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INTRODUCTION 

Many computational schemes that are used for fuel-cycle calculations of heterogeneous 
thermal reactors superimpose the results of lattice-cell calculations on global or overall 
reactor-flux calculations. In the global calculations the spatial variation is usually 
obtained by replacing heterogeneous regions with homogeneous ones of equivalent 
neutronic properties and applying two- or three-dimensional diffusion theory. The 
many meshpoints needed in these calculations require a simplified treatment of the 
energy variable and the range of neutron energies is usually represented by a few 
groups only. The homogenisation and construction of the few-group constants for the 
global calculations are only possible when certain properties of the neutron distribu­
tion in space and energy in the individual lattice cells are known. This information 
on the local neutron distribution is provided by the lattice-cell calculations, where 
the spatial variation as well as the slowing down and thermalisation processes are 
considered in some detail. Here, as opposed to the global calculations, the local varia­
tions are so strong that simple diffusion theory does not suffice and transport theory 
methods must be used. 

It is customary in the lattice-cell calculations to distinguish between epithermal and 
thermal neutrons. The former have such high energies that the moderating nuclei 
may be considered as free and at rest. The latter are neutrons which, in the course of 
slowing down by collisions with moderating nuclei, have acquired such low energies 
that the chemical binding effects of these nuclei as well as their thermal motion may 
no longer be neglected. The main problem in the study of epithermal neutrons is the 
resonance absorption. Outside the resonances, however, the spatial distribution across 
a cell is practically flat due to the small absorption cross-sections. The study of 
thermal neutrons poses different and more complicated problems. Firstly, the energy 
transfer between neutrons and moderator is more complex than for epithermal 
neutrons, and secondly, the spatial variation of the spectrum across a cell must also 
be taken into account. 

Normally, the thermal neutrons form one of the groups that are used in the few-
group scheme of the global calculations. The bulk of the fissions in thermal reactors is 
caused by these neutrons so that generation of the thermal-group constants is partic­
ularly important. Therefore, the study of neutron thermalisation in reactor lattice 
cells is of fundamental interest for the physics calculations in thermal reactor design. 

The great variety of problems consequently met in coimection with the fuel-cycle 
calculations of reactor design covers a major part of the area of static reactor physics. 
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In principle, each of these problems can be treated in detail and with a high degree 
of sophistication. To that end many sophisticated codes have been written. They are 
well suited for interpreting experiments and, hence, for testing the validity of the 
various physical models and approximations that can be used. However, they are 
often too time-consuming to be profitable in fuel-cycle studies, where some of the 
calculations must be carried out thousands of times before an optimum reactor design 
is reached. Therefore, in contradistinction to sophisticated codes, fast codes must be 
written with prime emphasis on calculational speed. Of course, the extremely short 
calculation times which are required can only be achieved at the expense of even 
cruder approximations. This implies a worsening of the physical description of the 
problem, which should be investigated by comparison with measurements. 

The purpose of this work is to describe and test two fast codes, which have been 
developed for generating thermal-group constants for single-pin lattice cells moderated 
by light and/or heavy water. They do not produce the detailed thermal-neutron distri­
bution in space and energy, but rather the average flux and spectrum in the three 
regions fuel, canning, and moderator. This information is sufficient for constructing 
the group constants. Experimental verification of these codes is not possible, because 
the integral quantities they produce cannot be measured directly. Therefore, in order 
to test their reliability, recourse has been taken to comparison with the more sophis­
ticated code K-7 THERMOS. The latter, in its turn, has been tested against experi­
ments. 

It should be pointed out here that the lattice cells considered in this work have been 
assumed to be surrounded by an infinite array of identical cells so that the cell 
boundary can be taken as reflective. This implies that the neighbourhood of control 
elements, burnable poison screens, differently enriched fuel pins, water gaps, etc., 
carmot be accounted for. As to how far the influence of non-identical surroundings 
can be felt in the group constants remains a question that needs further investigation. 
Extensive Monte Carlo calculations or two-dimensional multigroup transport calcula­
tions should then be performed on regions that include both the heterogeneity and 
the nearest pin cells. By comparing their results with those obtained from regular-
lattice calculations using different boundary conditions or averaging methods, one 
may succeed in deriving simple recipes for evaluating thermal-group constants for 
cells that are in the vicinity of heterogeneities. This falls, however, outside the scope 
of the present work, which deals with the idealised situation of a regular lattice and, 
hence, represents only the first step of a reactor lattice homogenisation. 

The integral neutron-transport equation, which is the starting point of the computa­
tional methods described in this work, is briefly discussed in the first chapter. 

In the second chapter the basic physical models of K-7 THERMOS are reviewed. 
Much of the material presented there is of general interest for thermalisation studies 
and has also been incorporated in the fast codes. Although K-7 THERMOS is a highly 
advanced programme, it cannot describe all effects in detail. Even the most elaborate 
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energy transfer model remains an approximation, while, in the spatial part of the 
calculations, neither anisotropic scattering nor the actual square or hexagonal shape of 
the cell is treated exactly. The various approximations that have been used are discuss­
ed and expected to be satisfactory. 

However, no matter how sophisticated a computational model like K-7 THERMOS 
may be, the final check of its reliability should be provided by testing it against ex­
perimental data. This naturally implies that the experimental data available are ac­
curate, and that all the perturbing effects of the measuring devices have been care­
fully eliminated. In some of the experimental techniques the perturbations are small 
enough to justify a crude determination of their magnitude only. In other methods 
they are larger and require more careful evaluation. However, it seems to have been 
a rule rather than an exception to underestimate or even neglect these perturbing 
effects, thereby leaving considerable uncertainties which render a comparison with 
theoretical results invalid. Therefore, in the third chapter, where K-7 THERMOS is 
compared with measurements, emphasis has been laid on the different ways in which 
these perturbations have been evaluated. The satisfactory agreement of K-7 THERMOS 
with those experiments where the perturbations were carefully determined indicates 
that its theoretical models are sound and do not introduce serious errors in the 
lattices studied. The comparison has been confined to cold and unpoisoned uranium 
lattices, since accurate experimental data on power and plutonium lattices are still 
lacking. However, if the theoretical models are adequate for the investigated cases 
one may, within certain limits, apply them also to light- and/or heavy-water-poderated 
power and plutonium lattices. This is not necessarily true for lattice cells that are in 
the vicinity of a control element, a water gap, or any other heterogeneity. 

In the fourth chapter the fast codes DATAPREP-II and SATAN are described. The 
former reduces the problem to a one-group calculation of flux ratios using effective 
cross-sections. These cross-sections are averages over the cell spectrum, which has 
been assumed spatially to be independent. The latter calculates flux ratios for a 
number of energy groups and homogenises the cell by flux- and volume-averaging the 
cross-sections per group. The average cell spectrum is then evaluated from which, 
using also the energy-dependent flux ratios, the thermal-group constants can be con­
structed. 

In the fifth chapter these codes are extensively tested against K-7 THERMOS. The 
SATAN results appear to be in good agreement with K-7 THERMOS, while neglecting 
of the spatial variation of the spectrum turns out to be a serious drawback for 
DATAPREP-II. The general conclusion is: thermal-group constants for regular single-
pin lattices, moderated by light and/or heavy water, can be generated by the fast code 
SATAN with essentially the same reliability as that of the sophisticated code K-7 
THERMOS. This can be advantageously used in the fuel-cycle calculations of power 
reactor design, where thermal-group constants are of importance and may have to be 
evaluated thousands of times. 
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1. THE INTEGRAL NEUTRON TRANSPORT EQUATION 

The Boltzmann integro-differential equation provides the most general description of 
the neutron population in space, energy, and time. In the present study time depend­
ence will not be considered and the energy variable will be limited to the thermalisa­
tion range 0 < E < £ * . Even then, the Boltzmann equation is too unwieldy to be 
handled numerically and the assumption of isotropic scattering will be introduced so 
that the angular dependence can be integrated out. This leads to the following neutron 
transport equation, which will serve as the starting point for the numerical methods 
to be discussed hereafter. 

I:,[T, E)0[r, E) = Jdr' T(r' -> t, E)[sir. E] + J dE'I^it,' É ->E) <P(r,' £']] (1) 
0 

where 

^(r, £) = the neutron flux, i.e., the number of neutrons per unit volume of the 
phase space [r, £) multiplied by their speed v (throughout this 
work £ will be expressed in eV and the speed in 2200 m/s units); 

^t(T, £) = the macroscopic total cross-section, which is the sum of the macro­
scopic cross-sections for absorption, Safr, £), and for scattering, 
^s(T,Ey, 

Sfr, £) = the neutron source at (r, £) due to slowing down of epithermal 
neutrons in the thermalisation range; 

T(r' —> r, £) = the transport kernel for neutrons with energy E, i.e., the contribution 
to the collision density at r due to a unit isotropic source at r; 

2S{T, £'—>£) = the scattering kernel at r, i.e., the macroscopic cross-section for chang­
ing the neutron energy from E' to the unit energy range at E. 

In the above equation the scattering kernel is the 0th spherical harmonic moment of 
the more general kernel ^s(r, £'—>£,/<), where /n is the cosine of the scattering 
angle in the laboratory system. The higher moments do not occur as a result of the 
assumption of isotropic scattering. The anisotropy of the kernel can, in principle, be 
treated by a spherical harmonics technique, which leads to a set of integro-differential 
equations for the moments of the angular flux 0{r, E, H ) , where f l is the unit vector 
in the direction of motion of the neutrons. However, neither the capacity of the 
existing scattering models to generate reliable higher moments of the kernel, nor the 
complexity of the resulting equations warrants a treatment of anisotropy better than 
to the first order. Because of its involved numerical character such an approach will, 
in general, only be practicable in combination with a Pi or, at most, a P3 transport 
calculation. Symbolically this will be denoted Pi G\ and P3 G\, and the approximation 
represented by Eq. [1) will then be Poo Go. The latter is to be preferred to the P3 Gi 
approach because in and near predominantly absorbing media the P3 approximation 
cannot treat accurately enough the anisotropy of neutron transport (not to be con­
fused with anisotropy of scattering), and more spherical harmonics would be needed 
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to describe 0(r , £), i.e., the 0th moment of the angular flux. A PooGi approach is 
only feasible in slab geometries, where it was used by Honeck [1] to investigate the 
first-order anisotropy of scattering. He found that even for more realistic geometries 
than slab lattices first-order anisotropy could be approximately accounted for by 
applying the transport correction, i.e., reducing the scattering cross-section by the 
quantity 

E* 1 

Ji(_E)2s[_E-) = jdE'jjud/^2:siE^E',/j,) C2) 
0 - 1 

Takahashi [2] has confirmed this for cylindrical geometries by comparison with 
multigroup PooGi calculations on a series of uranium-water lattices. The agreement 
of the flux ratios was in all cases better than 1.2 %. The scattering cross-section is 
related to the kernel as follows: 

E' 

2',(r,£)= rd£'^sCr,£^£') C3) 
Ö 

Observe that the usual upper limit oo has been replaced with £* in consistency with 
the assumption of no upward scattering past cut-off. Usually £* is chosen between 
0.2-1.0 eV. For interpretation of experiments 0.4 eV is a suitable value, since it 
coincides with the cadmium cut-off, while in many design schemes 0.625 eV is used. 

Furthermore, the scattering kernel—and also the higher moments of the more general 
kernel—must satisfy the detailed balance condition 

£ e"^'^ -̂̂ Cr, £ ^ £ ' ) = E'e"^''^ 2'sCr, E' ^ £) [4) 

This condition states that the solution of the thermalisation problem in a non-absorb­
ing source-free medium will assume the Maxwellian shape 

M[£,T) = ^ e - ^ ' ^ C5) 

There are two important properties of the transport kernel of Eq. (1) which will be 
used later on. They are: 

[a) The reciprocity relation 

7Xr' ^ r, £) ̂  rCr -> r', E) 
i^tfr, E) Z,{T',E) 

which is physically obvious because the neutron paths are reversible. 

C6) 

(b) The fact that the neutrons emitted by the unit source at r' will anyhow collide 
somewhere in the system (no leakage has been assumed) is expressed by the relation 

/ d r r ( r ' ^ r , £)=I (7) 



12 

Another important relation can be derived by integrating Eq. (I) over all r and 
£ < £ ' . It states that, in the absence of leakage, the total absorption equals the total 
source 

E' E* 

ƒ dr ƒ dE Ia{r, E) 0(r, E] = f dr ƒ d£ S(r, E) (-g-j 
0 0 

This condition of neutron conservation will prove to be useful in iteration techniques 
for solving Eq. [1). After each iteration step it will be enforced on the iterate and 
thereby accelerate the convergence. 

The problem of solving Eq. (1) can now be divided into two distinct parts, the first 
of which deals with finding a satisfactory energy-transfer model for generating the 
scattering kernel. Once this has been done, the remaining spatial part can be treated 
in any approximation by transport methods. The source term offers no serious dif­
ficulties and the usual assumptions from which it is calculated are the existence of a 
spatially flat l/£ epithermal flux, no upward scattering in the epithermal range, and 
applicability of the free-gas scattering model. The assumption of the conventional I/£ 
slowing-down flux does not hold in the case of strong epithermal absorption, but 
fortunately the thermal neutron distribution is to a high degree insensitive to the 
small deviations from the l/£ behaviour. The spatial distribution of the epithermal 
flux, on the other hand, has been measured on several occasions and is flat within a 
few per cent. The next chapter describes the main features of the sophisticated code 
K-7 THERMOS, where advanced energy transfer and transport methods have been 
combined to solve Eq. CO in the multishell, multigroup approach. The programme is 
used for testing the various scattering models and other approximations that have 
been incorporated in the fast methods described in Chapter 4. At the same time, it has 
served as the sophisticated code against which the fast codes may be tested. 

2. A MULTISHELL, MULTIGROUP SOLUTION OF THE INTEGRAL 

TRANSPORT EQUATION: THE CODE K-7 THERMOS 

2.1. General considerations 

The integration over the total space in Eq. (1) can be reduced to the unit cell, provid­
ed the surrounding medium has been incorporated through boundary conditions on its 
outer surface. These conditions will be contained in the transport kernel TCr'-^ r, £), 
which, in its most general form, is a function of seven variables. However, for infinite 
slabs, infinite cylinders and spheres the kernel depends on two spatial and one energy 
variable only. Therefore, although no true reactor lattice can be built up of cylindrical 
cells, the square or hexagonal cross-section of the actual unit cell is often replaced by 
a circular one with equal surface area. This is commonly known as the Wigner-Seitz 
[WS) cell approximation. The computational methods described in this work have 
been confined to lattices with cylindrically symmetric fuel elements and the WS cell 
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concept has been used throughout. In this case the transport kernel is only a function 
of the three variables r, r' and E, while the spatial integration will be over 2nr' dr' 
from 0 to R, where R is the radius of the WS cell. Thus, the problem has been 
reduced to cylindrically symmetric media. For slab lattices, and also for spherical 
fuel elements, methods similar to those reported below can be applied, but this is of 
less practical interest and falls outside the scope of the present study. 

Before the numerical solution of Eq. (1) is sought, the energy variable will be re­
placed by the speed, because the scattering kernel is a smoother function of v than 
of £. Here it is worth noting that the following relations have to be observed whenever 
a transformation is made from energy to speed variables and vice versa: 

E = 0.0253 i;2 (9 a) 

N(y)= 0.0506 ^ ( £ ) (9 b) 

S(i;)= 0.0506 j;S(£) (9 c) 

Z,[y' ^ v) = 0.0506 v2',(£' ^ £) (9 d) 

so that, for example, finding the flux ^ ( £ ) is equivalent to finding the neutron 
density N(i;). 

In order to solve Eq. (1) in the multishell, multigroup approach, the radius of the 
WS cell and the thermalisation range 0 — v* will be divided into Q intervals and K 
groups of arbitrary widths Arp and Av^, respectively. Their mid-points rp and v/ are 
assumed to be representative. Eq. (I) then takes the form 

,̂feN,fe = 2TpJSpfe-t- 2 ^P)}.'^PA CIO) 
p = l \ ; = 1 / 

where p and q are spatial indices, while ; and fe refer to the speed, ^^it is the total 
macroscopic cross-section at {rq,Vk) and N̂ fe the neutron density N(r,, t;fc). More­
over, the source is denoted by 

^pk = S(_rp,Vk)hk (10a) 

the scattering matrix by 

Ppik = 2s(.rp, Vj -^ vk) VjAvjfvk (10 b) 

and the transport matrix by 

Tpqk = T[rp^rq,vk)AVp (10 c) 

where AVp is the volume of the pth cylindrical shell 2 nrpArp. 

