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ON COHERENT STRUCTURES, FLOW-INDUCED VIBRATIONS,
AND MIGRATORY FLOW

IN LIQUID METAL NUCLEAR REACTORS

by

Fulvio BERTOCCHI

1. A high speed camera provides the best compromise between accuracy and handiness
to measure the frequency of vibration in a rod bundle. (This thesis, Chapter 4)

2. A 7-rod bundle is more difficult to build than larger ones. (This thesis)

3. Calculating the transversal pressure gradient with Equation 5.39 of this thesis is
easier than with the Euler equation. (This thesis, Chapter 5)

4. If ionizing radiation would be visible to the naked eye, nuclear energy would be
more acceptable to the public.1

5. Starting the PhD with a thorough time planning weakens the ability of the student
to tackle unexpected setbacks.

6. Financial support to poor African countries will increase migration across the
Mediterranean Sea.2

7. If one does not appreciate theatre, he/she cannot truly enjoy Caravaggio’s art.

8. In cage diving with white sharks, the cage protects the shark from humans, more
than the other way around.

9. A good scientist must also be a good reader.

10. A stress reduction course for PhDs should also cover vacation time.

These propositions are regarded as opposable and defendable, and have been approved
as such by promotors prof. dr. ir. J. L. Kloosterman and dr. ir. M. Rohde.

1The Psychology of Risk perception, Harvard Health Publishing, 2011.
2M. A. Clemens and H. M. Postel, Deterring Emigration with Foreign Aid: An Overview of Evidence from

Low-Income Countries, Center for Global Development, 2018.



Stellingen

behorende bij het proefschrift

ON COHERENT STRUCTURES, FLOW-INDUCED VIBRATIONS,
AND MIGRATORY FLOW

IN LIQUID METAL NUCLEAR REACTORS

door

Fulvio BERTOCCHI

1. Een hoge-snelheidscamera geeft het beste compromis tussen precisie en gebruiksgemak
bij het meten van de vibratiefrequentie in staafbundels.
(Dit proefschrift, Hoofdstuk 4)

2. Een bundel met 7 staven is moeilijker te bouwen dan grotere. (Dit proefschrift)

3. De berekening van de overdwarse drukgradiënt is makkelijker met vergelijking
5.39 in dit proefschrift dan met de Euler vergelijking.
(Dit proefschrift, Hoofdstuk 5)

4. Als ioniserende straling met het blote oog zichtbaar zou zijn, zou kernenergie acceptabeler
zijn voor het publiek.1

5. De start van een promotietraject met een gedegen tijdsplanning verzwakt het vermogen
van de promovendus om met onverwachte tegenslagen om te gaan.

6. Financiële ondersteuning van arme Afrikaanse landen zal leiden tot een toename
van migratie over de Middellandse zee.2

7. Wie niet van theater houdt, kan niet waarlijk genieten van Caravaggio’s kunst.

8. Tijdens kooiduiken met witte haaien beschermt de kooi de haai meer tegen de
mens dan andersom.

9. Een goede wetenschapper moet ook een goede lezer zijn.

10. Een cursus stressreductie voor promovendi moet ook de vakantietijd omvatten.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren prof. dr. ir. J. L. Kloosterman en dr. ir. M. Rohde.

1The Psychology of Risk perception, Harvard Health Publishing, 2011.
2M. A. Clemens and H. M. Postel, Deterring Emigration with Foreign Aid: An Overview of Evidence from

Low-Income Countries, Center for Global Development, 2018.
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“Those who have handled sciences have been
either men of experiment or men of dogmas.

The men of experiment are like the ant,
they only collect and use;

the reasoners resemble spiders,
who make cobwebs out of their own substance.

But the bee takes a middle course:
it gathers its material

from the flowers of the garden and of the field,
but transforms and digests it by a power of its own.”

FRANCIS BACON, 1620
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Summary

Flows in rod bundles are common to many industrial applications such as heat
exchangers or some types of nuclear reactors. The core of many classes of nuclear
reactors can be easily sketched as a bundle of rods, the fuel pins, inmmersed in
an axial flow of coolant that removes the heat produced by the fission reaction.
Coupling this geometry to an axial flow can trigger periodical vortices, known as
large coherent structures or gap vortex streets, that move on both sides of the gaps
between the rods. By crossing the gap (cross-flow), these vortices may enhance
the heat removal mechanism, thus improving the performance of the reactor.

However, coherent structures cause velocity oscillations in the flow that may in-
duce vibrations of the fuel rods, leading to their long term damage. The length
(or wavelength) of coherent structures is a key parameter for understanding the
interplay between these vortices and the vibrations that may be triggered on the
rods. Their wavelength determines the frequency of the velocity oscillations in the
fluid, hence of the external force imposed on the rods.

One of the reactor designs belonging to the next generation (Gen-IV) of nuclear
reactors is the Liquid Metal Fast Breeder Reactor (LMFBR). This reactor has
the fuel rods in the core arranged in a hexagonal matrix. In this design, a wire
is helicoidally wrapped around each fuel rod to keep them separated from each
other. The presence of the wire diverts part of the more turbulent flow from the
bulk towards the gap between the rods, where the flow would be otherwise less
turbulent. This enhances the heat exchange and avoids hot spots on the fuel
cladding.

A phenomenon known as migratory flow has been observed in rod bundles with
wire spacers. In the presence of migratory flow, the fluid is diverted from the
gap towards the main subchannel and it bends against the helicoid path of the
wire, thus leading to a very complex flow, where part of the fluid follows the wire
direction and part moves against it, away from the gap. Although this behaviour
was first observed years ago, the governing mechanism is not clear yet. Explaining
migratory flow is thus a fundamental step towards a general understanding of the
mixing and mass transfer phenomena in rod bundles in the presence of helicoid
wires.

This research considers several aspects of the flow inside rod bundle geometries.
The aim is to study coherent structures to understand their role in inducing vi-
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brations of the rods, and to provide a model that explains migratory flow caused
by helicoid wire spacers.

To these purposes, three experimental facilities are designed and built that work in
isothermal conditions, ambient pressure and with water as working fluid. The first
is a rectangular channel hosting two half-rods whose distance can be adjusted. A
second hexagonal bundle containing seven rods has the central rod made of flexible
silicone to study vibrations induced by the flow. The third facility is a hexagonal
bundle with seven rods, each of them equipped with a wire helicoidally wound
around them in order to measure and explain migratory flow.
The measurements are carried out with non intrusive optical systems. Laser
Doppler Anemometry (LDA) is used to measure the flow components in the rect-
angular channel with half-rods and in the hexagonal bundle without wire spacers.
For the latter, a high speed camera is also used to measure the amplitude and
frequency of the vibrations induced on the flexible rod by the flow. In the hexag-
onal bundle hosting wire spacers, planar (i.e. two dimensional) Particle Image
Velocimetry (PIV) is used to measure the flow near to the wire of the central rod
of the bundle. For all the three experiments, optical access is achieved by replac-
ing part of the material of the rods with Fluorinated Ethylene Propylene (FEP),
a Refractive Index-Matching (RIM) polymer that nearly matches the refractive
index of plain water. In this way, optical distortion of the light rays is greatly
reduced.

The measurements of the flow inside the channel hosting two half-rods show that
cross-flow of coherent structures across the gap decreases in frequency if the dis-
tance between the rods is increased.
This research shows that the wavelength of coherent structures becomes indepen-
dent of the flow rate above a certain value of the Reynolds number, and that it is
affected solely by the geometry of the channel. Performing dimensional analysis
of the problem, and supporting the reasoning with experimental evidence, has in-
creased our understanding of what determines the length of the structures. This
appears to be a function of only the hydraulic diameter of the gap region close
to which they form. This finding is presented in the form of a novel correlation
that predicts the length of coherent structures. This correlation is applicable to
a number of different geometries, ranging from channels with few rods to full rod
bundles.

The flow measurements in the hexagonal bundle (without wire spacers) show that
the frequency of passage of coherent structures in the axial direction increases with
the Reynolds number. If this frequency becomes equal to twice the first natural fre-
quency of rod, a drastic increase in the amplitude of oscillation is observed, which
can be ascribed to the synchronization between the rod and coherent structures
carried by the flow.

It is experimentally shown that for hexagonal rod bundles with helicoid wires, the
flow very close to the rod follows the helicoid path of the wire.
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However, if the measurement region is shifted closer to the main subchannel sur-
rounding the rod, the flow bends towards the wire, against the helicoid path,
suggesting the presence of migratory flow. A model to reconstruct the pressure
gradient caused by the wire, and responsible for the bending of the flow, is derived
from the steady-state, two-dimensional, inviscid Navier-Stokes equations applied
to the flow streamlines. Following a theoretical approach, an equation is derived
from this model to estimate the bending angle of the flow at any point inside the
measured area, based on the time-averaged flow fields. This equation has the form
of an integral evaluated along the path followed by a streamline. It shows how
the bending of a streamline at an arbitrary point is the result of the interaction
between the transversal pressure gradient, trying to bend the fluid, and the inertial
forces, trying to straighten it towards the direction of the main flow.
A possible correlation for estimating the bending angle of the flow is obtained with
dimensional analysis and with the support of the experimental results. Contrarily
to the theoretical model, this correlation relies on macroscopic variables, being the
bundle dimensions and the geometry of the subchannel.
Finally, this thesis suggests possible topics of interest for future research.
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Samenvatting

Stroming en warmteoverdracht langs bundels van buizen komt veel voor in in-
dustriële toepassingen zoals warmtewisselaars en kernreactoren. De kern van de
meeste kernreactoren kan eenvoudig beschreven worden als een bundel brandstof-
staven die ondergedompeld is in een axiale stroom koelmiddel. De bedoeling is
om op deze manier de warmte te verwijderen die wordt geproduceerd door de spli-
jtingsreacties in de reactorkern. Een axiale stroom in een dergelijke bundel van
brandstofstaven kan periodieke wervelingen veroorzaken, bekend als “grote coher-
ente structuren”, die aan beide zijden van de spleet tussen de brandstofstaven
bewegen. Deze wervelingen verbeteren de koeling van de reactorkern, waardoor de
prestaties van de reactor worden verbeterd. De coherente structuren veroorzaken
snelheidsschommelingen die op hun beurt trillingen van de brandstofstaven kunnen
veroorzaken. Degelijke trillingen kan leiden tot schade op de lange termijn. De
lengte (of golflengte) van coherente structuren is een belangrijke parameter voor
het begrijpen van de wisselwerking tussen deze wervelingen en de trillingen van de
brandstofstaven. De golflengte van de coherente structuren bepaalt namelijk de
frequentie van de snelheidsschommelingen in de vloeistof, en daarmee de frequentie
en kracht die op de staven wordt uitgeoefend.

Eén van de reactorontwerpen van de volgende generatie (Gen-IV) van kernreac-
toren is de Liquid Metal Cooled Fast Breeder Reactor (LMFBR). Deze reactor
heeft de brandstofstaven in de kern gerangschikt in een hexagonale matrix. In
dit ontwerp is een draad als een helix rond elke brandstofstaaf gewikkeld om ze
van elkaar gescheiden te houden. De aanwezigheid van deze zogenaamde “spacer”
leidt een deel van de turbulente stroming in de bulk naar de nauwe opening tussen
de staven, waardoor op deze plek een betere warmteoverdracht plaatsvindt en
waardoor hotspots in deze opening vermeden kunnen worden. Een fenomeen dat
bekend staat als migratiestroom is waargenomen in reactorbundels waar dergeli-
jke helixvormige draden aangebracht zijn. Door deze migratiestroom wordt de
vloeistof vlakbij het oppervlak van de brandstofstaaf van de opening naar de bulk-
stroming geleid, maar buigt deze vlak boven de draad in tegen de richting van de
draad. Hoewel dit gedrag jaren geleden al werd waargenomen, is het mechanisme
achter deze complexe stroming nog niet goed bekend. Het verklaren van deze mi-
gratiestromen is daarom een belangrijke stap op weg naar een beter begrip van
de warmte- en stofoverdracht in staafbundels waarbij helixvormige spacers worden
gebruikt.

xiii
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In dit onderzoek worden beide bovengenoemde aspecten bestudeerd. Het doel is
om de invloed van coherente structuren op het trillen van de brandstofstaven én
de migratiestroom veroorzaakt door de helixvormige spacers beter te begrijpen.

Ten behoeve van deze doeleinden zijn drie experimentele faciliteiten ontworpen
en gebouwd die werken onder isotherme omstandigheden, bij omgevingsdruk en
met water als vloeistof. De eerste faciliteit bestaat uit een rechthoekig kanaal
met twee halve staven waarvan de onderlinge afstand kan worden aangepast. De
tweede faciliteit is een zeshoekige bundel met zeven staven waarvan de centrale
staaf van flexibel siliconenmateriaal is gemaakt om de trillingen te kunnen bestud-
eren die worden veroorzaakt door de stroming. De derde faciliteit bestaat uit een
zeshoekige bundel met zeven staven, elk uitgerust met een helixvormige spacer om
de migratiestroom te kunnen bestuderen. De metingen van het snelheidsveld wor-
den uitgevoerd met niet-intrusieve optische systemen. Laser Doppler-anemometrie
(LDA) wordt gebruikt om de snelheidscomponenten in het rechthoekige kanaal
met halve staven en in de zeshoekige bundel zonder spacers te meten. In deze
zeshoekige bundel wordt tevens een hogesnelheidscamera gebruikt om de ampli-
tude en frequentie van de trillingen te kunnen meten die door de stroming op de
flexibele staaf worden uitgeoefend. In de hexagonale bundel met spacers wordt
planar (d.w.z. tweedimensionale) Particle Image Velocimetry (PIV) gebruikt om
de snelheidscomponenten nabij de spacer van de centrale staaf van de bundel te
meten. Voor alle drie de experimenten wordt optische toegang verkregen door
een deel van het materiaal van de staven te vervangen door Fluorinated Ethylene
Propylene (FEP). FEP is een brekingsindex-matching (RIM) polymeer dat een
brekingsindex heeft die bijna overeenkomt met die van gewoon water. Op deze
manier worden optische vervormingen sterk verminderd.

De metingen van de stroming in het kanaal met twee halve staven tonen aan dat de
frequentie van dwarsstroming (“cross flow”) door de coherente structuren afneemt
als de afstand tussen de staven wordt vergroot. Dit onderzoek toont aan dat
de golflengte van coherente structuren onafhankelijk wordt van de stroomsnelheid
boven een bepaalde waarde van het Reynoldsgetal, en dat deze alleen wordt bëın-
vloed door de geometrie van het kanaal. Het uitvoeren van een dimensieanalyse
van het probleem, welke ondersteund is door experimentele gegevens, heeft het
begrip van wat de lengte van de structuren bepaalt vergroot. Deze lengte lijkt
namelijk alleen een functie te zijn van de hydraulische diameter van de spleet
tussen de staven. Deze bevinding kan worden beschreven in de vorm van een
nieuwe correlatie die de lengte van coherente structuren voorspelt. Deze correlatie
is van toepassing op een aantal verschillende geometrieën, variërend van kanalen
met weinig staven tot volledige staafbundels.

De metingen in de zeshoekige bundel (zonder spacers) laten zien dat de frequentie
van coherente structuren in de axiale richting toeneemt met het Reynoldsgetal.
Als deze frequentie gelijk wordt aan tweemaal de natuurlijke frequentie van staaf,
wordt een drastische toename in de amplitude van de trillingen waargenomen.
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Deze toename kan worden toegeschreven aan de synchronisatie tussen de staaf en
coherente structuren.

Het is experimenteel aangetoond dat voor hexagonale staafbundels met helixvormige
spacers de stroming dichtbij de staaf het helixvormige pad van de spacer volgt.
Verder weg van de staaf buigt de stroom tegen de richting in van de spacer, het-
geen de aanwezigheid van migratiestroom aantoont. Een model voor de door de
draad veroorzaakte drukgradiënt, die verantwoordelijk is voor het buigen van de
stroom, is afgeleid uit de tweedimensionale, stationaire Euler-vergelijkingen die op
de stroomlijnen worden toegepast. Vervolgens is uit dit model een vergelijking
afgeleid om de buigingshoek van de stroming op elk punt in het gemeten gebied
te kunnen schatten. Deze vergelijking heeft de vorm van een integraal langs een
stroomlijn en laat zien hoe het buigen van een stroomlijn op een willekeurig punt
het resultaat is van de interactie tussen de transversale drukgradiënt, verantwo-
ordelijk voor het ombuigen van de stroming, en de traagheidskrachten. Een corre-
latie voor het schatten van de buigingshoek van de stroming kan worden verkregen
door middel van dimensieanalyse en experimentele resultaten. In tegenstelling tot
het theoretische model berust deze correlatie op macroscopische variabelen, zijnde
de bundeldimensies en de geometrie van het subkanaal.
Ten slotte worden in dit proefschrift mogelijke onderwerpen gesuggereerd die van
belang kunnen zijn voor toekomstig onderzoek.

(Dutch translation provided by Martin Rohde.)
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Chapter 1

Introduction

1.1 Motivation of this research

As a result of the development of the developing countries, and the associated
growth of the population, the electricity demand is expected to increase drasti-
cally in the next decades. The projections [1] of the International Atomic Energy
Agency (IAEA) foresee an increase of the worldwide capacity of nuclear-generated
electricity by 42% (reaching 554GWe) within 2030, and doubling the actual ca-
pacity by 2050. However, relying on more conservative projections, the capacity
might remain constant at nowadays’ levels. There is a big deal of uncertainty in
the figures because it is yet not clear whether the nuclear power plants scheduled
for decommissioning are going to be replaced by new nuclear capacity.

With the goal of pursuing safer and more sustainable nuclear energy, in the year
2000, the Generation IV International Forum identified six innovative designs of
nuclear reactors planned to be commercially available by 2040. These reactors
feature larger safety margins, pose an obstacle to nuclear proliferation, or are
capable of using nuclear waste generated by conventional reactors as fuel. This
generation of reactors could, thus, be part of a structured and long-term strategy
for reducing emissions, which is currently a rather far-fetched vision in Europe [3,
4]. The underlying goal is to keep the average global temperature increase below
the value agreed at the Paris Agreement of 2 ◦C.

One of the proposed designs is the Liquid Metal Fast Breeder Reactor (LMFBR).
The heat removed by the coolant, being sodium, lead, or an eutectic mixture of lead
and bismuth (LBE) converts water into steam that, in turn, generates electricity
through a spinning turbine (Figure 1.1). The core of a LMFBR typically contains
a large number of fuel assemblies, each consisting of a bundle of rods hosting the
fuel (fuel pins) arranged in a hexagonal lattice through which the liquid metal
coolant flows, parallel to the fuel pins (Figure 1.2a). The lattice is characterised
by the P/D ratio (ratio between the pin pitch and pin diameter). Due to the tight
assembly, one solution for keeping the rods from touching each other during normal
operation is to wrap an helicoid wire spacer around each of them (Figure 1.2b).
The coupling between an axial flow of fluid and such a geometry gives origin to a

1
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Figure 1.1: Schematic of the Liquid Metal Fast Breeder Reactor. Adopted from
[2].

(a) (b)

Figure 1.2: a) Sketch of one of the many hexagonal fuel assemblies hosted inside
the core. Adopted from [5]. b) Fuel rod with helicoid wrapped-wire. Public
domain, US DOE.

number of phenomena that need to be studied for the sake of a safe operation of
the reactor.

Streaks of relatively large periodical vortices may occur that, on one hand, are
beneficial for the safe operation of the core because they can enhance the mixing,
hence lowering the temperature of the fuel cladding. On the other hand, they can
induce vibrations of the fuel rods leading to damage by fretting and, eventually,
fatigue.

Moreover, the presence of the helicoid wire makes the flow even more complex to
understand and to model due to the additional motion of fluid across the gaps
between the rods.

This experimental work aims at studying large coherent structures and their role
in inducing vibrations in rod bundles, as well as the effect of helicoid wires on the
flow.
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1.2 Vortex streets in a rod bundle geometry

Rod bundle flows occur in industrial applications, such as heat exchangers or LWR
and Generation IV (Gen-IV) nuclear reactors. When geometries such as the core
of a nuclear reactor are coupled with an axial flow we refer to it as rod bundle
flow.
The presence of an axial flow leads to velocity differences between the low-speed
region of the gap between two adjacent rods, and the high-speed region of the
main sub-channels. This velocity difference produces a shear layer between the
two flow regions, leading to streaks of vortices carried by the current. Generally
these vortices (or flow structures) occur on both sides of the gap enclosed by two
neighbouring rods, identifying the so-called gap vortex streets [6], also known as
coherent structures. They look similar to the well-known Von Karman streets
shedding in the wake of a bluff body in the presence of a transversal flow (Figure
1.3) immersed in a current of fluid.

Figure 1.3: Photograph of the Von Karman streets; the camera is moving with
the main flow speed. Adopted from [7].

The mechanism responsible for their formation inside a rod bundle can be com-
pared to the Kelvin-Helmholtz instability that occurs between two parallel layers
of fluid moving with different speeds [8] (Figure 1.4).

Figure 1.4: Kelvin-Helmholtz instability arising from two layers of water with
different velocities, being the upper one the fastest. Adopted from [7].

An inflection point in the stream-wise velocity profile is a necessary condition
(although not sufficient) to have these coherent structures, as predicted by the
Rayleigh’s instability criterion [9]. Unlike free mixing layers, gap vortex streets
are stable along the flow, hence the adjective coherent.
Research has widely covered the topic of coherent structures in rod bundles, both
experimentally and numerically. Rowe measured coherent flow structures through
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a gap where the P/D was adjustable to 1.125 and 1.250 [10]. Rehme investigated
the axial flow of air inside a rectangular channel with four rods [11]. He detected
coherent structures in the flow responsible for the lateral mass and momentum
transfer across the subchannels that were affected by the P/D ratio. Rehme pro-
posed a static pressure instability mechanism to account for the formation of these
structures. Möller conducted experiments in a similar setup to study the formation
of coherent structures [12]. Velocity and wall-pressure fluctuations were measured
and coherent structures were found to occur near the gap between two rods. He
adopted the term metastable equilibrium to describe the instantaneous velocity and
vorticity difference caused by these structures. Möller also pointed out that vibra-
tions of the fuel elements might occur if the natural frequency of the pins is close
to the oscillating pressure field’s frequency due to the periodic structures in the
flow. Later, Choueiri and Tavoularis made use of flow visualization techniques: the
structures formed near to the gap region and the boundary between the low-speed
and high-speed fluid oscillated as they moved downstream [13].

A lateral (span-wise) movement of coherent structures across the gap between the
rods may also occur, which is often referred to as cross-flow. In a nuclear reactor,
cross-flow is the mechanism responsible of enhancing the lateral mixing between
subchannels, decreasing the temperature on the fuel rod’s outer cladding, and
improving the overall safety of the plant. Gosset [14] and Piot [15] investigated
such lateral mass transfer across an eccentric annular gap with flow visualization
techniques. The instability mechanism responsible for cross-flow was found to be
dependent on a critical Reynolds number, strongly affected by the geometry of the
gap. Baratto investigated the air flow inside a 5-rod model of a CANDU (CANa-
dian Deuterium Uranium) fuel assembly [16] finding that the frequency of passage
of the coherent structures decreases with the gap size, along the circumferential
direction around the rod.

Mahmood studied coherent structures and the inter-channel mixing in a square
rod bundle over a range of Reynolds numbers [17]. One of his main findings was
that the length (or wavelength) of coherent structures does not depend on the
Reynolds number for values higher than 2000. The wavelength is affected merely
by the geometry of the channel. These findings were consistent with those of Meyer
[18] and Guellouz [19]. Later, Choueiri and Tavoularis studied the flow instability
through the gap of an eccentric rod inside a circular channel [13, 20]. They found
that the velocity fluctuations along the span-wise direction in the centre of the
gap were varying in time with a rate twice as low compared to those in the axial
direction. This was consistent with the model previously proposed by Meyer [18]
of coherent structures regarded as counter-rotating vortices on either side of a gap.

Parallel numerical efforts have been made by Chang and Tavoularis with Unsteady
Reynolds-averaged Navier Stokes (URANS) [21] and by Merzari and Ninokata with
Large Eddy Simulations (LES) [22] to reproduce the complex flow inside such a
geometry. However, the effects that gap geometry, in particular the P/D ratio, has
on cross-flow has been debated long since and yet, a generally accepted conclusion
is still seeked.
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1.3 Fluid-structure interaction

An axial flow inside a rod bundle (typical of a nuclear reactor’s core) induces os-
cillations of the rods due to the action of turbulence. This type of Fluid-Structure
Interaction (FSI) is known as flow-induced vibration (FIV) and can be further clas-
sified in instability-induced excitations (IIE) or extraneously-induced excitations
(EIE), following the Naudascher & Rockwell classification [23]. EIE are caused
by pressure or velocity fluctuations in the main flow (not caused by movements of
components of the bundle or by flow instabilities). Instability-induced excitations
are due to local flow instabilities such as vortex shedding in the wake of a cylinder.
There is also a third category termed movement-induced excitations (MIE) caused
by the movement of the object itself, which drives the phenomenon (i.e. the flut-
tering wing of an airplane). Obviously the border between the three classes is not
strict, especially between EIE and IIE, since these categories share some common
aspects [24].
In order to summarise the behaviour of the rods in the presence of an axial flow,
the description provided by De Ridder et al. may help [25]. It describes the case
of a solitary cylinder placed inside an outer cylindrical channel. For very low flow
velocities, the rod stays in the center of the channel. As the velocity increases, the
rod exhibits small oscillations induced by the turbulent flow. When the velocity

The onset of divergence can be deduced from the experimental values by using three different methods (Modarres-
Sadeghi et al., 2008). The first method consists of drawing a parabolic curve through the experimentally measured
frequencies. The crossing with the x-axis (zero-frequency) will provide the buckling point. The second method is to look at
the measured displacement and draw two straight lines. One in the low velocity range and one in the buckling range. The
intercept of the two lines indicates the departure from turbulence-induced vibrations to a buckling instability. The final and
most pragmatic approach consists of putting a displacement threshold above which the cylinder is considered unstable.
Needless to say, all three methods suffer from inaccuracies, yet they all provide useful information.

3. Methodology

In this paper, the modal characteristics of a cylinder in the unstable region are determined with the methodology
published earlier in De Ridder et al. (2013). Briefly summarized, this methodology consists of four steps:

1. Compute in-vacuum eigenmodes.
2. Deform solid and fluid domain with scaled eigenmode.
3. Compute the free vibration decay (wðz; tÞ).
4. Fit a modal expression to the computed decay (wðz; tÞ #

P
aiðzÞe$ cit sin ðωitþϕiðzÞÞ).

Initially, the in-vacuum eigenmodes of the structure are calculated. These modes are used to deform the solid and the
fluid domain. The deformed solid and fluid domain serve as initial conditions for a coupled computational fluid dynamics
(CFD) – computational solid mechanics (CSM) computation using a partitioned but fully coupled approach (Degroote et al.,
2009), in which the free vibration decay is thus computed. The final step is the fitting of a modal expression to the computed
decay. Note that the initially imposed in-vacuum mode of the structure alone does not necessarily agree with the modes of
the fluid and structure together.

