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Introduction 

The still increasing use of more or less extensive radioactive sources in 
numerous applications has rendered penetration and attenuation of 
gamma and X-rays a problem of increasing importance. This may be 
obvious, for example, in designing shielding facilities for nuclear reactor 
plants. However, also in the applications of ionizing radiation in medici ne 
these penetration problems are extremely important. 

To illustrate the nature and the difficulties ofthe penetration problems, 
we consider a point source, emitting monoenergetic gamma rays in 
vacuum, with a detector at a certain distance from the source and a disk 
of some material with a thickness x, placed between the source and the 
detector. Ifthe gamma rays are collimated in such a way that only gamma 
rays that are incident along the joining line between the source and the 
detector are counted, the reading of the detector is decreased with a 
factor efLx , in which fL is the attenuation coefficient of the material in­
volved at the photon energy ofthe source. Such an arrangement is known 
as a 'good geometry' configuration. An example of a 'bad geometry' confi­
guration is present when there is no collimation at all. In that case 
photons which are scattered somewhere in the disk can also enter the 
detector. Other examples of 'bad geometry' configurations are a source 
and a detector immersed within a scattering medium, a source outside 
the medium and a detector immersed within the medium, and an immersed 
source and an external detector. In all these cases of 'bad geometry' the 
attenuation factor, mentioned above, must be corrected for the effect of 
multiple scattered photons. 

'Bad geometry' configurations are found in the majority of the appli­
cations of ionizing radiation. An outstanding example of such a 'bad 
geometry' in medical applications is the geometry encountered in the 
telecurie and X-ray therapy. As the depth dose in tissue is greatly in­
fluenced by multiple scatter effects, depth dose values, measured in 
phantoms (Morgan 1954) show appreciable differences with the dose, 
calculated according to the mentioned 'good geometry' attenuation (see 
fig. 1). Another example in medical applications is the do se delivered to 
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Fig. 1. Measured procentual depth dose data compared with 'good geometry' atten­
uation in soft tissue. 

the tissue by radium or cobalt applicators. These applicators are charac­
terized by isodose curves, which are measured in air. The dose 'delivered 
to the tissue' is usually taken from these curves. While this could be 
done relatively safely at distances not exceeding 2 or 3 cm, at greater 
distances the discrepancy between those values and the true dose in­
creases rapidly. 

As the importance of multiple scattering in penetration problems is 
now highly appreciated, considerable effort has been devoted to find 
data about the intensity and the energy distributions of photons, which 
are scattered when gamma and X-rays are penetrating a medium. How­
ever, though to this purpose calculations of various degrees of rigour have 
been elaborated, experimental data to check these calculations are still 
scanty. Some measurements of do se buildup factors (Garret et al, 1954; 
White, 1954; Mellink, 1954, 1957) are in reasonable agreement with theo­
retically predicted values. Direct measurements of energy distributions 
with the aid of scintillation spectrometry, however, still meet with diffi­
culties. Due to these difficulties, the few results known until now (Bruce 
et al, 1955; Hayward, 1952; Theus et al, 1955) include more or less 
serious uncertainties. 
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These difficulties arise mainly in the interpretation of the measured 
pulse height spectra. Since not all of the incident photon energy is 
absorbed in the scintillating material, corrections have to be made for 
the occurring escape effects (wbich may be complicated by interactions 
in the scintillating materiaI). Moreover , a pulse height spectrum is 'smeared 
out' as a result of the statistical processes in the scintillation detector. 
Tbis 'smearing out' causes large mathematical difficulties in determining 
continuous photon energy distributions from measured pulse height 
spectra. 

In the work described in tbis thesis an attempt is made to overcome all 
these difficulties. The following chapters deal with measurements of con­
tinuous photon energy distributions, resulting from scattering of gamma 
rays in a water medium, with the aid of a single channel scintillation 
spectrometer. The geometry chosen was such that the measuring con­
ditions were comparable with conditions found in radiological appli­
cations (i.e. a point isotropic source approximately in the centre of a 
bounded water medium). With this geometry comparison with calcula­
tions according to the 'moment method' of Spencer and Fano (1951) is 
possible, as Berger et al (1959) have shown. 

To induce the scatter effects 60Co may be considered, tbis nuclide being 
widely used in radiological applications. However, the fact that the gamma 
radiation of 60Co comprises photons of two different energies (i.e. 1.17 
MeV and 1.33 MeV) enlarges the difficulties in the correction of the 
measured pulse height spectra. Therefore l37Cs was chosen for tbis 
purpose, tbis nuclide emitting monoenergetic gamma rays with an energy 
of 0,66 MeV. 

Measurements of pulse height distributions in such a bounded water 
medium are described in ch~ter 11, a general formulation of the pene­
tration problems and a summary of publications on tbis subject being 
given in chapter I. The difficulties in the correction of the measured pulse 
height distributions are discussed in chapter 111. In chapter IV a solution 
of the pro bI ems concerning the spread in the pulse height is proposed, 
while in chapter V the correction of the energy escape effects in the 
scintillation crystal is discussed. These corrections are applied to the pulse 
height distribution measurements described in chapter 11, the resulting 
photon energy distributions and buildup factors being discussed in 
chapter VI. Finally, in chapter VII, the possibility of applying the described 
measuring and correction method to measurements with other geometries 
is discussed, one of these geometries being described in more detail. 
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CHAPTER I 

Multiple scattering of gamma and X-rays 

1. TYPES OF INTERACTION 

Different types of interaction of photons with matter contribute to the 
angular energy distributions within, and in the neighbourhood of, a 
scattering medium. It may be convenient to give a brief summary of the 
possible types of interaction, and the mode at which they contribute to 
th.e angular energy distributions. 

In the penetration of gamma rays through a medium, the following 
interaction processes between photons and matter are possible: 

a. Coherent (Rayleigh) scattering 
b. Atomic photoelectric effect 
c. Compton scattering 
d. Pair production 
e. Nuclear scattering 
f. Nuclear interactions 

Secondary processes arising out of these interactions are: 

g. Fluorescence radiation 
h. Bremsstrahlung 
i. Annihilation radiation 

The processes e. and f. can be dismissed immediately, since below 
10 MeV these are not likely to occur. • 

Rayleigh scattering, as it is coherent, does not involve energy losses 
but only small (Fano, 1953) angle defl.ections, and, accordingly, affects 
only the angular distributions. In all methods for calculating the intensity • 
and the energy distributions of scattered photons, this coherent scattering 
is neglected. This certainly is justified in the case of low Z materiais, 
since the coherent scattering cross section for low Z materials is only a 
small fraction of the incoherent compton scattering cross section (Gold­
stein, .1954). Though coherent scattering increases much more rapidly 
with Z than does the incoherent scattering, the neglèction can be done 
without much danger even for high Z materiais, since for elements with 
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higher atûmic number the phûtûelectric crûss sectiûn increases sû much 
mûre rapidly than dûes the cûherent scattering crûss sectiûn, that the 
latter is an ever decreasing fractiûn .of the tûtal attenuatiûn crûss sectiûn. 
Mûreûver, fûr higher energies (abûve 0.5 MeV) even the highly bûund 
electrûns appear . free, sû that fûr these energies incûherent cûmptûn 
scattering is the dûminant prûcess. 

The secûndary prûcesses are nût likely tû influence the energy distribu­
tiûns tû a great extent. The energy .of fluûrescence radiatiûn (X-radiatiûn 
fûllûwing phûtûelectric effect) is tûû lûw tû be .of great influence except 
in the very heavy elements. Bremsstrahlung, arising frûm cûmptûn recûil 
electrûns and pair prûduced electrûns is nût very likely with sûurce ener­
gies belûw 10 MeV (see table I .of ref. Fûldi 1951). Appreciable annihila­
tiûn radiatiûn ûnly ûccurs with very high energy sûurces where pair 
productiûn becûmes important. Pair prûductiûn ûnly ûccurs at energies 
larger than 1.02 Me V, the energy equivalent .of ûne electrûn pair. 

Accûrdingly in an energy range between 0 and 0.66 MeV, as cûnsidered 
here, ûnly the prûcesses b. and c. are tû be regarded; .of these prûcesses 
the atûmic phûtûelectric effect is purely absûrptive and the cûmptûn 
scattering is the ûne which gives rise to the spectrum of degraded photons. 

2. MATHEMATICAL FORMULATI.oN .oF THE INTERACTI.oN RESULTS 

The angular energy distribution resulting from these prûcesses can be 
represented by a function N(r,D,E), such that 

N (r,u,E) dudE 

is the number of photons, of energy E in the range dE, and moving in the 
direction .of the unit vectûr D in the element .of solid angle du, which crûss 
in unit time through a unit area lûcated at the pûint r who se nûrmal is in 
the directiûn u. 

The angular energy distributiûn functiûp N(r,u,E) is determined in 
general bij six variables, three .of positiûn r, two of directiûn D, and one 
.of energy E. The Boltzmann transpûrt equatiûn, which is the equatiûn 
.of cûntinuity in a phûtûn phase space cûnsisting .of the six variables, can 
be derived, considering equilibrium state in a differential volume in phase 
space dVdudE. In cases of simplified sûurce geûmetries the number of 
variables can be reduced tû three. For example fûr a point isotrûpic 
source in a homûgeneûus medium, N is a functiûn of r (the radial distance 
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from the source), cp (the angle between the radius vector and the photon 
direction) and E (the energy). 

With a receiver of gamma rays which can discriminate in energy but 
which is insensitive to the angle at which the photons arrive (i.e. an iso­
tropic receiver) the measurable quantity is not the angular energy distri­
bution function N but the energy spectrum: 

S(r,E) = f N(r,u,E)du (1-1) 

47t 

As most of the gamma ray receivers of interest, such as ionization cham­
bers, scintillation detectors, volume elements of tissue, homogeneous 
shields and the like are approximately isotropic, the interesting quantity 
is the energy spectrum S (or the energy flux I, given by IdE = ESdE, 
which quantity is important in connection with ionization chambers and 
biological dosimetry problems), rather than the angular energy distribu­
tion function N. 

The energy spectrum S, as well as all other functions of photon move­
ment can be written as the sum of two components: 

S = So + Ss (1-2) 

in which the subscript 0 denotes those photons which have suffered no 
collision at all, and the subscript s those which have made at least one 
collision. 

The unscattered component, for example So in equation 1-2, can 
usually be obtained quite simply. The scattered component is very diffi.­
cult to calculate. Although the contribution of once scattered photons to 
the scattered component can be calculated without too many difficulties, 
it is extremely difficult to determine, without making any approximation, 
the contribution of those photons which have suffered more than one 
collision . 
. In pe~etration problems a convenient way to account for scatter com­

plications is the use of buildup factors. In the majority of gamma ray 
measuring instruments, especially those in radiological applications, the 
gamma ray detectors are not able to measure the energy spectrum direct­
ly, i.e. to separate the contribution of scattered and unscattered photons. 
Their response is to some sort of ave rage of the energy spectrum, which 
average is different for each type of detector. To account for these discre-
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pancies one can define a multiplicative factor, aso called buildup factor, 
with which the response of the detector to the unscattered component 
must be multiplied to yield the actual instrument reading. Obviously a 
buildup factor varies not only with the type of detector used but also with 
the material present in the medium and with the distance from the source, 
the latter because of changes in the angular energy distributions. Goldstein 
and Wilkins (1954) offer the following, more generalized, forma! defini­
tion of the buildup factor. 

Suppose D is some linear operator working upon the angular distribu­
tion function N. Then DN can be splitted in two components, similar to 
those defined in equation (1-2): 

DN= DNo + DNs (1-3) 

When DNo is non vanishing, the buildup factor with respect to the ope­
rator D, BD' is defined by the relation 

(1-4) 

As an example of this definition we consider the total number of photons 
incident on a unit differential volume, S(r,E)dE. The operator corres­
ponding to this function is 

(1-5) 

and according to the equations 1-3 and 1-4, the associated buildup factor, 
the number buildup factor, is given by 

(1-6) 

Similarly one can define other buildup factors, such as the dose buildup 
factor, the energy absorption buildup factor ~tc. While other types of 
buildup factors are possible, the most common buildup factors, as defined 
in this section, are of the type in which the operator has the form D( ) = 
f f(E)dudE( ), with buildup factors 

B
f 
= f f(E)S(E)dE 

ff(E)So(E)dE 
(1-7) 
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The calculation of any buildup factor of the type defined byequation 
(1-7) can be made if the function S(E) is known, either by calculation or 
by measurement. It should be emphasized however, that the buildup factor 
is useful only in problems concerning the transmission of gamma rays and 
is essentially meaningless in situations in which the unscattered compo­
nent vanishes, i.e. in backscatter or refiection problems. 

3. CALCULATIONS AND MEASUREMENTS ON THE PENETRATION OF GAMMA 

AND X-RAYS 

In the radiological field a few attempts have been made by radiologists 
to calculate and measure scatter effects in living tissue. In 1937 Payne­
Scott calculated the contribution of the single scattered radiation to the 
depth dose. Lamerton (1948), using these calculations and those of R. de 
Waard (1946), estimated the infiuence of multiple scattering by em­
ploying the true absorption coefficient ins te ad of the total attenuation 
coefficient. Experimental verification showed that the results of these cal­
culations are too low for soft radiation and fit fairly weU to much harder 
radiation (X-rays of 10 mmCu HCL). Calculations have also been made 
for the gamma radiation of 60CO. Measurements in phantoms, carried 
out by Mellink (1954, 1957) were in good agreement with these calcu­
lations. In 1958 Schaal, investigating scatter effects of diagnostic X-rays 
in phantoms, measured changes in the half value layers due to scat­
tering. Spectral distributions of radiation, scattered within a kilocurie 
60CO unit were measured by Cormack et al (1958). 

Since the use of more intense sources of gamma rays is increased enor­
mously during the past decade, problems concerned to deep penetrations 
of gamma rays now are considered more fundamentally. Peebles (1953) 
derivated a recurrence formula, giving the relation between the probability 
of transmission of a photon through a finite slab of material af ter k + 1 
collisions and the same transmission probability after k coUisions. This 
formula is based upon the assumption that a photon 'has lost its memory' 
of the foregoing interaction events in the material. The accuracy is 
estimated to be not better than 20 %. This also is the case with the analytic 
approach of Maignan (1953) to the penetration problem. Estimating the 
radiation intensity at a distance r from a point source in a scattering 
medium with spherical symmetry, Maignan made an approximate calcu­
lation of the second and higher order scattered component, using an 
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average energy and average angle instead of the true energy and angular 
spectrum that is subject to second and higher order scattering. The results 
of these calculations, compared with measurements with a Geiger-Muller 
tube are quite satisfactory. However, the energy dependency ofthe count­
ing tube still makes the comparison somewhat doubtful. 

A calculation method on a purely numerical base is the random samp­
ling or 'Monte Carlo' method, which can be applied on automatic com­
putors. This method can be used for solving various types of problems. 
Several authors have used this method in solving a diversity of problems 
(Berger, 1955, 1956, 1957, 1960; Dixon, 1958; Perkins, 1955). However, 
the time consuming character of the computations is a serious limitation 
to the application of this method. 

O'Rourke (1952, 1953) developed solution methods for the transport 
equation in finite and semi-infinite plane parallel media on a semi-numeri­
cal base. The numerical elaboration of these methods, however, is very 
complicated. 

A semi-numerical method, which probably can be considered as the 
most important one for calculating the scattered photon energy distribu­
tions and the buildup factors, is the so called 'moment method', introduced 
by Spencer and Fano (1951). This moment method reduces the Boltzmann 
transport equation in an infinite homogeneous medium to a set of inter­
linked integral equations with the energy (the wavelength) as the indepen­
dent variable. These equations can be solved numerically for the spatial 
moments of the angular energy distribution function N. An approximate 
determination of N should be possible from the knowledge of only a few 
of its moments. This method is suitable for high speed automatic calcu­
lation. Goldstein and Wilkins (1954) have carried out this procedure and 
calculated energy distributions and buildup factors for a large number of 
media and initial photon energies on the SEAC automatic computor of 
the American National Bureau of Standards. The inaccuracy of these 
calculations is believed not to exceed 5 % in general. 