Thus, the integral equation has been transformed into a set of Q • K linear equations. 
These are solved by an iteration method that employs a Gauss-Seidel technique com­
bined with normalisation and over-relaxation. This method has proved to converge 
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in all practical cases, while it seldom needs more than 20 iterations to obtain a relative 
accuracy of better than 10"'' in each of the Nqk residues. It has been described by the 
author elsewhere [3]. 

The code K-7 THERMOS has been developed by the author [3-5]. It evalu­
ates the thermal neutron distribution N(_r, v) according to the method outlined 
above and, although the basic physical principles are due to Honeck [6], this code 
has been developed independently from his THERMOS [7]. Up to 24 space points 
and 16 speed groups are allowed with a maximum cut-off of 0.911 eV, while only 
H2O, D2O, oxygen, and graphite can be treated as moderators and at most six dif­
ferent moderating regions are accepted. Furthermore, the code is provided with a 
cross-section library on magnetic tape from which the cross-section values for each 
individual case are taken by linear interpolation [4, 5]. The input data per case, like 
problem size, region data, speed mesh, and compositions, have to be specified as 
described by the author [4]. A nvimber of options have been included: the user may 
choose what boundary condition is to be used, whether the transport correction shall 
be applied or not, whether the source will be computed by the code or read in, and 
what energy-transfer model must be taken for H or D. 

The code has been written in FORTRAN 3600 for the CDC 3600 of the Kjeller 
Computer Installation, Norway, and has been translated into FORTRAN IV for the 
GE-625 at ASEA, Vasteras, Sweden. The ALGOL versions for the GlER computers 
in Halden (Norway) and Swierk (Poland) are its direct descendants. MICROFLUX 
[8] is a similar—independent—code written in ALGOL for the El X-8 computer at 
RCN, Petten, the Netherlands. The FORTRAN 3600 version is available from the 
ENEA Computer Programme Library where it has been filed as programme E004. 

The code K-7 THERMOS has been described in detail elsewhere [3-5] and even 
though it differs in many points from Honeck's THERMOS [7], it is not the inten­
tion to discuss these differences, which are mainly of a numerical or organisatory 
character. Both codes have also been the subject of critical investigations concerning 
their reliability [I, 2, 5, 28, 29, 32]. The remainder of this chapter will be devoted 
to such an investigation and will therefore contain partly material and conclusions 
that have already been published. However, the material presented here has been 
selected and it mainly deals with those assumptions and approximations which are 
basic both to K-7 THERMOS and to the fast thermalisation codes of Chapter 4. 
Since a rather large range of lattice types has been included, it is probably the most 
exhaustive investigation of its kind. At the same time it may serve as a concise 
description of the principal features of K-7 THERMOS and it will thereby also give 
an indication of the reliability of this code. 

2.2. The energy-transfer models 

The simplest, and historically the oldest, model that describes the energy transfer be­
tween neutrons and moderator is the free-gas model. It considers the moderator nuclei 
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as free particles of a monoatomic gas with temperature T. The expression for the 
free-gas scattering kernel was first derived by Wigner and Wilkins, who studied 

neutron thermalisation in an infinite homogeneous medium [9] . They showed that 

in case of mass one (hydrogen gas) the kernel greatly simplifies, and that the cor­

responding integral equation can be transformed into a differential equation. This 

limiting case of the free-gas model is commonly known as the Wigner-Wilkins ( W W ) 

model and it forms the basis of the well-known SOFOCATE code [10]. In the fast 

code DATAPREP-II, which will be described in Chapter 4, application of the W W 

model is optional, although there the integral formulation of the problem has been 

preserved, rather than transforming it into the differential one. 

<̂ s(E), barns ^^^^ 
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There are, however, two serious drawbacks of the free-gas model. Its main assump­

tion that the moderator nuclei may be considered as monoatomic gas particles is not 

adequate. The neutrons do not collide with individual nuclei but rather with atoms 

bounded in molecules (H2O, D2O) or with the atoms as part of a crystal lattice (C, 

BeO). At thermal energies these binding effects may no longer be neglected and they 

significantly complicate the physical description of the problem. Furthermore, the 

free-gas model is not capable of reproducing the experimental scattering cross-section 

(see Fig. I ) . 

Brown and St. John (BSJ) have proposed two improvements of the free-gas model 

[12]. The first is the introduction of an effective rotational mass for the protons and 

deuterons bound in light and heavy water. This approximately accounts for the 

chemical binding. The effective mass is calculated under the assumption that the 
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molecule may be treated as a rigid rotator, i.e., the neutron energy must be small 

compared with the vibrational quanta, but large compared with the differences be­

tween the rotational levels of the molecule. It is then defined as the reciprocal of the 

average of the three eigenvalues of the inverse mass tensor, which can be ascribed to 

the freely moving mass point representing the bound proton or deuteron ( [5 ] , p. 16). 

The second improvement is of an empirical character. It aims at a better reproduction 

of the measured cross-section Os(£). Instead of the assumption of a constant scattering 

cross-section in the centre of mass system, the following variation of it as a function 

of the relative speed Vr is assumed: 

asivr') = oo + Be-^'"-'' (11) 

where oo is the high energy limit of the cross-section, while B and K are parameters 

adjustable to fit the experimental data [46]. Detailed formulae and a discussion of 

the numerical methods used to evaluate the BSJ kernel are given elsewhere [5 ] . The 

•BSJ model is optional in K-7 THERMOS as well as in the two fast codes to t e 

described in Chapter 4. 

A further refinement of the scattering model considers the entire molecule, rather 

than the individual scattering atom, as the basic dynamical unit. Translation of the 

molecule as a whole, as well as rotations and vibrations of its nuclei about their 

equilibrium positions have to be considered. The molecular model for water proposed 

by Nelkin [13] has found wide use in reactor work. Its basic assumptions are: 

(a) The translation of the molecule is free and described by the centre of mass mo­

tion with weight ^^t = 1/mo, where mo is the mass of the molecule. 

(b) The rotation of the molecule is hindered by neighbouring water molecules and 

the hindered rotation has been replaced by a single oscillator with energy o)r = 0.06 eV 

and weight ^r = 1/mr. Here mr is the effective rotational mass which has been cal­

culated in a slightly different way than in the BSJ model (2.32 instead of 1.884). 

(c) The three degrees of freedom of the OH bond have been described by isotropic 

vibrational modes of energies ftJi = 0.205 eV, W2= «3 = 0.481 eV with equal weights 

.̂ 1 = 12 =-^3- Here -i,= l/mi, where mi is the vibrational mass of the ith mode. Their 

values have been obtained from the condition that for large energy transfer the free-

gas scattering kernel obtains so that -li = A2 = .̂ 3 = 0.1712. 

An improvement of the Nelkin model has been introduced by Koppel and Young 

[14], which will be called the KY model. It is an attempt to treat the anisotropy of 

the vibrational modes of motion of the bound proton kernel, in contrast to the iso­

tropic treatment, which is implicit in the Nelkin model. The hindered rotational 

weight as well as the vibrational weights will depend on the orientations of the vibra­

tions in the molecule. Koppel and Young approximated the anisotropy by assimiing 

the two-dimensional oscillations of the proton in the bending and torsional modes to be 
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isotropic in the plane perpendicular to the OH bond (the mass of the oxygen was 
taken as infinite); the one-dimensional vibrations of the stretching modes were 
treated exactly. In this case the weights Ar, li, Xz and X3 can be written as functions 
of V, the cosine of the angle between the OH bond and the momentum transfer vector, 

The computer programmes GAKER-KIRA and GAKER-ASEA, written for the CDC 
3600 in Kjeller (Norway) and the GE-625 at ASEA (Vasteras, Sweden) contain both 
the Nelkin and the KY model. The former is a special case of the latter where for h, 
l\, I2 and .̂ 3 the average values over v are used. Detailed formulae and a discussion of 
the numerical methods used to evaluate these kernels are to be found in an IAEA 
Report ([5], Chapter II.2). 

GAKER-KIRA is available from the ENEA Computer Programme Library as pro­
gramme E005, written in FORTRAN 3600. K-7 THERMOS contains both models as 
options, while in the present version of the fast code SATAN use of the KY kernel is 
optional. These models can also be applied to the scattering of neutrons on heavy 
water by a suitable choice of the constants [15]. 

For a comparison of the different models the following integral quantities, which can 
be derived from the scattering kernel, will be used: the scattering cross-section Oj (£) 
which is related to the kernel by Eq. (3), and the second Maxwellian moment of 
energy transfer 

CO 00 

M2 = JL ƒ d£ ƒ d£' M(£, T) Os[E ^ £') (£ - E'Y (12) 

where MiE,^) is the Maxwellian distribution Eq. (5). Since the 0th moment is 
simply the Maxwellian averaged cross-section and the first moment vanishes owing to 
the detailed balance condition Eq. (4), Mi will be the first of the moments that 
describes the energy-transfer properties of a given kernel ([5], pp. 9-11). 

Concerning ÖS(£), all models approach in the high energy limit the true value oo 
owing to the choice of their constants, while in the low energy limit they reproduce 
the correct \lv behaviour of the cross-section [5]. From Fig. 1 it follows, however, 
that the WW model gives a too low value for ÖS(£) in the thermalisation range. The 
BSJ, Nelkin, and KY models, on the other hand, all give good results for Os[E), except 
at very low energies, where the scattering cross-section from the BSJ model assumes 
too early the \lv behaviour and rises too steeply. This does not represent a serious 
drawback for the BSJ model, because at these low energies (below 0.007 eV) the 
intensity of the neutron spectrum rapidly falls off and the overall results will be 
rather insensitive to errors in the scattering kernel in this range. 

The thermalising properties of the models can be expressed, to the first order, in 
terms of the second moment M2 according to Eq. (12), while the ratio of the second 
to the 0th moment will describe the mean square energy loss per collision. These 
values are collected in Table 1 for the three moderators that will be considered in this 
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work: H2O, D2O, and O. In the Nelkin and KY models for H2O and D2O the con­
tribution from oxygen was calculated by treating it in the free gas approximation. 

It is obvious that in the WW model, where the scattering nuclei have the lowest mass 
(unity), the energy loss per collision is greatest and the same for all moderators. This 
does not necessarily result in the softest spectrum, because the too low scattering 
cross-section (Mo) counteracts this effect. Therefore, the WW model has initially 
been rather successful for calculating spectra in homogenised water-moderated reac­
tors. The model has also been extended to heavier moderators than H2O by replacing 
00 with f 00, where ^ is the mean logarithmic energy decrease per collision in the epi­
thermal range. In this way the ratio SJè^ü, which is a more essential parameter in 
thermalisation theory than the mass [16], keeps its correct value. For D2O this 
approach approximately preserves the second moment, though at the cost of a scatter­
ing cross-section (Mo) which is even lower than that predicted by the free-gas (true 
mass) model. For heavier moderators M2 (WW) increasingly deviates from its free-gas 
value. According to Schofield [17] the latter can be expressed in terms of oo and the 
mass as follows: 

For increasing mass this passes into the heavy free-gas limit 4 foo. The second moment 
according to the WW model is ZVZ fao, which means that this model gives a too low 
M2-value, especially for heavy particles (see also Table I). The main drawback of 
the WW model, however, is the strongly underestimated Mo-value. This leads to un­
acceptable errors in cell calculations, where transport effects are at least as important 
as the energy transfer. Therefore the WW and the free-gas models which predict too 
low cross-sections cannot be applied directly. In DATAPREP-II, where the WW 
model is optional, it is only used to find the spectrum in the homogenised cell. In the 
transport part of its calculations the experimental values of as{_E') are then used, 
averaged over the WW spectrum. 

This procedure of using a given model for generating the spectrum but replacing its 
scattering cross-section by the experimental value is not satisfactory. In a full multi-
shell, multigroup calculation, like in K-7 THERMOS, it is not at all applicable, since 

Model H2O (<To = 46.1 b) DjO (<r„ = ia ib ) 0(^0 = 3.7 b) 

WW 
Free gas 
BSJ 
Nelkin 
KY 

M„ 

60.6 
63.8 
92.2 
93.4 
95.0 

M j 

121.3 
121.7 
145.1 
101.9 
95.1 

MJMo 

2.000 
1.908 
1.574 
1.091 
1.001 

M„ 

7.17 
— 

13.73 
13.85 
13.93 

M, 

14.33 
15.57 
14.52 
12.22 
11.66 

MJMo 

2.000 
— 

1.058 
0.882 
0.837 

M„ 

0.63 
3.81 
— 
— 
— 

M, 

1.27 
1.69 
— 
— 
— 

MJMo 

2.000 
0.444 
— 
— 
— 

Table 1. Integral properties of some scattering kernels. 
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it would be in conflict with Eq. (3) and thereby make the neutron conservation con­

dition Eq. (8) invalid. The BSJ model does not suffer from a too low ÖS(£)-value. 

However, it follows from Table 1 that its second moment M2 and the ratio M2/M0 

are too large compared with the values from the more realistic molecular models. It 

will therefore generate a too soft spectrum. Moreover, the BSJ model, as well as the 

W W model (except for H2O), has the disadvantage that it does not pass into the 

free-gas model with increasing energy, because its effective mass remains constant 

instead of approaching the true mass. Of the two molecular models, that due to KY 

produces the hardest spectrum. Since it has been shown that, in the case of heavily 

1/f-poisoned media, even the Nelkin model gives too soft spectra [18], the KY model 

must be preferred whenever spectral effects are of importance as, for example, in 

densely packed lattices. In well-thermalised media the spectrum is less sensitive to 

details of the scattering kernel because, by virtue of the detailed balance condition 

(4) , it will anyhow be close to the Maxwellian distribution Eq. (5) . 

2.3. The transport kernel 

The transport kernel Tpqk of Eq. (10 c) is the collision density in the qth cylindrical 

shell owing to an isotropic source of strength AVp placed at the mean radius rp of the 

pth shell. A first-flight collision probability technique has been used to evaluate this 

collision density. The source neutrons emitted at rp with speed Vk are followed on 

their way through the WS cell and whenever they reach its outer boundary they are 

reflected back into the cell. Between two such reflections the neutron trajectory passes 

through all shells q with r , > rp and, depending on the direction of emission, through 

none, some, or even all the other shells too. During each passage through the qth shell 

a fraction of them collides which, when divided by the volume of that shell AVq, 

gives a contribution to the collision density there. These contributions are integrated 

over all emission angles and summed over all the passages to yield the required colli­

sion density Tpqk- In K-7 THERMOS the integration over the azimuthal angle <p, 

which can be reduced to the interval from 0 to n/2, is done by a lO-point Gaussian 

quadrature [3] . In the one-group version of this code, K-7 TRANSPO (available from 

the ENEA Computer Programme Library as programme E077), the integration over 

9? is done by trapezoidal integration with repeated halving of the intervals until an 

accuracy of I per cent is attained [19]. The first method is usually faster, while the 

second has the advantage of a guaranteed accuracy of better than 1 per cent for all 

elements Tpqk. 

The integration over the polar angles leads, in the case of infinitely long cells, to the 

Bickley functions Kizix), where x is the horizontal projection of the optical distance 

measured along the trajectory of the neutron. The elements Tpqk can then be express­

ed in terms of differences between two Ki2 functions. When their arguments are 

close together, this reduces to Honeck's [6] original approximation 

Ki2(x) - Kizix + Ax) ^ Ax Kii (x + ^Ax) (14) 
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where Ax is the optical thickness of the horizontally projected path through a given 
shell. This approximation has only been used when Ax<Q.O\. It means in fact that 
the shell in which the collision density is calculated—the qth shell—is also represented 
by its mid-point. This may be a crude approximation when shells with a thickness of 
more than 0.2 mean free paths are considered. 

The heart of the calculation of the transport matrix is the computation of the Bickley 
functions Kii and Ki2. They are defined by 

nil 

Ki„ (x) = ƒ d0 cos"-i 9 e-'''°'« (15) 
0 

A possible method would be to read large tables of these functions into the computer 
and use a fast table lookup with linear interpolation. Tables of Kii(x) and Kiz(_x) in 
the range 0<x<4.99 are given in a Kjeller Report [3]. Since K-7 THERMOS was 
originally written for a small computer, another method was chosen. The Bickley 
functions were expanded in Chebyshev series so that only a compact table of the 
expansion coefficients was needed from which the wanted function values could be 
computed [20]. 

