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Summary

Radiotherapy cancer treatments aim at killing tumor cells with radiation. Current pro-
ton and photon therapy workflows are based on irradiating the patient over the course
of several daily sessions (or fractions, ranging from a few to typically 30) using treat-
ment plans based on a planning computed tomography (CT) scan obtained days be-
fore starting the treatment course. Ideally, the treatment would completely irradiate
the tumor without damaging the surrounding critical organs, but this is physically im-
possible due to the presence of errors and uncertainties from several sources. Setup
errors arise from the imprecision in positioning the patient at the same exact location
every fraction. Intra-fraction anatomical variations cause some organs to move dur-
ing delivery (e.g., liver or lung due to breathing). Most importantly, due to the time
lapse between planning and treatment, inter-fraction anatomical changes can cause
even larger differences in anatomy (e.g., changes in rectum filling or tumor shrinking).
All such uncertainties affect how the dose is deposited in the tumor and surrounding
structures, and can ultimately compromise treatment effectiveness if not accounted
for.

Current photon and proton plans try to mitigate the detrimental effect of uncer-
tainties a-priori during treatment plan optimization. Photon treatments use margin
extensions on the target, directly aiming to irradiate larger volumes. Proton work-
flows optimize treatment plans simultaneously over a set of error scenarios and sub-
sequently evaluate treatment plan robustness against possible uncertainties in many
different error scenarios, ultimately also resulting in irradiated volumes that are larger
than the actual clinical target. Photon margins are able to cover for setup errors and
also for anatomical variations to some extent, but current proton robust optimization
and robustness evaluation approaches only account for setup and range calculation
errors, partially due to the lack of realistic anatomy motion models in the literature.

To maximally reduce the effect of inter-fraction organ and tumor motion, next gen-
eration online adaptive workflows aim at verifying — and, if necessary, correcting —
treatment plans in a couple of minutes before delivery of each treatment session. Such
workflows would mitigate the detrimental effects of uncertainties, by adapting to anatom-
ical variations, thereby allowing reduced margins (for photons) and lower robustness
settings in the optimization (for protons), and compromising less healthy tissue for the
goal of irradiating the tumor. Such adaptive approaches put even stringent require-
ments on the speed of the dose calculations than robust optimization and robustness
evaluation, requiring (among others) algorithms to predict dose delivery in few sec-
onds, currently lacking in the radiotherapy community.

This thesis aims at solving both the problem of the slow dose prediction speed and
the absence of anatomical models with a combination of deep learning and probabilis-
tic modeling concepts. The first half of the thesis presents novel methods to predict
photon beam or proton pencil beam doses in few milliseconds, while the second half

ix



x Summary

addresses the simulation of anatomical variations during and in-between fractions.

The primary challenge of current dose calculation approaches is that neither Monte
Carlo (MC), nor analytical pencil beam algorithms (PBA) can meet both the stringent
speed and accuracy requirements needed for adaptation. As a potential solution, Chap-
ter 2 presents a deep learning based millisecond speed dose calculation algorithm
(DoTA) accurately predicting the dose deposited by proton pencil beams for arbitrary
energies and patient geometries. Given the forward-scattering nature of protons, 3D
particle transport is framed as modeling a sequence of 2D CT geometries in the beam’s
eye view. DoTA combines convolutional neural networks extracting spatial features
(e.g., tissue and density contrasts) with a transformer self-attention backbone routing
information between the sequence of geometry slices and a vector representing the
beam’s energy, and is trained to predict low noise MC simulations of proton beamlets.
Predicting beamlet doses in 5±4.9 ms with very high gamma pass rates of 99.37±1.17%
(3 mm, 1%), DoTA significantly improves upon analytical pencil beam algorithms both
in precision and speed. Offering MC accuracy 100 times faster than PBAs and 10,000
times faster than MC, our model calculates full treatment plan doses in 10 s to 15 s de-
pending on the number of beamlets (800-2200 in our plans), achieving a 99.70±0.14%
(2mm, 2%) gamma pass rate across 9 test patients. DoTA represents a new state of the
art in deep learning-based dose calculation and can directly compete with the speed
of even commercial multi GPU MC approaches.

In Chapter 3, the DoTA architecture is extended to predict broad photon beam dose
distributions in few milliseconds. The proposed improved Dose Transformer Algo-
rithm (iDoTA) maps arbitrary patient geometries and beam information (in the form
of a 3D projected shape resulting from a simple ray tracing calculation) to their corre-
sponding 3D dose distribution. Treating the 3D CT input and dose output volumes as
a sequence of 2D slices along the direction of the photon beam, iDoTA solves the dose
prediction task as sequence modeling — similar to DoTA —, using a series of convo-
lutions, residual connections and a transformer backbone. iDoTA predicts individual
photon beams in ≈ 50 milliseconds with a high gamma pass rate of 97.72± 1.93% (2
mm, 2%). Estimating full VMAT dose distributions in 6-12 seconds, iDoTA achieves
state-of-the-art performance with a 99.51±0.66% (2 mm, 2%) gamma pass rate. The
proposed model can reduce calculation times from few minutes to just a few seconds,
massively speeding up current photon workflows.

While photon workflows partially mitigate the effect anatomical uncertainties with
extra margins, the exact effectiveness of added margins on reducing the effects of or-
gan motion is unknown. Most importantly, current proton robust optimization and
robustness evaluation approaches only include setup and range uncertainties, basi-
cally completely disregarding the detrimental effects of anatomy changes during the
treatment course. Accurate models of internal anatomy motion able to simulate dom-
inant motion patterns could alleviate both issues. They could allow determining in-
dividualized margins for photon treatment courses, and including multiple anatomies
in robust optimization and robustness evaluation for proton treatments. Traditionally,
such anatomy models are based on principal component analysis (PCA) and are either
patient-specific (requiring several scans per patient) or population-based, applying the
same set of deformations to all patients. Chapter 4 presents a hybrid approach which,
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based on population data, allows to predict patient-specific inter-fraction variations
for an individual patient. This is achieved by a deep learning probabilistic framework
that generates deformation vector fields (DVFs) warping a patient’s planning CT into
possible patient-specific anatomies. The presented daily anatomy model (DAM) uses
few random variables capturing groups of correlated movements. Given a new plan-
ning CT, DAM estimates the joint distribution over the variables conditioned on the
planning CT, with each sample from the distribution corresponding to a different de-
formation. Focusing on prostate cancer patients, DAM’s performance is evaluated by
quantifying the contour overlap between real and generated images (DICE score), and
comparing the sampled and “ground truth” distributions of volume and center of mass
changes. With DICE scores of 0.86±0.05 and an average distance between prostate con-
tours of 1.09±0.93 mm using as few as 8 latent variables, DAM matches and improves
the accuracy of previously published PCA-based models. The overlap between the sim-
ulated and ground truth distributions of center of mass and volume changes further
indicates that DAM’s sampled movements match the range and frequency of clinically
observed daily changes on repeat CTs. Conditioned only on planning CT values and or-
gan contours of a new patient without any pre-processing, DAM can accurately predict
deformations seen during the treatment course, enabling robust treatment planning
and robustness evaluation against inter-fraction anatomical changes.

Turning our attention to breathing anatomical variations occurring during radia-
tion delivery, Chapter 5 presents a probabilistic framework to simultaneously gener-
ate and classify breathing signal time series. First, the chapter explores the potential
of using the variational autoencoder (VAE) and adversarial autoencoder (AAE) algo-
rithms to model breathing signals from individual patients. Second, an extended semi-
supervised AAE algorithm is presented, allowing joint semi-supervised classification
and generation of different types of signals within a single framework. To simplify
the modeling task, a novel pre-processing and post-processing compressing method
transforms the multi-dimensional time series into vectors containing only 8 time and
position values per cycle, which are transformed back into high-resolution time series
data through an additional neural network. The resulting models are able to gener-
ate highly realistic samples of breathing. By incorporating 4% and 12% of the labeled
samples during training, the presented model outperforms other purely discriminative
networks in classifying breathing baseline shift irregularities from a dataset completely
different from the training set, with potential applications to generating class-specific
breathing signals to be used for simulation of intra-fraction movements.

Based on the breathing signal models introduced in Chapter 5, Chapter 6 addresses
the challenge of simulating breathing interplay effects in Intensity Modulated Proton
Therapy (IMPT). Interplay effects arise from the interaction between target motion and
the movement of the scanning beam, since breathing motion frequency and beam scan
speed are of the same order of magnitude. Assessing the detrimental effect of interplay
and the clinical robustness of various mitigation techniques requires statistical evalua-
tion procedures that take into account the variability of breathing during dose delivery.
Chapter 6 presents a model of intra-fraction respiratory motion based on breathing sig-
nals, while also assessing clinically relevant aspects related to the practical evaluation
of interplay in IMPT such as how to model irregular breathing, how small breathing
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changes affect the final dose distribution, and what is the statistical power (number of
different scenarios) required for trustworthy quantification of interplay effects. First,
two data-driven methodologies to generate artificial patient-specific breathing signals
are compared: a simple sinusoidal model, and a precise probabilistic deep learning
model yielding highly realistic samples of patient breathing. Second, the highly fluctu-
ating relationship between interplay doses and breathing parameters is investigated,
showing that small changes in breathing period can result in large local variations in
the dose. The results indicate that using a limited number of samples to calculate in-
terplay statistics introduces a bigger error than using simple sinusoidal models based
on patient parameters or disregarding breathing hysteresis during the evaluation. Fur-
thermore, the chapter illustrates the power of the presented statistical method by ana-
lyzing interplay robustness of 4DCT and Internal Target Volume (ITV) based treatment
plans for a 8 lung cancer patients. As opposed to 4DCT plans, even 33 fraction ITV
plans systematically fail to fulfill robustness requirements, indicating that the current
use of ITV plans may be insufficient.

The work presented in this thesis addresses two of the main issues of radiother-
apy workflows: the slow speed of dose calculation algorithms and the lack of accu-
rate enough methods to simulate inter-fraction and intra-fraction anatomical chan-
ges. The developed algorithms solve both problems, offering millisecond dose predic-
tion speed for proton pencil beams and full photon beams, and simulating realistic
inter-fractional and intra-fractional anatomical variations matching the movements
typically observed during the treatment course. As a conclusion, Chapter 7 discusses
applications and possible future research indications. Offering the speed and anatom-
ical modeling capabilities needed for robust planning, robustness evaluation and ulti-
mately treatment plan adaptation, future research should focus on coupling the pre-
sented algorithms to existing clinical workflows, as well as validating their generaliza-
tion performance in real clinical scenarios.



Samenvatting

Het doel van radiotherapie is het doden van tumorcellen door middel van straling. Bij
de huidige protonen- en fotonentherapie wordt de patiënt bestraald tijdens een aan-
tal dagelijkse sessies (ook wel fracties genoemd, gewoonlijk variërend van enkele tot
dertig) met behulp van behandelingsplannen die gebaseerd zijn op een planning com-
putertomografiescan (CT-scan) die enkele dagen voor het begin van de behandeling is
gemaakt. Idealiter wordt de tumor volledig bestraald zonder de omringende kritieke
organen te beschadigen, maar dit is fysiek onmogelijk door de aanwezigheid van ver-
schillende bronnen van fouten en onzekerheden. Onnauwkeurigheid bij het in de-
zelfde positie plaatsen van de patiënt bij iedere fractie zorgt voor positioneringsfouten.
Intra-fractie anatomische variaties veroorzaken dat sommige organen tijdens de toe-
diening bewegen (bv. lever of long door de ademhaling). En nog belangrijker, door de
tijd tussen de planning en de behandeling kunnen interfractie anatomische verande-
ringen nog grotere verschillen in de anatomie veroorzaken (bv. veranderingen in de
vulling van het rectum of het krimpen van de tumor). Al deze onzekerheden beïnvloe-
den de wijze waarop de dosis in de tumor en de omringende structuren terechtkomt,
en kunnen uiteindelijk de doeltreffendheid van de behandeling in gevaar brengen als
er geen rekening mee wordt gehouden.

Met de huidige fotonen- en protonenplannen wordt getracht het nadelige effect
van onzekerheden a-priori, d.w.z. tijdens de optimalisatie van het behandelplan, te
beperken. Fotonbehandelingen maken gebruik van marge-uitbreidingen op het doel-
wit, waarbij direct wordt getracht grotere volumes te bestralen. Protonenworkflows
optimaliseren de behandelplannen gelijktijdig over een reeks foutscenario’s en evalu-
eren vervolgens de robuustheid van het behandelplan tegen mogelijke onzekerheden
in vele verschillende foutscenario’s, wat uiteindelijk ook resulteert in bestraalde volu-
mes die groter zijn dan het werkelijke klinische doel. Fotonmarges kunnen tot op ze-
kere hoogte compenseren voor positioneringsfouten en anatomische variaties, maar
de huidige robuuste optimalisatie- en robuustheidsevaluatiebenaderingen houden al-
leen rekening met positionerings- en proton-range fouten, deels vanwege het gebrek
aan realistische anatomische bewegingsmodellen in de literatuur.

Om het effect van interfractie orgaan- en tumorbewegingen maximaal te beperken,
zijn de volgende generatie online adaptieve workflows gericht op het verifiëren - en zo
nodig corrigeren - van behandelplannen, binnen enkele minuten voorafgaand aan het
uitvoeren van elke behandelingssessie. Dergelijke workflows zouden de nadelige effec-
ten van onzekerheden verminderen, door zich aan te passen aan anatomische varia-
ties, waardoor kleinere marges (voor fotonen) en lagere robuustheidsinstellingen in de
optimalisatie (voor protonen) mogelijk worden, en minder gezond weefsel in gevaar
wordt gebracht tijdens het bestralen van de tumor. Dergelijke adaptieve benaderingen
stellen nog strengere eisen aan de snelheid van de dosisberekeningen dan robuuste
optimalisatie en robuustheidsevaluatie, en vereisen (onder andere) algoritmen die de
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dosistoediening in enkele seconden kunnen voorspellen, welke momenteel nog niet
beschikbaar zijn binnen de radiotherapiegemeenschap.

Het doel van dit proefschrift is het oplossen van zowel het probleem van de trage
dosisvoorspellingssnelheid als het ontbreken van anatomische modellen, met behulp
van een combinatie van deep learning en probabilistische modelleerconcepten. De
eerste helft van het proefschrift presenteert nieuwe methoden om de dosis van fotonen-
of protonenbundels in enkele milliseconden te voorspellen, terwijl de tweede helft de
simulatie van anatomische variaties tijdens en tussen fracties behandelt.

De voornaamste uitdaging van de huidige benaderingen voor dosisberekening is
dat noch Monte Carlo (MC), noch analytische pencil-beam algoritmen (PBA) kunnen
voldoen aan de strenge eisen van snelheid en nauwkeurigheid die nodig zijn voor aan-
passing. Als mogelijke oplossing wordt in Hoofdstuk 2 een op deep learning gebaseerd
algoritme voor dosisberekening (DoTA) gepresenteerd dat nauwkeurig de door proto-
nenbundels afgegeven dosis voorspelt voor willekeurige energieën en patiëntgeome-
trieën. Gezien de voorwaarts verstrooiende aard van protonen wordt het 3D deeltjes-
transport benaderd als het modelleren van een opeenvolging van 2D CT-geometrieën
(“plakken”) loodrecht op de bundelrichting. DoTA combineert convolutionele neurale
netwerken die ruimtelijke kenmerken extraheren (bv. weefsel- en dichtheidscontras-
ten) met een transformer self-attention backbone die informatie tussen de opeenvol-
ging van geometrieplakken stuurt en een vector die de energie van de bundel weer-
geeft, en is getraind om MC-simulaties van protonbundels met weinig ruis te voor-
spellen. De DoTA voorspelt stralingsdoses in 5.9±4.9 ms met zeer hoge Gamma-test
slagingspercentages van 99.37±1.17% (3 mm, 1%) en verbetert de analytische pencil
beam-algoritmen aanzienlijk in precisie en snelheid. Met een MC-nauwkeurigheid die
100 keer sneller is dan PBA’s en 10.000 keer sneller dan MC, berekent ons model vol-
ledige behandelingsplan-doses in 10-15 seconden, afhankelijk van het aantal bundels
(800-2200 in onze plannen), met een Gamma slagingspercentage van 99.70±0.14% (2
mm, 2%) voor 9 testpatiënten. DoTA is de nieuwste op deep learning-gebaseerde do-
sisberekeningsmethode die zelfs direct kan concurreren met de snelheid van commer-
ciële multi GPU MC benaderingen.

In Hoofdstuk 3 wordt de DoTA-architectuur uitgebreid om in enkele milliseconden
brede dosisverdelingen van fotonenbundels te voorspellen. Het voorgestelde improved
Transformer Algorithm (iDoTA) brengt de 3D dosisverdeling in kaart van willekeurige
patiëntgeometrieën en bundelinformatie (een 3D geprojecteerde vorm die het resul-
taat is van een eenvoudige ray tracing berekening). Door de 3D CT input en dosis out-
put volumes te behandelen als een opeenvolging van 2D doorsnedes langs de richting
van de fotonenbundel, lost iDoTA de dosisvoorspelling op als sequentiemodellering
- vergelijkbaar met DoTA - met behulp van een reeks convoluties, residual connecti-
ons en een transformator backbone. iDoTA voorspelt individuele fotonenbundels in
≈ 50 milliseconden met een hoog Gamma-test slagingspercentage van 97.72±1.93% (2
mm, 2%). De iDoTA berekent de volledige VMAT-dosisverdeling in 6-12 seconden en
met een state of the art Gamma slagingspercentage van 99.51±0.66% (2 mm, 2%). Het
voorgestelde model kan de berekeningstijden terugbrengen van enkele minuten tot
slechts enkele seconden, waardoor de huidige fotonworkflows sterk worden versneld.