The applicability of this method is limited to infinite homogeneous 
media. However, Berger et al (1959) c1early demonstrated that there are 
no great differences between calculations according to this method and 
'Monte Carlo' calculations for bounded media. The energy dissipation 
near a spherical boundary, calculated according to the 'Monte Carlo' 
method for a 1.25 MeV gamma ray source in the centre, and compared 
with calculations according to the 'moment method' shows differences 
up to 14 % but in general much smaller. 
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It is useful to compare these more or less theoretical treatments with 
experiments on the penetration of gamma rays in different materials. 
Such experiments on the penetration of gamma and X-rays can be 
distinguished in three groups: 

a. measurements of buildup factors; 
b. measurements of electron energy distributions in the penetrated 

medium; 
c. direct measurements of scattered photon energy distributions. 

Dose buildup factors could be measured with reasonable accuracy 
with the aid of an air equivalent walled ionization chamber. Such was 
done by Garret and Whyte (1954) for iron and lead using the gamma 
radiation of 60Co, and by White (1954) for water also using the gamma 
radiation of 60Co. In both cases the differences between theoreticaUy 
predicted values and the results of the measurements do not exceed 5 %. 
Garret and Whyte have shown that the discrepancies between theory and 
experiments could be explained by inaccuracies in the used absorption 
coefficients. 

Measurements of group b have been carried out by Bruce and Johns 
(1955) and by Hayward (1952). Bruce et al and Hayward measured the 
electron energy distribution resulting from respectively an external beam 
of 60Co gamma radiation incident on water (monodirectional plane 
source), and a point isotropic 60Co source in water. In both cases the 
energy distribution of e1ectrons produced in an anthracene crystal im­
mersed in water was measured. Limitations of this method, indicated by 
the authors, are the poor resolution of the detector and the fact that 
electrons produced outside the crystal and scattered into the same, as weU 
as e1ectrons produced inside the crystal and scattered out ofthe same, are 
incorrectly detected. The amo,unt ofthe latter effect of course is dependent 
on tbe size of the crystal. However, using a larger crystal the probability 
of 'pile up' in the crystal is increased. Another limitation, which is not 
indicated, is the non linear response of an anthracene scintillation crystal 
to electrons with energy be10w 0.12 MeV (Taylor et al, 1951). 

The only measurements in group c, so far known, are those of Theus, 
Beach and Faust (1955). The method used by these authors involved a 
more rigorous analysis of pulse height spectra arising from scattering of 
J37Cs gamma rays in water. The detector was a thallium activated sodium 
iodide crystal mounted on a photomultiplier which was connected to a 
twenty channel pulse height analyser. The response of the detector to 
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incident photons in a continuous range of energies can be expressed in 
a response equation, which is an integral equation of the first kind (Whit­
taker and Watson, 1952). The kernel of this equation is non symmetric 
and is greatly determined by an exponential function which described the 
statistical 'smearing out' by the detector. To perform the inversion of the 
integral equation the authors expressed the latter as the limit, m -+00 of a 
matrix equation. This matrix equation should be approximately solvable 
by the use of a finite value of m. According to Dixon and Aitken (1958) 
a difficulty of this approach to the solution is that the determinant of the 
matrix to be inversed probably tends to become zero in the limit case, due 
to the experimental function in the transformed kernel. In that case the 
matrix inversion should be mathematically invalid. 

There are some other uncertainties in the method of Theus et al which 
make their results somewhat doubtful. The most important of these 
uncertainties is the neglection of secondary interactions in the crystal. As 
will be seen later in this thesis these secondary interactions are not 
fully taken account of by experimentally determining the re1ative photo­
electric and compton probability. There are reasons to believe that the 
discrepancies found by Theus et al between the energy buildup factor 
calculated according to Goldstein et al (1954) and the experimentally 
determined energy buildup factors (20% and more) are mainly caused 
by these incertainties. 

More careful measurements and a refined discus sion of their value 
are therefore highly desirabie. 
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CHAPTER 11 

Measurements of pulse height distributions in a bounded water medium 

1. THE EXPERIMENTAL SET-UP 

In radiological applications of ionizing radiation frequently geometries 
are found in which a radioactive source is immersed within a bo.unded 
medium, such as the human body. Examples of such geometries are those 
found in the therapeutic uses of radio-applicators and in the therapeutie 
uses of radioactive nuclides which are taken up selectively in one or more 
organs (e.g. 1311 in the thyroid). In these cases it would be interesting, from 
the dosimetrie point of view, to measure photon energy distributions in 
different parts of the body. However, the performance of such measure­
ments in living objects being extremely difficult, such measurements have 
to be carried out in phantoms. If the measurements were carried out in 
simple geometries, such as a point source in an infinite medium or in a 
eylindrical bounded medium, the problem could be investigated more 
basically. Comparison with calculated data then becomes possible. More­
over, such simple geometries are found in reactor shielding problems. 
Therefore it is meaningful to- start with measurements in such simple 
geometries. Such measurements are described in this ehapter. 

Photon energy distributions arising from seattering of l37Cs gamma rays 
were measured with a point isotropic source geometry in a cylindrieal 
water medium. l37Cs, emitting monoenergetie gamma rays of 0.66 MeV, 
was chosen as the nuclide for the source instead ofthe nuclide 60Co, which 
is used more in the radiological field. The radiation of 60Co, however, 
comprises gamma radiation oftwo different energies which complicate the 
correction of the measured pulse height distributions to a great extent. 

Referring to fig. 11-1, the 'phantom' used in the present experiments was 
a polythene cylinder with a diameter of 0.5 mand an altitude of 0.8 m 
(respeetively equal to about 4 and about 7 mean free path lengths for 
0.66 MeV gamma rays in water). The cylinder was completely filled with 
water. Polythene was chosen as the eontaining material in order to dimin­
ish additional boundary effects, the average atomie number of polythene 
being in the same order of magnitude as that of water. In this cylinder a 
l37Cs 'point source' (see section 11.4) was located on the central axis at a 
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Fig. II-J. Schematic view of the measuring set-up with point isotropie source geometry. 
Measures in cm. 

distance of about 0.3 m from the bottom. A scintillation detector can be 
moved up and down along the central axis. The scintillation detector is 
part of a single channel scintillation spectrometer, which is described in 
section II. 3. 

With the measuring set-up, described above, pulse height spectra at 
different source-detector distances were measured in order to investigate 
the photon energy distributions at these source-detector distances. The 
distances are conveniently expressed in the number of mean free path 
lengths of the 0.66 Me V gamma radiation of the source in water ( = !lor, in 
which !lo is the linear attenuation coefficient in cm-1 for 0.66 Me V photons 
in water and ris the measuring distance, as defined in section II .4, in cm). 
Three pulse height spectra were measured, respective1y at distances of 1, 
2, and 3 mean free path lengths from the source. 
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Although calculations according to the moment method (see chapter I) 
strictly spoken are only valid for infinite homogeneous media, the experi­
mental results were compared with these calculations. That such a com­
parison can reasonably be made, is shown by 'Monte Carlo' calculations 
of Berger and Spencer (1959). 

In the sections II. 2, II. 3, and II. 4 the experimental conditions are 
described in more detail, while in section 11 . 5 the resulting measured pulse 
height spectra are given. 

2. THE SCINTILLATION CRYSTAL 

The absorption of the photon energy depends upon the nature of the 
interactions in the scintillating material. If the scintillating material has 
the same or nearly the same atomic properties as has the medium to be 
measured, the observed pulse height distribution is approximately equal to 
the electron energy distribution in the medium. For this reason an organic 
crystal such as anthracene could be used in examining water as a scattered 
medium. This has been done by Bruce et al (1955) and Hayward (1952). A 
disadvantage of anthracene, however, as Tay10r et al (1951) have shown, 
is its non 1inear response to e1ectrons of energy 1ess than 0.12 MeV. Most 
of the other organic scintillating materials now availab1e have a re1ative1y 
10w light yield (Ram, 1956) and thus a re1atively bad reso1ving power, 
which is unfavourab1e in respect of spectrometric uses. In inorganic 
crysta1s, consisting of high Z materiais, the atomic photoe1ectric effect is 
predominant in the energy range considered here. Nevertheless correc­
tions for escape effects are still needed. Among these materials sodium 
iodide activated with thallium still is the most suitable for spectrometric 
purposes (Hofstadter, 1948).lt has a linear response to electrons of energy 
higher than 1 keV (Taylor, 1951), it is easy to crystallize and its trans­
parency to light is excellent. 

Though in such a NaIjTl crystal photoelectric absorption is predomi­
nant, part of the incident photon energy still escapes from the crystal. The 
amount ofthe escaped photon energy depends on the size ofthe crystal. The 
use of a large crystal will generally result in an increased, so called, photo­
peak efficiency (see chapter IIl). Maeder et al (1954) as weIl as Lazar et al 
(1956) have shown, however, that using a crystal that has a diameter and 
thickness of 3 inches, the photopeak efficiency for the gamma radiation of 
137 Cs is not more than 40 %; thus even with crystals of this size a correc-
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tion for the escape of scattered photons is needed. Moreover, the use of 
large detectors in spectrometry of energy distributions in scattering media 
entails an increased light absorption which affects the resolution unfa­
vourably. In addition errors due to the displacement ofthe medium by the 
detector may be enlarged. The use of very small scintillation crystals also 
may be disadvantageous, for if the radius of the crystal is much smaller 
than that of the photomultiplier wind ow, the backscatter against the 
latter may increase inconveniently. 

Another point of consideration in respect of the dimensions of the 
crystal may lie in the requirements of isotropicity. An ideal isotropic 
crystal has the form of a sphere. However, even if spherical NaI-crystals 
were available, mounting on a photomultiplier tube would require an 
(accurately finished) light guide, as a result of which the pulse height, 
and consequently the resolving power of the detector, would be reduced. 
The use of a cylindrical crystal, the diameter of which being equal to its 
thickness, may approximate an isotropic arrangement (see section V. 2). 

As a consequence of these considerations a NaI/TI crystal of 3/4 inch 
diameter and 3/4 inch thickness, adapted to a photomultiplier with a 1 inch 
diameter window was used in the experiments described. 

3. THE SPECTROMETER 

The scintillation spectrometer used in the experiments comprises a 
scintillation detector, an amplifying and pulse shaping stage, a pulse 
height analyzing stage and a scaling and recording stage. 

The detector assembly, a schematic cross sectional view of which is 
given in fig. II-2, is constructed to be water and light tight. It is composed 
of three major parts, which are the scintillation crystal, the photomulti­
plier and the cathode follower, the latter being a 'White' circuit. 

The scintillation crystal is a NaI/TI crystal, type Harshaw 3D3, with a 
diameter, equal to its thickness, of 3/4 inch. The crystal was cased in a 
0,032 inch thick, type 1100 aluminium can, with a reflection layer of 
packed Al20 3, approximately 1/16 inch thick. The can was covered by a 
l/a inch quartz window. 

As shown in fig. II-2 the crystal was mounted directly on the photo­
multiplier window, the optical coupling being secured with the aid of 
'Dow Corning' stopcock grease, which is a silicone lubricant. The ad-
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Fig. 11-2. Schematic cross sectional view of the detector assembly. 
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vantage of using this grease instead of the more usual silicone oils is that 
it can be applied in much thinner layers and enables an easier mounting 
and demounting ofthe assembly. In practice this results in a better chance 
of good resolution powers. 

The photomultiplier is an 11 stage, type E.M.!. 9524A photomultiplier 
with a box-and-grid multiplier system, a SbCs photocathode, and a 1 inch 
diameter soda glass window. The photomultiplier was specified as selected 
on the homogeneity of its photocathode. The voltage on the dynodes of 
the photomultiplier was obtained from a voltage divider (see fig. 11-3), -
the elements ofwhich being chosen such, that the electron current through 
the photomultiplier tube is small compared to the current in the voltage 
divider, the maximum ratio of these currents being about 10-3• This ar­
rangement, in addition to the parallel condensors over the last three 
dynodes, dininishes the influence on the linearity of the voltage drop 
caused by the pulses on the dynodes. The multiplier system was protected 
against external magnetic fields by a fL-metal screen. 

The output pulses from the anode of the photomultiplier were fed to a 
'White' cathode follower circuit (see fig. 11-3). This circuit ensures a very 
high linearity, resulting from its symmetrical circuitry design, and a high 
stability against changes of the voltage supply. The output impedance Zo 
of this circuit, given by 

I 
Zo=--

fLS 

in which fL is the amplification factor and S is the mutual conductance, 
is extremely low; for the used double triode type E88CC, Zo amounts 
to about 2.5 Q. 

Fig. 11-3 is a schematic diagram of the electronic part of the set-up. 
A coaxial cable with a length of about 5 m served as a connection 
means between the cathode follower (within the detector assembly) and a 
linear amplifier, in which the input pulses, after being clipped off by a 
reflection cabie, were amplified. The rise time of the amplifier output 
pulses was about 0.5 fLsec and the pulse duration was about 5 fLsec. These 
pulses were fed to a single channel pul se height analyzer, the output of 
which being fed, either to aratemeter which was connected with a recor­
der, or to a scaler. The channel width ofthe pulse height analyzer was, in 
conjunction with adjustment of the triggering level of the upper discrimi­
nator, adjustable by means of the variabie gain of the back biased input 
amplifier. 
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The scintillation spectrometer can be operated either manually or auto­
matically, in the latter case by means of a motor driven potentiometer. 
With automatic operation the output of the pulse height analyzer was 
connected to aratemeter, which in turn was connected to a recorder. 
Automatic operation was applied when a high accuracy of the count rate 
measurements was not necessary. The statistical error in automatic opera­
tion never exceeded 5 %. 

The measurements described in this chapter were carried out with the 
spectrometer in man:ual operation. To this purpose the pul se height analy­
zer was connected to a scaler and the motor driven potentiometer was 
replaced by a channel number selecting potentiometer, which is adjust­
able in such a way that a preselected energy range can be scanned in 
30 intervals, which are equal to each other within 1 %. The adjustment by 
means of the variabie resistances Rl and R2 (see fig. II-3) for an energy 
range between 0.08 MeV and 0.66 MeV was carried out as follows. 

The channel number selecting potentiometer was set on channe1 num­
ber 30. Then a mCs source was placed near the detector, and R2 was 
adjusted such, that the ratemeter read a maximum count rate. This count 
rate corresponds to that ofthe centre of the 137 Cs photopeak at 0.66 Me V 
energy. The bias voltage was then measured with the aid of a high input 

Centre of photopeak 

(MeV) 

o.s 

as 

0.' 

02 

--. channel number 
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Fig. 11-4. Callibration curve of the spectrometer in manual operation. 
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impedance voltmeter V. From this measured voltage the voltage corres­
ponding to the lower energy range boundary, i.e. 0.08 Me V, was calculated. 
Then the potentiometer was set on channel number 1 and Rl was adjusted 
to this calculated voltage. Since the setting of both variabie resistances 
influences the overall bias voltage, the adjustments were repeated until 
both settings were correct. The adjustments were checked several times 
during the pulse height measurements. The drift in the electronic appara­
tus was found to be less than 1 % in 8 hours. A calibration curve of the 
spectrometer, adjusted as described, is given in fig. II-4. 

4. THE EXPERIMENTAL POINT SOURCES 

In the present experiments spherical !37Cs sourees were used. These 
were prepared by filling glass bulbs, having a diameter of 1 cm, with 
a solution of !37CsCl. Such spherical sources may be considered as 
point sourees at the measuring distances of 1, 2, and 3 mean free path 
lengths as may be apparent from fig. II-5, in which the ratio of the 
calculated radiation of a point souree to the calculated radiation of a 

r -. 
0.9~ __ ~ ____ ~ ____ ~ ____ ~ __ ~ ____ ~ ____ ~R 

1 10 20 30 40 50 60 70 

Fig. II-5. Ratio between the calculated radiation of a point source and the calculated 
radiation of a spherical source with radius R as a function of the relative measuring 
distance rjR. The dots indicate the actual measuring distances. 
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spherical source with a radius R is given as a function of the relative 
measuring distance r/ R. The radiation of a spherical source at a distance r 
can be calculated according to a formula given by Mayneord (1950). The 
measuring distance was considered to be the di stance between the centre 
of the source and the centre of the scintillation crystal. 

To normalize the measured pulse height distributions to a source 
emitting one photon per second, the source strengths must be known. 
These source strengths were measured with an ionization chamber by 
comparing the spherical sources with an identical spherical source con­
taining a standard solution of 137CsCl. The precision of this standard 
solution, which was obtained from the Amersham Radiochemical Centre, 
was ± 2 %. The measuring accuracy was ab out 3 %. In the present expe­
riments two sources were used, the strengths of which being respectively 
116 ± 5 fLC and 530 ± 20 fLC. The first source was used in measuring the 
pulse height spectra at the measuring distances of 1 and 2 mean free path 
lengths, and the second source in measuring the pul se height spectrum 
at the measuring di stance of 3 mean free path lengths. 

