;,w;) and (x;',w; ) samples from ¢ (x) and ¢ “(x)
falling in [a,c], reads:

Nt

wh 2.13
NZ ; (2.13)

~ 1 &
Rm =J—V‘;Wi

A satisfactory description of the estimate would require the estimate of the residual in first
order, therefore and according to Eq. (2.12), the estimate of the slopes. Both as a
representation of the slope of the linear term, and as a quantity that can be estimated from
Monte Carlo samples, using the response function % (in the sense of Eq.1.32) that will now be
given by

a+c

h(x)=x- (2.14)

, vields a useful estimate, if applied separately for the two functions. For arbitrary functions,
identification of the slopes, which would represent the actual functions, requires already a
model, and some information on the nature of those functions. For arbitrary B the integral of
with ¢ yields:

]¢(x)h(x)dX=](Ax+B)(x_a;c)dx=A{C3—a3 _(Cz—az)(c+a) _

3 4
VLR
2 3
Such an integral describes a choice of a first order estimate of an arbitrary function, in the
sense of Legendre polynomial expansion. A Monte Carlo estimator for 4 is written by:

a a

(2.15)
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~ 1 & a+c c—a\Y 2
A—ﬁ;w,(xi— 5 j/{[ > )E} (2.16)

As every Monte Carlo estimate, the estimator for 4 is associated with a relative error, and as a
rule of thumb, we can say, that a relative error above 0./ indicates an unreliable estimate. It
can be expected, that the Monte Carlo estimation of the residual requires more samples than
of R,.;, since the variation of the weights is increased by a variation in x. The required number
of samples for a reliable estimate on the response might not suffice in case of the estimator of
the slope. To demonstrate this, the convergence of a simple response of the integral of ¢x)
has been compared to the convergence of the estimate of 4, having chosen B=1, and 4=1 (see
Fig. 9).

O slope estimator
1 @&u - * response estimator

relative error

10° 10° 10
number of samples

Figure 9. Convergence of estimators for the response and for the linear component The
Monte Carlo estimate for the slope of a function requires considerably more samples than
Jor the integral average of the function.

If we believe this case to be representative for a general problem, the estimate for the slope
converges at least ten times slower than the estimate for the response. In other words the
slope-estimator requires ten times more samples for a stable estimate. In a usual Midway
application, especially with time dependence, this requirement is far-fetched. Having 10
divisions in each of the independent coordinates, means / ¢° divisions in total, and requires
approximately 107 scores for a stable response estimate, and / ¢ for estimating the slope. For
a borehole logging case, at least for the near detector, / ¢’ starting samples give enough scores
in the real detector already for a stable response estimate, and as a matter of interest (with the
current generally available computing capacities) it would take about three days.

The second path to take, is to minimise the residual, i.e. choosing the distribution of a given
number of intervals such, that the deviation is minimal. Taking again the linear functions of
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Eq.(2.9), with zero B and B constant terms, we can write the integral in the segmentation
approximation on two intervals, inserting a point b between a and c:

I]¢dx)]¢‘dx ]¢dx]¢+dx s 2 s a2
—a a b b —- AA+ (C‘ —b ) (b —a )
R, (b)= e R R (2.17)

Setting the partial derivative with respect to b of the residual with the 2-segment response to
zero, yields an optimal position for the insertion point b:

atc
bap/ = 2

(2.18)

The optimised residual become

AL
48

opt __
5 =

(a°—c +3ac’ - 3a’c) (2.19)

If, in any manner, a higher approximation of the functions than the first order is given, and
knowing -as we will also see in Chapter 3— such an approximation is feasible from Monte
Carlo samples, an optimisation scheme follows from the linear approximation of the residual.
First we divide the interval (a,c) into two parts by inserting b,,. The second step is to check
which of the two sections should be divided again, and that decision is made on the residual
by filling in the estimated 4 and 4™ into Eq.(2.19): we choose the interval where the optimum
residual is higher. This yields the third interval, by inserting a division point in the middle of
the selected segment.

Such an optimisation scheme is hardly feasible when having two-dimensional non-separable
functions to integrate. Even if all the linear terms can be identified, the minimisation scheme
now would not regard a single point to insert in order to increase the number of divisions, but
a continuous closed line. The oversimplified model of linear terms might not yield a more
difficult boundary than a second-order geometrical object, but further subdivisions would
require sophisticated accounting of an unstructured mesh. This definitely puts the algorithm in
this form beyond hope for application in all dimensions. It is possible, however, to treat the
functions as separable, and proceed with the iteration scheme likewise, thereby disregarding
the essential nature of introducing a second dimension to a function.

One of the functions that will not suit the segmentation technique is the exponential function.
Selecting ¢as decreasing exponential and ¢ as x”, and selecting the slopes as finite
differentials on an interval, we can test this procedure. In this one-dimensional system, the
procedure showed an increased rate of convergence to the actual result. Applying the method
to two-dimensional functions, where one function is a decreasing exponential in both
dimensions (separable), while the other is given by ¢ *(,y)=x7y~ and the additional divisions
were introduced by selecting also in which dimension it will take place, showed a definitely
more impressive increase in convergence. Figure 10. shows the results normalised to 1, with
increasing number of segments.
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Figure 10.  Response estimates with increasing number of segments using simple
equidistant distribution of intervals, and using an optimisation scheme

It is not surprising, that any alteration to the equidistant division of interval widths provide an
increased convergence rate. For any given function, such iteration can be carried out, and it
might be advantageous for checking intuition-based divisions. To arrive at a fully optimal
segmentation of the phase space requires numerical iteration far more sophisticated than this,
and investigations of such have not been able to establish so far a close connection between
the truly optimal segmentation into K and the truly optimal segmentation into K-I divisions.
Given the strongly approximate nature of the algorithm, it has not been attempted for a
Midway calculation further than helping intuition to familiarise with the system.

A simple rule of thumb is given by rewriting the residual according to the discrete
representation of J (see Eq. (2.8)):

AR, = j{J(P)—f%ni(P')dp'ni(P)}gﬁ*(P)dP (2.20)

i=1 i

The differences of the true J to its segmented representation would be weighted by ¢°,
therefore choosing more segments at those regions where ¢"is high, gives chance for
decreasing the truncation error.

The Monte Carlo estimates should be statistically stable enough for each segment to yield a
reliable final response value. It is not impossible, that loosely given estimates of .J; and &
might still result in a creditable sum, as long as samples fall in a certain segment from both
adjoint and forward calculations. The estimate of the response then might not converge
properly, and also the estimate of the respective variances might be unsatisfactory. If the total
response does converge to a certain extent, we might expect an indication of this
undersampling of the estimate by the variance. If most of the segments have no scores at all
from a forward run, the adjoint particles will contribute much less in average to the response
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as they should when hitting such an unscored segment. If scores are made in each, but the
estimate is not converging per segment, the response contribution of adjoint samples might be
too high or too low.

As a measure of this statistical instability, the behaviour of the variance with increasing
number of segments can be seen in Fig. 11. The functions to integrate by two independent
Monte Carlo processes using the segmentation estimate are chosen as

g=e" and ¢" =e™ where x,x'€[L,5] (2.21)
The number of samples was 10000 for both functions, and the number of segments increased

from 1 to 10000 in each dimension. The analytical estimate for the variance is calculated
using Eq.(3.43). The results can be seen on Fig.11.
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Figure 11.  Estimates of the relative error with increasing number of segments for the
same number of samples. If too many intervals are created for a given number of samples,
the variance of the Midway estimate grow rapidly

There are two basic conclusions to formulate about this numerical example. First of all, the
response estimate is relatively stable for low segment/sample ratio. Secondly, the variance
increases with the number of segments from an initial constant value.

2.2 Analysis of the Variance Estimate

The method of the estimate of the statistical variance of the Midway Monte Carlo response
was outlined by Eq.(1.37-1.40). To refine and to correct those formulas, a different statistical
model has been established. If we regard the (x;P;) and (x;",P’) samples taken from the
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implicitly given pdf’s g(P) and " (P') respectively, we can write the Midway integral in
the form of an expected value, similar to Eq.(2.2):

R, = [[p(P)p* (P)I(P)!I" (P')L(P,P")dPdP' (2.22)

Here / and /" are functions that take care of transforming the samples into the current and the
adjoint function, e.g. division by the angle cosine for the adjoint function. Such a model is not
entirely complete, as we will see in Chapter 4, but for the major differences we will account
later on. Its limitation is based on the fact that a particle can score several times even if the
Monte Carlo modelling does not apply physical or statistical splitting, but such difference is
very much pronounced when dealing with coupled neutron-photon cases. That prohibits using
the same symbols as in Eq.(2.2).

If we substitute in Eq. (2.22) for the linking function L the form as given by Eq.(2.5), and
using £ as a symbol for the expected value, we can write:

R, z E(1(P)T1,(P) E(1" (P)T1,(PY)) (223)

AP,

i

given P and P’ are independent random variables. This form is equivalent to Eq.(2.6). To
shorten the formulas we substitute

X,=1(P)I1,(P) and Y, =I" (P")TL,(P')/ AR, (2.24)

with X; and Y; being still independent random variables. The variance D? of the response
estimate then read:

(2.25)

The first two terms of the RHS of Eq.(2.25) can be identified as the sum of the variance of the
combined Z;=X;Y; random variable, as would be given if all the Z;’s were independent; and the
second term stands for the covariance term.

First we will handle the term of the sum of variances. It can be stated, that

i i

= B((X7 =B (%,))(¥ - B @)+ B (X) E(¥)+ B (1) E(X )26 (1) E*( X))

D(XY)=E(XY-E(Xx)) = (2.26)

and easily verified by expanding the first term of the RHS. If we divide the variance by the
expected value of Z;, we will get a simple formula for the relative variance r ? of each segment:
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E'(XY) E(X,
- ()P (1) ()

i

) D (x)  D(X,), D
VB () B(x) E
1)

) (2.27)

The difference of Eq.(2.27) and Eq.(1.38) is in the second order, and if we accept the
requirement of keeping the relative error » below 0.1 for accepting an estimate, this correction
term does not play a significant role. However, if many of the interval responses are
undersampled, this so-far neglected term gives a significant contribution, and helps
identifying such a situation.

The Monte Carlo estimate is an average of many (N) samples, each taken from the same
implicit distribution, meaning X; should be substituted by Zx;/N yielding the well known
estimator of Eq.(1.37) for #, with g;=x;; and analogously the same should be done for Y.
Before we proceed with these substitutions (before handling the covariance term), in order to
ease identifying the role of some of the coming transformations, we give first the derivation of
Eq.(1.37). The derivation relies on proving the theorem that the variance of the sum of
independent samples equals the average of their variance. The derivation can be done much
simpler, it is only given here to serve as an analogy for the handling of the covariance term.
Let us have z; independent samples from the same distribution, and calculate the variance of

their average:
o 5o ()}

st gl em
=%[NE(Z,)2 +N(N-1)E*(z,)- N’E*(z, )] =
1 1

= EG) B (=) =507 (=)

The last line of Eq.(2. 28) contains two expected values to be estimated, and that might be
given by the average of z/” and z;. Filling in those estimates into Eq.(2.28), the estimate for the
variance reads:

1 ! [Z ]2 (2.29)
= 2, T z; .
N? < INE

Eq.(2.29) divided by the square of the average over all samples, gives Eq.(1.37). For large N
number of starting samples the second term will be far less significant than the first one.

Now we can proceed to handle the covariance term. The covariance term of Eq. (2.25) is a
negative contributor to the variance. This is based on the fact, that if a sample falls in an
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interval, it cannot fall in another one too. Given that the II; characteristic functions are
mutually disjoint, the first term of the covariance vanishes as it contains products of only
disjoint characteristic functions, but the second term is non-zero, giving:

Covz—iiEz (x.Y,) (2.30)

i=t j=1
i

The covariance term does not simplify so easily, when considering X and Y as an average of
samples drawn from the same distribution. The covariance reads if N and N samples are
taken for the forward and adjoint calculations respectively:

St (S S e S e (g | e

(NN+) i= =l n m=l n=l
J#i
Samples are independent, therefore we know, that

im”j.n

E(x,x,,)=(1-8,,)E*(x,,) (2.32)

meaning that the first term of Eq. (2.31) vanishes only (provided the same equality is written
for the y;,, random variables), if the same sample is considered. The sums can be then
evaluated, yielding

& 1

2B (5,0 ) E (5 ) E (710 ) E (3:)

/
J

Z[N(N—I)N*(N*—I)—(NN*)ZJ (2.33)

M
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i

()

&

We can rewrite the Eq. (2.33) in a more interpretable form:

K
Cov=[R2—ZEz(x,)Ez(yi))[le —71]——]\;] (2.34)

We see, that the first term of the product is very similar to a form of calculating the variance,
except here not a statistical variation is measured, but the variation of the interval responses.
This term is weighted by a negative coefficient, which is a function of the number of starting
samples, very much analogously to the 1/N weighting of the variance of the single random
variables in Eq.(2.28). If we fill in the estimators for the expected values, we get in the first
term of the RHS of Eq.(2.34), the weighting term with the number of starting samples will be
1/N°N*, 1/N°N*? and 1/N’N*?; i.e. this term will not likely be a significant contributor to the
variance estimator, if huge numbers of adjoint and forward samples are taken.

Unfortunately, the negative correlation caused by the segmentation of the phase space is not
the only covariance term to take into account, as it is also not true, that a source particle will
cause only one contribution at the Midway surface. This might even occur in an analogue
Monte Carlo calculation. As it has been indicated in Chapter 1, in a coupled neutron-photon
Midway calculation both the neutrons and both the photons deliver scores. As the neutron
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should not necessarily be captured to result in photon emission, it often happens that both the
neutron and the photons it generated reach the Midway surface. As they both belong to the
same starting particle, they belong statistically to the same sample. The same thing happens,
when a single particle re-crosses the Midway surface. The Monte Carlo games are rarely
played without any modifications to the analogue sampling methods, sometimes resulting in
many fragments of a particle walking different paths. Accounting for this effect on the
variance would require the estimation of the correlation matrix of all the segments, requiring
unreasonable storage capacity.

If we resort to the description of the variance as it has been done in Eq. (1.39), in the way of
the notations of Eq.(2.27), we might write:

D*(R) ZEZ Y)+E*(Y)D*(X,) (2.35)

In words, the variance of the response can be approximated by the variance of the forward
calculation per segment weighted by the adjoint segment-wise response squared, summed
with the same term but respective forward and adjoint quantities swapped. If we obtain two
fragments x; and x; of a forward score, one falling in interval i the other in interval j, the sum
can be calculated by calculating the variance contribution as

D (x¥,+x,Y,)~ D (% E* (Y,)+ B (Y,))+

(2.36)
+D* (Y)E*(x,)+ D*(Y,) E* (x,)

Estimating the correlation of both X and Y fragments would require the full covariance matrix,
except if both fragments fall in the same segment.

To summarise the findings in brief, the former error calculation model was not exact, and two
of the missing terms can be incorporated with relative ease. It was also seen that a major
impact can only be expected from the correction of Eq.(1.38), and is only significant, if the
number of segments are in the order of the number of samples. With heavily splitted samples,
their covariance might also be of importance.

To demonstrate and to quantify these effects, a Midway borehole logging calculation for the
Generic tool model for the carbon window of the near detector has been repeated 50 times,
using every time the same forward samples (1.2 million), and different and independent sets
of 60000 adjoint samples. Fig. 12 shows the estimates with their variance. The dashed lines
are put in a distance of two times the standard deviation based on the average of the predicted
error using the former statistical model. The data show apparently a higher spread then
accounted for The em ;)mcal deviation of the results, as estimated from the 50 calculatlons
was 1 92 10+ 2.7 107 (9% on relative scale). The old statistical method predicted 7.11 107+
1.7 107 on average (3.4% on relative scale), whlle a calculatlon that incorporated the above
identified additional terms, resulted in 1.87 10° 3.7 107 clearly better tallying with the
experimental spread. The number of adjoint samples was intentionally selected rather low,
therefore such result does not mean that previous estimates of the Midway applications are all
untrustworthy. It is, though, to be questioned, whether relative errors of a couple of percent
(at least above 3%) obtained with the former error calculation model should be accepted as
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reliable estimates, and those calculations may better be redone. Also, it can be stated, that the
improved model does indicate higher variance resulted from undersampling of the integral.
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Figure 12.  Midway estimates for the response and the standard deviation (old variance
model). The uncorrected variance formula results in an underestimate of the variance.

2.3 Technical details of the Midway coupling

2.3.1 Three forms of time convolution

A single forward calculation can deliver many responses, and each needs its own detector
function to be defined. If the responses are estimated by an adjoint game, each detector
function serves as an adjoint source, and each determines different adjoint functions. In the
same way, multiple source functions can be integrated with an adjoint function, delivering
again multiple responses from the same calculation. It is more common to define several
responses for a model than several sources. Different detector responses do not always require
a completely separate adjoint calculation, it is often possible to run the adjoint calculation
with many adjoint sources, and just account for the different responses by proper
bookkeeping. Let us say, if two energy ranges are specified for the detection at the same
detector volume, it is common to sample both energy ranges in the same time in the adjoint
calculation, and register for each particle the starting energy to distinguish between the two
detector functions. -
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In case of time dependent Monte Carlo calculations, multiple time responses might be
estimated from a single adjoint run, without any adjoint source bookkeeping. Let us divide a
time interval equidistantly into L segments. Let the source be active during the first interval,
and the response calculated at the third one. It is equivalent to the set-up, when the source is
active only on the second interval, and the detector on the fourth. The same idea works for the
adjoint, just the other way around. Therefore, the set of responses obtained from the forward
calculation (for different detector functions) would be the same as the set of responses
obtained from the adjoint calculation (for different source functions).

Having a detector only active before time ¢, the adjoint function will be zero after that time,
and nonzero before £, and depending on our choice of time zero, it might still give values at
negative times. It eases Monte Carlo bookkeeping (and it is done so in MCNP) to account for
the elapsed time of adjoint particles, as they were forward particles, i.e. the time passes
forward instead of backward. If the detector reading is at time #,, the corresponding adjoint
function ¢, can be expressed with an adjoint function ¢ corresponding to a detector
reading at =0, with the time bookkeeping reversed:

4 (P.t) =45 (Pot, 1) 237)
Then the Midway response would take a form of a convolution in time:

R(t,)= [ [2Q8(P.t)¢; (P.t, ~1)dtdP (2.38)
Ay

The dependency in time of the detector function is conveniently given by a characteristic
function like TI(t), i.e. the detector is switched on at a certain time, and switched off later,
while constant time behaviour is given in between. We might associate ¢, with the beginning
of the reading. If we shift #, to different time points, the calculated adjoint function that
corresponds to the same shape of IT but with a starting time /=0, provides enough information
for all those responses. Each shift would require a different segmentation in time for the
calculation of the Midway integral. If the segmentation is equidistant in time, and we shift
time ¢, to correspond with some of the boundaries of the segmentation, we do not have to
recalculate the interval response estimates, but use the very same discretisation results. This
obviously simplifies the calculation, but limits the possible responses to calculate. The
segmented Midway estimate now gives

R:

m

Mk~
M=

T 8jm-icry | ABAL, (239)
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where the adjoint function is meant in the reversed bookkeeping sense, with m segments in
time, and K segments in other phase-space variables. This establishes the first type of time
convolution. The major disadvantage of this formula comes from a possible increase in
truncation errors.

The second type of convolution is an extension of the first one; it uses its technique but adds
an extra possibility for obtaining more scores per sample from the same calculation. If we
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define the source time dependency by a function S(#) but calculate the flux by using a &7)
function instead, obtaining ¢«?) solution, the flux with the source S can be obtained by

p(P.t)= [S(P.t-1),(P.r")dr’ (2.40)

Then the integral on the i time interval for the segmentation technique and the ;/** other phase
space segment is given by

”—jn j¢(1>:) (1)drdp =

IH j¢5 J' (P,t—t")I, (¢)dtds' dP

(2.41)

The same would hold of course for the adjoint function, with the detector function in place of

S. In terms of Monte Carlo, it means, that we might start the forward particles all at time 0,
and whenever they reach the Midway surface, we check the result of the integral of the source
function and the characteristic function of the segmentation, and add such a score. If the
source is —let us say— takes the same simple shape that is to be described by a IT function, the
integral simply means, that we need to check all the time segments after the time coordinate
of a score and give score fragments to each that are affected, proportional to their overlap.
This might be done with both calculations, as long as the integral of S and IT can be explicitly
given. The final result is still obtained by using Eq.(2.39)

The third type of time convolution establishes a completely different type of response
estimation. If we write the adjoint equivalent of Eq.(2.40), we obtain:

¢ (P.t)= [D(P.t-t")g; (Pt')r’ (2.42)
We can now write the Midway response time interval in a different form:

R= [dP[[J,(P,t')g5 (P.1") [D(P,t=1")S(P,t~1")drdr'dt" (2.43)

The integral on ¢ can possibly be worked out beforehand, and the particles use that function as
a representation of the linking function L (See Eq.(2.5)) regarding the time variables:

L") = [D(t-1")S (¢~ (2.44)

This linking function can be illustrated by having both detector and source functions behaving
as a I1-function. If we take a forward particle scoring at ¢’ and adjoint particle scoring at ¢,
we make a score if the two respective source functions overlap, proportionally to the distance
they both cover. Given the linking function is different, the calculation of such response needs
major alteration to the coupling algorithm. The effort is certainly worth it, as such a coupling
is exact, and multiple response calculation of the same coupling can be achieved without
resorting to limitations in fitting segmentation structure to response structure. In other words,
the coupling works for arbitrary adjoint and forward sources, as long as their integral as in
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Eq.(2.44) can be explicitly given. One problem -though investigated thoroughly- has not been
satisfactorily solved and would await future studies, is the variance calculation of such
estimate. The basic problem lies in the amount of positive correlation that is not easy to
account for. Each adjoint sample falling in a certain non-time phase-space segment, may be
coupled to same, or different forward samples, therefore each estimate may or may not be
strongly correlated with each other, and devising a simple variance calculation scheme, has
not yet been successful so far.