In the CFD-part, the Reynolds-averaged Navier–Stokes equations are solved, where the turbulence is modeled by the k–ω
SST model of Menter (1994). As turbulent eddies are not explicitly resolved, it is impossible to predict the turbulence-
induced vibrations part in Fig. 1 with the present computations. As inlet conditions, a very low inlet turbulence level is
applied, so that turbulence in the flow is generated by the developing boundary layer on the cylinder. The influence of inlet
turbulence intensity is explicitly checked in Sections 4.1 and 7.2. The equations are all of second-order accuracy, both in time
and in space. The CSM-computations are performed with quadratic solid elements and the backward Euler time integrator.
The CFD-code used throughout this work is Fluent 14.5, Ansys Inc., the CSM-code Abaqus 6.12, Simulia and the coupling
code is an in-house code, employing the IQN-ILS algorithm, as described in Degroote et al. (2009).

The grids used for the simulations are plotted in Fig. 2. The construction of the meshes is based on a previous
convergence study in De Ridder et al. (2013). Furthermore, computing lift forces on a rigid but tilted geometry with the
standard mesh and a mesh twice finer in all directions, so with eight times more degrees of freedom, yielded forces with
only two percent difference. Coupled simulations with the standard and a coarser mesh provided similar results, except for
the fluttering range, which is sensitive to even small changes in lift force.

The parameters which are used throughout the simulations are listed in Table 2. The non-dimensionalization used is the
same one as in Modarres-Sadeghi et al. (2008):

β¼
ρAf

ρAf þm
; Γ ¼

TL2

EI
; ϵ¼

L
Do

; u¼
ρAf

EI

! "1=2

vL; h¼
Do

Dh
; Π0 ¼

EAsL2

EI
; ð1Þ

in which ρ is the fluid density, ρAf being the added mass of the fluid per unit length, with Af the cross-section of the cylinder
in the fluid (¼ πD2

o=4), m the cylinder's mass per unit length, T the external tension applied on the cylinder, E Young's
modulus, I the area moment of inertia, v the mean axial flow speed, L the cylinder's length, Do the outer diameter of the

Fig. 1. Sketch illustrating the different dynamic zones. The left figure shows the change in eigenfrequency with increasing flow velocity and the right one
the maximal amplitude of the cylinder's vibrations as a function of flow velocity.

J. De Ridder et al. / Journal of Fluids and Structures 55 (2015) 139–154 141

Figure 1.5: Natural frequency and maximum displacement of a rod inside a
concentric channel depending on the flow speed. Adopted from [25].

is increased, the amplitude will also increase and, at a specific critical velocity, the
rod will buckle to one side. Simultaneously, its natural frequency will drop to zero.
For flow velocities lower than the critical value, the observed vibrations are called
sub-critical. Beyond the critical point, the system enters the so-called divergence
regime: the rod positions itself back at the center of the channel. If the velocity is
increased even further, the rod starts to flutter around the central position with
much larger oscillations (analogously to a fluttering hose for watering the garden).
The aforementioned process is shown in Figure 1.5. The sub-critical vibrations are
generally characterised by a narrow frequency spectrum close to the ground mode
value of the rod [26].
In a rod bundle the situation is more complex because of the presence of the
surrounding rods. Their effect is to confine even more the considered rod, in-
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creasing the damping and reducing the rod’s natural frequency. FIV have been
widely studied [26, 27] and, recently, Paidoussis wrote a two-volumes handbook
collecting most of the knowledge and literature on the subject [24, 28]. However,
little has been done to address the specific issue of vibrations induced by coherent
structures.

When periodical structures occur in the flow, and their frequency (i.e. rate of
passage) is close to the natural frequency of the rod, the amplitude of oscillation is
expected to increase drastically. If coherent structures have a length comparable in
magnitude with the axial dimension of the rod assembly, they may cause resonance
in the first and most energetic mode. Conversely, the presence of shorter, multiple
coherent structures on either side of the rod could diminish their effect on the
most energetic mode (although they might still cause oscillations at higher, less
energetic modes of vibration).

Figure 1.6: The bridge over the Tacoma Narrows before its collapse: the fre-
quency of oscillation of the bridge modulated the shedding frequency with which
vortices of air were being shed downstream. This led to a self-excitation which
eventually led to the collapse of the structure even though the frequency of oscil-
lations did not match the natural frequency of the bridge. Adopted from [29].

When the shedding frequency of vortices (coherent structures in the case of this
work) synchronises with the natural frequency of the rod, this flow-induced insta-
bility is referred to as lock-in condition, also known as synchronization.

The shedding frequency of vortices can also differ from the natural frequency of
the system, and yet the system can still undergo sustained oscillations. In this
case the phenomenon can be regarded as a a self-excitation where the periodic-
ity of the external force imposed on the system is modulated by the oscillation
itself [30]. An example is the collapse of the Tacoma Narrows bridge: there the
shedding frequency of the vortices formed in the downstream was modulated by
the oscillation of the bridge (Figure 1.6), even though the latter was far from the
natural frequency [30].
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1.4 Influence of the helicoid wire wrapper

Due to the tight arrangement of fuel rods inside the core of a LMFBR, either
spacing grids positioned at a specified distance or wrapping wires are used to
ensure space among the fuel elements. When the latter solution is pursued, a wire
is wrapped helicoidally around each rod to prevent the fuel rods from touching each
other due to swelling or buckling of the fuel elements during the reactor operation.
If the rods come into contact with each other, the flow speed is locally decreased
and the heat transfer deteriorates, leading to hot spots and possible damage on
the fuel cladding.
Over the years, considerable efforts have been dedicated to investigating wire-
wrapped rod bundles to understand how the wire spacers affect the flow of coolant
through the core. A comprehensive review of both experiments and numerical
studies was provided by Moorthi et al. [31]. Sato et al. [32] performed Particle
Image Velocimetry (PIV) measurements inside a 7-rod, wire-wrapped hexagonal
bundle obeserving that the flow follows the wrapping wire’s direction. The flow
inside a 61-rod, wire-wrapped hexagonal bundle was extensively studied at Texas
A&M University for code validation [33], and for studying vortical structures that
may occur in the flow [34, 35]. Computational Fluid Dynamics (CFD) has focused
on modelling the flow around a single wrapped-wire pin [36, 37], and on simulating
the entire bundle for validation purposes [38, 39, 40, 41]. Recent CFD calculations
revealed a very complex flow where the main flow follows the helical path of the
wire wraps [42, 43].
Although the flow is mostly found to follow the direction of the wrapped wire,
Ohtake et al. observed a flow bent against the direction of the wire [44]. This
was called “migratory flow” and it was found to depend on the position of the wire
around the rod. Similar findings were described in the numerical work of Song et al.
for a 37-rod, wire-wrapped hexagonal bundle [45]. This interesting phenomenon
was ascribed to the hydraulic resistance caused by the relative position of the wire
inside the subchannel of the bundle. However, a physical explanation of migratory
flow was not provided and it is still missing.

1.5 Scope of this work and thesis outline

The main aspects covered by this research are:

1. The effects of Reynolds number and P/D ratio on frequency and size of
coherent structures are investigated in a rectangular channel hosting two
half-rods whose distance can be adjusted.

2. Predicting the wavelength of the coherent structures occurring in a rod bun-
dle flow is also of primary importance for both designing experiments, and
safely operating a nuclear power plant. Therefore, a new correlation for es-
timating the size of the coherent structures has been derived and validated
against the experiments of this work and performed on different geometries
available in literature.
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3. The role of coherent structures in inducing vibrations of the fuel rods is of
primary interest for the safety of the reactor. Hence the role of coherent
structures in flow-induced vibrations is studied in a 7-rod hexagonal bundle.

4. The complex, yet unexplained, migratory flow observed in rod bundle with
helicoid wire spacer has been investigated and modelled in a 7-rod wire-
wrapped, hexagonal bundle with the help of both experiments and a theo-
retical approach.

The outline of the thesis is as follows:

Chapter 2 describes the experimental study carried out with a setup consisting
of two half-rods facing each other inside a rectangular channel. The flow inside the
gap between the rods is studied with Laser Doppler Anemometry (LDA) to assess
the effects of Reynolds number and gap spacing on the size of coherent structures
as well as on cross-flow. Several Reynolds numbers with three P/D ratios are
investigated, being 1.07, 1.13, and 1.20, are studied.
Chapter 3 is about the design and the making process of the two hexagonal rod
bundles employed for the experiments described in the following chapters of the
thesis. Both the bundles have P/D=1.11. One setup hosts a flexible section in the
central rod to study FSI, whereas the second has a helicoid wire wrapped around
each rod to study migratory flow.
Chapter 4 describes the experimental campaign carried out with LDA to measure
the size of coherent structures occurring in the flow in order to validate a newly
derived correlation to predict their wavelength. A high speed camera is employed
to measure vibrations induced on the central rod of the bundle (i.e. frequency and
amplitude) at several Reynolds numbers.
Chapter 5 describes the experiments performed with PIV in a 7-rod, wire-
wrapped hexagonal bundle. The bending of the flow due to the action of the
wire is measured near the central rod. A model for predicting the pressure gradi-
ent induced by the wire and for estimating the bending angle of the flow is derived
and validated against the experiments.
Chapter 6 presents the main findings of this work, and provides recommendations
for future studies.
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1.6 Nomenclature

Symbols Description
P/D Ratio between the pitch and the diameter of the half

rods

Acronyms Description
CANDU CAnadian Deuterium Uranium
CFD Computational Fluid Dynamics
DOE Department Of Energy
EIE Extraneously-induced excitation
FIV Flow-induced vibration
FSI Fluid-structure interaction
Gen-IV Generation IV
IAEA International Atomic Energy Agency
IIE Instability-induced excitation
LBE Lead-bismuth eutectic
LDA Laser Doppler Anemometry
LES Large Eddy Simulations
LMFBR Liquid Metal Fast Breeder Reactor
LWR Light Water Reactor
MIE Movement-induced excitation
PIV Particle Image Velocimetry
URANS Unsteady Reynolds-averaged Navier Stokes

Non
dimensional
groups

Description

Re Reynolds number
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Chapter 2

Vortex streets in a two
half-rods compound channel

2.1 Introduction and motivation

Rod bundle flows characterise the core of LMFBR, PWR, BWR or CANDU reac-
tors, as well as steam generators employed in the nuclear industry. In the presence
of an axial flow of a coolant, this geometry leads to velocity differences between
the low-speed region of the gap between two rods and the high-speed region of the
main sub-channels. Moreover, a transversal flow of coherent structures across the
gap between two rods can also occur. In a nuclear reactor cross-flow is important
as it enhances the heat exchange between the nuclear fuel and the coolant. As
a result, the fuel temperature decreases improving the safety performance of the
reactor. Much research has been done in studying periodic coherent structures
and gap instability phenomena in rod bundles resembling the core of LMFBRs,
PWRs, BWRs and CANDUs [10, 11, 12, 16, 14, 15]. However, the effects that the
gap spacing and the Reynolds number have on coherent structures and cross-flow
is still unclear.

Therefore, this chapter presents the experimental work carried out in order to
detect coherent structures and cross-flow inside a single gap between two half-rods
facing each other. The distance between the rods, defined by the pitch-to-diameter
ratio P/D, can be adjusted to three values. Near-wall measurements in water are
performed with the non-intrusive Laser Doppler Anemometry (LDA) measurement
system. The optical access is achieved by using Fluorinated Ethylene Propylene
(FEP), whose refractive index matches the water’s in order to minimise distortion
of light.

The content of this chapter has been published in Nuclear Engineering and Design 326 (2017),
pp. 17-30. DOI:10.1016/j.nucengdes.2017.10.023

11
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2.2 Experimental apparatus

The CAMEL experimental loop consists of the test setup and the Laser Doppler
Anemometry (LDA) system. The test section is a rectangular channel with two

(a) (b)

Figure 2.1: a) Main subchannels and central gap defined by the two half-rods.
b) Hollow half-rod of FEP seen from the outside of the transparent test section:
of the two half-rods the top grey one is the rod hosting the FEP section.

half-rods facing each other (Figure 2.1a), whose distance (P/D) can be adjusted.
The water enters the facility from two inlets at the bottom and flows inside the
lateral subchannels and through the gap defined by the rods. The flow rate is
manually adjusted by two valves at the inlet lines and monitored by two pairs
of magnetic flow-meters (Rosemount, USA) for inlet and outlet lines. At the
measurement section, one of the two half-rods is made of FEP (Adtech Polymer
Engineering), shown in Figure 2.1b, to match the refractive index of the water. A
scheme of the loop is sketched in Figure 2.2a. FEP has the same refractive index
of water at 20° (ηFEP=1.338 [17]; η=1.333 [46] with 532nm wavelength), so it can
be used to minimise the refraction of the laser light when the measurements are
performed through the half-rod (Figure 2.2b). To reduce the distortion of light
even more, the FEP half-rod is filled with water. The spacing between the rods
can be adjusted to P/D ratios of 1.07, 1.13 and 1.20. The measured quantities are
the stream-wise and span-wise velocity components and their fluctuations. The
dimensions of the test section are given in table 2.1.
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Figure 2.2: a) CAMEL test loop: a centrifugal pump provides the flow regulated
by two valves operated manually at the inlet branches and monitored by 4 magnetic
flow-recorders (FR). The water flows out from the top of the test section and it
is collected inside a vessel. b) Part of the half-rod is replaced by FEP to let the
laser light through during the measurements.

Table 2.1: CAMEL main dimensions. D: half-rod diameter, L: Perspex box
long side, H: Perspex box short side, tPMMA: Perspex wall thickness, tFEP: FEP

half-rod wall thickness, δ : gap spacing, P/D: pitch-to-diameter ratio.

Parameter Value Dimension

D 15 mm
L 58.2 mm
H 26 mm
tPMMA 8 mm
tFEP 0.3 mm
δ (P/D=1.07) 1 mm
δ (P/D=1.13) 2 mm
δ (P/D=1.20) 3 mm
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2.3 Laser Doppler Anemometry system

The measurement system is a 2-components LDA system (DANTEC, Germany):
a green laser beam pair (wavelength of 561nm) measures the stream-wise velocity
component and a yellow laser beam pair (wavelength of 532nm) the lateral com-
ponent with a maximum power of 300mW. The measurement settings are chosen
through the BSA Flow Software. The flow is seeded with particles to scatter the
light and allow their detection inside the measurement volume. Borosilicate glass
hollow spheres with an average density of 1.1gcm−3 and a diameter of 9− 12µm
are employed. The measurement region is formed by the two overlapping laser
beams, forming an ellipsoidal measurement volume (or probe). In this region, the
two beams form fringes whose distance df is known through the following relation:

df=
λl

2sinα
, (2.1)

where λl is the wavelength of the laser light and α is the half-beam angle. If a
particle goes through the measurement volume, the light that is scattered back has
a different wavelength than the one hitting the particle. This difference depends
on the particle’s velocity according to the Doppler effect (see Figure 2.3). The
reflected light is collected by the receiving optics and converted into an electric
current, called Doppler burst. This is a signal oscillating in time with frequency
fD. Finally, the velocity of the particle in a plane perpendicular to plane of the
laser beam is calculated as

v=df · fD. (2.2)

A schematic of the LDA system is shown in Figure 2.3. The frequency of the light
of one laser per pair is shifted to detect also the direction of motion of the particle.
The LDA is moved by a traverse system and, to provide a dark background, the
whole apparatus is enclosed by a black curtain.

2.3.1 LDA uncertainty

The uncertainty on the measurements has different expressions for mean velocities
and root mean square values. They are defined as [48]

σv=
σ√
N

=

√
1

N(N−1)

N

∑
i=1

(vi− v)2
σrms=

σv√
2N

, (2.3)

where σv and σrms are the uncertainty on the mean value and on the root mean
square of the velocity components, σ is the standard deviation of the measured
samples, N is the number of samples, and v is the mean velocity value.
Each measurements point is measured for a time window long enough to achieve
sufficiently narrow confidence intervals. At high flow rates the recording time is
set to 30s whereas, for low flow rates, the recording time is as long as 120s. The
most critical conditions are encountered at very low Reynolds numbers and in the
centre of the gap because the laser beams must pass the FEP half-rod (see“path A”,
Figure 2.4a ). Here, the maximum σrms is 1.5%. The lower the Reynolds number,
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Figure 2.3: Schematic of LDA measurement system. Image modified from [47].
Doppler effect: the frequency of light reflected by a moving particle differs from
the one impinging on the target.

the more samples are required and the longer the acquisition time is. With a P/D
of 1.20 (i.e. 3mm gap spacing, see table 2.1), for example, σv=0.8% for the stream-
wise component and becomes σv=0.5% when measuring from the side (path B).
The span-wise velocity exhibits even more significant uncertainties since it is always
characterised by near-zero values. σv increases when the measurement volume
approaches the wall (lower data rate) and if the gap width is reduced (see Figure
2.4a). In the latter case, the issue of the light reflected into the photodetector can
be tackled to some extent (see section 2.5.5).

2.3.2 Slotting technique

One of the most common techniques for computing the frequency spectrum of
a signal is the Fast Fourier Transform (FFT), which requires regularly-sampled
data. However, with LDA measurements, the inter-arrival time (time between two
detected particles) is not constant as it depends on when the particle is carried
through the measuring laser probe by the flow. This issue can sometimes be
overcome by applying the sample-and-hold algorithm to the original velocity signal.
This means that the velocity of each sample is kept constant (“hold”) until the
next particle is detected. The entire signal is then resampled with constant time
intervals, and then the FFT is applied.
However the sample-and-hold technique followed by FFT works well only with
high data rate. If the data rate is low or if the inter-arrival times differ by much,
the effect of the so-called white noise on the spectrum becomes more important
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[49]. The longer the “hold” phase, the more the re-sampled signal is biased with
respect to the real one.
Alternatively, one can calculate the discretized autocorrelation function of the
velocity by means of the Slotting technique [50], and then use the Fourier transform
to compute the spectrum. Sample pairs with inter-arrival time falling within a
certain time interval (lag time) are allocated into the same time slot of width ∆τ,
hence the name of the method. Then the ensemble average of the cross-products
falling within each slot is calculated as

ρac (k∆τ)=
∑vi (ti)v j (t j)

Nslot
k=0,1,2, . . .M−1, (2.4)

where ρac (k∆τ) is the autocorrelation coefficient for the time slot k∆τ, vi (ti)v j (t j)
are the cross-products whose arrival time differences falls within the considered
lag time. In mathematical terms that is

∆τ (k− 1/2)≤ti− t j≤∆τ (k + 1/2) .

The frequency spectrum is then calculated as

S=
∆τ

π

[
1
2

ρac (0)+
M−1

∑
k=1

ρac (k∆τ)cos(2π f k∆τ)

]
. (2.5)

The randomness of the sampling process increases the variance of the spectrum.
This can be reduced by increasing the mean seeding data rate through the probe.
However, this is not always possible, especially in regions characterised by low
velocity (i.e. the centre of the gap) or with low flow rates. Therefore, the so-called
Fuzzy algorithm is implemented in the Slotting technique. Cross-products with
inter-arrival time closer to the centre of a slot contribute more to the autocorrela-
tion estimation [51, 52].
Generally the spectrum can also be biased towards higher velocities (i.e. higher
frequencies) since the amount of high speed particles going through the measure-
ment probe is larger than for low speed particles [49]. Hence, their contribution
to the spectrum would be higher than in reality. The Slotting technique hereby
implemented adopts the transit time algorithm to weight the velocity samples by
their residence time within the measurement probe to decrease the velocity bias.

2.4 Measurement campaign

The measurements are conducted along two paths: along the symmetry line of the
gap, from one sub-channel to the other, and at the centre of the gap along the rod-
to-rod direction. For each P/D ratio, different flow rates, hence different Reynolds
numbers, are studied. The first series of measurements is done by shooting the
laser through the FEP half-rod (Figure 2.4a) and by mapping the symmetry line
through the gap.
The second series of experiments is done with the light entering the setup through
the short Perspex side (Figure 2.4b), without crossing the FEP. In this case the
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Figure 2.4: a) Top view of the measurement crossing the FEP. The ellipsoidal
measurement volume is represented as well; the solid line represents the laser beam
(sketch not drawn to scale). b) Top view of the measurement without crossing the
FEP. The measurement paths followed by the laser probe are the dashed lines.

measurements are performed along both the symmetry line through the gap and
normal to the rods at the centre. The Reynolds number of the bulk flow, Re, is
calculated based on the bulk velocity:

Re=
ρ ·Vb ·Dh

µ
, (2.6)

where ρ is the water density, µ is the water dynamic viscosity, Vb is the bulk
velocity calculated as Vb=Q/A where Q is the total flow rate and A is the total
flow area, Dh≡4A/Pw is the hydraulic diameter of the test section, being Pw the
wetted perimeter. The Reynolds number of the gap region, Regap, is calculated as

Regap=
ρ · vgap ·D∗h

µ
, (2.7)

where D∗h is the hydraulic diameter of the gap region defined by the flow area
bounded by the two half-rod walls and closed by the gap borders at the rod ends.
vgap is the average stream-wise velocity through the gap region, which is the average
of the surface average of the stream-wise velocity v(x,z) measured over the area A
shown in Figure 2.5 at discrete locations by moving the laser probe through the
measurement section. The average stream-wise gap velocity vgap is calculated as

vgap=
1

Agap

z2ˆ

z1

xRˆ

xL

v(x,z)dxdz, (2.8)

where xL, xR, z1, z2 are the coordinates defining the area A, and v(x,z) is the result
of the measurements.
Q, Re, Vb and Regap for the three P/D ratios are reported in table 2.2.
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Figure 2.5: Top view of the flow area over which vgap is measured at discrete
locations to estimate the gap Reynolds number.

Table 2.2: Q: flow rate; Re: Reynolds number of the main subchannel based on
the bulk velocity Vb; Regap: Reynolds number of the gap region estimated for the

three P/D ratios.

Q [m3 s−1] Re Vb
[
ms−1

] Exp. Regap
P/D=1.07 P/D=1.13 P/D=1.20

9.60e−4 29000 0.79 3000 3800 5000
6.80×10−4 20000 0.56 2160 2750 3400
3.80×10−4 12000 0.31 1100 1500 1760
2.20×10−4 65000 0.18 580 880 930
1.20×10−4 3600 0.10 310 400 600
0.80×10−4 2400 0.07 130 200 470
0.40×10−4 1200 0.03 100 100 190
0.20×10−4 600 0.02 30 50 130

2.5 Results and discussion

2.5.1 Stream-wise velocity r.m.s. through the gap

The stream-wise velocity component v and its root mean square v
′
rms are measured

along “path A, No-FEP” (Figure 2.4b). The data are then corrected for the re-
fraction of light due to the Perspex wall (later discussed in section 2.5.6). The
main subchannels are located at |x/D|=1, where the stream-wise velocity profile
reaches the highest value, whereas the gap borders are at |x/D|=0.5. The centre of
the gap is at x/D=0, where the minimum in the velocity profile is measured. The
normalised difference between the velocity in the bulk and in the gap increases if
either the Reynolds number or the P/D decrease.

Figure 2.7 compares the results obtained with this geometry and the geometry
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Figure 2.6: Stream-wise velocity component against the normalised horizontal
coordinate x/D along the gap. a) Re=29000, b) Re=12000, c) Re=6500, d) Re=
2400. The data are normalised by the bulk velocity.

used by Mahmood [17] at similar values of Re. The normalised velocity difference
between the bulk region and the gap centre is larger with the two half-rods ge-
ometry (5) than with only one half-rod (×); this is more evident with the lower
Reynolds number. The effect of the gap size on the normalised velocity difference
is further discussed in section 2.5.4 with the aid of Figure 2.17.

The profiles of the stream-wise and span-wise velocity components shown Figure
2.8 , v

′
rms and u

′
rms respectively, correspond to P/D=1.07; the horizontal coordinate

is normalised by the rod diameter D.

Both profiles of Figure 2.8a have two peaks at the borders of the gap (|x/D|=0.5)
and a dip region in the centre. As the measurement approaches the walls of the
Perspex encasing (|x/D|>1) the v

′
rms increases like in common wall-bounded pipe

flows. The water enters the facility via two bent rubber pipes next to each other.
The bend causes a non-zero lateral momentum transfer among the subchannels
that is responsible for the asymmetry of the v

′
rms profile at |x/D|≈0.5 (Figure 2.8a).

The lower Re case reported in Figure 2.8a exhibits a symmetric v
′
rms profile with

respect to the gap centre. If the P/D ratio is increased to 1.13 and 1.20, the v
′
rms

profile appears symmetric (Figure 2.9). The gap region acts as a damping region
for flow oscillations [14], especially with smaller gaps where the confinement of
lateral momentum within the sub-channel is more dominant. If the gap size is
increased, such transversal components may redistribute more freely among the
subchannels, which may explain why the v

′
rms profile is more symmetric with larger

gaps.
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Figure 2.7: Comparison between the stream-wise velocity profile with P/D=1.13
and experiments from Mahmood [17]. a) Stream-wise velocity normalised by the
bulk velocity at Re=3600 compared with data obtained at Re=3440. b) Stream-
wise velocity normalised by the bulk velocity at Re=12000 compared with data
obtained at Re=15400. Data from [17] are obtained from a similar geometry
consisting of one half-rod.

2.5.2 Stream-wise velocity r.m.s. from rod to rod

The v
′
rms is measured for each P/D ratio and flow rate at the centre of the gap,

from rod to rod. The results for each Re value are plotted against the rod-to-
rod coordinate z, normalized by the gap spacing δ . The flow shows some analogy
with common wall-bounded flows in that it features two near-wall peaks where the
viscous stresses equal the Reynolds shear stresses [53] and the turbulent production
is the highest. A dip occurs in the centre for Re=29000, Re=20000 and Re=12000
(Figure 2.10). v

′
rms decreases approaching the rod walls due to the viscous sub-

layer: velocity fluctuations can still be detected inside this region but they are
produced in the outer log-layer region [54]. With Re=12000 and P/D=1.07, a

weak third peak in the v
′
rms appears between the rod walls. As Re is decreased to

6500, this additional peak becomes clearer and dominant over the near-wall peaks.
The v

′
rms profiles for P/D=1.13 and P/D=1.20 do not display such a peak, although

the near-wall peaks become less sharp. The results of the measurements performed
with the four lower Reynolds numbers are reported in Figure 2.11. The v

′
rms profile

with Re=3600 increases towards the centre of the gap for P/D=1.07 and P/D=1.13,
whereas the case with P/D=1.20 still displays a weak dip. If Re is further decreased
to 2400 the P/D ratios have all the same increasing trend towards the centre. With
Re=1200 and Re=600, the v

′
rms profile varies significantly depending on the P/D

ratio. The central v
′
rms peak can be originated by the transport of turbulence

from the borders of the gap region (where the production is higher) towards the
centre by means of cross-flow. The analysis of the frequency spectrum of the span-
wise velocity component can confirm this assumption: the periodical transversal
flow would appear as a peak in the frequency spectrum of the measured velocity
component [12, 16].
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Figure 2.8: a): v
′
rms/Vb and u

′
rms/Vb profiles along the gap; P/D=1.07, Re=29000.

The asymmetry in the stream-wise v
′
rms/Vb is due to the lateral momentum com-

ponent of the flow in the main sub-channels. b): v
′
rms/Vb and u

′
rms/Vb profiles along

the gap; P/D=1.07, Re=3600.
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Figure 2.9: v
′
rms/Vb and u

′
rms/Vb profiles along the gap; P/D=1.20, Re=29000.