Hoewel fotonenworkflows het effect van anatomische onzekerheden gedeeltelijk
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mitigeren met extra marges, is de exacte effectiviteit van de extra marges op het ver-
minderen van de effecten van orgaanbeweging onbekend. Het belangrijkste is dat de
huidige benaderingen voor robuuste optimalisatie en robuustheidsevaluatie van pro-
tonen alleen rekening houden met onzekerheden van de patiëntpositionering en de
proton range, waardoor de schadelijke effecten van anatomische veranderingen tij-
dens de behandeling in feite volledig buiten beschouwing blijven. Nauwkeurige mo-
dellen van de interne anatomie die dominante bewegingspatronen kunnen simule-
ren, zouden beide problemen kunnen verkleinen. Zij zouden het mogelijk maken ge-
ïndividualiseerde marges te bepalen voor fotonenbehandelingen en meerdere anato-
mieën op te nemen in robuuste optimalisatie en robuustheidsevaluatie voor proton-
behandelingen. Traditioneel zijn dergelijke anatomiemodellen gebaseerd op principal
componentanalysis (PCA) en zijn ze ofwel patiëntspecifiek (waarvoor meerdere scans
per patiënt nodig zijn) ofwel populatiegericht, waarbij dezelfde reeks vervormingen
op alle patiënten wordt toegepast. In Hoofdstuk 4 wordt een hybride aanpak gepre-
senteerd waarmee op basis van populatiegegevens patiëntspecifieke interfractievari-
aties voor een individuele patiënt kunnen worden voorspeld. Dit wordt bereikt door
een deep learning probabilistisch kader dat deformatievectorvelden (DVF’s) genereert
die de plannings-CT van een patiënt vervormen tot mogelijke patiëntspecifieke ana-
tomieën. Het gepresenteerde dagelijkse anatomiemodel (DAM) gebruikt enkele wil-
lekeurige variabelen die groepen gecorreleerde bewegingen vastleggen. Gegeven een
nieuwe planning CT, schat DAM de gezamenlijke verdeling over de variabelen gecon-
ditioneerd op de planning CT, waarbij elk monster van de verdeling overeenkomt met
een andere vervorming. Bij prostaatkankerpatiënten worden de prestaties van DAM
geëvalueerd door de overlapping van de contouren tussen de echte en de gegenereerde
beelden (DICE-score) te kwantificeren en de bemonsterde verdelingen van volume- en
massamiddelpuntveranderingen te vergelijken met de "ground truth-verdeling. Met
DICE-scores van 0.86±0.05 en een gemiddelde afstand tussen prostaatcontouren van
1.09±0.93 mm met slechts 8 latente variabelen evenaart en verbetert DAM de nauw-
keurigheid van eerder gepubliceerde PCA-gebaseerde modellen. De overlap tussen de
gesimuleerde en ground truth distributies van veranderingen in het massamiddelpunt
en volume geeft verder aan dat de in de steekproef opgenomen bewegingen van DAM
overeenkomen met het bereik en de frequentie van klinisch waargenomen dagelijkse
veranderingen op herhaalde CTs. Wanneer slechts geconditioneerd op plannings-CT-
waarden en orgaancontouren van een nieuwe patiënt zonder enige voorbewerking,
kan DAM nauwkeurig vervormingen voorspellen die tijdens het behandeltraject wor-
den waargenomen, waardoor robuuste behandelplanning en robuustheidsevaluatie
tegen interfractie anatomische veranderingen mogelijk worden.

Als we onze aandacht richten op anatomische ademhalingsvariaties tijdens bestra-
ling, presenteert Hoofdstuk 5 een probabilistisch kader voor het gelijktijdig genereren
en classificeren van tijdreeksen van ademhalingssignalen. Ten eerste onderzoekt het
hoofdstuk de mogelijkheden van de variationele autoencoder (VAE) en adversariële
autoencoder (AAE) om ademsignalen van individuele patiënten te modelleren. Ten
tweede wordt een uitgebreid semi-supervised AAE-algoritme gepresenteerd, dat geza-
menlijke semi-supervised classificatie en generatie van verschillende soorten signalen
binnen één kader mogelijk maakt. Om de modelleringstaak te vereenvoudigen, wor-
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den de multidimensionale tijdreeksen door een nieuwe methode voor voor- en nabe-
werking omgezet in vectoren met slechts 8 tijd- en positiewaarden per cyclus, die via
een aanvullend neuraal netwerk weer worden omgezet in tijdreeksgegevens met hoge
resolutie. De resulterende modellen kunnen zeer realistische ademhalingsvoorbeel-
den genereren. Door tijdens de training 4% en 12% van de gelabelde monsters op te
nemen, presteert het gepresenteerde model beter dan andere zuiver discriminerende
netwerken bij het classificeren van onregelmatigheden in de basislijnverschuiving van
de ademhaling uit een dataset die volledig verschilt van de trainingsset, met mogelijke
toepassingen voor het genereren van klassespecifieke ademsignalen die kunnen wor-
den gebruikt voor de simulatie van bewegingen binnen de fractie.

Gebaseerd op de in Hoofdstuk 5 geïntroduceerde ademsignaalmodellen, wordt in
Hoofdstuk 6 de uitdaging aangegaan om ademhalingseffecten bij intensiteit gemo-
duleerde protontherapie (IMPT) te simuleren. Interactie-effecten ontstaan door de
interactie tussen de beweging van het doelwit en de beweging van de bundel, aan-
gezien de frequentie van de ademhalingsbeweging en de scansnelheid van de bun-
del van dezelfde orde van grootte zijn. Om het schadelijke effect van interplay en de
klinische robuustheid van verschillende mitigatietechnieken te beoordelen, zijn sta-
tistische evaluatieprocedures nodig die rekening houden met de variabiliteit van de
ademhaling tijdens de toediening van de dosis. Hoofdstuk 6 presenteert een model
van ademhalingsbeweging binnen de fractie op basis van ademsignalen, terwijl ook
klinisch relevante aspecten met betrekking tot de praktische evaluatie van interplay in
IMPT worden beoordeeld, zoals hoe onregelmatige ademhaling kan worden gemodel-
leerd, hoe kleine ademhalingsveranderingen de uiteindelijke dosisverdeling beïnvloe-
den en wat het onderscheidend vermogen (aantal verschillende scenario’s) is die no-
dig is voor een betrouwbare kwantificering van interplay-effecten. Eerst worden twee
gegevensgestuurde methodologieën voor het genereren van kunstmatige patiëntspeci-
fieke ademsignalen vergeleken: een eenvoudig sinusoïdaal model en een nauwkeurig
probabilistisch deep learning-model dat zeer realistische voorbeelden van de adem-
haling van patiënten oplevert. Ten tweede wordt de sterk fluctuerende relatie tussen
intervaldoses en ademhalingsparameters onderzocht, waaruit blijkt dat kleine veran-
deringen in de ademhalingsperiode kunnen leiden tot grote lokale variaties in de do-
sis. Uit de resultaten blijkt dat het gebruik van een beperkt aantal monsters voor de
berekening van de interplay-statistieken een grotere fout oplevert dan het gebruik van
eenvoudige sinusoïdale modellen op basis van patiëntparameters of het negeren van
ademhalingshysterese tijdens de evaluatie. Verder illustreert het hoofdstuk de kracht
van de gepresenteerde statistische methode door de interplay-robuustheid te vergelij-
ken tussen 4DCT en Internal Target Volume (ITV) gebaseerde behandelplannen voor 8
longkankerpatiënten. In tegenstelling tot 4DCT-plannen voldoen zelfs 33-fractie ITV-
plannen systematisch niet aan de robuustheidsvereisten, wat erop wijst dat het huidige
gebruik van ITV-plannen mogelijk ontoereikend is.

Het in dit proefschrift gepresenteerde werk pakt twee van de belangrijkste proble-
men van radiotherapie workflows aan: de trage snelheid van dosisberekeningsalgorit-
men en het gebrek aan voldoende nauwkeurige methoden om interfractie en intrafrac-
tie anatomische veranderingen te simuleren. De ontwikkelde algoritmen lossen beide
problemen op en bieden een snelheid van milliseconden voor de voorspelling van de
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dosis voor protonen- en fotonenbundels, en simuleren realistische interfractionele en
intrafractionele anatomische variaties die overeenkomen met de bewegingen die tij-
dens de behandeling worden waargenomen. Ter afsluiting worden in Hoofdstuk 7 toe-
passingen en mogelijke toekomstige onderzoeksindicaties besproken. Met de snelheid
en de mogelijkheden voor anatomische modellering die nodig zijn voor robuuste plan-
ning, robuustheidsevaluatie en uiteindelijk aanpassing van het behandelplan, moet
toekomstig onderzoek zich richten op het koppelen van de gepresenteerde algoritmen
aan bestaande klinische workflows, en op het valideren van hun generalisatieprestaties
in echte klinische scenario’s.

(Translation provided by Marc van den Berg, Mischa Hoogeman and Dennis Schaart.)





1
Introduction

Despite significant research efforts, cancer remains responsible for more than 10 mil-
lion deaths in 2020 worldwide (Sung et al., 2021). With more than 50% of the pa-
tients receiving radiation treatments, radiotherapy is at the forefront of current stan-
dard of care, playing an important role in improving societal health. Sophisticated
computational methods and particle transport simulations have been key to this suc-
cess (Bernier et al., 2004), enabling highly personalized treatments.

The goal of radiation therapy is to eradicate cancerous tissue while minimizing
damage to surrounding healthy organs and structures. While traveling through the
patient, radiation deposits energy in the tissue via atomic and nuclear interactions.
This energy transfer is quantified as dose and is expressed as energy (Joules) absorbed
per unit mass, with units of Gray (Gy). Dose translates into radiation damage, which
mainly occurs via single or double strand DNA breaks, causing cell death.

Radiotherapy primarily uses photons or protons to irradiate the target, with most
patients receiving photon treatments, but proton therapy spreading quickly due to pro-
tons’ finite range and significantly better ability to focus dose on tumors (Lundkvist et
al., 2005). Photons and protons mainly differ in the way they deposit energy along their
path. After a short build-up dose region near beam entrance called the ’skin-sparing ef-
fect’, the energy deposited by photons decreases exponentially with increasing depth.
Since the dose delivered by a photon beam is higher near the patient’s surface, photon
treatments require many beam angles to create high dose regions inside the patient by
overlapping low doses from many different beams. As a consequence of using many
angles (referred to as gantry angles in this thesis) with different collimator shapes that
conform the beam laterally to the tumor shape, photon treatments typically result in
large irradiated volumes within the patient. Conversely, protons can deliver high doses
to deep tumors using only few irradiation angles, since most of the dose deposited by
proton beams occurs at a known depth (range) in a region referred to as the Bragg peak.
The location of this high dose Bragg peak can be estimated with reasonable accuracy
given the beam energy and the material composition of the patient. This finite range
property is used in proton treatments to deliver most of the dose to the tumor, sparing
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Figure 1.1: Radiotherapy workflow. A radiotherapy treatment typically begins with the acquisition of the
patient’s anatomical information about tissues and structures via imaging (typically in the form of a 3D CT
scan), followed by the delineation of the tumor and relevant surrounding organs. Once the treatment irradi-
ation modality has been selected, the image and contours are then used as an input to a treatment planning
step, resulting in a list of beam angles, intensities and energies used to irradiate the target. A subsequent
treatment plan evaluation step determines if the plan is robust against errors, such as the ones in position-
ing the patient on the couch, requiring the calculation of the radiation dose delivered in many different
evaluation error scenarios.

the surrounding organs and achieving the same tumor dose as in photon treatment
with less OAR dose. As a result, an increasingly large number of facilities are adopting
intensity modulated proton therapy (IMPT) treatments, using few gantry angles com-
posed of thousands of narrow proton pencil beams with different energies aiming at
the target.

1.1. Radiation therapy workflow
As illustrated in Figure 1.1, photon and proton radiotherapy treatments usually follow
a 5-step procedure.

1.1.1. Acquiring anatomical information
First, high quality anatomical information is acquired, typically as computed tomog-
raphy (CT) images (Pereira et al., 2014). CTs are a set of parallel slices showing the
voxelized patient geometry (electron density specifically) with units of Hounsfield Unit
(HU), representing a 3D image reconstructed from the tomographic projections of im-
age acquisition. Second, target tumors and organs at risk (OARs) to protect are delin-
eated on the anatomy captured by the CT. Other imaging modalities such as positron
emission tomography (PET) or magnetic resonance (MR) imaging can also be used for
extra assistance.

1.1.2. Treatment planning
Third, a treatment plan is obtained, containing the intensities, energies (in the case
of protons), multi-leaf collimator (MLC) shapes (in the case of photons) and angles of
the beams used for irradiation. Treatment planning is a complex and computationally
expensive task, requiring solving large scale multi-criteria optimization problems with
clinical dose constraints and objectives, where the intensities, energies/MLC shapes
and angles of all beams are individually tuned until the ’clinically best’ total dose dis-
tribution is found, satisfying dose constraints on the tumor and surrounding organs
(Hussein et al., 2018; Meyer et al., 2018). The most commonly used objective function
is the squared difference between clinical prescribed doses and the delivered dose. To
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minimize such objectives while meeting the hard dose constraints, treatment plan-
ning typically involves exploring the many degrees of freedom available until finding
a combination that delivers the required dose to the tumor while minimizing the dose
deposited in healthy tissue.

Treatment uncertainties Based on the treatment plan, radiation is delivered during
up to 45 different daily sessions (referred to as fractions) to allow for healthy tissue
to recover from radiation damage, since the healthy cells can repair themselves faster
than the cancerous ones. Ideally, a successful treatment would completely eliminate
the tumor without damaging the surrounding healthy tissue, but this is physically im-
possible partially due to errors and uncertainties. Though the same treatment plan is
used on each day of the treatment course, the actual delivered doses differ from the
planned dose due to these uncertainties, which can degrade treatment effectiveness
and the capability to fully eradicate the tumor. Some of these include errors in pre-
cisely positioning the patient in the exact same position in every fraction (Liebl et al.,
2014; Trofimov et al., 2011), or errors in calibrating the delivery machine. Others in-
clude uncertainties in correctly estimating the range of the proton beams — due to the
uncertainty in predicting stopping power values (average energy loss of the particle
per unit path length) from the HU values in the CT — (Lomax, 2008a, 2008b; Paganetti,
2012), or errors in the delineation of the tumor and structures. The main focus of this
work however relates to errors that occur due to the changing anatomy of the patient
during or between treatment sessions.

• Inter-fraction anatomical changes. During the several weeks that typical ra-
diotherapy treatments last, the internal position of organs and structures con-
tinuously changes. As a result, the patient’s anatomy captured in the CT scan
used for treatment planning can significantly differ from the real anatomy ob-
served for the same patient in a different fraction. Previous studies have demon-
strated that such anatomical deformations are one of the main sources of error
for certain types of cancer treatments such as prostate (van Herk et al., 2002),
where the main anatomical variations include random, daily changes in bladder
or rectum fillings, and gradual changes over the treatment course such as tumor
shrinkage. Delivering dose based on the original treatment plan to such chang-
ing anatomies may result in inaccuracies that could affect treatment success. For
example, the high dose regions being partially delivered to healthy tissue instead
of entirely covering the target volume could severely under-dose the tumor and
increase the chance of complications in the surrounding OARs.

• Intra-fraction breathing interplay effects. Real-time tumor and organ move-
ments can also affect the success of treatments. When the tumor is located in
an area close to the lung (e.g., lung, esophagus or liver cancer treatments) intra-
fraction anatomical variations occur due to breathing during treatment deliv-
ery. The continuous movement of internal structures during irradiation affects
the final dose distribution, especially in proton treatments using pencil beam
scanning. The resulting breathing interplay effects — caused by the breathing
movement and the scanning of the pencil beam moving at a similar speed — are
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detrimental, as during the few minutes in which each fraction is delivered, the
continuous movement degrades the final dose distribution (Bert and Durante,
2011; Bert et al., 2008; Lambert et al., 2005), effectively causing some dose to be
delivered to healthy structures, or even dose overlap.

Incorporating uncertainties to treatment planning In current clinical practice, the
detrimental effect of setup, range (and partially) anatomical uncertainties is a-priori
mitigated during treatment planning. In conventional photon radiotherapy, position-
ing and delivery uncertainties can be accounted for by margins aiming to deliver the
required tumor doses at the cost of extra dose deposited in healthy tissues. These mar-
gins are applied to extend the clinical target volume (CTV) — a volume containing tu-
mor cells and covering for possible spread — into planning target volume (PTV), sup-
posedly robust against uncertainties. The most known are the Stroom (Stroom and
Heijmen, 2002) and van Herk (van Herk et al., 2000) formulas, which calculate the mar-
gin based on the standard deviation of random and systematic patient setup errors.
While most effective for positioning uncertainties in photon treatments, such PTV ex-
tensions also account (to some extent) for intra-fraction and inter-fraction changes.
Additionally, to tackle the detrimental effects of breathing, an internal target volume
(ITV) can be made combining CTVs at different points of the breathing cycle, e.g., mid-
ventilation, exhale and inhale (Shih et al., 2004). However, since proton beams are
much more susceptible to uncertainties than photons, margin extensions have been
demonstrated to be sub-optimal in proton treatments (Liu et al., 2013), especially given
the unaccounted beam range calculation errors (Unkelbach et al., 2018).

Instead of margins, setup and range errors (and in principle other types of delivery
uncertainties) can be better taken into account by means of robust optimization (Chu
et al., 2005; Liu et al., 2012), which results in more resilient plans (Dijk et al., 2016).
In particular, proton plans are typically optimized solving a multi-criteria mini-max
optimization problem, so that the clinical dose constraints and objectives are always
met under a certain set of worst case scenarios. These typically include the nominal
scenario (without errors), range errors, and different positioning error scenarios cor-
responding to rigid shifts along each principal direction. For the elaboration of the
treatment plan, the magnitude of such setup and range errors in these scenarios is con-
trolled via the setup robustness (SR) setting (in millimeters, most often 6 scenarios cor-
responding to the positive and negative shifts in the x, y and z directions) and the range
robustness (RR) setting (in percentage, 2 scenarios for range over/underestimation). As
a result, the treatment plan is simultaneously optimized for 9 different scenarios (1
nominal, 6 for SR and 2 for RR), which may lead to either overly conservative or not
sufficiently robust plans if used improperly.

Robust optimization can be extended to account for other types of uncertainties
apart from setup and range errors, by including the anatomies in different CT scans
in the optimization. Such approaches have been proposed to mitigate intra-fraction
breathing movements, by including CTs from different phases of the breathing cycle
(Bernatowicz et al., 2017; Engelsman et al., 2006). In principle, inter-fraction anatomi-
cal variations of organs and target could be similarly incorporated in the optimization
if such representative CTs were available beforehand.
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1.1.3. Evaluation and quality assurance
Once a treatment plan has been obtained, and typically before approval, a robustness
evaluation step allows assessing treatment plan robustness against uncertainties, veri-
fying that the plan meets the clinical constraints. Current proton evaluation protocols
only consider a set of worst-case setup and range errors, comparing statistics of the
clinical quantities of interest across many simulated dose distributions delivered in the
presence such error scenarios, e.g., calculating the minimum dose delivered in 90% of
the scenarios. As an example, the Dutch proton therapy group (DUPROTON) protocol
in the Netherlands evaluates plan robustness based on 2 artificial dose distributions
with the minimum and maximum dose values per voxel across 28 evaluation scenarios
with different combinations of geometrical and range errors, which has been shown to
lead to overly conservative treatments (Rojo-Santiago et al., 2021).

Last, after approval of the radiation oncologist and medical physicist, a quality as-
surance step verifies that the treatment plan can be correctly delivered, usually via an
additional measurement or a dose calculation independent from the treatment plan-
ning system.