Because not all neutron trajectories starting from rp will pass through the shells q 
with rq < rp, a direct evaluation of Tpqk would be insufficiently accurate. The recipro­
city relation (6) has therefore been used to evaluate them for these shells from Tqpk. 

Relation (7) has been enforced upon the transport kernel by multiplying, for fixed p 
and fe, of all elements Tpqk by the proper constant. This constant will usually lie close 
to 1.003, because the source neutrons have been followed on their way through the 
cell until 0.3 per cent of them were left. 

Normally, Eq. (7) should hold rigorously, but representing of the source shells by 
their mid-points and then applying of the reciprocity relation will reveal to some 
extent the failure of this shell representation in a deviation of these constants from 
1.003. This approximation will increase the diagonal elements Tppk and reduce the 
others, thus diminishing the neutron transport across the cell. That this may lead to 
serious errors in complex lattices, when a thick shell is followed by a thin one, has 
already been shown ([5], Chapter IV.2.1) for a multi-tube fuel element. A better 
method for evaluating the transport matrix, where this approximation is avoided, has 
been used by Carlvik [21]. In his method thicker shells may be used and the accuracy 
is determined by the validity of the flat flux approximation in the individual shells. 
However, the shell representation of K-7 THERMOS is of no importance for the 
single-pin lattices studied in this work. 

The boundary condition of perfect reflection is inherent in the transport matrix found 
in this way. For small WS cells, however, this leads to gross overestimates of the 
moderator-to-fuel flux ratio, as was shown by Newmarch [22]. A better condition 
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is that of isotropic flux return. It can be easily included in the kernel without its 

calculational procedure being changed by means of the following stratagem due to 

Honeck [23] : Add a non-absorbing layer with a thickness of 2.5 mean free paths 

with an infinitely heavy scatterer to the original WS cell and apply the reflective con­

dition at its outer boundary. Any neutron entering this layer will almost certainly 

undergo isotropic scattering without energy change. The returning neutron has con­

sequently the desired angular and speed distribution. This extra layer may be re­

presented by a single shell. 

For further details of the evaluation of the transport kernel reference should be made 

to an IAEA Report [5] . 

2.4. Discussion of the various approximations 

The main assumptions of K-7 THERMOS, which are also basic to the fast codes to 

be described later, can be divided into two classes. On the part of the spatial calcula­

tions there are the assumption of isotropic scattering and the WS cell concept. The 

spectrum calculations, on the other hand, are largely determined by the choice of the 

energy-transfer model, i.e., by the approximations that are inherent in the scattering 

kernel. These assumptions will be discussed below. 

(a) The assumption of isotropic scattering has already been mentioned in Chapter 1. 

Investigations of Honeck [1] and Takahashi [2] have shown that application of the 

transport correction accounts for most of the first-order anisotropy of scattering. In 

one-group calculations this correction is straightforward; the scattering cross-section 

is reduced by /ti2!s. In multigroup calculations it is not so obvious how to apply this 

correction. Probably the best one can do is to subtract the quantity ,"(£) -2's(£) of 

Eq. (2) from the diagonal elements of the scattering matrix [ I ] so that the latter 

integrates properly to the transport cross-section, retaining at the same time the cor­

rect energy transfer by not changing the off-diagonal elements. Whenever this leads to 

negative diagonal elements they are put equal to zero, because otherwise the iteration 

process for solving Eqs. (10) will not always converge. Normally, when 12-15 speed 

groups are used, only the three or four highest elements will get negative values. It is 

clear that an unlimited refining of the speed mesh would result in zero ( = negative) 

diagonal elements everywhere, thus making the transport correction ineffective. Still 

this is an important correction, as can be seen from Table 2, and one would lose 

more than would be gained by increasing the number of speed groups beyond a certain 

limit. Usually, lO-group calculations give approximately the same spectrum as 15-

group calculations. It therefore seems to be fully justified to restrict K-7 THERMOS 

to a maximum of 16 groups. 

In the Nelkin and KY models, ,«(£) can be evaluated from the expression for 

.^s(£ -^ E', ju). The BSJ and W W models, however, produce directly 2s{_E -^ £ ' ) , i.e., 
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the cosine of the scattering angle has already been integrated out. Whenever these two 

models were used, the energy dependence of fi was calculated from the effective— 

energy-dependent—mass which can be determined, according to Radkowsky's pre-

Quai 
tity" 

d, 

«53 

f» 

Cs 

f i 

fa 

SI. 

SI» 

1- Approximation ^ 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

Standard 
No trpt. corr. 
Nelkin model 
BSJ model 

1 

1.095 
-0.1 
+ 0.1 
+ 0.4 

1.269 
+ 0.9 
+ 0.1 
+ 0.7 

1.130 
-0.2 
+ 0.1 
+ 0.4 

1.374 
+ 1.0 
+ 0.1 
+ 0.7 

1.428 
0.0 

-1.0 
-3.0 

1.319 
-0.1 
-0.9 
-3.1 

1.507 
0.0 

-1.5 
-5.6 

1.296 
-0.3 
-1.5 
-5.6 

2 

1.100 
-0.2 

0.0 
+ 0.2 

1.376 
+ 2.0 

0.0 
+ 0.1 

1.131 
-0.1 
+ 0.1 
+ 0.3 

2.502 
+ 2.1 
-0 .1 
-0.1 

1.317 
0.0 

-0.5 
-1.8 

1.206 
-0.1 
-0.5 
-1.5 

1.322 
0.0 

-0.9 
-3.3 

1.118 
-0.2 
-0.8 
-2.6 

3 

J. 133 
-0.3 
+ 0.2 
+ 0.6 

2.330 
+ 1.3 
+ 0.2 
+ 1.0 

2.283 
-0 .3 
+ 0.2 
+ 0.7 

1.466 
+ 1.4 
+ 0.2 
+ 1.0 

2.502 
-0 .1 
-1.2 
-3.7 

1.362 
-0.2 
-1.2 
-3.8 

1.638 
-0.1 
-1.7 
-6.5 

1.349 
-0.2 
-1.7 
-6.5 

4 

1.136 
-0.3 
+ 0.2 
+ 0.4 

1.418 
+ 2.5 
+ 0.1 
+ 0.6 

1.182 
-0.2 
+ 0.2 
+ 0.6 

1.577 
+ 2.7 

0.0 
+ 0.4 

1.409 
-0 .1 
-0.9 
-2.8 

2.267 
-0.2 
-0.8 
-2.6 

1.490 
-0.1 
-1.3 
-5.1 

1.203 
-0.4 
-1.2 
-4.3 

Uttice <= 

5 

1.137 
-0 .2 
+ 0.1 
+ 0.4 

1.487 
+ 3.4 

0.0 
+ 0.4 

2.282 
-0.2 
+ 0.1 
+ 0.5 

1.661 
+ 3.5 
-0.2 
-0.1 

1.371 
0.0 

-0.7 
-2.4 

1.228 
-0.2 
-0.7 
-2.0 

1.428 
0.0 

-1.1 
-4.4 

1.143 
-0.4 
-0.9 
-3.2 

6 

1.129 
-0.2 
+ 0.2 
+ 0.3 

2.392 
+ 2.4 
+ 0.1 
+ 0.5 

1.171 
-0.2 
+ 0.1 
+ 0.4 

2.536 
+ 2.6 
-0.1 
+ 0.2 

2.470 
0.0 

-0.8 
-2.2 

1.333 
-0.2 
-0.8 
-2.0 

2.657 
0.0 

-1.1 
-3.8 

1.350 
-0.4 
-1.0 
-3.2 

7 

2.236 
-0.2 
+ 0.2 
+ 0.7 

2.225 
+ 0.2 
+ 0.3 
+ 1.0 

2.292 
-0.2 
+ 0.3 
+ 0.9 

1.306 
+ 0.3 
+ 0.4 
+ 1.5 

1.606 
0.0 

-1 .5 
-4.5 

1.494 
-0.1 
-1.5 
-5.0 

1.797 
0.0 

-1.9 
-7.6 

2.557 
-0.1 
-2.0 
-8.4 

8 

1.143 
-0.2 
+ 0.2 
+ 0.5 

1.275 
+ 0.9 
+ 0.2 
+ 0.8 

1.196 
-0.2 
+ 0.2 
+ 0.6 

1.384 
+ 1.1 
+ 0.1 
+ 0.9 

2.440 
0.0 

-1.1 
-3.4 

1.326 
-0.1 
-1.0 
-3.4 

2.537 
0.0 

-1.6 
-6.1 

2.302 
-0.3 
-1.6 
-6.0 

9 

2.298 
-0.1 
+ 0.1 
+ 0.2 

1.449 
+ 0.9 
+ 0.2 
+ 0.5 

2.266 
-0.1 
+ 0.1 
+ 0.3 

1.603 
+ 0.9 
+ 0.1 
+ 0.6 

1.446 
-0 .1 
-0.6 
-1.2 

1.308 
-0.2 
-0.6 
-1.3 

2.627 
-0.1 
-1.0 
-2.5 

2.302 
-0.2 
-1.0 
-2.7 

10 

2.220 
-0.1 

0.0 
+ 0.1 

1.657 
+ 1.8 
-0.1 
+ 0.2 

1.286 
-0.1 

0.0 
+ 0.1 

1.840 
+ 1.9 

0.0 
+ 0.1 

1.295 
-0 .1 
-0.2 
-0.5 

1.166 
-0.1 
-0.2 
-0.3 

1.337 
0.0 

-0.4 
-0.9 

1.065 
-0.1 
-0.3 
-0.7 

a î(CO " ratio of average flux (density] in region i (1 = fuel, 2 = canning, 3 = moderator) to that in the fuel; v{ = average 
neutron speed in region i; SIj = spectrum index at position i [c » centre, b = boundary) 

* Standard ^ transport correction, white boundary condition, KY scattering model 
^ Lattice characteristics are given in Appendix 1 

Table 2. Influence of the transport correction and different scattering models on some characteristic 
quantities of the neutron distribution. Standard values in italics, the other numbers are the percentage 
deviations. 
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scription [24], from the experimentally observed scattering cross-section. The follow­
ing expressions for /t(£) were found 

/«(£) = 

Oo I (for H in H2O) 

(for D in D2O) 

(16) 

With the aid of K-7 THERMOS the importance of the transport correction was 
examined for a number of H2O-, D2O-, and H20/D20-moderated lattices. The lattice 
characteristics are given in Appendix 1. The integral quantities taken for this purpose 
are: 

(i) The flux and density disadvantage factors ((5i and Ci) for canning and moderator 

a,= ƒ dr J dEO{t, E) / ƒ dr ƒ d£<5(r, £) (17) 
i 0 ' 1 0 

where the subscripts I, 2, and 3 refer to fuel, caivning, and moderator, respect­
ively. A similar expression holds for Ci with $(r , £) replaced by the neutron 
density N(r, £). 

(ii) The average neutron speed in fuel and moderator, V\ and V3 

Vi = ƒ dr f dE i;N(r, £) / f dr ƒ dE N(r, E) (18) 

(iii) The spectrum index in the fuel centre and in the moderator at the cell bound­
ary (Sic and Slfc) 

SIi = 
(Lu'^^ : Dy'̂ '*) activation ratio in the cell at n 

(Lu'̂ ® : Dy'^) activation ratio in a thermal spectrum at 20° C 
(19) 

The standard values for these quantities are given in italics in Table 2. They have been 
obtained from K-7 THERMOS using the KY model, the transport correction, a 
thermal cut-off at 0.405 eV (for the sake of comparison with experiments), and 
twelve energy groups corresponding to the group division of the fast code SATAN. 
The deviation of these quantities from their standard values, resulting from the fact 
that the transport correction has not been applied, has been entered in the same table. 
These deviations are expressed in per cent, and owing to rounding-off errors their 
absolute accuracy is O.I. 

The transport correction decreases the scattering cross-section of the moderator and 
thereby its opacity. The neutrons will travel more easily through the moderator and 
their spatial distribution will be smoothed. This is entirely a transport effect, also 
noticeable in one-group calculations. It increases with the lattice pitch. In D2O lattices, 
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where this correction is smaller, its influence on the spatial distribution will be less 
but still significant owing to the usual large pitches. This is in agreement with the 63 
and C3 changes in Table 2. The slight decrease of the canning disadvantage factors, 
when the transport correction is not applied, can probably be explained from the 
anisotropy of the neutrons that enter the cladding from the moderator. When no 
transport correction is applied, this effect will be more pronounced, and consequently 
the neutrons, owing to their forward peaking, pass more easily through the canning. 

The transport correction reduces the 0th moment of energy transfer MQ, leaving the 
higher moments unchanged. It will therefore cause some spectrum hardening even in 
an infinite, homogeneous medium. This shows that the present transport correction is 
inconsistent for homogeneous-medium calculations, where the isotropic model should 
be strictly valid. Fortunately, this effect is small in pure moderators because of their 
small absorption cross-section. The transport correction can therefore be applied to 
treat approximately the much more important anisotropy effects in reactor cells. 
There is, furthermore, a secondary effect on the spectrum. Because of the reduced 
opacity, neutrons stay shorter in the moderator, which causes a slight hardening of 
the neutron spectrum. This is confirmed by Table 2, where a slight softening can be 
observed when the transport correction is not used. 

Finally, it may be said that the transport correction has no significant influence on the 
spectrum, while it reduces the moderator disadvantage factors C and d by up to 3.5 
per cent in the most loosely packed H2O lattice. According to Honeck [1], it accounts 
for more than 90 per cent of the first-order anisotropy. Thus, one may feel confident 
that the consequences of the assumption of isotropic scattering have been reduced to 
a discrepancy in the flux ratios which is well below 1 per cent. In power lattices, 
which are usually tightly packed and where the H2O or D2O is less dense owing to the 
higher temperatures—and sometimes the voids—this correction will be smaller and 
certainly adequate for design calculations. 

(b) The WS cell concept reduces the true square or hexagonal cell to a circular one. 
This reduces the number of spatial variables to one only, and hence significantly 
facilitates the calculations. However, it is then no longer possible to treat exactly the 
two-dimensional unit cell, i.e., the perfect reflection conditions on the square or 
hexagonal boundary correctly simulating the infinitely extended surrounding medium 
cannot be applied. It seems natural, though, to use this reflective condition also at the 
circular boundary of the equivalent WS cell. It was Newmarch who pointed out that 
this leads to gross over-estimates of the moderator-to-fuel flux ratio in small cells 
[22]. This was confirmed by Thie [25]. A better boundary condition seems to be 
that of isotropic flux return (white boundary). It was first suggested by Honeck [23], 
who obtained good agreement with multigroup two-dimensional calculations for small 
cells [1]. Later, Weiss and the author [26] verified that even for the extremely 
tightly packed Thie-lattices the white boundary condition gave results that agreed well 
with the Monte Carlo values reported by Thie [25]. Recently, Carlvik reported good 
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agreement for a square H2O cell between a one-dimensional transport calculation 
using the white boundary condition and a two-dimensional one with the true bound­
ary condition [27]. The former gave a moderator-to-fuel flux ratio which was too 
low by only one per cent. Therefore, and also because the white and reflective bound­
ary conditions give the same results for loosely packed lattices, it was decided to use 
the former throughout the calculations on all lattices. Thus, in design calculations, 
where one is interested in flux ratios rather than in the detailed flux distribution 
across a cell, use of the WS cell with a white boundary does not lead to unacceptable 
errors, even in tightly packed lattices. 

(c) Three different scattering models for H and D bound in water have been in­
corporated in K-7 THERMOS. They are the BSJ, Nelkin, and KY model, and have 
been discussed earlier. With K-7 THERMOS the influence of the choice of model on 
the spatially-dependent quantities, d and C, and on spectrum sensitive parameters, 
like V and SI, has been investigated. The results have been summarised in Table 2. 

The choice of model will primarily influence the spectrum, and only through changes 
of the energy-averaged cross-sections the spatial distribution. This is illustrated by the 
negligible changes of d and C when going from the physically most elaborate KY 
model to that of Nelkin. Use of the BSJ model gives still in some cases a significant 
over-estimation of 63 and C3. Concerning the spectrum, it can be seen that, in agree­
ment with the discussion in Section 2.2, the KY model produces the hardest and the 
BSJ model the softest spectrum. Again, the differences between the Nelkin and the 
KY model are smallest, especially in the heavy-water lattices 9 and 10. Also in loosely 
packed lattices the models differ less, because at the limit of well-thermalised media 
they all approximate the Maxwellian distribution owing to the detailed balance con­
dition Eq. (4). At higher temperatures the models should approach the free-gas 
model—this is not true for the BSJ model—so that in power lattices at operating 
temperatures the differences between them will be smaller. It may be concluded that 
the KY model gives reliable results. Further improvements will influence the 
spectrum sensitive quantities probably by not more than 2 per cent, while they will be 
of no significance for the spatial distribution ((5 and C). 