We might mention here, that it is possible to use only one of the source functions to create an

exact linking function in the time variable. This might be necessary, if the product of the
adjoint and forward source functions are not easily integrated. The forward source function,
for example, can be sampled in the Monte Carlo calculation, and upon hit at the Midway
surface checked against a score from the adjoint calculation that started form a Dirac-delta
source, its time variable convolved with the adjoint source function only at the coupling
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Figure 13.  Sketch of contributions of particles, using different estimators for the coupling
in the time variable

B
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To compare the type 3 and type 1 time dependent response estimators, an equidistant set of
time intervals has been set, coinciding for the first type with the time segmentation. Fig. 13

- shows a sketch of this scenario for all three types. A single adjoint and a single forward
particle fall in adjacent time segments. The type 1 time convolution will not yield any score,
though for a different time reading the adjoint score will be shifted into the interval of the
forward score, and for that reading they will fall into the same segment, and a contribution
will be given. The type 2 convolution would distribute both particle’s weight in both intervals,
proportionally to their overlap with the segments. The type 3 convolution accounts for the
overlapping of the detector and source functions.
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As we accept the type 3 convolution to be exact, we see that the type 1 convolution uses less
scores for the response, and as the type 3 method, it is a biased estimate. The type 2
convolution uses more scores, but the response is still biased.
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Figure 14.  Comparison of time convolution type 1 (biased estimator)
and type 3 (unbiased estimator)

The truncation errors are given in a relative scale as deviations from a reference autonomous
forward calculation in Fig.14. Source and detector functions were both describable by a /7
function, with width of 50 ps, the same width as for the response shift and time segment
length. The calculations used the Generic tool model. The time convolution of type 3 has not
been analysed to distinguish between (stochastic) undersampling and truncation error
reduction. It is safe to say, that the first couple of bins clearly show a superiority of the 3
type time convolution, and this method, with proper error calculation (if feasible) should form
an integral part of the time dependent Midway method.

2.3.2 Midway Segmentation for a Borehole Logging Case

For a borehole logging application, the actual segmentation of the phase-space has been
realised on a plane perpendicular to the axis of the cylindrical geometry. To close the midway
surface, the model boundaries are used, and those are set far enough from the source to
prevent giving contributions. The phase-space segmentation was always carried out on a
structured mesh.

The spatial discretisation (see Fig. 15) comprised a number of radial divisions, forming
annuli around the axis. The annuli were cut into sectors by lines through the intersection point
of the plane with the geometry axis, and were placed to form an equidistant distribution of the
sectors. The solid angle has been segmented according to an azimuthal angle and the surface
cosine.
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Figure 15.  Sketch of the segmentation of the Midway surface for a borehole logging
geometry

The discretisation in energy was linked to the energy divisions of the multigroup cross section
library. Such limitations were posed by MCNP, as the continuous energy treatment of the
adjoint calculation is not incorporated. Such a treatment for coupled neutron-photon
calculations is feasible [16], though proper segmentation in energy would open a new chapter
in the Midway coupling research. If the segmentation technique is to be used, the response
estimate groups the particles by energy, but that is equivalent to a Monte Carlo calculation
based on a multigroup cross section library. It has not been attempted, but would not
contradict any previous assumptions, to still simulate the forward particles with continuous
energy treatment. In the same time we know, that photon energy dependency is not a
continuous function, and needs special treatment at characteristic energy lines.

The discretisation in time followed the requirements of the time convolution type 1.

2.3.3 Some Special Algorithms of the Coupling

When not using the modified, Midway version of MCNP, the scores (the crossings) occurring
on the Midway surface by adjoint and forward simulations, were written out to a binary file,
together with the information on which starting sample caused each. A coupling program
MICOU has been written to couple the forward and adjoint scores to estimate the Midway
response and its variance. Some details of the programming is described in this section.

Section 1.3.1 described how the Monte Carlo Midway estimate should be calculated. Using
the simplified symbols of Section 2.2, and replacing the x;; with the /" Monte Carlo sample
delivering s;; score from the forward calculation falling in segment i, actually meaning s;; =
w;/AP; and also renaming s*;; = w"; /1 the Midway response estimate reads:
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R, = ]}-;(sl,,j)MZ(sw) (2.45)

Though Eq.(2.45) suggests it, it is not necessary to store the segment-wise averages for both
calculations. If the forward calculation results have been processed, and the estimates of J; are
given, it is enough to tally the contribution the adjoint particles would immediately make. If
s*i;is indeed made in segment i, its ¢; contribution is given by

j lj N ZSA J (246)

and the response is an average of these contributions:

R,=—>¢ (2.47)

This form of calculating a response eliminates the need for two possibly huge arrays of
segment-wise responses, as long as the variance calculation can also be achieved. In other
words this form is the discrete representation of J(P) as given by Eq.(2.8) as a response
function /2 of Eq.(1.32).

If each adjoint score gives a contribution immediately when first processed, a way should be
devised to have an immediate contribution to the variance estimate as well. To devise such a
formula, we have to substitute the proper s and s* scores to first Eq.(1.37), then that to
Eq.(2.27), correct it with the negative covariance calculated by Eq.(2.34) with the proper
substitution of score symbols and proceed to have a variance estimate according to Eq.(1.39)
and Eq.(1.40). Having an s';; adjoint sample agam the result of these substitutions would
yield the following expression (omitting an (NN y? factor):

ﬂ (2.48)

w500 [8 () (] (8

, having added the second term of Expression (2.34), but temporarily neglected the first one.
The first term of the RHS of Eq.(2.48) is easy to interpret in terms of a contribution to the
variance per score. The second term however contains a summation of all the adjoint scores
squared, and that needs waiting until all scores are made. We can rewrite the summation of all
adjoint scores by

[Zv:szj ) = is:}. (s;j +2§ s:,(j (2.49)

It is apparent, that for N=2 the equality holds. One way of proving it in general, we need to
demonstrate that the difference of summing to N and to N+1 is the same for both sides:
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N+l N 2 N 2 N 2
[zs:j] (zslj] (Zs;—/ 1K+1] —[ZS:-]] =2S:K+Izs:j+(s:}\«'+l)
— Py —

/ /= (2.50)

N+l N N
ZSU[S +Zzs1kJ Zs:,[s +Zzszkj :N+1 Z ( zN+l) ged
=

J=1

The form of the summation of Eq.(2.49) would allow to have the new sample immediately
contribute to the variance, but the sum of the previous adjoint scores should be stored for each
segment. Now we can construct a v; contribution to the variance by individual samples:

el

The final relative variance would read, incorporating the first term of Eq.(2.34):

(2.51)

r*(R, )—ZV —[ b —L} (2.52)

R: N N' NN°

This means, that out of the sum of score and the sum of score-squares for each calculation, the
sum of squares for the adjoint (in general: the second) calculation can be spared, and each
adjoint score might directly yield a contribution to the final response and the final variance,
giving chance for tallying and monitoring the behaviour of the convergence of the variance
and the score. We can also attempt to account for the correlation of scores coming from the
same starting sample, i.e. coming from the same history. We need to distinguish two cases:
when scores are made in the same segment and when they hit different ones. For the first
case, it can be handled exactly by taking multiple scores of the same history in the same
segment as belonging to the same score, therefore each history has to be processed and sorted
into the segments before any contribution is tallied. This part has been calculated correctly for
the old variance model as well. For the second term, if we have, let us say, two fragments s*; i
and s 2 of the same history hitting different / and k& segments, we might modify the first term
of the variance contribution slightly by

(;,1) (ZS ) (S;,jz)z[isk_j] —)(szﬂisu+s,:ﬁlzv‘sk,j] (2.53)

This can only be applied for the second calculation, and this form is not exact, but might
approximate the variance contribution better. The correlation of this type should be further
investigated especially when handling neutron-photon cases. There, the scores are made by
both neutrons an photons, and each contribution from the same history should be considered
as belonging to the same statistical entity.
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The same system of direct contributions can be set-up for the time convolution #ype 3. We
have seen, that the linking function L(¢’¢”) of Eq.(2.44) requires the ¢’ time coordinate of the
forward particle, and ¢” time coordinate of the adjoint. If the forward scores have been
processed, and the appropriate phase-space interval has been found in energy, angle and
space, still the time coordinate and weight of the particle should be stored, and the average
quantities and sums of the weights will not be calculated. Therefore, each score from the
forward calculation would only be processed to a stage, when the segment index i, the time
coordinate 7’ and the score s are given. For each particle this set of numbers has to be stored.

As it is unknown beforehand how much space is required for storage, and i (i = I...K) might
run up to 2 million, a linked list system has been evoked. Using the FORTRAN 90 feature of
dynamic pointer allocation and creation of embedded type variables, a null-sized array is
created with K indices. An element of this array is created of a storage place for the ¢’, another
one for s and finally a pointer is added that is pointing to itself. If a score arrives in segment i,
such a set of data is stored. The second score will be put right before the first one to a new
storage element, and the pointer this element will now point to the first entity. With such a
system, only the required amount of memory will be allocated.

score 2 score 1
t’ v
S /V S
pointer pointer —— “0”pointer
H_J
Content

of the i element
of the score-array

Figure 16.  Linked list system for time convolution type 3

When processing of the forward calculation is finished, the adjoint scores will directly score.
When the index 7 has been determined, the code checks if it contains an element. If so, it
checks if the Linking function L would provide a score, and adds the contribution to the
response, and its square to the variance. To be precise, the following step is to check if L
belonging to other detector functions would yields a score, and account for the contributions.
When done, the code checks if the pointer points to a next element. This feature gives the
name for the construct: the elements are linked, and it is not known how long the list actually
is, and we have to go through all the links until the list ends. It would be, of course, possible
to store all the scores in such a system, and keep their coordinates registered. This means that
an adjoint score could only give all its contributions by browsing through all of the forward
scores with their coordinates, and that would make the coupling highly inefficient. However,
if a better linking function for the other coordinates, or some different statistical estimator is
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found, programming of such with even some million of particles is feasible. Note, that this
special treatment of scores is only necessary, because the linking function L is not separable.

2.4 Summary

Given that the details of the Midway coupling with the segmentation technique have been
investigated, it is time to assess the factors that contribute to the discrepancies. The error
calculation has been corrected, and we concluded, that the quantity on which the reliability of
the results had been assessed in the past, had been incorrectly given. We have seen that the
source for deviations could also come from the truncation error, having the thereby defined
linking function L not exact. In the time variable it is possible to give an exact form for the
coupling, and that indeed increases the accuracy of the results, although the variance
calculation is not straightforward.

We can now tune our calculation to deliver acceptable results in terms of accuracy, by
changing the segmentation structure fitting the distribution of the flux or the adjoint function,
and run enough samples to get a definitely converged estimate. Figure 17. shows the result of
such an attempt, calculated on the Generic model set-up, as was given for the calculation for
Fig.14, but now changing intuitively the segmentation structure, and mainly, starting ten times
more particles. The accuracy of the results clearly improved, and the deviations from the
reference calculation decreased below a couple of percents (at least for the first few time
responses). We can conclude that in general the simplest factor to tune is the number of
starting particles: it should reach a level when the estimate becomes stable. If we are
confident that a certain segmentation structure would give a good enough approximation for
the Midway integral, with this choice we have already decided on the number of particles to
run. For a regular Monte Carlo calculation we usually decide the number of particles by the
level of statistical inaccuracy we want to reach. For a Midway calculation, the variance cannot
be targeted directly, a given segmentation would already decide on the minimum amount of
particles to reach the Midway surface. This difference becomes very much pronounced, when
a sufficiently accurate estimate would require a large number of segments, and the number of
particles this segmentation requires might give already an acceptable estimate in the real
detector. This does not mean that the autonomous forward/adjoint calculation would also be
more effective, when we reach the number of samples giving a stable Midway estimate, we
might end up a very low variance, but the minimum computation time is already set by the
method of doing the Midway coupling.
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Figure 17.  Difference of the discrepancies when applying a higher number of samples.
Seemingly systematic underprediction changes to a statistical variation around the mean,
when increasing the number of samples

Further investigations of the coupling method should target the use of more information out of
the adjoint and forward scores, i.e. trying to increase the adjoint and forward scores that
would together contribute to the response.
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MIDWAY COUPLING WITH LEGENDRE
POLYNOMIALS

The Midway method is not the single Monte Carlo application that would benefit from
representing a response as a function instead of a (set of) integral values. It is often desirable
to describe distribution of quantities in the phase-space, let that be even just for a reason of
better understanding a modelled system. This chapter describes methods for estimating
(phase-) space dependency of quantities based on Monte Carlo samples, and how this
technique might be used for estimating the Midway integral.

The idea of estimating functional expansion coefficients by Monte Carlo has been introduced
by Beers et al [17] and later applied to shielding problems by Noel et al [18]. The usefulness
of such a technique has not been debated since, though it has not become a standard feature of
the major Monte Carlo codes. At the same time with the author of this thesis (and
independently from each other), Griesheimer et al. [19] revived the method and extended it to
use track length estimators [20], and later provided an investigation on the convergence
properties of the functional expansion techniques. Densmore [7] applied the expansion
technique to couple Monte Carlo calculations with deterministic adjoint solutions, in the first
two angular moments. Here we will demonstrate the capabilities of Monte Carlo functional
expansion and its application to the Midway coupling.

3.1 Function Expansion Using Monte Carlo samples

3.1.1 Function Expansion on Orthogonal Bases

Segmenting the phase space to obtain estimators for representing a function of the random
variables of a Monte Carlo calculation is not the only, unique technique: neither in the way of
obtaining the representation, nor in the possibility of estimating it by Monte Carlo. If we

construct on the [, space a set of orthogonal g,(x) functions, i.e.:

[2,(x)g,(x)dx =5, [g} (x)ax (3.1)
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and this set is complete, meaning that there is no other function that is orthogonal to all of the
basis functions, any arbitrary function can be expressed by their weighted sum:

F(3)=3dg,(x) (2)
=0
The coefficients are obtained by multiplying both sides by g;(x) and integrating over x:
Ax) f(x)dx
) e s
.[ g (x) dx

As a side note we mention, that if we choose now f{x) to be the radiation current, and the basis

functions as the II; characteristic functions of the segmentation technique, as given by
Eq.(2.4), we obtain

d, = j—Jiz') I, (P")dP' (34

and by inserting it to Eq.(3.2) we obtain an equation similar to Eq.(2.8).

The Monte Carlo estimates of the d; coefficients are obtained from the (x;w;) samples of f{x):
713 / (g2 (x)d 3.5
j—ﬁnggj(xi) _[g, () dx (3-3)

For the reconstruction of the function we need to truncate the function series, and estimate
only the first K coefficients:

F(0)=2d,(x) (3.6)

J=1

The nature of this truncation is not to be confused with the truncation of the segmentation
technique. Given the set of IT; functions is not a complete function base, the summation
includes all of the elements of the function base, and the residual is given by the
incompleteness of the set. The truncation regarding a complete set means neglecting some of
the elements of the complete function base.

For the reconstruction of f{x), we need K coefficients, and they might all be estimated by the
same run. According to the formula of Eq.(3.5), the same (x,w;) sample could give
contributions to the estimates of each dj, yielding a heavily correlated series of coefficient
estimates. The variance of the recreated function would be given, therefore, at x as:
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3.7)

In case of the segmentation technique, the covariance term vanishes, given the I1;’s are pair-
wise disjoint. This is not the case for a general set of basis functions, moreover such a
covariance term might not be insignificant, especially if we consider that now &; can also be
negative. If we have x; independent position samples, and we keep in mind that now the
statistical quantities are generated from the independent position samples, the variance
estimate of the recreated function at y will give:

5 (3 1L L&EE we(xn)e(x) £ we,(x) |
Bl EEE ) sl gy

i=1 j=0 k=0 dx.[gk i=l j=0

If we calculate the relative error, we obtain

(3.9)

The necessity of evaluating Eq. (3.9) for an error estimate, means, that not only the individual
variances of the estimates of d; are informative on the quality of the reconstructed function.
Moreover that is the only term that gives always a positive contribution to the variance of the
reconstructed function at x

The choice of the basis function set must be done carefully and meaningfully. Beers et al [17]
claim, that for a yet unknown f{x) the arbitrariness of the choice of the basis function limits
the general applicability of the method, mentioning the example of the unfortunate situation
of having f{x) = gk+(x), meaning that the truncation is done before the first important term.
Such a blindfolded selection of the function base would indeed undermine the method, and
therefore (as it is done generally in all branches of physics) such a set of functions should be
selected, that is meaningful for the interpretation, and by no way should be such a function
base selected, when the effect possible of major contributions from the K+1, K+2, ... terms
are not well understood, and with a reason disregarded. It seems, however apriori (before
starting any Monte Carlo calculation) more informative to assess the possible effect of
truncating a function series at K, than apriori seeing the difference that creating K instead of
K+1 segments would make. It should also be noted that in particle transport the functions to
reconstruct are usually strictly positive, and could only coincide with the first element of the
function series.
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Function expansion is a common tool for solving differential equations. The Monte Carlo
estimation of the expansion coefficients is also useful when comparing analytical solutions to
simulations.

3.1.2 Function Expansion using Legendre Polynomials

One meaningful choice for the basis functions could be the Legendre polynomials, as one of
the simplest of the Gegenbauer polynomials. Though the base functions are not given
explicitly, it does not pose a limitation to their application for this purpose, as a recursion
formula available for the successive generation of the functions. These polynomial
representations are usually valid on a preset interval (a,b), and sometimes require the
definition of a weight function p(x) for the orthogonality:

e, (), () p(x)dx =, 2 (x) o () (.10)

instead of Eq.(3.1). The recursion formula is then given [21] by
g.(x)=(4x+B)g,.(x)-C,g,.(x) 311

where 4,, B, and C, are constants and characteristic to the polynomial function base. If a
Monte Carlo sample scored at x;, the contribution to the coefficients can be calculated using
previous estimates by

8, (xi)=(A71xi+Bn)gn—l(x1')—cngn—2 (xi) (3.12)

to fill in Eq.(3.5). The recurrence formula is not always numerically stable, therefore not
always allowing the iterative calculation the base function values at a certain position. With
the choice of the Legendre polynomials, we get the recursion formula of

(n+1) P, (x)-(2n+1)xP,(x)+nP,_ (x)=0;
P (x)=1 (3.13)
B(x)=x
Eq.(3.13) is numerically stable, therefore it can be used for successive approximation of

contributions to the different coefficients. The orthogonality of the Legendre polynomials is
given on the interval (-1,1). The norm of the polynomials is given by:

1 , 2
[B ()= (3.14)

To apply the above formulae for Monte Carlo, we need to transform the coordinates of the
function to the (-1,1) interval. If the function f{x) was given on (a,b), the coefficient of the
expansion is given by
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. 1
di=212+1 If(xb_a+b+a)1’,.(x)b_adx (3.15)
-1

2 2 2

It is also possible to transform the Legendre polynomials to (a,b), by

2i+1° b+a) 2 2
S R (s R

If we happen to calculate the first Legendre coefficient (P;(x)=x), and reconstruct the linear
term of the function we get

b+a) 2 3( 2 Y(_ b+a)} b+a
d,[x— > jb—azg[b—aj (x— > j!f(x)(x— > )dx 3.17)

It follows therefore, that
( j jf ( b“’) v (3.18)

We see, that Eq.(3.18) is equivalent to Eq.(2.15), proving that the choice of the scoring
function of Eq.(2.14) calculates indeed the first Legendre term for an arbitrary f{x). Although
it is not practical (and mentioning it is just for the sake of curiosity), we might select the
transformed Legendre functions with the coordinate system origin set at the middle of (a,b),
and set the orthogonal functions on (a,b) instead of (-1,1). The norm will now differ from
Eq.(3.14), for the first Legendre term it is given by

,(  b+a 2(b-aY
jp( ) -3( 5 ] (3.19)

in agreement with Eq.(3.18). If f{x) is given as a pdf, the meaning of the RHS of Eq.(3.18) is
the expected value of the deviation of x from the middle point of the interval, and as we have
seen, in Chapter 2., it might be used as a direct measure for the first order inaccuracy of the
segmented Midway coupling. The zeroth coefficient obviously gives the integral average of

).

3.1.3 Numerical examples

The equivalence of the formulac Eq.(3.18) and Eq.(2.15) means that the convergence
properties of the estimator of .d;, are the same as for the slope estimator on Fig. 9.
Reformulating our conclusions in Legendre-terms, the amount of scores needed for a stable
estimation of d; is about ten times higher than for estimating dy. We have also seen, that when
reconstructing f{x), the relative variance is not as informative: we might expect a successful
function expansion even when having coefficients with high relative errors.
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To assess the quality of Monte Carlo Legendre expansions, we compared it to a function
expansion by segmentation using a simple model geometry. The model volume was z-axis, 40
cm radius cylinder, filled with SiO,; with 20cm radius Scm thick cylindrical 14MeV neutron
source. We calculated the flux on a surface, which was located 5cm below the bottom of the
source cylinder, perpendicular to the z-axis. The bottom of the geometry was set 10cm lower
than this “mapping” surface. The scores were calculated by MCNP, and printed out to a
PTRAC file, therefore both the Legendre expansion and the segmentation representation
made use of the same samples.

For the segmented flux estimator, the mapping surface was divided into 80 sectors, and the
flux values were given as integral averages. As the system is rotationally symmetric, only the
radial dependence is shown on Fig.18. Also on Fig.18, the function expansion using Legendre
polynomials is shown, using 20 and 80 coefficients.