1.2. Next steps in improving photon and proton treatments
Overall, margins, robust planning and evaluation approaches are a class of solutions
minimally modifying the radiotherapy workflow to produce treatment plans that are
inherently more robust against possible uncertainties. The resulting plans typically
compromise healthy tissue sparing in favor of delivering the clinically desired doses
to the tumor. Current research efforts aim at optimally balancing the successful erad-
ication of the tumor with a lower dose delivered to healthy tissue. In principle, pho-
ton margins can be additionally extended on a patient-specific or site-specific basis
to cover for anatomy variations, ideally using anatomical information of the patient
geometries that are likely to be observed during radiation delivery or the treatment
course.

Inspired by the photon margin extension formulas, similar concepts have been pro-
posed for IMPT treatments in the form of robustness recipes (van der Voort et al., 2016).
The proposed proton robustness recipes suggest the robustness settings RR and SR to
be used during robust optimization for the treatment plan to achieve a specified CTV
coverage for a certain percentage of the population. Nevertheless, these recipes have
also their limitations, since they cannot sufficiently handle individual patient varia-
tions or extreme cases, and they do not directly account for anatomical changes.

Robustness recipes enable to fill in the gap between robust optimization and prob-
abilistic optimization, the latter being one of the main desired milestones in the IMPT
field. Instead of jointly optimizing over a small discrete set of equally important error
scenarios as in robust optimization, probabilistic optimization minimizes probabilis-
tic formulations of the clinical objectives and constraints. As an example, previous
work proposes minimizing the expected value of the clinical objective (Unkelbach et
al., 2009), e.g., the expected value of the squared dose difference between delivered and
prescribed doses across all sets of error scenarios. Assuming that the infinite number of
combinations of errors could be accounted for, the expectation of the objective can be
interpreted as a weighted sum of objectives from individual error scenarios, where the
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weight corresponds to the relative probability of occurrence of each scenario. Conse-
quently, the main limitation of such probabilistic optimization approaches is the com-
putational power needed to calculate statistics of the clinical quantities of interest, as
well as their derivatives with respect to the beam intensities, especially since they have
to be continuously estimated in every iteration solving the optimization problem.

Margins and robustness enable counterbalancing the effects of uncertainties by ir-
radiating larger areas of healthy tissue than necessary. The most straightforward way
of decreasing these volumes is to mitigate the uncertainties against which margins and
robustness are used. Thus, to further reduce the target margins and robustness settings
needed during planning, treatment plans should ideally be adapted on a daily basis
based on the anatomical differences with respect to the original planning settings.

Online and real-time adaptation Online adaptation aims at adjusting the original
treatment plan right before delivery to irradiate the correct dose in the varying anatomy
of the patient recorded in that same fraction (Paganetti et al., 2021). Based on the con-
ventional radiotherapy workflow, the modified online adaptive workflow (shown in Fig-
ure 1.2) is composed of 5 steps. First, the patient’s anatomy is acquired once the patient
has been positioned on the treatment couch. Second, the tumor and organ structures
are delineated on the resulting CT from the quick imaging step. This can be achieved
using automated segmentation software, or transferring the original structures from
the planning CT, for which it is necessary to determine the image correspondence via
a registration step. Third, the need for adaptation is assessed by quickly estimating the
dose delivered by the original treatment plan on the new patient anatomy. Fourth, if
needed, the plan has to be optimized on the new geometry, typically based on a re-
optimization step. The level of detail of such optimization step can greatly vary, result-
ing in two variants which differ in the amount of information inherited from the orig-
inal plan. The first group includes re-planning approaches which optimize the initial
plan from the start, either with the same objectives and constraints or using new ones
adapted to the new geometry (Matter et al., 2019). The second group encapsulates re-
optimization or dose restoration variants that fine-tune the initial plan to achieve the
original dose/plan quality in the new anatomy (Bernatowicz et al., 2018; Botas et al.,
2018; Jagt et al., 2017, 2018). While the optimization would ideally still be robust or
probabilistic to increase robustness of the plans against residual positioning and range
uncertainties, daily adaptation allows for a reduction of the RR and SR settings (or the
margins, in the case of photons). Finally, the resulting plan follows an automated qual-
ity assurance check, confirming that it results in better fraction dose delivery than with
the original settings.

While online adaptive workflows circumvent the need to account for inter-fraction
anatomical variations, the resulting plans are susceptible to intra-fraction motion, still
requiring extra margins or some form of robust planning. To maximally reduce dose
to healthy tissue and remove the detrimental effects of uncertainties, real-time adap-
tation aims at adapting treatments during delivery.
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Figure 1.2: Online adaptive workflow. After quickly acquiring anatomical information via in-room imag-
ing and automatically delineating the tumor and organ contours, a dose calculation estimates the radiation
dose delivered with the original treatment plan (i.e., using the same list of energies, angles and intensities
obtained in the first or previous treatment sessions). If the resulting dose distribution does not meet the
clinical constraints, the treatment plan can be adjusted, e.g., by quickly re-optimizing the beam intensities.
A final evaluation step confirms the superiority of the new treatment plan before delivery.

1.3. Current challenges
Fast and accurate particle transport algorithms are crucial for all the steps of a radi-
ation therapy workflow. CT image reconstruction relies on simulating photon inter-
actions with tissues and detectors; plan optimization requires the spatial dose distri-
bution (typically in more than 1 million voxels) from each available proton or photon
beamlet (in the thousands); while for plan evaluation the dose must be calculated for
many different geometries (repeatedly recalculating the patient dose from fixed beam-
lets under uncertainties). Current implementation of robust planning and robustness
evaluation methods require simulating the dose distribution in tens of error scenarios,
which can be computationally expensive. This is especially the case if including differ-
ent sources of error with respect to the clinical practice, e.g., extending current proto-
cols to account for anatomical variations, potentially resulting in hundreds of scenar-
ios with different error combinations. With a larger set of uncertainties, the number of
scenarios with different combinations of errors grows exponentially, a problem known
as the curse of dimensionality. The same applies to probabilistic planning, typically in-
volving thousands of dose calculations for the formulation of the probabilistic metrics,
objectives and constraints. With the current dose calculation algorithms and lacking
ways to generate scenarios with realistic intra-fraction and inter-fraction variations,
extending robustness planning and evaluation approaches to cover anatomical uncer-
tainties remains a challenge.

Algorithmic speed also remains a challenge in daily adaptive workflows. Since the
time between imaging and delivery must be reduced as much as possible, online adap-
tive treatments critically rely on the speed of each of their individual steps, thus requir-
ing very fast dose calculation, image registration, image segmentation, image acqui-
sition and dose optimization. The speed requirements are most acute for next gener-
ation real-time adaptive treatments promising ultimate precision with fewest side ef-
fects by correcting treatments during irradiation, e.g., to account for anatomical chan-
ges due to breathing, coughs or intestinal movements. The optimistic case of real-time
adaptation of treatment plans allows to deliver correct doses in-vivo, eliminating resid-
ual errors and thus the need of robust treatment planning and evaluation approaches.
To finally become reality, such adaptive treatments require algorithms that deliver ac-
curate dose distributions in millisecond speed.
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Fast dose calculation algorithms and probabilistic models that quantify anatomical
deformations using few random variables are two of the missing pieces for robust treat-
ment planning, robustness evaluation, and ultimately adaptation of treatment plans.
Fast methods to predict dose distributions can directly impact clinical practice by al-
lowing to include more scenarios in the optimization and evaluation of the treatment
plan. Most critically, a fast dose calculation model can ultimately provide the speed
necessary to perform plan adaptation within the ≈ 2 minutes prior to fraction delivery.
Alternatively, anatomical models can be used to guarantee a certain coverage given the
most likely intra-fraction anatomical variations via extended robustness recipes, prob-
abilistic objectives or robust optimization and evaluation of treatment plans across a
larger set of error scenarios.

1.4. Contents of this dissertation
Recently, deep learning algorithms have achieved state-of-the-art performance in many
tasks such image processing, natural language processing or sequence modeling, mostly
due to learning how to extract highly non-linear and relevant features for the task at
hand from large datasets. Optimized for graphics processing unit (GPU) hardware,
deep learning algorithms have the potential to massively speed up different steps of
the radiotherapy workflow, from dose calculation to image registration. Popular open-
source libraries such as Tensorflow (Abadi et al., 2015) or Pytorch (Paszke et al., 2019)
enable development and deployment of deep learning models to clinical applications
using generic class functions and automated differentiation, providing all the GPU
speed benefits without extensive hardware optimization.

This thesis marries the application of deep learning and probabilistic models, pro-
viding fast particle transport algorithms and methods to quantify and simulate anatom-
ical movements during and between treatment sessions. The presented tools could in
principle be applied to evaluate treatment plan robustness against inter-fraction and
intra-fraction anatomical variations, ultimately paving the way for online adaptation
and probabilistic treatment planning. The rest of the thesis is organized as follows.

Chapter 2 presents a deep learning-based method to learn particle transport phy-
sics from data. Ideally these calculations should be quick and precise, but current ana-
lytical pencil beam algorithms (PBA) and stochastic Monte Carlo (MC) dose calculation
tools offer a trade-off. PBA yields results without the computational burden of MC en-
gines, but its accuracy is severely compromised in highly heterogeneous or complex
geometries, making slow and clinically rarely affordable MC approaches necessary. As
a fast and accurate alternative to physics-based models, the chapter presents a deep
learning dose transformer algorithm (DoTA), applied to calculate proton pencil beam
doses only from CT and beam energy data in few milliseconds. The chapter describes
the architecture of the DoTA model and the details of its transformer backbone, to-
gether with the dataset, the model training procedure and the evaluation experiments
comparing performance to previous deep learning and physics-based algorithms.

Chapter 3 extends the DoTA proton dose calculation algorithm to predict broad
photon beam dose distributions. Modern photon delivery modalities such as volu-
metric modulated arc therapy (VMAT) use hundreds of photon beams conforming the
final dose to the tumor as much as possible via continuously changing the MLC shape,
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i.e., a dynamic radiation device that can adjust its opening to block undesired parts of
the beam. Calculating the dose for such treatments is usually time consuming, given
the larger amount of gantry angles considered. To speed up photon dose prediction,
an improved DoTA architecture (iDoTA) is presented, which, besides the CT, takes in-
put information about the beam shape and relative position between isocenter and
beam source via a 3D projection of the MLC shape. After describing the new architec-
ture, dataset and training procedure, iDoTA is compared to other state-of-the-art deep
learning models.

In Chapter 4, we turn our attention to modeling organ movements observed dur-
ing the course of a radiotherapy treatment. First, a probabilistic daily anatomy model
(DAM) is presented, generating deformation fields that warp the planning CT recorded
at the beginning of the treatment into plausible repeat CTs. Second, DAM’s architecture
is described, combining a probabilistic variational framework powered by deep learn-
ing models to reduce deformation fields to few random variables with known proba-
bility distribution. Third, the training details, dataset and experiments are described.
The chapter concludes evaluating DAM’s generative capability to generate repeat CTs
as observed in the clinic.

Chapter 5 introduces a deep learning-based probabilistic framework to simultane-
ously classify and generate breathing signals describing tumor motion during radiation
delivery. The novelty of this chapter is threefold. First, it explores the use of two previ-
ously published models to compress breathing signals into few random variables with
known probability distribution, which can be sampled to generate new realistic realiza-
tions. Second, a novel joint classification-generative framework is introduced, which
allows classifying and subsequently generating signals from a specific class, i.e., with
certain traits. Third, a breathing signal pre-processing and post-processing algorithm
is presented, which transforms back and forth between 3D motion signals and a vec-
tor of position and time stamps. The chapter concludes by demonstrating the ability
of the presented probabilistic framework to accurately generate and classify breathing
signals with baseline shifts, i.e., upwards or downwards gradual changes in breathing
depth.

Chapter 6 applies the results of Chapter 5 to simulate dynamic dose delivery in
lung cancer patients. Based on the generated breathing signals and a 4D-CT — a set
of 3D CTs capturing anatomical changes over a breathing period composed of differ-
ent breathing phases — a method to simulate interplay effects is presented, based on
delivering pencil beams to their corresponding breathing phase. The presented inter-
play calculation tool is applied to evaluate the robustness of treatment plans against
breathing motion, as well as to determine how to accurately simulate interplay effects
in proton pencil beam scanning treatments.

To conclude this thesis, Chapter 7 summarizes the main findings and prospective
applications of the presented models, together with some recommendations for future
research.





2
Millisecond proton dose

calculation with Monte Carlo
accuracy

2.1. Introduction
Radiotherapy treatments intimately rely on accurate particle transport calculations. In
computed tomography (CT) image acquisition (Pereira et al., 2014) simulations of the
interaction between photons, tissues and detectors are used to obtain a detailed 3D
image of the patient anatomy, which can be delineated to localize target structures and
organs-at-risk. Modern intensity modulated treatments (Hussein et al., 2018; Meyer
et al., 2018) require particle transport to compute the spatial distribution of physical
dose delivered by thousands of individual electron, photon, proton or other heavy ion
beamlets (aimed at the patient from a few different gantry angles), based on which
the beamlet intensities can be optimized. Treatment plans – especially sensitive pro-
ton and ion treatments – must also be repeatedly evaluated under uncertainties (e.g.,
setup and range errors, tumor motion or complex anatomical changes) to ensure suf-
ficient plan robustness, requiring recalculating the dose distribution in many different
scenarios (Perkó et al., 2016; Rojo-Santiago et al., 2021; van der Voort et al., 2016). With
radiotherapy practice steadily moving towards adaptive treatments, accurate, fast and
general purpose dose (and particle transport) calculations represent an increasingly
pressing, currently unmet need in most clinical settings.

Current physics-based dose calculation tools – by and large falling into 2 categories:
analytical pencil beam algorithms (PBAs) (L. Hong et al., 1996; Schaffner et al., 1999)
and Monte Carlo (MC) simulations – offer a trade-off between speed and precision.
While PBAs yield results without the computational burden of MC engines, their accu-
racy is severely compromised in highly heterogeneous or complex geometries, making

The contents of this chapter have been published as a journal paper in Physics in Medicine & Biology 67
105006 (2022), (Pastor-Serrano and Perkó, 2022a).
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slow and clinically often not affordable MC approaches necessary (Grassberger et al.,
2014; Saini et al., 2017; Schuemann et al., 2015; Teoh et al., 2020). The problem is most
acute for online (and ultimately real-time) adaptive proton therapy aiming at treatment
correction prior to (or even during) delivery to account for inter-fractional anatomical
changes, motion due to breathing, coughs or intestinal movements. To become reality,
such adaptive treatments require algorithms yielding MC accuracy with sub-second
speed.

Reducing dose calculation times is an active area of research, with most works fo-
cusing on improving existing physics-based algorithms or developing deep learning
frameworks. Several studies benefit from the parallelization capabilities of graphics
processing units (GPUs) to massively speed up MC simulations, reducing calculations
times down to the range of few seconds (Fracchiolla et al., 2021; Wan Chan Tseung et
al., 2015) to minutes (Gajewski et al., 2021; J. Ma et al., 2014; Pepin et al., 2018; Qin et al.,
2016; Y. Wang et al., 2016), with simulation speeds up to 107 protons/s. Deep learning
methods have also improved dose calculation times in several steps of the radiother-
apy workflow (Meyer et al., 2018), although usually paying the price of limited versatil-
ity and generalization capabilities. Some initial studies apply variants of U-net (Ron-
neberger et al., 2015) and Generative Adversarial Networks (Goodfellow et al., 2014)
to aid treatment planning by approximating dose distributions from ’optimal’ plans in
very specific scenarios based on historical data. As input to these convolutional archi-
tectures, most works use organ and tumor masks (Chen et al., 2019; Fan et al., 2019;
Kajikawa et al., 2019; Nguyen, Long, et al., 2019), CT images (Kearney et al., 2018) or
manually encoded beam information (Barragán-Montero et al., 2019; Nguyen, Jia, et
al., 2019) to directly predict full dose distributions, except for few papers predicting the
required beam intensities needed to deliver such doses (Lee et al., 2019; W. Wang et al.,
2020).

Regarding pure dose calculation, practically all deep learning applications rely on
using computationally cheaper physics simulations as additional input apart from CTs.
For photons, most works predict low noise MC dose distributions from high noise MC
doses (Bai et al., 2021; Neph et al., 2021; Peng, Shan, Liu, Pei, Wang, and Xu, 2019; Peng,
Shan, Liu, Pei, Zhou, et al., 2019) or simple analytical particle transport calculations
(Dong and Xing, 2020; Xing, Zhang, et al., 2020), with some approaches also utilizing
additional manually encoded beam/physics information such as fluence maps (Fan et
al., 2020; Kontaxis et al., 2020; Tsekas et al., 2021; Xing, Nguyen, et al., 2020; J. Zhu et
al., 2020). For protons, only few works (Javaid et al., 2021; Nomura et al., 2020; C. Wu
et al., 2021) compute proton dose distributions via deep learning, using cheap physics
models (noisy MC and PBA) or pre-calculated Bragg peak maps as input. While pro-
viding significant speed-up compared to pure physics-based algorithms, some even
reaching sub-second speeds, all these works depend on secondary physics models to
produce their output or are trained to predict only full plan or field doses for specific
treatment sites. As a result, these methods do not qualify as generic dose algorithms
and do not generalize to other steps of the radiotherapy workflow outside their origi-
nal scope, e.g., to different plan or field configurations, treatment sites, or applications
needing the individual dose distribution from each beamlet separately (such as treat-
ment adaptation).
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Figure 2.1: Dose transformer algorithm (DoTA). A data-driven model learns a mapping y = fθ(x ,ε) between
input CT cubes x and energies ε and output dose distributions y . CT and dose distribution 3D volumes are
both treated as a sequence of 2D slices in the beam’s eye view. An encoder and a decoder individually trans-
form each 2D slice into a feature vector and vice versa, whereas a transformer backbone routes information
between different vectors along beam depth.

Instead, this chapter focuses on learning particle transport physics to substitute
proton dose engines, providing millisecond speed and high accuracy, and is in princi-
ple applicable to all radiotherapy steps requiring dose calculations (e.g., dose-influence
matrix calculation, dose accumulation, robustness evaluation). The proposed approach
builds upon a previous study (Neishabouri et al., 2021) using long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) to sequentially calculate pro-
ton pencil beam dose distributions from relative stopping power slices in sub-second
times, but with the major disadvantage of requiring a separate model per beam energy.
As shown in Figure 2.1, proton transport is modeled a sequence of 2D geometry slices
in the beam’s eye view, introducing an attention-based transformer backbone (Vaswani
et al., 2017) that dynamically routes information between elements of the sequence
along beam depth. The presented Dose Transformer Algorithm (DoTA) – able to learn
the physics of energy dependence in proton transport via a single model – can predict
low noise MC proton pencil beam dose distributions purely from beamlet energy and
CT data in ≈ 5ms. Based on the presented experiments and available literature data,
in terms of accuracy and overall speed DoTA significantly outperforms pencil beam
algorithms and all other deep learning approaches (e.g., LSTM models (Neishabouri
et al., 2021) and ’denoising’ networks (Javaid et al., 2021; Nomura et al., 2020; C. Wu
et al., 2021)), representing the current state-of-the-art in data-driven proton dose cal-
culations and directly competing with (and even improving on) GPU Monte Carlo ap-
proaches.