2.5.3 Cross-flow pulsations through the gap

The study of the autocorrelation function and the frequency spectrum of the span-
wise (lateral) velocity component u is a powerful method to detect and characterize
periodicities in the flow. The frequency spectrum of u is calculated with the
Slotting technique [55, 50, 56]. The span-wise velocity is measured across the FEP
half-rod (“path A, FEP”), as shown in Figure 2.4a, at several points between the
bulk region of the flow and the centre of the gap; the spectrum is then calculated.

The spectra exhibit a peak at different measurement locations near the centre for
Re≤6500, as shown in Figure 2.12. The peak in the power spectra proves that
there is a low-frequency periodic behaviour in the span-wise velocity component
of the flow near the centre of the gap. This can be the result of large coherent
flow structures forming near the rod edges and periodically crossing the gap. The
spectral peaks are fitted with a Gaussian bell so that the mean and the bell’s width
are estimated. The cross-flow frequency decreases with increasing gap spacing
(Figure 2.13a) within the Reynolds number range 2400− 6500 , as found also by
Wu and Trupp [57]. The frequency values are also expressed as a non dimensional
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Figure 2.10: v
′
rms/Vb profile at the centre of the gap (path B; No-FEP), between

the half-rod walls. a) Re=29000, b) Re=20000, c) Re=12000, d) Re=6500; P/D=
1.20 (black), P/D=1.13 (red) and P/D=1.07 (blue). As Re decreases, a weak peak
appears first with P/D=1.07 (Re=12000), which is also found with P/D=1.13 and
Re=6500.

quantity via the Strouhal number (Figure 2.13b), defined as

Str=
fx
√

Dδ

vin
, (2.9)

where fx is the average frequency at which the structures cross the gap, D is the
half-rod diameter, δ is the gap spacing (hence depending upon the P/D ratio) and
vin is the value of v estimated at the inflection point (∂ 2v/∂x2=0) of the velocity
profile measured along path A (“path A, No-FEP” Figure 2.4b): here the velocity
gradient is the largest [58]. The rod diameter D and the gap spacing δ are impor-
tant parameters in experiments with rod bundles. The characteristic length scale
of the Strouhal number includes both, following the definition of Meyer [59]. The
following fit is proposed:

1/Str=31.2 ·P/D−24.6. (2.10)

Equation 2.10 describes the overall trend of the experimental points measured for
three P/D values in the range 2400≤Re≤6500. Note that, on top of Equation
2.10, the Strouhal number depends in turn on the P/D ratio through the δ term
(see Equation 2.9). It has to be pointed out that this correlation is an estimation
of the global trend. However, if the data series corresponding to the three P/D
ratios are considered separately, the dependence between 1/Str and P/D may not
be necessarily linear.
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Figure 2.11: v
′
rms/Vb profile at the centre of the gap (path B; No-FEP), between

the half-rod walls. a) Re=3600, b) Re=2400, c) Re=1200, d) Re=600; P/D ratio
of 1.2 (black), 1.13 (red) and 1.07 (blue). As the Re is further decreased, the
P/D=1.20 also leads to an increase of turbulence between the rod walls, in the
centre of the gap.

The lateral frequency of the structures seems to be independent of the Reynolds
number and to be affected only by the geometry of the channel, for Re≥2400
(Figure 2.14a). However, at low Reynolds numbers, Str decreases with the Reynolds
number. These results and those of Möller [12] are compared in Figure 2.14b. He
defined the Strouhal number in a different way, being

Strτ =
fx ·D
uτ

, (2.11)

where uτ is the friction velocity defined as

uτ =

√
µ

ρ

(
∂v
∂ z

)
wall

, (2.12)

where
(

∂v
∂ z

)
wall

is the velocity gradient near the wall of the rod.

2.5.4 Gap vortex streets

The stream-wise velocity component v measured in the left part of the gap (“path
A, No-FEP” Figure 2.4b) is used to calculate the frequency spectrum. The average
frequency of the spectral peak fy is plotted at the location where the coherent
structures are detected within the gap (Figure 2.15). This represents the spatial
distributions of the coherent structures depending on the considered Reynolds
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Figure 2.12: Frequency spectrum of the span-wise velocity component u for
Re=6500 and P/D=1.07; three locations near the centre of the gap are shown. A
peak is evident near 3.8Hz. The fit with a Gaussian bell yields a mean standard
deviation of 1.47Hz.

number. Peaks in the frequency sectrum are found for all the P/D ratios at different
locations within the gap and inside the main sub-channel close to the gap borders,
suggesting gap vortex streets moving along with the stream. The case with P/D=
1.07 (Figure 2.15a) shows that fy increases with Re. For Re=600 the flow structures
extend well within the main sub-channel whereas, as the Reynolds increases, the
structures are localised within the gap and at the gap border. The case with
P/D=1.13 (Figure 2.15b) shows once more that the frequency increases with Re.
However, the spatial distribution is more scattered at high Reynolds.
This result indicates that the structures tend to move closer to the gap centre
as the Reynolds increases. Taylor’s hypothesis (coherent structures in the flow
are regarded as frozen entities moving with the stream at velocity vin) enables to
estimate the average length of the vortices. Although this assumption may become
inaccurate with very long structures [60], experiments in bundles show that these
vortices move with a convection velocity which is independent of the position inside
the gap [8]. The structure length is calculated as

λ =
vin

fy
, (2.13)

where vin is the stream-wise convection velocity measured at the inflection point of
the velocity profile through the gap (“path A, No-FEP” Figure 2.4b). The spectral
peak is fitted with a Gaussian bell to retrieve the mean frequency value and the
bell’s width σy. This gives a frequency interval fy±σy to estimate also the lower
and upper limit around the mean structure length λ :
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Figure 2.13: a) Average span-wise frequency against P/D for three values of Re.
b) 1/Str against P/D: experimental results and proposed correlation.
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Figure 2.14: a) Average non-dimensional span-wise frequency versus Re for three
P/D ratios. b) 1/Strτ against the Reynolds number for the three P/D values com-
pared with [12].

λmin=
vin

fy + σy
λMax=

vin

fy−σy
(2.14)

The mean wavelength of the structures is shown in Figure 2.16 as a function of
Re. Coherent structures become longer with Re≤2400 consistently with results
presented in [17, 61] for compound channels. With increasing Re, λ tends to reach
the asymptotic value of

λ

D∗h
≈14, (2.15)

as observed in [14].
From Figure 2.16a it appears that with Re≥2400 the length of the periodical
structures is merely affected by geometrical parameters such as the gap spacing,
confirming, thus, one of the findings reported in [18, 19].
The velocity difference between the bulk flow and the centre of the gap, nor-
malised by the bulk velocity, is plotted in Figure 2.17 for the three gap sizes. Its



26 2.5. RESULTS AND DISCUSSION

-1.5 -1 -0.5 0
10

-2

10
0

10
2

(a)

-1.5 -1 -0.5 0
10

-2

10
-1

10
0

10
1

(b)

Figure 2.15: Stream-wise frequency of the structures fy as a function of the
position where it is measured for a) P/D=1.07 and b) P/D=1.13.

trend versus the Reynolds number is similar to the what is observed with the
wavelength of the structures. For Re>6500 the velocity difference becomes almost
constant for increasing values of Reynolds, whereas for Re≤6500 it increases as
the Reynolds number decreases. Moreover, it is evident from the figure that a
smaller gap induces a higher velocity differences between the gap region and the
main subchannel.
Since the driving force of coherent structures is the velocity difference between
the bulk flow and the centre of the gap, the almost-constant profile that this as-
sumes for high Reynolds numbers could be related the constant length of coherent
structures in the same range of Reynolds. However, for Re≤2400 the Reynolds
number has a strong influence on the stream-wise structure size (Figure 2.16a).
The lengthening of the structures at low flow rates, and the widening of the region
where they are found (Figures 2.15a, 2.15b) seem to indicate that these structures
grow both in length and in width as the Reynolds decreases, as hypotesized in [62].

An almost-constant wavelength of the coherent structures allows to compare the
turbulent dissipation rate of the flow at different Reynolds numbers, as explained
below.
According to Kolmogorov’s length scale, the ratio between the largest and smallest
vortices occurring in the flow, dMax and dmin respectively, is proportional to Re3/4

[63]:
dMax

dmin
≈Re3/4. (2.16)

Assuming that the largest eddies occurring in the flow correspond to the measured
coherent structures, that is dMax≡λ , the previous expression becomes

λ

dmin
≈Re3/4. (2.17)
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Figure 2.16: a) Absolute and b) normalised stream-wise coherent structures size
as a function of Re for three P/D ratios. The experiments are compared with data
from [17]. The normalised data are scaled with the hydraulic diameter of the gap
region.
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Figure 2.17: Normalised velocity difference between the bulk of the flow and the
centre of the gap for three P/D ratios.

The wavelength λ can be expressed as

λ≈dminRe3/4. (2.18)

From the experiments it follows that, for Re≥2400, λ is weakly dependent on the
Reynolds number (Figure 2.16a), so the following approximation is done (accurate
within 15% of the mean value):

[λ ]Re=2400≈[λ ]Re=29000 . (2.19)

From Equation 2.18 follows that[
dmin ·Re3/4

]
Re=2400

≈
[
dmin ·Re3/4

]
Re=29000

. (2.20)

dmin is defined by the Kolmogorov microscale as dmin=ν3/4ε
−1/4
d where ν is the

kinematic viscosity and εd is the energy dissipation rate. Substituting this expres-
sion into the previous equation leads to[

ν
3/4

ε
−1/4
d Re3/4

]
Re=2400

≈
[
ν

3/4
ε
−1/4
d Re3/4

]
Re=29000

. (2.21)
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Since ν is constant, the equation is simplified into[
ε
−1/4
d Re3/4

]
Re=2400

≈
[
εd
−1/4Re3/4

]
Re=29000

. (2.22)

This relation states that the quantity Re3/εd is conserved if the wavelength of
coherent structures does not change within the considered range of the Reynolds
number:

Re3

εd
≈K1, (2.23)

where K1 is a constant and Re∈[2400;29000]. This equation is useful to compare
the turbulent dissipation rate εd measured at two different Reynolds numbers.
Equation 2.23 can be applied to the cases with Re=2400 and Re=29000:[

Re3

εd

]
Re=2400

=

[
Re3

εd

]
Re=29000

, (2.24)

which yields

[εd]Re=29000
[εd]Re=2400

=

(
29000
2400

)3

≈1780. (2.25)

An almost-constant wavelength of coherent structures implies that the dissipation
rate with Re=29000 is approximately three orders of magnitude larger than with
Re=2400.
The remainder of the chapter compares the v

′
rms measured along path A for the

“FEP” and “No-FEP” cases (see Figures 2.4a and 2.4b) to assess the effects of the
refraction and reflection of light.

2.5.5 Light reflection effects

When measuring along “path A, FEP” (see Figure 2.4a) the measurement is dis-
turbed by the light reflected from the second rod behind the ellipsoidal laser probe.
As the probe is moved further towards the centre of the gap the reflection becomes
increasingly stronger, especially with P/D=1.07. This issue is tackled by filtering
out the near-zero velocity samples caused by the reflective surface. This improves
the results as long as the ellipsoidal volume fits the gap and the flow speed is not
too close to zero. The cases where the filter is successfully applied are shown in
Figure 2.18. Although the filtered v

′
rms shows yet some dispersion close to the left

border of the gap (x/D=−0.5 in Figure 2.18a), it decreases the overall scattering
of the experimental values. As the probe approaches the FEP borders, the signal
drops because these are the regions where the light attenuation is the highest.

2.5.6 Light refraction effects

In one case (Figure 2.4a) the refraction occurs when the laser crosses the FEP
rod and in the other case (Figure 2.4b) refraction is caused by the Perspex wall
as the probe volume moves further inside the test section. The results of the
measurements for both cases are corrected to compensate for this issue. Referring



CHAPTER 2. VORTEX STREETS IN A TWO HALF-RODS COMPOUND
CHANNEL 29

-1 -0.5 0 0.5 1
0

0.2

0.4 Raw

Filtered

(a)

-1 -0.5 0 0.5 1
0

0.2

0.4
Raw

Filtered

(b)

-1 -0.5 0 0.5 1
0

0.2

Raw

Filtered

(c)

Figure 2.18: Comparison between the v
′
rms/Vb affected by light reflection from the

wall (red) and filtered (blue). a) P/D=1.13 a) Re=6500, b) Re=3600. c) P/D=1.20,
Re=3600.

to Figure 2.20a, the horizontal distortion of the light ray due to FEP is estimated
as follows:

∆x=ABsin(α1−α3). (2.26)

For a complete derivation of the previous equation, the reader is directed to Ap-
pendix A.

The refraction of the laser beam through the Perspex wall is discussed with the
aid of Figure 2.20b. The position of the probe volume inside the setup, corrected
by the refraction due to the Perspex wall, is given by

∆x=tPMMA−X0 +
X0 tanα5− tPMMA tanα6

tanα7
, (2.27)

where tPMMA is the Perspex wall thickness, X0 is the position of the probe volume
without refraction and α5=5.711° is the half-beam aperture of the laser; α6 and
α7 are calculated through the Snell’s law. The v

′
rms measured through the FEP

half-rod (“path A, FEP”) and from the short side (“path A, No-FEP”) are shown

in Figure 2.19. The two v
′
rms profiles are yet slightly shifted with respect to each

other after the refraction correction is applied: Equations 2.26 and 2.27 depend
on tPMMA, tFEP and on Ri,FEP which vary due to the dimensional tolerance of the
material. This introduces a source of uncertainty in the refraction calculation.
Moreover, when the laser reaches the FEP borders (|x/D|=0.5), the light is not
transmitted anymore and the signal drops to zero.
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Figure 2.19: v
′
rms/Vb measured along “path A, FEP” and “path A, No-FEP”

against the position along the gap normalized by the half-rod diameter. P/D=1.20,
Re=29000.
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Figure 2.20: a) Top view of the refraction of the green laser beam pair due to
FEP: the light ray goes through the FEP half-rod, filled with water, and it is
refracted as it crosses its wall. b) Refraction of the laser beam as it crosses the
FEP half-rod.

2.5.7 Laser probe size effects

The refraction of the laser beam pair affects the size of the probe volume as well
[64]. The length of its long axis, in air, is calculated as

lp,a=
d0

sinα5
=0.9mm, (2.28)

where d0 is the laser beam diameter at the focal point [65]. Applying the same
relation to the laser beam in water yields a longer probe whose length is

lp,w=
d0

sinα7
=1.2mm, (2.29)

where α7 is the half-beam angle of the laser in water (see Figure 2.20b). If the
measurement is performed along“path A, FEP”(Figure 2.4a), the ellipsoidal probe
volume is oriented with the longest axis normal to the rods. The longer probe is
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more difficult to fit in the centre of the gap with P/D=1.07, where δ =1mm. This
also implies an increased reflection of light from the rod wall. The v

′
rms measured

with the laser light going through the FEP and from the free side of the setup are
compared to assess the influence of a longer probe. Figure 2.21 shows that the v

′
rms

-1 0 1
0

0.1

No FEP

FEP

-1 0 1
0

0.1

0.2

-1 0 1
0

0.1

0.2

-1 0 1
0

0.2

Figure 2.21: v
′
rms/Vb along “path A, FEP” (×) and along “path A, No-FEP”

from the second side (�). a) Re=29000, b) Re=20000, c) Re=12000, d) Re=6500;
P/D=1.07.

measured through the FEP rod has a peak at the centre of the gap (×). The light
reflected by the rod behind the probe is regarded by the software as particles with
near-zero velocity, which increase the deviation around the mean value (the root

mean square). The v
′
rms profiles measured at lower flow rates are shown in Figure

2.22. In these cases the v
′
rms profile does not show the central peak found at higher

Reynolds numbers. Although the light reflection and the elongated probe volume
still contribute with near-zero velocity signals, the v

′
rms is not peaked because the

flow velocity closer to zero reduces the statistical deviation from the mean value.
With a larger gap (Figure 2.23), reflections are weaker and the probe fits better
inside the gap, improving the results.
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Figure 2.22: v
′
rms/Vb along “path A, FEP” (×) and along “path A, No-FEP” from

the second side (�). a) Re=3600, b) Re=2400, c) Re=1200, d) Re=600; P/D=1.07.
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Figure 2.23: v
′
rms/Vb along “path A, FEP” (×) and along “path A, No-FEP”

from the second side (�). a) Re=29000, b) Re=20000, c) Re=12000, d) Re=6500;
P/D=1.20.
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2.6 Summary

The flow between two half-rods in a square channel was measured by Laser Doppler
Anemometry with three P/D ratios and at several Reynolds numbers, ranging
from 600 to 29000. As the flow rate decreased, an additional peak in the root
mean square of the stream-wise velocity was found at the centre of the gap. It
became clearer and occurred at higher Reynolds values as the gap spacing was
reduced. This peak can be ascribed to coherent structures moving through the gap
that enhance cross-flow. The power spectrum of the span-wise velocity, measured
through the FEP hal-rod, exhibited a peak near the gap centre revealing the
presence of such periodical structures in the transversal direction.
The study of the stream-wise velocity component found coherent structures near
the gap border whose wavelength is affected by the geometry, and by the Reynolds
only when this reaches low values due to the increased velocity difference between
the bulk of the flow and the gap region. Moreover, as the Reynolds was decreased,
these structures were found also further away from the border inside the main
sub-channel, suggesting that coherent structures may grow not only in length, but
also in width.
The refraction of the laser beam pairs in water led to an elongation of the laser
probe that intensified the light reflection when measuring through the FEP normal
to the rods, especially in the middle of the gap. With P/D of 1.20 and 1.13
reflections could be filtered out. However, a P/D of 1.07 led to biased measurements
in the centre since the measurement probe came in contact with the rod walls.
Nevertheless, the central region of the gap could be properly studied by measuring
through the short side of the Perspex casing (“path A-B, No-FEP”).
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2.7 Nomenclature

Symbols Description Units
A Flow area m2

Agap Flow area considered to estimate the gap Reynolds m2

D Diameter of the half rods m
Dh Hydraulic diameter of the channel m
D∗h Hydraulic diameter of the gap region m
df Fringe distance nm
dMax, dmin Characteristic length scale of the largest and

smallest vortices based on Kolmogorov theory
m

d0 Laser beam diameter mm
fx, fy Span-wise (transversal) and stream-wise (vertical)

frequency of coherent structures in the flow
Hz

fD Frequency of the Doppler burst Hz
H, L Dimension of the rectangular channel m
lp,a, lp,w Length of the laser probe volume in air and water,

respectively
mm

N Number of collected samples per LDA measurement
point

–

Nslot Number of cross-product allocated within each slot
of the autocorrelation function

–

P/D Ratio between the pitch and the diameter of the half
rods

–

Pw Wetted perimeter m
Q Volumetric flow rate m3 s−1

Ri,FEP Inner radius of FEP half-rod mm
S Spectrum of the measured time-dependent velocity

signal, based on the autocorrelation function
s

tFEP, tPMMA Thickness of FEP and Perspex wall, respectively m
u Span-wise (transversal) velocity component ms−1

u
′
rms Root mean square of the span-wise (horizontal)

velocity component
ms−1

uτ Friction velocity ms−1

v Stream-wise (Vertical) velocity component ms−1

vi(ti), v j(t j) Velocity samples used in the Slotting technique ms−1

Vb Bulk velocity ms−1

vc Stream-wise (vertical) velocity component in the
centre of the gap

ms−1

vgap Stream-wise (vertical) velocity component in the gap
region

ms−1

vin Value at the inflection point in the profile of the
stream-wise (vertical) velocity component

ms−1

v
′
rms Root mean square of the stream-wise (vertical)

velocity component
ms−1

x, y, z Span-wise (transversal), stream-wise (vertical), and
normal directions

m
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xL, xR Borders of the flow area where the gap Reynolds is
evaluated, along the span-wise (transversal)
direction

m

∆x Lateral refraction of the laser beam m
X0 Position of the laser probe volume without refraction m
z1, z2 Borders of the flow area where the gap Reynolds is

evaluated, along the normal direction
m

Greek letters Description Units
α1, α2, α3, α4,
α5, α6, α7

Main angles for estimating the refraction of the laser °

δ Gap width between the half-rods mm
εd Dissipation rate based on Kolmogorov theory m2 s−3

ηFEP, ηPMMA, η Refractive indices of FEP, Perspex, and water –
λ Average stream-wise (vertical) wavelength of

coherent structures
m

λMax, λmin Maximum and minimum estimated stream-wise
wavelength of coherent structures

m

λl Wavelength of the laser nm
µ Dynamic viscosity of water Pas
ν Kinematic viscosity m2 s−1

ρac Autocorrelation coefficient –
ρ Density of water kgm−3

σv 95% confidence interval of the mean velocity ms−1

σrms 95% confidence interval of the root mean square
velocity

ms−1

σy Width of the Gaussian bell fitting the frequency
spectra

Hz

∆τ Time slot of the Slotting technique s(
∂v
∂ z

)
wall

Velocity gradient near the half-rod surface s−1
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Acronyms Description
BWR Boiling Water Reactor
CANDU CAnadian Deuterium Uranium
FEP Fluorinated Ethylene Propylene
FFT Fast Fourier Transform
LDA Laser Doppler Anemometry
LMFBR Liquid Metal Fast Breeder Reactor
PWR Pressurized Water Reactor

Non
dimensional
groups

Description

Re Reynolds number
Regap Reynolds number of the gap region
Str Strouhal
Strτ Strouhal defined as in [12]



Chapter 3

Rod bundle designs and
fabrication

3.1 Introduction and motivation

Chapter 2 focuses on a rectangular channel with two half-rods as a preliminary
study. The next step, covered by this chapter, is to design an experimental
setup resembling more closely the hexagonal rod bundle geometry of the core
of a LMFBR. The core of conventional and Gen-IV LMFB reactors consists of a
bundle of fuel rods immersed in an axial flow of coolant removing the generated
heat. Depending on how tight the coupling of the rods is, such a geometry leads to
a velocity difference, and thus to a shear layer between the fluid in the gap and in
the main subchannels of the bundle, causing coherent structures in the flow (vor-
tex streets). As mentioned in the introduction to this thesis, these large coherent
structures can lead to vibrations of the internal components, especially the rods,
due to the pressure fluctuations they cause. These vibrations can damage the rods
by fretting [66] and fatigue. This phenomenon is of even higher importance in
a LMFBR whose fuel rods are more tightly packed than those of a conventional
light water reactor. SEEDS-1 (SEven rods Experiments in Delft for Sesame) will
serve as the experimental facility dedicated to study large coherent structures and
the related vibrations that they may induce inside a hexagonal rod bundle. The
optical measurement techniques used in the SEEDS-1 experiment will be LDA for
the flow measurements and a high-speed camera for the vibrations of the rods. A
second point of concern in an LMFBR is that the fuel rods do not obstruct the
flow locally by touching each other by bending. This is achieved by winding a wire
spacer around each rod following a helicoid path. On top of the the spacer func-
tion, the wire partially leads the coolant through the gaps between the fuel pins,
enhancing the mixing. In this way hot spots can be avoided on the cladding of the
fuel pins, improving the safety of the reactor. The flow between neighbouring sub-
channels strongly depends on the position of the wire, as shown in [32]. Although
the main effect of the wire is to direct the flow towards the gaps, a transversal flow

37
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moving against the wrapping path can also occur, which is known as migratory
flow [44]. The physics of such a flow behaviour is not yet fully understood. There-
fore, a second facility, SEEDS-2, will be dedicated to optical measurements of the
flow inside a wrapped-wire hexagonal bundle by means of PIV. Although the two
facilities serve different functions, the two designs have, to some extent, similar
requirements. Both bundles consist of seven rods and water is the working fluid
since it is cheap and transparent to light. The P/D ratio should be small enough to
cause enough shear between the gap and the subchannel regions to have coherent
structures to occur in the flow. The flow of both the facilities should also reach a
fully developed, turbulent condition before entering the measurement section, so
sufficient development length has to be taken into account. The measurements will
be carried out with LDA, a high-speed camera, and PIV, which are optical mea-
surement techniques. The location of the measurements has also to be optically
accessible and the light refraction due to the different media should be minimised
as much as possible. The next sections of this chapter will discuss the main aspects
of the SEEDS experimental designs, detailing the technical expedients adopted to
overcome possible issues during the fabrication of some key components, such as
the optical window and the wire.
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A

B

detail A

detail B

T=25 - 40 °C;
Q= 0.9 - 4 l/s;

Figure 3.1: SEEDS experimental loop: the water flows from the upper vessel,
enters the hexagonal bundle via a flow distributor (detail A) to reach the measure-
ment location (detail B).
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3.2 Design requirements

3.2.1 Pitch-to-diameter ratio

The P/D ratio defines the hexagonal lattice of the bundle and dictates the shape
of the velocity profile throughout the gap region which, in turn, characterises the
coherent structures in the flow. The velocity difference between the low-speed
region of the gap and the bulk flow inside one of the main subchannels produces
a shear layer that may induce coherent structures along the borders of the gap
between the rods [17]. A lower P/D ratio corresponds to a larger velocity difference
between the gap and the bulk region, which can trigger coherent structures in the
flow. Their interaction with some components of the bundle is the purpose of the
SEEDS-1 experiment. As the gap between the rods becomes smaller, the wire
spacers cover a relatively larger area of the subchannels, affecting the surrounding
flow. This is the subject of study for the SEEDS-2 experiment. However, a low
P/D means a more tight lattice, making the optical access for the measurements
more difficult inside the inner subchannels. The low value of the P/D ratio is,
thus, a trade-off between a geometry that fosters coherent structure and the need
for optical access inside the setup. CFD has shown that coherent structures are
expected to occur inside a hexagonal rod bundle with a P/D of 1.1 [67, 68], so the
P/D of both the facilities is set accordingly to 1.11.