0,03

<~ 0,02
“.‘m
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—@— Legendre (20 coefficients)
—&— |egendre (80 coefficients)
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radius (cm)

Figure 18.  Flux as a function of the radius calculated by dividing the phase-space into
small blocks, and applying Legendre polynomial expansion

The first conclusion is to draw, that even 20 Legendre coefficients approximate the flux
accurately (see also the magnification on Fig.17). When applying only 20 coefficients, also
statistical error is lower than for the segmentation representation. To make the comparison
fairer we should compare the variances when using the same number of segments as
coefficients. In that case, using, the 80™ order Legendre expansion, the variance exceeds of
that of the segmentation technique. A practically useful feature of the Legendre expansion,
that the calculation of 80 coefficients allows the post-calculation filtering of the coefficients, a
20" order expansion is a partial result of the 80™ order calculation; if we find that we have
chosen too many coefficients, we already have the means of calculating the 20" order
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expansion, without having to recalculate the expansion coefficients. Such a process is
obviously a problem for the segmentation technique, though it is possible merge some of the
segments, and average their scores, the segment boundaries cannot be modified any longer.
This feature of the Legendre reconstruction solves the problem of selecting more segments
than we have information on. In the opposite case, when having more information we could
still extract, having kept the scores, the coefficients and their covariance matrix, we can
simply calculate the contribution of additional terms. Also, by such a process we obtain
information on the importance of a certain Legendre term to the reconstructed function,
giving an indication of the accuracy of the process. The cost for these advantages is to be paid
in computing time and computer memory. An apparent weakness of the Legendre expansion
is, the convergence at the edges of the intervals, where the convergence is not point-wise.
This is much more pronounced when using 80 coefficients, moreover the function values
show an artefact, that most likely not correspond to the actual flux.

It might be possible to devise a set of segments by an unstructured mesh that describes the
flux using just 20 segments as good as using 20 coefficients. That might be very well the case,
when the targeted function is not continuous, or when the function is not smooth. For the
purpose of comparing the methods for less smooth functions, another model geometry has
been chosen, using the same model volume and source, but filling the model with water
instead of SiO,, and placing three cylinders in the model each with radius of 10cm oriented
towards the z axis, one filled with sand, one filled with an absorber and one was left void. The
sand cylinder was modelled with 2.3g/cm® density, while the absorber as an 80g/cm’ lead. The
scores were calculated by MCNP, using 10° starting samples.

Source

Absorber
Void

Figure 19.  Model geometry for 2D flux mapping
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For the Legendre expansions, we have now two spatial variables to account for, and such an
expansion can be devised for the x and y variables as

J._[P P(y xy)dydx

= 3.20
. IPZ (x)ax [P}(») 320
and
J(xy)=22d P (321)
Jj=0 i=0

We note here, that such an expansion does not mean that the function is handled as a
separable one in x and y. For the variables the radius, and the spatial azimuthal angle has been
chosen, therefore both the segmentation and the Legendre expansions were devised according
to the same variables. When transforming the regular x and y dimensions to an (r,8)
cylindrical system, we have to take care of the Jacobian determinant (here r for the radius)
when calculating the integrals of Eq.(3.20).

About the spatial distribution of the flux, we can predict that within the absorber cylinder the
flux should be very low, surrounded by a very steep depression almost an abrupt change, and
at the boundaries the derivatives should be discontinuous. The void cylinder should have the
same effect but the other way around, while it is hard to foresee whether the change to higher
flux values around the boundaries will be limited to a small region. . It is also hard to foresee,
whether the sand cylinder will have a noticeable effect. Outside the three cylinders the flux
should be decreasing with the radius.

Fig.20 and Fig.21 show the flux as a function of the spatial coordinates x and y, for the
segmentation and the Legendre expansions, respectively. The segment-wise representation of
the flux is obviously compromising the shape of the absorber intersection we should clearly
see a circle; and segments that are half covering the perimeter blur the edges. The centre of
the geometry comprises very small segments, resulting in yet non-converged,
unrepresentative estimates. In the void cylinder the image shows increased flux, though it is
hard to see how large domain is affected. The sand cylinder is not giving a noticeable effect.

This model has been created to give a very hard task to the Legendre method. Though it
seems, that the Legendre expansion yields the same positive results as the segmentation
representation, somewhat more in accordance with the expectations. Introduced artefacts are
somewhat more disturbing now: low r values below 5-10 centimetres are very doubtful, and
the at spatial azimuth starting and ending coordinates the function values do not seem to
match. Here it is impossible to assess whether these artefacts make it impossible to discover
the effect of the sand cylinder, or it is indeed negligible. All in all, we can say, that the
Legendre method delivers good results even for such an unsuitable problem, at least in a sense
of visualising the flux. Numerically the artefacts are important enough to raise doubts on
applying the Legendre expansion for such an unsuitable problem. Meanwhile Griesheimer et
al. [22] demonstrated, that the convergence of the Legendre expansion technique may be
faster even for only piecewise smooth functions.
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Apart from visualising some quantities of a Monte Carlo calculation, the function expansion
technique gives all the advantages of treating a function as sum of analytical functions.
Having the coefficients calculated, we can give the function shape on any domain or line; we
can also give the maximum and minimum points even locally, together with the statistical
confidence intervals of the domain; might calculate the derivative of the flux or the primitive
function, etc.; and these are obviously problematic for the segmented representation.

3.2 Midway Coupling with Function Expansion coefficients

3.2.1 Midway Coupling on Complete Orthogonal Bases

The basic aim of recreating the function is to calculate the Midway response in an alternative
form. If J (or ¢") of Eq.(2.1) is represented by an orthogonal expansion truncated at X, i.c.

~ K
J(P)=Y dg,(P) (3.22)
i=0
the Midway response estimate is given using orthogonal function expansion by
R= [J(P)g" (P)dP (3.23)

where the approximation of J is now given at every P, and the Monte Carlo interpretation is

R, =

AL is{'.}(Pf) (3.24)
i=1

in line with the notations of Eq.(2.45), regarding the symbol s;”. The only main difference, or
odd behaviour of the explicit scoring to a general scoring function 4(x), that this one is
associated with a variance at every P

If we insert Eq.(3.3) into Eq.(3.22), and then to Eq.(3.23) we obtain:

& [#(P)g,(P)dP [ (P)g,(P)dP’
~ % [&*(P)dp

(3.25)

We define the adjoint expansion coefficients by

d; = [¢* (P)g,(P)dx (3.26)

to obtain

X
R,=Ydd; (327
i=1
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The Monte Carlo interpretation of the integral for d;" is obvious. The linking function L
would then be given as

K

Z P)g (P

= - (3.28)

Jg(P)ar

We can expect two main advantages of the function expansion coupling over the
segmentation technique. First, an increase in accuracy (smaller truncation error), at least when
the flux and the adjoint function are smooth enough. Secondly, as each score gives
contributions to each of the coefficients, we might achieve an increase in the amount of
information that is actually used for estimating the Midway response; and with this, we might
obtain a better statistical estimate. The obvious drawbacks are the increase in computation
time and in computer memory requirements.

3.2.2 Convergence of the Midway coupling using Legendre function base

To apply the function expansion technique to the Midway coupling, we need to define an
orthogonal set of functions on the whole phase-space. Using Legendre polynomials, the
extension for multiple dimensions is done in the same way as for Eq.(3.20), and analogously
for the adjoint coefficients. We will proceed to show results for two-dimensional Legendre
expansions, as extending to further dimensions is straightforward.

The convergence [34] of the coefficients of the Legendre Midway estimate is algebraic, given

by
[2i+1 | (”*”')]
o) (—j (3.29)
2\

here xand «* stand for a measure of the smoothness [34] of J and ¢°, and equals the number
of derivatives that are square integrable. If we compare Eq.(2.12) with Eq. (2.15) or with Eq.
(3.18) we can give the first-order estimate of the truncation error for the segmentation
technique, having K equally spaced segments:

ldd; |=

AR, =fo(m3):o(%] (3.30)

i=1

x and x+ are characteristic of J and ¢, therefore it is not possible to asses which method
would converge faster. For analytic functions, the Legendre coupling technique would
converge exponentxal]y with the number of coefficients, while the segmentation technique
improves in the order of 1/K°. Fig. 21 shows such a case. For Fig.21, the integral of the
following function has been estimated using Monte Carlo samples:

2

4 (%) :4%’% and J (x.) =2 1 xe[L.6] y e[1.10] (3.31)
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For these analytic functions the Legendre method showed an extremely fast convergence to
the true results, while the segmented approximation converged as 1/K* as now we varied the
segments simultaneously in both dimensions (fitting a general hyperbole the power was
estimated as 4.44).

1,20 4

O  Segmentation Technique

1,18 4 O Legendre Coupling
1,16 4
1,14 4
1124 o
= 1,10
?
® 10 ©
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number of coefficients/bins in each dimension

Figure 22.  Convergence of the segmented and Legendre Monte Carlo estimates of the
coupling integral. The Legendre coupling converges considerably faster then the
segmentation technique

If we compare the amount of computation time we have to invest in the estimates, in two
dimensions, a structured segmented mesh would require a searching procedure to find the
proper mesh for a score, and a simple mathematical operation of calculating the bin-wise
function results. For the continuous base function the contribution to each coefficient would
require K times more mathematical operations per score. The amount of calculation would
increase with the total number of coefficients used. Finding a se§ment in a structured mesh
requires more operation than K operations, and can be done in K'? on average per dimension.
This obviously results (in realistic cases) in a huge difference, and the advantage that the
function expansion coupling would offer, has to worth the extra time.

Griesheimer et al. [22] provided an analytical and numerical study on the convergence of a
selected continuous, piecewise smooth function having an algebraic index (x) 2.5 of the
expansion based on Monte Carlo samples. The selected function had two points where the
derivatives were discontinuous, and showed that the convergence of the Legendre expansion
was faster than of the segmentation technique. They have also shown for arbitrary functions,
that when the amount of coefficients or segments became undersampled, i.e. when we select
too many coefficients/bins with regard to the available scores, the increase in statistical spread
followed the same pattern for both methods, namely O(K/N). As it will from the derivation of
the next section, the variance of the Midway coupling grows in the order of K/(NN") for the
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segmentation technique. Though rigorously not studied, we can assume in the analogy of
Griesheimer et al. [22], that the same order of variance increase can be observed for the
Legendre expansion technique.

3.2.3 General estimator for the error of the Midway response estimate

The analysis of the variance estimate of the Legendre coupling may follow the same scheme
as in Section 2.2. However, we will choose another path: having a complete function base for
the coupling allows a simpler way of giving an overview of the variance calculation. Let us
choose an integral of

I=[f(x)f (x)ax (3.32)

Now using the Legendre polynomials (this choice of the basis function is not essential to all
the further steps in the derivation), we can write this integral in the form of

S 2i+1 o,
1=Z’Tdd (3.33)

where now the d; coefficients (and analogously the d;" coefficients) are given:
d = Jf(x)R (x)ax (3.34)

differing only from the previous definitions by not including the normalisation factor for the
polynomials. The coefficients are estimated from two independent Monte Carlo simulations,

by sampling the pdf’s p(x) and " (x). The estimator for d; reads:

d, = jgo(x)[%]ﬁ(x)dx:E{[s{)gg]]’l(x)}zE(q) (3.35)

For the estimate of the coefficient we draw x; samples from g(x), and average the scores

made on the response function (now P;), each weighted by the term in brackets. In a non-
analogue simulation the pdf will not be explicitly known, while for an analogue simulation
the weight is reduced to / meaning that the pdf is actually f{x). The symbol e; Equation (3.35)
was only introduced for shortening the formulas.

The variance of I now reads:

D2 = 2221;1 2J2+1 Cov(ele, ,€,€; )
i=t j

522 g og ()5 (e Eler) |

o
i=0 j

(3.36)
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Now we did not make a separation of the covariances to diagonal and non-diagonal elements,
as now the non-diagonal elements cannot be further simplified, or neglected. Similarly to the
derivation with the relative variances in Eq.(2.26), we can write the covariance terms by

D*(I)=
. +Cov(e. e) ( )E(e )
=y = l+12]+1 +Cov( )E(e)E(e)

J
e +Cov(e“,ej)Cov(e ,e )

(3.37)

The first term of the summation yields:

3 3R Con(ee (e E(<))-

i=0 j=1

giz”l 2]+1[E(eiej)—E(ei)E(ej):IE(ei*)E(e;)

(3.38)

We can evaluate exactly the RHS. Taking its first term gives:

The second term yields:

532 o) (e (o) () -

j=1

=2§2”12f L o) L (")Je(x)dxfp(x)(f (")]1‘:-(36)dx>< (340)

i=0 j=1 2 2




Chapter 3 67

Summarising Eq.(3.39) and Eq.(3.40), we get an expression in a form of a variance, namely
the variance of the function of a random variable, and this is now taken with regard to go( x) .

o o)

o(x

o] et

Following the same steps, with the other “single-covariance” term, we obtain for the variance
of I

(3.41)

(3.42)

The third term of the RHS of Eq.(3.42) cannot be further simplified (to the author’s
knowledge), and remains the only term, that resembles the coupling technique. The lower
indices of the variance of this term are meant to express, that the last variance term should be
calculated according to the joint probability density function of the two random processes.

If we have N and N* samples from both pdf’s, the population means will give:

D2(1)=—]1\7D;[f(x)f*(x)]+LD;+ [f*(x)f(x)]+

N+ gg+ (x)

+L1 2 f+(x+) R f(x) e
NN+DAOW*[Z(£O+(X+)PI'( ) '](p(x)P'() z]]

The third term of the RHS, we now see, will decrease very fast with the number of starting
samples, and we will neglect it from on. This term diverges when increasing the number of
coefficients, and is responsible for the increase of variance when too many coefficients are
selected. For the segmentation estimate, the 3" term shows a linear increase of the variance, if
the segment divisions are equally spaced, the unstable part equals IK/NN".

(3.43)

This formula for the variance, gives a recipe for estimating the asymptotic (in terms of
truncation error) variance based on Monte Carlo samples. The actual form of the variance
estimator depends on the exact linking function L, that establishes a biased, but feasible
connection between the two independent random processes. Changing Eq.(3.32) to a form of
Eq.(2.22) is changing only the notations.
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3.2.4 Variance estimator for the Legendre Midway coupling

Estimating [ is relatively simple using Legendre polynomials. A more difficult task is to give
estimates to the second moments of the variance calculation (as in Eq.(3.39)), if we intend to
run the adjoint and the forward calculations in succession. The cross-variance term (the third
term in Eq.(3.43)) we will neglect here, as already devising an unbiased estimator for the
variance, as will be demonstrated here, is not practical for a real Midway calculation.

The first term we treat is the end-result of Eq.(3.39), having assumed that the adjoint
calculation has been done first, and we obtained the (x;,w;) samples of the second (now
forward) calculation. The Monte Carlo estimator read:

2
7(x) 13 L, EE2i+12j5+1 nrat
X)) —=Lf(x)| dx=—) w - P(x )P (x,)d: d; 3.44
Jo 217 o) arm g S S F IS L ) 5)28) a0
The adjoint coefficients are obviously stored for the computation of /; therefore this term does
not require allocating additional computer memory. Calculation-wise, however, this formula
needs K X K calculations for each score of the second run. The more problematic term is the
adjoint counterpart of the result of Eq.(3.39):

9" (x)

The least memory consuming way of calculating this estimate is to obtain first the estimators
for the d; coefficients, and then process the adjoint scores. Altogether it would require
handling the forward and the adjoint scores twice: first calculating the d;” coefficients and
afterwards processing the forward scores according to Eq.(3.44), in the meanwhile obtaining
the estimates for the d; coefficients and the other unaccounted terms of Eq.(3.40). Then we
would need to reprocess the adjoint scores to calculate Eq.(3.45). The inconvenience it causes
is not only the increased computation time, but also it basically makes it impossible to
incorporate such a process in a regular flow of a Monte Carlo calculation. We can solve this
problem by storing the C;; elements of the first term of the covariance matrix of the adjoint
calculation, calculated as

jgo*(x)(f+(x)f(x)J iy~ Z(w;)zii2i+l2j+18(x[)f}(x,f)3.-9; (3.45)

c, = i(w;)z%zf'”g(x;)};(x;) (3.46)

Ip;(x)(é((’?)f(x)] dxzgg%gwklﬂ(xk)—ib—gwkﬁ(xk)a,j - (3.47)

The way of programming this estimator to be calculable in the second (now forward) score
processing, we need to apply the formula of Eq.(2.49). For a realistic borehole logging
simulation this form of the estimator is still not practically helpful, considering the number of
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dimensions of the integration. For the above reasons, when applying the Legendre Midway
coupling for borehole logging calculations, we neglected the covariance term. Such an
approximation is not per se an underestimate.

We need, therefore, to devise an approximate scheme for the variance calculation, and
quantify the effect of neglecting the covariance term. The covariance of the coefficients
expresses their statistical interdependency. With that it gives an indication whether
superfluous information is stored in the coefficients on the underlying statistical process: if
the correlation is non-zero, the data is used above their information content. If the coefficients
are completely independent, the covariance term should be zero, and the estimator of
Eq.(3.47) could be neglected. If we fill in the statistical estimators for the variance of the
population mean into Eq.(3.41) for the truncated Legendre series, we obtain

(10 ]
N*{j“’ g acLir s ]} )
zi lzii WkE(xkkzi: i( )221+1212+IR( )P](x,:)—- (3.48)

k=1

2
1 1 & i 2i+1
[zzwm WS R (s )}

a2 3
N N+ i=0 k=1

The second term of the RHS vanishes N* times faster than the first term, and we will neglect
it from now on.

Neglecting the covariance of the coefficients means that the significant term of Eq.(3.48) will
take the form of

Jor () do= for () 2 3222 ad P (), (s =
~ Jor (35 25 ap 2)

i=0

i.e. we estimate the square of a function with the sum of its squared Legendre components. In
case of truncated series, the most conservative estimator for the error is given by

33 4 (x) B ()=

S%ii(dfziglg(x)j2+(2j2+l j (K+1)2[ Zhay )2

and for the integral of Eq. (3.49) this means that it is less than K+ times the independent
second moment. For further investigation we write the exact expression for the function
squared:

(3.50)
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i[ZHI ) Z:Zzz+12]+1 PP ()= £ (x)+2(x) )

i=¢ =0 20

where f{x) and g(x) are introduced to simplify the notations. As g(x) contains only the cross
products of the Legendre terms, the integral of g(x) is zero. This means that for constant
" the approximation is exact. We also see that f{x) contains all the terms that are always
positive. As flx) + g(x) describes the square of a real function, it must be positive for every x.
If we separate the integration domain I' into the parts where g is positive (I',) and where g is
negative (I"-), we see, that

rjg(x)dx

= [g(x)dx (3.52)

and g(x) on I'_ is bounded by

le(x)|< f(x) forxel (3.53)

If the sizes of Iy and I'- equals, f + g < 2f for every x in the whole integration domain,

meaning that the exact variance is less or equal than two times the estimated one. It is most
likely that the integration domains will be different in size, and the positive part of g(x) then
might, but still not surely, exceed f{x), while Eq.(3.52) should still hold: if g exceeds fthe size
of the domain where it happens is inversely proportional to their ratio. To have, therefore, an
underestimate of the variance by neglecting g(x) (beyond a factor 2 difference) is possible, but
it would require special " which is low on 7 and high on 7. In general it is more likely to

have an overestimate instead, i.e. to have the neglected covariance term negative.

3.2.5 Applying the Legendre Midway coupling for a borehole logging
calculation

Application of the Legendre coupling in each dimension of the Midway integration is not
practical. First of all, if we apply it for the time variable, the time convolution formulae
cannot be used any more, and each time response have to be calculated separately by a
separate coupling. For energy, the multigroup calculation results should not be expressed by
continuous functions, leaving four variables for consideration: two independent space- and
two independent angle coordinates. We should also take into account that the number of
required computational operations would increase with Ko KwKiKn where K with the
different subscripts stands for the number of coefficients used for the two independent angular
and the two independent spatial dimensions respectively, while for the segmented coupling it
increases with Kg+KaotK+Kp. If we would implement a proper error calculation the
required computer time would increase to its square. The required time for a segmented
coupling is dependent also on the number of scores, for our applications it took around 1/10-
1/20 of the time of the Monte Carlo calculations. For different applications such a rule might
not be valid, but here we should keep the computation time of the coupling below the
efficiency gain times the computer time of the Monte Carlo calculations. For our borehole
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logging simulations this would give the chance to use 1-3 Legendre coefficients per
dimensions, and that would clearly not suffice. We should also choose a dimension in which
the functions are smooth enough, preferably a dimension where the functions behave
completely smoothly. On another note, we might replace the coupling in a dimension where
the approximation with the segmented coupling can hardly be set optimally using a structured
mesh.

One choice to fulfil all the above requirements is to select the angular variables for the
Legendre coupling. The flux in the azimuthal part of the solid angle is strongly correlated
with the flux dependent on the angle (the “spatial angle”) of the cylindrical coordinate system:
with the tool model placed in the middle of the geometry the rotational symmetry of the
system is not ideally utilised by setting the origin of the azimuthal angle fixed to a certain
direction. At each spatial angle the maximum flux might be expected in the direction of the
source, while that direction vector is represented in a coordinate system with an origin that
does not rotate with the spatial angle. Naturally we could change the origin of the azimuthal
angle to point always at the source, but to keep the method general, we will avoid this. In the
simple case of a tool centred in the middle of the borehole we can simply neglect both of
theses angles (they can not be neglected separately) if we keep this coordinate system.
Though we do not present the results of such simulations in this thesis, but most commonly
the tool is pushed to the borehole wall, and to maintain the generality of the conclusions here,
we keep both dimensions of the functions to be integrated. We can therefore expect a better
performance of the Legendre function in the azimuthal angle direction.