2.2. Dose prediction via transformers
The problem of dose calculation is common to many steps of the radiotherapy work-
flow and ultimately involves estimating the spatial distribution of physical dose from
thousands of pencil beams. A generic deep learning dose engine must be capable of
calculating 3D dose distributions for arbitrary patient geometries purely from a list of
beam directions and energies for a given beam model, without being conditioned on
the type of treatment or task being solved. Therefore, the objective is to accurately pre-
dict dose distributions y from individual proton beamlets in sub-second speed, given
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patient geometries x and beam energies ε. The proposed DoTA is a parametric model
that implicitly captures particle transport physics from data and learns the function
y = fθ(x ,ε) via a series of artificial neural networks with parameters θ.

In particular, DoTA learns a mapping between a 3D CT input voxel grid x ∈RL×H×W

and output dose distribution y ∈ RL×H×W conditioned on the energy ε ∈ R+, where
L is the depth (in the direction of beam propagation), H is the height and W is the
width of the grid. While traditional physics-based calculation tools process the entire
geometry, DoTA’s input CTs are cropped and interpolated to the reduced sub-volume
seen by protons as they travel through the patient, with a fixed 2mm× 2mm× 2mm
resolution and L×H ×W size. Framing proton transport as sequence modeling, DoTA
processes the input volume as a series of L 2D slices in the forward beam direction.
Ideally, the exchange of information between the different elements in the sequence
should be dynamic, i.e, the contribution or impact of each 2D slice to the sequence
depends on both its position and material composition. Unlike other types of artificial
neural networks, the transformer architecture (Vaswani et al., 2017) — and specifically
the self-attention mechanism — is notably well suited for this.

2.2.1. Transformer and self-attention
DoTA’s backbone is the transformer, based on self-attention (SA) (Vaswani et al., 2017).
Though originally introduced for sequential modeling applications in natural language
processing such as machine translation, transformers have recently achieved state-of-
the-art performance across a wide variety of tasks, with large language (Brown et al.,
2020; Devlin et al., 2019) or computer vision (D’Ascoli et al., 2021; Dosovitskiy et al.,
2020; Ramachandran et al., 2019; Touvron et al., 2020) models replacing and outper-
forming recurrent or convolutional architectures. One of the main reasons behind the
success of attention-based models is the ability to model interactions between a large
sequence of elements without needing an internal memory state. Powered by the SA
mechanism, transformers transform each sequence element based on the information
it selectively gathers from other members of the sequence based on its content or po-
sition.

For modeling the sequentiality in proton transport physics, the advantage of trans-
formers with respect to LSTM frameworks is two-fold. First, every element can directly
access information at any point in the sequence without requiring an internal hidden
state, which is crucial to include beam energy dependence. The SA routing of informa-
tion is different for every element, allowing each geometry slice to be independently
transformed based on the information it selectively gathers from other slices in the se-
quence. Second, transformers allow manually encoding the mostly forward scattering
nature of proton transport by restricting interaction to only previous slices via causal
attention.

Self-attention Given a sequence h ∈ RL×D with L tokens of dimension D , the SA
mechanism is based on the interaction between a series of queries Q ∈ RL×D , keys
K ∈ RL×D , and values V ∈ RL×D obtained through a learned linear transformation of
the input tokens with weights WQK V ∈RD×3D as
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[Q ,K ,V ] = hWQK V . (2.1)

Each token is transformed into a query, key and value vector. Intuitively, for an i th

token hi ∈ R1×D , the query qi ∈ R1×D represents the information to be gathered from
other elements of the sequence, while the key ki ∈ R1×D contains token’s information
to be shared with other sequence members. The token hi is then transformed into h′

i
via a weighted sum of all values in the sequence v j ∈R1×D as

h′
i =

L∑
j=1

w j v j , (2.2)

where each weight is based on a the similarity between the i th query and the other
keys in the sequence, measured as the dot product wi j = q T

i k j . The output sequence

of transformed tokens h ∈RL×D is the result of the SA operation applied to all sequence
elements, defined by the attention matrix containing all weights A ∈ RL×L and the op-
erations

A = softmax
(QK T

p
D

)
, (2.3)

h′ = SA(h) = AV . (2.4)

A variant of SA called multi-head self-attention (MSA) runs Nh parallel SA opera-
tions focusing on different features or inter-dependencies of the data. The outputs of
the different SA operations, called heads, are first concatenated and then linearly pro-
jected with learned weights Wh ∈RNh D×D as

MSA(h) = concat
n∈{Nh }

[SAn(h)]Wh . (2.5)

By definition, every token can attend to all previous and future tokens. Causal SA
is a variant of SA applied to sequence modeling tasks restricting access to future infor-
mation, where all elements above the diagonal in the attention matrix A are masked to
0. Additionally, since SA is invariant to the relative order of elements in the sequence,
a fixed (Vaswani et al., 2017) or learned (Dosovitskiy et al., 2020) positional embedding
r ∈RL×D is usually added or concatenated to the input tokens, where is element in the
positional embedding sequence contains unique information about its position.

2.3. Model architecture and training
Figure 2.2 shows DoTA’s architecture, which first applies the same series of convolu-
tions to each 2D slice of the input sequence {xi |xi ∈ R1×H×W ,∀i = 1, ...,L} separately.
This convolutional encoder contains two blocks — both with a convolution, a Group
Normalization (GN) (Y. Wu and He, 2020) and a pooling layer, followed by a Recti-
fied Linear Unit (ReLU) activation — which extract important features from the input,
e.g., material contrasts and tissue boundaries. After the second block, the outputs of
a final convolution with K filters are flattened into a vector of embedding dimension
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Figure 2.2: DoTA architecture. The input and output 3D volumes are treated as a sequence of 2D slices.
A convolutional encoder extracts important geometrical from each slice into a feature vector. The particle
energy is added at the beginning of the resulting sequence. A transformer encoder with causal self-attention
subsequently combines information from the different elements of the sequence. Finally, a convolutional
decoder individually transforms the low-dimensional vectors into output 2D dose slices.

D = H ′×W ′×K , where H ′ and W ′ are the reduced height and width of the images af-
ter the pooling operations. The convolutional encoder applies the same operation to
every element xi , resulting in a sequence of L vectors {hi |hi ∈RD ,∀i = 1, ...,L} referred
to as tokens in the remainder of the thesis.

A transformer encoder models the interaction between tokens hi via causal MSA,
resulting in an output sequence h′ ∈RD . Since transformers operate on sets and by de-
fault do not account for the relative position of the slices in the sequence, a learnable
positional encoding ri ∈RD is added to each token hi , e.g., r1 is always added to the to-
ken h1 from the first slice seen by the proton beam. The energy dependence is included
via a 0th token h0 = W0ε ∈ RD at the beginning of the sequence, where W0 ∈ RD×1 is a
learned linear projection of the beam energy ε. Therefore, the transformer encoder
blocks computes the operations

h = [he ;h]+ r , (2.6)

hi nt = h +MSA(LN(h)), (2.7)

h′ = hi nt +MLP(LN(hi nt )), (2.8)

where MLP denotes a two layer feed-forward network with Dropout (Srivastava et al.,
2014) and Gaussian Error Linear Unit (GELU) activations (Hendrycks and Gimpel, 2016).
DoTA is based on the standard pre-Layer Normalization (LN) (Ba et al., 2016) trans-
former block (Xiong et al., 2020), alternating LN and residual connections with a self-
attention operation and a MLP block.

Finally, a convolutional decoder independently transforms every output token to a
2D slice of the same size as the input {yi |yi ∈R1×H×W ,∀i = 1, ...,L}. The decoder’s struc-
ture is identical to that of its encoder counterpart, but substituting the down-sampling
convolution + pooling operation with an up-sampling convolutional transpose layer.
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Dataset DoTA is trained to predict low noise MC dose distributions calculated with
MCsquare (Souris et al., 2016), obtained using a set of 30 CT scans from prostate, lung
and head and neck (H&N) cancer patients (Aerts et al., 2014, 2015; Clark et al., 2013)
with 2 mm isotropic grid resolution. Given that proton beams have approximately 25
mm diameter and travel up to 300 mm through a small sub-volume of the CT, DoTA’s
input blocks x ∈ R150×24×24 cover a volume of approximately 48×48×300 mm3. From
each patient CT, ≈ 2,500 of such blocks are obtained — corresponding to beamlets
being shot at different angles and positions — by effectively rotating, linearly interpo-
lating and cropping the CT scan in steps of 10° and by applying 10 mm lateral shifts.

For each block, 2 different dose distributions are calculated using 107 primary par-
ticles to ensure MC noise values around 0.3% and always below 0.5%, zeroing out dose
values below noise levels. Both dose distributions correspond to a randomly sampled
beam energy between 70 and 220 MeV, with a 140 MeV cap in lung and H&N geometries
given the potential to overshoot the patient. As a result, ≈ 80,000 individual CT block–
dose distribution input–output pairs are obtained. This amount is further quadrupled
by rotating the CT and dose blocks in steps of 90° around the beam direction axis, yield-
ing a final training dataset consisting of ≈ 320,000 samples, 10% of which are used as a
validation set to prevent overfitting.

An independent test set of 18 additional patients unseen during training is used for
evaluation purposes, equally split into prostate, H&N and lung. Half of these patients
(3 prostate, 3 H&N and 3 lung) are used to obtain 3,888 test beamlet dose distributions
(1,386 lung, 1,512 H&N and 990 prostate samples), with the other half serving to evalu-
ate DoTA’s performance in full plans.

Training details The model is trained end-to-end using Tensorflow (Abadi et al., 2015),
with the LAMB optimizer (You et al., 2019) and 8 samples per mini-batch, limited by the
maximum internal memory of the Nvidia Tesla T4® GPU used during model training.
The loss function is the mean squared error, with a scheduled learning rate starting
at 10−3 that is halved every 4 epochs, with a restart after 28 epochs. In total, DoTA
is trained for 56 epochs, saving the weights resulting in the lowest validation mean
squared error. The best performing model consists of one transformer block with 16
heads and 12 convolutional filters in the last encoder layer, as obtained from a hyper-
parameter grid search evaluating the lowest validation loss across all possible combi-
nations of transformer layers N ∈ {1,2,4}, convolutional filters K ∈ {8,10,12,16} and
attention heads Nh ∈ {8,12,16}. Given the two down-sampling pooling operations, the
transformer processes tokens of dimension D = H/4×W /4×K , which in for the specific
values of height H = 24, width W = 24, and K = 12 kernels results in D = 432.

2.4. Model evaluation
Using the ground truth MC dose distributions in the test set, DoTA’ performance is
compared to that of several data-driven dose engines, including LSTM (Neishabouri et
al., 2021), and deep learning frameworks using noisy MC (Javaid et al., 2021) and PBA
(C. Wu et al., 2021) doses as additional input. Since PBA is the analytical dose calcu-
lation method commonly used in the clinic and one of DoTA’s competitors in terms of
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speed and accuracy, the results include a PBA baseline from the open-source treatment
planning software matRad (Wieser et al., 2017) 1.

Test set accuracy metrics The main mechanism used to compare predictions to the
ground truth 3D dose distributions from the test set is the gamma analysis (Low et al.,
1998). The gamma analysis is based on the notion that doses delivered in neighboring
voxels have similar biological effects. Intuitively, for a set reference points — the voxel
centers in the ground truth 3D volume — and their corresponding dose values, this
method searches for similar predicted doses within small spheres around each point.
The sphere’s radius is referred to as distance-to-agreement criterion, while the dose
similarity is usually quantified as a percentage of the reference dose, e.g., dose values
are accepted similar if within 1% of the reference dose. Each voxel with coordinates
p ∈ R3 in the reference grid is compared to points p ′ of the predicted dose grid and
assigned a gamma value γ(p) according to

γ(p) = min
p ′ {Γp ,p ′ (dt a ,dd )}, (2.9)

Γp ,p ′ (dt a ,dd ) =
√√√√∣∣p −p ′∣∣2

d 2
t a

+
∣∣ŷp − yp ′

∣∣2

d 2
d

, (2.10)

where ŷp is the reference dose at point p , dt a is the distance-to-agreement, and dd

is the dose difference criterion. A voxel passes the gamma analysis if γ(p) < 1. The
reported gamma pass rates — calculated as the fraction of passed voxels over the to-
tal number of voxels — further reduce the gamma evaluation to a single number per
sample. All calculations are based on the PyMedPhys gamma evaluation functions 2.

Additionally, the average relative error ρ is used to explicitly compare dose differ-
ences between two beamlet dose distributions. Given the predicted output y and the
ground truth dose distribution ŷ with nv = L ×H ×W voxels, the average relative error
is calculated as

ρ = 1

nv

∥∥ŷ − y
∥∥

L1

max ŷ
×100. (2.11)

Both the mean squared error (MSE) cost function used during training, and com-
pute the root mean squared error (RMSE) between ground truth and predicted beamlet
dose distributions are additionally reported. The RMSE is defined as

RMSE =
p

MSE =
√

1

nv

nv∑
i=1

.(ŷi − yi )2. (2.12)

Finally, an alternative metric to the gamma pass rate for full dose distribution com-
parison is the relative distribution error (RDE) (Nomura et al., 2020) between the ground
truth and predicted D95, D90, D50 and D20 values, where Dv is the dose received by v%
of the tumor volume. The RDE is computed relative to the planned dose Dpr as

1Publicly available at https://e0404.github.io/matRad/
2Publicly available at https://docs.pymedphys.com

https://e0404.github.io/matRad/
https://docs.pymedphys.com
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RDE(Dv ,D̂v ) = Dv − D̂v

Dpr
×100. (2.13)

Experiments A generic data-driven dose engine must yield accurate predictions for
both single beamlet and full plan dose distributions. To ensure DoTA’s suitability for re-
placing conventional particle transport tools in dose prediction tasks, its performance
is assessed in two different settings:

• Individual beamlets. First, DoTA’s speed and accuracy in predicting single beamlet
doses is evaluated for 9 patients in the test set, comparing gamma pass rate distri-
butions and inference times of DoTA, the LSTM models and the PBA baseline. Given
the 2mm× 2mm× 2mm grid resolution, a gamma evaluation Γ(3 mm,1%) using a
distance-to-agreement criterion dt a = 3 mm ensures a neighborhood search of at
least one voxel, while a dose criterion dd = 1% disregards any uncertainty due to MC
noise. Since DoTA’s outputs are hardly ever 0 due to numerical inaccuracies of the
last convolutional linear layer, and to disregard voxels not receiving any dose, voxels
with doses below 0.1% of the maximum dose are excluded from the gamma pass rate
calculations, resulting in a stricter metric (as the many voxels with near 0 dose could
artificially increase the passing rate). Other reported results include the relative error
ρ and RMSE between PBA/DoTA predictions and MC dose distributions, and where
their error ρ and the gamma pass rate probability densities across all test samples.

• Full plans. A treatment plan with 2 fields is obtained for the remaining 9 test set
patients using matRad. Given the list of beam intensities and energies in the plan,
all dose distributions are recalculated using PBA, MCsquare (Souris et al., 2016) and
DoTA, and their performance is evaluated via the gamma pass rate, masking vox-
els receiving a dose lower than 10% of the maximum dose. For each for each angle in
the treatment plan, the CT is rotated prior to calculating the dose from each beamlet,
while the resulting dose is rotated back to its original angle for dose accumulation.
To allow for a fair comparison with other data-driven models — referred to as base-
lines B1 (Javaid et al., 2021) and B2 (C. Wu et al., 2021) — three gamma evaluations
Γ(1 mm,1%), Γ(2 mm,2%) and Γ(3 mm,3%) are computed, comparing the pass rate
results to the available values in these baseline studies. DoTA is compared to the
third baseline B3 via the RDEs, since the original B3 study (Nomura et al., 2020) does
not report gamma pass rates. For more information about the experiments, Table 2.1
contains a description of the metrics and evaluation settings.

2.5. Results
In this section, DoTA’s performance and speed is compared to state-of-the-art models
and clinically used methods. The analysis is three-fold: assessing the accuracy in pre-
dicting beamlet dose distributions and full dose distributions from treatment plans, as
well as DoTAs’ potential as a fast dose engine by evaluating its calculation runtimes.
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Table 2.1: Overview of experiments. Summary of the experiments, metrics and baselines used to evaluate
DoTA’s accuracy. Dmax refers to the maximum dose value in a dose distribution and only voxels receiving
dose above the cutoff level are included in the Γ calculations.

Experiment Test data Metric Dose cutoff (Gy) Baseline

Beamlets

3,888 beamlets
Γ(3 mm,1%)

0 LSTM
(1,386 lung, 0.1% of Dmax PBA

990 prostate, Error ρ 0 PBA
1,512 H&N) RMSE 0 PBA

Full plans 9 treatment plans
Γ(1 mm,1%) 10% of Dmax PBA, B2
Γ(2 mm,2%) 10% of Dmax B1

RDEv∈{20,50,90,95} Tumor doses B3

2.5.1. Individual beamlets
For each individual beamlet in the test set, DoTA’s predictions are compared to MC
ground truth dose distributions using a Γ(3 mm,1%) gamma analysis. In Table 2.2, the
average, standard deviation, minimum and maximum of the distribution of gamma
pass rates across test samples are reported. By disregarding voxels whose dose is be-
low 0.1% of the maximum dose, the reported gamma pass rates are stricter than those
of previous state-of-the-art studies (Neishabouri et al., 2021), where only voxels with
a gamma value of 0 — which typically correspond to voxels not receiving any dose —
are excluded from the pass rate calculation. Even with the stricter setting and includ-
ing energy dependence, DoTA outperforms both the LSTM and PBA dose engines in all
aspects: the average pass rates are higher, the standard deviation is lower, and the min-
imum is at least 5.5% higher. Similar results are observed for stricter gamma evaluation
settings in Table 2.3. The left plot in Figure 2.3 further demonstrates DoTA’s superior-
ity, showing a gamma pass rate distribution that is more concentrated towards higher
values. Each beam dose distribution is subsequently divided into 4 fragments of equal
size between the entrance and the Bragg peak, where each fragment is referred to as
beam section in the remainder of the chapter. The right plot in Figure 2.3 shows the
proportion of voxels failing the gamma evaluation in each beam section, out of the to-
tal number of failed voxels, indicating for both PBA and DoTA that most of the failing
voxels belong to the 4th section, i.e., the high dose region around the Bragg peak where
the effect of tissue heterogeneity is most evident.