5. THE DISPLACEMENT OF THE MEDIUM BY THE DETECTOR 

The displacement of the medium by the detector during the measure­
ments may cause errors in the results. The scintillation crystal can be 
considered as the measuring spot itself: the energy distributions of the 
photons that are incident on the volume that is occupied by the crystal were 
determined. So the errors arise because of a change in the scattering pat­
tem by the so called 'detector-stem'. This may be the case especially in the 
set-up of the measurements at penetration distances of 1 and 2 mean free 
path lengths. With measurements at a penetration distance of 3 mean 
free path lengths only a small part of the detector was submerged in the 
medium. In the latter case the neighbourhood of the interface between 
water and air may be of infiuence. 

To investigate the importance of this type of error some preliminary 
experiments were carried out. In the first experiment, illustrated in fig. 
II-6, the stem error for a penetration distance of 1 mean free path 
length was measured. This was done by measuring a pulse height spectrum 
in the medium with the source in a horizontal plane through the centre 
of the detecting crystal, at a distance of 11.7 cm from centre to centre 
(fLor = 1), and repeating this measurement with a 'dummy stem' coupled 
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Fig. II-6. Measuring set-up Cor estirnating the stem error at 1 mean Cree path length. 
St is the detector stem, S is the source, and D is the dummy stem. Measures in cm. 

to the detector. This 'dummy stem' comprises a photomultiplier identical 
to the one used in the detector, cased in a brass housing with dimensions 
equal to those of the housing of the detector. The pulse height spectra 
were measured with the spectrometer in automatic operation (see section 
Il.3). 

The fust pulse height spectrum can be represented by the set of numbers 
Y1 -S1', in whichY1 is the spectrum that would be measured ifthe influence 
of the stem were negligible. The second pulse height spectrum can be given 
by Y1 - 2S1' (neglecting the mutual influence of the detector-stem and the 
dummy). Subtracting the first spectrum from the other yie1ds S1' and the 
true spectrum Y1. The stem error S1 for the measurement with the geometry 
described in section Ir. 1 at a penetration distance of 1 mean free path length 
was obtained by subtracting the spectrum Z1, measured with such a 
geometry, from the true spectrumY1. The resulting stem error S1 was found 
to be unmeasurably small in all the channels of the spectrum Z1, except in 
the two lowest energy intervals, in which S1 was Ie ss than 5 % and 7 %. 

In the second experiment, illustrated in fig. Il-7, the detector was 
located at a distance of 2 mean free path ·lengths from the souree in a 
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Fig. II- 7. Measuring set-up for estimating the stem error at 2 and 3 mean free path 
lengths. St is the detector stem, and S is the source. Measures in cm. 

geometry as described in section II.1. The cylinder was completely 
filled with water, a large part of the detector being submerged in the 
water. With such a geometry a pul se height spectrum was measured. Then 
the water level was lowered over a di stance of 11.7 cm (= 1 mean free 
path length), as a result of which only ab out 25% of the detector was 
submerged. Also with this geometry a pul se height spectrum was measured. 
These two pul se height spectra do not show any difference. Considering 
this result in combination with the result of the first experiment, it may 
be assumed that 

a. in the proper measurements no stem correction will be needed 
and 

b. there is no important influence of the near interface between 
water and air on the result ofthe pulse height spectrum measure­
ment at a penetration distance of 3 mean free path lengths. This 
may be considered as an experimental confirmation ofthe ca1cu­
lations of Berger and Spencer (1959) on bounded scattering 
media (see section 1.4). 
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6. THE MEASURED PULSE HEIGHT SPECTRA 

With the experimental set-up described in section 11. 1 pulse height 
spectra at penetration distances of 1,2, and 3 mean free path lengths (the 
distances between the centre of the crystal and the centre of the sourCe 
being respectively 11.7 cm, 23.4 cm, and 35.1 cm, and (lo in water for 
0.66 MeV photons being 0.0859) were measured. The spectrometer was 
operated manually and was adjusted as is described in section 11.3, the 
channel width being equivalent to 0.02 MeV. In each of the 30 channels 
the count rate was determined within a statistical accuracy of less than 
0.3 %, the counting time required being on the average 1000 seconds. The 
measured count rates were normalized to those resulting from a source 
emitting one photon per second. These normalized pulse height spectra 
are given in fig. 11-8. 

The reIation between the measured pulse height spectra and the inci­
dent photon energy distributions can be represented by a response 
equation of the detector. This equation and its solution are discussed in 
the chapters 111, IV, and V. The resulting photon energy distributions are 
given in chapter VI. . 
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Fig. Il-8. Pulse height spectra G(Ek) of scattered 0.66 MeV photons in a cylindrical 
water medium with point isotropie source geometry at three penetration distances in 
the medium. 
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CHAPTER III 

The interpretation of the measured pulse height spectra 

1. INTRODUCTION 

The relation between the pulse height distributions, measured as 
described in the previous chapter, and the incident photon energy distri­
butions is not a simple proportionality. In the first place not all of the 
incident photon energy is absorbed in the scintillating material, the rate 
of absorption being energy dependent. Furthermore the spread in pulse 
height is also energy dependent. Therefore this relation itself is determined 
by the incident photon energy. Also the shape, size and nature of the 
scintillating material influence this relation. 

If monoenergetic photons with energy E < 1 Me Vare incident on a 
sodium iodide crystal, part of these are subject to photoelectric inter­
actions and others to compton interactions in the material. Since an inci­
dent photon energy E < 1 Me V is lower than the equivalent energy of two 
electrons, pair production does not occur. As a result of photoelectric 
interactions an electron having a kinetic energy of E - <1>, in which <I> is 
the binding energy of the electron, is ejected and the atom involved is left 
in an excited state. If one ofthe outer electrons 'faUs into the hole' fluores­
cent radiation is emitted. If the fluorescent radiation is absorbed in the 
material its energy also is converted to electronic motion, and the total 
electron kinetic energy is E. Compton interactions produce free electrons 
in a continuous range of energy as a result of the escape of scattered 
photons. This energy range has a maximum value which is determined 
by the laws of conservation of energy and momenturn. 

The free electrons in the crystal, having an energy distribution resulting 
from these processes fall into defioed excited levels and as a result of 
recombination processes (in which the activator plays an important role) 
luminescent radiation is emitted. Luminescent quanta falling upon the 
photocathode of the photomultiplier produce photoelectrons and the 
generated photoelectron current is amplified by secondary emission. As 
a result output pulses can be taken from the anode, the amplitudes of 
which are, disregarding the spread in the pulse height, proportional to that 
part of the incident photon energy that is absorbed in the crystal. It can 



34 m.l 

/unit time 

1 
Counts/ 

back.cetter p.ek 

compton continuum 

e.cape peak _ pulst height 

Fig. lIl-I. Schematic pulse height spectrum. Dashed line: electron kinetic energy dis­
tribution within the scintillation crystal. 

be proven experimentally that the statistical spread in the pulse height 
is approximately normal. The statistical spread limits the resolving power 
of the detector, a measure of which being given by the relative half width 
of the photopeak, i.e. the ratio between the width of the photopeak at 
half maximum and the position of the centre of the peak. 

A schematic monoenergetic pulse height spectrum is shown in fig. IIf-l. 
The dashed line in the figure shows the energy distribution of the recoil 
electrons in the crystal. Typical characteristics of the spectrum are the 
photopeak, the escape peak and the compton continuum. The photopeak is 
composed of pulses which are generated by electrons with total energy E. 
The escape-peak, which can only be resolved from the photopeak at 
photon energies less than about 0.2 MeV, is composed of pulses which 
result from electrons with energy E - <1>. The compton continuum com­
prises those pulses, which are generated by compton recoil electrons af ter 
the escape of the scattered photons. A spurious peak, the backscatter 
peak, appears in the low energy range of the spectrum, due to backscat­
tering of photons, mostly at the glass window of the photomultiplier. 

If secondary processes would not occur in the crystal, the ratio between 
the area of the photopeak and the area of the spectrum, the so called 
photopeak efficiency, would be equal to the relative photoelectric pro ba-
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bility (see section lIl. 3). The occurrence of secondary processes generally 
increases the photopeak efficiency, because when e.g. a compton process 
is followed by photoelectric absorption of the scattered photon the initial 
photon is counted in the photopeak. 

2. THE RESPONSE EQUATION 

If a continuous energy spectrum of photons S(E') is incident upon the 
detector of a scintillation spectrometer, the observed pulse height distri­
bution G(E) is related to it according to the equation 

Eo' 

G(E) = f K(E,E')S(E')dE' 

o 
(111-1) 

in which Eo' is the maximal energy present in the incident spectral distri­
bution. 

Equation I1I-I is an integral equation for S(E') of the first kind, in 
which the kemel K(E,E') is a response function such that 

K(E,E')dE 

is the probability that an incident photon with energy E' will produce an 
output pulse between E and E + dE. 

The mathematical problem of finding useful conditions which are 
necessary and sufficient for the existence of a unique solution of equations 
of the type of equation I1I-l still is unsolved. If the kemel K(E,E') were 
symmetric, the conditions which are sufficient could be expressed in terms 
ofthe eigenvalues and eigenfunctions ofthe kemel. In that case one could 
prove that if the function G(E) could be expanded as 

00 

G(E) = I ancpn (111-2) 

n=l 

in which cpn are the eigenfunctions of the kemel K, the solution of equa­
tion lIl-I would be given by 

00 

S(E') = I anÀncpn (111-3) 
n=l 
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in which Àn are the eigenvalues of the kernel provided that the series 
IlI-3 converges uniformly (Whittaker and Watson, 1958). Ifthe kernel is 
non symmetric, necessary and sufiicient conditions can in general be 
expressed, according to the law of Picard, in terms of Schmidt functions 
(Courant and Hilbert 1931), the existence of a solution of equation lIl-I, 
of course, greatly depending on the behaviour of the kernel. 

The main difficulty that is encountered here is the fact that the function 
G(E) is not analytically defined but is given merely as a set of numbers 

Ek+ME 

G(Ek} = ;E f G(E}dE 

Ek-tilE 

(k= 1,2,3, . .. n) 

(1I1-4) 

in which n is the number of channels and tlE is the channelwidth. 
Suppose now that G(E) can be fitted with a partial sum G(Ek) of 

orthonormal functions <Pi 

in which 

k 

G(Ek} = L Ci<Pi 

i=1 

Ci = J G(E}<PidE 

(1I1-5) 

(11I-6) 

If the inverse transform of <Pi, denoted bij <1>1, is known, then the trans­
form of 

k 

S(Ek} = L Ci<l>i 

i=d 

(11I-7) 

is G(Ek)' If kis sufficiently large, the S(Ek) of IlI-7 will satisfy the inte­
gral equation 111-1 arbiratrily closely in the sense of a least square 
approximation. If, however, the sequence S(Ek) di verges , the solution 
cannot be considered as a good approximation to the true solution of 
equation lIl-I, as clearly is demonstrated in an example by Dixon and 
Aitken (I958). The establishment of the convergence or divergence of the 
sequence S(Ek) is, however, very difIicult, because the coefficients Ci are 
given only numerically. 
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The solution method used by Theus et al (1955) consists of replacing 
the integral equation I1I-l bya set of linear equations 

n 

G(Ek) = L K(Ek,Ej)S(Ej)D.E 
j=l 

of which equation I1I-I is the limit for n---+oo. 

(111-8) 

If the determinant of the matrix Kk,j is non vanishing in the limit case, 
there exists a unique inverse matrix Kk~j such that 

k 

S(Ek) = L K-l(Ek,Ej)G(Ej)D.E 
j=l 

which is an approximation to 

S(E) = f K-l(E,E')G(E')dE' 

o 

(III-9) 

(111-10) 

in which K-l(E,E') is the inverse kernel of the integral equation lIl-I. 
While numerical methods of this kind can be used for the solution of 

Volterra integral equations (in which E::;;E') and Fredholm integral 
equations of the second kind (Whittaker and Watson, 1958), the general 
applicability to integral equations of the fint kind is not mathematically 
proven, the existence of an inverse kernel as in equation lII-lO greatly 
depending on the character of the kemel K(E,E'). Knowledge of the 
behaviour of K(E,E') therefore is necessary. In the next section this kemel 
is examined in more detail. 

3. FACTORS DETERMINING THE KERNEL 

The kemel K(E,E') of the integral equation III-I is generally determi­
ned by three functions, i.e. a function e(E') representing the probability 
of interaction of the incident photons, a function k(x,E') representing the 
probability that af ter interaction of a photon with energy E' an electronic 
kinetic energy between x and x + dx is produced, and a function N(E,x) 
representing the statistical spreading. This kernel is given by 
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E' 

K(E,E') = E(E') f N(E,x)k(x,E')dx 
o 

ill.3 

(111-11) 

The function E(E'), defined as the total efficiency (to be distinguished 
from the photopeak efficiency), depends upon the geometry ofthe experi­
mental set-up. When a parallel beam is incident upon a flat si de of the 
crystal, the total efficiency is given by 

(111-12) 

in which fLt is the tota! attenuation coefficient of the scintillating material 
and dis the thickness of the crystal. If the incident beam is departing from 
a point isotropic source which 'sees' the crystal under a certain solid angle, 
the total efficiency can be calculated according to Wapstra (1953). When 
photons are incident from alle directions, exact calculation of the total 
efficiency is very tedious. In that case the total efficiency may be approxi­
mated by considering the crystal to be purely isotropic, i.e. the total 
efficiency to be independent from the direction of incidence of the photons 
(see section V. 2). In all cases the function E(E') may be considered as 
continuous and limited between 0 and 1, for energies 1arger than the K­
energy ofiodine (0.033 MeV). 

The function k(x,E')dx, which is determined by the processes of photon 
energy absorption and by the rate at which these processes occur, can be 
represented by 

k(x,E')dx = p{(l-q)a(E'-x) + qa(E'-<p-x)}dx + (l-p)X(x,E')dx 
(111-13) 

in which p is the ratio of the joint areas of the photopeak and the X-ray 
escape peak to the area of the spectrum, q is the ratio of the area of the 
X-ray escape peak to the area of the photopeak, a( )dx are Dirac delta 
functions, and X(x,E')dx is a function representing the probability of an 
electronic kinetic energy between x and x + dx after compton interaction 
and escape of the scattered photons. 

If any secondary absorption in the crystal is neglected, the factor p is 
given by 

T 
p=-­

T+O" 
(111-14) 
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iIi which 't' is the photoelectric cross section and Ij is the compton cross 
section. In that case the function X(x,E')dx can be derived directly from 
the Klein Nishina differential cross section for compton scattering (Heit­
Ier, 1954). The factor q can be calculated for relatively simple geometries 
(Axel, 1953). If secondary interactions do occur the factor p can be deter­
mined experimentally. If secondary interactions mainly consist of photo­
electric absorption af ter compton scattering, the function X(x,E')dx still 
can be derived from the Klein Nishina formula. If also the escape of 
photons, which are scattered more than once, is to be considered, the 
picture becomes more complicated. While p can still be determined ex­
perimentally, the Klein Nishina formula for X(x,E')dx no longer holds, 
for the energy distribution of compton recoil electrons is changed more 
or less considerably. In chapter V a method is set forth, by which the 
function X(x,E')dx can be evaluated experimentally. 

The function N(E,x) can be considered as a Gaussian distribution func­
tion 

N(E,x) = - exp - - --1 { 1 (E-X)2} 
C 2vQ X 

(111-15) 

in which C is a normalisation factor and vQ is the relative variance in 
pulse height. This relative variance is of ten assumed to be inversely pro­
portional to the absorbed energy x (Dixon 1958). This may be a good 
approximation for electrons generated by incident photons up to 0.2 
MeV. However, at higher energies this approximation no longer confirms 
the observations (Kelley et al, 1956). Observations of Bisi and Zappa 
(1958) indicate arelation 

(111-16) 

in which oe. and ~ are constants which are related to statistical effects in 
the crystal itself as weU as in the photomultiplier. The relation III-16 
seems to be confirmed by our observations (see section IV. 3) as weU as 
those of Wapstra (1953). A more detailed discussion about the function 
N(E,x) is given in chapter IV. 