3.2.2 Flow development length

Both SEEDS-1 and SEEDS-2 test sections are installed in a loop where water is the
working fluid, at ambient pressure. The flow is gravity-driven from an upper vessel
to avoid any vibration induced by the pump. The water enters the test section
through a 3D-printed flow distributor (Figure 3.1, detail A). This component has a
dual function: it distributes the water among the subchannels of the bundle and it
breaks the large vortices that may have formed in the downcomer pipe by means of
an internal framework of ribs. Flow detachment from the walls of the distributor is
avoided adopting a divergent angle of 4° [69]. Reaching fully developed turbulent
flow conditions requires some development length between the flow distributor and
the measurement section of the bundle. This length is evaluated considering the
hydraulic diameter of a near wall subchannel (edge subchannel) since this, of all the
three types of subchannel, has the largest hydraulic diameter. The development
length is estimated as [70]

Ldev=4.4Dh,eRee
1/6≈0.3m (3.1)

where Ree=40000 and Dh,e=12.7mm is the hydraulic diameter of an edge subchan-
nel, evaluated as 4A/Pw. On top of fully turbulent conditions, coherent structures
also need to develop before reaching the measurement region (Figure 3.1, detail
B). Therefore, the development length is increased by a factor five, based on CFD
evidence [67], to Ldev=1.5m.
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3.2.3 Optical access

The employed optical measurement techniques require optical access inside the
bundle near the central rod, so the components of the bundle must have the same
refractive index as water to minimize distortion of the light. For this purposes the
refractive index-matching (RIM) technique is applied. This has become a widely
used solution for performing optical measurements in rod bundles. Dominguez
followed such a method for his measurements inside a 3×3 and 5×5 square rod
bundle [71, 72]. More recently experiments performed at Texas University made
use of the RIM technique with a larger 61-pins hexagonal bundle [35, 34]. Two
possible applications of such a technique are investigated. The first has the rods
of the bundle made of Perspex and the water’s refractive index is adjusted to the
Perspex’s by adding some salt (F2S for conciseness [73]). This option was discarded
as too much salt should be added, leading to corrosion of the metal parts of the loop
such as the pump. The study leading to this conclusion is provided in Appendix B.
Other chemical compounds can also be employed to adjust the refractive index of
water, such as para-cymene (1-methyl-4-(propan-2-yl)benzene) [72, 74] to match
the refractive index of the structural components of the bundle. The second option
is to use FEP similarly to what is described in Chapter 2 (S2F for conciseness [73]).
Part of the metal of the outer rods is removed and a FEP tube is used instead.
FEP is one of the refractive-index matching materials, together with Mexflon-DC
employed by Sato [32], commonly used for this kind of applications [75, 76]. The
FEP tube is slid over each of the outer rods and heat-shrunk in order to adhere
firmly (Figure3.2a). However, FEP would not retain the cylindrical shape during
the heat treatment; in fact it would form wrinkles. So, some disposable molds of
a water-soluble resin, namely PVA (Polyvinyl alcohol), are placed inside the space
left by the metal of the rod (Figure 3.2b) before heating. As a last step, the molds
are dissolved by rinsing the inside of the rod with water (Figure 3.2c). The outer
radius of the metal rods is reduced by the FEP wall thickness, hence there is no
step in the transition between the stainless steel and FEP. The rods are filled with
water to further decrease the refraction and to balance the external pressure.

3.2.4 Monitoring systems

The read-out signals of the loop are the temperature of the fluid and the flow rate.
An in-house heat exchanger removes the heat generated by the pump (the one
that pumps the water from the lower reservoir to the upper reservoir) keeping the
water temperature constant. This heat exchanger consists of two concentric tubes
in which the water of the loop and of the external cooling system flow separately.
The temperature is monitored by a thermocouple (Labfacility, type K) in the upper
reservoir. The water falls by gravity and a centrifugal pump (Duijvelaar Pompen,
type DPVF 40/1 B) circulates the fluid from the lower to the upper reservoir. The
flow rate is read out by three flowmeters: one with a floating element, a magnetic
flow meter (ABB MagMaster), and an ultrasonic sensor (B. M. Tecn. Industriali,
type TTFM100 NG). The flow is regulated by a valve with linear response (Ebora)
placed downstream the upper reservoir. A feedback mechanism implemented in
LabVIEW (National Instruments, 2012) adjusts the pump’s rotation speed so that
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(a)

(b) (c)

Figure 3.2: a) Heat-shrinking of FEP: quite often experiments require a generous
amount of craftmanship. b) PVA mold to keep the cylindrical shape of the FEP
layer upon heat treatment. c) Final product: the PVA mold is dissolved by rinsing
the inner rod with water.

the water level is kept constant in the lower vessel.
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SEEDS-1 SEEDS-2

(a)

SEEDS-1 SEEDS-2

(b)

Figure 3.3: Measurement section for SEEDS-1 (a) and SEEDS-2 (b) experiments:
four of the outer rods are partly made of FEP to provide optical access around
the central rod. For clarity, the outer rods are removed to show the central rod.

3.3 SEEDS-1 rod bundle for FSI experiments

The purpose of SEEDS-1 is to study coherent structures forming in the flow
through a tightly-packed hexagonal rod bundle, and to investigate the fluid-structure
interaction (FSI) between such periodical structures and the central rod of the bun-
dle. Part of the central rod consists of a cylinder of silicone rubber, fairly common
as material in FSI experiments [77, 78], where the interaction between the fluid
and the rod is to be studied. Resonance, and its resulting increased vibration
amplitude, can be induced if the large vortices occurring in the flow have a size
comparable to the dimension of the pin [79]. Hence, the length of the silicone rod
has to be comparable with the expected wavelength of coherent structures. CFD
has shown that coherent structures with a length of 7cm are expected in a rod
bundle with the same P/D ratio of SEEDS and a rod diameter of 25mm[67], so
the length of the silicone rod is set to 10cm. The main geometrical parameters of
the bundle are listed in the following table. The measurement section of SEEDS-1
hexagonal bundle is sketched in Figure 3.3a where the outer rods are partially
removed to make the central silicone rod visible.
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Table 3.1: SEEDS-1 dimensions. D: outer rod diameter, Din: inner rod
diameter; P/D: pitch-to-rod diameter ratio, W /D: nearest wall distance-to-rod

diameter ratio, Dsil,o: outer silicone rod diameter, tsil: silicone rod wall thickness,
Lsil: silicone rod length.

Parameter Value Dimension

D 30.0±0.1 mm
P/D 1.11
W /D 1.11
Din 20 mm
Dsil,o 30 mm
tsil 1.5±1.0 mm
Lsil 100±5 mm

3.4 SEEDS-2 wrapped-wire rod bundle

The goal of SEEDS-2 is to generate experimental results by means of PIV and to
provide an explanation of the flow behaviour near to the wire. SEEDS-2 is a 7-
rods hexagonal bundle with helicoid wire spacers wrapped around the rods (Figure
3.3b). The length of the optical Perspex window of FEP is half of the wrapping
pitch h: the measurements can cover half of the circumference. At the same time,
the FEP window is kept as short as possible to keep the FEP as stiff as possible.
The main geometrical parameters of the bundle are listed in the following table.

Table 3.2: SEEDS-2 dimensions. D: outer rod diameter, Din: inner rod
diameter; P/D: pitch-to-rod diameter ratio, W /D: nearest wall distance-to-rod

diameter ratio, Dw: wire diameter, h: wire wrapping pitch, γ: helicoid pitch angle
with the vertical axis.

Parameter Value Dimension

D 30.0±0.1 mm
Din 20 mm
P/D 1.11
W /D 1.11
Dw 3.0±0.5 mm
h 400 mm
γ 13 °
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3.4.1 Positioning of the wire

The positioning of the wire is critical for a succesful experiment as any asymmetry
in its position would deeply bias the experimental results. The wire is a stainless
steel tube with a diameter of 3mm wound around each of the seven rods of the
bundle. There are two issues concerning its positioning: the first is that the wire
cannot be glued nor welded along the FEP sleeve of the outer rods because glue
will not attach to FEP, and welding will deteriorate it. Secondly, welding the
wire along the entire length of the rod would produce large heat-affected zones
(HAZ), leading eventually to strong deformations or even rupture of the wire
itself. Moreover, the amount of welding beads must be as little as possible to
not affect the flow behaviour too much. The adopted solution is to 3D print
several cylindrical plastic guides with a notch on the lateral surface that follows
the winding path of the wire (Figure 3.4a). These guides are assembled in series
and slid over the rod; then the wire is positioned inside the notch and welded at
few points along the path (Figure 3.4b). In this way the nominal position of the

(a) (b)

Figure 3.4: a) Sample of a 3D-printed guiding tube with a notch to keep the wire
in position during the welding. b) Multiple guides holding in position the wires
around two rods.

wire is followed avoiding to weld the whole wire. Since the wire is very thin, it
can break rather easily while welding. However, if a hollow wire is used, less heat
is required, resulting in a faster welding and smaller HAZ.

3.5 Summary

Two hexagonal rod bundles were designed and assembled, applying the refractive-
index matching technique to provide optical access during the measurements. The
two bundles are almost identical, but have few differences: SEEDS-1 has a section
of the central rod made of flexible silicone rubber to detect flow-induced vibrations,
whereas SEEDS-2 has wires wrapped around each rod to more closely mimick the
core of a liquid metal reactor and to measure the effect on the surrounding fluid.
Both the designs can work within the fluid temperature range 20−40 ◦C and the
maximum achievable Reynolds number (based on the total bundle flow area) is
28000 (SEEDS-1) and 24000 (SEEDS-2).
Laser Doppler Anemometry and high speed camera measurements will be per-
formed in SEEDS-1 to study flow structures and vibrations, respectively. Particle
Image Velocimetry will be used in SEEDS-2 to study the wire’s effect on the flow.
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3.6 Nomenclature

Symbols Description Units
A Flow area m2

Dh,e Hydraulic diameter of the edge subchannel m
D Rod diameter m
Din Inner rod diameter m
Dsil,o Outer diameter of the silicone rod m
Dw Wire diameter m
h Helicoid wire pitch m
Ldev Development length m
Lsil Silicone rod length m
P/D Ratio between the pitch and the diameter of the rods –
Pw Wetted perimeter m
Q Volumetric flow rate m3 s−1

T Temperature of the water ◦C
tsil Silicone wall thickness mm
W /D Nearest wall distance-to-rod diameter ratio –

Greek letters Description Units
γ helicoid pitch angle with the vertical axis °
ηPMMA, ηsol Refractive indices of Perspex, and of a generic

solution
–

ηsol,L Refractive index of a solution based on Looyenga
expression

–

ηsol,LL Refractive index of a solution based on the
Lorentz-Lorenz expression

–

φi, φsol Molar volume m3 mol−1

Acronyms Description
CFD Computational Fluid Dynamics
CsI Caesium Iodide
CsCl Caesium Chloride
FEP Fluorinated Ethylene Propylene
FSI Fluid-structure interaction
F2S Matching fluid’s to solid’s refractive index
Gen-IV Fourth generation of nuclear reactors
HAZ Heat-affected zone
KI Potassium Iodide
KSCN Potassium Thiocyanate
LDA Laser Doppler Anemometry
LMFBR Liquid Metal Fast Breeder Reactor
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PIV Particle Image Velocimetry
PVA Polyvinyl alcohol
RIM Refractive Index Matching
SEEDS-1 SEven rods Experiments in Delft for Sesame-1
SEEDS-2 SEven rods Experiments in Delft for Sesame-2
S2F Matching solid’s to fluid’s refractive index

Non
dimensional
groups

Description

Ree Reynolds number of the edge subchannel
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Chapter 4

Fluid-structure interaction
in a 7-rods hexagonal bundle

4.1 Introduction and motivation

The rod bundle geometry of the fuel elements forming the core of a LWR or a
Gen-IV LMFBR may trigger large coherent structures in the axial flow of coolant
[76, 17, 16]. These periodical vortices interact with the surrounding structural
components and may cause flow-induced vibrations (FIV) on the fuel rods, by
imposing a fluctuating pressure field on these elements. There are reports of FIV-
related accidents in nuclear reactors that happened in the past. In his review,
Blevins [80] describes the accident occurred to a gas-cooled Magnox reactor in
UK where some tubes of the heat exchanger experienced extreme fatigue due to
flow-induced vibrations. Another example is the case of the TRIGA (Training
Research Isotopes General Atomic) reactor in Korea: vibrations induced on the
core by the flowing coolant could even be heard by the operators. A third case
that is mentioned regards the sodium-cooled Fermi reactor, where a piece of a
conical guide, broken due to vibrations, obstructed the flow into some subchannels
leading to a partial meltdown of two fuel elements.
FIV should therefore be avoided because they may lead to damage by fretting and
fatigue of the internal components of the reactor core [66]. The fluctuating external
force depends on the flow velocity and on the size of these coherent structures.
Hence, predicting their wavelength with sufficient accuracy is important for a
safer design of the reactor. Currently, there is only one empirical correlation to
estimate the stream-wise length λ of these flow structures provided by Guellouz
and Tavoularis [19] for a rod inside a rectangular channel and immersed in an axial

The content of this chapter has been published in Int. J. Heat Fluid Fl. 79 (2019).
DOI:10.1016/j.ijheatfluidflow.2019.108443
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flow:
λ

D
=18.7

D + δ

D
−16.3, (4.1)

where δ is the gap width between the rod and and the outer channel’s wall.
However, its applicability to more complex geometries with different shape of the
gap region, such as rod bundles, is rather limited.
There is abundance of studies regarding flow-induced vibrations either on solitary
cylinders or rod bundles [27, 81, 66, 77], involving a axial or transversal flows. In
the latter case, vibrations induced by periodical vortices have also been investi-
gated due to the implications at industrial level [82].
However, an experimental study of the role that coherent structures play in Fluid-
Structure Interactions (FSI) inside rod bundles is missing. Furthermore, a corre-
lation for estimating the length of the coherent structures applicable to different
geometries would contribute to designing safer components not subject to reso-
nance.
The aim of the work described in this chapter is twofold. It proves a new general
correlation to estimate the size of the structures in different channel geometries
and it characterises the response frequency of the flexible, central rod of a rod
bundle as a function of the frequency of the detected large coherent structures.
The employed measurement systems are Laser Doppler Anemometry (LDA) and
a high-speed camera for measuring the flow and the vibrations of the flexible rod,
respectively. The experimental setup is SEEDS-1, which is a 7-rod hexagonal bun-
dle where part of the central rod is made of silicone to be flexible. A description of
the setup is provided in Chapter 3. LDA measurements of the flow field are done
to characterise the vortex streets in the considered geometry, followed by a mea-
surement campaign with the high-speed camera to detect flow-induced vibration
of the rod. The small size of this work’s bundle allows for an easier optical access
around the central rod, which is crucial for measuring vibrations. The optical
access around the central rod is achieved through the refractive-index matching
technique (RIM): the hexagonal casing is made of Perspex and part of the steel of
the rods is replaced with FEP, which matches water’s refractive index.

4.2 Theory

Evaluating the natural frequency of the central flexible rod of the bundle is needed
for interpreting part of the results of the measurements. This section provides the
theoretical background that makes this possible. The second part of the section
describes how a new correlation is derived to estimate the wavelength of coherent
structures occurring in the flow.

4.2.1 Solitary cylinder case

Estimating the natural frequency of the silicone rod is required to interpret the
results of the FSI measurement campaign. The Euler-Bernoulli beam theory for
a single cylinder clamped at both ends, immersed in a steady, axial flow, and
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surrounded by an outer circular channel, gives the equation originally derived by
Paidoussis [27]:

EI
∂ 4x
∂y4 +ma

(
v2 ∂ 2x

∂y2 +
∂ 2x
∂ t2

)
− 1

2
CT

mav2

D

(
1
2

Lsil− y
)

∂ 2x
∂y2 + 2mav

∂ 2x
∂y∂ t

+

+
1
2

CN
mav
Dsil,o

(
v

∂x
∂y

+
∂x
∂ t

)
+CV

∂x
∂ t

+msil
∂ 2x
∂ t2 =0

(4.2)

where E=1MPa is the Young’s modulus of the silicone, I= π

4

(
D2

sil,o/4−D2
sil,i/4

)
is the moment of inertia of the silicone rod, being Dsil,o and Dsil,i the outer and
inner diameter of the silicone rod. x is the rod radial displacement, y is the axial
coordinate along the rod, ma is the added mass accounting for the additional force
exerted by the fluid on the rod while it moves, v is the mean axial flow velocity, CT

is the longitudinal viscous force coefficient whose definition is provided by Hoerner
[83], Lsil is the rod length, CN=CT is the lateral drag force coefficient, CV is the
viscous damping coefficient [84], and msil is the rod mass.
The added mass ma deserves a closer look since it accounts for the confinement
effect given by the proximity of other bodies (i.e. walls, rods) around the silicone
rod. The added mass is defined as

ma=Cm ·ρπ
D2

sil,o

4
, (4.3)

where the Cm is the added mass coefficient which multiplies the weight of the
fluid displaced by the rod in the flow. It represents the confinement effect of an
outer channel surrounding the single rod [84, 85, 24]. Cm is a function of the
outer diameter of the tube Do that bounds the flow around the rod. The natural
frequency fsil,n of the rod is calculated by following the method described by Chen
[86] and Paidoussis [24]: Equation 4.2 is first rendered non dimensional and then
solved through the Galerkin method.

4.2.2 Rod bundle case

Considering a rod bundle, the effect of the rods surroundings the central one is
to confine more the flow: displacing the fluid while the rod oscillates becomes
more difficult due to the proximity of the surrounding cylinders. This is taken into
account by a virtual additional mass that affects the dynamic of the deformation
by changing the rod’s natural frequencies. The effect of the surrounding rods is to
increase the added mass via the added mass coefficient Cm, thereby decreasing the
natural frequency. In a rod bundle there are multiple surrounding rods in place of
an outer channel, therefore Do has to be adjusted to account for their effect. Do

is evaluated as the hydraulic diameter of the hexagonal duct whose corners are at
a distance P (rod pitch) from the centre:

Do=
4A
Pw

=
3
√

3P2−πD2

πD
. (4.4)



52 4.2. THEORY

The added mass coefficient is now evaluated following the expression of Pettigrew
[85]

Cm=
D2

sil,o + D2
o

D2
sil,o−D2

o

. (4.5)

The natural frequency of the first mode of vibration of the silicone rod is evaluated
based on the hexagonal lattice of SEEDS-1 (see table 3.1); the values are plotted
in Figure 4.1 as non dimensional quantities. Frequency and velocity are rendered
non dimensional with the following substitution [24]:

f ∗sil,n= fsil,nL2
sil

√
msil +ma

EI
v∗=vLsil

√
ma

EI
. (4.6)

The non dimensional natural frequency decreases to zero when the flow velocity

0 2 4 6 8
0

1

2

3

4

Figure 4.1: Non dimensional 1st mode natural frequency of the silicone rod used
for this study as a function of the non dimensional flow velocity. For a clamped-
clamped cylinder, the frequency goes to zero at v∗=2π.

reaches the a critical value. For a rod clamped at both ends, as in this work, this
happens for v∗=2π.

4.2.3 Empirical correlation derivation

Estimating the wavelength of coherent structures is important for designing ex-
periments that aim at studying specific sizes of flow structures in rod bundles.
Ideally, the required correlation should be applicable to as many geometries of
the subchannel as possible. Therefore, an empirical correlation for estimating the
coherent structure wavelength λ is derived based on dimensional analysis.
λ is assumed to depend on the local channel geometry (i.e. hydraulic diameter of
the main subchannel and gap region) and on the fluid properties. The flow velocity
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in the gap region and in the main subchannel is also considered. In mathematical
terms,

λ =K2 · (D∗h)a1 ·ρa2 ·µa3 · va4 · va5
gap ·Da6

h , (4.7)

where K2 is an arbitrary constant, D∗h is the hydraulic diameter of the gap region
(defined in figure 4.2), ρ is the fluid density, µ is the dynamic viscosity, and
v is the fluid velocity in the main subchannel, vgap is the fluid velocity in the
gap region, and Dh is the hydraulic diameter of the main subchannel. Based on
Buckingham’s π theorem [88], the wavelength λ can be expressed by means of
three non dimensional groups. From dimensional analysis, it follows that

[m]=[m]a1
[
kgm−3]a2 ·

[
kgm−1 s−1]a3 ·

[
ms−1]a4 ·

[
ms−1]a5 · [m]a6 . (4.8)

The associated system of equations
a1−3a2−a3 + a4 + a5 + a6=1
a2 + a3=0
−a3−a4−a5=0

(4.9)

leads to the following expression:

λ

Dh
=K2 ·

(
D∗h
Dh

)a1

Rea2
(vgap

v

)a5
. (4.10)

At high Reynolds numbers it is reasonable to assume that the pressure drops
through the gap region [∆p]gap and through the main subchannel [∆p]ch, across
the length L of the bundle, are equal. Expressing the pressure drops by means of
the Darcy-Weisbach equation, it follows that

[∆p]gap=
ρ

2
v2

gap
L

D∗h
fgap(Regap)=[∆p]ch=

ρ

2
v2 L

Dh
fch(Re), (4.11)

where the friction coefficients are expressed as fch (Re)=C1Re−χ1 and fgap

(
Regap

)
=

C2Re−χ2
gap [89]. From the previous equation, the ratio vgap/v can be expressed as

vgap

v
=

[
fgap

(
Regap

)
fch (Re)

D∗h
Dh

]1/2

. (4.12)

Substituting Equation 4.12 into Equation 4.10 leads to

λ

D∗h
=K

′
(

D∗h
Dh

)ξ

Rea2 fch (Re) fgap

(
Regap

)
. (4.13)

Experimental evidence [59, 19, 17, 76] has shown that the wavelength is indepen-
dent of the Reynolds number of the main subchannel Re, so a2=0 meaning

λ

D∗h
=K

′
(

D∗h
Dh

)ξ

Reζ
gap. (4.14)
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This is the most general form of the correlation. It will be tested against the
experiments performed in simple geometries such as rectangular channels hosting
respectively one or two half-rods [17, 76], and an eccentric rod hosted in a rect-
angular channel [19]. Furthermore, two rod bundle geometries are considered: the
hexagonal bundle of this work and a sector of a circular bundle [87]. The results
of the validation with the experiments is discussed in section 4.5.2.
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(d)(c)

(a) (b)

(e) (f)

(c)

Figure 4.2: Definition of the hydraulic diameters of the gap region for the bundle
geometries on which the correlation is to be tested. (a) Adopted from [17]. (b)
Adopted from [76]. (c) Adopted from [19]. (d) Adopted from [87]. (e-f) This
work. Horizontal hatching: gap region. Vertical hatching: main subchannel. For
clarity, the main subchannel and the gap region are drawn as two separate regions
whereas, in reality, they partly overlap.
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4.3 Experimental apparatus

The measurement systems used to carry out the work described in this chapter are
a Laser Doppler Anemometry system (described in section 2.3) for measuring the
flow, and a high-speed camera to capture the vibrations occurring on the flexible
part of the central rod. Both systems are mounted on and moved by the same
traverse. The face of the hexagonal casing through which the measurements are

Silicone Rod

(a)

+ + +

+ +

P
P

A
(b)

Figure 4.3: a) FIV tracking system for recording the position of one border of
the rod. The dashed circular profiles represent the transparent FEP; the rods
are filled with water to avoid image distortion through FEP. b) Top view of half
of the hexagonal bundle geometry: the straight dashed line represents the LDA
measurement path. Horizontal hatching: central subchannel. Diagonal hatching:
edge subchannel.

performed is rotated in order to be perpendicular to the measurement systems. The
alignment is done with a portable laser installed on the traverse and a reflective
metal plate used as target on the casing. The LDA system and the post-processing
of the measurements are discussed in Chapter 2, whereas the high-speed camera
system is described in the following section.

4.3.1 High-speed camera

The equipment to measure flow-induced vibrations of the silicone rod consists of
a Complementary Metal-Oxide Semiconductor (CMOS) camera Imager MX 4M
(LaVision, Germany) capable of recording at 180 fps with full resolution (4 MP)
with a reduced field of view. The camera cannot have both borders of the rod in
focus without losing much spacial resolution: the camera should be placed too far
from the target. Thus, only one border of the silicone rod is in focus and 15000
frames at 300Hz are recorded in each measurement. The Nyquist frequency, being
the highest frequency of a signal that can be captured with a given sampling rate,
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is defined as half of the sampling frequency of a signal. This high-speed camera
allows for a Nyquist frequency of 150Hz. The frequency of the vibrating silicone
rod is expected to be of the same order of the coherent structures’ frequency, which
is ≈10Hz based on preliminary LDA measurements. Hence, a recording rate of
300Hz is considered high enough to measure vibrations induced on the silicone
rod.
The silicone appears white in the images and the background contrast with the
surrounding fluid is enhanced with a flash light to illuminate the target area,
and by keeping the setup in the dark. The recorded frames are post-processed
through the Matlab Image Toolbox. The intensity values of the light in each
image are converted into ones or zeros with a binary filter that uses a threshold
level determined by the Otsu algorithm [90]. The position of the edge of the
silicone rod appears, in each frame, as the border between the regions of ones and
zeros obtained through the binary filter.
The recorded positions of the silicone rod’s edge gives the instantaneous displace-
ment, and its root mean square, on a plane orthogonal to the line of sight of the
camera, calculated as follows:

ε̄=
1
N

N

∑
i=1
|ε (ti)| ; εrms=

√
1
N

N

∑
i=1

[ε (ti)− ε̄]2, (4.15)

where ε̄ is the mean displacement, N is the number of recorded frames, ε (ti) is the
displacement of the i-th frame and εrms is the displacement root mean square. The
recorded time signal of the displacement is filtered with the Henderson’s 23 points
moving average to reduce the noise at high frequency, following the approach of
Cioncolini et al. in a similar work [91]. The time signal of the displacement is used
as input to calculate the frequency spectrum. The first method to calculate the
spectrum relies on the autocorrelation function of the displacement (Figure 4.4a),
and the dominant peak in the frequency spectrum is fitted with a Gaussian bell
(Figure 4.4b). The frequency range where the spectral peak is fitted is determined
by the two points where the first derivative of the spectrum goes to zero. The
fitting error is expressed as the Normalised Root Mean Square Error (NRMSE):

NRMSE=

√
Ng

∑
k=1

[Sfit (k)−S (k)]2

NgS̄
, (4.16)

where Ng is the number of fitted points of the peak, Sfit and S are the fitted and
the measured value of the spectrum, respectively, and S̄ is the mean value of S.
The error with which the average frequency is determined from the fitting is lower
than 2%.
A second way to estimate the spectrum is through the discrete Fourier transform
(DFT) of the displacement signal as

S=
M−1

∑
j=0

ε (t j)exp(2πit j fsil) , (4.17)
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where ε (t j) is the j-th recorded displacement sample, fsil is the vibration frequency
of the silicone rod, t j is the j-th time instant in the signal, and i is the imaginary
unit. The noise in the spectrum is reduced by means of the Bartlett’s method
[92] (Figure 4.4c). The noise in the signal, estimated through a no-flow record-
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Figure 4.4: a) Autocorrelation function and b) Spectral peak characterising the
vibration of the silicone rod fitted with a Gaussian function (©). c) DFT of the
vibrating silicone rod.

ing, corresponds to an equivalent displacement of 3µm (the minimum measurable
displacement is 9µm).
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4.4 Measurement campaign

The LDA measurements are carried out in the edge and central subchannel, so it
is more accurate to refer to the Reynolds number of the edge ( Ree ) and of the
central subchannel (Rec). Ree is estimated as

Ree=
ρ · ve ·Dh,e

µ
, (4.18)

where ρ and µ are the density and dynamic viscosity of water, respectively; Dh,e is
the hydraulic diameter of the edge subchannel, and ve is the average stream-wise
velocity measured inside the edge subchannel. The latter is evaluated through

Figure 4.5: Contour plot of the stream-wise velocity component measured with
LDA around the two rods close to the outer wall.