As an additional measure of model performance, Table 2.4 shows the mean and
standard deviation of the relative error ρ and RMSE between predictions and ground
truth MC dose distributions in the test set. The results confirm DoTA’s improvement,
with mean, maximum error and standard deviation less than half of PBA’s. The left plot
in Figure 2.4 displays the distribution of ρ across all test samples, showing that values
are smaller and closer to 0 for DoTA. As with the gamma pass rate, the beam is divided
in 4 sections from entrance (1st) to the Bragg peak (4th), and the average relative error
per section is shown in the right plot in Figure 2.4. Although both models show a similar
trend with errors increasing towards the beam’s end, DoTA is on average twice better
than PBA.
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Table 2.2: Gamma pass rate of beamlet dose distributions. Gamma analysis results Γ(3mm,1%) for the
presented DoTA, the pencil beam algorithm (PBA) from matRad (Wieser et al., 2017) and the LSTM models
are listed. Gamma pass rates are calculated using all test samples, with LSTM rates directly obtained from
(Neishabouri et al., 2021). The reported values include the mean, standard deviation (Std), minimum (Min)
and maximum (Max) across the test set for different sites, and ’Multi-site’ refers to computing statistics using
all sites.

Model Site Energy (MeV) Mean (%) Std (%) Min (%) Max (%)

LSTM Lung
67.85 98.56 1.3 95.35 99.79

104.25 97.74 1.48 92.57 99.74
134.68 94.51 2.99 85.37 99.02

DoTA (ours)
Lung [70, 140] 99.46 0.81 93.19 100
H&N [70, 140] 99.21 1.23 93.49 100

Prostate [70, 220] 99.51 1.46 94.06 100

DoTA (ours) Multi-site [70, 220] 99.37 1.17 93.19 100
PBA Multi-site [70, 220] 98.68 3.14 87.53 100

Table 2.3: Additional gamma pass rate of beamlet dose distributions. Gamma analysis Γ(1mm,1%) and
Γ(2mm,1%) for DoTA and the pencil beam algorithm (PBA) from matRad (Wieser et al., 2017) are listed. The
reported values include the mean, standard deviation (Std), minimum (Min) and maximum (Max) across all
test samples.

Model Energy (MeV) Γ settings Mean (%) Std (%) Min (%) Max (%)

DoTA (ours) [70, 220]
1mm, 1% 96.58 3.83 82.31 100
2mm, 1% 98.67 2.04 89.69 100

PBA [70, 220]
1mm, 1% 92.54 6.07 65.21 99.41
2mm, 1% 97.20 4.27 76.49 100

Table 2.4: Error of beamlet dose distributions. The reported values include the mean, standard devia-
tion (Std), minimum (Min) and maximum (Max) values of the relative error ρ and root mean squared error
(RMSE) between 3,888 test predictions and reference MC dose distributions, for both the pencil beam algo-
rithm (PBA) from matRad (Wieser et al., 2017) and DoTA.

Model
Relative error ρ (%) RMSE (Gy)

Mean Std Min Max Mean Std Min Max

DoTA (ours) 0.126 0.109 0.025 1.258 0.083 0.041 0.024 0.277
PBA (matRad) 0.306 0.309 0.059 4.077 0.294 0.126 0.057 1.293
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Figure 2.3: Gamma pass rate distribution. (Left) Dis-
tribution of the gamma pass rates Γ(3 mm,1%) of the
test samples for the pencil beam algorithm (PBA) and
the presented DoTA model. (Right) Distribution of
the failed voxels along the beam, where each bin is
an equally-sized fragment (referred to as section) of
the beam from dose entrance (1st) to Bragg Peak and
dose falloff (4th). Each bin shows the ratio of the
number of test set voxels that fail the gamma eval-
uation within a section divided by the total number
of failed voxels.

Figure 2.4: Average relative error ρ distribution.
(Left) Distribution of the average relative error across
the test samples for the pencil beam algorithm (PBA)
and the presented DoTA model. (Right) Average rela-
tive error per beam section, where each bin is a sec-
tion (4 equally-sized fragments) of the beam from
dose entrance (1st ) to Bragg Peak and dose falloff
(4th ). Each bin shows the average of the relative error
values recorded within a section of the beam.

Finally, Figure 2.5b shows DoTA’s test sample with the lowest gamma pass rate, to-
gether with PBA’s prediction of the same sample (Figure 2.5a). Likewise, Figure 2.5d
and Figure 2.5c show the predictions of the worst PBA sample from both models. In
both cases, PBA results in errors as high as 80% of the maximum dose, severely over-
dosing parts of the geometry, while for DoTA errors are below 20% of the maximum
dose.

2.5.2. Full dose recalculation

To assess the feasibility of using DoTA as a dose engine in real clinical settings, DoTA’s
recalculated full dose distributions are compared to the reference MC doses via 3 dif-
ferent gamma analysis: Γ(1 mm,1%), Γ(2 mm,2%) and Γ(3 mm,3%), in decreasing or-
der of strictness. The resulting gamma pass rates for each of the 9 test patients are
shown in Table 2.5, showing values that are consistently high and similar across treat-
ment sites, always at least 10% higher than PBA. DoTA is additionally compared to
recently published state-of-the-art deep learning approaches: a MC-denoising U-net
(B1) (Javaid et al., 2021) , and a U-net correcting PBA (B2) (C. Wu et al., 2021). Except
for the prostate plans, DoTA outperforms both approaches, even without requiring the
additional physics-based input.

Figure 2.6 shows the RDE of DoTA and the B3 baseline (a convolutional neural
network predicting dose distributions from Bragg peak position maps). B3 results are
taken directly from the paper (Nomura et al., 2020), while DoTA values are computed
using all test set dose distributions. With a significantly lower spread and values much
closer to 0%, the results further confirm DoTA’s superiority and accuracy gains.
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(a) DoTA’s worst prediction.
(b) Pencil beam algorithm prediction of the worst DoTA

sample.

(c) DoTA’s prediction of the worst pencil beam algorithm
sample.

(d) Pencil beam algorithm worst prediction.

Figure 2.5: Worst performing DoTA and PBA test sample. (a) Worst performing test sample in the gamma
evaluation for DoTA, with gamma pass rate of 93.19%, and (b) the pencil beam algorithm (PBA) prediction
for the same sample. (d) Worst performing prediction in the gamma evaluation across the test set for PBA,
with gamma pass rate of 87.53%, and (c) DoTA’s prediction of the same sample. In descending order, all 4
subplots show: the central slice of the 3D input CT grid, the MC ground truth dose distribution, the model’s
prediction and the dose difference between the predicted and MC beams.
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Table 2.5: Gamma pass rate of planned dose distributions. Treatment plans of 9 test patients are recalcu-
lated using the presented DoTA model, and compared to ground truth MC dose distributions via 3 different
gamma analysis: Γ(1 mm,1%), Γ(2 mm,2%) and Γ(3 mm,3%). The Γ(1 mm,1%) pass rate for dose distribu-
tions recalculated with the pencil beam algorithm (PBA) from matRad (Wieser et al., 2017) is also reported.
The baseline B1 corresponds to a MC-denoising U-net (Javaid et al., 2021), while B2 is a U-net correcting PBA
(C. Wu et al., 2021), whose values are directly taken for their corresponding papers.

Site
Number
of spots

DoTA (ours) PBA B1 B2
Γ(1,1) Γ(2,2) Γ(3,3) Γ(1,1) Γ(2,2) Γ(1,1)

Lung
1 954 95.86 99.73 99.99 80.38

84.1 89.7±3.82 2245 96.31 99.72 99.98 79.83
3 1646 95.63 99.64 99.97 78.92

HN
4 1554 95.02 99.39 99.81 68.32

76.5 92.8±2.95 1064 94.71 99.62 99.97 76.63
6 708 96.93 99.88 99.99 83.02

Prostate
7 1598 96.38 99.81 99.99 87.34

- 99.6±0.38 2281 95.78 99.82 99.99 77.12
9 1518 96.18 99.71 99.98 83.64

(a) B3 baseline. (b) DoTA.

Figure 2.6: Relative dose errors. Error between the ground truth and predicted D95, D90, D50 and D20 for
(a) the B3 baseline (Nomura et al., 2020) and (b) the proposed DoTA model, relative to planned doses. Red
crosses are outliers, red lines represent the median, and box boundaries denote the 25th and 75th percentiles.
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Table 2.6: Beamlet prediction runtime. The re-
ported values include the mean inference time and
standard deviation (Std) taken by each model to pre-
dict individual beamlet dose distributions. Both
the DoTA and LSTM models run on GPU hardware,
while the pencil beam algorithm (PBA) (Wieser et
al., 2017) and Monte Carlo (MC) dose engine use
CPUs with multiple threads. LSTM inference times
are taken directly from (Neishabouri et al., 2021).

Model Mean (ms) Std (ms)

LSTMa 6.0 1.5
DoTAb (ours) 5.0 4.9
PBAc (matRad) 728.3 30.9
MCc 43,636.9 12,291.6

a Nvidia® Quadro RTX 6000 64 Gb RAM
b Debian 10 4 vCPUs - Nvidia® A100 40 Gb RAM
c CentOS 7 8 CPUs intel Xeon® E5-2620 16Gb RAM

Figure 2.7: Full dose recalculation runtime. Time
needed to recalculate planned dose distributions
with DoTA using (top) a Nvidia® A100 GPU or (bot-
tom) an intel Xeon® CPU. Estimates include time
for loading CT and beam weights from plan data, for
dose inference by DoTA and for the necessary CT
and dose interpolations. Shaded areas denote the
95% confidence interval.

2.5.3. Prediction times

Apart from high prediction accuracy, fast inference is critically important for clinical
applications. Table 2.6 displays the mean and standard deviation runtime taken by
each model to predict a single beamlet. Being particularly well-suited for GPUs, DoTA
is on average faster than LSTM and physics-based engines, offering more than 100
times speed-up with respect to PBA. Additionally, although dependent on hardware,
DoTA approximates doses four orders of magnitude faster than MC, providing mil-
lisecond dose calculation times without requiring any extra computations for real-time
adaptive treatments.

Regarding full dose recalculation from treatment plans, Figure 2.7 shows total run-
times for DoTA using both GPU and CPU hardware, including all steps from loading
CT and beamlet weights from plan data files, necessary CT rotations and interpola-
tions, DoTA dose inference time and reverse rotations and interpolation to assign dose
on the original CT grid. Being optimized for GPU acceleration, DoTA is the fastest al-
ternative, needing less than 15 seconds to calculate full dose distributions. For the
baselines in this chapter, PBA runtimes oscillate between 100 and 150 seconds, while
B1 and B2 report needing only few seconds to correct/denoise their inputs, but must
add the runtime necessary to generate their respective PBA (123 s to 303 s in (C. Wu
et al., 2021)) or MC (≈ 10s in (Javaid et al., 2021)) input doses, as well as data transfer
times between the physics engine and the deep learning framework. Furthermore, B2
is a per beam network, hence its runtime scales linearly with the number of beams, in
practice meaning 2-4 times higher total calculation times.



2

26 2. Millisecond proton dose calculation with Monte Carlo accuracy

2.6. Discussion
The presented DoTA model builds upon previous work learning proton transport as
sequence modeling task via LSTM networks (Neishabouri et al., 2021), by introduc-
ing energy dependence and significantly improving its performance in a varied set of
treatment sites. DoTA greatly outperforms analytical physics-based PBA algorithms in
predicting dose distributions from individual proton pencil beams, achieving high ac-
curacy even in the most heterogeneous patient geometries, demonstrated by the 6%
improvement in the minimum gamma pass rate. With millisecond inference times,
DoTA provides at least a factor 100 reduction in calculation time compared to the clin-
ically still predominant analytical PBAs.

The drastic reduction in spot dose prediction times translates into the ability to
calculate full dose distributions in 12 s on average and less than 15 s even for the plan
with more than 2200 pencil beams, which times include the required time for all steps
from loading CT and pencil beam weights from plan data (≈ 1s on average), CT in-
terpolation and beamlet geometry extraction (≈ 1s), DoTA model and weights loading
(≈ 2s), dose inference by DoTA (≈ 7.5s) and interpolating the final dose distribution
back to the original CT grid (≈ 1s). Although publicly available deep learning frame-
works are optimized for GPU architectures and may offer an advantage with respect
to adapting MC and PBA to GPU hardware, DoTA achieves this 10 s to 15 s speed on a
single GPU card, even without any optimization of GPU settings for inference, which
can reportedly yield up to 9 times speed-ups depending on the task 3. Without sac-
rificing accuracy, DoTA represents at least a factor 10 speed-up with respect to PBAs
and a 33% speed-up (and ≈ 80% considering the difference in MC noise levels) with
respect to the fastest GPU MC competitor available in the literature — clinically used
GPU MC software Raystation® (Fracchiolla et al., 2021), typically running in clusters or
workstations with multiple GPUs and CPU cores. Moreover, DoTA offers a 10-25% in-
crease in the Γ(1 mm,1%) gamma pass rate compared to PBA, and with a Γ(2 mm,2%)
gamma pass rate >99% it matches (Y. Wang et al., 2016) or outperforms (Qin et al., 2016;
Wan Chan Tseung et al., 2015) the accuracy of GPU MC approaches. DoTA’s accuracy
is also on par with the agreement between commercial MC engines (Raystation®) and
experimental measurements (Schreuder et al., 2019a, 2019b). While the GPU-based
PBA algorithm reported in (Silva et al., 2015) calculates a full distribution in 0.22s and
is faster than DoTA, it was tested only on a single patient showing worse accuracy with
a 3% lower Γ(2 mm,2%) pass rate.

The proposed DoTA is also substantially superior to the only 3 published deep
learning approaches for proton full plan dose calculations (Javaid et al., 2021; No-
mura et al., 2020; C. Wu et al., 2021). DoTA achieves 15% and 25% higher Γ(2 mm,2%)
pass rates compared to the MC-denoising U-net of (Javaid et al., 2021), and 6% and
2% higher Γ(1 mm,1%) pass rates compared to the PBA correcting U-net of (C. Wu
et al., 2021) in lung and H&N patients, respectively. With lower RDE values much
more concentrated around 0, DoTA also improves upon the dose prediction U-net
based on Bragg peak position maps (Nomura et al., 2020). DoTA shows a slight infe-
riority in prostate patients, with a ≈ 3% lower Γ(1 mm,1%) pass rates than (C. Wu et

3Discussed in the non-peer-reviewed study in https://huggingface.co/transformers/v2.10.0/benchmarks.
html

https://huggingface.co/transformers/v2.10.0/benchmarks.html
https://huggingface.co/transformers/v2.10.0/benchmarks.html
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al., 2021). However, this direct comparison is somewhat unfair to DoTA. The Inten-
sity Modulated Proton Therapy plans available in this work have small, 3mm to 5mm
spot sizes, while in (C. Wu et al., 2021) double scattering proton therapy plans were
used, which in general are less conformal and smoother, and therefore are expected
to be easier to predict with data-driven approaches. The input and output voxel res-
olution of 2mm× 2mm× 2mm is also finer compared to the 2mm× 2mm× 2.5mm
used in (C. Wu et al., 2021). Furthermore, (C. Wu et al., 2021) also reports site specific
fine-tuning of their deep learning approach, unlike for DoTA. Last, (C. Wu et al., 2021)
has the further disadvantage of using per beam PBA calculations as input, thus the re-
ported 2s to 3s dose correction times easily translate to full treatment plan calculation
times in the 5 min to 10 min range depending on the number of beams (taking into ac-
count the >2 min PBA run times), even without accounting for the additional time for
the necessary CT rotations and interpolations.

DoTA’s accuracy may further be increased by training with larger datasets, as demon-
strated by the improvement achieved when increasing training data from 4 lung pa-
tients (Pastor-Serrano and Perkó, 2022b) to 30 patients with varied anatomies in the
current study. Using dose distributions with lower MC noise could further improve
performance. Convincingly outperforming all recent works learning corrections for
’cheap’ physics-based predictions (Javaid et al., 2021; C. Wu et al., 2021) both in terms
of accuracy and speed, DoTA has the flexibility to be used in a great variety of treatment
sites and clinical settings.

Limitations The current version of DoTA is trained to predict MC ground truth dose
distributions from a specific machine with unique settings and beam profiles, necessi-
tating a specific model per machine. Likewise, range shifters — which are often depen-
dent on treatment location and site — affect the dose delivered by some spots while
inserted, thereby modifying the final dose distribution. Both problems could in prin-
ciple be addressed by constructing a model that takes extra shape and range shifter
specifications as input in the form of tokens at the beginning of the sequence, similar
to how DoTA currently handles the energy dependence.

DoTA is trained for a specific voxel grid resolution, requiring either an individual
model per resolution level or an additional interpolation step that will likely nega-
tively interfere with the gamma pass rate results, especially for gamma evaluations
Γ(1,1%) with a distance-to-agreement criterion lower than the voxel resolution level.
While DoTA also works for finer nominal CT grids (Pastor-Serrano and Perkó, 2022b),
an additional study testing the dose recalculation performance with more patients and
finer grid resolution should confirm its suitability for direct clinical application need-
ing such resolutions. MC noise may also affect the results of the gamma evaluation, as
demonstrated in previous work (Cohilis et al., 2020) showing that even 1% MC noise
levels introduce significant under-estimation in the gamma pass rate. Such detrimen-
tal effect is limited in the reported experiments given the lower noise levels of 0.3% in
the ground truth MC doses (which level is considered as reference "denoised" in (Co-
hilis et al., 2020)).

One of the main problems of deep learning algorithms is their limited generaliza-
tion or extrapolation capability outside the domain of the used training dataset. Us-
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ing an independent test set of patients with varied geometries unseen during training,
DoTA is clearly superior to all other methods in all evaluated scenarios, showing strong
evidence of high level of generalization. Nevertheless, just like any deep learning ap-
proach, DoTA may also yield unrealistic predictions for data that vastly differs from
the training data (e.g., in the presence of metallic implants), contrarily to MC engines,
which – when using enough particles – are certain to provide valid results. Whether or
not "more physics-based" PBAs perform better than DoTA in such cases is less straight-
forward. First, PBA clearly performed worse than DoTA in all tests, and in particular
showed worse performance in the examples of Figure 2.5 exhibiting high heterogene-
ity (in Figures 2.5a-2.5b) and the Bragg peak position coinciding with a sharp change in
density (in Figures 2.5c-2.5d). Second, the impact of approximations inherent to PBA
approaches on the predicted dose in cases of unusual geometries (e.g., implants) is not
easy to foresee without detailed analysis. The same holds for the error due to DoTA’s
potential generalization limitations in such cases. Although not supported by direct
evidence, physics-based approaches (even approximative ones) may maintain a higher
level of accuracy when going far beyond the training dataset domain. For the specific
case of radiotherapy however, to a large extent these problems could be mitigated by
including geometries with metallic implants in the training data set and teaching DoTA
to accurately predict dose distributions in such scenarios too and by limiting use to
(the vast majority of) patients who do not have implants until such improved model is
available.