With this choice of variables we achieve that the application of the Legendre coupling became
feasible in terms of keeping the computer memory need reasonable according to current
standards, but we introduce a major unreliability in the comparison of the methods by still
having a segmentation structure in the two spatial dimensions, with truncation error unknown.
We have also learned in Chapter 2, that the amount of scores reaching the Midway surface has
a major effect on the accuracy, until having enough scores for stable segment-wise estimates.
We selected therefore a Midway set-up with a very low number of segments by creating 6x6
spatial bins and 6x4 (cosine times azimuthal) angular bins for 107 starting particles of both
calculations, moreover we present the calculations for the near detector, whereas the scoring
efficiency at the Midway surface is high. The Generic Tool Model has been used, and both
techniques used the same set of scores.

The segment boundaries have been “tuned” according to a trial-and-error optimisation scheme
that allowed good agreement with the Midway and the reference calculation results. Such
segmentation is possible, as the adjoint function and the flux decrease with increasing radius,
resulting in an overestimate of the response having both function’s derivates negative; while
with increasing time, the flux decreases and the adjoint function increases, resulting in an
underestimate of the response. With proper segment boundaries the two effects cancels, and
the inaccuracy will not exceed the statistical fluctuations. The comparison, therefore, cannot
result in a better estimate of the response using the Legendre coupling, but the results show,
that the Legendre estimates are as accurate as for a fine-tuned segmented coupling. Fig. 23
shows the results, together with two additions to the calculation settings: a change from the
fine-tuned angular boundaries to an equally spaced azimuthal and cosine boundary system
still having 6x4 divisions, and secondly an additional calculation for inserting some additional
radial divisions. The error bars are given by 1o
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Figure 23.  Legendre and segmented coupling compared in accuracy. The Legendre
coupling achieves high accuracy without laborious tuning of the coupling parameters.

As it can be seen in Fig. 23, all results are within statistical inaccuracy (2c), moreover these
confidence intervals contain the zero deviation from the reference results. Exceptions are at
the first two points, caused by the applied time convolution (type 1), whereas only one or two
time segments are used for the coupling, and the derivatives are the highest there for both
functions in absolute value, and are of opposite sign, altogether resulting in large negative
(first order) deviation. There is a fair agreement of the Legendre coupling with the
segmentation with fine-tuned angular bin boundaries. A systematical deviation (though still
within statistics) can be observed when changing the angular binning to an equidistant one.
When changing the spatial segmentation by randomly inserting three additional bin
boundaries, an apparently systematic change can be observed in the segmented response
tending to a slight underestimate (lowest solid line), indicating that the “fine-tuned”
segmentation was somewhat specific also to the radial bin structure. This phenomenon
appears to be also valid in sense of the estimated confidence intervals for the 350 and 400 ps
time readings.

The selection of 6x4 angular coefficients and segments was a result of “tuning” the Legendre
Midway coupling. This comprised a calculation with 7x7 coefficients, and checking the
difference of the result when eliminating the higher coefficients. The lowest number of
important contributions has been kept. To keep the comparison in some sense fair, we
selected the same number of angular segments and “tuned” the segment boundaries. Naturally
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we could have selected another rule for a fair comparison, but this one included the least
amount of human input, while allowing the formulation of general statements.

To experimentally check the validity of the simplified Legendre error approximation, we
carried out the same calculation 50 times for the Generic tool model, with the same settings as
for Fig.12. We can see, that the predicted error bounds exceed the statistical fluctuation, and
our error estimates are an overprediction, according to the empirical variance figure by around
10%.
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Figure 24.  Empirical spread of the Legendre Midway estimates for a borehole logging
calculation within the predicted standard deviation (o).

It was not the intention of this calculation to show that for all of the time dependent responses
the variance estimator of the Legendre coupling is an overestimate, its purpose is mainly
implying that the given error bounds are representative in a qualitative sense.

Although the efficiency of the time dependent Midway method will be the subject of Chapter
5, a comparison will be shown here of the above calculations in terms of efficiency, whereas
the biggest factor differentiating between the coupling schemes was the relative error, as the
coupling calculations themselves took less than 1/10 of the Monte Carlo simulations. Fig. 25
shows the efficiency of the Midway coupling measured by their FOM. The solid lines are
representing the Midway coupling results for the above time dependent cases, the dashed line
shows the efficiency of the autonomous forward calculation as obtained from 10° starting
particles. Here we draw two general conclusions. The first one is that the Legendre coupling
is not more effective than the segmented coupling, even though it couples more adjoint and
forward scores from the same set. The second one is that the efficiency of the time dependent
Midway method with low number of “tuned” segments is heavily dependent on the phase
space segmentation structure.




74 Chapter 3

—8— Legendre coupling

—&-— Legendre coupling  with 10 radial bins

—-- Segmented coupling with "tuned" angular bin boundaries
—w— Segmented coupling with equidistand angular bins

- Segmented coupling with 10 radia! bins

---a--- Reference (autonomous forward) calculation

FOM (min’")
o0 o
2 8

T i T v T T 1 T T
0 200 400 600 800 1000
time (us)

Figure 25.  Comparison of efficiency of the Legendre and the segmented couplings with
the reference calculation

We can conclude, that it is less efficient than coupling with the segmentation technique, at
least if we rely on a simplified error calculation scheme. We have seen that the calculation of
the necessary quantities for the response and the variance require considerably more
computing effort, and depending on the way of programming, possibly more computer
memory. The drawbacks can be balanced by the fact, that for an unknown system, the
Legendre coupling provides a simple scheme, that does not require deep insight into the
problem before the calculation, and using more or less coefficients does not need the
adjustment of many, possibly interlinked quantities like setting new segment boundaries. It is
therefore possible to do the coupling for a number of coefficients, and observe the effect of
omitting some of them, thereby obtaining an indicator on the accuracy of the coupling. If
having enough coefficients, we can also give a simple estimate of the truncation error, as it is
in the order of the last retained coefficient (for coefficients with algebraic convergence).

3.3 General Remarks on the Midway Coupling Possibilities

3.3.1 Expansion of the linking function

The derivation of alternative Midway coupling based on complete function bases given in
Section 3.2.1 did not rely on the Legendre polynomials, or any polynomials at all. It is also
possible to use Chebyshev, Laguerre or other polynomials, to do the coupling by discrete
Fourier transform, using complete orthogonal function bases in more dimensions like
spherical harmonics, etc. Each function system has its well-established theory and each would
allow special simplifications of the calculations. The Fourier transform for example would
offer, perhaps, an alternative to the fype 1 time convolution, and some of the second moments
coincide with other first moments. These techniques all share however the same basic
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approximation by replacing the Dirac-delta function &x-x") by a function representation
which we denoted earlier with L(x,x ).

In case of the Legendre polynomials, the linking function of Eq. (3.28) can be further
simplified using the Christoffel summation formula [21], to

L(er)= 3 2 p () p ()= B (). (x;):f’“' BB (5,59

This formula allows a score-wise coupling scheme, in the same way as for time coordinates
the time convolution fype 3 coupling in Chapter 2 by the calculation of only two Legendre
terms. The linking function, being a representation of the Dirac-delta function in each
dimensions can be easily extended to multiple dimensions, let us say for a new y coordinate it
takes the form of L(x,x’) L(y,y’). In a concrete representation, as we have seen earlier, this
does not result in assuming the flux and the adjoint function separable in x and y.

Given the Monte Carlo estimate for the Midway integral can be written by

1 NY N

~ 1 1 N' N . o 1 1
R v ;W"W’L(x"’x" )= N 22 (%)

where ¢;; stands for the contribution that is delivered by the i" adjoint sample combined with
the j” forward one. While for the time variable it is possible to give an exact form of the
linking function, in the other variables this form is an approximation, and the order of
estimate depends on the spatial distribution of the particles crossing the Midway surface.

ive

Figure 26. 20" order Legendre expansion of the L(x,x’) Linking function at x’=0, x'=0.5,
x'=-0.8
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It may seem that this definition of the linking function differs mainly from the segmentation
technique by using all the scores available, but that is not the case. As it can be seen in Fig.
26, the Legendre linking function is also effectively limited to small spatial domains, and the
sizes of the domains of surely significant and positive contributions are dependent on the
order of Legendre expansions. Fig. 25 shows the linking function in the x variable for three x’
(adjoint crossing) coordinates: -0.8, 0.0 and 0.5 respectively. The effective size of the domain,
where a forward score would give a reasonable contribution to the response, is limited, and
varies even with the actual coordinate x’. We may attempt to establish a correspondence
between a certain number of segments and a certain order of Legendre expansion based on the
sizes of these effective domains. The essential difference of the two methods is given by the
fact, that for the segmentation technique, the boundaries are fixed, while for the Legendre
coupling they vary with the surface crossing coordinates.

Eq. (3.54) offers a simple manner of calculating the response from the raw score coordinates
like for the time convolution type 3. This coupling would not require the calculation of the
expansion coefficients at all: only the K™ and (K+1)® Legendre polynomials should be
calculated, but would require the storage of all continuous independent coordinates of scores
of the first processed calculation. This, again, would require further studies on the calculation
of the variance. Having enough scores to estimate the response, this scheme increases the
number of calculations to the order of NN, and would hardly be advantageous. It offers,
however, the possibility to combine the segmentation technique with the Legendre method, or
rather a segmentation scheme can be applied to the formula of Eq. (3.55). For a selected order
of Legendre polynomials we can set up a rough segmentation of the phase space by using
some times the effective domain of L. This imposes an additional filtering of the scores and
decreases the calculation effort, together with the memory need. If the phase space is not
oversegmented by this coarse mesh, we can ensure that many particles will be coupled, while
the memory requirement is still kept reasonably low, allowing the storage of both forward and
adjoint particles as it is necessary for a proper error calculation. With such a method, the
scores can be processed in batches: a certain subset of forward scores can be coupled with a
certain subset of adjoint scores, selected according to the memory capacity of the given
computer. When one batch is done, another pair of (uncorrelated) sets can be chosen.

This procedure is meant to be given as an example only; such approximation schemes are
already devised in other fields of physics and mathematics. If we look at the Monte Carlo
scores as data obtained from an unknown process, we can incorporate the techniques of
digital signal processing. In fact, the difference of the segmentation and the Legendre
techniques is the same in many details as the difference of finite elements and spectral
methods; many devised schemes of both fields could be applied, if the statistical estimators
for every relevant quantity can be formulated. Adaptation of Gauss quadratures offers the
chance to represent the flux or the adjoint function in a point somewhere in the segment
instead of representing the function with the integral average on the whole segment domain,
whereas the function value could be calculated at that point by 2 Legendre coefficients of the
desired order according to (3.54). In a statistical way of approaching the problem, data sorting
algorithms, e.g. Delunay triangulation, could determine the proper segment boundaries.
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3.3.2 Optimal Midway coupling

The optimal Midway coupling should be an optimum according to the following factors: the
computation effort, computer memory requirements, the requirement in human expertise and
effort for the Midway method settings, accuracy of the coupling scheme even without much
apriori knowledge on the model system, robust statistical estimate of the response, robust and
programmable statistical estimate of the variance, and low final statistical variance. The last
item on this list, the variance outcome will determine whether the Midway method can indeed
be used as a variance reduction technique, and as we have seen on Fig. 26, the variance
calculated from the same set of scores may depend on how we set the free parameters of the
coupling technique.

Segmentation Technique | Legendre Coupling

Accuracy of the coupling | Low/apriori unknown High
Computation effort Low High
Stable statistical estimate | No Yes

Stable variance estimate No -

Variance estimator Exact, programmable Major difficulties in
programming

Variance of a sample set | Increases with number of | Increases with polynomial
segments order

Table 3.: General properties of the coupling schemes

Summarising our findings of Chapter 2 and 3, we can say that the segmentation technique can
deliver Midway-coupling results by a relatively simple and fast calculation, while having an
easily programmable variance estimator. The accuracy of the coupling is unknown, and the
estimation of the residual is not feasible in a statistical sense. The samples on the response as
given by some forward and adjoint scores of the same segment is not homogeneous, the
number of outliners increases with decreasing number of samples, and if the number of
samples is comparable to the number of segments the estimator for the response might
comprise only outliners. The accuracy of the coupling increases with the number of segments
and depends on the distribution of segment boundaries, and a high accuracy of the coupling
requires a certain minimum amount of segments. Different segmentation structures might give
different variance estimates even if the number of outliners is small. For an unknown system
the minimum number of segments must be guessed, and the corresponding number of scores
must be simulated until the estimates become stable. We might select the segment boundaries
to result in a lower variance afterwards, while the result stays within statistical error bounds.
The analysis using different segmentation boundaries is necessary for the segmentation
technique for each calculation, as the segmentation technique is a trial-and-error method,
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without an immediate indication of the quantity of the error, or the decrease thereof when
applying more segments.

The Legendre technique offers a statistically well behaving solution to all the above problems,
to the cost of strongly increasing coupling times and/or memory need and probably increasing
variance (and sophisticated variance formulas). The Legendre coupling if applied in all
continuous dimensions gives a well-behaving statistical set even with low number of scores,
and it is possible to give estimates of the response based on a couple of adjoint and forward
scores. The model parameter here is the number of coefficients, and the response estimate is
built up from estimates of increasing parameter number, giving the possibility of checking the
response of lower polynomial order to inspect the convergence of the estimate.

To cast a picture of an optimal coupling, we can say that the Legendre method applied in all
continuous dimensions delivers an accurate and well-behaving estimate. It fails, when we
wish to use the Midway coupling as an automatic variance reduction technique: the
calculation time and the memory needs are too high. Therefore a feasible technique for
variance reduction purposes should be a combination of these two methods. A possible
solution would be to combine segment-wise the Legendre and segmentation techniques: to
estimate in a statistically stable way the first few Legendre coefficients per segment. This
procedure would result in a similar method as finite elements interpolatory schemes. But
already then, the number of dimensions for the integration would increase the memory
requirements by a factor K® for K higher order components for the 5 dimensions (of
continuous dependency). The increase in memory and computation time is more alarming for
the variance estimates.

Spectral methods are only more advantageous than the segmentation technique, as long as few
coefficients would suffice for a successful function representation. Even with the increased
computer resource requirements well chosen functions for the expansion (Chebyshev rather
than Legendre polynomials, spherical harmonics for the angles, Laguerre for the radius and
exact coupling in time) may be considered. These choices might improve the Midway
coupling relating more or less specifically to a borehole logging application.

As long as we wish to apply the time dependent Midway method as a variance reduction
technique, incorporation of every further higher order term in each dimension would cost
around at least a factor 2° increase in the necessary computer resources, compromising
extremely easily the aim of increasing computation efficiency. We should therefore decrease
the complexity of the Midway integral by selecting a Midway surface fitting somehow the
particle distribution in the phase space, or reducing the complexity by omitting one dimension
of the integration (e.g. time). Without the necessary addition of the accuracy estimation and
statistical stability check, the method would not possess the statistical properties that would
qualify the time dependent Midway method as a proper general and automatic Monte Carlo
variance reduction tool.
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ADJOINT SAMPLING OF A PULSE HEIGHT
DISTRIBUTION

A Monte Carlo calculation does not necessarily require stating equations and defining
detector functions, as long as the calculation really simulates particle transport as it could also
occur in nature i.e. the simulation is analogue to nature. These simulated detector responses
can be very close to what we measure with a real tool, down to the processes of data
acquisition. However when we replace the simulation with another calculation technique, we
need to prove that they are statistically equivalent, and this requires mathematical
formulation. There are responses of real detectors that are particularly hard to put in
mathematical form, the Pulse Height Distribution (PHD) for one. These responses share the
common feature that they cannot be described as a linear functional of the flux using a single
detector function. This obviously poses a problem for an adjoint calculation, being its source
term the detector function. Scintillation detectors of the neutron-gamma tool are measuring a
pulse height distribution of the photons in energy. The Midway calculations utilised the flux
at the detector so far, hence for a complete application of the Midway method to borehole
logging calculations, we need to find a way of sampling such a detector response for the
adjoint calculation. This chapter is devoted to this effort: finding the theoretical framework
that both satisfactorily describes the detector response, and can be sampled for the adjoint
calculation to allow the formulation of the Midway coupling.

Mathematical formulation for the PHD has not been devised yet (to the author’s knowledge),
and the lack thereof invoked much dedicated research to prove that a certain calculation is
statistically equivalent to an analogue simulation. Especially for neutron-gamma borehole
logging applications the usual Monte Carlo simulations do not approximate the PHD
satisfactorily, not even by an analogue calculation. Many attempts targeted an approximation
of the PHD by a detector function [8, 23, 26] especially with regards to borehole calculations.
Booth [24] and Shuttleworth [25] devised a scheme that allows using some form of variance
reduction technique with the PHD. To reduce the discrepancies between simulations and
measurements especially for coupled neutron-photon problems, even special Monte Carlo
codes have been written [8, 23, 26]. The extent of these discrepancies sometimes violates
successful data interpretation. Therefore sometimes measurement designs are altered to allow
their easier simulation. The references cited here are a small few of the many publications;
scintillation counters are very frequently used in all fields of particle transport. The references
are selected according to their relevance to time and energy dependent neutron-gamma Monte
Carlo borehole logging simulations. Especially slim tool designs show all the special
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phenomena for the detection that can cause a problem for Monte Carlo simulations, and every
mentioned approach applied some sort of an approximation.

4.1 Scintillation Detectors, Pulse Height Distribution and non-
Boltzmann Tallies

4.1.1 Simulation of scintillation detectors

Scintillation detectors are very often used for photon detection. Our aim here is by no means
to give a detailed description of the detection process, but to outline the basic characteristics
that verify and characterise the approximations to be applied. It suffices to say here, that the
scintillation detector (although we use it for photon detection) is an electron detector [27] that
can indirectly detect photons and their energies. A scintillation detector essentially consists of
a transparent crystal (Nal, BGO, etc.), a photoelectrode and a photomultiplier tube. The
principle of the detection is that free electrons excite the bounded electrons in the crystals,
which (while returning to their normal state) will produce visible photons, i.e. scintillation
will occur. The number of excitations is proportional to the energy of the electron. There are
many interactions in the electron transport that we will neglect here, and assume that all of the
energy of the electron is transformed into visible light. This assumption is certainly valid, as
long as the detector crystal is big enough for minimal energy loss by electron escape,
practically meaning a size at least in the order of a centimetre. The produced visible light is
transformed into electric signal after the electron signal has been amplified in the
photomultiplier tube.

Measurement of a gamma photon is actually the measurement of the free electrons it
produced. Incident gamma photons may undergo some interactions (e.g. Compton scatter,
photoelectric effect, pair production) in the detector crystal, creating free electrons with
energy equal to the energy the photon has lost. Through the process of scintillations the
released energy can be measured. The lifetime of the photon is far less than the process of the
measurement of its energy (exciton decay, data acquisition), therefore if a photon had more
than one interaction in the detector, the corresponding energy measurements cannot
distinguish between these interactions, and the measured energy will be proportional to the
total energy release of the photon in the scintillation crystal. The measurement of the energy
is not an ideal process; it is strongly dependent on the crystal properties (material constituents,
purity etc.) and on the temperature.

As described in Chapter 1, the C/O operation mode of the neutron-gamma tools aims at
distinguishing between photons emitted at inelastic collisions of neutrons on carbon and on
oxygen. As we have seen in Fig.4, the number of photons arriving to the detector with their
characteristic energy still intact is high, while the detected energy distribution hardly
resembles the incoming one. The reason of this is the partial energy release of photons caused
by the escape of gamma photons; thereby identifying the first important process to take into
account for the simulations.

The difference of the time scales of detection- and photon lifetimes results in the joint
detection of all interactions of the photon. For neutron-photon problems a high intensity
neutron source such as the one applied for borehole logging measurements, may produce so
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many photon, that interactions of separate photons will not be distinguishable, and energy
releases of different photons are accounted as a total energy release of the same photons. This
will result in pile-up peaks, at energies not corresponding to energies of single photons of the
system. This constitutes the second important process: coincident detection of photons. Monte
Carlo simulation of such phenomenon for coupled neutron-photon borehole logging problems
is very problematic, given that the neutron lifetime (~100us), the photon lifetime (~ns) and
the scintillation decay times (~pus), are on different time scales by orders of magnitudes.

The third effect to consider is physical branching of particle histories. The simplest and most
important example is pair production, when a gamma photon creates an election-positron pair.
After the positron has slowed down it will annihilate, creating two 0.511MeV photons flying
exactly in the opposite direction. If this process happens in the detector, both or one of these
photons can escape from the crystal, resulting in 1.022 or 0.511MeV lower measured
energies. From a Monte Carlo point of view, this process can be simplified (if we neglect the
electron transport) to a branch in the particle trajectory (with the energies properly accounted
for).

4.1.2 The Pulse Height Distribution

The above-described procedure yields an energy spectrum that is not directly proportional to
the energies of the incident photons. This spectrum is called the (differential) Pulse Height
Spectrum, or the Pulse Height Distribution. If the detector crystal is large enough to prevent
any escape, the energy of the photons would be fully measured, and the PHD transforms
almost to an energy spectrum of the measured photons (except for the pile-up peaks). The
other case when the PHD can be described as a simple function of the flux, is when we omit
the energy discrimination, and tally the particles if they had at least one interaction in the
detector.

In case of a small detector and a neutron source of high activity and an optically thick
medium between source and detector, the coincident detection of photons is hardly solvable
by an analogue Monte Carlo simulation, for to obtain enough particles for real coincidences is
not in the range of common computing capacities. It is possible [29] to use the results of many
simulations (detection time and energy release), and estimate pile-up in a post-simulation
calculation. A used -but not likely valid- approximation is calculating pile-up peaks for any
physical branching in the system, e.g. every photon generated at neutron interactions would
be regarded as being detected coincidentally.