• 

To sum up it can be said that, from a physical viev»rpoint, the three basic approxima­
tions in K-7 THERMOS will be of little or no influence on its reliability for the 
lattices considered in this work. There is every reason to believe that this statement 
may be extended to include lattices of power reactors under operating conditions, on 
the understanding that they are not in the vicinity of control elements or other 
heterogeneities. In the fast codes that will be described later, additional approxima­
tions have been introduced for the sake of computational speed. Their effects will be 
discussed when their results are compared with those from K-7 THERMOS. How­
ever, before the fast methods are studied, the reliability of K-7 THERMOS will be 
tested against experiments as well. Only then may some value be attached to a pos­
sible agreement between its results and those from the fast codes. 
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3. COMPARISON OF K-7 THERMOS WITH EXPERIMENTS 

3.1. General considerations 

Although it was argued in the previous chapter that one may expect reliable results 
from K-7 THERMOS—using the KY model, the white boundary condition, and the 
transport correction—a confrontation of its results with "reality", i.e., with measure­
ments, should provide the ultimate test of its reliability. A detailed test by comparing 
its neutron distribution N(r, £) with the results from beam extraction measurements 
is not practicable in most of the lattices studied. One must therefore resort to a com­
parison of those integral properties of the neutron distribution which are also ame­
nable to measurement. Such an integral quantity is the activity of foils or wires that 
have been irradiated in the reactor cell. If K-7 THERMOS correctly evaluates N{T, £) , 
then the integral properties of its density distribution should be correct too. The 
converse of this statement is not true, the agreement of activation profiles not neces­
sarily implying the correctness of the detailed distribution. In the previous chapter it 
was fotmd that changes from one energy-transfer model to another affected the 
spatial neutron distribution ((5 and f) only slightly, while they caused significant 
changes in the spectrum. On the other hand, the transport correction hardly in­
fluenced the neutron spectrum, while it had a marked effect on the spatial distribu­
tion, especially in light-water lattices. Thus, a comparison with measurements should 
at least include the spatial density distribution obtained from the activation profile of 
an l/v absorber as well as a spectrum-sensitive quantity like the spectrum index SI of 
Eq. (19). The follov«ng reasoning will show that such a comparison is sufficient to 
test the reliability of the calculated thermal-group constants. 

From the viewpoint of design calculations there are two types of integral quantity 
necessary for an adequate representation of the thermal neutron properties in a 
lattice homogenisation. They are the flux ratios di as defined by Eq. (17) and the 
spectral averaging factors (g-factors) for the cross-sections of all nuclides. In terms 
of these quantities the thermal utilisation factor ƒ can be written as 

ƒ i=\V\ Z"al gl 

where K is the number of different regions in the cell (in this work K = 3), Vi the 
volume of the fth region, 2'^ai the 2200 m/s absorption cross-section in region i, and g( 
the spectrum averaging factor for the absorption cross-section in this region, gi can 
be written as 

E* 

g, = ƒ dE^d(£) V((£) I ^at ^1 (21) 

with 

V((£)=:^Jdr^(r,£) (22) 
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so that according to Eq. (17) the flux disadvantage factor can be written as the ratio 

of the two average fluxes 
è,= 0,/^i (24) 

Neither flux ratios nor g-factors can be measured directly. However, the flux ratio 

can be expressed in terms of the density ratio fi and the average speeds Vi of Eq. (18): 

d, = CiVilvi (25) 

The C( can be measured with l/v absorbers, while the average speed and also the 

g-factor for U^^ are strongly correlated with SI. This can be seen from Fig. 2, where 

SI has been plotted as a function of v and g235 for all lattices studied. Thus, one may 

expect that the calculated di- and gi-values will be correct when the measured and 

calculated d- and Sl-values agree. 

• 
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Fig. 3. Tube method used to illustrate the extra­
polation principle in lattice 9: Change of acti­
vation profile for different hole (tube) diameters. 

A common aspect of all experiments is that the measuring device disturbs to a certain 

degree the quantity to be determined. It is therefore important to evaluate carefully 

the perturbations introduced by the foils or wires and by their supports. This fact has 

often been underestimated or neglected. It has been the cause of the earlier discrep­

ancies between measured and calculated density disadvantage factors for the BNL 

lattices [1] , the Norwegian NORA lattices, and the Yugoslavian RB lattices [28, 29]. 

Only recently it was reported that Tunney had succeeded in resolving these discrep­

ancies for the BNL lattices by carefully evaluating the perturbations [2 ] . For the 

NORA and RB lattices the same was done by the author and others [5 ] . 

To illustrate the magnitude of the effects involved, results of the tube method (to be 

described below) for the heavy-water lattices 9 and 10 are shown in Figs. 3 and 4 

for different degrees of perturbation. It should be kept in mind that in these lattices 

with their rather thick fuel rods the effect of neutrons streaming into the fuel (one 

of the main perturbations) will be smaller than for thin rods. Furthermore, introduc­

tion of supports, tubes, etc., will disturb the distribution less in heavy water than in 

the optically much denser light water. 

In Fig. 3 the diameter of the tube containing the Dy-Al detector foils was varied from 

I.l cm to 0.3 cm and then extrapolated to zero diameter. It should be observed that 

the perturbation seems to be approximately a linear function of the tube diameter. In 

Fig. 4 the extrapolation of the results of the tube method has been compared with 

that of a sector foil method, where the measuring device was geometrically (slab 

instead of cylinder) and physically (Al sheets were used instead of Plexiglas tubes) 

different. It is seen that the two entirely differently perturbed situations converged 

within I per cent of the same Dy activation profile for zero perturbation. This 
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Fig. 4. Extrapolation of measured activity to zero hole radius or to zero distance between 
the fuel-rod halves (in lattice 10). 

strongly suggests that the principle of the extrapolation used in the tube method is 

correct. At the same time, it should be remarked that measurements with sector foils, 

where the fuel element is radially cut, cause larger disturbances than measurements 

where small foils or wires are irradiated inside tubes. In the above-mentioned report 

[5] more examples are given of the effect of the perturbation on the activation pro­

file. It is shown there that for a tubular fuel element even the shape of the activation 

profile can change. 

Another correction that has been applied to the activation measurements is the sub­

traction of the activity caused by epithermal neutrons. This is often done by means 

of a cadmium-ratio measurement. However, Cd-ratio measurements should be avoided 

for two reasons. Firstly, the experimental definition of the thermalisation range by 

an effective cadmium cut-off is somewhat vague, since it depends on the spectrum of 

the neutron distribution, its isotropicity and on the variation of the detector cross-

section with energy. Secondly, especially in tightly packed lattices with hard spectra, 

the introduction of cadmium causes large disturbances and, hence, leaves undesirable 

uncertainties in the experimental results. Cd-ratio measurements can be avoided by 

using detector materials that have a low epithermal cross-section (resonance integral) 

compared with their thermal cross-section, like Dŷ "̂* and Lu'̂ ®. In this case the 

epithermal correction will be small and can be theoretically determined under the 
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crude assumption of a flat l/£ epithermal neutron distribution. This is also the reason 
why the spectrum index was chosen as the activation ratio of Lu"® : Dy'^, Eq. (19). 
Its epithermal correction was in all cases well below 2 per cent. Earlier attempts with 
Cu instead of Dy'^'' failed [28, 30] owing to the sometimes large epithermal correc­
tion of the Cu-activation and the uncertainties in both its resonance integral and the 
epithermal spectrum. 

The next section briefly describes the measuring techniques that are used at different 
laboratories for obtaining activation profiles and Sl-values. Their perturbation evalua­
tion is critically considered, and in Section 3.3 the K-7 THERMOS results are com­
pared with those from the experiments. 

3.2. Description of experimental methods 

The following four activation methods have been used in the H2O-, D2O-, and H2O/ 
D20-moderated single-pin lattices, which are described in Appendix I. 

(a) The pin method, which is due to Tas [31], has been applied in lattices 4 and 6 
by Bryhn-Ingebrigtsen [5], and in lattice 7 by Tas. The method consists of irradiating 
small detector pins in specific positions in fuel and moderator. In the fuel they were 
placed in holes drilled axially into the pellets, while in the moderator they were 
positioned in Plexiglas holders. This introduces three types of disturbance: the per­
turbation caused by the pin holder, the perturbation effect due to each individual 
pin, and the pin interaction. Concerning the first effect, no correction was made, 
since it was believed that Plexiglas closely simulates the water. However, recent 
investigations of Tuimey [32] have shown that its effect is not entirely negligible and 
the amount of Plexiglas should be minimised or, preferably, extrapolated to zero. 

In lattices 4 and 6 Cu-pins were irradiated in 5.5-mm-deep holes in the fuel, while 
the Plexiglas holder in the moderator was I mm thick. They were protected against 
fission products by a layer of lacquer. After irradiation they were ;5-counted and a 
Cd-ratio measurement provided the epithermal correction. The pin perturbations 
were determined by varying the number of pins and their diameters, which ranged 
from 0.6 to 1.5 mm. It was assumed that the two perturbations are a linear function 
of the number of pins and of the pin volume. Although the interaction effect will be 
different in moderator and fuel, which makes uniform extrapolation difficult, this is 
no serious drawback because the effect is very small [33]. However, it can be shown 
that the extrapolation to zero pin diameter should, at least in the moderator, be a 
linear function of the pin radius and not of its volume. This will cause the extra­
polated activity in the moderator to be still too low. In the fuel this effect will be less 
serious, since pins and fuel have approximately the same absorption cross-section. 

In lattice 7 Dy-Al pins (5 % Dy in Al) of 0.5 mm diameter were used. The holes in 
the fuel were only 2.5 mm deep and the Plexiglas pin holder was also thinner than 
in the two other lattices, namely, 0.2 mm. The pins did not have to be protected 
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against fission products, since only the 47 keV gammas were counted. The epithermal 
correction, which is very small for Dy, was obtained theoretically. No correction for 
the pin interaction was applied, while the flux depression caused by each individual 
pin was computed by MICROFLUX [8] and found to be 3.0 per cent in the moder­
ator and 0.5 per cent in the fuel. 

(b) The rolled wire method is due to Wikdahl and Akerhielm [34] and has been 
used by Bryhn-Ingebrigtsen to obtain density disadvantage factors in the lattices 1, 3, 4 
and 5 [28, 5]. Cu-wires laid along the principal traverse axes of the reactor cell in 
holes drilled radially through three fuel elements were irradiated. They were protected 
against fission products by lining the holes with tubes made of Al-foil. After irradia­
tion they were rolled to Cu-tapes, which were then /^-counted by an automatic scan­
ner. The epithermal correction was obtained from a Cd-ratio measurement. 

In all lattices, except No. 1, the results were corrected for the inflow of neutrons 
through the aluminium and for the perturbation of the wire itself. This was done by 
irradiating wires of various thicknesses in holes with different diameters. The two 
effects were assumed to be independent of each other and to be a linear function of 
the wire cross-section and the area of the gap between wire and fuel. However, the 
flux depression caused by the wire should have been taken as linearly dependent on 
its radius, while the extrapolation to zero gap area shown in Fig. 7 a also suggests a 
higher order dependence. 

(c) The tube method in its present version is due to Takac and Krcevinac [35] and 
has been applied by them to the lattices 4, 9 and 10. Small Dy-Al detector foils were 
placed in Plexiglas tubes, separated by cylindrical spacer pellets also made of Plexi­
glas. These tubes were then inserted in radial holes drilled in a fuel element at an 
angle of 27.5° to the rod-to-rod direction. This direction is representative of the 
circular cell, and the measured activation profiles, after the usual corrections, can 
therefore be directly compared with the computed ones [36]. The perturbation due 
to the Plexiglas—and the relatively small amount of detector material—was uniformly 
extrapolated to zero. To that end, a series of measurements was carried out with foils 
of different sizes and Dy contents. These foils were irradiated in tubes with different 
inner and outer diameters. In all these measurements the physical composition of the 
measuring device was kept the same. For each tube diameter the individual points 
were fitted to a Bessel function in the fuel and a polynomial in the moderator [5]. 
At suitably chosen radial distances the activation was read from the activation profile 
curves for the different tube diameters found in this way. These activations were 
then extrapolated to zero tube size using a second-order polynomial of the diameter. 
As follows from Fig. 4, this extrapolation is linear in the moderator (r>1.25 cm), 
while it deviates slightly from the linear shape inside the fuel rod. It can also be 
concluded from Fig. 4 that the extrapolation technique used here produces reliable 
results, since it agrees well with the results of the same kind of extrapolation for a 
differently perturbed situation. The epithermal correction, which is very small for Dy, 
has been obtained by Cd-ratio measurements. 
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(d) The sector foil method has been used in two variants. In lattices 7 and 8 it was 
applied by Tas to determine density disadvantage factors. In the lattices 1-5, 7 and 8 
it was used by Smit to measure the variation of the spectrum index SI across a cell 
[30, 37]. 

In the first variant, Dy-Al foils, containing 5 wt. % dysprosium, with thicknesses O.I 
mm, 0.05 mm, and 0.025 mm were used. Two foils of equal thickness were activated, 
one in the fuel and the other in the moderator. The foil areas were equal to the fuel 
part and the moderator part of the unit cell. The foil in the fuel was not protected 
against fission products, because the activations were determined by measuring the 
47 keV gammas. In the moderator use of a support was also avoided, because the foils 
were pressed against the canning. The density disadvantage factor C3 is then the ratio 
of the activities of the two foils, after correcting for the epithermal activation, the 
foil sizes and the non-I/v absorption of the detector. The only perturbation in this 
method arises from the foils themselves. It has been evaluated from multigroup cal­
culations in slab geometry with MICROFLUX [8]. It was also determined by extra­
polating the results obtained with the three different foil thicknesses to zero. In the 
moderator this extrapolation should be proportional to din (1/d), where d is the foil 
thickness. The epithermal correction was found theoretically. 

The second variant has been developed by Smit [30, 37] to measure the spectrum-
sensitive index SI, defined from Eq. (19). It is consequently the only experimental 
technique described here which provides information on the adequacy of the energy-
transfer models used in the calculations. In lattices 1-5 the spatial variation of SI 
inside a unit cell was measured, while in the lattices 7 and 8 only its average values in 
fuel and moderator were obtained. 

In the first five lattices 0.125-mm-thick Dy-Al and Lu-Al foils (5.2 «/o Dy and 3.9 Vo 
Lu) were irradiated in the lattice as well as in the moderator. In the fuel thin catcher 
foils of copper protected them against fission products, thus minimising streaming 
effects, because copper has roughly the same absorption cross-section as the fuel. 
Plexiglas supports were used in the moderator. The foils were then )3-counted, being 
laid under different Cu-covers in which holes or slits had been punched at varying 
radial positions. Thus, the spatial dependence of the foil activity could be measured 
at well-defined distances from the centre of the cell, since only the /ö-activity of the 
uncovered parts was registered. The perturbations will have a different effect on the 
Sl-values than on the usual activation profiles, because many errors cancel out in the 
double-ratio SI. 

Normally, the Plexiglas support has not been corrected for, although a preliminary 
attempt in lattice 4 showed that its presence increases the Sl-values in the moderator 
by (0.8 ± 0.3) per cent. No corrections were made for the perturbations caused by the 
foils themselves, and consequently resulting experimental data should be treated with 
some reserve. 
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In lattices 7 and 8 only averages of SI in fuel and moderator were measured. The foils 
were O.I mm thick and contained 10 wt. "/o Lu or Dy in Al. The Dy-foils were not 
protected against fission products, since 47 keV gammas were counted there. The low 
counting rate of the Lu-foils, however, required protection, the fission product 
activity otherwise becoming relatively too strong. Like in the first variant, no supports 
were used in the moderator. Corrections for the different flux depressions caused by 
the Lu- and Dy-foils were calculated using MICROFLUX [8]; no extrapolation was 
tried. The epithermal correction, which is small owing to the choice of the detector 
materials, was also found theoretically. 

3.3. Comparison of theory with experiment 

The comparison of K-7 THERMOS with measurements is summarised in Table 3 and 
Figs. 5-9. The results will be discussed below per experimental method. 