The integration ofIII-11 being carried out, the kernel K(E,E') becomes 
a continuous function of the variables E and E'. If E' is taken as a con­
stant, the function K(E)E' has a form similar to that of a monoenergetic 
pulse height spectrum as shown in fig. III-l (drawn line). 
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Corrections for backscatter against parts of the detector may be incor­
porated in the kemel Kof the integral equation III -I. As will be seen later 
(section V. 6) this correction can be obtained from experimental data and 
added to the function k(x,E') as defined by 1II-13. Calculations as have 
been carried out by Lidén and Starfeit (1954) are rather tedious and inade­
quate to geometries as considered here. 

4. DIFFICULTIES IN SOLVING THE RESPONSE EQUATION 

As may be apparent from the previous section, the kemel K(E,E') of 
equation I1I-I is a continuous, non symmetric function of the variables 
E and E'. Therefore the solution of I1I-1 cannot be obtained in the form 
of an expansion in eigenfunctions of the kemel, according to equation 
I11-3 . • 

As has been mentioned, one of the functions determining the kemel 
K(E,E') is the exponential function N(E,x), given by equation III-13. This 
function causes great difficulties in sol ving the integral equation lIl-I. The 
factor k(x,E')dx, as defined by equation lIl-I, does not give rise to diffi­
culties, as it can be considered as a kemel of a Volterra integral equation 
in which x ~ E'. A matrix constructed from this function is a triangular 
matrix, none ofthe diagonal elements ofwhich in general tends to become 
zero. Hence this kemel may be inverted without any difficulty. 

So if the measured pulse height distributions are first corrected for the 
limited resolution, the correction for escape effects in the crystal may then 
be carried out in arbitrarily close approximation. To do such a separated 
correction, we define a function g(x) which describes the energy distribu­
tion of the liberated e1ectrons in the crystal. This energy distribution is 
related to the incident spectrum according to 

Eo' 

g(x) = f e(E')k(x,E')S(E')dE' (111-17) 
x 

which is a Volterra integral equation and can be approximated by 

n 

g(Xi) = L e(EJ)k(xl,EJ)S(EJ)6.E 
j=i 

(111-18) 
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where tl.E= Ej - EH and Xi = Ej if i = j, the approximation being 
closer when n increases. 

The relation between the electron energy distribution g(x) and the 
observed pul se height dlstribution G(E) is given by 

Eo' 

G(E) = f N(E,x)g(x)dx 
o 

(111-19) 

For some classes of functions G(E) analytical solutions of equation 
IlI-19 may be obtained. Making use of these partial solutions a general 
solution in terms of Hermite polynomials can be obtained, as Dixon and 
Aitken (1958) have shown. However, as the function G(E) is only given 
numerically, the evaluation of the higher derivatives, required for the use 
of this analytical solution, leads to large uncertainties. Fitting G(Ek) by 
a series of orthonormal functions (for example by a Fourier series), the 
transform of which is known, the transformed series clearly tends to 
diverge, due to the exponential factor in the transform. Therefore solutions 
of the form of IlI-7 give rise even to stilliarger uncertainties. 

In practice there seems to be no method for a complete and unique 
solution of equation IIl-19, unless the existence of an inverse kemel is 
demonstrated, which is unlikely. Additionally the lack of analytic defini­
tion in G(E) always gives rise to enlarged uncertainties. While an approx­
imation to the solution of an integral equation which only describes 
escape effects (equation IIl- I7) can be arbitrarily close, the resolution 
correction must be restricted to sharpening the peaks and the valleys 
already present in the observed pulse height spectrum G(E) and is unable 
to solve the fine structure in the incident photon energy spectrum S(E'). 
This may be clear from the fact that spreading effects in the crystal and 
in the photomultiplier destroy information, collected in the crystal by 
the ionization processes. 

However, sharpening the peaks and the valleys still may be very useful 
to yield data about incident continuous energy spectra. If the resolution 
correction method is subject to the mentioned restriction, an approximate 
solution by numerical methods may be obtained, provided that the deter­
minant of the involved matrix is sufficiently large. In chapter IV such a 
correction method is carried out, while in chapter V the correction for 
the escape effects is discussed. Both corrections are applied to the pulse 
height distribution measurements of scattered photons, described in 
chapter 11. 
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CHAPTER IV 

The resolution correction 

1. INTRODUCTION 

To obtain an approximation of the solution of equation IIl-19 (see 
section IIl.4) one could try to replace this equation by a set of linear 
equations 

n 

G(Ek} = I N(Ek,Xt}g(XI}6.X 

i=l 

in which 6.x = Xl - XI-1 and Ek = Xl for k = i. 

(IV-I) 

The solution of such a set of equations can be obtained by matrix 
inversion or by iterative procedures, provided that the matrix N is in a 
reasonable condition. 

As has been mentioned in the previous chapter the resolution correc­
tion by these methods can only involve sharpening of the peaks and 
valleys already present in the observed pulse height spectrum. The 
problem of getting a pulse height spectrum which yields as much infor­
mation as possible of the incident photon energy distribution is a pure 
instrumental one, the differentiation in the pulse height spectrum being 
govemed by the relative variance v Q in the pulse height. This relative 
variance is an overall variance resulting from several processes such as 
luminescence in the crystal, transference of light through the crystal and 
the lightguide, conversion oflight into photoelectrons in the photocathode 
of the photomultiplier, collection of photoe1ectrons at the fust dynode, 
and secondary emission in the photomultiplier. In the next section these 
processes are discussed in as much as they influence the final result, 
while a description of the experimental determination of the relative 
variance vQ will follow in section IV. 3. 

2. THE SPREAD IN PULSE HEIGHT 

Fast charged partic1es, as e1ectrons liberated by ionization processes 
after incidence of gamma radiation, cause luminescence in scintillating 
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materials, such as monocrystals of NaI, activated with traces of Tl. About 
these 1uminescence processes an extensive 1iterature is now avai1ab1e, a 
summary of which is given by Parmentier (196). However, a thoroughO 
treatment of this subject falling out of the scope of this thesis, only the 
essentials are given shortly and in a superficial way. 

The electrons liberated by ionization processes in the crystal cause a 
sequence of excitations, as a result of which e1ectrons appear in the con­
duction shells of the atoms in the crystal-1attice. An electron in such a 
conduction shell can move freely through the crystal, which is also the 
case for the resulting positive hole in the lattice. When both the electron 
in a conduction shell and the positive hole in the lattice reach an activator 
centre (electron trap), recombination may occur as a result of which 
either fluorescent or phosphorescent radiation is emitted, or the excita­
tion energy is quenched. Quantitative analysis of these processes is very 
difficult, but as we are only interested in the overall effect, the important 
quantity here is the fraction of the exciting energy that is converted into 
luminescent energy. This fraction, the so called conversion or intrensic 
efficiency 1) can be regarded as a constant for exciting e1ectrons down to 
1 keV in NaI/Tl crystals, as is apparent from the experiments of Taylor 
et al (1951). Then the average number of luminescent quanta r: that are 
emittcd as a result of a certain kinetic energy x of exciting electrons in the 
crystal is given by 

r: = 1): = ëx 
hv 

(IV-2) 

in which h ~ is the averaged luminescent energy. The quantity e can be 
considered as the number of luminescent quanta emitted per MeV, the 
mean and the relative variance of e being respectively ë and Ve. A fraction 
f of these luminescent quanta will reach the photocathode of the photo­
multiplier. If one luminescent quantum generates g photoelectrons, a 
fraction c of which being collected at the first dynode, the number of 
photoe1ectrons that start the secondary emission af ter a scintillation will 
be 

q = cgfex = lex (IV-3) 

in which t = cgf is the transfer efficiency. The quantities c, g and f are 
stochastic quantities, each of them fluctuating according to some pro ba-
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bility distribution function. However, they are mutually dependent, the 
relations between them being a consequence of the varying localisation of 
the individual scintillations, the varying chromatic distribution of the 
luminescent quanta, the optical properties of the crystal, the reflection 
layers and the lightguide, and the inhomogeneities of the photocathode. 
Therefore it is impossible to treat these factors separately and the transfer 
efficiency t has to be considered as a whoie. The values of t fluctuate 
about a mean ï, these fluctuations being described by a relative variance Vt. 

The secondary emission at the successive dynodes amplifies the electron 
current in the tube, the amplification factor of each stage also being 
subject to statistical fluctuations. If the total amplification factor of the 
photomultiplier is denoted by A, we can say that A fluctuates about a 
mean Ä with a relative variance VA' As Bisi and Zappa (1958) have shown, 
the occurring aftereffects in the photomultiplier after a secondary electron 
avalanche can be taken into account if the collection time at the anode 
of the photomultiplier is large enough to add up the primary and after­
pulses. 

Now the fluctuation of the total number of secondary electrons, arriving 
at the anode of the photomultiplier 

Q = Atex 

given by the relative variance vQ' can be expressed, using the statistical 
moment generating functions. According Bisi et al (1958) this relative 
variance is given by 

( 1) l+vA 
vQ = Vt + (1 + Vt) ve--_- + -_-_-

ex etx 
(IV-4) 

assuming that the probability distribution of Q is normal in a good 
approximation, which is shown experimentally (see fig. IV-I). Assuming 
further that the variance in e is according to a Poisson distribution (ve = 
lf(ëx)) equation IV-4 is reduced to 

(IV-5) 

in which 

IX = Vt (IV-6) 
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gaussian shape of the peak. Open circIes: low energy part of the peak; cIosed circIes: 
high energy part of the peak. 

and 

1 + VA 
~ = -- (IV-7) 

et 

The constants (X and ~ can be considered as instrumental constants of a 
particular detector. The crystal as wen as the optical coupling and the 
photocathode of the photomultiplier contribute to the value of both 
constants. 

De Waard (1955), following an analogeous reasoning, arrived at a 
different expression for the relative variance in the number of electrons, 
arriving at the anode ofthe photomultiplier. This expression has the form 

vQ = a.b. I/x (IV-8) 

In this expression the constant a is equal to the relative 'variance in the 
number of electrons that is liberated in the photocathode and the constant 
b gives the contribution of the photomultiplier, as a consequence of the 
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incomplete collection of electrons on the dynodes and the statistical 
spread in the secondary emission. However, also De Waard pointed out 
that equation IV-8 does not fit in experimental observations and that the 
re1ative variance in the pulse height rather has to be expressed in a form 
as given in equation IV-5. However, in view of the considerations given 
above, it seems to be wise not to consider the constant ex. as due only to 
impurities in the crystal, the optical coupling, and the photocathode of 
the photomultiplier, but to consider ex. as weU as ~ as influenced by 
statistical processes in the scintillation detector as a whoie. Anyhow both 
constants can be seen as instrumental constants of a particular assembly 
of a scintillation crystal and a photomultiplier. 

The relative variance vQ is equal to the relative variance in the pulse 
height, provided that extraneous sources of pulse height fluctuation are 
negligible. This is the case if 

a. the supply voltage of the photomultiplier is very constant; 
b. the fluctuations in the supply voltage due to the pulse are negli­

gible; 
c. the influence of external magnetic fields is reduced to a negligible 

amount; 
d. the drift in the electronic equipment is negligible during a 

period comparable with the counting time; 
e. the channel width of the analyzer is such, that it does not enlarge 

the line width. 

The constants ex. and ~ being known, formula 111-5 can be used to 
calculate the matrix N for solving the set of equations IV-I. 

3. EXPERIMENTAL DETERMINATION OF THE DETECTOR CONSTANTS 

The constants ex. and ~ were determined by measuring the photopeaks 
of a number of nuclides (see table I) and determining the relative variance 
of each photopeak. An experimental check of the gaussian shape of the 
peaks can be obtained by plotting the logarithm to the base 10 of the 
counting rate M(Ek) against (Ek-X)2fx2, in which x is the energy of the 
incident photons involved. If the line shape is gaussian these plots must 
yield straight lines. In fig. IV-l such plots are given. From these plots 
also the experimentalline widths in terms ofthe relative variance vQ (as­
sumed to be equal to the relative variance in the pulse height) can be 
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derived (Villforth et al, 1958), for the counting rate of the points in a 
separated photopeak being given by M = cN(E,x), in which N(E,x) is 
the nonnal probability function of 111-15 and c is a constant, the slope 
of these straight lines is 

log e 

2vQ 

from which vQ can be determined. 

Nuclide Gamma ray energy (MeV) 

~~Co 1.33 

~~Co 1.17 

l~;CS 0.66 

l~~Sb 0.57 

l~!Ru 0.50 

l~~Au 0.41 

l~~J 0.36 

~~Cr 0.32 

2~~Hg 0.28 

1~~Ce 0.145 

l~~Tm 0.084 

vQ·I0· w% 

6.8 6.1 

10.4 7.6 

14.3 8.9 

15.5 9.3 

17.9 10.0 

21.1 10.8 

23.4 11.3 

26.5 12.1 

28.7 12.6 

51.6 16.9 

88.8 22.2 

Table I : Measured relative variances vQ in pulse height and relative half widths w. 

The re1ative variances of the photopeaks of the nuclides listed in table 
I, were measured as indicated and the results were plotted in fig. IV-2. 
The points of fig. IV-2 were fitted to a straight line according to the 
method of least squares, from which the constants IX and ~ and their 
standard deviations were calculated: 

IX = (3.2 ± 0.4).10-4, 

~ = (7.403 ± 0.(01).10-4 MeV. 
(IV-9) 
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Fig. IV-2. Linear regression of the relative variance vQ and the inverse mean energy. 

Experiments of Bisi and Zappa (1958) indicate that at energies higher 
than 0.8 MeV the measured values of the relative variance vQ are lower 
than the values predicted by IV -5. Tbis is not clearly seen from fig. IV -2, 
although the trend may be present. This phenomenon may be explained 
as follows. As bas been mentioned before, a photoelectric event and a 
compton scattering followed by photoelectric absorption of the scattered 
photon yield the same pulse height. However, while in the first case the 
pulse is formed by a photoelectron of energy x, in the second case the 
pulse is formed by a compton electron with energy Xl and a photoelectron 
with energy X 2 = X - Xl. Both scintillations occurring in different regions 
of the crystal, they may be assumed as being statistically independent, the 
resulting relative variance v being given by 

(IV-I 0) 
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Equations IV-5 and IV-lO yield for the relative variance 

(IV-U) 

which apparently is smaller than the relative variance in pulse height, due 
to the absorption of an electron with energy Xl + X 2• This being true, the 
higher energy points must be left out of the least square calculation. 
However, since repeated calculation without those points showed that the 
new values of the constants ~ and ~ are within the given accuracies equal 
to those given by IV-9, and since the corrections are to be applied only in 
an energy range < 0.66 MeV, the values given by IV-9 are used for the 
calculation of the matrix N. 

The normalisation factor C in equation 111-15 is given by 

+00 

f N(E,x)dE = 1 (IV-12) 

-00 

which yields 

Ci = Xi V 27tV QX l (IV-13) 

4. THE SOLUTION OF THE RESOLUTION EQUATION 

To carry out the resolution correction on the measured pulse height 
distributions described in chapter 11 a matrix N was constructed from the 
function N(E,x) given byequation 111-15. The pulse height spectra arisen 
from scattering of mCs gamma rays were measured in 30 channels, each 
channel width being approximately equal to 0.02 MeV, in an energy range 
between 0.08 MeV and 0.66 MeV. Therefore the matrix N was calculated 
for En = X n = 0.66 MeV with ~x = 0.02 MeV. To calculate the matrix 
elements the NBS probability function tables (1953) were used, the values 
of the relative variance being calculated from equation IV-5. 

To get an idea of the condition of the matrix N in solving the set of 
linear equations IV-I its determinant (calculated on the X-I digital 
computor of the 'Mathematisch Centrum' in Amsterdam) can be weighed 
against the diagonal element product. The ratio of this determinant to the 
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Fig. IV-3. The solution g(xl) (drawn line) of the resolution matrix equation ill-l 
compared with the measured pulse height distribution (dashed line), of lI8Au. 

diagonal element product being about 10-6, the condition of the matrix N 
might not be very good. 

To examine the physical importance ofthis mathematical difficulty, the 
matrix was inverted and applied to a pulse height spectrum of mono­
energetic photons, the calculations being carried out on the X-I digital 
computor. In fig. IV-3 a pulse height spectrum of 198Au, which is 'sharp­
ened' by this procedure, is shown. 
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Though the 'sharpening action' of this method is clearly demonstrated, 
it is obvious from the occuring oscillations that the solution method can­
not be correct. Other solution methods, such as the iterative procedure 
proposed by Freedman et al (1956), which have been used by Villforth 
et al (1958) in the resolution correction in X-ray spectrometry and by 
Skargard et al (1961), meet with the same difficulties (as already men­
tioned by Villforth and collaborators). These difficulties can be explained 
from the bad condition of the matrix N, which is due to the divergence 
of the approximating 'solution' (see chapter III), even called a 'pseudo 
solution' by Dixon and Aitken (1958). 