An essentially easy implementation of the other two processes is available in most Monte
Carlo codes: coincident detection of all the energy releases of the same photon and its
progeny in the detector. The tallying process essentially differs from a response defined using
a response function, in one crucial point. If we count the particles that had an interaction in
the detector with energy in a certain AE; energy range, instead of calculating the energy loss,
each particle getting into the detector with the energy in AE; would give a contribution
independently of its afterlife, and any subsequent collisions in the detectors might give
contributions independently of their previous history if they still have an energy in AE;. For
the PHD on the contrary, we need to wait until the particle (and all its progeny) is terminated
to calculate the total energy release, it is not enough to wait until the simulated particle leaves
the detector, as it might later return and modify the total energy release count.
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If it indeed is impossible to describe the PHD response by a linear functional of the flux, what
is the missing information that is not contained in the flux? The answer is the correlation of
the flux at a phase space point with the flux at another phase space point. If we know the flux
at every point of the system, we can calculate the probability of an energy release of a given
extent at every point. However if we know the flux at point ¢ and at point b we do not know
the probability of transmission from point a to point b, therefore we cannot determine the
probability of a particle releasing a certain total energy when having a collision at a and at b.

4.1.3 Pulse Height Distribution and non-Boltzmann tallies

The PHD is not the only quantity that cannot be given as a linear functional of the flux. These
quantities are_called non-Boltzmann tallies (perhaps a better name would be non-Boltzmann
responses) after the publication of Booth [24], although a proper definition was not given
there. Their common feature and finally definition is, that they are dependent on
characteristics of multiple events of a particle history, or of separate particle histories. A
Boltzmann-tally can then be defined as a response that is sufficiently well describable as a
linear functional of a quantity that describes an expected (average) value of a function of the
particle population at a certain phase-point.

Simple examples of non-Boltzmann quantities that have been investigated for Monte Carlo
calculations are quantities of reactor noise analysis [29, 30] (time correlation), coincidence
counters (direct correlation of progeny), and segment-wise response of the Midway method
(spatial correlation). This last example covers a useful concept for understanding source-
detector systems. The quantity there defined is the probability that a particle reaches a certain
phase-space point/region of the model domain and scores afterwards. This quantity can be
constructed from Boltzmann-responses, but still cannot be given as a simple linear functional
of the flux. Not as long as we use only one Boltzmann-quantity, (as we have seen at the
derivation of the Midway method,) it is a bilinear integral (or a product) of two Boltzmann-
concepts: the flux and the adjoint function. It is possible to detach the calculations into a first
one that calculates the flux at the given intermediate phase-space domain, then calculate the
second part (detector response of particles started at the specified intermediate domain) by
assigning the flux of the first calculation as a source term for the second one. Either ways we
can precompute by another stochastic process a detector function i.e. the probability of
reaching the detector from the given domain, and transform the original non-Boltzmann
response to a linear functional of the detector function.

Such a transformation for the PHD would solve our problem of defining an adjoint source for
the PHD sampling. We could precompute a response function let us say on the boundary
surface of the detector and use it as a detector function for the flux (more precisely for the
current) [23, 26], and finally use it as an adjoint source. This attempt would be problematic in
two ways. First of all, such a detector function would be dependent on the surroundings of the
detector as photons might re-enter the detector and that would need special non-Boltzmann
handling again. Secondly, more than one progenies entering or re-entering the detector would
again result in incorrect estimates. If we contain the detector in an envelope that -very much
alike the midway enclosure- contains completely the detector, we might set this surface far
enough to minimise both effects. The problems we gain in exchange would be the same as for
the Midway method but in one more spatial dimension.
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4.2 Feasibility of the Adjoint Sampling of the Pulse Height Distribution

The following sections focus on a single special feature of the PHD: the sampling of the total
energy release in the detector without coincidence counting or any physical branching. First
we will show that it is not necessary to state the adjoint Boltzmann equation to play an adjoint
Monte Carlo game for Boltzmann responses. After that we develop a formalism based on the
random walk process that allows the definition of the response function of the PHD. By
showing the form the Boltzmann-response function takes using this formalism, we will point
out why an adjoint Monte Carlo game essentially differs from playing a simulation in reverse.
Afterwards we develop a form of the PHD that can be sampled entirely from the detector, and
an adjoint game that can be played entirely according to adjoint transport kernels. The last
section will show a numerical example to illustrate that the developed theory is valid.

4.2.1 Monte Carlo Method for Boltzmann responses

To arrive at a demonstration that adjoint Monte Carlo is not necessarily related to the adjoint
transport equation, we briefly review the integral equation formalism of Monte Carlo
simulations. The integral equation formalism behind transport Monte Carlo is based on the
following form [33]:

v (P)=S(P)+ [K(P'> P)y(P")dP' (4.1)
The detector response can be described as:

R= [n(P)y(P)dP (4.2)

Here K (P' - P) dP is the probability that a particle has coordinate P in dP at a collision if
its previous collision was at P’, and y (P) represents the number of particles at a collision.
Depending on the actual definition of K (P' - P) (i.e. if it describes first a free flight then a

collision or vice versa), y(P) is interpreted as the number of particles with coordinate P,
leaving a collision or entering a collision. Note, that the choice of this definition changes the

exact form of S(P) as well: for the (entering) collision density it transform to first collision
points,
The equation adjoint to Eq. (4.1) is

v* (P)=h(P)+ [K(P—> Py’ (P")dP' (4.3)
and a response is to be found in the form of

R = [y*(P)g(P)dP (4.4)

The reciprocity theorem states that if g(P)=S(P) then R=R".
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The Monte Carlo sampling of such integral equations will be briefly summarized now.
Integrals of functions can be calculated by the Monte Carlo method. To arrive at the solution
of integrals of functions defined by an integral equation, we may consider the following: let
y1(P) be an unknown function, yy(P) a known pdf, K(P'—P) a nonnegative function, and let

w,(P)= [K(P'> P)y,(P')dP" (4.5)
The aim is to determine the integral
L= [n(P)w,(P)aP (4.6)
This problem can be solved by Monte Carlo, by defining the conditional pdf

K(P'—P)

k(PIP)= IK(P'—)P")d "

(4.7)

and selecting P’ from wo(P’), selecting P according to the conditional pdf A(P|P") and
calculating

I, =E[%Zvlh(3).jK(B—>P")dP“} (4.8)

If w(P) of Eq.(4.1) can be written as a sum of functions that are connected recursively like
those in Eq.(4.5), then the response R of Eq.(4.2) can also be expressed as a sum of integrals
like the one shown in Eq.(4.5).

If we wish to reverse the process and draw samples from the scoring function A(P), the
feasibility of such a game can be proven. A simple “adjoint” (reversed) method for calculating

the same integral can be formulated from the previous equations. If we put the expression for
w1(P) into the expression for /;, we get from Eq.(4.6):

1, = [1(P) [K(P'— Py, (P")dP'dP = [y,(P) [h(P)K(P— P')dP'dP (4.9)

If A(P) is a nonnegative function, selecting P’ from h(P)/| h(P")dP", and P from

K(P—P
k*(P|P)= G ( )dP", (4.10)
the final expression can be estimated as
N
:%Z%(E)JK(P'—)P,.)dP‘._[h(P")dP“ (4.11)
i=1

since the expected value of this expression is
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A 1 N . , \ "
E[[}:E[F;:wo(m.jl(@ — R)dP". [h(P")dP }:

= j j h(PYk* (P| PW,(P") j K(P — P"YdP'dPdP = j h(P)y,(P)dP

(4.12)

In the forward case, when a chain of functions is constructed by repeated application of
Eq.(4.5),

v, (P)= jK(P' - Py, (P)dP', (4.13)

This recursion expresses nothing else but the collision density after j collisions.

With the 0™ (source) function known, the integral
I= j WP ,(P)dP (4.14)

can be estimated by Monte Carlo for any j in the following way. First select an initial
coordinate Py from the first function of the chain yy(P), select the next co-ordinate P; from

K(h—>P)

- o7 (4.15)
k(B - P)ap!

k(P|R)

and set a weight factor to we=IK(Po—P")dP’. After this, keep repeating the process of
selecting P; from k(P;|P;.;) and of setting wi=IK(Pi,1—>P')dP' until j is reached. Then a sample
of the estimator for J; is obtained:

i, =h(B)[T(7) 16)

i=0

and an average of these samples is the final estimate of ;. The proof for this can be found in
Ref. 33. It can be also shown that a solution for an integral R=J(P)y(P)dP with y(P) defined
by an integral equation like Eq.(4.1) is given by the sum

R=Y1, (4.17)

j=0

Provided the series converges, and the integral exists, the integral /; can be estimated by
adjoint Monte Carlo as well by changing the order of integrations in the chain of recursive
functions like in Eq.(4.9):

1,= [n(P) [K (P B)..[K (B, — R)S(B,)d,..dP, =

J

Z.[S(Pf)fh(}%)K(E%E))jK(PJ "P}-l)dﬁ)--de. (4.18)
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If a sample is selected from the detector function 4#(P), and the next samples are drawn from
the kernel k* of Eq.(10), then, if setting the adjoint weight factor to w; =/K(P—P;.)dP, an
adjoint sample for /; can be obtained as

I\

=S(P )ﬁw (4.19)

i=!

Such a form is often derived from the adjoint equation (Eq.(4.3)) following the derivation for
the forward Monte Carlo solution. With this line of thought, however, we can arrive at a
derivation that does not need the statement of the adjoint equation, but verifies the adjoint
Monte Carlo process with results coincident with the solution of the adjoint transport
equation. The step is important, as the PHD cannot be defined by a single detector function;
therefore the source of the adjoint equation is undefined in a Boltzmann-sense. We might now
have the chance to formulate an adjoint game, without stating an adjoint equation.

4.2.2 Monte Carlo Method for non-Boltzmann responses

The continuous random walk process can also be described by a single pdf that is a function
of the coordinates of all collisions (of all particles).

This pdf consists of a multiplication of conditional pdf°’s (P |P_), expressing the

probability of a particle reaching a phase space coordinate P; if the previous collision
happened at P;;, is given by:

0(B,P.nP)=p(P) =] [0(P] P.) (4.20)

i=1

Usually we want to estimate an expected value, which can be expressed as:
E[h(B,R,..P)]= [...[h(R,R,. P)Hp(PI )P, .dP, (4.21)

for an n-long chain, and these expectations should be summed for arbitrary ». In certain cases
this may have to be specified further: the scoring function dependent on the phase space
coordinates may also depend on the actual process leading to P; (absorption, free flight,
scattering). Then the pdf must be broken up into other pdf’s defining, for example, the pdf of
travelling from one collision point to another and the pdf of post-collision coordinates
assuming the pre-collision ones are known. Often the scoring function /4 can be transformed
into simpler forms when it depends on one phase-space point, rather than on multiple
collisions together. In those cases a corresponding score equations can be formulated, or it can
be well represented by partially unbiased estimators. In the most general case the response
can be dependent on several independent chains like in reactor noise measurement
simulations [35], where a different statistical model needs to be set up. If independent particle
histories can interact, it will change the form of the expected value calculation to

E[h(p.P".)]= [[.-[n(P.P"..)p(P Y0 (P")..dP'dP"... (4.22)
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but the pdf’s describing the individual particle histories are independent. If we have a
multiplying game, meaning that a single particle can deliver multiple progeny, the expression
of the pdf will change. However, we will restrict ourselves to handling non-multiplying,
single chains. An important irreducible chain is when % is setting a constraint for the
integration, which constraint depends on the indexed collision points P,.

With the commonly used notations, we might formulate this expected value integral to be
solved by Monte Carlo by the following form:

I= j jS(PO)h(PO)f[ K(P_, — P)WP,...,P,)dP,..dP,, (4.23)

where the scoring function /4 can be split into a function defining the domain of the integration
and a function that accounts for the magnitude of the score. K, in an analogue, non-
multiplying case, is normalised to 1 in the outgoing coordinates, therefore it can be related to
the conditional pdf’s. Naturally the chains should not be infinitely long, and the particles will
terminate after some collisions.

Calculating such an integral by forward Monte Carlo includes sampling from the source
function, selecting the next coordinates from the transport kernel, and scoring according to the
scoring functions. In an adjoint mode the particles should start from the termination
probability in the system, and their travel should be followed (sampling the kernel K
backwards) and their contribution to be tallied in the scoring function.

Later on we will investigate an equivalent form of Eq. (4.23) where the integral is defined
using exactly »-long chains:

w0 n-1
1=3 |- jS(Po)I_:]K:(B,I > P, (B> P (B P,)dP,..dR,,  (4.24)

where K, (P—P") is the transport kernel where the collision results in an absorption:
Z,(r\E)

Z,(r.E)

with €2, an arbitrary direction, and K(P—P’) is the transport kernel where the collision results
in a scattering

K, (P=P)=T(r—r'|EQ) S(EN6(Q-Q,) (4.25)

K,(P—P)=T(r>r|£,0) =V ,EZ—Eé,Ef)z—m')
f r’

(4.26)

This form of the definition of the Kernels relate to the emission density representation of the
collision density.
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4.2.3 Collision-wise response of the flux

We have stated, that in this generalized description of the response the adjoint calculation (a
simulation played according to adjoint kernels) is a reversed calculation starting from
termination probabilities across the geometry. First we have to show that there is an

expression of A(Py...P,) that transforms this formulation to the original integral equations,

and in case of such a response the adjoint calculation can be started from the detector. The
derivation presented here is equivalent to the one in Ref. 32.

For such an estimator as the flux (or a linear functional of the flux), the scoring function %
will be chosen according to

h(g,...,g):s(g)ih(g) (4.27)

When we substitute this into Eq.(4.23) we can write:

I= jjS(P)Zh HK > — P)dP,..dP, =

=2{ [ [seyn(p HK B, —PR) f[K(P,--l »E)d&...da}. -
Next, we define the function
v, ()= - _[S(R,)ljl((ﬂ_, —>P)dP_.dP,  j=12,. (4.29)
to get
I= Z fwip e, ){ [ IHIK(P — P)dP,..dP Jﬂ}de (4.30)

Eq.(4.30) expresses, that the integral is a sum of the collision densities at the " collision
multiplied by the response function. The term in the bracelets express the probability that
something will happen to the particle (as it will be formally shown in the next paragraph), and
the probability of that is 1. The most important feature of Eq.(4.30) (that will not hold for the
PHD), that the score made at the j™ collision is not affected by any previous or later scores,
and after this collision the particle is free to travel in the whole model geometry without
making a further score for the ™ collision contribution. This will give basis to start the adjoint
particles from the detector.

The joint kernel X for an analogue game is normalized to unity for the outgoing coordinates in
an infinite medium. Therefore [ [K (B — B)K(P, - P)dRdP,= [K(P,—PB)dP,=1.
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From this we can conclude that the part in braclets of Eq.(4.30) is unity,

as I J. H K(P_ — F;()GIPW..‘de+1 =1 for arbitrary » .The integral finally takes the form of

i=j+l

1=3 [y (B PP, @31)

This form is the same as Eq.(4.14) and Eq.(4.17) combined, and the definition in Eq.(4.29) is
equivalent to the application of Eq.(4.5) for higher indices. Such an integral can be solved by
adjoint Monte Carlo as well, as stated earlier. Taking Eq.(4.30) and the number of scattering
collisions », we can change the numbering of # going backward from # to zero. Moreover, let
us set

1= [y(P (PP, =
i j jS(Po)h(Pj)f[K(P,_l — P)dP,..dP, = (4.32)
3 [ [SEMEITKE - B )E..P,

The last expression gives the adjoint scheme, with samples taken from the scoring function
h(Pg) (usually only non-zero in the detector domain), and sample successive coordinates from
the kernel K with variables interchanged. The scoring is made by the source function S, and
the contributions of a particle should be summed.

4.2.4 Adjoint Sampling of the Pulse Height Distribution

If we were able to define A(Py...P,) for the PHD, we could basically simulate the reversed

Monte Carlo: starting from the termination probability throughout the system. This way of
sampling is highly inefficient, and hardly useful: it would basically mean a highly inefficient
way of rejection sampling. However, we know that after the last collision of a particle in the
detector the remaining random walk will not change the response. We should be able to find a
method that allows sampling the adjoint particle density from the detector domain.

The generalised response function for the energy release probability could be formulated
regarding »-long scattering chains ending in absorption. The kemels determine the energy
release, noted as AE~=E; ;-E; at the i" collision. The space coordinate r determines whether the
collision happened in the detector. We will use again the symbol I1, ,. (£) for the function
that is zero if £ is not within the interval [Eq Es+AE,] and 1 otherwise. I1,,, () is zero if the

r is not in the detector domain, 1 otherwise. With these notations the constrain for total energy
release in the detector for an #-long chain looks like:

h(PyyB) =115, us, [ZAE 1., (r,.)j (4.33)
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We can insert Eq.(4.33) into (4.24), obtaining:

I= Z [ [K(B > P)S(B),, s, [ZAE I, (n)] [1X. (P> P,)dP,..dP, (4.34)

J=1

Scoring is not troublesome in the forward game, especially if a full, detailed spectrum is to be
estimated. However, it becomes harder to bias the game for higher efficiency if only a certain
part of the spectrum is important, or to play an adjoint game. The difficulty of the latter lies in
the fact, that if we start an adjoint sample in the detector, we could account for % in the
response, but this contribution should only be made, if we calculate the probability that a
particle travelling forward from the sampled point will not deposit any more energy in its
path, including the first escape, and the probability of not returning to the detector. An
obviously feasible idea is to start a forward particle at the phase-space position of the adjoint
source sample, and let it “finish” the history; naturaily its contribution should also be tallied
on A together with the adjoint sample. Implementation of such a process needs major
adjustments to the normal flow of Monte Carlo simulations, and such a development in
common Monte Carlo codes is not expected in the near future. An expected value estimator
could replace this forward part of the simulation, as we have seen it earlier, not requiring
major alterations in the computation flow of a general Monte Carlo code, but introducing the
need for separate expected value estimators. This approach seems the most applicable for
practical cases, especially for borehole logging. It remains, though, of interest whether we can
limit the sampling to the detector domain using one purely adjoint calculation flow.

Our aim is now to eliminate the calculation of the probability that a particle collided in the
detector will never return to it. This can be done by estimating this probability one-by-one
starting from the last collision in the history. The last collision of the particle will either be in
the detector volume and its energy will contribute to the sum of deposited energies, or will be

out of the detector volume and its energy is irrelevant for the detector-reading. It can be
expressed as:

(B =Ty, [ S AT, (1) -
Tl ()W, |08, () 0%
e, [ZAE e, (% ))(l I, ()= (435)
Tl () e, 308 T, () 05 |
My, [ SEAE T (1) )4 Ty 08 T, )

where the superscripts ¢ and s are distinguishing the energy release of an absorption from a
scattering event, respectively. The first two terms of the three we obtained in Eq.(4.35),
express the sampling a point from the detector volume. The third term is a sampling a point
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from somewhere in the model region. The third term cannot be sampled thus from the
detector domain, and needs to be expressed by other terms. Decomposing it in the same way
as for Eq.(4.35):

HEd AE, (iAE,.S nreV,, (ri )J =
I, (r., ){HEJ_AEJ (i AE'TL,,, (r)+AE;, ] —I, us, (”E:AE,-‘T M., (r )J} (4.36)
+HEd,AEd (EZ:AEiS HreVd (’} )]

The last term can be decomposed, yielding a term the same as Eq.(4.36) with the indices
reduced by one. This process can be repeated, leading to the following form of the response
function:

R(By.P) =

=11, (. ){H@M ("ZI: AE]TT,,, (r)+AE; ] -T1;, s, [Zl AE L., (,)]} 4.37)

n-1

k-1 k-1
+Z H’EVd (r/f—l ){HEJVAEd [ZAEiS erVd (rl)+ AE:j_HEdsAEJ (ZAEiS H'EVJ (rl)]}
i=1 i=1

k=2

The term in the second line is still not suitable for the adjoint sampling as it contains terms,
where samples should be taken from the whole model volume weighed by the absorption
probability. Putting this form (second term of Eq. (4.37)) into the transport integral of
Eq.(4.24), we obtain the following:

SECHWACRES

X"Z e, (1) Tg, oz, (kf‘ AE! T, (r)+ AE;‘)— T1;, ae [Z AE T, (r,.)j} (4.38)
k=1 i=l

The summation over # is a summation of all possible lengths of chains, the index & expresses
the number of collisions until the last event in the detector. The last event in the detector (the
k™ is followed by n-k collisions that will not contribute to the response estimator
independently of their phase-space positions. For our purpose it is more convenient to change
the order of the summations, selecting the ordinal numeral of the last event in the detector (k)
multiplied by the sum of terms expressing the lengths of the chains from £ to infinity, and also
multiplied by the corresponding scattering and absorption kernels. To avoid a very lengthy
formulation, and to show the index changes in a simplified form, we set sy for the source
expression, a for the response functions, b; for the scattering kernel terms using i for the
outgoing coordinates, and ¢, for the absorption kernel. Omitting the integrations we obtain:
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n-1

soz abe, =SOZ Z abc, —SOZak Hb Zcml H b, (4.39)

n=1 k=1 i=l k=1 n=k+1 =1 i=1 n=k J=k+1

n-l n-1

£4.(4.40)

The #* term of the response function will therefore be multiplied by the following product of ‘
kemels:
\

iK P—)PH)HK >, > P, (4.40)
n=k

J=k+1

From k to n the chain of kernels are integrated without constraint for the detector domain, but
now the result can be calculated with relative ease. To show this, let us integrate the » = k
term over Py, and the n = k+/1 term over Py, and Py, using the fact that the kernels are
normalized to 1 on the outgoing co-ordinate, and that the absorption probability and the
scattering probability add up to 1:

Z, (Ek’rk+1)dr

(nzk): .[T(rk = Ek,Qk) 3 (Ek,i’,,H) o

ZS (Ek —')EIH-I’Q/( —_>Qk+l l ’;r+l) x

(n=k+1)2IJ.IJ.T(rk_)rkH'Ek’Qk) Z,(Ewrm)

E
Md k+2ko+ldEk+]dn+l = (441)

) (Ek+1ark+2)

k)zs (Ewr/m)dr

T(rlcﬂ - rk+2 | Ek+1>Qk+1)

= [T(r >1.1E.Q

2 (E,—2E..Q Q. |n,
_IJJ.J.T(rk—)r,HJEk,Qk) s( & Zk(lE kr ) o | kl)
i ko T+l

( k10 i 2)
XT(rlm > leez | Bt k+l)2 (E : . - )d/r+2dQ/r+ld 1 e
k412 k42

The first term (n = k) of Eq.(4.41) added to the first term of the (n = k+1)-expression will
give 1 as a result, leaving behind a term with both the k * and the (k+I)-th terms are
scatterings. If the same procedure is made with the (n = k+2)-th integral, we will obtain the
same form except the indices are shifted. The remaining term will cancelled out by a part the
(n=k+1)-th term leaving behind the form where the (k+2)-th, the (k+1)-th and the £” terms
are all scatters. This can be applied recursively, and finally the infinite sum of these integrals
yields 1.
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The transport integral looks like (having changed the direction of the summation, and having
repeated the same manipulation with the absorption term):

fi. J'ZS(rk)H,Eyd (%)
Ao (ZAE [, (2885 T S50 (2) )

(R—>PR ﬁK P, — P)dF,..dF, +
I J.is (n )11, x
k=1
k-1 k-1
X(Kso){nEd‘AEA (ZAEiS H’EVd (L")+ AE; )—HEA’AEJ [ZAE: l—[’EVd (51)]}

i XHKS (P, — P)dF,..dF,

(4.42)

Now the sources of all terms are in the detector domain. For the complete adjoint simulation
we have to cast Eq.(4.42) in the form described in Ref.31 using the transition and collision
kernels for the adjoint particle. If we look first to the integrand of the first term of Eq.(4.42)
for a certain value of k£ we can write this term after integration over Eo and £ as

I z, (5. E)

|

|

} S(P)E[T( i 7 B Q)G 0 By > B QNG 5, Q)T EE D)
|

ST B EA P GEC GE SELQ 0T SEQ) w4

P (6, B)C (1, B, > B, Q > Q)T (5, =4, E,Q)%, (1, E)

with T* the adjoint displacement kernel, C™ the adjoint scattering kernel and P* the adjoint
weight factor [16]. To start the adjoint simulation we have to select ro uniformly within the
detector volume and £2; isotropically. The energy E; should be sampled proportional to
Z(ro,E1), but it is more efficient to sample E; uniformly from the total energy range of
interest and to introduce a weight factor X,(rp,E;). The functions Ilgiars determine the
deposited energy that is recorded during that history and thus determine the bin of the pulse
height spectrum to which a score is made. A score is obtained when the adjoint particle has a
' collision in the original particle source (or crosses the source) with magnitude S(Py)/ Z(Py).
| Due to the IT term with a minus sign also a negative score must be recorded, but for a
l different deposited energy, as the arguments of the IT function differ.