LDA measurements of the flow area A belonging to the edge subchannel (Figure
4.3b). The average is calculated as

ve=
1
A

ˆ

A

v(x,z)dA=
1
A ∑

i
∑

j
v(xi,z j)dAi j, (4.19)

where dAi j differs per position.
An example of the results from the LDA measurement of the velocity inside the
edge and part of the central subchannel is shown in Figure 4.5. The two regions
(x≈160mm;360mm≤y≤370mm) and (x≈160mm;y≈395mm) are the most affected
by the reflecting metal surface of the rods, hence no velocity value is available. The
Reynolds number of the central subchannel, Rec, is determined based on Ree. Rec

requires the values of the average stream-wise velocity vc in the central subchannel.
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The pressure drops throughout all the subchannels may be considered the same
[89]; in particular the pressure drops through the edge [∆p]e and the central [∆p]c
subchannels may be equated and expressed via the Darcy-Weisbach equation [93]:

fcρv2
c

Dh,c
=

feρv2
e

Dh,e
, (4.20)

where Dh,c is the hydraulic diameter of the central subchannel, and fc and fe are the
friction factors of central and edge subchannels, respectively. vc can be obtained
from the previous equation. For a bare rod bundle (no spacers) with turbulent
flow, fc and fe can be expressed as [89]

fc=
C
′
fT,c

Ren ; fe=
C
′
fT,e

Ren , (4.21)

where n=0.18, and C
′
fT,c and C

′
fT,e are coefficients depending on the hexagonal

lattice. This correlation is valid for rod bundles within the pin number range
7−217 and the associated mean error is as low as 9% [94]. Substituting Equation
4.21 into Equation 4.20 leads to

vc=ve ·

[
C
′
fT,eDh,c

C′fT,cDh,e

(
Dh,c

Dh,e

)n
] 1

2−n

. (4.22)

Rec is finally evaluated as

Rec=
ρ · vc ·Dh,c

µ
. (4.23)

The values of Ree and Rec are reported in table 4.1.
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Table 4.1: Q: flow rate, Re: Reynolds number based on the bundle’s total flow
area, Ree: edge subchannel Reynolds number, Rec: central subchannel Reynolds

number.

Q [m3 s−1] Re Ree Rec

4.78×10−3 27200 48630 36530
3.48×10−3 20620 30540 22940
3.28×10−3 17600 28200 21180
2.92×10−3 15040 26240 19700
2.68×10−3 13060 25130 18800
2.42×10−3 11830 22660 17000
2.13×10−3 10300 20310 15260
1.94×10−3 10100 16620 12490
1.59×10−3 8530 14950 11230
1.31×10−3 6790 12730 9560
1.05×10−3 6470 10100 7580

4.5 Results and discussion

This section presents the experimental results. First, the LDA measurements of
the coherent structures occurring in the flow are discussed. The results are used
to validate the correlation derived in section 4.2.3 for predicting the wavelength of
the flow structures.
The second part focuses on the vibrations measured with the high speed camera
on the silicone rod surface and on the influence of coherent structures on the
oscillation of the rod wall is discussed.

4.5.1 Coherent structures in the flow

The LDA measurements are carried out at mid-length in the hexagonal Perspex
casing sampling several locations in the flow along a straight line going from the
outer wall to the central silicone rod. The frequency of passage of the coherent
structures through the measurement region is extracted from the frequency spec-
trum of the stream-wise velocity component. Two additional measurements at the
beginning and at the end of the transparent section are performed to check that
the coherent structures are fully developed in the flow (i.e. their wavelength does
not change through the measurement section).
Figure 4.6 shows the LDA measurement along the straight line throughout the gap
between two front rods, with Ree=30540 (Rec=22940). The normalised stream-
wise velocity component is reported in Figure 4.6a. The velocity root mean square
is shown in Figure 4.6b, which features two maxima located at the outer wall and
at close to the central rod, where turbulence increases due to the shear produced
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by the viscous sublayer, similarly to common wall-bounded flows [53]. The relative
maxima closer to the centre gap are due to the shear between the high-velocity
region in the bulk and the low-velocity fluid inside the narrow gap.
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Figure 4.6: Stream-wise velocity profile (a) and root mean square (b) measured
with LDA through the gap between two front rods. The abscissa is the distance
from the gap centre, normalized to the rod diameter.

Turbulence inside the gap between the two rods closer to the wall is examined based
on the turbulence spectrum. The slope of the spectrum carries information on the
nature of turbulence, i.e. whether this is two-dimensional or three-dimensional
(2D, 3D for short) within the inertial subrange of the spectrum.
This section will focus on the wavelength and the frequency of the coherent struc-
tures, which is used to validate an empirical correlation as proposed in section
4.5.2. The measured frequency of passage of the coherent structures is compared
with the structural response frequency of vibration of the rod wall, as discussed in
section 4.5.3.

For a 3D homogeneous turbulent flow, only the conservation of energy applies and
the inertial subrange of the turbulent spectrum usually shows the well-known slope
of −5/3. The vorticity equation for 3D turbulence and incompressible flow is

D~ω

Dt
=(~ω ·∇)~v + ν∇

2~ω, (4.24)

where D·
Dt is the Lagrangian (or substantial) derivative, ~ω is the vorticity vector and

ν is the kinematic viscosity. The first term at the right hand side of the equation
accounts for the vortex-stretching, which is the largest if the velocity gradient is
parallel to the vorticity vector. In 2D turbulence the vortex-stretching effect is
absent [95], hence the general vorticity equation, for incompressible and inviscid
fluids, takes the form
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D~ω

Dt
=0, (4.25)

which states that the vorticity must also be conserved. This additional condition
results in a slope of the spectrum equal to −3, within the inertial subrange. The
energy cascade is towards larger scales (lower wavenumber), whereas the vorticity
cascade is towards the smallest scales in the viscous subrange, contrarily to 3D
turbulent flows [96]. The slope of the inertial subrange gives thus an indication of
the type of turbulence.
The frequency spectrum of the stream-wise velocity is evaluated in the middle of
the gap between the edge and central subchannel. The frequency spectrum is then

multiplied by f 3
y (or f 5/3

y ): following the approach of Romano [97] the resulting

function S · f 3
y (or S · f 5/3

y ) should have a flat plateau within the frequency range
where turbulence is 2D (or 3D). Figure 4.7a shows the frequency spectrum and

Figure 4.7b shows both S · f 3
y and S · f 5/3

y for a Reynolds number corresponding to
Ree=12730 (Rec=9560). A low-frequency peak is found, which is characteristic
of coherent structures that affect periodically the velocity field while moving with
the mean flow. Although the spectrum exhibits a −3 slope over a short frequency
decade, the overall slope appears to be close to −5/3, as shown by the almost flat

plateau of the S · f 5/3
y plot.
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Figure 4.7: a) Frequency spectrum measured at the centre of the gap. b) S ·
f 5/3
y (square), S · f 3

y (triangle). Ree=12730. The black line highlights a plateau,
indicating three-dimensional turbulence.

Figure 4.8 reports the case with Ree=14950 (Rec=11230), where the peak in the
spectrum is at 5.3Hz. The slope is close to −5/3, as shown by the constant trend of

S · f 5/3
y in the same frequency range. Figure 4.9 refers to the case with Ree=48630
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Figure 4.8: a) Frequency spectrum measured at the centre of the gap. b) S ·
f 5/3
y (square), S · f 3

y (triangle). Ree=14950. The black line highlights a plateau,
indicating three-dimensional turbulence.

(Rec=36530), where coherent structures occur at a higher frequency, being 17Hz
(Figure 4.9a). The corresponding plots of S · f 3

y and S · f 5/3
y are shown in Figure

4.9b. The spectrum at this Reynolds number has a slope between −3 and −5/3.

For each flow rate, the turbulent spectra are evaluated along the path going from
the edge to the central subchannel (Figure 4.3b). The peaks found in the spectra
reveal periodicities at the associated frequency fy ascribed to structures occur-
ring in the flow. An average frequency of the structures is calculated based on
the values given by the single peaks. The plotted quantities are rendered non
dimensional following Equation 4.6. The plots of Figure 4.10 report the average
non dimensional frequency of the coherent structures f ∗y in both the edge and the
central subchannel against the non dimensional flow velocity v∗. An example of
the measured velocity signal is shown in Figure 4.10c where the flow oscillations
due to coherent structures moving in the flow are visible for Re=10300. The peaks
detected in the frequency spectra of the velocity signals show a bell-shaped dis-
tribution of frequencies so every peak is fitted with a Gaussian bell to obtain the
corresponding σy around the mean. This gives a frequency interval fy±σy which,
in turn, provides a minimum and a maximum wavelength of the structures, as
shown in Figure 4.11. The NRMSE resulting from the fitting, and evaluated with
Equation 4.16, is lower than 5% for all the considered cases. The wavelength of the
coherent structures is evaluated adopting Taylor’s hypothesis (coherent structures
in the flow are regarded as frozen entities moving with the stream at velocity vin).
The velocity vin is the stream-wise velocity measured at the inflection point of the
profile between the gap and the subchannels [17]. The average wavelength and its
minimum and maximum values are
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Figure 4.9: a) Frequency spectrum measured at the centre of the gap. b) S · f 5/3
y

(square), S · f 3
y (triangle). Ree=48630.

λ =
vin

fy
; λMax=

vin

fy−σy
; λmin=

vin

fy + σy
. (4.26)

The uncertainty on the wavelength of the structures is estimated through the
uncertainty propagation formula as

δλ =

√(
∂λ

∂ fy
d fy

)2

+

(
∂λ

∂vin
dvin

)2

≈
∣∣∣∣ ∂λ

∂ fy
d fy

∣∣∣∣=∣∣∣∣ vin

fy2 d fy

∣∣∣∣, (4.27)

where the approximation is possible because the error on vin is negligible compared
to the uncertainty on fy. The frequency at which the flow structures pass through
the measurement region scales almost linearly with the flow velocity.
Figure 4.11 shows the wavelength of the structures normalised by the gap region
hydraulic diameter suggests that, at high Re, the average wavelength is indepen-
dent of the Reynolds number, confirming previous experimental findings [59, 19,
17, 76]. Recalling the discussion of section 2.5.4 (Chapter 2), if the wavelength of
coherent structures can be considered constant within a certain Reynolds interval,
the quantity

Re3

εd
, (4.28)

is conserved within such an interval (εd is the turbulent dissipation rate). This
means that the turbulent dissipation rate of the flow measured at different Reynolds
numbers can be compared.
Considering the lowest and highest Reynolds numbers (based on the total bundle
flow area) defining the interval where the wavelength λ can be assumed constant,
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Figure 4.10: Non dimensional mean frequency of passage of the coherent struc-
tures f ∗y against the non dimensional velocity v∗, measured (a) between the edge
subchannel and the gap, and (b) between the gap and the central subchannel. c)
Time-dependent velocity signal of the v component, measured at two locations
2mm apart close to the centre of the gap connecting the edge to the central sub-
channel.

the previous expression becomes[
Re3

εd

]
Re=27200

=

[
Re3

εd

]
Re=6470

, (4.29)

from which the turbulent dissipation rate εd of the two cases can be compared:

[εd]Re=27200
[εd]Re=6470

=

(
27200
6470

)3

≈74. (4.30)

This ratio does not change much (≈111) if the edge or central subchannel’s Reynolds
number is considered, instead of the whole bundle’s. The dissipation rate of the
flow with a Reynolds of 27200 is approximately a factor 100 higher than with a
Reynolds of 6470.

The subject of the next section will be the influence of the geometry of the channel
on the structure’s wavelength.
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Figure 4.11: (�): Average non dimensional wavelength of the coherent structures
λ/D∗h against the non dimensional velocity v∗, measured (a) between the edge
subchannel and the gap, and (b) between the gap and the central subchannel,
where D∗h is defined as in Figure 4.2. (O) and (4): Estimated maximum and
minimum wavelength with Equation 4.26. (©): Wavelength calculated based on
the convection speed provided by Guellouz and Tavoularis [19].

4.5.2 Correlation validation

The correlation derived in section 4.2.3 for predicting the wavelength of coherent
structures is now applied to several experimental cases. The predicted (normalised)
wavelength λ , evaluated for different geometries, and the results of the experiments
are reported in Figure 4.12a against the hydraulic diameter of the gap region D∗h
(see Figure 4.2 for its definition in the considered geometries) normalised by the
hydraulic diameter of the subchannel. The figure suggests that λ/D∗h is constant
and approximately equal to

λ

D∗h
≈13, (4.31)

The wavelength of the structures scales linearly with the hydraulic diameter of the
gap region D∗h. λ/D∗h constant means that the exponents in Equation 4.14 should
be zero, that is ξ =ζ =0. If one imagines to increase indefinitely the hydraulic
diameter of the main subchannel Dh while keeping the gap region unaltered (hence
keeping D∗h and Regap constant), the wavelength of the structures forming close to
the gap should not change much. This means that at some point λ/D∗h will not

depend on (D∗h/Dh)ξ any more, so it is reasonable to assume that

ξ =0 for
D∗h
Dh
.1. (4.32)

We see that the correlation is valid even for D∗h/Dh=1.15, which is the case of the
near wall subchannel of this work’s bundle (Figure 4.2f). The practical meaning
of D∗h/Dh.1 in a bundle is that the rod are moved farther (Figure 4.12b). In the
particular case of a hexagonal bundle, this ratio has a non-zero upper limit that is
reached when the rods come into contact with each other (P/D=1), being 2.7 and
1.6 for the central and the edge subchannel, respectively. Obviously, this case falls
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out of the scope of this thesis as the contact between the rods would damage the
fuel elements of a nuclear reactor. The lower limit of the D∗h/Dh ratio, however,
differs per subchannel. Figure 4.12b shows that the D∗h/Dh ratio goes to zero if
the central subchannel is considered, whereas it goes to the value 1/π for the edge
(wall-bounded) subchannel.
The experiment performed with an eccentric rod inside a circular channel by
Choueiri and Tavoularis [13] are included in the plot (5 in Figure 4.12a) as well.
However, this case deserves special care due to geometry very different from the
bundle since the borders of the gap region are not clearly identifiable.
It is to be noted that the correlation might have a different expression for low
values of the Reynolds number. Experimental results discussed in Chapter 2 of
this thesis and reported in [17] show that the length of coherent structures increases
at low values of the gap Reynolds number, which cannot be neglected from the
correlation. Recalling the general form expressed in Equation 4.14, the exponent of

the term Reζ
gap could, thus, become lower than zero for low values of the Reynolds.

4.5.3 Interaction between the rod and the flow

This section discusses the results of the fluid-structure interaction measurements
performed with the high speed camera. Three frequencies are considered for this
analysis: the frequency of oscillation of the silicone rod, its natural frequency, and
the frequency at which coherent structures move in the axial direction. The aver-
age frequency of vibration of the silicone rod’s wall, fsil, the average displacement
ε̄, and the εrms are obtained through ten series of measurements repeated on differ-
ent days for each value of the flow rate. The natural frequency of the silicone rod is
estimated depending on the local velocity around the central flexible rod applying
the theory explained in section 4.2.2. The stream-wise rate of passage of the co-
herent structures is measured with LDA in the central subchannel close to the rod
(Figure 4.10b). The three frequency series, rendered non dimensional, are plotted
in Figure 4.13 against the non dimensional velocity. The frequency of the coherent
structures, f ∗y increases linearly with the flow speed as previously discussed. The
natural frequency of the silicone rod, f ∗sil,n, decreases with the velocity of the sur-

rounding fluid: as the flow rate increases, the damping effect of the term 1
2CN

mav
Dsil,o

in Equation 4.2 grows under the action of the flow confinement [26], especially
with highly confined flows at low P/D ratios. The vibration frequency of the rod,
f ∗sil, increases with velocity reaching the highest value of f ∗sil=1.6 ( fsil=4.2Hz) for
v∗=7 (Ree≈8500). If the flow rate is increased further, the frequency of the silicone
rod decreases and becomes nearly constant for v∗≥9.4 (Ree≥29000), as shown in
more detail in Figure 4.14a. The frequency of the structures f ∗y approaches twice
the natural frequency of the rod 2 f ∗sil,n when the measured frequency of oscillation
of the rod wall f ∗sil matches f ∗sil,n for v∗=5.7 (Ree≈22700).
Both trends of the mean displacement of the wall, ε̄, and its root mean square, εrms,
(Figure 4.15) display a clear peak in the Reynolds number range where f ∗y =2 f ∗sil,n.
The results shown in Figure 4.13 can therefore have the following interpretation.
Choueiri and Tavoularis [13] measured that the lateral velocity component of the
vortex street oscillated with half the rate of passage of the coherent structures
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in the axial direction fy/2. This was consistent with Meyer and Rehme’s model
(sketched in Figure 4.14b) that regarded coherent structures near a gap as counter-
rotating vortices which induce a fluctuating velocity field. The components of such
a field along the span-wise and stream-wise directions x and y gives a velocity that
fluctuates twice as fast along y (Vy in Figure 4.14b). Conversely, the span-wise
component (Ux in Figure 4.14b) would oscillate twice as slow around the mean
value. The fluctuating lateral velocity component would produce an external force
on the rod, oscillating in time with frequency fy/2. When such force oscillates
with fy/2= fsil,n (Figure 4.13), the rod and the vortex street synchronise and the
magnitude of the oscillations increases [98], as shown in Figure 4.15.
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Figure 4.12: a) Normalised wavelength of coherent structures λ/D∗h against
D∗h/Dh. The Reynolds numbers in the legend are based on the total flow area
of the test section. ©: this work’s experiments; ×: data from [76]; �: data from
[17]; �: data from [19]; 4: data from [87]; 5: data from [13]; ∗ data from [61].
b) Trend of D∗h/Dh as a function of P/D for edge and central subchannels of a
hexagonal bundle; as the bundle becomes indefinitely large the ratio tends to zero
(centre subchannel) and to a finite number (edge subchannel).
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Figure 4.13: Plot of f ∗y /2 (©), estimated natural frequency of the central silicone
rod fsil,n (blue line), and frequecy of vibration of the silicone rod wall f ∗sil (�)
measured with the high-speed camera system.
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Figure 4.14: a) Non dimensional response frequency of the silicone rod, depend-
ing on the non dimensional velocity v∗. b) Gap vortex streets moving with the
axial flow along a gap, identified by the dashed borders; originally proposed by
Meyer and Rehme in [18].
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4.6 Practical application of this chapter’s findings

The findings of this chapter are applied to a couple of real cases, being the Super
Phenix and the MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech
Applications) reactors, cooled with liquid sodium and lead-bismuth eutectic (LBE)
respectively. Both designs have the fuel rods arranged in a hexagonal lattice.
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Figure 4.15: Average displacements of the silicone rod border (a) and displace-
ment root mean square (b) depending on the Reynolds number. A clear peak
in both plots, once compared with the measured response frequency, indicates
synchronisation between the rod and the flow structures.

The Super Phenix has a P/D ratio of 1.12, pin diameter of 8.65×10−3 mm and
active core length of 2m [99, 89]. The average sodium temperature through the
core is 470 ◦C and the mean flow speed 5ms−1. Using the correlation derived
in this chapter, one can estimate that the expected coherent structures inside
one of the main triangular subchannels of the core of the Super Phenix have a
wavelength of 4.9cm. This corresponds to a stream-wise frequency fy of 100Hz.

Based on the findings discussed in this chapter, a lateral frequency
fy
2 of 50Hz is

expected. The theory discussed in section 4.2 to estimate the natural frequency of
a rod surrounded by other six arranged in a hexagonal lattice yields a frequency of
5.4Hz, which is well below that of the coherent structures, seemingly not posing
issues of fatigue phenomena on the fuel elements.
The second practical application is to the MYRRHA reactor, which has a P/D ratio
of 1.28, pin diameter of 6.55×10−3 mm, wall thickness of 0.51mm, core length
of 1.4m, and the average LBE temperature through the core 340 ◦C [100]. The
estimated coherent structures wavelength is 5.4cm that, moving with the average
flow speed of 1.7ms−1, corresponds to a stream-wise frequency of 31Hz, hence the

expected lateral frequency
fy
2 =15.5Hz. The natural frequency of the fuel rod at

the considered flow velocity is 5.4Hz.
Based on these estimations, the frequency of the coherent structures occurring in
MYRRHA is closer to the natural frequency of the fuel rod than in the Super
Phenix, making that design more prone to synchronization with flow structures.
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However, both Super Phenix and MYRRHA employ helicoid wires wrapped around
the rods to avoid contact and to prevent damage of the fuel pins, which are not
taken into account in these examples.

4.7 Summary

The work described in this chapter aimed at studying the structural response
of the central rod to large coherent structures occurring in the flow through a
hexagonal bundle of rod tightly clustered (P/D=1.11). The flow was studied with
Laser Doppler Anemometry while the vibrations induced on the flexible rod were
recorded with a high-speed camera. Optical access to the measurement region was
achieved by means of the refractive index-matching technique.
The measurements of frequency and displacements of the rod wall suggested syn-
chronization between the rod and the coherent structures when these move axially
with twice the natural frequency of the rod. This condition is characterised by
the increased magnitude of the oscillations and by a response near to the natural
frequency of the rod.
A new correlation for estimating the wavelength of the structures is derived based
on dimensional analysis and experiments, resulting in a wavelength that scales
linearly with the hydraulic diameter of the gap region. Such a correlation is valid
for different geometries, involving channels with single rods or more complex rod
bundles with P/D (or W /D) ranging from 1.02 to 1.20.
The findings presented in this chapter contribute to explain further the physics
of the flow-induced vibrations of coherent structures arising in axial rod bundle
flows, typical of industrial applications. Furthermore, the proposed correlation
may be helpful in designing industrial components that are not prone to resonance
phenomena and, thus, mechanical fatigue.
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4.8 Nomenclature

Symbols Description Units
a1,a2, a3, a4, a5,
a6

Exponents of the dimensional analysis –

C
′
fT,c, C

′
fT,e Coefficients for the pressure drop across the

hexagonal section
–

Cm Added mass coefficient –
CN Lateral drag force coefficient –
CT Longitudinal force coefficient –
CV Viscous force coefficient –
C1, C2 Coefficients –
Dh Hydraulic diameter of the subchannel m
Dh,c, Dh,e Hydraulic diameter of central and edge subchannels,

respectively
m

D∗h Hydraulic diameter of the gap region m
Do Equivalent diameter of the outer channel m
D Rod diameter m
Dsil,i, Dsil,o Inner and outer diameter of the silicone rod m
fc, fe Friction coefficients of central and edge subchannels,

respectively
–

fgap, fch Friction coefficients of the gap region and main
subchannel, respectively

–

E Young (or elasticity) modulus Pa
( f ∗sil,n), fsil,n (Non dimensional) natural frequency of the silicone

rod, respectively
Hz

( f ∗sil), fsil (Non dimensional) vibration frequency of the
silicone rod, respectively

Hz

( f ∗y ), fy (Non dimensional) frequency of coherent structures,
respectively

Hz

I Moment of inertia of the silicone rod m2

Lsil Silicone rod length m
ma Added mass on the silicone rod kg
msil Silicone rod mass kg
N Number of recorded frames of the high speed camera –
Ng Number of points for fitting the spectral peak –
P Pin pitch m
P/D Ratio between the pitch and the diameter of the half

rods
–

[∆p]ch, [∆p]gap Pressure drop across the main subchannel and the
gap region, respectively

Pa

[∆p]c, [∆p]e Pressure drop across central and edge subchannels,
respectively

Pa

Q Volumetric flow rate m3 s−1

x, y, z Span-wise (transversal), stream-wise (vertical), and
normal directions

m
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S, Sfit Spectrum and fitted value, respectively
S̄ Mean value of the spectrum
W /D Nearest wall distance-to-rod diameter ratio –

Symbols Description Units
v∗, v (Non dimensional) stream-wise (vertical) velocity

component, respectively
ms−1

vc, ve (Non dimensional) stream-wise (vertical) velocity
component inside the central and edge subchannels,
respectively

ms−1

vgap Stream-wise (vertical) velocity component inside the
gap region

ms−1

vin Value at the inflection point in the profile of the
stream-wise (vertical) velocity component

ms−1

v
′
rms Root mean square of the stream-wise (vertical)

velocity component
ms−1

t Time s

Greek letters Description Units
δ Gap width m
εd Dissipation rate based on Kolmogorov theory m2 s−3

ε(ti), ε̄ Instantaneous and mean displacement of the silicone
rod

µm

εrms Root mean square of the displacement of the silicone
rod

m

ζ Exponent –
λ Average stream-wise (vertical) wavelength of

coherent structures
m

λMax, λmin Maximum and minimum estimated stream-wise
wavelength of coherent structures

m

µ Dynamic viscosity of water Pas
ν Kinematic viscosity m2 s−1

ξ Exponent –
ρ Fluid density kgm−3

ρac Autocorrelation coefficient –
σy Width of the Gaussian bell fitting the frequency

spectra
Hz

χ1, χ2 Exponents –
~ω Vorticity vector s−1
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Acronyms Description
CMOS Complementary Metal-Oxide Semiconductor
DFT Discrete Fourier Transform
FEP Fluorinated Ethylene Propylene
FIV Flow-induced vibration
FSI Fluid-structure interaction
Gen-IV Generation IV
LBE Lead-bismuth eutectic
LDA Laser Doppler Anemometry
LMFBR Liquid Metal Fast Breeder Reactor
LWR Light Water Reactor
MYRRHA Multi-purpose hYbrid Research Reactor for

High-tech Applications
NRMSE Normalised Root Mean Square Error
RIM Refractive Index Matching
SEEDS-1 SEven rods Experiments in Delft for Sesame-1
TRIGA Training Research Isotopes General Atomic

Non
dimensional
groups

Description

Re Reynolds number
Rec, Ree Reynolds number of central and edge subchannels
Regap Reynolds number of the gap region



Chapter 5

Measuring and modelling
migratory flow due to wire
spacers in rod bundles

5.1 Introduction and motivation

Rod bundles characterise the geometry of many industrial components, such as
heat exchangers and the core of light water and liquid metal cooled nuclear reac-
tors. In particular, the core of a Liquid Metal Fast Breeder Reactor (LMFBR)
consists of a hexagonal bundle of rods, each wrapped by a wire wound helicoidally.
These wires prevent damage by fretting of the fuel rod’s cladding, and guide the
liquid metal through the gaps between the pins enhancing radial heat transfer and
improving the safe operation of the reactor.
Depending on the position of the wire, the flow was found to unexpectedly bend
against the direction of the wire. This was called “migratory flow” by Ohtake et
al. and ascribed to the increased hydraulic resistance caused by the wire inside
the considered subchannel [44]. A physical model that could predict such a flow
bending, however, was not provided, nor it is available nowadays.
This chapter describes the work carried out to measure migratory flow in a 7-rod,
wire-wrapped hexagonal bundle to develop a model that explains and quantifies
the bending of the flow due to the action of the wire. The facility, SEEDS-2,
replaces SEEDS-1 in the experimental loop. Planar Particle Image Velocimetry
(PIV) is performed to measure the flow near the wire wrapped around the central
rod of the bundle. The optical access needed for the measurements is provided
by making the outer casing of transparent Perspex, and by replacing part of the
steel of the rods with Fluorinated Ethylene Propylene (FEP), which is a refractive
index-matching material.

The content of this chapter has been submitted Int. J. Heat Fluid Fl. 80 (2019).
DOI:10.1016/j.ijheatfluidflow.2019.108491
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The approach is structured as follows:

1. The flow field at the front of the central wrapping wire is studied with PIV
for six equally spaced Reynolds numbers, at room temperature, and with
water as working fluid.

2. The pressure gradient field close to the wire is retrieved from the measured
velocity field and the discretised, two-dimensional Navier-Stokes equations.

3. A model, derived from the Euler equations, is derived for estimating both
the pressure gradient normal to the wire and the bending angle of the flow
streamlines.

4. The pressure gradient field obtained from the model is compared with the
experimentally obtained field.

5. Finally, the theoretically predicted bending angle of the flow is compared
with the experimental values to confirm the validity of the proposed model.

5.2 Experimental apparatus

The measurement system is a planar PIV system consisting of a laser source and a
high speed camera. The light source illuminates a region of fluid close to the wire
wrapped around the central rod of the hexagonal bundle. The images needed for
computing the flow velocity are recorded by the camera from the front side of the
Perspex hexagonal casing.