To obtain a function which, within the mentioned restriction, represents 
as good as possible the true electron energy distribution g(x), some 'trial 
and error' method se ems to be unavoidable. Such a method was applied 
in this work : from the solution obtained by matrix inversion a set of 
numbers was averaged. This set, forming a vector g', is multiplied with the 
resolution matrix N. From this result a correction for the vector g' can 
be estimated which, applied to this vector, yields a more approximating 
vector gil. This new vector was remultiplied with the matrix N and again 
corrected. This procedure was repeated until the finally corrected vector 
g(B), when multiplied with the matrix N, fits with the measurements within 
areasonabie accuracy. As can be demonstrated with fig. V-8 in chapter V, 
this 'trial and error' method can be used with quite satisfactory results. 
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CHAPTER V 

The escape correction 

1. INTRODUCTION 

As has been stated in chapter lIl, the absorption of the incident photon 
energy in a scintillation crystal is not complete, part of the photon energy 
escaping from the crystal. These escape effects are due to the various 
ionization processes that occur in the scintillation material. In the first 
place not all ofthe incident photons do interact with the crystal material, 
the probability of interaction being described by the total efficiency factor 
E(E'). Furthermore, if photoelectric interactions take place, fluorescent 
radiation may be emitted, which fluorescent radiation can either be 
absorbed in the crystal or escape from the crystal. In the Jatter event, part 
of the interacting photon energy - which part is equal to the characte­
ristic X-ray of the scintillating material, in this thesis considered as being 
only that of iodine - is not converted into electronic motion, as aresuit 
of which an X-ray escape peak will appear in the spectrum. Finally, if 
compton interactions take place, part of the interacting photon energy is 
scattered, the remaining being converted into electronic motion. The scat­
tered photons either escape from the crystal or again interact with the 
crystal material. The fust event causes an electron kinetic energy dis tri­
bution that can be caIculated exactly, while the latter event either results 
in an increased photopeak if the secondary interaction involves photo­
electric absorption, or changes the shape of the compton continuum if 
the multiple scattered photons escape from the crystal. 

As has been argued in section lIl. 4, the correction for these escape­
effects in the detector crystal can be carried out, in an arbitrarily close 
approximation, approximating the solution of the Volterra integral 
equation lIl-I? by matrix inversion. The kemel of this integral equation is 
composed ofthree terms (see equation 111-13), each ofthem being multi­
plied to the total efficiency factor E(E'). The first of these terms describes 
the probability of the occurrence of an electron kinetic energy x = E', 
either by primary or by secondary photoelectric effect. The second term 
gives the probability of the occurrence of an electron kinetic energy 
x = E' - <1>, describing the effect of X-ray escape. The third term X(x,E') 
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describes photon escape after compton interactions. These factors and 
terms being quantitatively known, a matrix can be constructed from the 
kemel, with the aid of which an approximation to the solution of equation 
111-17 can be obtained. Such a matrix and its inverse will be given in 
table VI at the end of this paper. It can be used for escape corrections on 
measurements in comparable geometries, provided that 

a. the pulse height spectra are already corrected for the limited 
resolution (see chapter IV) and 

b. the used Nal/TI scintillation crystal has a diameter, equal to its 
thickness, of 3/4 inch. 

In the sections V. 2 to V. 6 the evaluation of the various quantities 
composing the kemel e(E')k(x,E') is discussed, while the construction of 
the matrix is described in the sections V. 7 and V. 8. 

2. THE TOTAL EFFICIENCY 

The total efficiency e(E'), as defined in section 11.3, in general depends 
on the geometry of the measuring set-up. While for geometries in which a 
parallel photon beam is normally incident on the plane side of the crystal 
e(E') can be evaluated quite simply, evaluation of e(E') for geometries 
in which photons are incident from all directions is very tedious, the 
probability of interaction of a photon in the crystal depending on its 
direction. This dependency vanishes when the crystal can be considered 
as being isotropic, i.e. if the crystal has the dimensions of a sphere. 

The total efficiency for a point source on the central axis of the crystal 
can be calculated according to a graphical method given by Wapstra 
(1953). Such calculations were carried out for the actual cylindrical crystal 
and for a spherical crystal with a radius R given by 

4/31tR3 = 1/41td3 

in which dis the diameter, equal to the thickness, ofthe cylindrical crystal. 
The calculations were performed for two distances between the source 
and the front of the crystal. The results of these calculations are com­
pared with each other in table 11. The integrations were carried out 
numerically and the values of fLo, the total attenuation coefficient in cm-I, 
were recalculated from the cross sections of Nal, given by Wapstra et al 
(1959). 
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Photon energy 4cm 7cm 
ILo l-e-1'Od (MeV) (cm-i) 

sph. cyl. sph. cyl. 

0.08 10.92 0.904 0.908 0.981 0.983 1 

0.15 2.18 0.752 0.755 0.943 0.944 0.984 

0.40 0.424 0.418 0.422 0.485 0.487 0.555 

0.60 0.299 0.273 0.278 0.342 0.344 0.435 

Table IJ. Comparison of calculated tota! efficiency factors for spherica1 resp. cylin­
drica1 NalfTl crYstals at source-crystal distances of resp. 4 cm and 7 cm. 

As may be apparent from table 11 there are no appreciabie difIerences 
between spherica1 and cylindrical crystal efficiencies at distances >4 cm 
for energies <0.15 MeV. At higher energies the error made in the sphere 
approximation is less than 1 % at distances > 7 cm and is about 2 % at a 
distance of 4 cm. 

A scattering medium can be considered as an assembly of virtual point 
sources, in which those close to the detector contribute mostly to low energy 
photons incident on the detector. Therefore a cylindrical crystal in such 
a geometry may be approximated by a sphere with areasonabie accuracy. 

The total efficiency for the measurement of a cQntinuous energy distri­
bution S(r,E') in a point r within a scattering medium, with the aid of a 
spherical scintillation crystallocated in point r, can be derived as follows 
(see fig. V-I). 

As 
S(r,E')dE' = dE' J N(r,u,E')du (V-I) 

47t 

is the number of photons with energy E' in the range dE' that are incident 
per unit time on a sphere of unit cross sectional area located in point r, 

S(r,E')pdpdcp 

is the number of photons with energy E' in the energy range dE' that are 
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Fig. V-Jo Calculation of the total efficiency factor of a spherical crystal. 

incident per unit time on a differential area at a di stance p from the centre 
of the sphere. If this sphere is a NaI/TI crystal having a radius R, the 
pathlength of the differential beam through the crystal is equal to 
2 V R2_p2, the number of photons that have interaction in the crystal 
being 

S(r,E')pdpdrp ~ 1 - exp( 2fLo V R2 - p2) ~ 

Now the total efficiency e(E'), according to its definition, can be cal­
culated from 

21t R 

J drp J~ 1-exp( 2fLo V R2_p2) ~ pdp 
e(E') = ~o_~o __ -=--_-=--____ _ 

21t R 
(V-2) 

J dp J pdp 
o 0 
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which yields 

e(E') = 1 - ~ {(2fLoR + 1 )e-2fLoR} 
2fLoR 

V.2 

(V-3) 

This formula is better adapted to the conditions ofmeasurement than is 
formula 1II-2. Strictly speaking the latter is only valid for monodirectional 
parallel beams. Since the difference between those two formulae cannot 
be neglected (see fig. V-2), in evaluating the escape-matrix formula V-3 
was used for calculations of the tota! efficiency e(E'). 
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Fig. V-2. Calculated total efficiency factors of an isotropic NaI/Tl crystal compared 
with calculated total efficiency factors of a cylindrical NaI/TI crystal for a mono­
directional beam incident normally on a flat side of the crystal. 
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The total efficiency may be influenced by attenuation effects in the 
coating material of the crystal. The crystal was coated with a 3.9 mm layer 
of aluminium and the crystal-photomultiplier assembly was partly envel­
oped in a polythene tube with a wall thickness of 1.5 mmo The attenu­
ation of these layers is negligible. 

3. THE PHOTOPEAK EFFICmNCY 

The photopeak efficiency, as defined in section 111.3, also depends in 
general up on the geometry of the measuring set up. This is only true if 
secondary absorption contributes to the photopeak. If secondary absorp­
tion in the crystal is negligible, the photopeak efficiency is given by 

't" 
p=­

fLt 
(V-4) 

in which 't" is the photoelectric attenuation coefficient and fLt is the total 
attenuation coefficient which, in this case, is equal to the sum ofthe photo­
electric and the compton attenuation coefficient. However, as has been 
argued before, a crystal having such dimensions that secondary absorption 
is negligible, is unfavourable for use in a scintillation spectrometer for 
reasons concerning both the total efficiency and spureous effects as 
backscatter against the photomultiplier window. 

Secondary (and higher order) interactions consist of compton scattering 
af ter compton scattering and photoelectric absorption af ter compton 
scattering. While the first type of higher order interactions only affects the 
compton continuum (see section V. 7), the latter type contributes to the 
photopeak, as a result of which the photopeak efficiency increases. As the 
escape of scattered photons depends on where the scattering event is 
located in the crystal, which in turn depends on the geometry of the 
measuring set-up, the ratio between these two types of higher order inter­
actions, and accordingly the photopeak efficiency, also depends upon the 
geometry of the measuring set-up. 

Therefore experimental determination of the photopeak efficiency, 
which can be done by determining the ratio of the area of the photopeak 
to the area of the spectrum, must be adapted to the measuring conditions 
described in chapter 11. 
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To carry out such an experimental determination, the monoenergetic 
pulse height spectra of 4 nuclides (see table lIl) were measured in three 
different geometries: 

a. the source located along the central axis of the scintillation 
detector at a distance > 15 cm from the centre of the crystal; 

b. the source located along the diagonal of the longitudinal cross 
section of the crystal, also at a distance > 15 cm from the centre 
of the crystal; 

c. the source located along an axis through the centre of the crystal 
parallel to its fiat sides, also at a distance >15 cm from the 
centre of the crystal. 

In these geometries approximate parallel beams are incident on the 
whole crystal. The area ratios were determined by copying the measured 
spectrum on a sheet of grade 1 chromatographic paper, cutting out the 
spectrum and weighing the photopeak and the spectrum separately. The 
results of these experimental determinations are given in table lIL 

Nuclide Gamma ray energy p 
(MeV) 

a b c mean 

l~;CS 0.66 0.207 0.204 0.192 0.20 

l~~Au 0.41 0.3l8 0.306 0.311 0.31 

~!Cr 0.32 0.412 0.406 0.404 0.41 

2~~Hg 0.28 0.483 0.476 0.490 0.48 

Table III. Experimentally determined photopeak efficiencies in three different geome­
tries: a. a source on the central axis of the detector, b. a source on the diagonal axis 
of the crystal, and c. a source on the horizontal axis through the centre of the crystal. 
All measuring distances were larger than 15 cm. 

As may follow from table III the maximum deviation from the mean 
caused by variation of the direction of incidence is about 2 %. This being 
within the accuracy of the spectrometric measurements, the given mean 
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Fig. V-3. The photopeak efficiency p with the relative probability : of photoelectric 
interaction, both as a function of the incident photon energy. t 

q is the X-ray escape probability for 'very poor geometry' according to Axel (1953). 

values can be used for interpolating the values of p. To this purpose the 
mean values of p, given in table lIl, were plotted as a function of the 
incident energy in fig. V-3. For comparison a curve of p, calculated 
according to equation V-4, is also given. 

4 THE X-RAY ESCAPE 

As has been mentioned in section I1.I, fluorescent X-radiation following 
photoelectric absorption can escape from the crystal, as a result of which 
the crystal does not abs orb the energy corresponding to the characteristic 
X-ray energy of the scintillation material, assumed to be equal to 0.033 
MeV. 

In contrast with the problem of the previous section, the probability 
of X-ray escape is difficult to determine experimentally, the X-ray escape 
peak being separated from the photopeak at low energies only. To 
demonstrate this, fig. V-4 shows the pulse height spectra of l.nCe (y­
energy 0.145 MeV) and 17°Tm (y-energy 0.084 MeV). In the case of 141Ce 
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Fig. V-4. Pulse height distributions of UlCe and 170Tm. Dashed line: extrapolated X­
ray escape peak. 

the escape peak can be resolved from the photopeak (dashed line in the 
figure) by making use of the gaussian shape of the peaks. In the case of 
170Tm only the escape peak of the internal conversion radiation (about 
0.05 Me V) is demonstrabie, the escape peak of the primary gamma radia­
tion being incorporated completely in the internal conversion peak. 
Internal "conversion causes difficulties in many of the low energy gamma-
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emitters. Furthermore, as Axel (1953) has already noted, experimental 
determination of the escape probability at energies slightly above the K 
binding energy of iodine is extremely difficult. 

Assuming that some approximations can be made, it is easier to calculate 
the X-ray escape probability i.e. the ratio q of the escape peak to the 
involved photopeak (see section lIl. 3), as indicated by Axel (1953). The 
approximation of isotropicity, described in the previous sections, i.e. 
considering the crystal as a sphere with a finite radius R, however, leads 
to a very complicated expression for q, which expression is extremely dif­
ficult to evaluate. Axel pointed out that for the low energies involved the 
crystal may be considered as infinitely thick, the X-ray escape only 
occurring after photoelectric absorption near the edges of the crystal. 
So if it is assumed that every photon with energy < 0.2 MeV 'sees' the 
crystal as infinitely thick, no matter at what edge it is penetrating, the 
calculated values of Axel may be used. As for measurements in a scatter­
ing medium, it seems reasonable to use Axel's values of q for 'very poor 
geometry', i.e. a geometry where the source is in contact with the crystal. 
These values are plotted in fig. V-3. 

5. THE ESCAPE OF SCATTERED PHOTONS 

The escape of scattered photons, as already is set forth above, is described 
by a function X(x,E'), such that X(x,E')dx is the probability that af ter 
one or more compton interactions and escape of the scattered photons an 
electron kinetic energy x in the range dx will be produced. 

Multiple interactions in the crystal influence the function X(x,E'). 
These multiple interactions can be distinguished in two groups : 

a. those in which a compton process is followed by photoelectric 
absorption of the scattered photon energy; 

b. those in which a compton process is followed by compton in­
teractions, resulting in the escape of (multiple) scattered photons. 

Assuming that no multiple interactions take place or that multiple 
interactions consist only of those mentioned in group a., the function 
X(x,E') can be derived from the Klein Nishina differential cross section 
for compton scattering (Heitler, 1954; Loevinger, 1956), which derivation 
yields 
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. , 1 1 { x(E' + 1)2-E'(2E' + X2) } 
O::S;X::S;Xmax. X(x,E) = B' E'2 2 + X E'2(E'-X)2 

X>Xmax: X(x,E') = 0 (V-5) 

in which Xmax = 2E'2/(l +2E') is the maximum recoil electron energy as 
follows from the laws of conservation of energy and momentum, and B 
is a normalisation constant, given by 

Xmax 

f X(x,E')dx = 1 

o 
(V-6) 

In the equations V-5 and V-6 x as well as E' are expressed in units 
moc2• 

When multiple interactions are neglected or restricted to group a., an 
analytic evaluation of the matrix elements from the equations 111-13, 
V-3 and V-5 can be carried out. The usefulness of this analytically 
evaluated matrix, in other words the justification of the applied ap­
proximation, can only be experimentally tested. Such experiments are 
described in section V. 7. 

6. BACKSCAlTER 

Backscatter against parts of tbe photomultiplier causes spurious peaks 
in the measured pulse height distributions. Lidén et al (1954) have proposed 
a correction method, which is very tedious and not very adequate to use 
in measuring geometries as regarded here. 

If a narrow parallel beam is incident along the axis of the photomulti­
plier, backscatter (mainly against the photomultiplier window) is about 
40 % larger than if a narrow parallel beam is directed parallel to the photo­
multiplier window. Hence, experimental determination ofthe backscatter 
correction must be adapted as much as possible to tbe actual measuring 
geometry. 

For this purpose a 'point'-source ofthe nuclides mes, 122Sb, I03Ru and 
198 Au was placed at a distance of about 4 cm from the centre of the 
crystal: 
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a. along the axis of the photomultiplier; 
b. along the diagonal of the crystal, and 
c. along a line through the centre of the crystal parallel to the 

photomultiplier window. 