(a) The pin method agrees best with the theoretical values in lattice 7, where most 
care was taken to eliminate and evaluate the perturbations. Fig. 5 shows for this lattice 
the comparison with the detailed Dy-activation profiles measured in two directions. 
The theoretical curve has been corrected to include the epithermal contribution, 
which varied from 7.4 per cent in the fuel to 5.5 per cent in the moderator. In lattices 
4 and 6 the experimental C3-values lie lower than the theoretical ones by 1.7 and 2.4 
per cent, respectively, which is more than the quoted experimental uncertainty. How­
ever, in these lattices the extrapolation of the pin perturbation to zero pin size was 
taken to be linear with its volume rather than with its radius. This leads to a too low 
value for C3, as can be seen in Fig. 7 b, where the two types of extrapolation are 
shown to give Cs-values that differ by 2.6 per cent for the rolled wire method. Since 
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in the extrapolation the smallest pin size (0.6 mm diameter) was the same as the 
smallest wire size, a similar correction may be expected here, which would bring the 
agreement within 1 per cent, the experimental values being the highest. 

(t>) The rolled wire method clearly gives poorer agreement with the K-7 THERMOS 
values. In Fig. 6 the detailed density distributions, measured in two directions, are 
compared with K-7 THERMOS in lattice 4. Apart from the slightly different shapes 
of the calculated and measured curves in the fuel, not much can be concluded from 
this comparison. The measurements should rather have been made in the direction 
that is representative of the WS cell, namely, 27.5°. Although the experimental curves 
embrace the theoretical one, it follows from Table 3 that they still lead to different 
Cs-values. However, the extrapolation of the perturbations has not been properly per­
formed in the rolled wire method. This is illustrated for lattice 4 in Fig. 7. The 
perturbation from the wire itself should be a linear function of its radius rather than 
of its cross-sectional area. The latter dependence was assumed by Bryhn-Ingebrigtsen 
when extrapolating to zero wire thickness and is represented by the full line in Fig. 
7 b. The dashed line is based on the former dependence, which is physically more 
correct. The extrapolated Cs-values are seen to differ by as much as 2.6 per cent. Fig. 
7 a suggests furthermore that the perturbation from the gap between the wire and 
the hole in the fuel is not linearly dependent on its surface either. Another correction 
of 1 per cent is hidden here. Hence, in lattice 4 the final result for C3 should be in-

Method 

K-7 THERMOS 

f. 
C3 
Sic 
SI» 

Pin method 

C3 

Rolled wire 

?2 
Ca 
Tube method 

fa 
Ca 
Sector foU 

C2 
C3 
SI. 
SI. 

1 

1.130 
1.374 
1.507 
1.296 

— 

— 
1.28 

— 
— 

1.51 ±.03 
1.34 ±.03 

2 

1.131 
1.502 
1.322 
1.118 

— 

— 
— 

— 
— 

1.38 ±.03 
1.19 ±.03 

Lattice 

3 

1.183 
1.466 
1.638 
1.349 

— 

1.16±.01 
1.40 ±.01 

— 
— 

_ 

1.68 ±.04 
1.47 ±.04 

4 

1.182 
1.577 
1.490 
1.203 

1.55 ±.02 

1.17±.01 
1.53 ±.01 

1.19 
1.57 

_ 

1.50 ±.03 
1.25 ±.03 

5 

1.182 
1.661 
1.428 
1.143 

— 

1.17 ±.01 
1.57 ±.01 

— 
— 

_ • 

1.43 ±.03 
1.18 ±.03 

Table 3. Comparison of K-7 THERMOS with measurements. 
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creased by 3.6 per cent owing to an insufficient extrapolation. The crude assumption 
will be made that the same 3.6 per cent correction should be applied to the experi­
mental Cs-values in the lattices 3 and 5 too. In lattice I no corrections were made at 
all for the perturbations caused by the 1.0-mm-thick Cu-wire and the 1.2 mm hole 

6 

1.171 
1.536 
1.657 
1.350 

1.17±.01 
1.50 ±.02 

— 

— 

— 
— 

. 7» 

1.183 
1.293 
1.734 
1.570 

— 
1.292 ±.005 

— 

— 

1.29 ±.01 
1.72 ±.04 
1.59 ±.04 

Lattice 

8» 

1.193 
1.379 
1.486 
1.317 

— 
— 

— 

— 

1.47 ±.02 
1.57 ±.02 
1.32 ±.02 

9 

1.266 
1.603 
1.617 
1.301 

— 
— 

— 

1.59 

— 
— 

10 

1.286 
1.849 
1.337 
1.065 

— 
— 

— 

1.85 

^_ 
— 
— 

Method 

K-7 THERMOS 

fa 
f3 

SIo 

Pin method 

f2 

f3 

Rolled wire 

f2 

Tube method 

fs 
f3 

Sector foil 

C2 

f3 

SI« 
SI, 

** Dy-activation "disadvantage factors' and SI averages in fuel and moderator are given here. 

Table 3 (continued) 
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through the fuel. A crude estimate of the necessary correction can be made by using 
Fig. 7. One finds then that the experimental CB has to be raised by 6.9 per cent. 

After these extra corrections, the discrepancies between calculated and measured C3-
values have been reduced to 0.2, 1.0, —0.6, and 2.0 per cent for the lattices 1, 3, 4, 
and 5, respectively. This agreement is satisfactory, except for lattice 5. 

(c) The tube method gives in all cases good agreement with the theoretical curves 
and Cs-values. This follows from Figs. 6 and 8, as well as from Tablfe 3. In this method 
the extrapolation to zero perturbation has been done in a consistant manner and the 
remaining error will be less than I per cent. The difference between theoretical and 
experimental Cs-values is 0.7, 0.8, and -0 .5 per cent in the lattices 4, 9, and 10, 
respectively. 

( i ) The sector foil method results for lattices 7 and 8 have been carefully corrected 
for the perturbations. In lattice 7 its results, both for C3 and the spectrum index, agree 
well with the K-7 THERMOS calculations. The differences are within the quoted 
experimental error as follows from Table 3. However, in lattice 8 there is a striking 
discrepancy caused by the breaking down of the validity of the WS cell concept in, 
this strongly heterogeneous, open hexagonal lattice. Thus, neither K-7 THERMOS nor 
any other one-dimensional thermalisation code can be used on such types of lattice. 

The SI measurements in the lattices 1-5 show some disagreement with the calcula­
tions as can be seen from Fig. 9 and Table 3. The disagreement in lattice 2 must 
probably be ascribed to a bad experiment. The disagreement in the moderator which 
increases with the hardness of the spectrum may very well be explained by the lack 
of a perturbation evaluation, because in lattice 7, where the spectrum is hardest but 
where the perturbations have been kept small and evaluated theoretically, there is no 
such discrepancy. Even the perturbation from the foil holder in lattices 1-5, which in 
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Fig. 8. Comparison of K-7 THERMOS with measured neutron density distributions in lattices 
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lattice 4 was found to be (0.8 ±0.3) per cent, has not been taken into account in 
Table 3. 

In conclusion it can be stated that the experimental results have given additional con­
fidence in the K-7 THERMOS calculations. Those measurements where the perturba­
tions were carefully evaluated showed good to excellent agreement with the calcula­
tions. In the Norwegian NORA lattices 1, 4, and 5 the sector foil method for the 
spectrum index produced good agreement in the fuel, although the values in the 
moderator are too high which is probably caused by the neglecting of the perturbing 
effects of the foils and their supports. In lattice 4, the tube method reproduced the 
theoretical Cs-values very well. In the Dutch PUK lattice 7, the perturbations were 
kept small and carefully evaluated. All measurements performed in this lattice gave 
good agreement with the K-7 THERMOS results. In the Yugoslavian RB lattices 9 and 
10, good agreement was also reached between the tube method results and those 
from the calculations. Whenever disagreement was noticed, it could be explained by 
an inaccurate or even lacking perturbation correction. It has been shown, for example, 
that a physically more plausible extrapolation of the perturbations in the rolled wire 
method would bring its results to within 2 per cent of the calculated C-values for the 
NORA lattices 1, 3, 4 and 5. The only exception is the open hexagonal lattice 8, 
where the open fuel positions have disturbed the regularity of the lattice to such a 
degree that the WS cell concept has become invalid. Such lattices, however, seldom 
or never occur in true power reactors. It is thus obvious that the agreement of K-7 
THERMOS with experiments holds for regular lattices only. The many heterogeneities 
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Fig. 9. Comparison of theoretical and experimental Sl-values. 
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in a power reactor, such as control elements and water gaps, will require both a 
theoretical and an experimental investigation of the changes in neutron distribution 
and spectrum near these heterogeneities. This falls, however, outside the scope of the 
present work, which has been restricted to regular lattices. 

4. FAST METHODS FOR EVALUATING THERMAL-GROUP CONSTANTS IN 

THREE-REGION CELLS 

4.1. General considerations 

In fuel-cycle studies of power reactors some types of calculation may have to be 
repeated thousands of times. It is therefore imperative for reactor design methods 
that they share speed and accuracy. Unfortunately, these two requirements seem to 
be practically incompatible. Even on a GE-625 or a CDC-3600 computer the code K-7 
THERMOS needs from 2 to 3 minutes for a pin-cell calculation. It contains three 
time-consuming parts, namely, the evaluation of the scattering matrix and of the 
transport kernel, and the iteration process. Of these, the scattering matrix could, in 
principle, be calculated once and for all for a fixed group structure and at a given 
number of temperatures between which linear interpolation can be used. These 
matrices could then be stored on the magnetic library tape, together with the other 
basic cross-section data. In this way the computation time needed for the KY kernel 
could be eliminated, which would mean a reduction of the total running time of 
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about 50 per cent. By choosing Carlvik's method to evaluate the transport kernel [21] 
one might cut down the calculation time for this kernel by 50 per cent. However, in 
the iteration process no savings are possible as long as the multishell, multigroup 
approach is maintained. One of the main drawbacks there is that the coefficients of 
the iteration matrix have to be computed again for each iteration step. Thus, if K-7 
THERMOS is carefully rewritten and reorganised, its running time per case might be 
reduced to 0.5-1.0 minute. However, this is still prohibitively long for use in design 
studies, especially for BWR lattices. 

It seems imavoidable that extra simplifications must be introduced to reduce the 
calculation times. Fortunately, no detailed neutron distributions are needed and, as 
was pointed out in Section 3.1, knowledge of the flux ratios and the spectrum-
averaging g-factors [cf. Eqs. (24) and (21)] is sufficient for design purposes. In­
cidentally, it should be noted that K-7 THERMOS cannot produce the two-dimensional 
neutron distribution either, owing to the WS cell approximation. 

From now on the calculational methods will be restricted to three-region lattices of 
the type: fuel rod, canning, moderator. For this type of lattice a very fast and accurate 
one-group calculation of the flux ratios has been developed by Weiss [ I I ] . This 
method, which has been named AMCLA, is a consequent extension of the almost 
classic ideas of Amouyal, Benoist, and Horowitz (ABH) [38] to include also the 
cladding. AMCLA will be briefly described in the next section, because it is an 
essential unit of the fast codes DATAPREP-II [ I I ] and SATAN [39] to which the 
last two sections of this chapter are devoted. 

4.2. Flux-ratio calculations in one group: the AMCLA code 

The principles and assumptions on which AMCLA is based are: 

(a) "White interface" between moderator and caiming, i.e., the neutrons that pass 
this interface will "forget" their original direction of motion and continue their flight 
as if coming from an isotropic flux. This is the isotropic incident flux (IIF) approxi­
mation, which is also basic to the ABH method [38]. It allows for the separate treat­
ment of the caiming-plus-fuel region and the moderator. 

(b) Caiming and fuel will be treated by a collision probability technique. Here the 
approximation will be made that, for calculating the collision probabilities from one 
region to another, the collision density after the first collision may be taken as flat. 
This flat-flux approximation (FFA) has been used with great success by Fukai [40] 
for tightly packed slab lattices. This assumption is a deviation from the original ABH 
method, where the first and second collisions were treated exactly. In AMCLA, how­
ever, six collision probabilities must be evaluated and in the FFA there exist three 
relations between them which means a considerable saving of machine time. 
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(c) Following the original ABH work, diffusion theory will be used in the moderator, 
with the effective boundary condition 

, - [ l n ^ r ) ] = ̂ - (at r = R2) (26) 
(R2^r3) 

where 2t3 is the total cross-section in the moderator, Rz the radius of the canning, 

and A 00 the effective linear extrapolation length for a black cylinder embedded in an 

infinite non-absorbing medium, which can be approximated [5] by 

Aoo(x) = 

0.2442 
0.4316-hx 
0.292 

0.28-I-X 

+ 0.7675 ( 0 < x < l ) 

+ 0.7104 ( x > I ) 
(27) 

One might suspect that this approximation gives bad results in tightly packed lattices 
where the diffusion theory should break down. However, it has been shown by Weiss 
[41] that owing to a cancelling of the two errors—the IIF approximation, and use of 
diffusion theory with A 00 instead of the true A which should also account for the 
finiteness of the moderator—this method gives good results for the whole range of 
lattice sizes. 

(<f) The source will be assumed flat, isotropic and only present in the moderator. 

With these assumptions as a starting point, the following expressions for the flux 
disadvantage factors of canning and moderator can be derived in a straightforward 
manner. The derivation is given in the Kjeller Report [ I I ] and will not be repeated 
here. 

d2 = 2:alVirz/2a2V2ri 

I - T i - T z 
d3=2R2^.l 

where 

(IF A hmi-^ F(R3/R2) 3 
(R2/R3)^^4^"^*^. 

r r - . tlnz^) 1 

(28) 

(29) 

(30) 

and Fi (7^2) is the fuel (canning) blackness, i.e., the probability that a neutron 
entering the canning from the moderator will be absorbed in the fuel (canning). In 
case of zero absorption in the canning, Fz = 0, and Eq. (29) reduces to the familiar 
ABH formula. The influence of the canning on the moderator-to-fuel flux ratio 63 
comes from the FzITi containing terms inside the brackets of Eq. (29). It has been 
found to lie well below 1 per cent for the lattices considered in this work. 

The problem has henceforth been reduced to the evaluation of the probabilities Fx 
and ^"2. In the Kjeller Report [11] it has been shown that they can be expressed in 
terms of first collision probabilities: 
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r - f 1 . 1 PlCl-C2Pz2)+C2P2P21 
' ••' '•• (l-C,P„)(I-C2P22)-ClC2Pl2P21 '' -" 

r - n .--I P2( l -ClP l l )+aPlP l2 , , 
^ "• '-' (l-ClPu)(l-C2P22)-ClC2Pl2P21 ^ ^ 

where a is the number of secondaries per collision in region i, i.e., a = 2silSti. P\ and 
P2 are the first collision probabilities in fuel and canning owing to an isotropic in­
cident flux on the canning. The remaining four probabilities P,-,- are defined as the 
probability that a neutron bom uniformly and isotropically in region i will suffer its 
next collision in region;. 

Owing to the FFA, three of these first collision probabilities can be expressed in 
terms of the other three: 

Pi2= 1 - [P11+ CS/4 Vi 2,{) Pi] (33) 

P21 = Kl^,lPl2/T^2^.2 (34) 

P22 = 1 - [P21 + {SIA Vz^t2) P2] (35) 

where S is the surface of the canning, i.e., 2 71R2. 

Only the probabilities Pi, P2 and Pn need therefore be calculated. The former two can 
be represented by the following two single integrals: 

Pi = ^ ƒ d<p cos (p [Ki3 Ui 2,z) - Ki3 ih 2,z + h2,{) ] (36) 
0 

P2 = 1 - Pi - ^ I d?) COS 9̂  Ki3 (2 /i 2'ö + !2 ̂ ri) + I d9' cos cp Ki3 {h ^ti) (37) 
0 90 

where 

U = R2 cos <p - l/Ri^-Rz^sin^q) 

h = 2yRi^-Rz^sm^<p 

l3=2Rz cos 9? 

q>o = arcsin (R1/R2) 

The P{j probabilities are double integrals, but fortunately, Pn, the non-escape prob­
ability from an infinitely long, black cylinder, can be expressed in Bessel functions 
of the second kind [42]: 

Pn = I - 3 ' ^ 2 xKi(x) /i(x) + xKo(x) /o(x) - 11 +Ki(x) /i(x)/x 

- K o ( x ) / i ( x ) + K , ( x ) / o ( x ) } f38) 
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which, for small and large arguments, can be approximated by 

Pn = ^x + ^x^ln(^) + ^x2(^-7) (x^O.I) (38 a) 

Pii = l - l / 2 x + 3/32x3 ^x>6) (38 b) 

with Euler's constant 7=0.5772157 . . . and x=Ri 2t\. 