The second term of Eq.(4.42) can be sampled almost the same as the first term, except that the
start of the simulation is different. The adjoint source term is determined by

T'(r, > K, ELQ)P (1, E))C (1, Ey = E,Qy — Q)Z, (7, Ey) (4.44)
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This means that ro is again selected uniformly within the detector volume, £2, is selected
isotropically, and Ey is sampled uniformly from the total energy range of interest with a
weight factor Zi(rg,Eo). Then E| and £2 are sampled from the adjoint collision kernel, and so
on.

It is worthwhile to mention that for the derivation of Eq.(4.42) we did not use the fact that the
chosen response function belongs to the PHD. The only special feature we applied, is the
expression of the response when one less collision is giving the response.

4.2.5 Numerical example

To demonstrate the feasibility of such a game, a simplified form of the photon transport has
been considered with only Compton-scattering and the photoelectric effect. The geometric
model (see Fig. 27) of the system consists of a 5-cm radius cylinder of 15-cm axis length. The
photon source is a sphere of 2-cm radius emitting photons with a flat spectrum between 1.5
and 2 MeV. Its centre is located along the system axis, 5 cm from one outer end. The detector
is a 0.25-cm radius sphere with its centre 6 cm away from the other outer end of the system.
The whole system has a uniform material composition. The Compton cross section is given
by the Klein-Nishina formula with an amplitude of 0.1 cm™.The cross section for the
photoelectric effect is taken inversely proportional to the third power of the photon energy
with a value of 0.01 cm™ at 1 MeV.
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Figure 27.  Model geometry for numerical verification

To check the results of the adjoint calculation a program was written to perform a forward
calculation for this system. As the probability for a source photon to have an interaction in the
detector is low, 10° photons were started at the source to obtain an accurate pulse height
distribution of energy deposited in the detector.
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The adjoint calculation was carried out based on the proposed methods in [16], also using 10°
particle histories. The results of the forward and adjoint calculations can be seen in Fig.28.
The pulse height distribution is registered in 50 energy bins of 0.04 MeV width up to 2 MeV.

X1 - g Adjoint

3.5x10™
3.0x10™
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1.5x10°

Pulse Height Distribution

1.0x10™
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Energy (MeV)

Figure 28.  Adjoint and Forward simulations of a PHD
The results (Fig. 28) show good agreement between the adjoint and forward calculations,

which demonstrates the validity of the theory presented here for adjoint estimation of a pulse
height distribution.

—{— Forward
—O— Adjoint

Normalised Relative Standard Deviation (%)

Energy (MeV)

Figure 29.  Comparison of efficiency of the forward and the adjoint calculation
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Figure 29 shows the relative standard deviation in each energy bin, both for the forward and
the adjoint calculation. The standard deviations are normalised to a CPU time of 300 min both
for the forward and the adjoint calculation. From Fig. 28 it can be seen that the adjoint
calculation is more efficient than the forward calculation, mainly because of the difference in
detector and source sizes.

4.3 Summary

According to this study, the fully adjoint sampling of the PHD is possible, even though there
is not any adjoint equation stated, or Boltzmann detector function given. Out of the three
important effects of the PHD calculation only one has been handled. Most importantly the
physical branching of pair production is not incorporated in the model, and this should be the
first topic for further investigations. A Midway coupling would still be valid, as long as the
Midway surface is far enough from the detector. The sampling routine in a general Monte
Carlo code could be feasible in terms of incorporating a full photon adjoint Monte Carlo
calculation, and this would do all the calculations in the detector domain, overwriting the
source energy at every re-exit of the particle.

The partly forward simulation offers the best approximation, as incorporation of pair
production is easily done. Incorporation to a general code, however, will meet major
difficulties.

Using an expected value function for the detector response needs separate adjoint source
calculations before the actual sampling. Its implementation to a general code is relatively
easy.

Any of the three methods would also meet another problem, in case of using the MCNP code.
The multigroup adjoint calculation in itself would require a very fine energy structure for
proper estimation of the PHD.




Chapter 5

EFFICIENCY OF THE TIME DEPENDENT
MIDWAY METHOD APPLIED TO BOREHOLE
LOGGING

So far we have investigated many details of the Midway coupling. One topic has not been
treated yet in detail, namely why the Midway method could serve variance reduction
purposes, and how well it would perform for borehole logging calculations. The efficiency of
the Midway Method depends on many factors: the quality of the technique of the coupling,
the way of sampling, the geometry of the Midway surface, but mostly on the flux and the
adjoint function. Apart from these topics, this chapter is also dedicated to a comparison with
another variance reduction technique, which is widely applied for Monte Carlo borehole
logging simulations.

Borehole logging problems are considered challenging for variance reduction techniques. The
practical need for fast simulations (mainly for oil detection tools) has inspired many
researchers to improve the methodology of convergence enhancement. Many special-purpose
Monte Carlo codes have been written for borehole logging simulations, and many of them
used special variance reduction options for borehole logging simulations. Presently the most
widely acknowledged variance reduction method is the weight window technique with
frequent application to borehole logging simulations [26,35-39]. The second part of this
chapter (Section 5.2) will target at the comparison of the Midway method with such attempts,
while the first one (Section 5.1) aims at clarifying concepts related to the efficiency of the
Midway method in general.

5.1 Optimisation Options

5.1.1 Determining the Midway efficiency

A Monte Carlo variance reduction technique, as a terminology, stands for the efficiency
improvement instead of the literal reading of reduction of the variance of the final response.
To match the two terms we should interpret ‘variance reduction technique’ as variance
improvement by the same calculation time. In other words maximising the Figure Of Merit.
For the Midway method, the score processing increases the calculation time, but no time
increase is introduced at the simulation phase. If we can keep the coupling time reasonably
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low, the Midway efficiency, when comparing to autonomous forward or adjoint simulations,
is mainly dependent on the variance.

We concluded in Section 3.2.3 that the inherent variance of the Midway method is principally
given by
Lo S(x) L (f1)
r—D| ——= f"(x) |+—D", x
N F’(go(x)f O 5P () 5.1)

for N forward and N* adjoint starting particles, with fand f* integrands (to be later related to
the adjoint function and the flux), and g and g probability density functions, which are used

for the sampling. Here we neglected the variance increase caused by the increased number of
coupling coefficients as this term is clearly only characteristic for the coupling process.

D(1)

The number of starting particles N and N* only affects the Midway efficiency until we reach
the limit of stable statistical estimates. Beyond that, the variance is inversely proportional to
the computer time, and the FOM does not decrease when increasing the number of starters.

The functions fand f* represent the current and the adjoint function, and are determined by
the model parameters of the system. However, when we relate the actual ¢" and J to /* and £,
we should take into account that the flux and the current are taken on the Midway surface, in
a scalar product with the surface normal. The shape and position of the Midway surface,
therefore, changes fand /', and can be subjected to optimisation.

Thegp and ' probability density functions are not known explicitly, but they are usually
show similarities to the flux and the adjoint function, respectively. Implicit information is
given by the weight of the particles reaching the Midway surface. In case of an analogue
simulation, the pdf’s are proportional to the flux and the adjoint function, and the weight
reduces to one for the forward simulation. The adjoint calculation does not represent physical
particles; therefore we can hardly play the adjoint game as an analogue one. It is possible to
force the particles to have w*=1 by e.g. path stretching.

5.1.2 One dimensional considerations

It is instructive to see how the above-identified factors influence the variance in a one-
dimensional case. For this purpose, the integral of f{x)f'(x) will be calculated using the
segmentation technique:

K 1 +f+ f K 1 1 1 N . . N
[zz_“‘so ;dexj‘gggnkdyzgﬁvmgwjnk (xj )Zwlflk(xi) (5.2)
—— -

Two situations are studied here, each sampled according to two different methods. The first
situation assumes exponential decrease (e™) for both £and f* on the interval (1,5), while for
the second case one of the function changes to an increasing exponential (¢”™). The
functions have been normalised by their integral on (1,5), to allow handling them as pdf’s. For
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every case the segmentation was an equally spaced grid. For the pdf’s the first method of
sampling comprised uniform sampling in x, and the weights have been calculated by simply
taking the function value. The second sampling method is similarly to an analogue simulation,
applies unit weights, meaning the samples are taken from fand /~ as pdf’s. N and N™ were set
both to 10°. All quantities (segment-wise means and variances) have been calculated
according to their expected value analytically. Such a scenario resembles the integral in the
radial coordinate, for the Midway borehole logging simulations where both adjoint and
forward calculation decreases steeply with the radius. The results for the two decreasing
exponentials are shown in Fig. 30.
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Figure 30.  Relative deviation of the integral of two decreasing exponentials using the
segmentation technique, according to uniform and analogue (the latter referenced as
“Importance”’) samplings.

The asymptotes were calculated using Eq.(5.1). The variance, as stated in Section 3.2.5,
indeed depends on the choice of the segmentation structure but there is an asymptotic lower
limit value determined only by the integrands and the sampling method. Results of Monte
Carlo sampling would differ from Fig.30 when K and N are in the same magnitude (see also
Fig. 11); when the Midway integral becomes undersampled for a given number of segments.
In case of real simulation results, significantly varying variance estimates indicate either
under- or oversegmentation.
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If we take only one of the functions to integrate, and apply “analogue” sampling, the variance
would be zero (all weights are equal). Hence we indicated this sampling as the importance
sampling. We see, that if both functions are sampled like this, it still not ensures a zero
asymptotic variance of the estimated /. Uniform sampling would introduce weight
fluctuations much like in a biased transport simulation, and from the samples themselves the
function and its sampling pdf is not separable directly.

The fact that the variance increases with increasing number of segments is not a general
behaviour of the method (as we will see now), nor is the superiority of the “Importance

Sampling”. For our second example, /* has been changed to €™ normalised by its integral.
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Figure 31.  Integral of the product of increasing and decreasing exponentials using the
segmentation approximation. The uniform sampling establishes asymptotically a zero-
variance sampling.

As Fig. 31 shows, now the uniform sampling delivers the better estimate. Moreover the
uniform sampling establishes a zero-variance solution. Now the evolution of the variance is
decreasing rather than increasing. Such a scenario is somewhat similar of the time
dependency of the Midway integrands for a borehole simulation. It is also important to note,
that the convergence of the integral approximation, (the decrease of the truncation error), did
not become faster by obtaining a zero-variance solution, even though the product of the two
integrands are now everywhere constant.
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The zero-variance solution would require, in general, the same sampling pdf’s for both adjoint
and forward processes, namely

ot)=e )= 63)

)= Jolx ( LA x)] ~([rx)r )2=Jﬁ“ldx—12=0 (5.4)

And the proof is identical for the adjoint function. The respective weights will be different,
though:

IV LA L
o f o f

The analogue of these one-dimensional integrals to a real 6 dimensional Midway Monte Carlo
simulation fails by taking the pdf’s on the whole domain of integration. That leaves out the
chance of particles not reaching the Midway surface, or in a one-dimensional analogue, that
the pdf ranges beyond the integral boundaries. A zero variance solution in general would
require a score from every starting particle.

(5.5)

5.1.3 Response flow and Monte Carlo efficiency

The reason for the efficiency gain using the Midway method must be related to characteristics
of the sampling pdf’s. Serov showed [9], that in a one-dimensional system with purely
absorbing medium, the Midway efficiency is varying with the Midway surface position. He
assumed that the variance behaves as with analogue sampling of both forward and adjoint
calculations, and showed, that the optimal Midway position is halfway the distance of source
and detector. Indeed, the population of the samples in the phase space is one of the principal
components of the Midway efficiency gain. Particles arriving at the detector must cross the
Midway surface first; therefore the amount of particles contributing to the Midway response
must be higher than the number of particles arriving to the detector. For analogue sampling,
when the variance is strictly related to the number of particles reaching the scoring domain,
the Midway method will show lower variance due to particles getting lost (absorption or
geometrical spread) after crossing the Midway surface and before reaching the detector.

For a multidimensional system, even with analogue sampling, the amount of scores arriving at
the Midway surface does not uniquely determine the variance, owing to the variation in space
of the contributions made by different histories at crossing. Still, the amount of nonzero
contributions is higher on the Midway surface, than at the detector. The efficiency of
utilisation of the information carried by the Midway surface crossing particles is dependent on
the coupling scheme, but as we have seen in the previous section, the asymptotic value of the
variance is not dependent on the segmentation structure. If we disregard the ‘transient’
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variance behaviour, we can still find, that a vast amount of particle crossings does not
guarantee a highly efficient response estimate.
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Figure 32.  Sketch of Midway coupling scenarios

Fig.32 shows some relevantly different coupling scenarios. The sketched particle paths are
drawn according to the particle flying direction, and not their solid angle. Scenario (1) is the
simplest case to determine the Midway efficiency gain. The particles are travelling in a
channel connecting source and detector, and the Midway method is more efficient if the
particle elimination probability is high.

Scenario (2) is hardly an effective application of the Midway method. Obviously the low
particle transmission probability from source to detector is mainly caused by the bend in the
duct, and less by the transmission to this particular phase-space domain. Even though many
scores might hit the Midway surface, the adjoint and forward particles would rarely match in
angle, in that sense the phase space has a bottleneck. Obviously the highest efficiency
increase would be obtained by forcing the particles to take the bend. It might be still
advantageous to apply the Midway method, though there is an obvious pitfall for the
segmentation structure. A loosely given discretisation structure might erroneously match
forward and adjoint scores.

Scenario (3) is a typically good application field for the Midway method: the chance of
transmission of particles from the Midway surface to the source or detector is low and the
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typical particle paths are not limited to a narrow domain that would decrease the likeliness of
possible forward-adjoint coordinate matching.

All three scenarios are sketched in space only, though the other phase-space variables should
also be considered. Even though the detector is considerably large, only a limited part of it
would receive hits. The size of the detector in itself is not what only matters, though it usually
helps an effective Monte Carlo game. All in all, it is not a simple matter of optical width or
detector size that determines the efficiency ratios of the adjoint, forward and Midway
response estimates.

For a practical calculation, the channels of typical particle flow from source and detector can
be identified by the concept of the contributon flow described by Williams [3]. A
pseudoparticle called a ‘contributon’ is defined as being “one of the particles (or its progeny)
that manages to survive the journey from the particle source through the geometric
configuration and then finally contributes to the response of interest” [3]. These contributons
are a subset of the particle population that successfully arrives at the detector. The contributon
transport can be described by the response flux C(P):

C(P)=¢(P)¢*(P) (5.6)

The response flux obeys its special transport equation, and can be subjected to a Monte Carlo
calculation [6]. As a consequence of the definition, the contributon pseudoparticles cannot get
absorbed or escape from the system. The streamlines of the response flow would originate in
the source and end in the detector.
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Figure 33.  Response flux for a point source-point detector dipole.

Using the solution for the flux/adjoint function from diffusion theory for point sources located
2 cm away from each other, the response flow is calculated and plotted in Fig.33 (Z=2.0cm™,
2.=0.5 cm'1,25=1.5cm'1, p0=1/3). The angular dependency has not been taken into account.
Around the source and the detector, the flux of the scoring particles are concentrated, while in
between source and detector the response flux is ‘smeared’ out in the phase space. The
channel of streaming is limited to a relatively mall domain surrounding the source and the
detector.

In terms of Monte Carlo sampling, simulating particles outside the response flow channel (i.e.
simulating particles that would hardly score) is a waste of computer time; therefore a
successful biasing of the sampling scheme should be transporting particles within this phase-
space domain. If we take a fully forward analogue simulation, meaning that the sampled pdf
is proportional to the flux, most of the particles would not take the response channel. In fact,
zero variance results can be obtained by biasing the flux proportional to the adjoint function
[41], obtaining an equation identical [3,6] with the contribution flow integral transport
equation [see also Eq.(5.3)]. For a zero- variance solution every history should deliver the
same contribution, and this means (if we do not want to distort the particle population in the
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phase space) that the flow of causative particles (of particles that contribute to the response)
should be sampled. The neglected non-scoring particles do not make a difference, though to
keep the game fair, the possibility of non-scoring should be accounted for. More precisely, the
expected value of the flux should still be kept unbiased at every phase-space position,
achieved by an adjusted weight depending only on the phase-space position. If the transport
equation for C(P) = #(P) ¢ (P) is sampled, the weight must be given at a phase space point by
w(P)=1/¢"(P), or rather just proportionally [41,38]. The cited references give a detailed
account of the exact formulation.

Phase-space domains where causative particles travel form therefore the essence of the
transport, and those domains must be fully and adequately sampled. This fact is independent
of the sampling scheme, or type of variance reduction technique. Also impact of contributions
made on the Midway surface would only be high as long as they are in the response flow
domain, and such mismatch of adjoint and forward scores as by scenario 2 of Fig.33 does not
occur. Unbiased (not more than applying implicit capture) transport sampling matches a
response flow more adequately, if the response flow broadens, as the chance of particles
travelling in the right direction is higher, while a narrowing channel is less frequently
sampled. For the point source-point detector geometry the response flow is the broadest in the
middle, while passing mid-distance, the particles should converge, and this does not match at
all the unbiased sampling paths. Low variance Midway surface positions should be therefore
in that region.

Figure 34.  Quantitative distribution of the variance of the Midway coupling
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Fig. 34 shows the distribution of the phase space points where the second moment of the
Midway coupling -assuming analogue sampling- is low (given by ¢°¢" + ¢¢'*). Omitting the
angular dependency is a serious approximation, therefore constant variance Midway surfaces
only qualitatively agree with the constant lines of the second moment. This is most significant
around the respective adjoint and forward detectors, where the particle directions will least
likely match. As accounting of the segmentation structure on a surface of sophisticated shape
would be rather cumbersome in practice, such investigations have low practical relevance and
it will never be a single closed surface regarding all of phase space variables. On the other
hand, choosing the Midway plane coincident with constant flux or adjoint function surfaces
might ease an accurate coupling.

5.1.4 Contribution flow for a time dependent borehole calculation

We can extend the theory for the contributon transport to time dependent cases. Defining the
same way as for other variables the contributions as the particles scoring in a time dependent
detector in a specified time interval, would allow plotting the spatial channels where they
travel. For the Generic tool model stochastic adjoint and forward calculation results have been
combined to estimate the response flux. The geometry has been divided into small cells, and
the adjoint and forward results have been integrated with respect to angle and energy. Given
the geometry has rotational symmetry; where also the “spatial” angle of the cylindrical
coordinate system has been integrated out. For all 20 time readings (50ps long each) the
response flux has been calculated. The response flux of the first (0-50us) and the 4" (200-
250us) detector reading can be seen by an r-z plot on Fig. 35 and Fig. 36 respectively; for
both cases for the near detector. The response flux is calculated as the product of the neutron
and the photon response fluxes obtained from cell-wise track length estimators. Lighter shade
indicates higher response flow, except at the periphery, where far from source and detector
the response flow is extremely low (<0.005% of the maximum value).
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Figure 35.  Response flux for the 0-50us time bin

In the figures the boundaries of the model geometry are indicated. The source is located at
(0,0). The boundaries of the casing, the pressure housing, cementing and the borehole
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constitute the horizontal lines, while the superimposed boxes are the near shielding, the near
detector and the near phototube. The vertical line is the position of the Midway plane for most
calculations.