In these arrangements practically all parts of the crystal receive radia­
tion from the source, the directions of incidence however being different 
in the three geometries. 

From these measurements the ratio of the backscatter peak to the 
photopeak was determined. The maximum difference between the ratios 
found in the different geometries was less than 8 %. In fig. V-5 these 
ratios, averaged over the three geometries, are given as a function of the 
incident energy. 

40 backscatterpeak '0/0 
photopeak 

30 

20 

10 

--+ E'(MeV) 

0.3· 0.4 0.5 0.6 0.7 

Fig. V-5. Measured backscatterjphotopeak ratios as a function of the incident photon 
energy. 

Great care was taken to eliminate the backscatter from the environ­
ment, the measurements being carried out with the source and the detector 
at least at 2 m from the nearest substantial obstacle. 

These measurements were used to add a backscatter correction to the 
escape matrix (see section V. 8). 
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7. MULTIPLE SCATTERING IN THE CRYSTAL 

Multiple interactions of the type in which compton interaction is 
followed again by compton interaction resulting in the escape ofthe multi­
ple scattered photon, may change the compton continuum in respect to a 
compton continuum that would result from single events in the crystal. 
If this type of multiple interactions cannot be neglected, the analytical 
procedure for the evaluation of the escape matrix, described in section 
V-5, can no longer be used. 

As bas been stated before, the occurrence of this type of multiple inter­
action can be tested experimentally only. This can be done easily, for a 
monoenergetic energy distribution being represented by 

S(E')dE' = ~(E' - E')dE' (V-7) 

causes a recoil electron energy distribution, given by 

Eo' 

g(x) = f e:(E')k(x,E')~(E' -Eo')dE' = e:(Eo')k(x,Eo') (V-8) 

x 

This electron energy distribution yields a pulse height distribution : 

Eol 

G(E) = f N(E,x)e:(Eo')k(x,Eo')dx 

o 
which can be approximated by 

n 

G(Ek) = ~x I N(Ek,Xt)e:(Eo')k(Xt,Eo') 
i=l 

in which the vector e:(Eo')k(xt,Eo') is obtained from 

x!+Mx 

(V-9) 

(V-1O) 

e:(Eo')k(xl,Eo') = e:(Eo') f k(x,Eo')dx (V-11) 
X!-t~x 

If multiple interactions of the type described are negligible, the pulse 
height distribution calculated according to the described procedure, must 
fit with a measured pulse height distribution. 

This check was done by calculating the pulse height distribution of the 
nuc1ides 137 Cs and 189 Au according to the described procedure (normalized 
to one interacting photon per unit time, i.e. e:(Eo') = 1, and comparing 
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Fig. V-6. Comparison of calculated (drawn line) and measured (dashed line) pulse 
height spectra, resp. of 137Cs and 198Au. 

them with measured pulse height distributions of these nuclides. The 
measurements were normalized in such a way that the area ofthe measured 
photopeak became equal to the area of the calculated photopeak. 

As will he seen from fig. V -6, the measured pulse height distributions, 
compared with the calculated distributions, show an 'additional spreading' 
at the edge of the compton continuum. Using the analytically derived 
matrix described in section V. 5 the error made at energies just below the 
compton edge can reach values as large as 30 % in respect to the maximum 
calculated value in the compton region. In the energy range above the 
compton edge the error is hardly smaller, in the case of 198 Au even larger. 
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Hence this error cannot be left unconsidered. As it is likely that as a 
result of multiple interactions of the type described above, the energy 
of the recoil electrons shifts to higher values, the observed 'additional 
spreading' may be explained by the occurrence of this type of multiple 
interactions in the crystal to such an extent that it cannot be neglected. 

A theoretical treatment of the problem of multiple scattering in the 
crystal being almost impossible, an experimental method must be found 
to modify the escape matrix in such a way, that the error made in the 
escape correction is as small as possible. Such an experimental method is 
described in section V. 8, the final construction of the escape matrix being 
carried out with the aid of an interpolation carpet (Yates, 1946). 

8. THE FINAL CONSTRUCTlON OF THE ESCAPE MATRIX 

To approximate the solution of the Volterra integral equation IIl-17 
a matrix must be constructed from its kernel. Obviously this matrix will 
be a triangular matrix, the rows ofwhich can be considered as the electron 
energy distributions, resulting from incident monoenergetic photons with 
the corresponding energy E' (see table VI). The diagonal elements ofthis 
matrix represent the probability of an electron kinetic energy x = E', 
resulting from a complete absorption of the incident photon energy. 
Numerically these elements are equal to the photopeak efficiency p(Ej') 
multiplied to the total efficiency factor e(Ej'), in wichp(Ej') is determined 
experimentally according to section V. 3, and e(Ej') is calculated according 
to formula V-3. 

In the low energy range (E' < 0.2 MeV) the remaining elements of the 
matrix are determined by the X-ray escape probability q(Ej'). A difficulty 
arises here in the evaluation of the concerned delta function, the energy of 
recoilelectrons afterescapeofthe fluorescentX-ray being 0.033 MeV lower 
than the initial photon energy. As, however, in measurements of con­
tinuous photon energy distributions the photon energy is only discrimi­
nated in intervals of 0.02 MeV, each photon energy interval can be split 
in two parts, so that each part correspondingly contributes to a different 
intervallower down. 

In the higher energy range (E' > 0.2 Me V) the non diagonal elements 
are determined by compton scattered photon escape, expressed in the 
function X(x,E'), which function represents the probability of a recoil 
electron energy x in the range dx. As is demonstrated in the previous 
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section this function cannot be evaluated with the aid ofthe Klein Nishina 
differential cross section for compton scattering, because of the occur­
rence of multiple scattering in the crystal. An experimental method to 
modify the function X(x,E') in such a way that the error made in the 
escape correction is as small as possib1e, may be the following (Yates, 
1946). 

The function X(x,E') can be considered as a function z = f(x,y) of the 
two independent variables x and y. Such a function can be p10tted in a 
three dimensiona1 coordinate system. Then orthogona1 projection on the 
ZOX-plane yields the gröup of functions z = f(x)y. Now if instead of 
orthogonal projection, the projection on the ZOX-plane is done according 
to a certain angle ep with the Y-axis, the same functions z = f(x)y are 
imaged on the ZOX-plane, but in this case shifted over a distance y·tgep to 
the origin. When in this image the points with equal values of x are joined, 
the joining lines represent the functions z = f(y)x. In this image, a so 
called carpet (Yates, 1946), the values of f(Xt)Yi and f(Yj)Xi can be 
interpolated, if the functions are not too complicated and the value of 
tg ep is sensibly chosen. 

Now assuming that from a limited number of measured pulse height 
distributions of monoenergetic nuclides the corresponding electron energy 
distributions can be determined with areasonabie accuracy, the resulting 
values for X(x,E') can be plotted in a carpet, as described above, from 
which the desired values of the elements X(xt,Ej') may be interpolated. 

Sources of the nuclides mCs, I22Sb, I03Ru, 198Au, SICr, and 203Hg were 
placed at distances > 15 cm from the scintillation detector and the pulse 
height distributions were measured within a statistica1 error of less 
than 0.3 % These pulse height distributions were used in solving the set of 
linear equations IV-l (see chapter IV) by matrix inversion. The resulting 
solutions were plotted and the best approximation to the electron energy 
distributions g(x) (=k(x,Eo'» was determined by 'trial and error', as 
described in chapter IV. 

An example of this plotting is given in fig. V-7, in which the drawn 
line represents the obtained best approximation. A comparison of the 
final result, multiplied by the matrix N, with the measured spectrum is 
given in fig. V-8. 

The dashed line in fig. IV-7 shows the function X(x,E') analytically 
determined according to section V. 5. As will be apparent, multiple 
scattering in the crystal does not change the compton continuum in the 
lower energy range. 
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For the sake of clarity, the line representing the photopeak is omitted. 

137Cs 

0.06 

0.04 

---
0.02 

o 0.16 0.32 0.48 0.64 0.80 

Fig. V-8. Comparison of the calculated (drawn line) and the measured (dashed line) 
pulse height distribution of mes, the calculation including multiple effects in the 
crystal. 
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From the six functions X(x,E'), determined experimentally according to 
the method described above, a carpet was constructed, a schematic repre­
sentation of which is shown in fig. V-9. From such a carpet the non 
diagonal elements that are different from those which can be calculated 
analytically, were interpolated. 
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Fig. V-9. Interpolation carpet to determine the elements of the escape matrix. 

The backscatter measurements, described in section IV. 6, yielded a 
backscatter correction which was added to the matrix elements involved. 

Accordingly an escape matrix of the order of 30 in the energy range 
between 0.08 MeV and 0.66 MeV was constructed. The inverse of this 
matrix can be applied directly to resolution corrected pulse height 
distributions to yield an approximation of the incident photon energy 
distributions. The matrix and its inverse are given in table VI at the end of 
this thesis and can be used for correcting backscatter and escape effects in 
a scintillation detector in which a NaI/Tl crystal of3/4 inch diameter and 
3/4 inch thickness is coupled directly to a photomultiplier window, having 
a diameter of 1 inch. 
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CHAPTER VI 

ExperimentaUy determined photon energy distributiODS 
in a cylindrical water medium 

1. THE CORRECTION OF THE PULSE HEIGHT SPECTRA 

VI.I 

The pulse height spectra, measured as described in chapter 11, were 
fint sharpened according to the method described in chapter IV, yielding 
an approximation of the electron energy distribution g(x) within the 
scintillation crystal. The resulting approximations of g(x) are given in 
fig. VI- I. 

t~~ ______ ~ ____________ ~ ______ ~ ______ ~ _____________ --~E~I~*~YI 

o OlO Q20 030 CI.4O nso Q60 Q.7O 

Fig. VI-J. Electron energy distributions within the Nal/Tl crystal, generated by 
scattered photons in a cylindrical water medium with point isotropie source geometry 
at three penetration distances. 

As has been described in chapter 111, an incident continuous spectrum 
S(E') causes an electron energy distribution in the scintillation crystal, 



VI.I 7i 

given by 
Eo ' 

g(x) = f e(E')k(x,E')S(E')dE' (111-17) 

x 

The incident spectrum S(E') can be considered as the sum of two 
components, one of which giving the contribution of the unscattered 
photons, and the other giving the contribution of the photons scattered 
at least once. For a point isotropic source geometry, S(E') can be written 
as 

e-fLor 
S(E') = -4 2 ~ (E' - Eo') + Ss(E') 

TU 
(VI-I) 

in which Ss(E') is the 'scattering component'. 
Substituting VI-I into lII-I 7, we obtain 

Eo' 
e-fLor f g(x) = -- e(Eo')k(x,Eo') + e(E')k(x,E')Ss(E')dE' 
4nr2 

(V1-2) 

x 

An approximation to the solutions Ss(E') of VI-2 can be obtained by 
writing: 

(VI-3) 

in which A;,j is the matrix formed by the elements e(Ej)k(EI,EJ) and given 
in table VIa. 

The set of equations VI-3 yields: 

h 

4nr2efLor Ss(Ej}!1E = I A-li,j {4nr2efLorg(EI)-e(Eo)k(Et,Eo)} 

j=i 
(V1-4) 

in which A-\j is the inverse matrix, given in tabie VIb. 
Accordingly, the vectors geEl) were fust multiplied by a factor 4nr2efLor, 

and then the electron energy distribution, resulting from the unscattered 
photons, i.e. k(Et,Eo '), were subtracted out. From these so corrected 
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Fig. VI- 2. Photon energy distributions within a cylindrica1 water medium with point 
isotropic source geometry at three penetration distances. Dots indicate the measured 
values in the present experiments. Drawn lines indicate photon energy distributions 
ca1cu1ated according to the moment method (Goldstein and Wilkins). Dashed lines 
indicate photon energy distributions measured bij Theus and collaborators and adapted 
to the present scale. 

vectors, the vectors 41tr2efLorSs(Ej) were solved by matrix inversion. The 
resulting photon energy distributions are given in fig. VI-2. 

The drawn lines in the figure represent the scattered photon energy 
distributions, interpolated for 0.66 MeV primary gamma rays from the 
calculated data of Goldstein and Wilkins (1954). As will be seen, the 
agreement is quite reasonable. The dashed lines in the figure show the 
experimental results of Theus et al (1955). 
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2. BUILDUP FACTORS 

Buildup factors with respect to an operator D( ) = 1 f(E)dudE as 
defined in section 1.3, are generally given by 

B _ -=,-1 p----=-( E----=-)_S(':-E':-)d_E 
r - 1 f(E)So(E)dE 

(1-7) 

From the measured energy distributions, given in the previous section, 
three different types of buildup factors were calculated. The fust, the 
energy bui/dup factor BE' is related to the energy flux at the measuring 
distance. As the energy flux at energy E in the range dE is given by 
ES(E)dE, the function f(E) in this operator is E. For point isotropic 
source geometries the energy buildup factor then becomes: 

Eo 
4{Lr

2
e fLor J BE = ES(E)dE 

Eo 
(VI-5) 

o 
The second buildup factor is the energy absorption buildup factor Ba. 

This buildup factor is related to the energy absorption in the scattering 
medium. The number of collisions of photons of energy E in the range dE 
per unit volume and time is {LS(E)dE. If the average energy which is 
absorbed after a collision is E, the energy disposition per unit volume and 
time by photons of energy E in the range dE is given by: 

E{LS(E)dE = {LaES(E)dE 

in which {La = (EI E){L, is the energy absorption coefficient at energy E 
for the medium involved. Hence the function f(E) in this case is {LaE, 
and the energy absorption buildup factor for point isotropic souree 
geometries becomes: 

Eo 
41tr

2
efLor J 

Ba = E {LaES(E)dE 
{Lao 0 

(VI-6) 

o 
The third calculated buildup factor is the exposure dose buildup factor 

Bd, which is related to the dose as measured by an ideal air walled 
ionization chamber. As the exposure dose is defined in terms of energy 
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disposition per unit volume of dry air of STP, the exposure dose buildup 
factor Bd is equal to the energy absorption buildup factor Ba if the 
scattering medium were air. Accordingly the dose buildup factor be­
comes: 

Eo 
41tr2elLor f 

Bd = , fLa'ES(E)dE 
fL~ Eo 

(VI-7) 

o 
in which fLa' is the energy absorption coefficient of dry air. 

In table IV the buildup factors, determined according to the equations 
VI-5, VI-6 and VI-7 by numerical integration of the measured energy 
distributions, are compared with values, which are interpolated from the 
calculated data of Goldstein and Wilkins (1954) and with values mea­
sured by Theus et al (1955). The values for fLa and fLa' are taken from 
table 2.8 of Morgan's Handbook of Radiology (1955). 

fLor = 1 fLor = 2 fLor = 3 

BE Ba Bd BE Ba Bd BE Ba Bd 

Present 2.5 2.4 2.4 4.6 4.4 4.5 7.7 7.1 7.0 experiments 

Moment method 
ca1culations 2.4 2.3 2.3 4.5 4.2 4.2 7.7 7.0 7.0 
Goldstein e.a. 

Experiments 2.3 6.4 Theus e.a. 

Table IV. Comparison of experimental and calculated energy buildup factors (BE), 
energy absorption buildup factors (Ba), and exposure dose buildup factors (Bd) at 
three penetration distances. 

3. DISCUSSION OF ACCURACY AND ERRORS 

The complexity and the elaborate character of the energy distribution 
measurements described, obviously imply many potential sources of 
error. The errors which may occur in the course of different operations 
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are statistical errors, random and systematic errors, inaccuracies in the 
approximations, inaccuracies in the interpolations, errors in the machine 
calculations, and errors in the manual calculations. 

By manual operation of the spectrometer, the statistica/ errors in 
counting can be kept small, provided that the counting time required is 
small compared to the time in which drift in the electronic equipment 
becomes important. 

Random and systematic errors may occur in measuring the source 
strengths, in the adjustment of the spectrometer, possibly as a result of 
random changes in the electronic equipment, and in ineasuring the pene­
tration distances. 

The correction of the measured pulse height spectra is based on an 
approximate solution of the response equation. Moreover, many factors 
determining the relation between the pulse height spectra and the incident 
photon energy distributions were approximations. This may result in 
approximation inaccuracies in the flnal results. 

Errors in the interpolations are probably dominant only in the elements 
of the 'escape matrix', as most of these elements are interpolated from an 
experimentally determined carpet (see chapter V). 