2.7. Summary
In this chapter, DoTA is presented: a generic, fast and accurate dose engine that im-
plicitly learns proton particle transport physics and can be applied to speed up several
steps of the radiotherapy workflow. Framing particle transport as sequence modeling
of 2D geometry slices in the proton’s beam travel direction, DoTA uses the power of
transformers to predict individual beamlets with millisecond speed and close to MC
precision. The presented results show that DoTA has the right attributes to potentially
replace the proton dose calculation tools currently used in the clinics for applications
that critically depend on runtime. Predicting dose distributions from single pencil
beams in milliseconds, DoTA offers 100 times faster inference times than widely used
PBAs, yielding close to MC accuracy as indicated by the very high gamma pass rate
Γ(3 mm,1%) of 99.37±1.17%, thus has the potential to enable next generation online
and real-time adaptive radiotherapy cancer treatments. The presented model predicts
MC quality full plan dose distributions with at least a 10% improvement in gamma pass
rate Γ(1 mm,1%) with respect to current analytical approaches and reduces dose cal-
culation times of planned doses to less than 15 seconds, representing a tool that can
directly benefit current clinical practice too.



3
Sub-second speed photon beam

dose prediction

3.1. Introduction
Modern radiotherapy techniques such as intensity modulated radiation therapy (IMRT)
or volumetric modulated arc therapy (VMAT) critically rely on accurate and fast calcu-
lations of the radiation dose delivered within the patient by photon beams, typically
shaped by multi-leaf collimators (MLC) (Hussein et al., 2018). With modern workflows
moving towards online or real time adaptation, fast dose calculations are critical for
quick plan evaluation, re-optimization and finally being able to account for motion
due to breathing or anatomical changes.

Commercial treatment planning systems mainly use pencil beam (PB) (Mohan et
al., 1986), collapsed cone (CC) (Ahnesjö, 1989; Boyer and Mok, 1985), or Monte Carlo
(MC) dose engines. While both PB and CC algorithms are usually faster than MC, the
assumptions and approximations they use to solve photon particle transport result in
less accurate results. Conversely, MC methods — the gold standard in dose calculation
— simulate individual stochastic particle trajectories abiding the physical laws of nu-
clear interactions and track the deposited dose along these paths. By averaging results
from enough particles (typically several millions), MC methods achieve very high ac-
curacy even in the most complex patient geometries, at the cost of high computation
times. Current commercial treatment planning systems mainly use improved PB or
CC variations yielding close-to-MC accuracy, e.g., the anisotropic analytical algorithm
(AAA) (Sievinen et al., 2013; Ulmer et al., 2005) based on the PB convolution (Mohan
et al., 1986) in Eclipse (Varian Medical Systems) or the CC convolution algorithm in
Pinnacle (Philips) (Boyer and Mok, 1985). Some recent MC implementations also use
the parallelization capabilities of graphics processing units (GPUs) to reduce dose cal-
culation times from several hours to minutes (Hissoiny et al., 2011; Jahnke et al., 2012;

The contents of this chapter have been accepted for publication as journal paper in Medical Physics.
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Jia et al., 2011). Despite these advances, the need for accurate and fast dose calcula-
tion algorithms is still unmet in most clinical workflows, as neither PB nor MC are fast
enough for real time treatment plan correction.

Recently, deep learning models have been applied to several steps of the radiother-
apy workflow (Meyer et al., 2018), mainly as U-net convolutional architectures (Ron-
neberger et al., 2015) or Generative Adversarial Networks (Goodfellow et al., 2014).
Most works aim to aid treatment planning by predicting clinically optimal doses based
on historical data. As a result, they are constrained to a specific site, clinical optimum
choice, and often fixed beam configurations, limiting their generalization capabilities.
These models typically directly predict the full dose distribution using computed to-
mography (CT) images (Kearney et al., 2018), organ masks (Chen et al., 2019; Fan et al.,
2019; Kajikawa et al., 2019; M. Ma et al., 2019; Nguyen, Long, et al., 2019), or additional
information about the photon beam configuration (Nguyen, Jia, et al., 2019) as input.
To further aid treatment planning, few studies additionally provide the beam intensi-
ties needed to deliver the predicted dose distribution (Lee et al., 2019; W. Wang et al.,
2020).

Aiming at predicting dose distributions in generic setups, several subsequent stud-
ies present dose calculation models that estimate beam or full dose distributions from
CTs and additional physics input such as high noise MC (Bai et al., 2021; Neph et al.,
2021; Peng, Shan, Liu, Pei, Wang, and Xu, 2019) or PB doses (Dong and Xing, 2020; Xing,
Zhang, et al., 2020); fluence maps, e.g., resulting from simple ray tracing calculations
(Fan et al., 2020; Xing, Nguyen, et al., 2020); energy released per unit mass (J. Zhu et al.,
2020); or a combination of the previous with additional beam information (Kontaxis
et al., 2020; Tsekas et al., 2021). The reason for their success are the convolutional lay-
ers that excel at capturing local features and are heavily optimized for GPU hardware,
but are less appropriate for modeling long-range dependencies, e.g., changes along the
beam direction through the patient.

Although some of the most recent models can quickly predict dose distributions
in most cases with good accuracy (Kontaxis et al., 2020; Tsekas et al., 2021; Tsekas et
al., 2022), there is room for improvement with newer architectures that require less in-
put information and can model distant features in the data. Recent transformer archi-
tectures (Vaswani et al., 2017) are particularly well-suited to process local and distant
features, yielding excellent results in a wide range of sequence modeling tasks (Brown
et al., 2020; Devlin et al., 2019; Dosovitskiy et al., 2020). For smaller datasets, trans-
formers perform particularly well when combined with convolutional layers (D’Ascoli
et al., 2021). Based on these synergies between convolutions and transformers, a recent
study presented a transformer-based algorithm predicting proton beamlet 3D dose
distributions as a sequence of 2D slices in the beam depth, with state-of-the-art per-
formance and speed (Chapter 2, Pastor-Serrano and Perkó, 2022a, 2022b).

This chapter presents a deep learning model that can predict dose distributions in
few milliseconds with clinically acceptable accuracy. Based on the previous transformer-
based proton dose calculation model in Chapter 2, the model harnesses the power of
hybrid transformer and 3D convolutional architectures to predict the dose of much
bigger photon broad beams, as in concurrent work (F. Xiao et al., 2022). As shown
in Figure 3.1, the proposed improved Dose Transformer Algorithm (iDoTA) combines
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Figure 3.1: Model overview. A deep learning data-driven model learns the mapping y = fθ(x ,r ) between in-
put 3D CT x and projected shape r volumes, and the corresponding output 3D dose distributions y . The
problem is formulated as a sequence prediction task, where all input and output cubes are treated as a
sequence of 2D slices in the beam’s eye view. Each 2D slice is mapped into a vector via a series of down-
sampling convolutional blocks. A transformer backbone routes information between all elements of the
resulting sequence. Finally, a several convolutional operations up-sample and transform each vector into a
2D dose distribution map.

a series of 3D convolutional layers modeling local dose and tissue variations, with a
transformer backbone routing information along the depth of the entire photon beam.
The model treats input 3D CT and projected shape volumes (containing beam geomet-
rical information) as a sequence of 2D slices in the direction of the beam, framing dose
calculation as sequence modeling to produce a sequence of 2D dose slices forming
the 3D dose distribution. After comparison to the best-performing data-driven mod-
els, iDoTA shows superior speed and accuracy for photon dose calculation tasks, being
capable to speed up beam prediction times down to few milliseconds and reducing
treatment plan computation times to few seconds.

3.2. Model architecture and training
This section presents the problem setup and architecture of the iDoTA model, used to
predict photon beam doses from 3D CT and projected shape inputs. Additionally, the
dataset and training procedure used to optimize the model parameters are described,
as well as the evaluation metrics used to assess iDoTA’s performance as a generic pho-
ton dose calculation engine.

Proposed framework Photon dose calculation involves estimating the radiation dose
delivered in the patient geometry. If the machine parameters do not change, the pre-
dicted dose distribution mainly depends on the irradiated geometry and the beam geo-
metrical information such as the MLC aperture shape, the beam angle and the relative
position of the isocenter. All the necessary beam shape information is captured in a 3D
projected shape κ ∈ RL×H×W of depth L, height H and width W , containing the result
of a simple ray tracing operation propagating the photon beam shape through the pa-
tient geometry CT scan x ∈ RL×H×W . The outcome of the dose calculation operation
predicted by our model is another grid y ∈ RL×H×W with the 3D distribution of dose
per monitor unit (MU).

As shown in Figure 2.2, the patient CT x and the 3D projected shapeκ are inputs to
iDoTA, which during training implicitly learns the mapping y = fθ(x ,κ) via a cascade
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of neural networks layers with parameters θ. Framing the dose prediction task as mod-
eling a sequence of D elements in the direction of the photon beam, iDoTA combines
the strengths of both convolutional and transformer architectures into a single model.
The input geometry x can be expressed a sequence of L images in the direction of the
beam {xi |xi ∈ R1×H×W ,∀i = 1, ...,L}, while the projected shape 3D input κ is similarly
viewed as a sequence 2D slices {κi |κi ∈ R1×H×W ,∀i = 1, ...,L} containing beam infor-
mation. Likewise, the final dose volume y is also expressed as the sequence of 2D dose
slices {yi |yi ∈R1×H×W ,∀i = 1, ...,L}).

Model architecture As seen in Figure 3.2, the proposed architecture combines a se-
ries of convolutional blocks modeling local features with a transformer backbone that
processes information along the entire beam depth.

• First, a series of down-sampling convolutional blocks extract local features of the
data into a sequence of vectors {hi |hi ∈RD ,∀i = 1, ...,L} — referred to as tokens in
the remainder of the paper — of size D . Each block contains a 3D convolutional
layer with kernel size equal to 3, modeling local features from the immediately
preceding and succeeding elements in the sequence, followed by a layer normal-
ization (Ba et al., 2016), a rectified linear unit (ReLU) activation function and a
max-pooling operation. All such operations in the block are applied in parallel
to every element of the input sequence. Due to the max-pooling operation, the
height H and width W of the slices are halved after each block. A total of l ev
blocks result in lev resolution levels. After the last block, a final convolution with
K filters and flattening operation transforms the resulting features into tokens of

dimension D =
(

H
2

)lev ×
(

W
2

)lev ×K . The result is a sequence of L tokens con-

taining local features about the corresponding input slices, e.g., the third token
h3 represents local features from the inputs x3, κ3 and their neighboring slices.

• A transformer backbone routes information between the extracted features along
the depth of the entire volume, with the self-attention mechanism (Vaswani et
al., 2017) making the information exchange dynamic, i.e., each token hi is in-
dependently transformed based on its content and information selectively gath-
ered from other sequence elements. To account for the relative distance between
tokens, a learnable positional embedding ri ∈ RD is added to each token hi , i.e.,
a sequence of vectors {ri |ri ∈ RD ,∀i = 1, ...,L} is learned and added to the token
sequence before the first operation in the transformer. The transformer block
follows a pre-Layer Normalization architecture (Xiong et al., 2020), which con-
sists of a Layer Normalization (LN) (Ba et al., 2016) operation, followed by a self-
attention operation (Vaswani et al., 2017), and two fully-connected layers with
Dropout (Srivastava et al., 2014) and a Gaussian Error Linear Unit (GeLU) activa-
tion (Hendrycks and Gimpel, 2016).

• Finally, a series of l ev up-sampling convolutional blocks convert the token se-
quence into the output dose volume. For each level, the sequence previously
obtained from the same level down-sampling convolutional block is appended
along the feature dimension, similar to U-net architectures. The up-sampling
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Figure 3.2: Model architecture. The proposed model solves the dose prediction task as sequence modeling,
mapping two input sequences of 2D CT slices x and projected shapes κ with beam shape information into
a sequence of 2D dose distributions y . First, a series of down-sampling convolutional blocks merges and
compresses the two sequences from the data into a sequence of feature vectors h (referred to as tokens).
A transformer encoder with causal self-attention routes long-range dependencies along the beam direction.
Finally, a series of up-sampling convolutional blocks transform the output tokens into a sequence of 2D dose
distributions. In each block, the exact same 3D convolution operation is applied to all sequence elements,
extracting local features from the preceding and following element in the sequence.

block’s architecture is identical to that of its down-sampling counterpart, except
for the use of a nearest-neighbor up-sampling interpolation operation instead of
the max-pooling.

Projected shape and dose calculation Apart from the values in the CT, the addi-
tional 3D projected shape input κ encodes beam information such as the MLC aper-
ture shape, the angle or relative distance between the isocenter and the source, in-
cluding basic material information with a simple correction based on tissue densities.
Such projected shape is generated via an algorithm that estimates the dose at each
voxel through the percentage depth dose (PDD), corrected by an off-axis factor. The
PDD is measured at 100 cm source-to-surface distance (SSD) with a 10cm×10cm field
size, adjusting for different SSDs using the Mayneord factor. The depth for determining
the percentage dose is the water equivalent distance, calculated via ray tracing for all
voxels. The off-axis correction factor is calculated by sampling from a diagonal beam
profile for a 40cm× 40cm field size at 10 cm depth, projecting it to different depths
using the lateral distance of the voxel to the center beam axis and the longitudinal dis-
tance from the voxel to the source. This ray tracing calculation estimates the dose us-
ing the commissioning data and is optimized for speed over accuracy, taking around
0.1 ms per beam in a GPU. The corresponding ground truth dose distributions (to be
predicted by the model) are obtained via the AcurosXB V15.6.05 algorithm in the Var-
ian Eclipse TPS system (with the option of calculating dose to medium). Both the dose
and the projected shapes have similar ranges from 0 to ≈ 3, with units cGy/MU.

Dataset iDoTA is trained to predict individual photon beams using a training dataset
of 17 clinical patient CTs with disease sites of brain, head neck, lung, abdomen and
pelvis. All CTs were recorded using a General Electrics LightSpeed CT scanner with
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2.5mm×2.5mm×2.5mm resolution. For each patient, 100 different co-planar photon
beams were computed, using, for each beam, a random gantry angle and an isocenter
location randomly selected within the patient, and an aperture shape that was gener-
ated by randomly sampling leaf positions, keeping the couch angle fixed. After cal-
culating the dose per MU and projecting the aperture shape, the input 3D CT x ∈
R96×96×64, projected shape κ ∈ R96×96×64 and output dose y ∈ R96×96×64 blocks are ob-
tained, covering a volume of approximately 240 × 240 × 160 mm3, so that the beam
always travels in the same direction along the first dimension L = 96 with angles be-
tween -45° and 45°. All 1700 input CT volumes are normalized to the range [0,1] divid-
ing by using the maximum value of 3,071 observed across the entire dataset. Likewise,
both projected shapes and dose distributions are normalized using the maximum dose
value of 3.075 cGy/MU in the dataset. During training, 10% of the samples are set aside
for validation purposes, i.e., finding the best model configuration.

The best model’s performance is evaluated using an independent test dataset of 584
beam dose distributions corresponding to a prostate and a lung patient unseen during
training. Additionally, to assess iDoTA’s performance in predicting full dose distribu-
tions composed of many photon beams, the model is tested on 11 additional clinical
VMAT treatment plans with 2 arcs and 99-178 control points per arc, corresponding to
1 brain, 3 HN, 3 lung, and 4 prostate cancer patients.

Training details iDoTA is trained using the mean squared error as a loss function,
with mini-batches of 4 samples and the layer-adaptive LAMB optimizer (You et al.,
2019), finding the combination of a low batch size and the LAMB optimizer to be crit-
ical for convergence. During training, the dataset size is augmented via rotations (in
steps of 90 °, perpendicular to the direction of the beam) and random shifts along the
beam direction (shifting the entire volume up to 15 positions along the first dimen-
sion). Training consists of 10 cycles with 120 epochs/cycle, where the learning rate is
set to 10−3 at the beginning of each cycle, and halved every 15 epochs.

After hyper-parameter tuning using the validation data, the best-performing model
has 4 transformer heads, lev = 4 levels with K = 10 filters in the last encoder convolu-
tion. The four down-sampling operations in the encoder transform the input slices
with dimensions H = 96 and W = 64 into tokens of size D = H/24×W /24×K = 240. All
training and experiments are run in a Nvidia A40® GPU using Tensorflow (Abadi et al.,
2015).

3.3. Model evaluation
For evaluation purposes, iDoTA’s predictions are compared to corresponding ground
truth dose distributions in the independent test set of patients unseen during train-
ing. The main method to assess dosimetric differences is the gamma analysis (Low
et al., 1998), based on the intuition that two neighboring voxels with a similar dose
result in equivalent biological effects. Intuitively, a voxel in the predicted dose distri-
bution passes the gamma evaluation Γ(dt a mm,dd %) if another voxel with a similar
value — deviating less than dd % of the maximum dose — is found within a sphere of
radius dt a mm in the ground truth dose grid. Three gamma evaluations Γ(1 mm,1%),
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Γ(2 mm,2%) and Γ(3 mm,3%) are computed, calculating the gamma passing rate by
dividing the number of passed voxels by the total amount of eligible voxels, i.e., voxels
with values within 10% and 100% of the maximum dose.

The average relative error ρ serves as an additional metric to measure explicit voxel
dose differences, expressed as a percentage of the maximum dose in the grid. As for
the gamma pass rate, the average relative error is calculated only for voxels with values
within 10% and 100% of the maximum dose. For model predictions y , and correspond-
ing ground truth 3D dose distributions ŷ (both with M = L×H ×W voxels), the average
relative error is calculated using the L1-norm as

ρ = 1

M

∥∥y − ŷ
∥∥

L1

max ŷ
×100. (3.1)

3.4. Results
To assess iDoTA’s suitability as a generic photon dose calculation tool and determine its
improvements with respect to other data-driven algorithms, different evaluation met-
rics are computed using the independent test data. In particular, iDoTA’s accuracy and
speed are compared to previous approaches for prediction of both individual photon
beam prediction and full dose distributions from clinical VMAT plans.