The calculation of the Bessel functions and of the Bickley function Ki3 is done from 
their Chebyshev expansion coefficients as described in Appendix 2. The integration 
over <p in Eqs. (36) and (37) is performed using Simpson's rule with repeated halving 
of the intervals until an accuracy of better than 0.5 per cent is reached. From the 
residt thus converged, 0.35 times the last difference is subtracted, a rest correction 
which has been found empirically. 

AMCLA has been tested on numerous occasions against exact one-group transport 
calculations. Errors of more than I per cent were observed only very rarely. An 
example of such a comparison for eight of the lattices investigated here is given by the 
author and Tas [39]. One may safely conclude that AMCLA produces almost exact 
one-group flux ratios in cylindricalised single-pin cells. Its calculation time on the 
GE-625 computer is extremely short, namely, between 0.015 and 0.035 seconds. Be­
cause of this rather unique combination of accuracy and speed, it will be an in­
dispensable calculational unit in the two fast methods to be described in the follow­
ing sections. 

4.3. One-group approach with effective cross-sections: the code DATAPREP-II 
As was mentioned earlier in this chapter, a straightforward numerical treatment of 
the integral transport equation (1) in the multishell, multigroup approach Eq. (10) 
would be too lengthy for design calculations. However, Eq. (I) can be simplified to a 
one-group transport problem for the spatial flux <p(r) by integration of it over the 
energy. 

^ t ( r ) q>(r)=j dr' f ( r ' ^ r) [ X ( r ' ) <p(r') + S (r') ] (39) 

where use has been made of the property Eq. (3) that the scattering kernel integrates 
to 2S{T, £), and with 

9 ' ( r ) = f d £ $ ( r , E ) (40 J 

£• 

S(r)= [dES(r,E) (41) 
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Table 4. Flux disadvan­
tage factors from three 
different methods {BSJ 
scattering model, 0.632 
eV cut-off). 

Lattice 

1 
2 
3 
4 
5 
7 
8 
9 

10 

K-7 THERMOS 

«5̂  

1.098 
1.102 
1.139 
1.140 
1.141 
1.131 
1.141 
1.203 
1.222 

-53 

1.276 
1.379 
1.341 
1.426 
1.492 
1.204 
1.269 
1.470 
1.689 

Percentage deviation from K-7 THERMOS 

One-group 

«5, 

-0.2 
-0.2 
-0.4 
-0.5 
-0.5 
-0.4 
-0.3 
-1.2 
-1.2 

calculation 

«53 

-0.9 
-1.2 
-1.2 
-1.4 
-1.5 
-0.7 
-0.9 
-1.0 
-1.3 

DATAPREP-II 

^2 

-1-0.6 
-1-1.1 
-1-0.7 
-1-1.7 
-t-2.2 
-1-0.1 
-1-0.8 
-0.1 
-H0.7 

«53 

-1-1.0 
-1-1.8 
-1-0.5 
-1-1.6 
-1-3.3 
-H.4 
-H.5 
+ 2.7 
-1-3.6 

^«,t(r) = ƒdB2',,,(r, £) ^(r,B)/9'(r) (42) 

f (r ^ r ') = ƒ d£T(r ^ r', £) ƒ d£' S.{r, E' -^ £) ^ ( r , E') jl^^t^i (p(r) (43) 

Actually, two transport kernels T should have been defined, one acting on 2!s(p, Eq. 
(43), and the other on the source S. However, in order to take advantage of the 
simplification to the one-group model, the two-dimensional transport kernel T will 
not be evaluated from Eq. (43), which would still need an equally time-consuming 
calculation as before owing to the energy integration. If one notices that the energy 
dependence of the transport kernel is only through 2t(T,E'), it seems natural to 
approximate T by computing it in the one-group picture using .^t(r). The error thus 
incurred was investigated by comparing of flux ratios from multigroup K-7 
THERMOS or MICROFLUX calculations with their values obtained from one-group 
transport calculations. The effective cross-sections used in the latter were the spectrum 
averages from K-7 THERMOS or MICROFLUX. This comparison was done using 
the BSJ model and a 0.632 eV cut-off. Its results are given in Table 4. The error is 
seen to be small and it is largest in lattices where 2t varies most strongly with energy. 
It can be shown that this approximation reduces the transport between nearby points, 
while it increases the transport kernel elements connecting points that lie farther 
apart. In this respect its effect is similar to that of the transport correction; the 
neutron distribution becomes flatter, which explains the negative sign of the errors in 
Table 4. 

This procedure of reducing a multigroup problem to a one-group problem, using in 
the latter cross-sections that have been averaged over the spectrum, is not uncommon 
in reactor physics. It seems that this approach is workable, provided one can accept 
an underestimation of ^3 of up to 2 per cent. The DATAPREP-II code has been 
based on this approach. However, before this code could be used for design calcula-
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tions two more sources of error had to be introduced. Firstly, the evaluation of T in 
the one-group picture was still too lengthy and instead AMCLA was used to solve the 
flux ratios in the three regions. This increased the uncertainty of the ^3-values which, 
for the lattices considered in this work, remained still below 2 per cent. Secondly, the 
spectrum needed for computing the average cross-sections from Eq. (42) was assumed 
to be spatially flat. This means that, as an additional approximation, the flux was 
taken to be separable in space and energy: 

«?(r,£)=c9>(r)v^(£) (44) 

with the normalisation constant c = 1 / d£'/^(£). 
' 0 

In this approximation the expression for the effective 2's becomes 

^«,tW = c ƒ dE ̂ .,t(r, £) v(£) (45) 
0 

The integral equation from which the flux spectrum v(£) can be solved was found 
by integration of Eq. (1) over all space and division by c ƒ dr9?(r). This gave 

E* 

ÉtiE) !/;(£)=ƒ d£' l . (E' ^£) v(E') +S(£) (46) 
0 

where use was made of the property Eq. (7) that, irrespective of the energy, the 
transport kernel integrates to unity, and with 

S(E) = JdrS(r ,£) /cJdr9 . ( r ) (47) 

i , ( £ ) = J d r ^ , ( r , E ) 9 ' ( r ) | J d r 9 P ( r ) (48) 

J . ( £ ' ^ £ ) = ƒ dr 2sir, E' ^ £) ?> W / ƒ dr <P(T^ (49) 

It is seen that the cross-sections with tilde are weighted with the spatial flux, i.e., 
with the flux ratios. Since no spatial dependence occurs in Eq. (46), it can be rapidly 
solved in the multigroup approach. 

Thus, in the thermal calculations of DATAPREP-II, the integral transport equation 
(I) has been split into an equation for the spatial flux and one for the flux spectrum. 
The former, Eq. (39), is not solved directly but instead by AMCLA. The latter, Eq. 
(46), is solved by a multigroup technique with usually 20 equidistant speed groups 
(up to 40 groups may be taken, while 0.911 eV is the maximum cut-off). These two 
equations are coupled by their average cross-sections, Eqs. (45), (48), and (49). An 
iterative procedure has been used_to solve them: firsdy, an AMCLA calculation is 
done with Maxwellian averaged .2'a-values and 2200 m/s .Z'j-values. The flux ratios 
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that are then obtained are used to construct 2a and 2s according to Eqs. (48) and 
(49). These .Z-values enter the multigroup spectrum calculation Eq. (46), which 
yields V'C )̂ over which the cross-sections are averaged to give new .Z"s. This process 
is repeated two more times and terminated by a fourth AMCLA calculation of the 
flux ratios. Its convergence is extremely good and in all cases studied the g-factors 
and flux ratios were converged to an accuracy of better than 10"^. 

Only the BSJ and the WW scattering model have been built into the code. The 
spectrum produced by DATAPREP-II is not very sensitive to the choice of scattering 
model which can be understood as follows. Although the WW model has the largest 
average energy transfer per collision, its scattering cross-section, and thereby the 
frequency of the scattering collisions, is less than in the BSJ model (Table 1, Fig. I) . 
These two effects tend to cancel out so that almost the same spectrum is obtained 
from either model. The scattering cross-sections generated by the two models have 
meanwhile not been used to compute the average 2^ from Eq. (45). This value was 
rather calculated by averaging of the scattering cross-sections read in from the library 
tape. Thereby, the difference in the two models is not even felt in AMCLA's flux 
ratios. The results quoted in this work have all been obtained with the BSJ model. 

H2O, D2O, and O are the only moderators that can be treated by DATAPREP-II. Of 
these, only the latter may be present elsewhere than in the moderator region. There­
fore the calculation of 2s{_E' — £) only has to be done once, namely, with the flux 
ratios during iteration do not then affect the contribution of the moderator to 
2s{E' —> £), while the contribution from oxygen present in other regions is of mar­
ginal influence and will not be accounted for. The source term is, as usual, computed 
from a spatially flat I/£ epithermal flux. The scattering cross-sections used by 
AMCLA are transport-corrected, using for H2O and D2O the Radkowsky prescrip­
tion [24]. 

DATAPREP-II has been written in FORTRAN 3600 for the CDC 3600 of the 
Kjeller Computer Installation, Norway. It uses an old version of AMCLA, where the 
first collision probability P21 is calculated by a double integration instead of evalua­
tion of Pn direct from its analytical formula, Eqs. (38). The running time of 3 
seconds for a case with 20 groups is therefore unnecessarily long. For more details 
reference should be made to the Kjeller Report [11]. 

4.4. Multigroup flux-ratio approach: the SATAN code 

An obvious drawback of the method discussed in the preceding section is the assump­
tion of a spatially constant spectrum which, at best, represents some average for the 
whole cell. Consequently, irrespective of whether DATAPREP-II produces correct 
flux ratios or not, it fails to do so with the regionwise variation of the spectrum-
averaging g-factors, Eq. (21). Although the use of inaccurate g-factors will not be 
seriously felt in criticality calculations, where they appear as a ratio in the thermal 



46 

utilisation factor according to Eq. (20), they are necessary for a proper cell homo­
genisation. In bum-up studies, for example, it is essential to know at which rate the 
fissile nuclei are consumed or created and therefore the g-factors are, like the flux 
ratios, of fundamental importance to reactor design. 

The method that will be described below has been developed to produce also accurate 
g-factors for the three regions: fuel, canning and moderator. The starting point was 
again the integral transport equation (1), which was integrated over the cell volume 
V. Making use of the property Eq. (7) that, at any energy, the transport kernel 
integrates to unity, the following equation was obtained 

E' 

i,(£) T/;(£) = ƒ d£' i .(£' ^ £) v(£') + S[E) (50) 
0 

where ^p{E) and S(£) are the volume-averaged cell spectrum and source, respectively, 
while the 2's, are flux-and-volume weighted cross-sections, i.e., 

V(£) = \^\dt ^ ( r , £) = 2 y F . C E ) VCE) C51) 

S(£) = :^JdrS(r,£)=2ySi(£) (52) 

i.(£) = : ^ ^ ^ ƒ dr^.(r, £) ̂ (r, £) = 2 ^^im ^t,.(£) (53) 

X(E' ^ £) = : ^ ^ ^ ƒ dr 2s(r, E' ^ £) ^(t, £') = 2 ^FtiE'} 2,, ,(£' ^ £) (54) 

with FiiE) being the ratio of the flux in region i to that of the whole cell (at 
energy £) 

F , (£ ) = ^,^[_E)l^p{^E^) (55) 

and V'iC )̂ as given by Eq. (22). In these equations the cell composition has been 
taken as being regionwise constant. The solution of the problem then proceeds in two 
steps. First, spatial calculations are done to generate the flux ratios Fi{E) at a number 
of energy levels (groups). Next, these ratios are used to weight the cross-sections 
that enter the homogeneous-medium spectrum equation (50), which is solved in the 
multigroup approach. From the thus found cell spectrum vC^); and the flux ratios at 
the different energies, the average spectrum per region is known as 

t/ . i(£)=F,(£)v(£) (56) 

The cell homogenisation can then be carried out because the thermal-group constants, 
i.e., the flux ratios and the g-factors, can be constructed from Vi(£) according to Eqs. 
(24) and (22). 

http://2yF.CE
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So far the multigroup flux-ratio approach is exact within the framework of the K-7 
THERMOS approximations. It has a twofold advantage over the earlier discussed 
one-group method with effective cross-sections. Firstly, the present method can pro­
duce different spectra from one cell region to another so that the g-factors can take 
into account the spatial variation of the neutron spectrtrai. Secondly, the approxima­
tion of T, Eq. (43), by computing it in a one-group picture using average values of 
2t, has been avoided. It should be observed though, that a direct evaluation of the 
flux ratios Fi(£) would need a two-dimensional transport kernel array for each 
energy group, the calculation of which would be equally lengthy as in K-7 THERMOS. 

The fast code SATAN has been based on the principles outlined above. It makes use 
of AMCLA to compute the flux ratios F((£) in the different energy groups, thereby 
avoiding the time-consuming direct solution of these ratios with the aid of transport 
kernels. The code has been written in ALGOL for the El X-8 computer at the Reactor 
Centrum Nederland, Petten (NH), the Netheriands [39], and in FORTRAN IV for 
the GE-625 computer at ASEA, Vasteras, Sweden. The ALGOL version has been 
registered as number E 132 at the ENEA Computer Programme Library. The code 
works with a fixed group division and four cut-offs are available, namely, 0.230, 
0.405, 0.625, and 0.911 eV. Either the BSJ kernel will be calculated by the programme, 
or the KY kernel is read in from library tape. The transport correction is always 
applied. Its running time per case was about 30 seconds on the El X-8, which is 
roughly a factor ten faster than the multishell, multigroup code MICROFLUX [8] 
on the same machine. It should be remarked, however, that the calculation of the BSJ 
kernel was included here and that in AMCLA still a rather slow routine for calculating 
the Ki3 function was used. On the GE-625 its running time is 1.5 seconds per case, 
that is 50-100 times faster than K-7 THERMOS on the same machine. In these 
calculations the KY kernel was read in from the library tape, while the K13 functions 
in AMCLA were evaluated according to the method described in Appendix 2. 

The decoupling of spatial and spectral calculations in the present method has seem­
ingly been a simple matter and no iterative procedure like in DATAPREP-II had to 
be applied. However, there does exist such a coupling, namely through the source 
term in the one-group spatial calculations. The one-group equation that should be 
solved for each of the thermal groups looks like 

2,{r, £) <?(r, E) = ƒ dr' T(r' ^ T, £) [2'.(r', E) *(r ' , £) +S(r', E) + zJS(r', E) ] (57) 

where S(r, £) is the slowing-down source, which may be assumed flat in the moder­
ator and zero in canning and fuel; zlS(r, £) is the source caused by the in- and out-
scattering of neutrons from and into the other energy groups of the thermahsation 
range: 

p 

AS(_r, £) = r d£' [2S(T, E' -^ E) *( r , £') - 2S(T, E ^ £') ^ ( r , £) ] (58) 
Ó 
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Group Energy^ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

eV 

0.00158 

0.0124 

0.0279 

0.0428 

0.0608 

0.0866 

0.117 

0.152 

0.199 

0.252 

0.301 

0.365 

1 

-1-8.8 

-1-0.6 

•1-0.2 

-0.1 

-1-0.1 

-FO.l 

-1-0.2 

-1-0.2 

•1-0.4 

-1-0.6 

-0.2 

-1-1.9 

2 

-t-27.5 
-1-

+ 
-
-
-
-
-
+ 
+ 
+ 
+ 

3.5 
0.6 
0.4 
0.5 
0.7 
0.5 
0.2 
0.4 
1.1 
0.3 
2.5 

3 

•1-10.7 
-
-
-
-
-
-
-
-
-t-
-
-f 

0.4 
1.3 
1.4 
1.0 
0.7 
0.4 
0.2 
0.0 
0.2 
0.9 
2.1 

4 

•1-23.9 
-1-

-
-
-
-
-
-
+ 
-f 

-
-F 

2.2 
0.6 
1.2 
1.0 
1.0 
0.6 
0.2 
0.2 
0.6 
0.4 
2.6 

5 

-H35.6 
+ 
+ 
-
-
-
-
-
+ 
+ 
+ 
-1-

4.8 
0.1 
1.2 
1.2 
1.4 
0.9 
0.4 
0.3 
1.2 
0.1 
3.1 

6 

•1-29.5 
+ 
-
-
-
-
-
-
-F 

-F 

-
•f 

2.9 
0.4 
1.2 
1.0 
1.0 
0.6 
0.4 
0.1 
0.5 
0.4 
2.5 

7 

-1.1 

-2.4 

-1.9 

-1.6 

-1.0 

-0.6 

-0.4 

-0.2 

-0.2 

-0.2 

-0.9 

•t-1.5 

8 

-F8.5 

-0.1 

-0.8 

-0.8 

-0.5 

-0.3 

-0.2 

-0.0 

-FO.l 

-F0.2 

-0.6 

-Fl.5 

9 

-F5.0 
-Fl.4 

-F0.7 

+ 0.6 

+ 0.5 

+ 0.3 

+ 0.4 

+ 0.6 

+ 07 
+ 1.0 
+ 1.1 
+ 1.1 

10 

+ 19.3 

+ 4.6 

+ 1.5 

+ 0.4 

- 0.3 

- 0.7 

- 0.7 

- 0.4 

+ 0.5 

+ 2.0 

+ 2.4 

+ 2.3 

Table 5. Percentage deviation of AMCLA disadvantage factors Ö3 from the K-7 THERMOS values 
in each of the twelve energy groups of SATAN. 