Errors in the machine calculations, due to machine break down during 
the operation, andjor to errors in the coding, are very unlikely, for ·the 
coding of the data was repeated independently, the second set of coded 
data serving as a check for the co ding as well as for the machine perform­
ance. 

Apart from the machine calculations about 104 hand calculations were 
carried out. The hand calculated values were checked in several ways, 
such as comparison on the basis of symmetry in the resolution matrix 
and random sampled recalculations. Large errors in these values would 
have been detected easily. Therefore errors ofthis type in the flnal results 
are believed to be negligibly smalI. 

To estimate the ultimate error in the flnal results, it is convenient to 
classify the possible sources of error under the following headings: 

a. Errors in the pulse height measurements, 
b. Errors in the resolution correction, and 
c. Errors in the escape corrections. 

The pulse height spectra were measured within a statistical error of 
less than 0.3 %. The counting time to obtain this result averaged 1000 sec., 
during which period the drift in the electronic equipment was found to 
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be negligible. Random errors may have occurred in the adjustment of 
the spectrometer. The spectrometer was adjusted in such a way that each 
setting ofthe bias potentiometer corresponded to the centre of an energy 
interval equal to 0.02 MeV, the channel width being adjusted to cor­
respond to that energy interval (chapter IJ). The maximum error made 
in these adjustments was about 10 % of the channel width. As will be 
seen from fig. IJ-8, a drift of the channel over about 10 % of the 
channel width causes errors in the counting rates which do not exceed 
2 or 3%. 

The accuracy of the normalization of the measured pulse height 
spectra depends on the error made in measuring the source strengths. 
These source strengths were measured by comparing the sources with an 
identical standard source in an ionization chamber. The accuracy of the 
standard was ± 2 %, and the accuracy of the comparison was about 
± 3 %. Hence the source strengths were given within 4 % accuracy. 
Obviously this error, acting as a systematic error, affects the normalized 
pulse height spectra, and also the finally resulting photon energy distri­
butions, only quantitatively, the normalization factor essentially remain­
ing a constant during all operations. 

The accuracy of the resolution correction generally depends upon 
errors in the elements of the resolution matrix, and upon approximation 
errors in the solution of the resolution equation (see chapter IV). As the 
corrected results, obtained finally by trial and error, fitted the original 
pulse height measurements within 1 % when remultiplied to the resolution 
matrix (see for example fig. V, 7), the inaccuracy in the ultimate results 
is believed to be not greater than the inaccuracy in the measured pulse 
height spectra. 

The escape corrections include a plurality of sources of error. The non 
diagonal elements of the escape matrix were interpolated from a carpet, 
which was constructed from experimentally determined electron energy 
distributions (see section V. 8). This implies interpolation errors, which 
are difficult to estimate. However, it can be shown that relatively large 
inaccuracies in the non diagonal elements of the matrix only cause slight 
changes in the corrected results. The experience has been that a fluctua­
tion in the non diagonal elements at some given energy up to 10 %, affects 
the point in the spectrum at the energy involved within less than I %. So 
the inaccuracies in the X-ray escape and the backscatter correction as weil 
as interpolation inaccuracies in the compton escape correction, do not 
affect the final results to a very great extent. 
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Errors in the diagonal elements of the escape matrix, however, in­
fluence the accuracy of the corrected photon energy distribution to a 
greater extent. These errors are deterrnined by errors in the photopeak 
efficiency and in the total efficiency factor. . 

The photopeak efficiencies were determined by interpolation from four 
experimentally determined values. The experimental determination of 
the photopeak efficiency was carried out by a weighing method (see 
section V-2). To this purpose measured monoenetgetic pulse height 
spectra were copied on a sheet of grade 1 chromatographic paper, which 
has a high grade ofhomogeneity, and were cut out, whereafter the photo­
peak and the spectrum were weighed separately. This procedure was 
repeated 5 times with one spectrum, and the maximum difference found 
in the weight ratios was less than 1 %. The differences due to the depen­
dency upon the direction of incidence (see section V. 3) did not exceed 
2 %, so the measured photopeak efficiencies of the four monoenergetic 
spectra involved may be considered as accurate within 3 %. The interpo­
lation error is believed not to exceed 2 %, which is less than the error in the 
measurements. Generally the photopeak efficiencies are believed to be 
accurate within 4 %. 

The diagonal elements are also determined by the total efficiency factor 
at the energy involved, with which factor the elements of the different 
rows ofthe matrix are multiplied. In this factor, which has been calculated 
from formula V -3 (see section V. 2), the dominant type of error appar­
ently is the approximation error. Referring to table 11 (section V .2), the 
inaccuracy is estimated to be about 2 %. If it is assumed that errors in the 
attenuation coefficients used are weIl within this inaccuracy, the error in 
the diagonal elements amounts to about 6 %. 

Summarizing the above discussions on possible errors, the measured 
and corrected photon energy distributions are believed to be accurate 
within about 10 %. 

In calculating the buildup factors there may be an additional error due 
to the fact that the lower energy range (E< 0.08 MeV) is omitted. Since, 
however, in this energy range the intensity faUs off very rapidly (see ref. 
Goldstein and Wilkins), this error is believed to be small. 

Apart from the mentioned errors there is a possible error of ± 0.5 cm 
in adjusting the penetration distances, which distances are taken from the 
centre of the source to the centre of the scintillation crystal. This error 
must be taken into account when the results of the measurements are 
compared with theoretically predicted data. 
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4. FINAL DISCUSSION 

To compare the experimentally determined photon energy distribu­
tions with photon energy distributions calculated according to the 
'moment method', data of Goldstein and Wilkins (1954) were used to 
interpolate photon energy distributions at penetration distances of I, 2 and 
3 mean free path lengths with a source energy of 0.66 MeV. In fig. VI-2 
the interpolated results are indicated by drawn lines. 

As may be apparent from the figure, the experimental photon energy 
distributions at penetration distances of 1 and 2 mean free path lengths 
are somewhat higher than the calculated photon energy distributions, the 
discrepancies, however, remaining mostly within the measuring accuracy. 
The experimental result at a penetration di stance of 3 mean free path 
lengths is in reasonable agreement with the calculations. Qualitatively the 
experimental curves show a good similarity with the calculated curves. 
The small differences can be considered as caused by systematic errors 
in the measurements as weIl as in the calculations of Goldstein and 
Wilkins. 

Consequently, as wiU be seen from table IV, the experimentally obtained 
buildup factors are in good agreement with buildup factors interpolated 
from data of Goldstein and Wilkins (1954). 

These results can be considered as a mutual confirmation, both for the 
correctness of the measurements within the measuring accuracy and for 
the validity of calculations according to the 'moment method' in a geo­
metry as described. Hence, in the experimental set-up, described in chap­
ter Il, the cylindrical water medium can be considered as an infinite 
medium for 0.66 MeV gamma rays. 

The dashed lines in fig. VI-2 indicate photon energy distributions 
measured by Theus and collaborators (1955) *). Their results show dif­
ferences with the results of the present experiments and with the calcu­
lated data of Goldstein and Wilkins. Consequently the discrepancies 
are also found in the buildup factors (see table IV). These discrepancies 
may be explained by the fact that these authors used a different analyzing 
method. Comparing the analyzing method used for the present measure­
ments with the method used by Theus et al, the separated resolution cor-

.) There are reasons to believe that the results of Theus and collaborators (J. Appl. 
Phys. 26, 294 (1955» are represented with a factor 10 in error. In the representation in 
fig. VI-2 this error is eliminated. The given photon energy distributions (dashed lines) 
also were renormalized to a source strength of one photon per second. 
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rection and the correction for the multiple scattering within the crystal 
may be mentioned as the principal differences. 

As for the resolution correction, there seems to be no mathematical 
proof, that the correction can be carried out by matrix inversion. To in­
c1ude the resolution correction in an overall correction matrix, as has been 
done by Theus and collaborators, therefore is quite dangerous. Also in 
the resolution correction used here, there is no proof for the validity of 
the matrix inversion method. The occurring 'oscillations' in the solution 
(see fig. IV-3) may be due to this mathematical difficulty. Iterative 
methods, as proposed by Freedman et al (1956), Villforth et al (1958) and 
Skarsgard et al (1961) entail the same difficulties. If, however, matrix 
inversion or an iterative procedure is combined with 'trial and error' cal­
culations, the obtained results may fairly represent the true electron 
energy distributions in the crystal. 

The escape correction can be carried out in an arbitrarily close approx­
imation, provided that the kemel of the integral equation involved 
represents all factors conceming the escape effects in the crystal within 
reasonable accuracy. Neglecting multiple scatter effects in a crystal of the 
size as used in this work seems not to be justified, as may be apparent 
from fig. V-6. Therefore, the multiple scatter effects in the crystal were 
taken into account by experimental methods (see section V. 8). In the 
analyzing method used by Theus and collaborators these effects were 
neglected for a crystal of2.54 cm diameter and 1.27 cm thickness. As their 
resuIts show large differences with caIculated data, which is not the case 
with the present results, it is believed that the error made in this neglec­
tion must be quite large. 

Summarizing it can be stated that measurements of continuous photon 
energy distributions with geometries similar to those encountered in 
practice, are possible with the aid of scintillation spectrometry, provided 
that the measurements are performed very carefully, that the measured 
pulse height spectra are interpretated properly and that possible sim­
plifications are considered thoroughly. 
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CHAPTER VII 

Possible experiments with different geometries 

As long as a scattering medium can be considered as homogeneous and 
infinite, the calculations on photon energy distributions and buildup 
factors carried out by Goldstein and Wilkins (1954), which calculations 
extend over a long range of energies and scattering materials, are extremely 
valuable. In practice, however, very of ten situations are found which do 
not satisfy the conditions of homogeneity and infinity. Though in gene­
ral a knowledge of the buildup factors is sufficient in practice, in some 
cases it might be important for understanding the buildup phenomena to 
know about scattered photon energy distributions. In most of these prac­
tical cases calculations are almost impossible, the only way to obtain 
such data, without direct measurements, being the performance of (ex­
pensive and time consuming) Monte Carlo computations. So measure­
ments may be of great help in such situations. 

As has been stated in chapter 11 it is meaningful to start with measure­
ments of scattered photon energy distributions with simple geometries. 
Measurements in such a simple geometry have been described in that 
chapter. As, however, it has been proved in this work that measurements 
of continuo us energy distributions are possible with an acceptable degree 
of accuracy, measurements can be carried out in a variety of geometries, 
although the physical interpretation of the results remains a problem 
that has still to be solved. Measurements can be carried out, for example, 
with geometries found in radiation dosimetry (measurements in phantoms 
representing the human body or parts of it). In such cases, however, the 
use of a very small detector is preferabie. Since very small photomultipliers 
are not available, such measurements have to be carried out with a very 
small NaljTI crystal which is coupled to a lightpipe, which in turn is 
coupled to a photomultiplier outside the medium. Pulse height spectra, 
measured with such a detector, can be corrected according to the method 
described in the chapters 111, IV and V, provided that a new escape matrix 
is constructed. This new matrix is probably much simpier than the matrix 
given in table VI, the occurrence of multiple interactions in a small crystal 
being unlikely. A disadvantage is the worsening of the resolution, due to 
light losses in the lightpipe. 
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Fig. VII-J. Measuring set-up with a double interface geometry. 

In dosimetry problems as weU as in shielding problems the presence 
of interfaces between different materials may play an important role. 
Accordingly it may be sensible to measure photon energy distributions 
near interfaces, for example between tissue and air, tissue and bone 
(dosimetry), concrete and water, and iron and water (shielding). 

An example of measurements with such an interface geometry is 
illustrated in fig. VII-I. The measurements with this geometry concern 
an investigation of a double interface problem: a point isotropic souree 
is placed at one of the flat boundaries of a 'water disk', the detector imme­
diately above the other flat boundary. The thickness ofthe water disk was 
respectively 1, 2 and 3 mean free path lengths in water ofphotons with an 
energy of 0.66 MeV (respectively 11.7 cm, 23.4 cm and 45.1 cm). The 
resulting scattered photon energy distributions are given in fig. VII-2. 
These results are obtained by applying the correction method, described 
in the chapters III, IV, and V. From these measured photon energy distri-
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. Fig. VII-2. Photon energy distributions at the interface water-air at three penetration 
distances, measured with a double interface geometry. 

butions the energy buildup factors BE' the energy absorption buildup 
factors Ba and the exposure dose buildup factors Bd are determined by 
integration (see section VI. 2). The buildup factors are given in table V. 

flo' = 1 flo' = 2 flo'= 3 

BE 2.4 4.5 7.6 

Ba. 2.4 4.2 7.3 

Bd 2.3 4.2 7.2 

Table V. Energy buildup factors (BE), energy absorption buildup factors (B .. ), and 
exposure dose buildup factors (Bd) at three penetration distances with a double inter­
face geometry. 
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A double interface geometry, such as described above may be found in 
shie1ding problems. This experiment, however, is given only as an example. 
In shie1ding problems also higher energies are involved. Accordingly 
experiments can be carried out with sources of higher photon energies if 
the escape matrix, as given in table VI, is extended to higher energy 
values. 
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Sommary 

In the applications of ionizing radiation in medicine, as weU as in 
industrial and scientific application of intensive radioactive sources, 
gamma ray penetration problems are extremely important. These pene­
tration problems, which in most cases concern bad geometry configu­
rations, are characterized by multiple scatter phenomena in the penetrated 
medium. The discrepancy, existing between 'good geometry' calculations 
and measurements in 'bad geometry' configurations can be conveniently 
expressed in multiplicative factors, the so caUed buildup factors. 

Several calculation methods of various degrees of rigour have been 
elaborated for finding data about energy distributions of multiple 
scattered gamma and X-radiation. The few known experimental data to 
check these calculations are not quite satisfactory. This is due to the fact 
that experimental determinations of energy distributions meet with diffi­
culties. 

In the work described in this thesis an attempt is made to overcome 
these difficulties. With the aid of a scintillation spectrometer pulse height 
distributions, resulting from the scattering of 0.66 MeV gamma rays of 
mCs, were measured within a cylindrical bounded water medium at three 
different source-detector distances. The nuclide J37Cs was chosen because 
of its monoenergetic gamma radiaton, the energy of which being com­
parabie to energies involved in medical applications (if photons with dif­
ferent energies are emitted by the source, the correction of the measured 
pulse height spectra becomes more complicated). With such photons a 
reasonable buildup can be expected. The measuring geometry can be con­
sidered as a point isotropic source geometry (chapter II). The changes in 
the scattering pattern, caused by the displacement of the medium by 
the detector was found to be negligible (chapter II). 

In order to derive the scattered photon energy distributions from the 
measured pulse height spectra, the response of the scintillation detector 
to an incident photon energy distribution was expressed in an integral 
equation. The kemel of this integral equation was analyzed (chapter IIl). 
While corrections for the escape effects in the scintillation crystal can be 
made without any difficulty, provided that the escape effects are quantita­
tively known, the sharpening of the spectrum, which is smeared out by 
spreading processes in the detector, is not easily done. For this reason the 
pulse height distribution correction is carried out in two steps. 
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The fust step concerns the sharpening of the spectrum (the resolution 
correction). The integral equation, describing the smearing out of the 
spectrum, can be approximated by a matrix equation 

h=Ng 

in which h is the measured pulse height distribution, given as a set of 
numbers, g is the electron energy distribution within the crystal, generated 
by incident photons and also given numerically, and N is a matrix, con­
structed from a gaussian function in which the relative variance, being 
energy dependent, can be descrihed with two parameters. 

Since the 30 x 30 matrix used in this work is not in a good condition 
(chapter IV), simple matrix inversion gives rise to difficulties resulting in 
the occurrence of oscillations in the solution g. Also iterative procedures, 
such as proposed by Freedman et al (1956), Villforth et al (1958) and 
Skarsgard et al (1961), cannot be applied in a satisfactory way because 
of the bad condition of the matrix N. Nevertheless in this work matrix 
inversion was carried out, but it was coupled with a 'trial and error' 
calculation which yielded quite satisfactory results (chapter V). 

The second step is the correction for the escape effects in the crystal. The 
integral equation invo1ved, which is a Volterra equation, can be approx­
imated by the matrix equation 

g =Ks 

in which s is the incident photon energy distribution and K is the escape 
matrix. The matrix K, being constructed fr om the kerne1 of a Volterra 
equation, is essentially triangu1ar. Inversion can be carried out without 
any difficulty since none of the diagonal elements tends to become zero. 