5.2.1 PIV and uncertainty quantification

The light source of the PIV system is a class-IV, diode pumped 5W laser with
a wavelength of 532nm (LaVision, Germany). The DaVis software allows for ad-
justing the separation time between the two laser pulses. The combination of a
spherical and a cylindrical lens creates the laser sheet, which has a beam waist
(the thinnest region of the sheet) thickness of 1mm. The flow is seeded with
borosilicate glass hollow spheres (LaVision, Germany) with an average density of
1.1gcm−3 and average diameter of 9−13µm. The camera used for PIV measure-
ments is a Complementary Metal-Oxide Semiconductor (CMOS) Imager MX-4M
(LaVision, Germany) with 4 MP of resolution (pixel size of 5.5µm ). The camera
mounts an AF-S 50mm F/1.4 (Nikon) lens with a magnification factor M0=0.13.
The depth of the laser sheet (out-of-plane direction) δ z is given by [101] as

δ z=4
(

1 +
1

M0

)2

f2
#λl=0.6mm, (5.1)

where f# is the lens aperture, and λl is the laser wavelength.
Pairs of images are recorded by the camera with a frequency 18Hz where the
particles appear as bright spots as they reflect light. The time separation between
the images, in each pair, is adjusted by the laser: this can be as low as 100µs.
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Cross-correlating each pair of images allows for detecting the displcement of each
particle during the time interval between the two images. Based on a calibration
factor, the pixel displacement is finally converted into a velocity value. An intensity
correction algorithm consisting of a background subtraction is used to diminish the
reflection from the internal components of the bundle. The recorded images are
pre-processed by subtracting the local intensity of each image (sliding background)
to keep intensity fluctuations at a minimum. This method averages the local
intensity of light around each particle. The mean value is then subtracted from
the intensity value of each pixel to improve the local contrast. The velocity vectors
are calculated with a multi-pass option where the initial size of the interrogation
window is 64×64 pixels and two passes are used: the displacement of the particles
obtained in the first pass is used as information to shift the interrogation window
in the next pass. The initial size of the interrogation window is subsequently
decreased to 48× 48 pixels. A reference vector field computed on 500 images
is used in the first pass to introduce an initial deformation of the interrogation
window. This enhances the signal-to-noise ratio of the correlation peaks. The post-
processing consists of a median filter to remove outliers [102, 35]. The resulting
blank points are filled with a vector interpolation algorithm.

The uncertainty on the the PIV measurements consists of a statistical error and a
systematic error. The statistical error σstat is evaluated following [101] as

σstat=
σ√
N

=

√
1

N(N−1)

N

∑
i=1

(vi− v)2, (5.2)

where σ is the standard deviation of the measured velocity samples, N is the
number of samples, and v is the mean value.
The systematic error σsyst is due to the calibration of the PIV system: the conver-
sion factor F from pixel to mm is based on the image of the wire, whose diameter
in mm is known:

F=Dw/Dw,p, (5.3)

being Dw and Dw,p the diameter of the wire in mm and pixel, respectively.
Since there is a dimensional tolerance δDw on the wire diameter (reported in table
3.2), F is subject to an uncertainty as well. This is estimated considering that a
generic velocity vector is evaluated from the measurements as

vi=
∆pF

dt
=

∆p

dt
Dw

Dw,p
, (5.4)

where ∆p is the particle displacement in pixel between two images and dt is the
time between the frames. An uncertainty on the diameter of the wire expressed in
pixel δDw,p=1 is also taken into account in the systematic error.
The systematic error σsyst is evaluated through the uncertainty propagation for-
mula as

σsyst=

√(
∂vi

∂Dw
δDw

)2

+

(
∂vi

∂Dw,p
δDw,p

)2

, (5.5)
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where the two derivative terms are obtained by deriving Equation 5.4 with respect
to Dw and Dw,p:

∂vi

∂Dw
=

∆p

dt Dw,p
;

∂vi

∂Dw,p
=−

∆p Dw

dt D2
w,p

. (5.6)

The total uncertainty σv is estimated adding in quadrature σstat and σsyst:

σv=
√

σ2
stat + σ2

syst. (5.7)

The uncertainty thus calculated is included in the line plots of the PIV measure-
ments shown from here on.

5.3 Measurement campaign

The measurement campaign consists of six flow rate values for which the corre-
sponding Reynolds numbers are calculated based on the bundle’s hydraulic di-
ameter Dh=4A/Pw, where A is the bundle flow area, and Pw is the corresponding
wetted perimeter, according to [89]. Table 5.1 reports the water temperature of
the experiments and the Reynolds number for the investigated flow rates. Each

Table 5.1: Q: mass flow rate; T: temperature of the water; Re: Reynolds
number.

Q [m3 s−1] T [◦C] Re

2.95×10−3 32.3 16330
2.70×10−3 31.7 14760
2.30×10−3 32.0 12650
1.80×10−3 32.2 9940
1.370×10−3 32.3 7580
9.00×10−4 32.4 4990

PIV measurements consist of 10000 images collected at a rate of 18 frames per
second. The location of the measurement region is shown in Figure 5.1. The laser
sheet enters the outer hexagonal Perspex casing (Figure 5.1a) and it goes through
the FEP, reaching the central wire spacer where the measurement region is located
(red rectangular area in Figure 5.1b). For a preliminary measurement, the laser
sheet is moved closer to the rod (Figure 5.1b, dashed profile in section B-B) in
order to study the flow area downstream the wire. The second, and main, mea-
surement campaign is conducted with the laser sheet closer to the bulk region of
the subchannel, being tangent to the central rod’s wire spacer. The flow area in
front of the helicoid spacer is thus investigated.
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SECTION A-A
SCALE 1 / 0.95

SECTION B-B
SCALE 1 / 0.4

(a) (b)

Front of the wire
Downstream the wire

Figure 5.1: a) Overview of the rod bundle test section as the laser light of the
PIV system goes through: the area of interest (AOI) is the red rectangular area
of the laser sheet. b) Front section (section A-A) and top view (section B-B) of
the bundle where the light sheet goes through the FEP in front of the central
rod’s wire. Section B-B shows the positions of the laser sheet corresponding to
the preliminary measurement (dashed line), and to the measurement campaign
focusing on the flow area in front of the wire.

5.4 Symmetry of the flow

Due to the closeness of the elements of the bundle, the correct placement of the
rods is very important to avoid flow blockages and asymmetric flow during the
experiments. Owing to the small size of the bundle, an error in the orientation of
the rods would affect the whole flow field. For this reason, a preliminary series of
masurements is carried out at Re=23450 focusing on the flow around the central
rod.

Given the symmetry of the setup, the flow fields at different locations along the
central wire should be similar. Therefore, two PIV measurements are performed
that study the flow near the centre. One PIV measurement is carried out through
the front of the hexagonal Perspex casing, measuring the flow area shown in Figure
5.1; the main measurement campaign will be carried out at this location.

Later, the bundle is turned by 60° clock-wise allowing for a second, additional
measurement through the side (Figure 5.2): the measured area is shifted upward
in order to have the wire in the same position of the first measurement, relative
to the gap. A similar measurement could not be performed through the left side
as the measured area could not be reached by the moving system.

The two time-averaged flow fields thus obtained are shown in Figure 5.3. The
flow fields are qualitatively similar, indicating that the rods are correctly oriented
inside the hexagonal case.

A quantitative comparison between the two measurements is done by evaluating
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(a)

detail A
scale 1/3

A

(b)

Figure 5.2: a) Flow areas through the front (blue) and through the side (red)
studied to check the flow symmetry; the red arrow indicates the second side
through which the additional measurement is performed. b) The wire in the ad-
ditional measurement region is in the same position, relative to the gap, of the
measurement through the front (detail A).

the velocity magnitude along three arbitrary vertical lines of the flow fields. The
velocity magnitude is shown in Figure 5.4, where each plot refers to one of the three
lines. The plots show that the magnitude of the velocity measured through the
two faces is similar within 6.4% (x=4mm), 3.5% (x=6mm), and 4.1% (x=8mm),
suggesting that the flow inside the subchannels is not obstructed and that the rods
are installed correctly inside the bundle.
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(a) (b)

Figure 5.3: Flow field measured through the front side (a) and through the side
to the right (b). The vertical lines highlight the paths followed for comparing the
two flow fields.
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Figure 5.4: Normalised velocity magnitude evaluated along the vertical line (a)
x=4mm, (b) x=6mm and (c) x=8mm for the two measurements.
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5.5 Time-averaged velocity fields

The initial measurement campaign studies the fluid region downstream the wire
(Figure 5.1b, view B-B), showing that the flow follows the helical path of the wire,
as expected, contributing to the mixing. This is evident from Figure 5.5a where
the blue colour indicates a negative direction of the u component (towards the
left). The flow field of the lateral component measured downstream the wire for
the six Reynolds numbers is shown in Figure 5.6 where the superimposed vectors
follow the wire direction (from top right to bottom left in the plots).

(a) (b)

Figure 5.5: a) Contour plot of the lateral velocity component u measured beneath
the wire; the dashed line indicates the wire’s position, whereas the solid line bounds
the area affected by reflection, which is masked out. b) Contour plot of the u
component measured at the front of the wire, closer to the bulk of the subchannel;
the dashed line marks the borders of the wire.

Figure 5.5b shows that if the measurement region is moved to the front of the wire,
closer to the bulk of the subchannel, the fluid changes direction moving against
the wire’s path. This is clear from the red colour that shows a positive u, hence
a flow in the positive x direction. This flow behaviour, called “migratory flow” by
Ohtake et al. [44], was ascribed to the increased hydraulic resistance that the wire
causes in the subchannel. A similar behaviour is found in Song et al. [45].

The velocity fields shown hereafter focus on the flow in front of the central wire
where the migratory flow is observed. The measured quantities are the stream-wise
and span-wise velocity components v and u, respectively.

Figure 5.7 shows the contour plot of the time-averaged axial velocity component
v, for the considered values of Reynolds numbers (see table 5.1). A low-speed
region appears at the downstream side of the wire, which is also found by [33].
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Figure 5.6: Span-wise time-averaged velocity component u normalised to the bulk
velocity Vb, measured downstream the wire, shown as a dashed line. a) Re=4990;
b) Re=7580; c) Re=9940; d) Re=12650; e) Re=14760; f) Re=16330.

This region is more spread-out at the lower Reynolds numbers and it becomes
narrower as the Reynolds increases. This is quantitatively more clear in Figure
5.8a where v is evaluated along the vertical line x=5.6mm for Re=4990, Re=12650
and Re=16330 (the flow direction in the line plot is from left to right). At Re=4990
the low-speed region downstream of the wire is more pronounced and it affects a
larger area of the wake.

Figure 5.9 shows the contour plot of the normalised time-averaged span-wise ve-
locity component u for the six studied Reynolds numbers. The positive sign of the
lateral velocity component means that the flow coming from the top bends towards
the right as it approaches the wire. The figure shows that the relative magnitude
of u is slightly higher at lower Reynolds numbers, meaning that the flow tends to
bend more markedly at lower flow rates. The lateral component u is evaluated
along the same vertical line and the values are plotted in Figure 5.8b. The lateral
component becomes increasingly higher as the wire is approached; the bending to-
wards the wire is relatively stronger as the Reynolds number is decreased, reaching
a maximum for Re=4990.
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Figure 5.7: Stream-wise time-averaged velocity component v normalised to the
bulk velocity Vb. a) Re=4990; b) Re=7580; c) Re=9940; d) Re=12650; e) Re=
14760; f) Re=16330. The main flow is from top to bottom. The cases a, b, and c
have the upper-right corner masked-out due to reflections.

5.5.1 Determining the pressure gradient field from the 2D
Navier-Stokes equations

The pressure gradient normal to the wire, later on needed to describe the mi-
gratory flow, is evaluated by means of the Navier-Stokes equations applied to the
measured velocity fields. Due to the action of the wire that pulls the fluid transver-
sally throughout the gaps, the fluid measured close to the rod is assumed to have
two major velocity components: the lateral flow direction induced by the wire,
and the main axial direction. Based on the experiments described in [103], the
out-of-plane velocity component is estimated to be equal at most to 10%Vb for a
Reynolds number of 6300. Moreover, a recent numerical work [45] showed that the
local flow behaviour near the wire is independent of the Reynolds number. It is
thus reasonable to assume that the relative magnitude of the out-of-plane velocity
component near the wire does not strongly depend on the flow rate. Hence, the
flow is considered two-dimensional. The Navier-Stokes equations are discretised
in space and time following the approach of [104, 105]. The pressure gradient is
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Figure 5.8: a) Stream-wise (axial) and b) span-wise (lateral) velocity components
evaluated along the vertical line x=5.6mm in the plane at the front of the wire
for three Reynolds numbers. The flow direction is from left to right. Due to
light reflection from the wire, some values measured at the wire’s position are not
included.

expressed as follows:

∇p=−ρ

[
∂~v
∂ t

+(~v ·∇)~v−ν∇
2~v
]
, (5.8)

where ν is the kinematic viscosity. Assuming a two-dimensional flow, Equation
5.8 is decomposed along x (and similarly along y) as

∂ p(x,y, t)
∂x

=−ρ

[
∂u(x,y, t)

∂ t
+ u(x,y, t)

∂u(x,y, t)
∂x

+ v(x,y, t)
∂u(x,y, t)

∂y

−ν

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)]
. (5.9)

The time derivative term is discretized with a central finite difference scheme
following [105], and considering a separation time between two consecutive images
of 0.055s. The same discretization scheme is used for the spatial derivatives of u
and v. This leads, for the x direction (and similarly for the y direction), to

∂ p(i, j,τ)

∂x
=−ρ

[
u(i, j,τ + 1)−u(i, j,τ−1)

2∆t
+ u(i, j,τ)

u(i + 1, j,τ)−u(i−1, j,τ)

2∆x

+ v(i, j,τ)
u(i, j + 1,τ)−u(i, j−1,τ)

2∆y

−ν

(
u(i + 1, j,τ)−2u(i, j,τ)+ u(i−1, j,τ)

(∆x)2

+
u(i, j + 1,τ)−2u(i, j,τ)+ u(i, j−1,τ)

(∆y)2

)]
, (5.10)
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Figure 5.9: Span-wise velocity component u normalised to the bulk velocity
Vb, overlapped to the vectorial field. a) Re=4990; b) Re=7580; c) Re=9940; d)
Re=12650; e) Re=14760; f) Re=16330. The main flow is from top to bottom.

where ∆x and ∆y are the spatial pitches between consecutive vectors of the matrix
along x and y, respectively. Equation 5.10, and the corresponding one for the y
direction, are averaged over the total recorded images to obtain the time-averaged
pressure gradient components along x and y:

∂ p(i, j)
∂x

=
1
N

N

∑
τ=1

∂ p(i, j,τ)

∂x
, (5.11)

and
∂ p(i, j)

∂y
=

1
N

N

∑
τ=1

∂ p(i, j,τ)

∂y
, (5.12)

where N is the number of recorded PIV images. Finally, the time-averaged pressure
gradient normal to the wire is estimated as

∂ p(i, j)
∂ x̃

=
∂ p(i, j)

∂x
sinθ +

∂ p(i, j)
∂y

cosθ , (5.13)

where θ =77° is the angle that the wire forms with the horizontal (later sketched
in Figure 5.11a).
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5.6 Modelling of migratory flow

The time-averaged velocity fields shown in the previous section show that the flow
near the wire bends against the wrapping direction of the helicoid spacer (Figure
5.6), if the flow is measured at the front of the wire. This section discusses the
theory through which this behaviour is modelled and explained.

5.6.1 Euler equations in the streamline’s coordinate system

Figure 5.10: Force balance in a Lagrangian frame of reference following a fluid
element of volume dV=dnds per unit of depth along a streamline; β is the angle
that the stremline forms with the y axis.

The methodology followed in this chapter relies on the study of the flow stream-
lines. For this reason, a Lagrangian reference system (i.e. moving with the fluid) is
adopted to derive the inviscid Navier-Stokes equations, known as Euler equations,
that are needed to carry out the study. These equations can be better used to
describe the flow near the wire.
Following a fluid element of volume dV=dnds along a streamline, the force balance
in a Lagrangian reference system is defined as

∑~Fext=
D(M~v)

Dt
Def
=

∂ (M~v)

∂ t
+(~v ·~∇)M~v, (5.14)

where ~Fext is the sum of external forces acting on the control volume element, ~v is
the velocity vector, D·

Dt is the substantial (or Lagrangian) derivative, and M=ρdV
is the mass of the control volume, with ρ the fluid density. If M is constant, the
previous equation becomes
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∑~Fext=M

[
∂~v
∂ t

+(~v ·~∇)~v
]
. (5.15)

The definition of streamline implies that the velocity vector is always tangent to
the streamline, so it has no component along the normal direction n [101], therefore
~v can be re-written as

~v=Usês,

being Us the modulus of the vector and ês the unit vector along the tangent
direction s.
By separating the external forces along the s and n directions, Equation 5.15
becomes

∑Fext,sês +∑Fext,nên=ρdnds

[
∂ (Usês)

∂ t
+
(
~v ·~∇

)
(Usês)

]
=

=ρ

[
∂ (Usês)

∂ t
+

∂Us

∂ s
(Usês)

]
dnds

(5.16)

The sum of the external forces acting along the s direction is

∑Fext,s=ρ

[
∂Us

∂ t
+

∂Us

∂ s
Us

]
dnds. (5.17)

The left-hand side term is obtained from a balance of the forces acting on the
control volume along s:

∑Fext,s=pdn−
(

p +
∂ p
∂ s

ds

)
dn=−∂ p

∂ s
dsdn. (5.18)

Substituting Equations 5.17 in 5.18 leads to

−∂ p
∂ s

dsdn=ρ

[
∂Us

∂ t
+

∂Us

∂ s
Us

]
dsdn, (5.19)

which is re-written as

− 1
ρ

∂ p
∂ s

=
∂Us

∂ t
+

∂Us

∂ s
Us. (5.20)

This equation describes the acceleration of an element of fluid due to the pressure
gradient ∂Us

∂ s along the followed streamline. The control volume dV moves along
the streamline (i.e. s direction) with no displacement along the n direction. This
means that there is an equilibrium condition along n. The right-hand side terms
of Equation 5.16 are entirely acting along the s direction, meaning that along n

∑Fext,n=0. (5.21)

Analogously to the balance of external forces along the s direction (Equation 5.18),
a balance can be written for the n direction:
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pds−
(

p +
∂ p
∂n

dn

)
ds +M

U2
s

R
=−∂ p

∂n
dsdn + ρ

U2
s

R
dnds=0, (5.22)

where R is the radius of curvature of the streamline defined as in [106]

R=

[
1 +

(
dx
dy

)2
]3/2(

d2x
dy2

)−1

, (5.23)

where dx/dy is the derivative of the streamline along the stream-wise direction y.
Finally, Equation 5.22 becomes

∂ p
∂n

=ρ
U2

s

R
. (5.24)

This equation means that a streamline bends under the action of the transver-
sal pressure gradient ∂ p/∂n, with the pressure decreasing towards the centre of
curvature of the streamline [107]. Equations 5.20 and 5.24 constitute the Euler
equations in the streamline reference frame [108]:

∂ p
∂n

=ρ
U2

s

R
,

∂ p
∂ s

=ρ

(
∂Us

∂ t
+

∂Us

∂ s
Us

)
. (5.25)

The reader is directed to Appendix C for a derivation of the previous set of equa-
tions by following an Eulerian approach, instead of Lagrangian.

Figure 5.11a sketches a streamline that bends as the fluid approaches the wire
spacer. The main flow is along the y direction and from top to bottom in the
figure. A sample of the real time-averaged streamline distribution is shown in
Figure 5.11b. The streamlines are superimposed to the field of the lateral (span-
wise) velocity component.

The derivative of the velocity along a streamline, ∂Us/∂ s, is computed as

∂Us

∂ s
=

Us (i + 1)−Us (i−1)

s(i + 1)− s(i−1)
, (5.26)

with the indices i + 1 and i−1 referring to the points along the streamline. This
is substituted in Equation 5.25 and the pressure gradient normal to the wire (x̃
direction) is finally evaluated as

∂ p
∂ x̃

=
∂ p
∂n

sin(θ −β )+
∂ p
∂ s

cos(θ −β ) , (5.27)

where θ =77° is the wire’s pitch angle with the horizontal axis (see Figure 5.11a
for reference) and β is the angle that the streamline forms with the vertical (see
Figure 5.11a for reference). This equation can be used to estimate the pressure
gradient normal to the wire as a tool to explain the experimental results regarding
the flow direction.
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Figure 5.11: a) Deflection of a streamline near the wire spacer; the Euler equa-
tions are applied in the streamline’s frame of reference (ên; ês) to reconstruct the
pressure gradient field normal to the wire. x̃ is the direction normal to the wire.
b) Example of the mean velocity’s streamlines superimposed to the lateral velocity
component.

5.6.2 An equation for the bending of the streamlines

This section aims at deriving an equation that describes and quantifies the bending
of the flow streamline due to the proximity of the wire spacer. By doing so, our
understanding of the physics governing the migratory flow improves. We start from
the Euler equation across a streamline (Equation 5.24) that, without gravitational
effects, is

−U2
s (~r)

R(~r)
ên=− 1

ρ

∂ p(~r)

∂n
ên, (5.28)

where ~r=(x,y) is the position in the two-dimensional flow field.

A streamline is defined as the locus of points always tangent to the local velocity
vector [101]:

dx
dy

=
u(~r)

v(~r)
(5.29)

where u(~r) and v(~r) are the velocity components along a streamline. For any
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streamline s=(ψ (y) ,y) it follows that

dψ(y)

dy
=

u(~r)

v(~r)
=

Us sinβ (~r)

Us cosβ (~r)
=tanβ (~r), (5.30)

which is expressed in terms of the angle β formed by the streamline with the
vertical (see Figure 5.11a). The velocity magnitude Us is then expressed as

U2
s (~r)=u2(~r)+ v2(~r)=v2(~r)

[
1 +

u2(~r)

v2(~r)

]
=v2(~r)

[
1 + tan2

β (~r)
]
. (5.31)

Upon substitution of Equation 5.31 in Equation 5.28, this becomes

ρ
v2(~r)

R(~r)

[
1 + tan2

β (~r)
]

ên=
∂ p(~r)

∂n
ên. (5.32)

Considering a single streamline (ψ (y) ,y) and recalling the definition of R (Equation
5.23), the previous equation becomes

ρv2(~r)
[
1 + tan2

β (~r)
] d2ψ (y)

dy2

[
1 +

(
dψ (y)

dy

)2
]−3/2

ên=
∂ p(~r)

∂n
ên. (5.33)

Following Equation 5.30 tanβ (~r) replaces the dψ(y)/dy term, hence

ρv2(~r)
1 + tan2 β (~r)

[1 + tan2 β (~r)]
3/2

d2ψ(y)

dy2 ên=
ρv2(~r)

[1 + tan2 β (~r)]
1/2

d2ψ(y)

dy2 ên=
∂ p(~r)

∂n
ên. (5.34)

The second order derivative is rearranged as

d2ψ(y)

dy2 =
d
dy

(
dψ(y)

dy

)
=

d
dy

tanβ (~r)=
[
1 + tan2

β (~r)
] dβ (~r)

dy
, (5.35)

and substituted into Equation 5.34, to obtain an expression linking the pressure
gradient normal to the streamline with the local angle of inflection β (~r):

1
ρv2(~r)

∂ p(~r)

∂n
=
[
1 + tan2

β (~r)
]1/2 dβ (~r)

dy
. (5.36)

In order to obtain β (~r), Equation 5.36 is integrated in dy on both sides along the
considered streamline s=(ψ (y) ,y). The integral is estimated between y=−∞, far
upstream, where the influence of the wire is negligible and the streamline is straight
(β =0), and the arbitrary coordinate y=σ along the streamline. By moving all the
terms that do not contain β (~r) to the right-hand side of the equation, we get

σ̂

−∞

[
1 + tan2

β (~r)
]1/2 dβ (~r)

dy
dy=

σ̂

−∞

1
ρv2(~r)

∂ p(~r)

∂n
dy.

The solution of this equation is
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β (y=σ)=

σ̂

−∞

1
ρv2(~r)

∂ p(~r)

∂n
dy. (5.37)

For the complete derivation of the previous equation, the reader is directed to
Appendix D.

Considering that ∂y
∂ s =cosβ (see Figure 5.10), the previous equation can be rewrit-

ten as

β (y=σ)=

sˆ

−∞

1
ρv2(~r)

∂ p(~r)

∂n
cosβ (~r)ds. (5.38)

For small β , the cosine can be neglected:

β (y=σ)=

sˆ

−∞

1
ρv2(~r)

∂ p(~r)

∂n
ds. (5.39)

This final equation gives the value of β as the result of a path integral over a
streamline. The bending of the flow is the result of the interaction between the
transverse pressure gradient and inertia.

In an LMFBR, the inertial term ρv2(~r) may differ from our experiments due to the
different fluid properties and flow velocities through the subchannels of the core.
Two cases are taken as reference to estimate such a difference: the sodium-cooled
Super Phenix and the LBE-cooled MYRRHA designs. The density for sodium
and LBE at operation conditions is, respectively, ρNa=840kgm−3 at 470 ◦C and
ρLBE=10360kgm−3 at 340 ◦C. As for the flow speed, typical values are 5ms−1 for
a sodium reactor and 2ms−1 for LBE. The inertial term ρv2(~r) results 5 and 10
times higher for sodium and LBE, respectively, meaning a smaller bending angle
and a more straight flow. However, in a LMFBR the angle of the wire’s helix

might be different, affecting the ∂ p(~r)
∂n term; this is not taken into account in the

comparison.

Furthermore, it is interesting to observe that the value of the bending angle at a
certain coordinate s along a streamline depends on the upstream path, as indicated
by the need of solving the integral. The small β approximation is accurate within
an error of 5% for β∈[0,π/3], and within 12% for β∈[0,π/4].

5.7 Results and discussion

In the first part of this section, the results of the model based on the Euler equa-
tions are shown; they consist of the pressure gradient fields evaluated normal to
the wire. These are then compared to the experimental results, being the pres-
sure gradient field derived from the 2D Navier-Stokes equations. Finally, Equation
5.39, which predicts the bending angle β , is also compared to the experiments.
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5.7.1 Pressure gradient normal to the wire predicted by the
Euler equations

This section presents the reconstructed pressure gradient modelled through the
Euler equation, following the approach discussed in section 5.6. Equation 5.27 is
applied to the streamlines to estimate the local, non-dimensional pressure gradient

normal to the wire, 2Dw
ρVb

∂ p
∂ x̃ , where 1/2ρV 2

b is the dynamic pressure, and Dw the

wire diameter. Figure 5.12 shows the pressure gradient field normal to the wire,
along the x̃ direction (see Figure 5.11a for the reference system). Figure 5.12

Figure 5.12: Mean non-dimensional pressure gradient normal to the wire spacer
modelled through the Euler equations. The flow is from top to bottom; a) Re=
4990; b) Re=7580; c) Re=9940; d) Re=12650; e) Re=14760; f) Re=16330; an
exemplifying streamline is also reported. The region over the wire is not shown
due to reflection.

shows that the negative pressure gradient bends the streamlines towards the wire,
leading to the lateral velocity field previously shown in Figure 5.9. Thereafter, the
flow enters the downstream region, where the pressure increases with x̃ (positive
∂ p/∂ x̃) throughout the recirculation region, similarly to the experiments performed
by Biswas et al. [109] with a backward-facing step. Here the positive pressure
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gradient ∂ p/∂ x̃ straightens the streamline, decreasing thus the bending angle β .
The region over the wire is not shown as it is affected by reflection coming form
the metal surface.