3.4.1. Individual beams
Table 3.1 reports the Γ(1 mm,1%), Γ(2 mm,2%) and Γ(3 mm,3%) gamma pass rate for
the 584 beams in the test dataset, comparing their mean, standard deviation and min-
imum to those reported in previous studies achieving state-of-the-art performance,
i.e, the B1 and B2 convolutional architectures for photon dose prediction in standard
linear accelerator (Linac) (Kontaxis et al., 2020) and MR-Linac settings (Tsekas et al.,
2021), respectively. Table 3.1 additionally includes the pass rates of a purely convolu-
tional version of iDoTA without the transformer encoder, referred to as iDoTA-conv.
The overall lower pass rates achieved by iDoTA-conv demonstrate the added benefit
of combining transformers and convolutions. In general, iDoTA achieves better pass
rates than previous convolutional models, with higher means and smaller standard
deviations. Most importantly, the minimum gamma pass rate across all test samples
is >20% higher than that of the 3D-U-net based architectures.

iDoTA can better predict photon beams in pelvic anatomies than in lung scans,
which is likely caused by the more heterogeneous nature of lung geometries (i.e., the
contrasts between bony structures, air, and water-like tissues). Figure 3.3 further con-
firms iDoTA’s superiority for the pelvic cases over lung, showing gamma pass rates, and
ρ distributions with lower lung pass rates and higher errors. Figure 3.4 visually com-
pares the target and predicted beam dose distributions for the worst-performing lung
and pelvic samples, and an average-performing pelvic beam. The overall errors are low
and mostly occur at the beam lateral falloff, which may be caused by the coarse resolu-
tion of the input projected shapes. Since the average relative error in test data of 2.18%
is similar to the final error in validation data of 2.19±1.08%, and relatively close to the
error for training data of 1.54±0.64%, we can conclude that the model generalizes well.
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Table 3.1: Model accuracy for individual broad beams. Gamma pass rates for photon beams are computed
using 3 different criteria in the gamma evaluation. The reported values, which include the mean, standard
deviation (std), and minimum across all test samples from pelvic and lung cancer patients, are compared to
other state-of-the-art 3D U-net deep learning models as reported in their respective studies, referred to as
B1 (Kontaxis et al., 2020) and B2 (Tsekas et al., 2021). To determine the added benefit of using transformers,
a purely convolutional variant of iDoTA — without the transformer encoder, denoted as iDoTA-conv — is
trained and evaluated using the same training procedure and dataset.

Site Model
Γ(1, 1) [%] Γ(2, 2) [%] Γ(3, 3) [%]

Mean±std Min Mean±std Min Mean±std Min

Pelvic

3D U-net (B1) 89.9±5.1 44.5 97.8±3.0 55.2 99.4±2.5 62.5
3D U-net (B2) 87.6±8.3 47.5 97.9±2.6 68.2 99.5±1.0 77.5
iDoTA - conv 85.8±8.6 32.46 97.0±4.6 52.8 99.2±2.1 76.2
iDoTA (ours) 89.0±5.4 66.9 98.1±1.7 87.7 99.6±0.5 94.7

Lung
iDoTA - conv 84.3±4.1 65.5 95.6±2.0 86.9 98.8±0.8 94.0
iDoTA (ours) 84.1±4.7 68.9 96.9±2.0 90.1 99.2±0.8 94.2

Figure 3.3: Accuracy metrics distribution. (Left)Γ(1 mm,1%). pass rate, (middle) Γ(2 mm,2%) pass rate and
(right) average relative error distributions across all beams in the test dataset. The lower errors and higher
pass rate values in orange correspond to beams in the pelvic area, while blue distributions are from lung
samples.

3.4.2. Full dose distributions
For 11 additional patients outside the training dataset with clinical VMAT plans avail-
able, Table 3.2 compares the Γ(1 mm,1%), Γ(2 mm,2%) and Γ(3 mm,3%) gamma pass
rate to the values reported in previous studies. In particular, iDoTA’s accuracy are com-
pared to those of: convolutional U-net architectures predicting each beam in the plan
individually B1 (Kontaxis et al., 2020), B2 (Tsekas et al., 2021), B3 (Tsekas et al., 2022);
convolutional models de-noising MC dose distributions B4 (Neph et al., 2021), B5 (Bai
et al., 2021); and the concurrent TransDose transformer model for MR-Linac dose pre-
diction (F. Xiao et al., 2022).

Table 3.2 shows the mean and standard deviation of the gamma pass rates sep-
arately for pelvic, lung and HN patients, comparing them to other models. With a
99.51±0.66% (2 mm, 2%) pass rate, an average relative dose error of 0.75±0.36% across
all patients, and higher pass rates in all treatment sites, iDoTA outperforms all pre-
vious approaches. Additionally, the average error ρ in HN, lung and pelvic plans is
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Figure 3.4: Individual beam test samples. (a) Worst performing pelvic test sample in the gamma evaluation,
withΓ(2 mm,2%) gamma pass rate of 87.7%; (b) worst performing prediction in the gamma evaluation across
the lung test samples, withΓ(2 mm,2%) gamma pass rate of 90.1%, and (c) average performing sample. Given
the 96×96×64 3D volumes — a sequence of 96 2D slices of dimension 96×64 — all plots show the central
slice along the beam direction, i.e, slice 32 out of 64. From top to bottom rows, the subplots show the 3D
input CT grid, the reference dose distribution, the model’s prediction and the dose difference between the
predicted and reference beams.
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Table 3.2: Model accuracy for full clinical dose distributions. For different treatment sites, the gamma
pass rates of full photon dose distributions is calculated using 3 different criteria. The values from few of
the best-performing models are also included as reported in their respective studies. In particular, iDoTA is
compared to the 3D U-net models B1 (Kontaxis et al., 2020), B2 (Tsekas et al., 2021), B3 (Tsekas et al., 2022);
the de-noising 3D U-net models B4 (Neph et al., 2021), B5 (Bai et al., 2021); and the concurrent TransDose
transformer model (F. Xiao et al., 2022). All pass rates include the average and standard deviation across all
available dose distributions.

Treatment site Model Γ(1, 1) [%] Γ(2, 2) [%] Γ(3, 3) [%]

Head & Neck
B4 70.9±2.9 89.4±3.7 -
TransDose - 96.7±2.3 -
iDoTA (ours) 80.5±8.6 98.9±0.9 99.9±0.1

Pelvic

B1 89.9±3.3 99.5±0.7 99.9±0.3
B2 82.2±9.7 96.1±3.1 99.4±0.6
B3 84.2±2.9 99.0±0.4 99.9±0.1
B5 - 95.4±1.6 -
TransDose - 97.9±0.4 -
iDoTA (ours) 95.8±3.1 99.8±0.2 99.9±0.0

Lung
TransDose - 96.7±1.4 -
iDoTA (ours) 94.3±1.5 99.8±0.2 99.8±0.1

1.11%, 0.64%, and 0.45%, respectively. For the remaining patient with a brain tumor, a
Γ(1 mm,1%), Γ(2 mm,2%) and Γ(3 mm,3%) gamma pass rate of 93.5, 99.7, and 99.9, re-
spectively. As seen in the individual beams, iDoTA is more accurate in pelvic cases and
less precise in HN anatomies, which is also likely due to the bone, water and air (cavi-
ties) heterogeneities. Nevertheless, the overall pass rate is still significantly higher than
other approaches. Finally, Figure 3.5 shows very similar reference and predicted dose
distributions for a prostate (Figure 3.5a) and lung (Figure 3.5b) VMAT plan, along with
the corresponding Γ(2 mm,2%) map with mostly all voxels passing the gamma eval-
uation. To further evaluate the similarity between ground truth and predicted doses,
Figure 3.6 shows dose volume histograms (DVHs) from three test patients. The almost
perfectly overlapping DVH lines indicate that iDoTA’s predictions are practically iden-
tical to the reference data.

3.4.3. Prediction times
Computation speed is critically important in adaptive workflows. In Table 3.3, iDoTA’s
total time needed to predict individual beams and full plans is compared to the re-
ported values from models in previous studies. All prediction times for all models
include the time needed to generate and prepare the inputs, predict the output and
(for full dose distributions) accumulate beam doses. For individual beam prediction,
iDoTA is significantly faster than any other competitor, being 30-60x faster than the
3D U-net models and 6x faster than the concurrent transformer model TransDose (F.
Xiao et al., 2022). Likewise, iDoTA predicts full dose distribution from VMAT plans (with
194-354 beams per plan) on average in 8 seconds, representing a 10-80x speed-up com-
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(a) Prostate patient.

(b) Lung patient.

Figure 3.5: Dose distributions from VMAT plans. From left to right, the input CT, target and predicted dose
distributions and Γ(2 mm,2%) gamma map are shown for two clinical VMAT plans from a (a) prostate and
(b) lung cancer patient. To show details of the high dose region, the images display crops around the target
volume.

Figure 3.6: Dose volume histograms from 3 VMAT plans. Three dose volume histograms from a (left) pelvic,
(mid) brain and (right) prostate test patients are shown, indicating the dose received by a specific fraction
of the volume of an organ. All plots include the planning target volume (PTV) and few of the surrounding
organs at risk. Solid lines represent iDoTA’s predictions, while dotted lines indicate ground truth values.
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Table 3.3: Average prediction time. iDoTA’s computing speed is compared to the fastest models in literature
via the average computing time needed to predict a photon beam or full dose distribution. The reported
baselines include the 3D U-net models B1 (Kontaxis et al., 2020), B2 (Tsekas et al., 2021), B3 (Tsekas et al.,
2022); the de-noising 3D U-net models B4 (Neph et al., 2021), B5 (Bai et al., 2021); and the concurrent Trans-
Dose transformer model (F. Xiao et al., 2022). The reported values include the time needed to generate and
process the model inputs. iDoTA’s CPU prediction times are also included for comparison, as well as the
average number of beams in the evaluated treatment plans.

Model Hardware Average time [ms]

Photon beams

B1 GPU 1500
B2 GPU 3000
B3 GPU 7000
TransDose GPU 310
iDoTA (ours) CPU 1480
iDoTA (ours) GPU 50

Model Hardware Average time [s]

Full plans

B1 (< 20 beams) GPU 60
B4 (< 20 beams) GPU 660
B5 (< 20 beams) GPU 150
iDoTA (ours, 194−354 beams) CPU 450
iDoTA (ours, 194−354 beams) GPU 8

pared to the IMRT (with ≈ 10 beams) U-net models. With CPU settings (intel® CoreTM

i7-8550U 1.8 GHz), iDoTA still remains competitive with previous GPU-based models,
predicting beam doses in 1.48±0.13 seconds and full plans in 300 to 600 seconds, de-
pending on the number of beams.

3.5. Discussion
Framing photon dose calculation as sequence modeling, iDoTA is able to predict beam
doses with high accuracy and speed, achieving an overall 97.72± 1.93% Γ(2 mm,2%)
pass rate in lung and pelvic geometries. This per-beam prediction precision trans-
lates into a very high Γ(2 mm,2%) pass rate of 99.51±0.66% in dose distributions from
clinical VMAT plans, which also outperforms all previous models. Compared to the
best-performing convolutional models B1 and B2 (Kontaxis et al., 2020; Tsekas et al.,
2021) (and the recently published VMAT model B3 (Tsekas et al., 2022)), iDoTA offers
more than 30x faster beam dose prediction even in the most heterogeneous geome-
tries, achieving better gamma pass rates on average with lower spread, and 20% higher
pass rates in the most difficult samples. Furthermore, iDoTA only uses the 3D CT and
beam intensity to predict doses, in contrast to the 5 different input volumes contain-
ing physics information required by the 3D U-nets, allowing for lower input generation
times and faster calculation times overall. iDoTA also convincingly outperforms MC
de-noising models B4 and B5 (Bai et al., 2021; Neph et al., 2021), with a 5-10% increase
in gamma pass rates and a 20-80x speed-up, partially caused by the time needed to
generate the high-noise MC dose inputs. In general, iDoTA achieves higher gamma
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pass rates than all previous convolutional models, also compared to the purely con-
volutional iDoTA-conv variant trained with identical dataset, training procedure and
architecture (except for the transformer encoder). As in Chapter 2 and the concur-
rent TransDose (F. Xiao et al., 2022), these findings demonstrate that the addition of
the transformer — being able to capture relationships between distant features, as op-
posed to convolutions — seems to be beneficial for dose prediction tasks.

Moreover, our method outperforms the concurrent TransDose transformer model
in both accuracy and speed. Although TransDose is trained to predict photon beams
under magnetic fields for MR-Linac applications — which could be a more difficult task
to learn — part of iDoTA’s success may be due to differences in the model, i.e., that the
data-demanding transformer architecture in iDoTA routes information only between
each of the 96 2D slices, instead of the 5000 voxels that are input to the transformer in
TransDose. As a result, iDoTA’s transformer has less parameters, which can be favorable
with smaller datasets and accelerates inference.

With higher accuracy and lower computing times than any other previously intro-
duced deep learning model, the proposed iDoTA represents a new state of the art in
data-driven photon dose calculation. iDoTA can predict full dose distributions in 6-10
seconds, including CT cropping and rotation time (≈ 25 ms per beam), ray tracing in-
put calculation (≈ 0.1 ms per beam) loading the model and weights (≈ 2 s), inferring
the beam dose distribution (≈ 20 ms per beam) and accumulating the doses in the fi-
nal grid (≈ 5 ms per beam). As a result, iDoTA is an order of magnitude faster than
clinically used algorithms or MC approaches adapted to GPU hardware (Hissoiny et
al., 2011; Jahnke et al., 2012; Jia et al., 2011). While such MC-GPU implementations are
several orders of magnitude faster and almost as accurate as their CPU counterparts,
their total calculation times are still in the order of minutes. Furthermore, iDoTA is
20x and 60x faster than the Eclipse Acuros XB and AAA algorithms (Varian Medical Sys-
tems) used in ≈ 80% of the clinics, which predict VMAT doses in 2-3 and ≈ 10 minutes,
respectively (Fogliata et al., 2012; Yan et al., 2017). Most importantly, the photon beams
can be predicted in parallel in several batches depending on the number of GPUs and
their internal memory, practically allowing for further reduction in total calculation
times.

Limitations Like all other data-driven algorithms, iDoTA is trained to emulate dose
distributions from a specific machine and settings. Deep learning algorithms have lim-
ited extrapolation capabilities outside the training domain, which would require a dif-
ferent model each time the machine configuration is changed (or even the CT scanner,
unless different CT machines are included in the training dataset). In such cases, fine-
tuning iDoTA starting from the provided weights using a smaller dataset can save time
without significantly degrading performance.

Ideally, all machine characteristics would be given to the model as separate in-
puts. Alternatively, to account for geometrical information and machine character-
istics, iDoTA requires the additional input projected shape, necessitating ray-tracing
pre-calculations. As for the machine parameters, such beam information could be in-
cluded in the input as separate tokens, e.g., the aperture shape could be given as 2D
binary mask at the beginning of the input sequence.
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iDoTA is trained using a certain resolution and grid dimensions, which must be
fixed for both training and inference. For dose prediction in finer grid resolutions,
iDoTA can be coupled to neural representation models capable of accurate super reso-
lution (Vasudevan et al., 2022). Regarding grid size, predicting dose distributions from
treatment plans or beams through anatomies larger than the predetermined voxel grid
must be done in steps, obtaining several input volumes and accumulating the outputs
along the beam depth. Conversely, all doses can be predicted for the same fixed grid
covering the part of the anatomy containing the structures of interests, which neglects
the (usually) low doses near patient entrance. As observed in proton dose prediction
(chapter 2), iDoTA is expcted to perform equally well for different grid settings, with
calculation times going up for larger grids and finer resolutions, but still within sub-
second speed.

Finally, iDoTA is trained and evaluated on a dataset that differs from the ones used
in previous models, which can affect the final evaluation metrics. Likewise, the high-
end GPU used in our experiments may affect iDoTA’s reported prediction times. Never-
theless, our GPU is not expected to offer significant speed improvements with respect
to the one from previous studies, especially if compared to the fastest alternative (F.
Xiao et al., 2022) using modern, similar GPU hardware. iDoTA’s intrinsic speed is fur-
ther confirmed by its competitive prediction times even when using a CPU, as shown
in Table 2.6, which is partly due to using less parameters and a faster input generation.

3.6. Summary
Combining the convolutional layers extracting local features with a Transformer back-
bone routing distant information, the presented iDoTA model outperforms any pre-
vious deep learning model in photon dose calculation. iDoTA can predict beam dose
distributions in 50 milliseconds with high accuracy, achieving an average Γ(2,2) pass
rate of 97.72%. The per-beam prediction speed translates into estimating full VMAT
dose distributions in less than 10 seconds with a Γ(2,2) pass rate of 99.51% on average,
instead of the several minutes required by clinical algorithms or previous data-driven
models. Given its speed and versatility, iDoTA can accelerate several steps of the radio-
therapy workflow: from treatment planning and quality assurance to real-time adap-
tion.
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Modeling inter-fraction daily

anatomical variations

4.1. Introduction
Modern radiotherapy techniques such as intensity modulated proton therapy (IMPT)
have the potential to deliver highly conformal doses to tumors while maximally spar-
ing organs at risk (OARs). Although offering dosimetric advantages with respect to
conventional modalities, such treatments are particularly sensitive to geometrical un-
certainties arising from setup errors before delivery or range errors caused by organ
movements between or during treatment sessions. In the presence of uncertainties,
planned doses are delivered to anatomies different from the 3D computed tomogra-
phy (CT) scan used during treatment planning, which may translate into shifting high
dose regions away from clinical target volumes (CTVs) into critical OARs. Being one of
the main sources of error in, e.g., prostate cancer treatments (van Herk et al., 2002), the
magnitude of the deformations and their effect on the final dose distribution must be
quantified to ensure robust delivery. Ideally, treatments could be real-time adapted
via image guidance, or alternatively adjusted before each treatment session (Jagt et
al., 2017, 2018), but such adaptive workflows are constrained by the speed of the CT
acquisition, delineation, dose calculation and treatment re-optimization processes in
practice.