The escape matrix K is determined by several quantities which are dis­
cussed in chapter V. These quantities are: 

a. the total efficiency, being defined as the probability of interaction 
ofthe incident photons. This quantity was evaluated by assuming 
the detector to be isotropic; 

b. the photopeak efficiency, being defined as the ratio of the joint 
areas of the photopeak and the X-ray escape peak to the spec­
trum. This quantity was determined experimentally; 

c. The X-ray escape probability, being defined as the ratio of the 
area ofthe X-ray escape peak to the photopeak. Axel (1953) has 
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offered approximating calculations of this quantity which cal­
culations were used in this work; 

d. the escape probability of the photons scattered in the crystal, 
which had to be determined experimentally because of the 
occurrence of multiple effects in the crystal. This was do ne with 
the aid of an interpolation carpet; 

e. The backscatter probability, which quantity was also evaluated 
experimentally. 

From these quantities the escape matrix K was calculated. This escape 
matrix and its inverse are given in table VI. 

The described correction method was applied to the measured pulse 
height distributions. The resulting photon energy distributions for a 
bounded medium were compared with calculations according to the 
'moment method' of Spencer and Fano (1951) for an infinite medium. To 
this purpose interpolations from the data of Goldstein and Wilkins (1954) 
were made. The experimental results agree with these calculations, in most 
cases within the measuring accuracy of 10% and maximal within 15 %. 

A comparison was also made with the experimental results of Theus 
et al (1955). Their experimental results deviate from the results of the 
present experiments, which deviation can be explained by the difference 
in the method used for analyzing the measured pulse height spectra. 

From the experimental photon energy distributions the energy buildup 
factors, the energy absorption buildup factors and the exposure dose 
buildup factors were derived. Consequently these buildup factors agree 
with 'moment method' calculations. 

These results can be considered as a mutual confirmation, both for 
the correctness of the measurements within the measuring accuracy and 
for the validity of the 'moment method' calculations in a geometry such 
as described. Hence it can be concluded that : 

a. in the measuring set-up described the cylindrical water medium 
can be considered as an infinite medium for 0.66 MeV gamma 
rays, and 

b. measurements of continuous photon energy distributions with 
geometries similar to those encountered in practice are possible 
with the aid of scintillation spectrometry, provided that the 
measurements are performed very carefully, that the measured 
pulse height spectra are properly interpretated, and that pos­
sible simplifications are considered thoroughly. 
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Samenvatting 

Zowel in toepassingen van ioniserende straling in de geneeskunde als in 
het industriële en wetenschappelijke gebruik van sterke radioactieve 
bronnen is de doordringing van gammastraling een belangrijk probleem. 
Deze doordringing, in de meeste gevallen volgens een Z.g. 'brede bundel­
geometrie' , gaat vergezeld van meervoudige-verstrooiïngsverschijnselen 
in het betreffende medium. De discrepantie die ten gevolge hiervan bestaat 
tussen berekeningen volgens de z.g. 'smalle bundel-geometrie' enerzijds 
en metingen in de 'brede bundel-geometrie' anderzijds, kan op geschikte 
wijze worden uitgedrukt in vermenigvuldigingsfactoren, de z.g. aangroei­
factoren. 

Verschillende min ofmeer exacte berekeningsmethoden zijn ontwikkeld 
om gegevens te verkrijgen omtrent de energieverdelingen van verstrooide 
gamma- en röntgenstraling. De schaarse experimentele gegevens voor de 
toetsing van deze berekeningen geven tot nu toe echter nog weinig bevre­
digende resultaten. Dit is het gevolg van het feit, dat metingen van ener­
gieverdelingen op moeilijkheden stuiten. 

In het onderzoek, beschreven in deze dissertatie, is een poging aange­
wend om over deze moeilijkheden heen te komen. Met behulp van een 
scintillatie-spectrometer zijn de amplitudespectra, die uit de verstrooiïng 
van de monoënergetische gammastraling van 137es (met een energie van 
0,66 MeV) ontstaan, gemeten. Voor de proefopstelling is dit nuclide 
gekozen omdat het monoënergetische gammastraling uitzendt (wanneer 
de bron fotonen met verschillende energie uitzendt, wordt de correctie 
van de gemeten amplitudespectra ingewikkelder) met een energie die 
vergelijkbaar is met energieën die in medische toepassingen gebruikelijk 
zijn en waarmee een redelijke aangroei te verwachten is. De metingen 
werden in een cylindrisch begrensd watermedium uitgevoerd met drie 
verschillende afstanden tussen de detector en de bron. De geometrie 
kon worden beschouwd als een puntisotropische brongeometrie (hoofd­
stuk 11). De veranderingen die als een gevolg van de verplaatsing van het 
medium door de detector in het verstrooiïngspatroon kunnen optreden, 
bleken verwaarloosd te kunnen worden (hoofdstuk 11). 

Om uit de gemeten amplitudespectra de energieverdelingen van de ver­
strooide fotonen te kunnen bepalen, is de responsie van de scintillatiede­
tector uitgedrukt in een integraalvergelijking. De kern van deze integraal­
vergelijking is nader onderzocht (hoofdstuk 111). Uit dit onderzoek bleek 
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dat het corrigeren van de ontsnappingseffecten, die in het scintillatie­
kristal optreden, zonder mathematische moeilijkheden kan worden uitge­
voerd. De grootheden die deze ontsnappingseffecten bepalen, moeten dan 
kwantitatief bekend kunnen zijn. Het spectrum is echter ten gevolge van 
processen die in de detector volgens bepaalde statistieken verlopen, 'uit­
gesmeerd'. Het wegwerken van deze 'uitsmering' stuit op moeilijkheden. 
Om deze reden is de correctie van de gemeten amplitudeverdelingen in 
twee stappen uitgevoerd: De eerste stap betreft het wegwerken van de 
'uitsmering' in de gemeten amplitudespectra. De integraalvergelijking die 
dit 'uitsmeringsproces' beschrijft, kan worden benaderd door een matrix­
vergelijking : 

h=Ng. 

Hierin is h het gemeten amplitudespectrum, gegeven als een reeks van 
getallen, g de energieverdeling van de elektronen, die door de invallende 
fotonen in het kristal worden vrijgemaakt, eveneens gegeven als een reeks 
van getallen, en N een matrix die gevormd is uit een normale waarschijn­
lijkheidsfunctie, waarvan de energieafhankelijke relatieve variantie be­
schreven kan worden met behulp van een tweetal parameters. 

De conditie van de 30 X 30 matrix, die in dit onderzoek werd toege­
past, bleek niet goed te zijn (hoofdstuk IV), waardoor een eenvoudige 
matrix-inversie moeilijkheden opleverde, welke moeilijkheden zich mani­
festeerden in oscillaties in de oplossing g. Ten gevolge van de slechte 
conditie van de matrix N is ook de toepassing van iteratieve methoden, 
zoals die welke door Freedman et al (1956), door Villforth et al (1958) 
en door Skarsgard et al (1961) zijn voorgesteld, niet op bevredigende wijze 
mogelijk. 

In dit onderzoek is toch een matrix-inversie toegepast, waaraan echter 
een 'trial and error'-berekening is toegevoegd. Hiermee zijn zeer bevredi­
gende resultaten verkregen (hoofdstuk V). 

De tweede stap is het corrigeren van de ontsnappingseffecten in het 
kristal. De betreffende integraalvergelijking is een Volterra vergelijking, 
die eveneens kan worden voorgesteld door een matrixvergelijking : 

g = Ks, 

waarin s de energieverdeling van de invallende fotonen en K de z.g. ont­
snappingsmatrix is. Aangezien de matrix K uit de kern van een Volterra 
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vergelijking is gevormd, is Keen driehoeksmatrix waarvan de inversie 
geen enkele moeilijkheid oplevert, daar geen van de diagonaalelementen 
gelijk is aan O. 

De ontsnappingsmatrix K wordt bepaald door een aantal grootheden 
die in hoofdstuk V uitvoerig zijn besproken. Deze grootheden zijn: 

a. Het totale rendement, dat gedefinieerd is als de waarschijnlijk­
heid dat een invallend foton in wisselwerking met de kristal­
materie gaat. Deze grootheid is berekend met de op metingen ge­
baseerde veronderstelling dat de detector als isotroop kan 
worden beschouwd. 

b. Het rendement van de fotopiek, dat gedefinieerd is als de ver­
houding van de som van de oppervlakken van de fotopiek en de 
fiuorescentie-vluchtpiek ten opzichte van het oppervlak van het 
gehele spectrum. Deze grootheid is experimenteel bepaald. 

c. De ontsnappingskans van de fiuorescentiestraling, die gedefi­
nieerd is als de verhouding van het oppervlak van de fiuorescen­
tie-vluchtpiek ten opzichte van dat van de fotopiek. 
In dit onderzoek zijn de benaderende berekeningen van Axel 
(1953) gebruikt voor de bepaling van deze grootheid. 

d. De ontsnappingskans van de fotonen die in het kristal worden 
verstrooid. Deze ontsnappingskans moest experimenteel worden 
bepaald, daar meervoudige wisselwerkingen in het kristal een 
theoretische benadering onmogelijk maken. De waarden van 
deze grootheid zijn uiteindelijk verkregen met behulp van een 
interpolatie-netwerk. 

e. De waarschijnlijkheid van terugstrooiïng tegen delen van de 
detector. Ook deze grootheid is experimenteel bepaald. 

Met behulp van deze aldus bepaalde grootheden is de ontsnappings­
matrix K berekend. Deze ontsnappingsmatrix is tezamen met zijn inverse 
gegeven in tabel VI. 

De beschreven correctiemethode is toegepast op de metingen van de 
amplitudespectra. De resulterende energieverdelingen van verstrooide 
fotonen (in begrensde media) zijn vergeleken met berekeningen ge­
maakt volgens de z.g. 'moment-methode' van Spencer en Fano (1951) 
(die gelden voor oneindige media). Hiertoe zijn gegevens van Goldstein 
en Wilkins (1954), die berekeningen volgens deze methode hebben uit­
gevoerd, op de hier beschouwde energie en doordringingsafstanden 
geinterpoleerd. De resultaten van de experimenten bleken meestal bin-
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nen een meetnauwkeurigheid van 10% en binnen maximaal 15 % overeen 
te komen met deze berekeningen. 

De meetresultaten zijn ook vergeleken met die welke door Theus 
et al (1955) zijn verkregen. De meetresultaten van deze auteurs wijken 
af van die welke in deze dissertatie zijn beschreven. Deze afwijking kan 
worden verklaard uit het verschil in de methode, die voor het analyseren 
van de gemeten amplitude spectra is gebruikt. 

Uit de experimenteel bepaalde energieverdelingen van de verstrooide 
fotonen zijn achtereenvolgens de 'energie-aangroeifactoren', de 'energie­
absorptie-aangroei-factoren', en de 'bestralingsdosis-aangroei-factoren' 
bepaald. Zoals moet volgen uit de bovengenoemde overeenstemming, 
kwamen ook deze 'aangroeifactoren' binnen de meetnauwkeurigheid 
overeen met berekeningen volgens de 'moment-methode'. 

Deze resultaten kunnen worden gezien als een wederkerige bevestiging, 
zowel voor de juistheid van de meetresultaten binnen de meetnauwkeurig­
heid, als voor de toepasbaarheid van berekeningen volgens de 'moment­
methode' in een geometrie als is beschreven. Dus kan worden geconclu­
deerd dat 

a. in een meetopstelling zoals is beschreven, een cylindrisch water­
medium kan worden beschouwd als een oneindig medium voor 
gammastralen met een energie van 0,66 MeV, en dat 

b. metingen van continue energieverdelingen van fotonen volgens 
de in de praktijk bekende geometrieën kunnen worden uitge­
voerd met behulp van scintillatie-spectrometrie, vooropgesteld 
dat de metingen zeer zorgvuldig worden uitgevoerd, dat de ge­
meten amplitudespectra op de juiste wijze worden geïnterpre­
teerd en dat eventuele vereenvoudigingen grondig worden over­
wogen. 
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STELLINGEN 

I 

Iterative methoden als toegepast door Skarsgard en medewerkers, 
voor het oplossen van continue energie spectra uit de met behulp van 
scintillatiespectrometrie verkregen amplitudespectra, stuiten op dezelfde 
moeilijkheden als welke optreden bij een directe matrixinversie, wanneer 
de betreffende matrix in een slechte conditie verkeert. 

II 

L. D. SKARSGARD, H. E. JOHNS en 
L. E. S. GREEN, 
Radiat. Res. 14, 261 (1961). 
Hoofdstuk 111 van dit proefschrift. 

Volgens Kochenburger worden in niet-lineaire teruggekoppelde regel­
systemen met periodieke ingangssignalen de hogere harmonischen, die 
achter het niet-lineaire deel ontstaan, door het lineaire deel uitgezeefd. 
Het is echter van belang na te gaan of de terugkoppeling zelf al niet een 
zodanige reductie van de hogere harmonischen kan geven, dat aan het 
lineaire deel minder eisen gesteld behoeven te worden. 

R. J. KOCHENBURGER, 
AIEE transactions 69, 270 (1950). 

III 

Voor de transmissie van kiescijfers over grote afstanden in de auto­
matische telefonie verdient het systeem van multitooncodering de voor­
keur boven het systeem van toonfrequente impulscodering. 

IV 

C. A. DAHLBWM, A. W. HORTON Jr. 
en D. L. MOODY, 
AIEE transactions 68, 392 (1949). 

Bij het toetsen van de beeldkwaliteit in de televisie-opnameapparatuur 
dient meer aandacht geschonken te worden aan de weergave van bewe­
gende beeldfragmenten. 



v 

Het verdient aanbeveling om een onderzoek in te stellen naar de 
mogelijkheid voor toepassingen van halfgeleiders als detectoren in de 
gammaspectrometrie. 

VI 

Bij het onderzoek naar omzettingen, bijvoorbeeld in biologische 
systemen, met behulp van gemerkte stoffen, kan uit metingen van het 
verloop van de gemerkte stof vaak een model worden afgeleid, dat uit 
een aantal enkelvoudige componenten bestaat. Het is dan echter beter 
uit te gaan van een reeds opgesteld model dat aan de metingen kan worden 
getoetst, dan om uit de metingen een zodanig aantal componenten af te 
leiden, dat de fysische, C.q. fysiologische interpretatie van het model een 
verwrongen karakter krijgt. 

VII 

C. G. LEWALLEN, M. BERMAN en 
J. E. RAIL, 
J. Clin. Invest. 38, 66 (1959). 

M. BERMAN en R. SCHOENVELD, 
J. Appl. Phys. 27, 1361 (1956). 

In het model voor de synthese van eiwitten, dat door Rittenberg en 
San Pietro is voorgesteld, wordt de verstoring van het dynamisch even­
wicht door het inbrengen van het gemerkte aminozuur ten onrechte 
verwaarloosd. 

VIII 

D. RrrrENBERG en A. SAN PmrRo, 
J. Biol. Chem. 201, 457 (1953). 

K. OLESEN, N. C. S. lIEILsKOV en 
F. SCH0NHEYDER, 
Biochem. Biophys. Acta 15, 95 (1954) 

De door Stein gemaakte schatting van de negatieve-entropievermeer­
dering bij de biologische celdeling berust op een aantal onjuiste veronder-
stellingen. . 

W. STEIN, 
Naturwissensch. 47, 542 (1960). 



IX 

Het aan patiënten meten van de opname van radioactief jodium in de 
schildklier heeft geen fysiologische en weinig diagnostische waarde tenzij 
de meetopstelling voldoet aan zeer stringente eisen betreffende de colli­
matie, de discriminatie van de verstrooide en teruggestrooide fotonen, 
de vergelijkingsstandaard en de afscherming. 

X 

Het verdient aanbeveling vaardigheid in het toepassen van interpo­
latie-netwerken bij het uitwerken van experimentele gegevens als een der 
eisen te stellen voor de propaedeutische examens aan de Technische 
Hogescholen. 

XI 

Aangezien een stralenbeschermingsdienst van een kernreactorinstituut 
zich in hoofdzaak gesteld ziet voor problemen die van preventief-tech­
nische aard zijn, is het beginsel dat aan het hoofd van een dergelijke dienst 
een medicus moet staan, in het algemeen niet gerechtvaardigd. 

XII 

Het gedragspatroon van een volk, bijvoorbeeld dat van het Indone­
sische volk met betrekking tot zijn nationalisme, kan pas worden begrepen 
als men zijn mythen kent. 

Di ... Cbr. Sybelma 