5.7.2 Comparison with the pressure gradient predicted by
the Navier-Stokes equation

The pressure gradient normal to the wire estimated by the model based on the
Euler equations is compared with the solution given by the Navier-Stokes equa-
tion (Equation 5.13). Figure 5.12 shows the pressure gradient field predicted by
the Euler equations, whereas the pressure gradient obtained from solving the two-
dimensional Navier-Stokes equations is shown in Figure 5.13. The pressure gradi-

Dw

Figure 5.13: Time-averaged non-dimensional pressure gradient normal to the
wire, computed from the two-dimensional Navier-Stokes equations. The flow is
from top to bottom. a) Re=4990; b) Re=7580; c) Re=9940; d) Re=12650; e)
Re=14760; f) Re=16330; the black line is followed for extracting the numerical
values for comparison. The region over the wire is not shown due to reflection.

ent normal to the wire based on the Euler equations is confirmed by the results of
the Navier-Stokes equations, where the viscous effects are taken into account and
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the only assumption is that the flow is two-dimensional.

A quantitative comparison is performed following a sampling line normal to the
wire, drawn in Figure 5.13f, for the six investigated Reynolds numbers. Figure

5.14 shows the plot of ∂ p
∂ x̃ modelled through the Euler equation (©) and calculated

from the Navier-Stokes equations (�). The abscissa x̃ is the coordinate over the
line normal to the wire selected for the comparison. The position of the wire is also
indicated for reference. The error bars associated with the model (©) are based
on the error resulting from fitting the velocity field with the streamlines. The
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Figure 5.14: Non-dimensional pressure gradient normal to the wire predicted
by the Euler equations (©, Equation 5.27) compared to the results obtained with
the Navier-Stokes equations (�, Equation 5.13). a) Re=4990; b) Re=7580; c)
Re=9940; d) Re=12650; e) Re=14760; f) Re=16330.

error bars associated with the results of the Navier Stokes equations applied to
the measured velocity fields (�) are based on statistical deviation around the mean
value. The figure shows good agreement between the two data series indicating,
thus, that the model is capable of predicting the pressure gradient caused by the
wire. Moreover, the agreement between the model (where the viscous effects are
neglected) and the Navier-Stokes equations (where they are included) suggests
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that the viscous term does not play a significant role in such a flow.

5.7.3 Validating the predicted bending angle against the ex-
periments

In this section the bending angle β , predicted by Equation 5.39, is compared
with the angle obtained from the time-averaged velocity fields measured with PIV.
Based on the measurements, β is evaluated along the streamline following Equation
5.30:

β (~r)=arctan
[

u(~r)

v(~r)

]
. (5.40)

The results are plotted in Figure 5.15a against the normalised coordinate s along
the considered streamline (drawn in Figure 5.12).
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Figure 5.15: a) Bending angle β along a streamline evaluated with Equation
5.39 (©) compared to the angle obtained from the PIV measurements (�). The
abscissa is normalised by the streamline’s total length. Re=16330. b) The path
Γw of the streamline over the wire (red) is considered straight to simplify Equation
5.39; θ is the pitch angle of the wire.

The accuracy on the prediction of β is expressed as the normalised root mean
square error (NRMSE):

NRMSE=

√
1

Ns

Ns

∑
i=1

[
β (i)Eq.5.39−β (i)PIV

]2

(βmax)PIV− (βmin)PIV
, (5.41)

where Ns is the number of points along the streamline where the pressure gradient
is evaluated, and the subscript PIV refers to the angle retrieved from the exper-
iments. The error thus evaluated is 8%: most of the contribution to the error is
located in the measured region closest to the wire, being 0.47≤s(y)/L≤0.55, where
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reflections of light coming from the metal may affect the measurement. Based on
the agreement between the angle measured from the experiments and the predic-
tion, the new expression derived for estimating β (Equation 5.39) shows that it is
a valid alternative to the Euler equations for linking the pressure gradient to the
corresponding bending angle β , being more easily measurable than the curvature
radius.

Equation 5.39 is derived under the assumption that the viscous effects are negligi-
ble. The comparison between the model and the Navier-Stokes equations proves
that this assumption is valid for these experiments, where water is the working
fluid. However, this simplification may not be valid in a LMFBR.
In order to assess its validity, two reference designs are considered being Su-
per Phenix and MYRRHA reactors, whose average core temperatures are 470 ◦C
and 340 ◦C respectively. The kinematic viscosity of sodium and LBE at opera-
tion conditions is νNa=3×10−7 m2 s−1 and νLBE=1.6×10−7 m2 s−1. These are of
the same order of magnitude as the water’s viscosity in the experiments, being
8×10−7 m2 s−1. For both cases, the inertial forces are more important than those
of the experiments, being the Reynolds number equal to 160000 and 120000 for
Super Phenix and MYRRHA respectively. Therefore viscous forces are even less
important when the model is applied to a liquid metal-cooled reactor.

5.8 Approximating the bending in the wire region

The bending angle of the flow can be predicted through Equation 5.39 following
the path of a streamline. Limiting our attention to the wire region (red path
in Figure 5.15b), β can be estimated relying on a number of assumptions that
simplify the integral in Equation 5.39. Recalling Equation 5.27 for the pressure
gradient normal to the wire

∂ p
∂ x̃

=
∂ p
∂n

sin(θ −β )+
∂ p
∂ s

cos(θ −β ) , (5.42)

the contribution of the ∂ p/∂ s term is negligible compared to the ∂ p/∂n term:
from a comparison it appears that this term is three orders of magnitude smaller
than ∂ p/∂n throughout the entire path of the streamline. This means that the
accelerating force along the streamline is negligible compared to the centripetal one
responsible for the bending of the streamline. Hence the following approximation
is done:

∂ p
∂ x̃
≈∂ p

∂n
sin(θ −β ) .

It follows that the pressure gradient normal to the wire is

∂ p
∂n
≈∂ p

∂ x̃
1

sin(θ −β )
,

which can be substituted in Equation 5.39 derived in the previous section, leading
to
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β (y=σ)=

sˆ

−∞

1
ρv2(~r)sin [θ −β (~r)]

∂ p(~r)

∂ x̃
ds.

The previous integral is split into two parts, being

β (y=σ)=

lead.ˆ

−∞

. . .ds +

trail.ˆ

lead.

. . .ds,

where the two extremes of integration refer to the position of the leading (lead.)
and trailing (trail.) edge of the wire along a streamline.
The second approximation consists of linearizing the pressure gradient in the sec-
ond integral across the wire of diameter Dw:(

∂ p
∂ x̃

)
w

≈ (∆p)w

Dw
, (5.43)

where (∆p)w is the pressure drop across the wire in the perpendicular direction.
This can be expressed as

(∆p)w=
1
2

ρCpU2
⊥, (5.44)

being Cp a local drag coefficient and U⊥ the velocity perpendicular to the wire.
This linearization leads to

β (y=σ)=

lead.ˆ

−∞

. . .ds +
CpU2

⊥
2Dw

trail.ˆ

lead.

1
v2(~r)sin [θ −β (~r)]

ds, (5.45)

which, with θ�β (see Figure 5.11 as an example), simplifies into

β (y=σ)=

lead.ˆ

−∞

. . .ds +
CpU2

⊥
2Dw sinθ

trail.ˆ

lead.

1
v2(~r)

ds. (5.46)

Figure 5.15b sketches the path followed by a streamline across the wire. For
a cylinder lying on a flat plate in the presence of a flow in the perpendicular
direction, Bearman et al. [110] measured a value of the pressure coefficient Cp of
0.5, which accounts for the pressure drop in the wake of the cylinder. Since the
wire is small compared to the rod, it can be locally approximated to a cylinder on
a flat plate, and Cp can be used for the estimation of β . The velocity perpendicular
to the wire is calculated as

U⊥=U∞ cosθ , (5.47)

being U∞ the free stream velocity evaluated far upstream of the wire. The β angle
at the trailing edge of the wire is finally evaluated as

β (y=σ)=

lead.ˆ

−∞

1
ρv2(~r)sinθ

∂ p(~r)

∂ x̃
ds +

Cp (U∞ cosθ)2

2Dw sinθ

trail.ˆ

lead.

1
v2(~r)

ds, (5.48)
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which yields β =6.5°, whereas the measured angle is 7.4°, corresponding to an
error of 14%. The difference between the values can be ascribed to the geometry
where Cp is measured, which differs from the wire-wrapped rod case, being a
cylinder lying on a flat plate. Moreover, the approximation θ�β could also have
an effect on the final result. Nevertheless, Equation 5.48 could be a first step
towards a correlation that estimates the bending of the flow near the wire based
on macroscopic variables. In fact, this equation could also be used to estimate the
pressure drop across a wrapping wire based on the value of the β angle, which can
be obtained from the streamline field.
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Figure 5.16: a) Bending angle measured upstream (β1), downstream (β2) of the
wire, and mean value (βw). The wire’s pitch angle with the vertical axis γ=13° is
determined from tanγ=πφpin/h. b) Triangular subchannel: the hydraulic diameter
φh is based on the main subchannel area (hatched).

PIV measurements of the flow in front of the wire are disturbed by the reflection
of the light by the metal, thus β is measured at two points located respectively
at the leading edge (β1) and at the trailing edge (β2) of the wire, 12mm apart.
β is measured at these two locations as the angle formed by the streamline with
the vertical axis. The measurement is repeated for all the investigated Reynolds
numbers, and the results are reported in Figure 5.16. The plot shows that β does
not strongly depend on the flow rate, for Re≥7580 (note that this condition could
be already reached for 4990<Re≤7580). The near-constant trend of β shown in
the figure means that the ratio between the velocity components u and v remains
constant as well (tanβ≡u/v), although the single components change with the
Reynolds number. Thus, the flow rate does not affect the direction of the flow, as
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concluded also by Song et al. [45].

5.9 Estimating the bending with dimensional anal-
ysis

The expression derived for estimating the bending angle of the flow (Equation
5.39) depends on the characteristics of the flow field (velocity components and flow
streamlines). It follows directly from theory and it has its roots in the physics of
the Euler equations. However, it may be useful to develop a correlation to predict
such an angle based on macroscopic variables such as the design parameters of the
rod bundle (rod diameter, wire diameter, wire pitch, fluid properties).
The bending angle across the wire, βw, can be derived from dimensional analysis.
The considered geometry is a triangular subchannel of an arbitrary wire-wrapped,
hexagonal rod bundle (Figure 5.16b). The velocity components u and v that deter-
mine the bending angle are affected by the geometry of the channel, accounted for
in the hydraulic diameter term φh, the fluid properties ρ and µ, the bulk velocity
Vb, the angle of the helicoid wire ϒ and the wire diameter φw. The angle can, thus,
be written as a function of these variables as

tanβw≡
u
v

=
(
h/φpin

)b1 ·ρb2 ·µb3 ·φ b4
h ·V

b5
b ·φ

b6
w , (5.49)

where h/φpin is the ratio between the wire wrapped pitch and the rod diameter,
commonly used in wire-wrapped rod bundles, and related to the helicoid angle ϒ

through

tanϒ =π
φpin

h
,

being ϒ defined in Figure 5.16b. For a given φpin and φw, the P/D ratio determines
the hydraulic diameter φh of the subchannel containing the wire [89]:

φh=
2
√

3φ 2
pin (P/D)2−π

(
φ 2

pin + φ 2
w

)
π
(
φpin + φw

) . (5.50)

The dimensional analysis of Equation 5.49 yields the following expression:

[−]=[−]b1 ·
[
kgm−3]b2 ·

[
kgm−1 s−1]b3 · [m]b4 ·

[
ms−1]b5 · [m]b6 , (5.51)

from which the following system of equations can be written:
b1=1
b2 + b3=0
−3b2−b3 + b4 + b5 + b6=0
−b3−b5=0

(5.52)

The solution of the system gives the following correlation:
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tanβw=
h

φpin
Reb3

(
φw

φh

)b6

. (5.53)

Experimental evidence from this work shows that βw is not a function of the
Reynolds number (Figure 5.16a) meaning that b3≈0, simplifying the previous
equation into

tanβw=
h

φpin

(
φw

φh

)b

. (5.54)

The value of the exponent b is determined as

b=
ln
(

φpin
h tanβw

)
ln(φw/φh)

. (5.55)

Substituting the dimensions of SEEDS-2 experimental setup (table 3.2) in the
previous formula yields

b=
ln
(D

h tanβw

)
ln(Dw/Dh)

≈4.6, (5.56)

where D, h, Dw and Dh are the dimensions of this work’s bundle, and βw is the
mean value of the bending angle measured from the experiments.
The narrowness of the subchannel is taken into account through the ratio φw/φh.
If P/D is given, the ratio φw/φpin is also fixed. For example, a hexagonal rod bundle
with P/D of 1.11, such as the one of this research, yields φw/φh=0.35, independently
from the diameter of the wire and rod.
The pitch angle ϒ is defined as tanϒ =πφpin/h. It follows that hexagonal bundles
with the same P/D ratio and γ (hence the same h/φpin ratio ) should bend by
the same amount close to the wire spacer. Note that these findings are valid for
a geometry of the triangular subchannel where the wire is in contact with the
adjacent rod (see Figure 5.16b), as in the case of the experimental setup of this
work.

To the author’s knowledge, there is no other study from literature that focuses
on measuring the bending angle induced by the wire spacer. The correlation
presented in this section is the first step towards a more general form. Validating
this correlation would thus require to modify the geometry of the setup and repeat
the experiments to assess the influence of the individual parameters such as P/D,
wire pitch, and wire diameter. However, this was not possible for this research.
Nevertheless, an attempt at quantifying the uncertainties on this correlation shows
that the error on the predicted βw is 5% (for the estimation of the error, the reader
is directed to Appendix E).
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5.10 Summary

This chapter described the work that aimed at modelling and explaining the migra-
tory flow close to the helicoid wire spacer inside a 7-rods, wire-wrapped hexagonal
bundle by reconstructing the pressure gradient in the direction normal to the wire.
Experiments have been performed inside the rod bundle, where the axial flow has
been investigated with PIV, making use of a refractive index-matching technique
to reduce refraction of light inside the test section. Six Reynolds numbers were
considered while measuring the time-averaged velocity fields.
The results show that the flow downstream the wire followed the helicoid path, as
expected. However, if the investigated region was moved to the front of the wire,
closer to the bulk of the subchannel, the flow changed the direction by moving
against the wire’s helicoid path. The pressure gradient normal to the wire has
been modelled through the Euler equations applied to the streamlines, thereby
showing that the bending of the flow is caused by the pressure gradient imposed
by the wire.
The results modelled through the Euler equations were compared with the solution
of the two-dimensional Navier-Stokes equations leading to a good qualitative and
quantitative agreement. Furthermore, an expression to predict the bending angle
of the flow has been derived and successfully validated against the experimental
results.
The findings presented in this chapter give more insight into the physics governing
the bending of the flow close to the wire spacer, highlighting how the flow bending is
the result of the interaction between the transverse pressure gradient and inertia
of the flow. The model hereby presented leads the way to future possibilities
for evaluating the bending angle through macroscopic, known variables such as
bundle dimensions and flow rate. In this regard, a correlation based on dimensional
analysis, and supported by experimental fidings, has been proposed to estimate
the bending angle from the dimensions of the bundle (diameter of wire and rod,
P/D ratio, and helicoid wire pitch).
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5.11 Nomenclature

Symbols Description Units
A Flow area m2

b1, b2, b3, b4,
b5, b6

Exponents of the dimensional analysis –

Cp Local drag coefficient –
Dh Hydraulic diameter m
Dw, Dw,p Wire diameter, and in pixel respectively mm
ên, ês Normal and tangential unit vectors in the

streamline’s frame of reference
–

F mm-to-pixel conversion factor mmpx−1

~Fext External forces acting on a volume of fluid N
f# Lens aperture –
h Helicoidal wire pitch mm
i, j, τ Indices –
L Streamline’s length mm
N Number of recorded frames –
Ns Number of points along a streamline –
n, s Indices pertaining to the normal and tangential

coordinate along a streamline
–

M Mass of fluid kg
M0 Magnification factor –
P/D Ratio between the pitch and the diameter of the half

rods
–

Pw Wetted perimeter m
p Pressure Pa
(∆p)w Pressure drop across the wire Pa
Q Volumetric flow rate m3 s−1

R Radius of curvature m
~r Vector of position m
vi, v Instantaneous and mean velocity ms−1

~v Velocity vector ms−1

Vb Bulk velocity ms−1

dV Control volume
δDw Uncertainty on the wire diameter mm
δDw,p Uncertainty on the wire diameter in pixels px
T Temperature ◦C
t Time s
dt, ∆t Time interval between two consecutive frames, and

two consecutive images
s

Us Velocity tangent to the streamline ms−1

U⊥ Velocity component perpendicular to the wire ms−1

U∞ Free stream velocity, far upstream of the wire ms−1

u Span-wise (transversal) velocity component ms−1
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x, y, z Span-wise (transversal), stream-wise (vertical), and
normal directions

m

∆x, ∆y Transversal and vertical separation interval between
velocity vectors

m

x̃ Coordinate normal to the wire m
δ z Depth of focus mm

Greek letters Description Units
β Bending angle of the streamline °
β1, β2 Bending angle of the streamline measured upstream

and downstream of the wire
°

βMax, βmin Maximum and minimum angle of bending along the
path of a streamline

°

βw Mean bending angle of the streamline across the wire °
Γw Path followed by a streamline over the wire m
γ Helicoid wire angle of SEEDS-2 facility °
∆p Particle displacement between two consecutive

images
pixel

θ Angle formed by the wire with the horizontal °
λl Wavelength of the laser nm
ν , νLBE, νNa Kinematic viscosity of water, lead-bismuth eutectic,

and sodium
m2 s−1

ρ, ρLBE, ρNa Density of water, lead-bismuth eutectic, and sodium kgm−3

σstat, σsyst Statistical and systematic errors on the
measurements

ms−1

σv Mean error on the measurements ms−1

ϒ Helicoid wire angle of a generic hexagonal bundle,
wire-wrapped facility

°

φpin, φw, φh Pin diameter, wire diameter, and hydraulic diameter
of the subchannel of a generic hexagonal bundle,
wire-wrapped facility

m
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Acronyms Description
AOI Area of interest
CMOS Complementary Metal-Oxide Semiconductor
FEP Fluorinated Ethylene Propylene
LBE Lead-bismuth eutectic
LMFBR Liquid Metal Fast Breeder Reactor
MYRRHA Multi-purpose hYbrid Research Reactor for

High-tech Applications
NRMSE Normalised Root Mean Square Error
PIV Particle Image Velocimetry
SEEDS-1 SEven rods Experiments in Delft for Sesame-1
SEEDS-2 SEven rods Experiments in Delft for Sesame-2

Non
dimensional
groups

Description

Re Reynolds number



Chapter 6

Conclusions and
recommendations

When this research started only one correlation was available for predicting the
length of coherent structures in bundle geometries; however this had been devel-
oped for a rather specific shape of the channel, lacking thus general validity. This
work proposes, thus, a correlation applicable to different geometries, including full
rod bundles.
Literature is rich in experimental works on Fluid-Structure Interaction (FSI) with
rod bundle geometries. However, an experimental study that specifically addressed
the role of coherent structures in inducing vibrations inside rod bundles was still
missing. For that reason, this research aimed at providing, and provides, novel
experimental evidence regarding vibrations induced by coherent structures on the
rods of a bundle.
Migratory flow was first observed in the seventies in rod bundles with helicoid
wire spacers. A rather general explanation was proposed, which ascribed the
phenomenon to the hydraulic resistance caused by the wire inside the subchannel.
Only recently, was a numerical study conducted that partially focussed again on
the effect of migratory flow. However literature was still missing any attempt to
model this phenomenon, which therefore became one of the goals of this research.

This experimental research focusses on large coherent structures in rod bundles,
their contribution to flow-induced vibrations (FIV), and the so-called migratory
flow observed in hexagonal rod bundles with wire spacers wrapped around the rods.
To these purposes, three experimental facilities have been designed and built. A
rectangular channel hosting two half-rods, and two 7-rod hexagonal bundles: one
hosting a flexible rod for FSI experiments, and the other featuring helicoid wires
wrapped around the rods to investigate migratory flow. Laser Doppler Anemome-
try (LDA), Particle Image Velocimetry (PIV), and a high speed camera have been
used in combination with the refractive index-matching technique (RIM) to achieve
optical access near the measured area. The experiments have been conducted with
water as working fluid, in isothermal conditions and ambient pressure.

109
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Large coherent structures have been detected in the gap between the rods, suggest-
ing a lateral movement of these structures across the subchannels (cross-flow). The
measurements have shown that this phenomenon has a threshold in the Reynolds
number, above which cross-flow through the gap region has not been detected.
This is also confirmed by previous numerical works performed at similar values
of the Reynolds number for an annular gap. A similar threshold effect of the
Reynolds number has been observed when considering the velocity difference (%
bulk velocity) between bulk and gap regions of the channel. This velocity differ-
ence increases below the same threshold value of Reynolds, whereas it becomes
constant at higher Reynolds numbers.

Coherent structures carried by the flow in the axial direction of the bundle synchro-
nise with the flow-induced oscillations of the flexible rod, leading to an increased
amplitude of the rod’s oscillation.

Based on experiments and on physical reasoning, our understanding of what de-
termines the size of coherent structures has improved. This research shows that
the wavelength is a function of the hydraulic diameter of the main channel where
the bulk flow is found, and of the local hydraulic diameter, being this defined by
the gap flow area. In fact, the wavelength appears to be function of their ra-
tio, thereby depending on the velocity difference between the two regions. This
study has eventually led to a new correlation for estimating the size of coherent
structures, which has been tested against the experiments conducted in several
geometries.

Migratory flow has been explained as the result of the pressure gradient induced
by the wire in the fluid that bends the flow. Moreover, deriving a theoretical model
to explain such a phenomenon has increased our understanding of the physics at
play. The model shows that the bending is the result of the interaction between
the pressure gradient and the inertial forces applied to the fluid.

The remainder of this chapter describes in more detail the conclusions of this
research, and ultimately provides recommendations for future works to address
some still unanswered questions.

6.1 Coherent structures in a compound channel

The flow of coolant through the core of a nuclear reactor can generate large co-
herent structures that can be beneficial to the safety of the core as they prevent
hot spots on the cladding of the fuel elements. Designing safer and more efficient
nuclear reactors requires that some questions regarding these coherent structures
be addressed, such as

How do Reynolds number and gap width affect the behaviour of coherent structures
in a gap geometry?

To answer these questions, a facility has been assembled consisting of a rectangular
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channel hosting two half-rods facing each other; the idea of such a setup originated
from the work of Mahmood [17]. Owing to the relative easiness of access to the
measured region, this setup allowed for detailed measurements of the flow in the
gap between the rods. The gap width between the half-rods could be adjusted to
1, 2, or 3 millimeter, corresponding to a pitch-to-rod diameter ratio of 1.07, 1.13,
or 1.20. The flow between the rods has been measured with LDA, a non-intrusive
optical measurement technique, within the Reynolds number range 600− 29000 .
Optical access to the gap region has been achieved by making one of the rods of
Fluorinated Ethylene Propylene (FEP), a refractive index-matching material with
nearly the same refractive index of water.
Large coherent structures carried by the flow near the gap, also known as gap
vortex streets, have been measured from the analysis of the time-dependent signal
of the velocity components. Their axial length is estimated through the Taylor
hypothesis, which regards these structures as “frozen” entities carried by the flow
with a convection speed lower than the bulk velocity. The measurements have
shown that the length of the structures is not a function of the Reynolds number
above a certain value of this, and that their length tends to an asymptotic value.
The velocity difference between the bulk flow and the centre of the gap (% bulk
velocity), which is the driving force of coherent structures, becomes also indepen-
dent of the Reynolds number above a certain threshold. This might explain why
the wavelength is not affected by the Reynolds number.
However, for lower values of the Reynolds number, coherent structures become
longer, extending farther into the bulk of the main subchannels, suggesting a
possible growth also in the lateral direction due to the extending of the region
where the average velocity changes. This could be due to the widening shear
layer region between the gap and the bulk, similarly to wall-bounded flows with
decreasing Reynolds number. Measurements with different P/D ratio have also
shown that coherent structures become longer with increasing gap width.
Cross-flow of coherent structures across the gap has been revealed by periodicities
in the span-wise (lateral) velocity component measured near the centre of the gap,
showing that the frequency of cross-flow decreases with larger gaps.
The plot of the stream-wise velocity root mean square has shown the presence of an
additional peak in the middle of the gap, which occurs below a certain value of the
Reynolds number. This threshold effect can be related to the velocity difference
between the main channel and the gap, which is the driving force of coherent
structures, and which becomes larger below the same threshold value of Reynolds.
The peak in the velocity root mean square measured at the centre of the gap can
indicate cross-flow of structures across the gap, which increase the turbulence level
in this region.

6.2 Size of large coherent structures in rod bundle
geometries

The size (i.e. the wavelength) of large coherent structures occurring in a rod
bundle has a direct impact on the design of the core of a nuclear reactor. Their size
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affects the lateral mixing across the subchannels, as shown by Mahmood [17], and
estimating the length of these structures is important for flow-induced vibration
(FIV) studies. When this research started there was one correlation available in
literature provided by Guellouz and Tavoularis [19] to estimate the wavelength
based on the geometry of the subchannel. However, this correlation was based on
the rather specific case of a solitary rod inside a rectangular channel with an axial
flow. Hence, the following question was put forward:

What is the form of a new correlation based on experimental evidence and physical
reasoning valid for rod bundles?

Such a correlation has been derived starting from dimensional analysis, and further
developed relying on experiments conducted in the rectangular channel hosting two
half-rods (P/D=1.07, 1.13, 1.20) and the 7-rod hexagonal bundle (P/D=1.11) of
this work. In its most general form, the correlation predicts that the wavelength
is function of the Reynolds number limited to the gap flow area, and of the ratio
between the hydraulic diameter of the gap region and the main channel connected
to the gap:

λ

D∗h
=K

′
(

D∗h
Dh

)ξ

Reζ
gap.

Experiments have shown that the wavelength of coherent structures does not
change with the Reynolds number. The new correlation has also been tested
on data retrieved from other channel geometries available in literature. These
included a rectangular channel hosting a half-rod with two values of the gap
size (P/D=1.10, 1.14), a rectangular channel hosting a rod with four gap sizes
(P/D=1.02, 1.05, 1.07, 1.10), and a sector of circular rod bundle (P/D=1.15).
Within the range of D∗h/Dh ratio defined by these considered geometries, the cor-
relation assumes a simpler form. Namely, it predicts that the wavelength scales
linearly with the hydraulic diameter of the gap region D∗h, defined by the flow area
bounded by the gap:

λ

D∗h
≈13.