Fig. 35 resembles largely a dipole system. The response flow decreases strongly with the
radius, and it is localised into a small domain, mainly to the borehole itself. This is a
consequence of the small time allowed for the scores to travel: as the contributions should
arrive within 50us. This would allow only a few neutron scatterings. The transport of
contributing particles is localised mainly to the borehole. Recalling that the gamma photons
from inelastic scatterings arrive during the source burst, we can say, that the neutrons are
mainly creating photons in the borehole, as long as the tool is centred to the middle of the
hole. The tool should be definitely pushed to the borehole wall to yield useful information on
the formation, but even then the majority of the contributions are not passing through the
formation. The slim tool designs allowing operation in secondary tubing in the borehole are
strongly separated from the formation, and the sensitivity of the tool for formation
constituents is small, at least not for the near detector. In practice, therefore, the near detector
response is usually used for obtaining correction factors that measures the effects of the
borehole itself.
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10 15 20 25 30 35 40 45 50
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Figure 36.  Response flux distribution for the 200-250us time bin

As Fig.36 shows, the contributon transport for the 4™ time bin is not happening any more in
the borehole. The particles penetrate the formation, and (as seen in Chapter 1, Fig.5) the
detector reading starts to reflect the formation properties. The iron casing at the borehole wall
is clearly an effective shielding for the response flow.

The consequences of the response behaviour for the time dependent Midway method are as
follows. Regarding a Midway plane positioned at 15cm on the axial coordinate, the response
distribution shows different effective domains. Therefore a segmentation system that suffices
for higher time readings, might fail for the first time response intervals. The response flow is
broader closer to the detector, therefore an effective scoring from both calculations might
optimise closer to the near detector. Repositioning the midway plane should also affect the
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optimal settings of the segmentation system. The effective scoring domain on the Midway
plane moves closer to the axis for positions close to the detector or the source. The angular
dependency of the adjoint function, however, will be more anisotropic and might narrow the
effective scoring domain.
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Figure 37. Efficiency change of the Midway method for various Midway plane positions

Fig. 37 shows the efficiency variation for different Midway plane positions. The Midway
planes were all positioned perpendicular to the geometry axis, at 6.5, 10,14,18 and 21 cm. The
FOM-values were normalised by the FOM of the calculation with the Midway plane closest to
the detector. The segmentation structure was kept the same. The highest efficiency for the
first time bins is achieved by calculations at least halfway source and detector. For higher
time bins the efficiency does not change consistently, due to the loose variance estimates (old
variance model). It is however apparent, that a Midway plane position (and segmentation)
optimal for one time reading, will be less efficient for other ones. In the meantime, the
truncation error is also changing for the different Midway planes as shown in Fig. 38.
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Figure 38.  Midway accuracy jfor different Midway plane positions

The least stable and correct estimates can be seen with Midway positions near the source
region (6.5, 10 cm).

5.2 Enhancement of the Midway Efficiency Using the Weight Window
Technique

The difficult particle transport calculation problem that a borehole logging geometry
constitutes, does not only give a problem to the time dependent Midway method. Many
variance reduction attempts required additional techniques for significantly improving the
efficiency. Borehole logging geometries are typical test problems for general variance
reduction techniques. This section is dedicated to a comparison of the so-called Weight
Window (WW) technique applied to the same borehole logging geometry with the Midway
method. We have seen so far, that the time dependent Midway method has many free
parameters to set, and many factors have an influence on its accuracy and efficiency. For the
comparison of the Midway method with the WW technique, we have selected one setting that
was tuned to deliver accurate results.

5.2.1 The weight window technique

The WW technique [12, 32] is a general variance reduction technique. It achieves an
efficiency increase by controlling the particle population travelling through the model
geometry. In MCNP the phase space is subdivided into a number of cells, where the
controlling parameters are set energy- or time-dependent. For each cell a lower and a higher
WW boundary should be specified. When a particle arrives to a cell boundary, its weight is be
tested against the upper and lower bounds. If the particle weight falls between the two, there
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is no action taken. If the particle weight (w) is lower than the lower bound (w;), Russian
Roulette is played: with a probability w/w;, the particle survives and its weight will be set to
ws; while with probability 1- w/w; the particle is terminated. The choice on w; should fall
within the WW bounds. If the weight is higher than the upper bound, the particle is split into
fragments. From that point on the fragments would walk separately, with reduced weights.
The splitting procedure should be made to have all fragments’ weights falling within the WW
bounds.

For setting the WW bounds properly, we can say, that particles having travelled through the
geometry and successfully arrived at the neighbourhood of the detector, should be split to
ensure scoring (by at least one of its fragment progeny) thereby avoiding to loose the invested
computation time. The amount of splitting should be therefore roughly inversely proportional
to the distance to the detector, and this distance might be measured by the importance
function. The amount of splittings should be limited by the computer time spent on following
the created progeny. If the particle splitted too heavily, many fragments may reach the
detector. These progenies belong to the same sample, and the delivered score is the some of
their contributions to the detector response, therefore the same final contribution could have
been achieved by following fewer particles.

When particles travel far from the detector, their population should be reduced by Russian
Roulette to decrease the wasted computer time. This thinning process can only increase the
variance of the final estimate but it effectively decreases the computer time. The further away
we are from the detector (the distance is measured again by the importance) the higher the
lower WW bound should be set. In MCNP, the lower weight limits are set to half of the
response/importance value (more precisely the importance at the source divided by the
importance at the given location), and 5 times this value gives the upper WW bound.
Experimental studies indicated that the efficiency gain is sensitive to the value of the lower
limit [12], and less sensitive to the ratio of the upper and lower limits. The WW technique is
particularly useful if there is weight change introduced to the system e.g. by applying implicit
capture.

The required importance values can be obtained by deterministic calculations, or it can even
be estimated from a forward Monte Carlo calculation. The latter is the so-called WW
generator of MCNP, which estimates the importance of a cell by dividing the number of
particles entering the cell by the number of them later scoring in the detector. The WW
generator can hardly deliver stable estimate for the energy/time dependent cell importances
until the calculation is efficient enough to deliver many scores.

For applying the WW technique for Midway calculations, we need to establish the theoretical
framework for the calculation of relevant importance values. Unfortunately setting the WW
bounds is more practice than theory, as it is not a direct approximation of a zero variance
scheme, though Haghihgat et al. [38] presented a derivation of the WW bounds connected to
zero-variance schemes, by the name of Consistent Adjoint Driven Importance Sampling.
Their attempt is the same as the above-presented argumentation of the zero variance schemes
but starting from the other end of the line of thoughts. If we ensure that the particle weights
are proportional to the inverse of the importance, a fair biased game should compensate this
by an increased neutron population that must resemble the population of the causal particle
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population. In somewhat mathematical terms, contributions to the detector response coming
from a phase space domain around P can be approximated by

R(P)=¢(P)¢"(P) (5.7)

where the argument P means the response R contributed by those particles that have passed
through around P. If every particle starts at the detector with unit weight, and the low variance
estimate should comprise particles with roughly the same weight, the particle weight should
decrease during its journey. If a particle arrives to a phase space point with weight w and the
probability of scoring is ¢'(P), and the process of transporting particles from P to the detector
is an ideal process that will not induce further fluctuations in the weight, the particles should
arrive to the detector with weight wg'(P). (Such an ideal process can be estimated by splitting
the particle into very many fragments for example). The final average should equal the total
response R, and for low variance all contributions should equal to that value; if Eq.(5.7) holds,
and the probability of the contribution is independent of the weight at P it will impose a
constraint on w, that is

w(P)~R/¢" (P) (5.8)

This argumentation hardly holds around and inside the detector. Even if every particle at a
phase space position at the boundary of the detector arrives with equal weights, the variance
introduced by simply the scoring process can be significant, and it is not improved by weight
control in the detector. Also, this theory does not account for multiple scores of the same
particle history.

With the WW technique it can be ensured, that particles in a phase space region possess a
weight around w(P), if we set the weight window bounds around R/ ¢ (P). However in this
sense the WW technique is far from being ideal, split fragments must vanish but one of them
before reaching the detector to indeed score finally with weight around R. When the weight
decreased below R, the technique of statistically ending the particle history, does not reduce
the variance any more. The population of the particles is controlled therefore, and indeed the
particle population must resemble the distribution of the response flow, though history-wise.
The parameters to tune experimentally are numerous: normalising the weight bounds at the
source might achieve a better “importance sampling”, the saved computer time by Russian
Roulette is dependent on the full weight distribution at a phase space point and the expected
computer time of a history; for splitting we should avoid superfluous fragments. Nevertheless
the technique works very well in practice.

Rigorous optimisation that takes into account the computer time per history is hardly possible.
A treatable approximation is to set the computer time proportional to the number of collisions.
At a certain phase-space point the drawback and advantage of manipulating the particle
population is also dependent on the number of collisions before and after passing P, and such
a simple formulation as Eq.(5.8) will not be a good constraint for optimisation. A measure of
the average number of collisions per history could at least serve as a guideline for the
population control, but it is hard to estimate.

Neutron-photon transport has many special characteristics that might be utilised for a more
effective bias that suffers the lack of proper formulation. Given the far lower computer effort
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required for gamma than neutron calculations, a population control that increases the number
of simulated photons, will not increase the total running time proportionally.

The MCNP Weight Window Generator (WWG) [41] estimates the importances for a forward
calculation from a forward stochastic process. The geometry is subdivided into spatial and
energy-/time-dependent segments. Particles passing through such a subdomain are registered,
together with their final score. The importance is calculated as the total score relative to the
weight of a particle entering a subdomain divided by the entering particles, in line with the
interpretation of the adjoint function as the probability of scoring from a certain phase-space
location. The importance values are later normalised to ensure that particles starting at the
highest importance source cell would not be immediately splitted or rouletted out. If the
source is subdivided into energy/time intervals, and the source energy/time spans over more
than one bin, the importances are normalised according to the maximum importance in an
energy/time interval. This latter is not in line with the normalisation constrain of (5.8), as it is
not a source-weighted average of the different importance values.

Values are only generated by the WWG if scores are made in the detector. To solve this
problem an iterative scheme is proposed [12, 42], or replacement of the actual source by an
arbitrary source somewhere closer to the detector. The latter would require a proper
normalisation according to Eq.(5.8), and that would require some approximation of the final
outcome. It is worthwhile to mention, that there is currently many research efforts directed
towards automatising the weight window generation through deterministic codes, that would
require minor user input (12,39,43, etc.).

5.2.2 Importance functions for the Midway response

To calculate the importance function for the WW application for a Midway calculation, we
need to define first the importance function for the Midway response parts. The respective
detector function belonging to the Midway adjoint calculation is given by

D, (P)=nQp(P) while Pe 4, (5.9)
The detector function for the forward Midway calculation is
D, (P)=nQgp" (P) while Pe 4, (5.10)

For the forward calculation, the weight windows should be generated using the adjoint
function ¢' sy belonging to this detector response, where Dy, functions as the adjoint source.
Taking a Midway enclosure around the source, according to the second theorem of Section
1.2.5 of Chapter 1 (while applying it to an adjoint calculation), ¢'ry = ¢* within the
enclosure.

For the adjoint calculation, the importance of the adjoint Midway calculation should be
calculated, an adjoint to the adjoint calculation (¢ am)’, with the source term of Eq.(5.9). The
adjoint of the adjoint function will give the flux, and using the same theorem as above, the
importance for accelerating the adjoint will be equal to the flux of the real source, within the
source enclosure. These equalities are shown in Fig. 39
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Figure 39.  Importance equalities for accelerating the Midway adjoint and Midway
Jforward calculations.

When applying the black absorber technique (for the adjoint calculation), the flux on the
source-side domain will vanish. In the detector enclosure the adjoint function would change

(as a result of changing the geometry) to qf , while we know that disregarding the difference

( X —¢*) does not influence the Midway response. Therefore the importance of the adjoint
will still be given by the flux corresponding to the real source.

When using a deterministic code to generate the importances, it can be rather troublesome to
use Eq.(5.9) and Eq.(5.10) for the source terms, especially when using the black absorber
technique. The above equalities allow using the solutions of the original source-detector
system, except for the domain outside the Midway enclosure; there special treatment is
needed. This special part of the Midway importance regards particles that crossed the Midway
surface three times, and the likelihood of such events is relatively small. The WW technique
would hardly offer an efficient biasing for those particles as this case is a heavily direction-
dependent transport.

The MCNP WWG may be set up targeting at the original source and detector functions. In
order to increase the efficiency of the stochastic weight window generation, a simplified
Midway coupling procedure has been incorporated into MCNP by a single modified
subroutine. From previous forward and adjoint simulations first segment-wise estimates of the
Midway detector functions are calculated. The respective Midway detector function is used
by the coupling subroutine for scoring. The subroutine returns a series contributions for all of
the time bins. It is rarely the case in the general practice that a tally gives a contribution for
both photons and neutrons in common Monte Carlo calculations. Here a cell-heating
estimator has been utilised, defined in an extremely thin cell. This realisation of the Midway
coupling differs from the previous procedures in three major points: it uses less segments, as
the data has to share its memory needs with MCNP’s; it cannot produce the response
functions for the coupling; and the variance calculation is not proper. This realisation allows
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an efficient WW generation by increasing the scoring samples and it offers a solution to the
needed special treatment outside the Midway enclosure for the non-black absorber part of the
Midway calculation.

Two applications of the Midway method have been considered for a comparison of the WW
technique with and without the Midway method: time dependent detector reading (Sigma
operation mode) with time dependent weight windows and with the WWG; and an energy
dependent response (C/O) mode with energy dependent importances generated by the DORT
finite elements code.

5.2.3 Performance of the WW technique with time dependent weight
windows

When using the MCNP WWG for both the autonomous forward calculation and for the
Midway response estimate, setting an equal challenge, i.e. devising a fair comparison in every
respect, is hardly possible. Especially when generating the importance map, the quality of the
weight windows is not straightforward to compare. Also, comparison with the autonomous
unbiased forward calculation might be unfair as the unbiased forward simulation estimates
multiple detector responses in the same calculation. The simulations with WW will be
optimised to a single response, and a well behaving estimate most certainly means a spoiled
estimate for the other responses. A Midway response estimate for two physical detectors
needs at least two adjoint and one forward calculation. The time-dependent Midway response
estimate provides efficiency increase for many detector responses, and selecting a single
optimisation target would deteriorate the variances of the estimates for other responses. A
fully optimised speed-up should regard therefore all the information that would be later
extracted from the measurements, i.e. it should regard the technique of the data inversion
process. It should be emphasized, that the series of time responses are usually tallied without
an energy spectrum. Replacement of the detector response by a Pulse Height Distribution
estimator is not necessary. Further, the inversion process usually utilises the rate of decrease
rather than absolute values of the time dependent readings, therefore this estimate is very
close to a realistic simulation except for using multigroup cross-sections.

Our choice for the comparison targets are the near detector and the 5™ (200-250us) time bin.
For this time bin, the reference autonomous forward calculation provides a statistically stable
estimate, but it is a relatively ineffective calculation. This provided a sensible comparison of
the FOM’s relying on well-estimated quantities, while the inefficiency of the calculation gave
space for efficiency improvement. We have selected a segmentation structure, which provided
a fairly accurate response estimate, and an original Midway Efficiency Gain of 7.8. The
Efficiency Gain is the ratio of the FOM of the simulation in question and the FOM of the
reference autonomous calculation.

Knowing the answer from the long-run forward reference calculation allowed the replacement
of the physical source for the WWG by a somewhat larger source. The source has been set to
a half centimetre thick cylinder around the real source, with a radius of 15cm. Fig. 40 shows
the generated importance map, for the forward Midway, non-black-absorber part. The
response flows mainly through the formation (r > 10cm). The importance decreases steeply
after the Midway surface. Note that scores are only made if the forward particles cross the
Midway surface in the direction from the source. To direct the comparison towards comparing
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methods, rather than comparing the ease of their optimisations, the full forward welght
windows have been generated using 10° particles, that would already allow for the 5™ time
reading to have less than 2% relative error without any biasing.
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Figure 40.  Normalised neutron im fortance map for the speed-up of the forward Midway
(non-black-absorber part) for the 5" time bin, with the model geometry superimposed. The
darker shade indicates lower importances, very low values are wiped blank at the

periphery.

The same importance map is shown on Fig.41, but with the WW mesh system superimposed.

\ 30 40 o

‘ Figure 41.  Normalised neutron im {lyortance map for the speed-up of the forward Midway
(non-black-absorber part) for the 5" time bin, with the WW mesh geometry superimposed.
The darker shade indicates lower importances, very low values are wiped blank at the
periphery.
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The importance values are taken as the inverse of the set WW lower bounds. The results of
the calculation with the WW technique are shown on Fig. 42.

i —— full forward calculation with WW
24 L Midway calculation without WW
22 —v— Midway calculation using WW
for the forward calculation

-~ Midway calculation using WW
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Figure 42.  Efficiency Gains (ratios of the Figure of Merit with a forward calculation not
using WW) for different optimisation schemes, all targeting the 5" time reading. The
unoptimised Midway calculation is almost as efficient as a regular forward calculation
with Weight Windows, but shows efficiency increase at other than the targeted time bins.

The efficiency of several optimisation schemes is compared in Fig.42 to an unomptimised
forward calculation. The Midway method without the WW technique shows almost the same
efficiency increase as the WW technique for the targeted (5™) time bin. For lower bins, the
time dependent Midway method shows a considerable efficiency gain. When applying the
Midway method together with the WW technique, the efficiency gain increases for the
targeted bin, and radically decreases for other responses. A successful application of the WW
is applying it to the adjoint Midway calculation, achieving an efficiency gain of a factor of
19.7. This efficiency increase improves further (22.6) by applying the WW technique also to
the forward Midway calculation. This last step finally degrades all other response estimates.
The least successful biasing scheme belongs to the forward Midway calculation, when the
improvement is slight. The reason to this disappointing performance of the WW technique
most probably lies in the unsatisfactory treatment of the particles having crossed the Midway
surface. These possible contributors should recross the Midway surface for scoring, meaning
a strong angular dependency requirement that is not present in the current WW realisation.
Regardless of their angle the particles are kept alive though travelling in the wrong direction
(further from the Midway surface), though their transport is hardly worth the calculation time.
On the other hand they are split into many fragments when travelling back to the surface,
while they cannot score until they turn back again. With some form of an angular biasing this
unsatisfactory performance could probably be improved.
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5.2.4 Performance of the WW technique with energy dependent
deterministically generated weight windows

The energy-dependent WW application to borehole logging with and without the Midway
method is the subject of this section. Energy-dependent responses are handled only, time
dependence is neglected. This gives a simpler Midway integral, where decreasing the number
of dimensions offer a considerably more accurate and effective coupling. Also, the required
computer memory requirements decreases, allowing a more detailed coupling. This
application aims at estimating a somewhat realistic C/O ratios, except neither the Pulse Height
Distribution nor the inelastic gamma separation has been considered.

Instead of the previously used MENDF5/6 [44, referring to 45] cross section library, another
data set has been used, that was specially designed for borehole logging. This evaluation [46]
comprised a complete set of elements that are frequently present in borehole logging
environment, with a more detailed energy group structure (175 neutron, 45 gamma groups).
This data library based on the ENDF/B-VI (version 8) using the VITAMIN-J structure
extended by 9 gamma groups in the range of the Carbon and Oxygen windows.

The absence of time dependency allowed a stable Midway estimate significantly less
dependent on the segmentation structure. The Midway coupling in energy relied on the
multigroup structure of the used library both for photons and neutrons. The importance
function was generated using the discrete ordinates code DORT [47] in a 2D r-z geometry
using the same cross section library. The energy structure of the WW settings used the
complete 175/45 group structure. For a full forward or adjoint calculation this process can be
achieved without further theoretical development to deterministic source-detector
calculations. For the Midway method, the generated importances must be corrected beyond
the Midway plane (from the perspective of the source). Such an input for DORT is not
straightforward; as such an adjoint source should be specified on the Midway surface that is
limited to positive direction cosines with regard to the surface normal. Instead of following
this path, the MCNP WWG has been invoked to generate the importances beyond the
Midway plane, and only in a corrective sense, i.e. replacing the importance values generated
by DORT at positions beyond the Midway plane. For this WW generation step, the existing
DORT-importances have been used to accelerate convergence. Again the simplified Midway
coupling subroutine has been used. For utilisation of these DORT weight windows minor
modifications have been made to MCNP. The simplified Midway coupling within MCNP
naturally required a previous Midway calculation.
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Figure 43.  Neutron importance map for the forward Midway calculation (80" energy
interval): stochastically and deterministically generated importance maps are merged at
the Midway surface. The targeted response is the far detector (94-109cm axial direction)

carbon window. The neutron source is located at z = 50.8cm. Very low importance values
are wiped blank at the periphery.

Fig. 43 shows the neutron importance map for the forward Midway calculation for the far
carbon window merged with a stochastic importance generation beyond (right-hand side) the
Midway plane. This map belongs to the 80™ neutron energy interval of the multigroup library
(0.166-0.174MeV). The two maps reasonably match at the Midway plane, though the
stochastic part shows higher values in general than expected. Its quality is determined by the
statistical nature of the importance generator, giving an inconsistent spatial distribution at
many positions.