In AMCLA the total source, i.e., S + AS, has been taken to be flat. Although this is a 
good approximation for the slowing-down source, this will not necessarily be true for 
the thermalisation operator source AS. 

In a non-absorbing medium, the spectmm will be Maxwellian and, as a consequence 
of the detailed balance, Eq. (4), AS will be zero. In fact, the absorptions which 
cause the flux to deviate from a Maxwellian shape make that /JS + O, while in a 
heterogeneous meditmi they also cause flux gradients and, hence, are responsible for 
the spatial variation of AS. The integral of zlS(r, £) over all energies £ < £ * will be 
zero owing to Eq. (3), and consequently at low energies, including the thermal peak, 
AS will be positive and at the higher energies negative. The following considerations 
may illustrate this point more deeply. In any volume element, the total source S + AS 
will be equal to the sum of absorption and outflow. At the higher energies the 
absorption is small and the fluxes are quite flat, which implies a small streaming 
term. Thus, at high energies S + AS must be small; its two terms are of opposite sign 
and tend to cancel out. Therefore, small spatial variations in AS create strong fluctua­
tions in the total source. Here one pays for the assumption of a flat, epithermal flux 
to generate the slowing-down source. In reality, there will still be small spatial varia­
tions of the epithermal flux and a more conscientious evaluation of the slowing-down 
source should result in an almost flat total source at the high energy end of the 
thermalisation range. At low energies, both the flux gradient and the absorption are 
much more pronounced, which leads to a large total source, i.e., to a positive value 
for AS. In fact, AS becomes so large in the lowest groups that it determines there the 
behaviour of the total source. 

The above remarks have been verified for all the lattices of Appendix I by studjring 
of the behaviour of AS and the slowing-down source with the aid of K-7 THERMOS. 
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Fig. JO. Energy dependence of the disadvantage factor according to K-7 THERMOS. 

It was furthermore observed that at the thermal peak the total source in lattice 10 
varied by 15 per cent, while in the other lattices it was flat within 7 per cent. It is, 
however, difficult to draw quantitative conclusions from these considerations. There­
fore, this point was further investigated by comparing AMCLA values for Ö3 in the 
12 thermal groups with those obtained from K-7 THERMOS, where the energy 
exchange mechanism is taken into account. The results of this comparison are collected 
in Table 5; they are given as the percentage deviation of the AMCLA value from 
the K-7 THERMOS value. It is seen that the deviations are small for all groups but 
the lowest one. In the lowest group the cross-sections are large and the cell is very 
dense for the neutrons. In the K-7 THERMOS calculations the energy exchange pro­
cesses will easily bring about a flattening of the neutron distribution. The influence 
of the lowest group on the final flux ratios is small and consequently this discrepancy 
will not be felt so strongly. 

Another point that was noticed in this comparison is that the influence of the small 
U^^ resonance at about 0.27 eV is well visible in most of the lattices. It is interesting 
that, with the exception of the well-moderated lattice 10, the energy exchange 
mechanism did not blur this effect (see Fig. 10). This indicates once more that the 
one-group transport effects predominate over the energy exchange process. It 
seems that one may feel safe in applying the flat source AMCLA calculations to 
generate the flux ratios per group Fi^Ey In power lattices, which are usually densely 
packed and where the moderator is thinner owing to the higher temperature and 
sometimes the voids, this approximation will certainly not be worse. 
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5. COMPARISON OF THE FAST CODES WITH K-7 THERMOS 

The thermal-group constants that are obtained from the fast codes cannot be directly 

compared with experimental data. Instead, they will be tested against the results of 

K-7 THERMOS, which, from the theoretical viewpoint, may be considered as an 

advanced and reasonably accurate programme, while its agreement with the measure­

ments (Chapter 3) has confirmed this. The quantities that will be compared are the 

flux ratios ^2 and 63, Eq. (24), the density ratios C2 and t3, Eq. (25), as well as the 
average neutron speed in fuel and moderator, v\ and V3, Eq. (18). As was argued in 

Section 3.1, it is sufficient for a cell homogenisation in the thermal group to be 

capable of correctly predicting these quantities. 

DATAPREP-II cannot produce a regionwise varying spectrum and therefore fails to 

give the proper g-factors, Eq. (21). This practically rules out the code for use in 

design calculations, especially when burn-up studies are concerned. However, it 

remains interesting to see how well it calculates the flux ratios. Its ^2- and ós-values 

have therefore been compared with those obtained from K-7 THERMOS. The per­

centage deviation of the DATAPREP-II results are shown in Table 4. One of the two 

main assumptions in this code was the approximation of the "effective transport 

kernel" T, Eq. (43), by a one-group calculation using spectrum-averaged values for 

the total scattering cross-section 2t. This approximation has already been discussed in 

Section 4.3, where it was found to decrease the flux ratios (see also Table 4). The 

other assumption was the use of a spatially flat spectrum for averaging the cross-

sections that are needed in the one-group spatial calculations. This will generate some 

kind of cell-averaged spectrum, which, especially in loosely packed lattices, will lie 

too close to that of the moderator and which in all cases will be too soft in the fuel. 

The average absorption cross-section of the fuel therefore becomes too large, which 

leads to an increased contrast in the flux distribution, i.e., to increased flux ratios. 

It follows from Table 4 that this effect is stronger than that caused by the approximate 

Lattice 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

s,-
+ 0.2 
+ 0.5 
-0.1 
+ 0.5 
+ 0.7 
+ 0.4 
-1.5 
-0.7 
-0.9 
-0.8 

«53 

+ 0.3 
+ 0.4 
-0.7 
-0.3 
+ 0.0 
-0.2 
-0.9 
-0.3 
+ 1.2 
+ 0.9 

i:." 

+0.3 
+0.6 
-0.1 
+0.5 
+0.5 
+0.4 
-1.6 
-0.8 
-1.2 
-1.4 

C3 

+0.4 
+ 1.2 
-0.6 
+0.3 
+0.9 
+0.3 
-1.2 
-0.2 
+ 1.3 
+ 1.8 

5 i ' 

+ 0.1 
+ 0.7 
+ 0.1 
+ 0.4 
+ 0.8 
+ 0.5 
-0.1 
+ 0.1 
-1.1 
+ 0.4 

"3 

0.0 
-0.2 

0.0 
-0.1 
-0.2 
-0.2 
+ 0.3 

0.0 
-1.2 
-0.4 

^ öj = ratio of average flux in region i to that in the fuel 
'^ Ci - ratio of average neutron density in region i to that in the fuel 
^ Vj = average neutron speed in region i (1 = fuel, 2 = canning, 3 = moderator] 

Table 6. Percentage deviation of some SATAN results from the K-7 THERMOS values in Table 2. 
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evaluation of T. The net result is an overestimation of the flux ratios by DATAPREP-

II, which increases with the lattice pitch. In power-reactor lattices, at operating con­

ditions, the average spectrum will lie closer to that of the fuel, thus decreasing the 

positive error in the flux ratios so that they will be nearer to the proper values. 

SATAN produces regionwise spectra as well as flux ratios and, hence, it gives all the 

information needed for a proper cell homogenisation. Its main approximation is the 

assumption of a flat source in the moderator for the calculation of the flux ratios 

per energy group. In spite of this decoupling of spatial and spectral calculations, the 

groupwise flux ratios F,(£) agreed well with those obtained from K-7 THERMOS, 

except for the lowest group and to a lesser degree for the highest group (see Table 5). 

In the lowest group this is due to the fact that there is a strong contact with the 

higher groups, where the neutron distribution is smoother. In the highest group the 

discrepancy is less and, of course, also caused by the decoupling of the spatial calcula­

tions from the spectral calculations. However, in the K-7 THERMOS calculations the 

net source in this group shows large variations owing to a small error in the slowing-

down source, which was taken to be flat. At these energies the net source should be 

rather flat so that, physically speaking, the SATAN flux ratios in the highest group 

are probably better than the K-7 THERMOS ones. This error can be eliminated by 

the choice in the space-spectrum calculations of a cut-off energy which lies higher 

than that used to evaluate the thermal-group constants. This was done by the author 

and Tas [39] for the lattices 7 and 8. The cut-off in the spectrum calculations was 

0.911 eV, while the group constants were computed below 0.405 eV. The effect on 

the spatial quantities ?2 and J3 was less than —0.5 per cent, while the effect on the 

spectrum index was as much as +1 .9 per cent in lattice 7 and +1.2 per cent in 

lattice 8. Of course, this effect is felt strongest in the hardness of the spectrum, 

which is more sensitive to the higher groups than the spatial distribution. 

The final comparison of SATAN with K-7 THERMOS is presented in Tables 6 and 7. 

In Table 6 the percentage deviations of f, d and v are listed for the ten lattices of 

Appendix 1. The K-7 THERMOS values for these quantities are given in Table 2. 

Although no measurements on regular power lattices were done, at least the SATAN 

Fuel temp., **€... 
Mod. temp., °C ... 
Void, % ... 

Quantity 

S» 
\ 
f. 
c, 
"1 

"3 

20 
20 
0 

K-7 

1.078 
1.161 
1.106 
1.224 
1.360 
1.291 

Satan 

1.076 
1.157 
1.105 
1.221 
1.362 
1.290 

903 
285 

0 

K-7 

1.060 
1.115 
1.080 
1.156 
1.744 
1.682 

Satan 

1.057 
1.114 
1.075 
1.154 
1.741 
1.681 

903 
285 
30 

K-7 

1.059 
1.109 
1.080 
1.148 
1.784 
1.723 

Satan 

1.056 
1.110 
1.074 
1.147 
1.780 
1.723 

K-7 

1.058 
1.101 
1.079 
1.138 
1.872 
1.812 

303 
285 
60 

Satan 

1.053 
1.108 
1.072 
1.142 
1.867 
1.811 

Table 7. Comparison of SATAN with K-7 THERMOS for a power-reactor cell at room temperature 
and at different operating conditions. 
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results for such a lattice cell were compared with K-7 THERMOS. This cell is a 
typical example of the interior pins in the fuel assembly of the Oskarshamn BWR, 
a Swedish 400 MWe power reactor designed by ASEA and planned to be critical in 
1970. It consists of a 2.0 per cent enriched UO2 pin with a density of 10.25 g/cm^ 
and a radius of 0.50 cm, canned in 0.08-cm-thick Zircaloy-2, and placed in a square 
H20-moderated cell of 1.63 cm pitch. The comparison was carried out for room 
temperature and for 285° C with 0, 30 and 60 per cent void in the coolant. In the 
hot case, the fuel temperature was taken to be 903° C. The results are given in 
Table 7. It follows from these comparisons that SATAN produces indeed thermal-
group constants that agree well with the results from the more sophisticated and 
lengthier multishell, multigroup calculations. 

6. CONCLUSIONS 

The objective of this work was to develop and test a fast and accurate computational 
procedure for the thermal-group constants required for the cell homogenisation in 
design calculations. It turned out that the multigroup flux-ratio approach as embodied 
in SATAN produces, in single-pin lattices, results that closely agree with those from 
the more elaborate and time-consuming K-7 THERMOS. Consequently, SATAN, 
which combines calculational speed with accuracy, will be a powerful tool in the 
fuel-cycle studies for the design of light- and heavy-water reactors. The success of 
this approach is based on the relatively loose coupling between space and energy 
calculations, and on the accuracy of the group-wise flux ratios generated by AMCLA. 

The experimental testing described in this work has been confined to the lattices of 
Appendix 1. Although they represent a rather wide range of lattice types, they do 
not cover typical power-reactor lattices at operating conditions nor lattices containing 
plutonium. For these types of lattice no intercell thermal-neutron distribution meas­
urements have been reported in the open literature. Therefore, the reliability of K-7 
THERMOS could only be tested in zero-energy lattices, where it was shown to be in 
good agreement with the results of careful measurements. In the IAEA Report [5] 
it has been shown that even for single-tube fuel elements this code agrees with the 
results of measured activation profiles. The good agreement of SATAN with K-7 
THERMOS has thus only experimental back-up for the lattice types described in 
Appendix 1. 

Meanwhile, as was pointed out several times in this work, there is no reason to 
believe that K-7 THERMOS should fail to predict accurately neutron distributions in 
power lattices. The investigations made on a regular lattice cell at high temperatures 
and with different void contents indicate that also for such power-lattice cells the 
agreement of SATAN with K-7 THERMOS is very satisfactory. Nevertheless, to 
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support fully the confidence in the applicability of these codes to regular lattices at 
high temperatures, with voids and with plutonium, additional intercell measurements 
in these types of reactor cell will be needed. 

To sum up one may say: 

SATAN calculations can replace K-7 THERMOS for regular single-pin lattices 

moderated by light and/or heavy water, including typical—but regular—power lat­

tices. However, the reliability of the latter could only be tested against experiments 

performed on zero-energy lattice cells with uranium as the only fissile material. Since 

there does not seem to exist any indication that this code should fail in regular lattices 

at operating conditions, it is very likely that one may apply SATAN in the fuel-cycle 

studies of power-reactor design. One should keep in mind that these codes are 

probably not applicable to pin cells that lie in the vicinity of heterogeneities like 

control elements and water gaps. It remains a matter of further theoretical and 

experimental investigation to determine how such cells should be homogenised, i.e., 

how to obtain their group constants which will certainly be influenced by the 

heterogeneity. 
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APPENDIX 1. CHARACTERISTICS OF LATTICES STUDIED 

The lattices that have been selected for testing and comparing of the theoretical methods 
were all three-region square or hexagonal lattices, moderated by H2O, D2O, or H2O/ 
D2O. Although they cover a wide range of lattice types, they by no means represent 
all possible varieties. The main restriction is the fact that no power lattices at operating 
conditions—voids, high temperatures—could be included for testing the theoretical 
methods against measurements. This is due to the lack of experimental data on intercell 
neutron distributions in such lattices. The lattice characteristics are compiled in Table 8. 
The first six lattices are for the Norwegian zero-power assembly NORA [43]; the 
first two of them are so-called spectral shift lattices, where a mixture of light and 
heavy water is used as moderator. Lattices 7 and 8 are for the subcritical facility PUK 
[31], used for testing the Dutch ship-propulsion reactor design. They are the only 
two hexagonal lattices: the former consists of a regular array of fuel pins, while the 
latter is an open hexagonal lattice obtained from the former by introducing of a regular 
pattern of open fuel-rod positions. Lattices 9 and 10 are for the Yugoslavian zero-
power RB reactor [44]. All the calculations and measurements on these lattices were 
done for room temperature (20° C) with the exception of lattice 6 where the tempera­
ture was raised to 60° C. 

To have at least one comparison between the SATAN and K-7 THERMOS codes for a 
regular power lattice, a pin cell was taken that is representative of the 400 MWe BWR 
which is under construction near Oskarshamn, Sweden. This cell has been described in 
Chapter 5. 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Pitch 

2.31 
3.66 
1.90 
2.31 
2.69 
2 31 
1.51 
1.85 
8.0 

16.0 

Shape 

sq. 
sq. 
sq. 
sq. 
sq. 
sq. 
hex. 
hex. 
sq. 
sq. 

Enrichment % 

UO2—3.0 
UOj—3.0 
UO2—3.4 
UOj—3.4 
UOs—3.4 

UOj—3.8 
UO2—3.8 
U-nat. 
U-nat. 

Fuel 

Density 
g/cm» 

9.30 
9.30 

10.35 
10.35 
10.35 

Radius 
cm 

0.564 
0.564 
0.635 
0.635 
0.635 

Canning 

Material 

304—St. St. 
304—St. St. 
304—St. St. 
304—St. St. 
304—St. St. 