According to this expression, the size of coherent structures depends on the shape
of the gap, whereas the main channel to which this is connected does not seem to
have any influence. This correlation is valid within an error of 9% in the Reynolds
number range 2000−108000 , and for the P/D range of 1.02−1.20 . Moreover, the
tests on different geometries have shown that the correlation is applicable not only
to rod bundles, but also to other geometries. For low Reynolds numbers, experi-
mental evidence has shown that the length of coherent structures may depend on
the Reynolds number. In fact, the structures become longer when the Reynolds

number decreases to low values. This suggests that the term Reζ
gap is not negligible

at low Reynolds numbers, and that the exponent could be negative.
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6.3 Vibrations induced by gap vortex streets

Coherent structures forming in the flow may enhance the heat exchange between
the fuel pins and the coolant of a nuclear reactor. However, these structures might
trigger vibrations of the fuel rods due to the oscillation that they cause in the
flow. This could cause structural damage to the fuel element’s cladding through
fretting and fatigue. In rod bundles, vibrations induced by periodical vortices in a
transversal flow have been thoroughly studied. In axial flows, however, their role
was still unclear. Hence the following question was formulated:

What is the role of coherent structures in inducing vibrations in a rod bundle with
axial flow?

To answer this question, optical measurements have been conducted in a 7-rod
hexagonal bundle with P/D=1.11. The flow has been measured with LDA to detect
coherent structures and calculate their frequency. Displacements and frequency
of oscillation of the central rod, made of silicone, have been measured with a
high speed camera. Optical access has been achieved by using FEP as refractive
index-matching material for the outer rods of the bundle.
The experiments show that the frequency of coherent structures moving axially
along the bundle increases linearly with the Reynolds number, meaning that the
structures move faster as the flow rate is increased.
If coherent structures move in the axial direction with a frequency that is twice
the first natural frequency of the rod (i.e. fy=2 fsil,n), the rod oscillates with a
frequency equal to its natural frequency. As coherent structures are entities carried
by the flow, their stream-wise frequency fy increases with the bulk flow velocity.
When fy reaches the value of fy=2 fsil,n, there is synchronisation between the rod
and coherent structures.

6.4 Migratory flow in a rod bundle with wire spac-
ers

The core of a liquid metal-cooled reactor typically employs wire spacers as a solu-
tion to prevent fuel elements from touching each other. These wires are wrapped
helicoidally around the rods to enhance the mixing of coolant (hence heat removal)
and to avoid hot spots on the fuel cladding. Due to the presence of this additional
component, the flow inside a rod bundle is very complex to understand and to
model. In 1976, Ohtake et al. measured the flow inside a 37-rod, wrapped-wire
hexagonal bundle by means of hot wire anemometry. They observed that the
flow near the wire bent transversally against the wrapping direction of the wire.
The phenomenon was called migratory flow and ascribed to the hydraulic resis-
tance caused by the wire inside the considered subchannel. The numerical work
of Song et al. [45] suggested that this was caused by a pair of counter-rotating
vortices forming downstream of the wire. However, a physical model and a general
understanding of migratory flow was still missing.
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Can migratory flow be explained and modelled to predict the associated bending
angle of the flow close to the wire spacer?

To answer this question, a model has been derived following a theoretical ap-
proach to predict the pressure gradient and the bending of the flow. Then the
predicted results have been compared with the experiments performed in the 7-
rod, wire-wrapped hexagonal bundle by means of planar PIV, for several values of
the Reynolds number.
The model for the pressure gradient has been derived from the steady state, two-
dimensional, inviscid Navier-Stokes equations applied to the flow streamlines, and
successfully validated against the results based on the experiments.
An equation for estimating the bending angle of the flow at an arbitrary point
along a streamline has been derived and compared with the measurements. The
bending angle is expressed as an integral along the streamline, upstream of the
considered point s:

β (~r)=

sˆ

−∞

1
ρv2(~r)

∂ p(~r)

∂n
ds.

The underlying meaning of this equation is that the bending of the flow is the
result of the interaction between the pressure gradient normal to the streamline
∂ p(~r)/∂n, which bends the streamline, and the inertial force acting on the fluid
ρv2(~r), which tends to straighten the flow back.
The measurements have shown that the flow close to the wire follows the helicoid
path in the downstream region. If the measurement region is shifted closer to the
main subchannel, however, the flow bends towards the wire, against the helicoid
path, suggesting the presence of migratory flow.
The bending angle measured on the flow streamlines does not depend on the
Reynolds number, above a certain threshold. It follows that the ratio between
the lateral and axial velocity components u/v is also independent of the Reynolds
number, since this ratio is linked to the bending angle by the definition of stream-
line.
Furthermore, a correlation for estimating the angle by which the flow bends close to
the wire has been derived based on experiments and through dimensional analysis:

tanβw=
h

φpin

(
φw

φh

)b

.

This correlation is different from the integral previously shown because it depends
on macroscopic variables such as the dimensions of the bundle (wire and rod di-
ameter), the wire pitch, and the geometry of the subchannel through the hydraulic
diameter. The correlation predicts that the flow through bundles characterised by
the same P/D ratio and helicoid pitch angle should bend by the same amount close
to the wire spacer. This represents a first step towards a more general expression
that links the bending of the flow to the parameters of the hexagonal lattice and
to the flow rate.
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6.5 Perspectives

One of the main limitations of this research, concerning with FSI, is that the flow
and the oscillations of the rod could not be measured at the same time. The LDA
system requires a dark background to enhance the dection of the seeding particles
(hence the local velocity) added to the fluid. On the other hand, measuring the
oscillations induced on the rod require a powerful flashlight to improve the con-
trast between the white silicone rod and the darker surrounding fluid. Measuring
simultaneously the flow field and the oscillations of the rod would give more insight
into the mutual interplay between the vibrating rod and the coherent structures
occurring in the flow. Future research should then address this issue, for exam-
ple by installing accelerometers on the rod surface that do not interfere with the
requirements for measuring the flow.

The effect that the oscillating rod has on the surrounding fluid would lead to a
better understanding of the coupling between the rod and coherent structures that
may occur in the flow. In this research, flow measurements have been conducted
only in the presence of the vibrating rod. For future works, it is thus encouraged
that flow measurements be performed first without any moving body, and then
in the presence of the oscillating rod. The effect that vibrations may have on
coherent structures could thus be evaluated.

The research described in Chapter 4 focused on measuring the displacements of
only one edge of the silicone rod due to the limited resolution of the high speed
camera. Measuring both edges at the same time can be helpful to know more about
the mode of vibration of the rod. For example, the instantaneous displacement of
the two edges could be compared by means of cross-correlation to understand if
the rod oscillates in a beam mode or in a shell mode (for example with the edges
moving inward and outward at the same time). Adding one camera would also
make possible to measure the out-of-plane displacement of the rod, which has not
been possible in this work.

Temperature fluctuations of the coolant through the core of a fast nuclear reactor
might lead to deformation or bending of the fuel elements due to different thermal
expansion of the cladding, as discussed by Hartig [111]. The bent fuel elements
would, in turn, confine the flow even more inside some of the surrounding subchan-
nels, which would lead to a further deterioration of the heat transfer. This would
trigger a self-sustaining, oscillatory mechanism that, on the long term, could lead
to mechanical fatigue on the rods. This phenomenon was observed in the sodium-
cooled KNK-II pilot plant in Germany, as reported by Heinecke [112]. For this
reason, it would be interesting to measure coherent structures and flow-induced
vibrations inside a bundle hosting a central off-centred rod (i.e. closer to some
of the surrounding rods) to deformed rod case. The correlation derived in this
research predicts that the eccentric rod could cause coherent structures to shorten
due to the decreased hydraulic diameter of the gap region. This would eventually
increase the frequency of coherent structures in the fluid, thereby affecting the
interaction with the rods.

The experimental results shown in Chapter 5 suggest that migratory flow transfers
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fluid from the near-gap region towards the main subchannel. At the same time,
measurements of the flow closer to the rod have shown that the fluid follows the
wire, moving from the main subchannel towards the gap. For a nuclear reactor,
this combined effect is important because it transfers hotter fluid from the low-
speed gap region to the bulk of the subchannel. At the same time, the gap region
is replenished with colder fluid from the main subchannel, thereby enhancing heat
transfer and avoiding hot spots on the fuel cladding. Future research could, there-
fore, aim at quantifying the lateral mass transfer between the gap region and the
subchannel. For example, several “slices” of fluid could be measured with PIV as
the laser is moved farther away from the rod, towards the bulk of the subchannel.
A mass balance could thus be applied to the resulting measured volume of total
lateral surface S:

dm
dt

=

ˆ

S

ρ~v · n̂dS.

This approach could provide information on the net transfer of fluid between the
gap and the subchannel due to the presence of the wire.
An attempt at providing a correlation to predict the bending angle of the flow near
the wire has been done in the latter part of Chapter 5. The correlation involves
several macroscopic variables such as the dimensions of the bundle (wire and rod
diameters, helicoid wire’s pitch). Although the influence of the dimensional toler-
ances of these parameters has been estimated, the correlation should be validated
on different wire-wrapped rod bundle geometries, for example by changing the
wire-to-rod diameter ratio or the pitch of the helicoid path. This could not be
done in this research and it is therefore recommended as future work.
Optical measurements in a 7-rod bundle offer easier optical access and may be
cheaper due to lower material costs, compared to larger bundles with 19, 37 or 61
pins. However, due to the reduced size of a 7-rod bundle, material tolerances of
the components (i.e. rod and wire diameter, thickness of the hexagonal casing)
might have a larger relative influence on the flow area. For example, a deviation
from the nominal value of the thickness of the outer hexagonal wall could reduce
the flow area in the cross section, affecting the flow and the estimation of the bulk
velocity. This aspect is thus to be taken in careful consideration when designing a
rod bundle facility.
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6.6 Nomenclature

Symbols Description Units
D∗h Hydraulic diameter of the gap region m
fsil,n Natural frequency of the oscillating silicone rod Hz
fy Frequency of coherent structures Hz
m Mass of fluid kg
n, s Indices pertaining to the normal and tangential

coordinate along a streamline
–

P/D Ratio between the pitch and the diameter of the half
rods

–

p Pressure Pa
~r Vector of position m
S Lateral surface of the measured volume of fluid m2

t Time s
u, v Transversal and vertical velocity component of the

flow
ms−1

Greek letters Description Units
β Bending angle of the streamline °
λ Wavelength of coherent structures in the

stream-wise (vertical) direction
m

ρ Fluid density kgm−3

Acronyms Description
FEP Fluorinated Ethylene Propylene
FIV Flow-induced vibration
FSI Fluid-structure interaction
LDA Laser Doppler Anemometry
PIV Particle Image Velocimetry
RIM Refractive index-matching

Non
dimensional
groups

Description

Re Reynolds number
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[12] S. V. Möller. “On phenomena of turbulent flow through rod bundles”. In:
Experimental Thermal and Fluid Science 4 (1991), pp. 25–35. doi: 10.10
16/0894-1777(91)90018-M.

[13] G. H. Choueiri and S. Tavoularis. “Experimental investigation of flow de-
velopment and gap vortex street in an eccentric annular channel. Part 1.
Overview of the flow structure”. In: Journal of Fluid Mechanics 752 (2014),
pp. 521–542. doi: 10.1017/jfm.2014.343.

[14] A. Gosset and S. Tavoularis. “Laminar flow instability in a rectangular
channel with a cylindrical core”. In: Physics of Fluids 18 (2006). doi: 10.1
063/1.2194968.

[15] E. Piot and S. Tavoularis. “Gap instability of laminar flows in eccentric an-
nular channels”. In: Nuclear Engineering and Design 241 (2011), pp. 4615–
4620. doi: 10.1016/j.nucengdes.2010.08.025.

[16] F. Baratto, S. C. C. Bailey, and S. Tavoularis.“Measurements of frequencies
and spatial correlations of coherent structures in rod bundle flows”. In:
Nuclear Engineering and Design 236 (2006), pp. 1830–1837. doi: 10.1016
/j.nucengdes.2005.12.009.

[17] A. Mahmood. “Single-Phase Crossflow Mixing in a Vertical Tube Bundle
Geometry - An Experimental Study”. PhD thesis. Delft University of Tech-
nology, June 2011.

[18] L. Meyer and K. Rehme. “Large-scale turbulence phenomena in compound
rectangular channels”. In: Experimental Thermal and Fluid Science 8 (1994),
pp. 286–304. doi: 10.1016/0894-1777(94)90059-0.

[19] M. S. Guellouz and S. Tavoularis. “The structure of turbulent flow in a
rectangular channel containing a cylindrical rod - Part 1: Reynolds-averaged
measurements”. In: Experimental Thermal and Fluid Science 23 (2000),
pp. 59–73. doi: 10.1016/S0894-1777(00)00039-X.

[20] G. H. Choueiri and S. Tavoularis. “Experimental investigation of flow de-
velopment and gap vortex street in an eccentric annular channel. Part 2.
Effects of inlet conditions, diameter ratio, eccentricity and Reynolds num-
ber”. In: Journal of Fluid Mechanics 768 (2015), pp. 294–315. doi: 10.10
17/jfm.2015.90.

[21] D. Chang and S. Tavoularis. “Unsteady Numerical Simulations of Turbu-
lence and Coherent Structures in Axial Flow Near a Narrow Gap”. In: Jour-
nal of Fluids Engineering 127 (2005), p. 458. doi: 10.1115/1.1900140.

[22] E. Merzari and H. Ninokata. “Proper orthogonal decomposition of the flow
in a tight lattice rod-bundle”. In: Nuclear Engineering and Design 241
(2011), pp. 4621–4632. doi: 10.1016/j.nucengdes.2010.12.005.



BIBLIOGRAPHY 121

[23] Naudascher E. and Rockwell D. “Oscillator-model approach to the identifi-
cation and assessment of flow-induced vibrations in a system”. In: Journal
of Hydraulic Research 18 (1980), pp. 59–82.
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Appendix A

This appendix shows the derivation of Equation 2.26 used in chapter 2 to estimate
the refraction of the laser beam through the FEP layer. Referring to Figure A.1

α3 α4

Ri,FEP

Δx

B

A

Ox

α1
 

α2
 

 
 

tFEP

Water

Water

Figure A.1: Refraction of the laser beam as it crosses the FEP half-rod. The
horizontal refraction ∆x due to the curvature of the FEP wall is retrieved from
geometrical considerations.

sinα1=
x

Ri,FEP
; sinα3=sinα1

η

ηFEP
, (A.1)

where α3 is the angle of the refracted light ray through the FEP, η and ηFEP are
air and FEP’s indices of refraction. α3is obtained as

α3=arcsin
(

xη

ηFEPRi,FEP

)
. (A.2)

Considering the triangle A
4
OB, the law of sine is applied twice:
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AB

sinα2
=

Ri,FEP

sinα4
;

AB

sinα2
=

Ri,FEP +tFEP

sin(π−α3)
. (A.3)

Hence,

sinα4=sinα3
Ri,FEP

Ri,FEP +tFEP
=

xη

ηFEP (Ri,FEP +tFEP)
, (A.4)

from which α4 is obtained as

α4=arcsin
[

xη

ηFEP (Ri,FEP +tFEP)

]
. (A.5)

The inner angles of the triangle A
4
OB sum up to π:

α2 +(π−α3)+ α4=π, (A.6)

meaning that the value of α2 is estimated as

α2=π− (π−α3)−α4, (A.7)

where α3 and α4 are given by Equations A.2 and A.5.

AB is obtained by applying the law of cosine to the triangle A
4
OB:

AB
2

= Ri,FEP
2 +(Ri,FEP +tFEP)2 +

−2Ri,FEP(Ri,FEP +tFEP)cosα2. (A.8)

Finally, the distortion due to the presence of FEP is given by

∆x=ABsin(α1−α3). (A.9)



Appendix B

The refractive index matching technique (RIM) can be applied either by employing
materials whose refractive index is close to the working fluid’s (S2F method, for
conciseness), or by adjusting the refractive index of the fluid to the one of the
material forming the experimental setup (F2S method, for conciseness) [73]. The
experimental facilities described in this thesis adopt the S2F method (see section
3.2.3) because the F2S option has proven unfeasible in the current experiments.
This appendix explains why the F2S method has not been followed. A possible
implementation of the F2S RIM technique would consist of components (rods,
casing) made of Perspex (ηPMMA=1.49) while the working fluid would be a solution
of water and salt to adjust the refractive index to the Perspex’s. The refractive
index of such a solution, ηsol, can be estimated through the Looyenga or the
Lorentz-Lorenz formulas [113], respectively

(
η

2/3
sol −1

)
φsol=∑φi

(
η

2/3
i −1

)
(B.1)

and

(
η2

sol−1
η2

sol + 2

)
φsol=∑φi

(
η2

i −1
η2

i + 2

)
, (B.2)

where ηsol is the refractive index of the solution to be determined, φsol is the molar
volume of the solution, and φi and ηi are the molar volume and the refractive
index of the individual compounds (i.e. water and salt). The refractive index of
a solution of NaCl and water is measured with an Abbe refractometer to test the
accuracy of Equation B.1 and B.2: the results are shown in Figure B.1.
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Figure B.1: Refractive index as a function of the concentration of NaCl dissolved
in water predicted by the theory and measured experimentally.

The Looyenga and Lorentz-Lorenz equations underpredict the experimental refrac-
tive index of the solution and the discrepancy grows larger as more salt is added
to the solution. A possible explanation is that the two equations do not take into
account the volume change between the crystal and ionic (dissolved) form of the
salt, which is to be determined empirically [114]. If the components of the rod
bundle would be made of Perspex, the acqueous solution should reach a refractive
index of ηPMMA=1.49. The considered salts are CsI, CsCl, KI and KSCN. The
refractive index of the acqueous solution is estimated with Equation B.1 and B.2,
and shown in Figure B.2a and B.2b, respectively. Although Figure B.2 shows that
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Figure B.2: Refractive index of an acqueous solution as a function of the amount
of dissolved salt, evaluated through the Looyenga equation a) and Lorentz-Lorenz
equation b). The refractive index that needs to be matched is ηPMMA=1.49. The
series are plotted throughout the solubility range of the considered salt.

CsI and KI are the best candidates to match the Perspex’s refractive index, the
required amount of salt exceeds their solubility limit. Furthermore, a salty solution
would corrode the metal parts of the experimental lopp such as the pump, hence
the F2S RIM technique is discarded and the S2F strategy is followed instead.



Appendix C

Considering a control volume immersed in a fluid in steady state (Figure C.1),
and neglecting gravity and frictions, a momentum balance can be set up. In an

Figure C.1: Control volume in a Eulerian reference frame.

Eulerian frame of reference, along the s direction, this is

ρUs ·Usdnês + ρUs+ds ·Us+dsdnês+ds + ρUn ·Usdnês + ρUn ·Us+dsdnês+ds+

+ psdnês + ps+dsdnês+ds=0, (C.1)

Considering that ês=−ês+ds, the previous equation becomes

ρUs ·Usdnês−ρUs+ds ·Us+dsdnês + ρUn ·Usdnês−ρUn ·Us+dsdnês+

+ psdnês− ps+dsdnês=0, (C.2)

from which it follows
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−∂ (ρUs ·Us)

∂ s
dsdnês−

∂ (ρUn ·Us)

∂ s
dsdnês−

∂ ps

∂ s
dsdnês=0. (C.3)

If density is constant, it can be moved out of the derivatives:

−2ρUs
∂Us

∂ s
ês−ρUs

∂Un

∂ s
ês−ρUn

∂Us

∂ s
ês−

∂ ps

∂ s
ês=0. (C.4)

The momentum balance along the n direction is

ρUs ·Undsên + ρUs ·Un+dndsên + ρ +UnUndsên + ρUnUn+dndsên+dn+

+ pndsên + pn+dndsên+dn + ρdnds
U2

s

R
ên=0, (C.5)

Considering that ên=−ên+dn, the previous equation becomes

ρUs ·Undsên−ρUs ·Un+dndsên + ρUnUndsên−ρUnUn+dndsên+

+ pndsên− pn+dndsên + ρdnds
U2

s

R
ên=0, (C.6)

−∂ (ρUs ·Un)

∂n
dsdnên−

∂ (ρUn ·Un)

∂n
dsdnên−

∂ pn

∂n
dsdnên + ρdnds

U2
s

R
ên=0, (C.7)

−ρUs
∂Un

∂n
ên−ρUn

∂Us

∂n
ên−

∂ (ρUn ·Un)

∂n
ên−

∂ pn

∂n
ên + ρ

U2
s

R
ên=0. (C.8)

Recalling the continuity equation, and assuming constant fluid density, it follows
that

∂Un

∂n
ên=−∂Us

∂ s
ês. (C.9)

Substituting the previous equation in Equation C.8 we obtain

ρUs
∂Us

∂ s
ês−ρUn

∂Us

∂n
ên−ρ

∂ (Un ·Un)

∂n
ên−

∂ pn

∂n
ên + ρ

U2
s

R
ên=0. (C.10)

Combining Equation C.10 and Equation C.4 together leads to

−2ρUs
∂Us

∂ s
ês−ρUs

∂Un

∂ s
ês−ρUn

∂Us

∂ s
ês−

∂ ps

∂ s
ês + ρUs

∂Us

∂ s
ês+

−ρUn
∂Us

∂n
ên−ρ

∂ (Un ·Un)

∂n
ên−

∂ pn

∂n
ên + ρ

U2
s

R
ên=0, (C.11)

and then
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−ρUs
∂Us

∂ s
ês−ρUs

∂Un

∂ s
ês−ρUn

∂Us

∂ s
ês−

∂ ps

∂ s
ês−ρUn

∂Us

∂n
ên+

−ρ
∂ (Un ·Un)

∂n
ên−

∂ pn

∂n
ên + ρ

U2
s

R
ên=0. (C.12)

Recalling the definition of streamline, the velocity vector ~v≡Usês is tangent to the
s direction, meaning Un=0, so the previous equation is re-written as

−ρU
∂Us

∂ s
ês−

∂ p
∂ s

ês−
∂ p
∂n

ên + ρ
U2

s

R
ên=0, (C.13)

which is expressed in its compact form

−Us
∂Us

∂ s
ês−

1
ρ

∇p +
U2

s

R
ên=0, (C.14)

with ∇≡
(

∂ p
∂ s ês; ∂ p

∂n ên

)
. Equation C.14 is the same as Equation 5.25 derived with

a Lagrangian approach.
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The equation

σ̂

−∞

[
1 + tan2

β (~r)
]1/2 dβ (~r)

dy
dy=

σ̂

−∞

1
ρv2(~r)

∂ p(~r)

∂n
dy, (D.1)

treated in Chapter 5 is solved by means of the following substitution:

κ=β (~r)

dκ=
dβ (~r)

dy
dy

and assuming that the streamline far upstream of the wire is straight, that is
β (y=−∞)=0. The left-hand side term becomes

β (y=σ)ˆ

0

[
1 + tan2

κ
]1/2

dκ=

β (y=σ)ˆ

0

[
1 + tan2

β (~r)
]1/2

dβ (~r). (D.2)

Considering that

1 + tan2
β (~r)=

1
cos2 β (~r)

, (D.3)

it follows that

β (y=σ)ˆ

0

[
1 + tan2

β (~r)
]1/2

dβ (~r)=

β (y=σ)ˆ

0

dβ (~r)

cosβ (~r)
. (D.4)

The integral is now re-written as

β (y=σ)ˆ

0

dβ (~r)

cosβ (~r)

cosβ (~r)

cosβ (~r)
=

β (y=σ)ˆ

0

cosβ (~r)dβ (~r)

cos2 β (~r)
=

β (y=σ)ˆ

0

cosβ (~r)dβ (~r)

1− sin2
β (~r)

. (D.5)
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Then the following substitution is operated:

q=sinβ (~r)

dq=cosβ (~r)dβ (~r)

such that
β (y=σ)ˆ

0

cosβ (~r)dβ (~r)

1− sin2
β (~r)

=

sinβ (y=σ)ˆ

0

1
1−q2 dq. (D.6)

The integrand of the left-hand side term is rearranged as follows:

1
1−q2 =

1
(1 + q)(1−q)

=
A

1 + q
+

B

1−q
, (D.7)

where A =B=1/2.
Therefore,

sinβ (y=σ)ˆ

0

1
1−q2 dq=

1
2

sinβ (y=σ)ˆ

0

1
1 + q

+
1
2

sinβ (y=σ)ˆ

0

1
1−q

=

=
1
2

[ln(1 + q)− ln(1−q)]
sinβ (y=σ)
0 . (D.8)

Equation D.1 becomes

1
2

[ln(1 + sinβ (y=σ))− ln(1− sinβ (y=σ))]=

σ̂

−∞

1
ρv2(~r)

∂ p(~r)

∂n
dy. (D.9)

For small β (~r),
sinβ (~r)≈β (~r) , (D.10)

so

ln(1 + sinβ (y=σ))≈β (y=σ), (D.11)

and
ln(1− sinβ (y=σ))≈−β (y=σ), (D.12)

For the left-hand side of Equation D.9, it follows that

1
2

[ln(1 + sinβ (y=σ))− ln(1− sinβ (y=σ))]≈

≈1
2

[β (y=σ)− (−β (y=σ))]≈β (y=σ). (D.13)

For small angles, β is, thus, expressed as

β (y=σ)=

σ̂

−∞

1
ρv2(~r)

∂ p(~r)

∂n
dy, (D.14)

which is equal to Equation 5.37.



Appendix E

The uncertainty quantification of the correlation for the bending angle βw (Equation
5.54) is presented in this appendix. The dimensional tolerances of the rod and the
wire are considered (see table 3.2), as well as the uncertainty on the measured
mean angle βw.
The uncertainty δβw on the value predicted by the correlation is expressed as

δβw=

∣∣∣∣∂βw

∂b
δb
∣∣∣∣, (E.1)

where δb is the uncertainty on the exponent of the correlation, and ∂β

∂ f is obtained

deriving Equation 5.54 with respect to b:

∂βw

∂b
=

h
φpin

ln
(

φw
φh

)
·
(

φw
φh

)b

1 +

[
h

φpin

(
φw
φh

)b
]2 , (E.2)

being h, φpin, and φw the helicoid wire pitch, the pin diameter and the wire diameter
of an arbitrary hexagonal bundle. The dimensions of the SEEDS-2 bundle are
substituted in the previous equation, that is h=h, φpin=D and φw=Dw.
The δb term is determined by the uncertainty propagation formula as

δb=

√(
∂b

∂Dw
δDw

)2

+

(
∂b
∂D

δD
)2

+

(
∂b

∂β
δβw

)2

, (E.3)

where δDw, δD and δβw are respectively the uncertainties on the diameter of the
rod and wire of the hexagonal bundle of this research, and βw the mean measured
angle of bending. The partial derivatives ∂b

∂Dw
, ∂b

∂D and ∂b
∂βw

are obtained by deriving

Equation 5.56 with respect to Dw, D, and βw:

∂b
∂Dw

=
ln
(D

h tanβw

)
ln(Dw/Dh)2 ·

[
−P + Dw

PDw
+

4
√

3P−2πDw

2
√

3P2−π (D2 + D2
w)

]
, (E.4)

∂b
∂D

=
1

D ln(Dw/Dh)
+

ln
(D

h tanβw

)
ln(Dw/Dh)2

[
− 1

P
+

4
√

3P−2πD
2
√

3P2−π (D2 + D2
w)

]
, (E.5)
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∂b
∂βw

=
1

ln(Dw/Dh)

1 + tan2 βw

tanβw
. (E.6)

Equation E.1 is finally used to estimate the uncertainty on the angle predicted by
the correlation derived in Chapter 5, which is equal to 5%.
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