The investigated responses are the near and far detector readings in the Carbon and Oxygen
windows, forming four different responses. The Midway calculations could be set up using a
single Midway plane located between the source and the near detector. However, for higher
efficiency, two different midway planes have been set separately for the two detectors. The
near Midway surface was placed 15¢m, the far Midway surface 31cm away from the source.
If we choose the adjoint calculation for applying the black-absorber technique, the
unoptimised Midway calculation requires one forward and four adjoint calculations. When
applying the WW technique, separate WW settings should be applied to each of the detector
responses. This means fundamentally different importance maps for the optimised Midway
forward runs. For the adjoint calculations, given a single source, the respective Midway
importances are provided by the flux, belonging to the same, the actual physical source.
Therefore the importances for the responses only differ in a normalisation factor, given by the
respective response. To decrease the total workload, only one optimised forward calculation
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has been performed, with importances belonging to the far carbon window. This is obviously
not optimal for every response, but will the least deteriorate the efficiency of all the estimates.

As mentioned in Section 5.2.1, increasing the number of generated photons might be
advantageous for the overall efficiency. In the standard MCNP version at every neutron
collision a photon weight equal to &,p..q/0; is generated. This weight will normally be (much)
less than unity and a Russian roulette procedure is used to determine whether a photon is
obtained with weight equal to the neutron weight at the collision or the photon will be
eliminated. As the CPU-time for processing a generated photon until the end of its history is
in general much less than that of a neutron, it is a major disadvantage that the Russian roulette
for photon survival works very harsh due to the generally small fraction of photon weight
generated. It would be better to use the photon importance (when available) to determine what
value of the photon weight should be accepted in the Russian roulette procedure. As
importances are not always available and, more importantly, the importances do normally not
account for variations in the CPU-time expected for the rest of the particle history, we
introduced an additional option in MCNP which allowed for the entrance of an input
multiplication value for the generated photon weight at a neutron collision. If this
multiplication factor is chosen, for instance, as 5, the generated photon weight will be 5 times
as large and (if still smaller than 1) the Russian roulette works 5 times less harsh. Therefore,
many more photons will survive the generation process and will contribute to the photon
detector response. Based on some test calculations, both a factor 10 was used for both
Midway and autonomous forward calculations.

Another possibility of increasing the efficiency of the Monte Carlo calculation is to use the
photon importance values to select the energy of the photon. This is possible when a rather
fine distribution of (photon) importances is available as obtained from a deterministic code
like DORT with a sufficient number of energy groups. An analogous situation is the adjoint
neutron generation from adjoint photons, although the procedure for generating adjoint
neutrons in MCNP differs somewhat from the above described procedure for generating
(‘forward’) photons in a neutron collision.
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Figure 44.  Efficiency Gain with different energy dependent optimisation settings. (The
lines connecting symbols indicate matching values, rather than continuous quantities)

The efficiency gains (compared to an unoptimised forward calculation) are shown in Fig. 44.
The Figure of Merit values have been calculated separately for each response. Calculation
times for all detector responses neither in the case of the Midway nor in the case of the
autonomous forward calculation have been considered. Now the WW application is
significantly more advantageous than applying the simple Midway method. The WW settings
of the forward Midway run are not optimal for every reading, and it only aids the Midway
calculation at the far carbon window. Acceleration of the adjoint Midway calculation is again
the most successful, with efficiency gains above the full forward calculation. We should keep
in mind, that the forward Midway calculation is not fully optimised for each response, though
the Midway calculations is at least a factor 2 more efficient than an optimised full forward
calculation. The efficiency gain is higher for the far detector responses (because of the higher
penetration depth), while further improvement with the WW technique proved more effective
for the near detector.

The autonomous unoptimised calculation gives estimates for all possible responses. Applying
the WW technique deteriorates the responses other than targeted. It is possible to change the
optimisation settings for a set of responses but different physical detectors should be
calculated by separate runs. Attempts for optimisation for a set of responses are not
surprisingly scarce, as a truly optimal setting can only be achieved for a single response.
Mickael [36] claims, that his optimisation scheme considers such a combination, although no
explanation is given in his publication about how and why this is achieved. For the Midway
method, separate adjoint calculations are a must for different physical detectors. For
energy/time bins of a single detector the time convolution options or a proper bookkeeping
could eliminate the need for completely separate runs for each response as we have discussed
earlier. It is worthwhile to note, that very many responses of the same physical detector are
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not a particularly easy task for the Midway method because of accuracy problems of the
coupling and the increased coupling times.

Testing the obtained efficiency figures against values found in literature cannot be extensively
done, mainly because the lack thereof, but also the published few results rarely gave
numerical values and mainly used substantially different geometries. Maucec et al. [48] used
the same geometry and cross-section library, moreover the same operation modes. In their
publication, the sigma mode has been simulated by an analogy to energy dependency, mainly
to Cl capture photons. The C/O ratio simulations regarded only the truly inelastic gammas,
but their conclusion of lower efficiency gain for the near detector and an order of a magnitude
for the far detector tallies with the results presented here. Mickael [36] and Maucec et al.[48]
showed efficiency measure but taking the PHD into account, requiring all the energy bins to
have lower than 5% variance. Their conclusions of the efficiency gains differ by an order of a
magnitude at least, mainly as Mickael [36] could not obtain then a statistically well converged
reference calculation.

Near Carbon |Near Oxygen| Far Carbon [ Far Oxygen
Forward with WwW S 8.8 75 353 19,2
c 1,9 17 52 10,3
Basic Midway S 38 3,0 29,8 26,9
C 1,9 14 14,4 11,5
Midway-Adjoint WW S 174 15,2 36,0 32,4
Cc 11,3 9,3 23,5 20,4
Midway-Forward WW S 4,5 3,8 42,9 28,6
c 2,5 1,8 21,9 12,7
Midway- Forward and Adjoint WW [ S 21 19,8 49,8 35,2
c 14,3 12,6 34,3 23,1

Table 4. : Efficiency Gain of different detectors compared to the efficiency of the
unoptimised forward calculation, obtained by accounting for the computer time a certain
response calculation consumes (S), and for the cumulative computer time all the response

calculations together would take (C)

The Midway efficiencies for multiple response estimates, therefore, should be compared
using the total running time of all calculations. Table 4. shows the efficiency gains when
calculating the FOM using the cumulative computer time of all sub-calculations (except the
weight window generation), and the previously shown (Fig.44) efficiency gains. It is
apparent, that the Midway method without any further variance reduction technique applied is
at least a factor 2 more efficient than a regular calculation, although higher values appear for
the far detector. Despite the lower gains for the near detector, the Midway method still stays
ahead of applying a simple WW technique in terms of efficiency.







CONCLUSIONS

The integral of the flux and the adjoint function on a surface separating source and detector
provides an alternative form for calculating a detector response. The Midway method, the
Monte Carlo interpretation of this response form, had been proposed [9] as a general variance
reduction tool. This thesis analysed the capabilities of the Midway method extended to handle
time dependent responses, for application to borehole logging calculations with the aim of
providing an accurate and fast technique for simulations on a detailed parameter space.

Quality analysis of Monte Carlo simulation results is based on measures of the statistical
properties of the response estimate. In contrast, deterministic transport calculations may yield
inaccurate results to an unknown extent due to insufficient discretisation of the transport
equations. The Midway method couples two stochastic processes by a discretised surface
integral in five (for time dependent cases: six) dimensions. This conceptual change of the
Monte Carlo estimator introduces truncation errors caused by the discretisation of the integral
while the statistical behaviour of the response estimate should still be monitored for
sufficiently low variance; and further: refinement of the discretisation spoils statistical
convergence properties. This obvious drawback of having double error source is balanced by
the fact that Midway Monte Carlo calculations have been shown to be more effective than
autonomous forward Monte Carlo games; for borehole logging simulations presented in this
thesis the efficiency increase has even reached a factor of 50.

In this thesis, the Midway method has been extended to handle time-dependent neutron-
photon problems, and has been applied to a borehole logging tool equipped with a time-
dependent neutron source and photon detectors. It has been found that the Midway method
provides considerable efficiency gain compared to a non-optimised autonomous forward
calculation. The responses, however, showed deviations from the reference calculations
beyond statistical uncertainty. A further problem arouse by the computer resource
requirements of the Midway coupling as it reached impractical extents for current computing
standards, while the energy discretisation was limited to only a few energy groups.

One reason for the aforementioned discrepancies has been found in the inadequate estimation
of the variance. The variance estimation has been corrected and the approximations -
necessitated by keeping the calculation flow simple-.has been shown and treated. The
behaviour of the variance has been found to be insensitive of the discretisation structure until
enough adjoint and forward scores hit the Midway surface. If too many phase-space segments
are taken in comparison with the number of scores crossing the Midway surface, the variance
increases and the estimator becomes unstable. These situations are better indicated by the
corrected variance estimator, though they cannot always be clearly identified. The coupling
algorithm has been tweaked to decrease the computer memory needs.

For the improvement of the accuracy (for the decrease of the bias in the Midway response
estimator) two techniques have proven useful. Firstly, an analytical integration of source and
detector functions allows exact coupling in the time variable. Secondly, coupling using
expansion on orthogonal function bases (tested here only for the solid angle) resulted in far
better accuracy. Both techniques lack, however, a simple way of estimating the variance if the
computational effort and/or the memory requirements are to be kept low enough for using the
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Midway method as a general variance reduction tool. Biased estimators for the variance can
be given for both techniques, and in cases when this suffices both could and should be used.

The scintillation detectors of the simulated tool pose challenge for Monte Carlo simulations.
Since their energy dependent response is not describable with quantities of the Boltzmann
equation, regular formulation of an adjoint game is not applicable. It has been shown for a
non-multiplying system, that adjoint sampling of this detector response is feasible; thus it is
possible to set up a Midway calculation.

The efficiency gain of the Midway method has been compared to optimised autonomous
forward calculations as well. The commonly used Weight Window (WW) technique has been
applied, both in energy and in time dependent forms. For both cases the Midway method
provides comparable efficiency gain to the optimised forward calculation. It was observed
that for the WW technique the efficiency gain is only present at targeted responses while
efficiency of estimators of other responses (other time or energy bin, other detector)
decreases. For multiple responses the Midway method on the contrary, provided efficiency
increase for every response. Also, the theory for application of the Weight Window technique
for the adjoint and forward simulation parts of the Midway method has been presented, and
resulted in further efficiency improvement, though the capability of increasing efficiency for
multiple responses -with this optimisation step- vanished.

The application of the Midway method for time dependent borehole logging simulations —
even for a limited set of energy groups— required optimal usage of computer resources for
acceptable accuracy and stability. For realistic simulations, therefore, application of the time
dependent Midway method is discouraged. As for different borehole logging scenarios the
required number of particles for statistical stability would not change drastically, it is possible
to set the number of simulated histories by preliminary numerical tests, and to use the time
convolution and function expansion coupling improvements without exact estimate of the
variance (or with just observing the statistical fluctuations of some sets of histories) to result
in an accurate response without accurate variance estimate.

The energy dependent borehole response without time dependence provided a reasonable
challenge for the Midway method, both for accuracy and statistical stability, while the
efficiency gain —especially with applying further variance reduction for the adjoint
calculation— was appreciably high. For realistic cases, implementation of the adjoint
sampling of the detector response is a must, and comparison with measurements should be
further investigated.

In general we can say, that the applicability of the Midway method is mainly determined by
the complexity of the surface integral, that is the number of dimensions to account for and the
ease of describing the flux and the adjoint function by a discretised/expanded function
representation. The statistical stability of the Midway response estimate is dependent on the
coupling scheme: a trade-off exists between refined function representation and statistical
convergence of the estimators. The application of the Midway method is better rewarded,
therefore, when the number of dimensions of the surface integral can be decreased or when
either the adjoint or the flux is simple to represent.
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The mentioned difficulties around the realisation of the Midway method as a general variance
reduction technique can all be circumvented on the cost of increased computing effort, user-
friendliness, memory requirement or fitting calculation flow to current Monte Carlo codes. By
investing considerably more computing effort in processing the adjoint and forward scores
(also repeatedly), for example, setting the balance of stability and accuracy can be automated,
the variance calculations can be made exact, the truncation errors quantified. The techniques
and analysis presented in this thesis can be applied and further developed to forward-adjoint
coupling calculations where the efficiency increase is not based mainly on the reduction of the
variance, but rather on the decoupling of model domains, like measurement (or tool) design,
radiation treatment planning, or sensitivity analysis.




List of Symbols and Abbreviations

LIST OF SYMBOLS AND ABBREVIATIONS

B
c
C(P— P

d
D (as a function)

D? (as an operator)

Ax)

Si

E (as a variable)
E (as an operator)
FOM

‘%;'&

IR

(as a scalar)
PP

QR Z=2™ x

o

HD
P (as a variable)
P; (as a function)

as a vector)
(as a scalar)

R ORISR

T (as a scalar)
T(P—>P)
w

+
w

adjoint

Boltzmann-operator without the streaming term and the time derivative
contribution
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function expansion coefficient
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variance
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energy

expected value

Figure Of Merit

flux

adjoint function

general scoring function
radiation current

number of used coefficients
transport kernel

linking function

number of ‘forward’ particles started in a simulation
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order
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probability density function
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collision density
spatial coordinate
relative variance
response

score

adjoint score
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SUMMARY

As detection and monitoring devices, nuclear borehole logging tools are frequently applied in
(oil) survey and production wells. For its versatile applicability in identification and
quantification of elements in the geological formation, the neutron-gamma tool has been
recognised as a primary device especially for already cased wells. The tool operates with a
pulsed neutron source and time and energy dependent scintillation photon detectors.
Simulations of the tool response for the combinations of possible formation parameters are
necessary for the interpretation of the measured data and the required accuracy necessitate
Monte Carlo calculations. The calculation time for obtaining statistically converged
simulations, however, can be impractically high.

The integral of the flux and the adjoint function on a surface separating source and detector
provides an alternative form for calculating a detector response. The Midway method, the
Monte Carlo interpretation of this response form, had been proposed [9] as a general variance
reduction tool. This thesis analyses the capabilities of the Midway method extended to handle
time dependent responses, for application to borehole logging calculations with the aim of
providing a fast and accurate technique for simulations on a detailed parameter space.

In this thesis the derivation of the time dependent Midway method is given. Application of the
method for borehole logging calculations using the general Monte Carlo code MCNP is
shown to provide considerable efficiency gain compared to a non-optimised autonomous
forward calculation. The responses, on the other hand, show deviations from the reference
calculations beyond statistical uncertainty. A further problem arises by the computer resource
requirements of the time dependent Midway coupling as it reaches impractical extents for
current computing standards, even with a limited energy discretisation of only a few energy
groups.

The Midway method combines two stochastic processes by a five (for time dependent cases:
six) dimensional bilinear surface integral for calculating the detector response. The integration
is carried out by discretising the phase-space into small phase-space segments and the average
adjoint function and the flux is estimated on each facet. This approximation is shown to be the
primary source for the observed discrepancies. Two techniques are developed to enhance the
accuracy of the method: coupling using orthogonal function expansion and a special
utilisation of the invariance of samples for a shift in time. Both methods are shown to
decrease the inaccuracies to an acceptable level without utilising a priori information, though
the calculation of the statistical variance cannot be incorporated in the regular flow of the
coupling.

Another source of the discrepancies beyond the variance is shown to originate from
inadequate estimate of the statistical uncertainty. An improved model is described and
demonstrated to result in a better estimate. The behaviour of the variance is analysed, and
shown to be virtually independent of the discretisation structure until enough adjoint and
forward scores hit the Midway surface, and to grow linearly with increasing number of
segments for low number of samples. If too many phase-space segments are taken in
comparison to the number of scores crossing the Midway surface, the variance increases and
the estimator becomes unstable.
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The scintillation detectors of the simulated tool pose challenge for Monte Carlo simulations.
Since their energy dependent response is not describable with quantities of the Boltzmann
equation, regular formulation of an adjoint game is not applicable. The theoretical framework
for the adjoint handling of such response is developed and it is shown for a non-multiplying
system that adjoint sampling of this detector response is feasible; thus it is possible to set up a
Midway calculation.

The efficiency gain provided by the Midway method for borehole logging simulations is also
compared to optimised Monte Carlo simulations. The often-used Weight Window (WW)
technique that achieves efficiency increase by controlling the particle population migrating in
the model geometry is shown not to outperform the Midway method and that they both
deliver comparable efficiency gains while the Midway method increases the efficiency also
for multiple detector responses. The necessary theoretical derivations are given for applying
the WW technique for the adjoint and forward calculation parts of the Midway method. It is
demonstrated that further efficiency gain can be achieved by simultaneously using both
techniques, even reaching a factor of 50 improvement in efficiency.




SAMENVATTING

De in boorgaten gebruikte nucleaire log-instrumenten worden vaak als detectie- en
monitoringmethode toegepast in oliedetectie- en -produktiegaten. Het neutron-gamma
instrument wordt algemeen erkend als meest geschikte methode voor reeds verkende bronnen
vanwege zijn veelzijdige toepassingen bij de identificatie en kwantificering van elementen in
de geologische formatie. Het instrument werkt met een pulserende neutronenbron en met tijd-
en energieafhankelijke fotonscintillatiedetectoren. Simulaties van de uitgangssignalen van het
instrument voor combinaties van mogelijke formatieparameters zijn nodig voor de
interpretatie van de gemeten data. De vereiste nauwkeurigheid maakt het gebruik van
montecarloberekeningen noodzakelijk. De tijd die nodig is om statistisch geconvergeerde
simulaties te verkrijgen kan echter onpraktisch groot zijn.

De integraal van de flux en van de adjoint functie op een oppervlak dat de bron en de detector
scheidt, voorziet in een alternatieve methode om een detectorresponsie te berekenen. De
Midway-methode, de montecarlointerpretatie van dit type responsie, is voorgesteld [9] als een
algemeen instrument voor variantiereductie. Dit proefschrift analyseert de mogelijkheden van
de Midway-methode, uitgebreid voor tijdathankelijke systemen, toegepast op
boorgatberekeningen met het doel om in een snelle en nauwkeurige techniek te voorzien voor
simulaties met een gedetailleerde parameterruimte.

In dit proefschrift wordt de afleiding van de tijdsafhankelike Midway-methode
gepresenteerd. Toepassing van de methode voor boorgat-logberekeningen, gebruikmakend
van de algemene montecarlocomputerprogramma MCNP, blijkt aanzienlijke efficientiewinst
op te leveren in vergelijking met een niet geoptimaliseerde autonome berekening. Anderzijds
tonen de responsies statistisch relevante afwijkingen van de referentieberekeningen. Een
bijkomend probleem treedt op bij de eisen die aan de computer gesteld moeten worden om de
tijdathankelijke Midway-koppeling uit te voeren. Deze eisen overschrijden de huidige
computergrenzen zelfs als gebruik gemaakt wordt van een beperkt aantal energiegroepen.

De Midway-methode combineert twee stochastische processen d.m.v. een vijfdimensionale
(voor tijdafhankelijke gevallen: zesdimensionale) bilineaire oppervlakte-integraal om de
detectorresponsic te berekenen. De berekening van de integraal wordt uitgevoerd door de
faseruimte te verdelen in kleine segmenten en de gemiddelde adjoint functie en flux voor elk
segment te schatten. Er wordt aangetoond dat deze benadering de primaire oorzaak is voor de
gevonden afwijkingen. Er zijn twee technieken ontwikkeld om de nauwkeurigheid van de
methode te verbeteren: het koppelen door gebruik te maken van een orthogonale functie-
expansie, en een speciaal gebruik van de invariantie van samples voor een verschuiving in de
tijd. Het blijkt dat door beide methoden de onnauwkeurigheden tot een acceptabel niveau
afnemen zonder dat a-priori informatie wordt gebruikt, hoewel de berekening van de
statistische variantie niet kan worden opgenomen in de reguliere wijze van de koppeling.

Een andere bron van de discrepantie is afkomstig van een inadequate schatting van de
statistische onzekerheid. Een verbeterd model wordt beschreven waarbij wordt aangetoond
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dat dit model resulteert in een betere schatting. Het gedrag van de variantie is geanalyseerd en
blijkt onafhankelijk te zijn van de discretisatiestructuur totdat het Midway-oppervlak geraakt
wordt door voldoende adjoint en voorwaartse scores. Als teveel faseruimte segmenten worden
gebruikt in vergelijking met het aantal scores op het Midway-oppervlak neemt de variantie
toe en wordt de schatter onstabiel.

De scintillatiedetectoren van het gesimuleerde instrument vormen een uitdaging voor de
monte-carlosimulaties. Omdat hun energieathankelijke responsie niet valt te beschrijven met
grootheden van de Boltzmann-vergelijking, is de reguliere formulering van een adjoint
simulatie niet toepasbaar. Het theoretische raamwerk voor het adjoint behandelen van zo’n
responsie is in dit proefschrift ontwikkeld waarbij wordt aangetoond dat het adjoint
bemonsteren van deze detectorresponsie mogelijk is voor een zich niet vermenigvuldigend
systeem. Hieruit blijkt dat het mogelijk is om een Midway-berekening uit te voeren.

De efficientiewinst die bereikt wordt door de Midway-methode toe te passen voor het
simuleren van boorgat-logs wordt ook vergeleken met geoptimaliseerde monte-
carlosimulaties. Het blijkt dat de vaak gebruikte Weight Window (WW) -techniek, waarbij
een efficientietoename wordt bereikt door de deeltjespopulatie te beheersen die in de
modelgeometrie migreert, niet beter presteert dan de Midway-methode en dat ze vergelijkbare
efficientiewinsten bereiken terwijl de Midway-methode ook de efficientie vergroot in geval
van een meervoudige detectorresponsie. In dit proefschrift worden de noodzakelijke
theoretische afleidingen gegeven om de WW-techniek toe te passen op de adjoint en de
voorwaartse berekeningen van de Midway-methode. Er wordt aangetoond dat nog meer
efficientiewinst kan worden bereikt door beide technieken tegelijkertijd te gebruiken: hierdoor
kan zelfs een 50-voudige efficientieverbetering worden bereikt.
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