Density 
g/cm' 

8.03 
8.03 
8.03 
8.03 
8.03 

Radius 
cm 

0.635 
0.635 
0.690 
0.690 
0.690 

Qc l a t t i r o 4 Fiiil- a«- RPl" C i n c t c a r l n f 9 0 ° C 

10.53 
10.53 
18.8 
18.8 

0.5 
0.5 
1.25 
1.25 

Al 
Al 
Al 
Al 

2.58 
2.58 
2.70 
2.70 

0.6 
0.6 
1.35 
1.35 

Moderator 
% H.O 

45.0 
45.0 

100.0 
100.0 
100.0 

100.0 
100.0 

0.5 
0.5 

Table 8. Characteristics of NORA lattices, Norway [Nos. 1—6), PUK lattices, the Netherlands 
[Nos. 7 and 8), and RB lattices, Yugoslavia [Nos. 9 and 10]. 
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APPENDIX 2. CHEBYSHEV COEFFICIENTS FOR EVALUATING 
THE FUNCTIONS h, h, Ko and K13 

The Bickley function Ki3(x) as well as the second-kind Bessel functions /o(x), h[x) 
and Ko(x), which together with Ki(3c) are all needed in AMCLA, have been calculated 
from their Chebyshev coefficients given in Tables 9 and 10. The Bessel function Ki(x) 
was found from the relation 

/o(x) K,(x) +/i(%) Ko(x) = 1/x (A I) 

Since especially a rapid calculation of Ki3{x) is essential for AMCLA, the x-range was 
divided into seven intervals [a, b], chosen so that in each interval a few terms sufficed 
to give an absolute accuracy of better than 10"^. In each of the intervals the Chebyshev 
representation is 

Ki3(x)=2crT,( t) (A 2) 

r-0 

with 

t = ( 2 x - b - a ) / ( b - a ) (A3) 
For the Bessel functions, the Chebyshev expansions are 

/0(X) = 2 Cr T2r (^) ( - 8 < X < 8) (A 4) 

^ i W = § 2 ' ^ ' ^ 2 ' ( | ( - 8 < x < 8 ) (A 5) 

Ko(x) = Z^rTzr(^ - In {^Ux] (0 < X < 8) (A 6) 

The summation over the even-order Chebyshev polynomials can be reduced to one of 
the tjrpe given in Eq. (A 2) by observing that 

T2r (0=Tr (2 t2 - l ) (A 7) 

To evaluate a function from its Chebyshev coefficients, a procedure due to Clenshaw 
[20] was used. A sequence of constants dn-\, dn-z, . •., d\, do is computed from the 
recurrence relation 

dr 

T 

1 

2 

3 

t 
' 5 

I i. 

= 2tdr+l — dr + 2+Cr 

0.0 s Ï s 0.1 

0.785 398 16 

-0.999 906 

0.775 68 

-0.710 4 

0.896 

-

0.1 S Ï S 0.2 

0.785 231 79 

-0.994 716 

0.712 24 

-0.339 2 

— 
-

(in = dn + \ = 

0.2 S X S 0.5 

0.784 900 31 

-0.990 628 52 

0.699 92 

-0.360177 78 

0.109037 04 

-

0) 

0.5 £ X fi 1.0 

0.779 899 3 

-0.953 726 8 

0.594 969 6 

-0.223 436 8 

0.040 140 8 

-

1.0 fi X S 2.0 

0.767 050 75 

-0.904 139 8 

0.525 026 4 

-0.184 307 2 

0.037 644 8 

-0.003 430 4 

2.0 fi X S 4.0 

0.654 502 7 

-0.645 332 4 

0.281 018 2 

-0.066168 8 

0.008 260 8 

-0.000 430 4 

(A 8) 

4.0 fi X fi 8.0 

0.280 4409 

-0.188 5431 

0.052 060 7 

-0.007 327 1 

0.000 522 65 

-0.000 015 05 

Table 9. Chebyshev coefficients a, ƒ<"• Ki3[x). 



56 

The function value is then 

f(x) = (do-d2)/2 (A 9) 

Another, faster, method was used to evaluate Ki3(x) from its Chebyshev coefficients. 
The polynomials Tr(t) were replaced by their expression in powers of t and then 
rearranged to form 

Ki3(x )=2 i r t ' (A 10) 
r-O 

Values for the various coefficients c, and flr are collected in Table 9 and 10, respectively. 
The coefficients for the Bessel functions were taken from Clenshaw [45]. 

r 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

lo[x] 
|x|<8 

255.466 880 
190.494 320 
82.489 033 
22.274 819 
4.011 674 
0.509 493 
0.047 719 
0.003 416 
0.000 192 
0.000 009 

hix) 
\x\<S 

259.890 238 
181.312 616 
69.395 918 
16.334 551 
2.571 460 
0.287 856 
0.023 993 
0.001 543 
0.000 079 
0.000 003 

Ko[x) 
0<x<8 

-21.057 660 
- 4.563 434 

8.005 369 
5.283 633 
1.511 536 
0.259 084 
0.030 081 
0.002 536 
0.000 163 
0.000 003 

Table 10. Chebyshev coefficients c^for Io[x], Ii[x) and Ka[x]. 
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SUMMARY 

The aim of the present thesis has been to develop and test rapid computational methods 
for producing thermal-neutron group constants in uniform single-pin lattices moderated 
by H2O and/or D2O. These constants enable homogenisation of the lattice cell with 
respect to the thermal-neutron distribution, because they provide sufficient informa­
tion to describe its thermal reaction rates. Two examples of such fast codes are given: 
DATAPREP-II and SATAN. They are fast enough to be incorporated in calculational 
schemes for fuel-cycle studies and reactor design. The former replaces the thermalisa­
tion range with a single energy group, thereby reducing the problem to a one-group 
calculation of flux ratios using effective cross-sections. These cross-sections are averages 
over the cell spectrum, which has been assumed to be spatially independent. The latter 
calculates flux ratios for a number of energy groups and homogenises the cell by flux 
and volimie averaging of the cross-sections per group. The average cell spectrum can 
then be evaluated from which, using also the flux ratios, the spectra per region and 
the thermal-group constants can be constructed. Here the main assumption is that the 
source is flat in each group, whereby the flux-ratio calculations in the groups have 
been decoupled from the energy-transfer calculations. 

Experimental verification of these codes is not possible because the integral quantities 
they produce cannot be directly measured. Therefore the fast codes have been tested 
against the results of the sophisticated code K-7 THERMOS. This code evaluates the 
thermal-neutron distribution in space and energy in a circularised cell under the 
assumption of isotropic scattering in the laboratory system. With this code the various 
approximations that have been used are discussed and found to be satisfactory. How­
ever, the final check on the reliability of K-7 THERMOS as a standard for testing the 
fast codes should be made by a comparison of its results with measurements. Such 
a comparison has been carried out on a number of uniform uranium lattices at room 
temperature. Good agreement was observed in those cases where the experimental 
data were carefully analysed and the perturbing effects of the measuring device elimi­
nated. The comparison could not be extended to plutonium lattices nor to uniform lat­
tices in power reactors at operating temperatures and with voids, because accurate ex­
perimental data are still lacking. However, there does not seem to be any reason why 
K-7 THERMOS should fail for these types of lattice cell, since they do not offer new 
problems. 

With the reUability of K-7 THERMOS thus established, it could be used to test the 
fast codes. SATAN appeared to be in good agreement, while neglecting the spatial 
variation of the spectrum in the lattice cell turned out to be a serious drawback for 
DATAPREP-II. Hence, the fast code SATAN, which generates thermal-group con-



60 

stants with about the same accuracy as the more sophisticated and time-consuming 
calculations of K-7 THERMOS, becomes a valuable tool for fuel-cycle studies and 
nuclear-reactor design. 

The studies reported here have been confined to regular lattice cells and neither K-7 
THERMOS nor the other codes should be applied thoughtlessly to cells that lie in the 
vicinity of irregularities like control elements and water gaps. The interesting question 
how to calculate group constants for such cells falls outside the scope of this thesis. 

SAMENVATTING 

Het doel van dit proefschrift is het ontwikkelen en testen van snelle berekenings­
methoden voor het produceren van de groepskonstanten van thermische neutronen in 
regelmatige staafroosters gemodereerd met licht en/of zwaar water. Deze konstanten 
maken een homogenisatie van de roostercel mogelijk voor zover het de thermische 
neutronen betreft omdat ze voldoende informatie verschaffen om de thermische re-
aktiesnelheden te beschrijven. Twee voorbeelden van snelle kodes worden gegeven: 
DATAPREP-II en SATAN. Ze zijn snel genoeg om gebruikt te worden in de bereke­
ningsschema's voor brandstofcyclus studies en reaktor ontwerp. In de eerste kode 
wordt het thermalisatiegebied door een enkele energie groep vervangen waardoor het 
probleem wordt teruggebracht tot een een-groeps berekening van flux verhoudingen 
met behulp van effektieve werkzame doorsneden. Deze werkzame doorsneden zijn 
gemiddelden over het cel spektrum welke als ruimtelijk onafhankelijk is aangenomen. 
De tweede kode berekent de flux verhoudingen voor een aantal energie groepen en 
homogeniseert de cel door de werkzame doorsneden per energie group te middelen 
over de flux en het volume. Het gemiddelde spektrum in de cel kan dan berekend 
worden. Daaruit worden de spektra per gebied en de thermische groepskonstanten 
gevonden onder gebruikmaking van de flux verhoudingen per groep. Hier is de belang­
rijkste veronderstelling dat de totale bronsterkte in elke groep vlak is waardoor de 
ruimtelijke berekeningen van de flux verhoudingen in de groepen losgekoppeld zijn 
van de spektrum berekeningen. 

Een experimentele bevestiging van de betrouwbaarheid van deze kodes is niet mogelijk 
omdat de integrale grootheden die ze produceren niet rechtstreeks meetbaar zijn. 
Daarom werden de snelle kodes getest aan de resultaten van de meer verfijnde kode 
K-7 THERMOS. Deze kode berekent de verdeling van de thermische neutronen in 
ruimte en energie in een gecylindriseerde cel onder de aanname van isotrope verstrooi­
ing in het laboratorium systeem. Met behulp van deze kode werden de diverse benade­
ringen welke gebruikt zijn besproken en voldoende bevonden. Een afdoende bevesti-
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ging van de betrouwbaarheid van K-7 THERMOS als standaard kode om de snelle 
kodes aan te testen kan echter uitsluitend verschaft worden door zijn resultaten met 
metingen te vergeUjken. Zo'n vergelijking is gedaan voor een aantal regelmatige 
uranium roosters bij kamertemperataur. Goede overeenstemming bestond in die geval­
len waar de experimentele gegevens nauwkeurig waren geanalyseerd en waar de 
verstoringen veroorzaakt door de meting zelf waren geëlimineerd. Deze vergelijking 
kon niet worden gedaan voor plutonium roosters noch voor regelmatige roosters van 
energieproducerende kokend-water reaktoren in bedrijf omdat hiervoor nog steeds 
nauwkeurige meetgegevens ontbreken. Er schijnt echter geen reden te bestaan om te 
veronderstellen dat K-7 THERMOS zou falen voor dergelijke roosters aangezien ze 
geen nieuwe problemen bieden. 

Nadat aldus de betrouwbaarheid van K-7 THERMOS was vastgesteld konden de 
snelle kodes er aan getest worden. SATAN bleek in goede overeenstemming te zijn, 
terwijl daarentegen in DATAPREP-II het verwaarlozen van de ruimtelijke variatie 
van het spektrum in de rooster cel een ernstig nadeel bleek te zijn. De snelle kode 
SATAN produceert dus thermische groepskonstanten die ongeveer even nauwkeurig 
zijn als die van de meer verfijnde en langdurige berekeningen van K-7 THERMOS. 
Daardoor wordt SATAN een waardevol onderdeel in brandstofcyclus berekeningen 
en in ontwerp studies van kernreaktoren. 

De hier gerapporteerde onderzoekingen hebben zich beperkt tot regelmatige roosters 
en noch K-7 THERMOS noch de andere kodes mogen gedachteloos toegepast worden 
op rooster cellen die zich in de nabijheid van bijvoorbeeld kontrole elementen en 
waterspleten bevinden. De belangwekkende vraag hoe de groepskonstanten voor cellen 
in de nabijheid van zulk een onregelmatigheid in het rooster berekend moeten worden 
valt buiten het bestek van dit proefschrift. 









STELLINGEN 

1. Boyntons metingen in sterk ondergemodereerde staafroosters, waarmee hij een 

minimum in de „disadvantage factor" als funktie van de water: uranium ver­

houding aantoont, zijn niet beslissend. Dit minimum bestaat niet eens. 
Z. Weiss en R. /. J. Stamm'ler, Nud. Sd. Eng. 19, 374 [1964]. 
A. R. Boynton, Nud. Sd. Eng. 23, 393 [1965]. 

2. Fukai's bewering, dat in integrale transport theorie de neutronen flux in een 

cyhndrische cel met een isotroop reflekterende grens vlak zou zijn bij die grens, 

is onjuist. 
Y. Fukai, Nukleonik, 7, 144 [1965]. 

3. De „disadvantage factor" in een normale pin cel, dat is de verhouding van de flux 

in de moderator tot die in de brandstof, neemt toe wanneer men de isotroop 

reflekterende celgrens vervangt door een volkomen absorbator. 

4. De orientatiehoek van de dysprosium draden in Kleijns aktiveringmetingen in de 

hexagonale roostercellen van LEAD behoort 12° 14' te zijn in plaats van 15°. 
H. R. Kleijn, On the determination of microscopic reactor parameters using an 
exponential assembly. Thesis, Delft [1965]. 

5. De spektrum index gedefinieerd in dit proefschrift behoort algemeen gebruikt te 

worden om het thermische neutronen spektrum te karakteriseren. Het is een veel 

geschiktere parameter hiervoor dan de gemiddelde snelheid van de thermische 

neutronen of hun „temperatuur". 
J. Smit en R. J. J. Stamm'ler, Nud. Sd. Eng. 24, 90 [1966]. 

6. Ondanks het Doppler effekt bestaat in een zwaar-water gemodereerde reaktor 

het gevaar dat de temperatuurs-koefficient van de brandstof positief wordt bij 

toenemende burnup. Dit is bij een licht-water gemodereerde reaktor uitgesloten. 
B. M. Townes et al.. Calculation of reactivity coefficients for a BLW lattice cell, 
AECL-2649 [1966]. 

7. De diffusie koefficient in de nabijheid van een zwarte absorbator dient gemiddeld 

te worden over een spektrum dat zelfs zachter is dan het oneindig-medium 

spektrimi. 

8. In dynamische studies van een kokend-water reaktor met behulp van het punt-

model wordt vaak ten onrechte het gebied waar onderkoeld koken optreedt niet 

expliciet behandeld. Dit is van grote invloed op de overdrachtsfunktie. 
J. A. Hodde, Control rod osdllation and transient pressure tests in the Big Rock Point 
boiling water reactor, GEAP-4448 [1966]. 



9. De bewering van Weinberg en Wigner dat „ . . . more insight into the principal 

phenomena of neutron diffusion has been gained from the solution of the two-

group equations than from the extensive and accurate solution of multigroup 

equations by means of large computing machines", is tegenwoordig niet meer juist. 
A. M. Weinberg en E. P. Wigner, The physical theory of neutron chain reactors, 
The University of Chicago Press, p. 513 [1959]. 

10. Wanneer men in een BWR brandstof patroon de individuele pincellen homogeni­

seert dan dient dit te geschieden ten opzichte van de flux aan de rand van de cel 

en niet, zoals men zou verwachten, ten opzichte van de gemiddelde flux in de cel. 

11. Algoritme 91, „Chebyshev Curve-Fit" van Albert-Newhouse, gepubliceerd in 

Communications of the ACM, 5, 281 (1962) bevat fouten en is bovendien in­

efficient zowel wat betreft geheugenplaatsen als rekentijd. 

12. Hoewel de theorieën van Freud, Jung en Adler in hun uitgangspunten mogen 

verschillen is het sukses van hun respektieve behandelingsmethoden gebaseerd op 

een algemeen principe waarschijnlijk door geen van drieën ooit vermoed. 

13. Het koningsgambiet is een geschikte opening voor simultaanspelers. 
Dr. M. Euwe, Theorie der Schaakopeningen, No. 12, G. B. van Goor Zonen's Uitg. 
mij. N.V. [1956]. 

Proefschrift: R. J. J. Stamm'ler 
Vasteras, 13 maart, 1968 