An efficient alternative currently used in the clinic consists of including setup and
range uncertainties during treatment planning optimization to design robust treat-
ment plans that withstand positioning and range errors (Rojo-Santiago et al., 2021;
Unkelbach and Paganetti, 2018; van der Voort et al., 2016). Similarly, inter-fractional
movement information could be incorporated during treatment planning or treatment
evaluation to make treatment plans robust against complex geometrical variations. To
account for such anatomical changes, some published works propose computing ex-

The contents of this chapter have been accepted for publication as a journal paper in Physics in Medicine &
Biology.
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pected dose distributions using weighted scenarios, where each scenario corresponds
to the dose deposited in a patient geometry generated by an anatomy model. Typ-
ically, such models extract the main eigenmodes of organ deformation — groups of
correlated movements — via principal component analysis (PCA) (Budiarto et al., 2011;
Jeong et al., 2010; Söhn et al., 2005; Szeto et al., 2017). During the last decades, lin-
ear PCA models have been successfully employed to quantify and understand the ef-
fect of organ deformations in different treatment sites and modalities (Magallon-Baro
et al., 2019; Rios et al., 2017; Thörnqvist, Hysing, Zolnay, Söhn, Hoogeman, Muren,
and Heijmen, 2013); to extend clinical volumes with extra margins and compensate
for anatomical changes (Bondar et al., 2014; Thörnqvist, Hysing, Zolnay, Söhn, Hooge-
man, Muren, Bentzen, and Heijmen, 2013); to characterize respiratory deformations
(Badawi et al., 2010; Q. Zhang et al., 2007); and to simulate dosimetric outcomes of de-
livery in the presence of geometrical uncertainties (Nie et al., 2012; Söhn et al., 2012;
Tilly et al., 2017; Xu et al., 2014). Focusing on conventional photon-based modalities,
most of these studies are based only on organ contours without including CT inten-
sity values, and require time-consuming image registrations as pre-processing to find
corresponding points across a population of patients before being usable for learn-
ing generic deformations. Furthermore, all previously introduced models are either
patient-specific (requiring several CTs per patient) or population-based (applying the
same set of deformations to all patients), which limits their accuracy and applicability.
For widespread adoption of anatomically robust treatment planning, accurate proba-
bilistic models quickly generating patient-specific treatment anatomies are required.

All published PCA models learn correlated organ movements from a dataset of 3D
deformation vector fields (DVFs), where each vector indicates the magnitude and di-
rection of displacement for each point in a voxelized volume. Such DVFs can be ob-
tained via image registration algorithms finding a non-linear correspondence between,
e.g., two CT scans (Ashburner, 2007; Bruveris and Holm, 2015; Vásquez Osorio et al.,
2009). While traditional not data-driven algorithms require minutes to solve a registra-
tion task, recent deep learning based methods reduce computing times down to few
seconds and additionally increase registration accuracy (Balakrishnan et al., 2019; de
Vos et al., 2017), typically using 2D (Ronneberger et al., 2015) or 3D (Çiçek et al., 2016)
U-net convolutional architectures in combination with spatial transformer networks
(Jaderberg et al., 2015). Several architectures generating DVFs and warping pairs of
images have been proposed and applied to radiotherapy problems such as 4D image
registration of moving images due to breathing (Lei et al., 2020; Romaguera et al., 2020)
or automated contour propagation in adaptive workflows (Liang et al., 2021).

Our objective, however, is to generate a set of DVFs to warp a single planning CT
into different repeat CTs that are likely to be observed during the course of a radiother-
apy treatment. Ideally, a suitable model would be able to implicitly capture the relative
likelihood of correlated groups of movements depending on the input patient geome-
try. Probabilistic frameworks based on variational inference (Blei et al., 2017; Kingma
and Welling, 2014; Rezende et al., 2014) have been successfully applied to model uncer-
tainty in organ segmentation tasks (Baumgartner et al., 2019; Hu et al., 2019; Kohl et al.,
2019, 2018), making use of auxiliary latent variables that represent the main factors of
variation behind the model’s predictions. Similar probabilistic U-net based architec-
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Figure 4.1: Proposed generative framework. The probabilistic models are embedded within a U-net, where
the down-sampling path is referred to as Encoder, and the up-sampling path is the Generator. The Encoder
takes the planning CT and structures and outputs both a compressed representation of the input r as well as
a distribution P (z |x , sx ) over the region of the latent space containing variables corresponding to plausible
patient-specific movements. Given r and any sample z from the latent space distribution, the Generator
outputs a deformation vector field that is used to warp the planning CT into an artificial repeat CTs.

tures have also been proposed for pure image registration tasks (Dalca, Balakrishnan,
et al., 2019; Krebs et al., 2019), with applications to unsupervised contouring problems
(Dalca, Yu, et al., 2019) and breathing movement prediction based on motion surro-
gates (Romaguera et al., 2021).

Extending on these recent architectures, this chapter presents a probabilistic deep
learning framework that represents common anatomical movements and deforma-
tions in a population of patients using few latent variables. The proposed daily anatomy
model (DAM) first generates DVFs conditioned on an input planning CT scan and la-
tent variables, where each combination of latent variables corresponds to a different
group of movements; and subsequently warps the planning CT with the generated
DVFs into a set of artificial repeat scans. The model is trained using a dataset con-
taining planning and repeat CTs recorded at different stages of prostate cancer treat-
ments in three different institutions, evaluating whether DAM is able to learn realistic
movements with two external patients. Compared to previous methods, DAM does not
require any pre-processing registration step and can in principle be applied to quickly
simulate patient anatomies for treatment adaptation and robustness evaluation pur-
poses.

4.2. Model architecture and training

This section describes the fundamentals of diffeomorphic transformations and the
variational framework used to capture anatomical variations, including the different
parametric models and the procedure used to tune their parameters. Subsequently,
the model architecture is described in detail, together with the data and the evaluation
metrics used in each experiment.
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4.2.1. Proposed framework
During the course of a radiotherapy treatment, the internal structures and organs of
the patient change between fractions/days. As a result, the anatomy captured in the
planning image x ∈RM and organ structures sx ∈RM (both represented as 3D matrices)
can significantly differ from the repeat images y ∈ RM and structures sy ∈ RM taken
during following treatment sessions. M voxels comprise the entire volume, where the
voxels in x and y represent image intensity values, and the voxels in sx and sy contain
an integer corresponding to the organ present in the voxel.

As demonstrated in previous studies (Budiarto et al., 2011) for treatment sites like
prostate, common anatomical variations such as volume and contour changes are ob-
served across an entire population. Based on the existence of such generic movements
it is assumed that, given a planning image x and structures sx , there is an unknown
patient-specific generative distribution P∗(y |x , sx ) of repeat scans that can be approx-
imated via a probabilistic model with learned parameters. Given a planning image
from a new patient, the resulting model distribution Pθ(y |x , sx ) parametrized by θ can
be sampled to generate a set of artificial anatomies observed at future treatment stages.

In this case, θ corresponds to the parameters of the U-net neural network that is
used to compute a DVF Φ : R3 → R3 mapping coordinates between images. The pre-
sented model predicts a diffeomorphic transformationΦ, which is invertible and prac-
tically allows obtaining the forward and inverse transformations in a very simple man-
ner. Based on the seminal works in (Ashburner, 2007; Dalca, Balakrishnan, et al., 2019),
the selected diffeomorphic transformation is represented via the ordinary differential
equation

∂Φ(t )

∂t
= v(Φ(t )) (4.1)

describing the evolution of the deformation over time, where t ∈ [0,1] is time,Φ(0) is the
identity transformation and v :R3 →R3 is a stationary velocity field. Generating a DVF
starts from the identity transformation Φ(0), integrating over time to obtain Φ(1). The
integration is done via scaling and squaring (Arsigny et al., 2006; Moler and Van Loan,
2003), which involves recursively updating the DVF in T successive small time steps

Φ(1/2T ) = p + v(p)/2T (4.2)

Φ(1/2t−1) =Φ(1/2t ) ◦Φ(1/2t ) (4.3)

Φ(1) =Φ(1/2) ◦Φ(1/2) (4.4)

where p are spatial locations. Typically, T is chosen so that v(p)/2T is small, with
higher T leading to more accurate solutions.

As for the inputs, in the presented DAM the velocity field v ∈ RM×3 and DVF Φ ∈
RM×3 are discretized into M voxels, using Φ(p) to denote the displacement applied to
the voxel centered at location p ∈R3. Following previous work (Dalca, Balakrishnan, et
al., 2019), the U-net predicts v , which is exponentiated via scaling and squaring using
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a spatial transformer network (Jaderberg et al., 2015) to obtain the final DVFΦ used to
warp planning images into artificial repeats y =Φ◦x .

Generative model DAM is probabilistic model that conditions the generated DVFs
(and thus also the repeat images) on N unobserved latent variables z ∈ RN capturing
the main factors of variation in the data, i.e., the main groups of anatomical deforma-
tions. The latent variables distribute following a multivariate Gaussian prior probabil-
ity distribution that depends on the input planning anatomy

P (z |||x , sx ) =N (z ;µθ(x , sx ),Σθ(x , sx )), (4.5)

where the meanµθ and diagonal covariance matrixΣθ are deterministic functions cal-
culated by a neural network referred to as Encoder (Figure 4.1), which corresponds to
the down-sampling path of a U-net. The prior dependence on the input results in a
different distribution over latent variables per patient, which allows the model to select
the groups of movements that are likely to be observed for each specific input image.
The Encoder additionally outputs a volume r = gθ(x , sx ), which is the results of several
deterministic convolution operations containing features from the input. Since r is a
deterministic function of the input, any conditioning on r is substituted with x and sx

in the remainder of the chapter.
The relationship between the input planning image and latent variables and the

output warped repeat images is computed in the up-sampling path of the U-net, which
takes sampled latent variables and the low-dimensional features r to generate a veloc-
ity field vz ,θ = fθ(z , x , sx ), where the subscripts denote the deterministic dependence to
z and θ. After integrating vz ,θ to obtain the DVFΦz ,θ, the output repeat image y ∈ RM

is obtained by warping the input as y =Φz ,θ ◦x .
Different latent variable samples z result in different repeat images given the same

input planning scan, and the modeled distribution of repeat images can be recovered
as a function of the prior P (z |||x , sx ) and a likelihood Pθ(y |z , x , sx ) distributions as

Pθ(y |x , sx ) =
∫

Pθ(y |z , x , sx )P (z |x , sx )d z . (4.6)

The choice of the likelihood distribution affects the final loss function. Based on
previous work (Krebs et al., 2019), the likelihood distribution is a function of the cross-
correlation (CC) between predicted y and ground-truth ŷ images, scaled by a constant
λ as

Pθ(y |z , x , sx ) ∝ exp(λCC(ŷ , y =Φz ,θ ◦x)). (4.7)

The CC has been empirically found to yield better similarity than other metrics
such as the mean squared error (Balakrishnan et al., 2019), with larger CC values corre-
sponding to more alike images. Let y(p) and ŷ(p) denote the intensity values for each
voxel at position p in the predicted and ground-truth images, respectively. If w(p) and
ŵ(p) are images where each voxel is the local mean of the n3 neighboring voxels, e.g.,

w(p) = 1
n3

∑n3

j=1 y(p j )) and ŵ(p) = 1
n3

∑n3

j=1 ŷ(p j )), the CC is defined as
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CC(ŷ , y) = ∑
p∈Ω

[∑n3

i=1(ŷ(pi )− ŵ(p))(y(pi )−w(p))
]2[∑n3

i=1(ŷ(pi )− ŵ(p))
][∑n3

i=1 y(pi )− ŵ(p))
] . (4.8)

As in previous work (Krebs et al., 2019), DAM always uses the mode of the distribu-
tion Φz ,θ ◦ x , instead of sampling the likelihood Pθ(y |z , x , sx ) each time during infer-
ence to generate anatomies.

Learning With the presented probabilistic formulation, the goal is to maximize Equa-
tion 4.6 by learning the parameters θ from a dataset containing planning x and repeat
y pairs. However, estimating the integral over the latent space would require sampling
a large number of latent variables, being intractable in practice. A variational frame-
work is used instead, defining an approximate posterior distribution Qφ(z |x , sx , y , sy ),
parametrized by an Inference Network with parameters φ. During training, the Infer-
ence Network has access to the real repeat scans and predicts the parameters of Gaus-
sian distribution covering a small region of the latent space containing variables that
are likely to explain the deformation between x and y scans. Thus, the predicted Gaus-
sian is

Qφ(z |||x , sx , y, sy ) =N (z ;µφ(x , sx , y , sy ),Σφ(x , sx , y , sy )), (4.9)

with deterministic mappings µφ and Σφ computed by the Inference neural network.
Our formulation allows estimating the model parameters θ and φ by minimizing the
negative evidence lower bound as

log (Pθ(y |x , sx )) ≤−Ez∼Qψ(z |x ,sx ,y ,sy )[log(Pθ(y |z , x , sx ))]

+DK L(Qψ(z |x , sx , y , sy )||Pθ(z |x , sx )).
(4.10)

The lower bound balances two terms: the DK L(·||·) term — Kullback - Leibler (KL)
divergence — forces the approximated posterior to be close to the prior distribution,
while the first term corresponds to maximizing the CC, encouraging similarity between
real and generated images. Further details about deriving the lower bound are included
in Appendix A.

Explicit regularization terms The current form of the likelihood enforces image sim-
ilarity regardless of structure overlap or DVF quality. To enforce realistic predicted
anatomies, the lower bound is modified by adding two extra regularization terms. To
encourage smooth and realistic DVFs, a spatial regularization term penalizes large un-

realistic spatial gradients ∇Φz ,θ(p) =
(
∂Φz ,θ(p)

∂x ,
∂Φz ,θ(p)

∂y ,
∂Φz ,θ(p)

∂z

)
of the DVFΦz ,θ, which

is multiplied by a constant κr as

R(Φz ,θ) =−κr
∑

p∈Ω

∥∥∇Φz ,θ(p)
∥∥

2 . (4.11)

A segmentation regularization term is added to improve the overlap between prop-
agated and ground-truth structures, using the DICE score (defined between 0 and 1,
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where 1 denotes perfect overlap). For K structures, let ŝk
y be the voxels in the ground-

truth scan with structure number k ∈ [1,K ], sk
y = Φz ,θ ◦ sk

x the predicted voxels with

structure number k, and |ŝk
y | the cardinality of structure ŝk

y , i.e, the number of elements

in ŝk
y . The DICE score is defined as

DICE(ŝk
y , sk

y ) = 2

∣∣∣ŝk
y ∩ sk

y

∣∣∣∣∣ŝk
y

∣∣+ ∣∣sk
y

∣∣ . (4.12)

With these two terms multiplying the likelihood in the lower bound of Equation 4.10,
the final optimization problem becomes

θ∗,φ∗ = argmin
θ,φ

Ex ,y ,sx ,sy∼PD (x ,y ,sx ,sy )

[
Ez∼Qφ(z |x ,sx ,y ,sy )

[
−λCC(ŷ , y)

− 1

K

K∑
k=1

DICE(ŝk
y ,Φz ,θ ◦ sk

x ))+κr
∑

p∈Ω

∥∥∇Φz ,θ(p)
∥∥

2

]
+DK L(Qφ(z |x , sx , y , sy )||Pθ(z |x , sx ))

]
,

(4.13)

with x , y , sx and sy sampled from the real data distribution PD (x , y , sx , sy ).

4.2.2. Dataset
To learn the model parameters in a training stage, a dataset with 369 CTs from 40
prostate cancer patients is used, including prostate, seminal vesicles, bladder and rec-
tum delineations with no overlap. For each of the patients, 3-11 repeat CTs were recor-
ded at different points during their treatment at 3 different institutions: Erasmus Uni-
versity Medical Center (Rotterdam, Netherlands), Haukeland Medical Center (Bergen,
Norway) and the Netherlands Cancer Institute (Amsterdam, Netherlands) (Deurloo et
al., 2005; Sharma et al., 2012; Xu et al., 2014). In total, 329 planning-repeat CT pairs
are available, 312 of which are used for training and validation, while the remaining 22
CTs — corresponding to 2 independent test patients, as in previous studies (Budiarto
et al., 2011) — serve to evaluate performance on unseen geometries. After rigidly align-
ing each repeat to the planning CT, all volumes are cropped to a region of 64×64×48
voxels around the prostate with a voxel resolution of 2 mm, resulting in sub-volumes
of 128 × 128 × 96 that in all cases covers the prostate, seminal vesicles, rectum and
a large portion the bladder. These sub-volumes are x ∈ R64×64×48 and y ∈ R64×64×48

with the original CT intensity values rescaled to the range [0,1], and sx ∈R64×64×48 and
sy ∈ R64×64×48 with categorical labels depending on the organ present in each voxel.
Given the stochasticity in the density of the rectum fillings, all voxels in the rectum are
masked, setting their intensity to -1000 (vacuum).

4.2.3. Model architecture
As shown in Figure 4.2, the proposed variational framework comprises two different
models, parametrized by artificial neural networks: the Inference network and the
probabilistic U-net with down-sampling and up-sampling paths denoted as Encoder
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Figure 4.2: Learning the model parameters. An additional Inference Network takes a pair of planning and
repeat CT and outputs the parameters of a distribution over a smaller region of the latent space that is likely to
capture the deformation between the two images. The prior distribution predicted by the Encoder is forced
to the distribution produced by the Inference Network via a KL-divergence term in the loss. Additionally, a
reconstruction term encourages the resulting artificial CT (obtained after warping the planning scan with
the predicted deformation) to be similar to real repeat CT.

and Generator, respectively. Based on the input planning CT and structures, the En-
coder computes (i) a low-dimensional volume of input image features r , and (ii) the
parameters µθ and Σθ of the prior distribution Pθ(y |z , x , sx ) over a region of the latent
space containing movements that are likely to be observed for the patient. The prior
depends on the input, thus one of the functions of the Encoder is selecting primary
groups of movements for each patient based on planning CT anatomy. The Generator
takes the features r and sampled latent variables z ∼ Pθ(y |z , x , sx ) and produces the
velocity field vz ,θ that is exponentiated to obtain a diffeomorphic transformationΦz ,θ.

During training, the Inference network takes a pair of planning and repeat CTs and
outputs the parameters µφ and Σφ of the distribution Qφ(z |x , sx , y , sy ) over a much
smaller region of the latent space containing latent variables that explain the defor-
mation between both images. The DVF resulting from such latent variables is used to
warp the planning CT into artificial repeat CTs y and structures Φ ◦ sx . The distribu-
tions Qφ(z |x , y) from the Inference network and Pθ(z |x) from the Encoder are forced
to overlap via the KL divergence in Equation 5.5, while the artificial CT and structures
are forced to match the ground-truth repeat CTs via the CC and DICE terms in the like-
lihood.

For the model with the lowest validation loss, the Encoder and Inference network
are identical: three consecutive convolutional blocks, where each block contains a 3D
convolutional layer with 32 channels and a 3×3×3 kernel followed by Group Normal-
ization (Y. Wu and He, 2020), a rectified linear (ReLU) activation and a max pooling
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down-sampling operation. At the lowest level, an additional 3D convolution with 4
channels results in the low-dimensional feature volume r ∈R4×8×8×6, which is mapped
to the means and variances of the prior distribution via two different fully-connected
layers. Conversely, the Generator first concatenates the latent variables to r as an addi-
tional channel, and then applies three up-sampling convolutional blocks with 32 chan-
nels. Two additional 3D convolution operations with 16 and 3 channels result in the
final velocity field vz ,θ. All models are trained for 1000 epochs using a learning rate of
0.001, hyper-parameters κ = 0.1 and λ = 1000, and the Adam optimizer (Kingma and
Ba, 2017) with default parameters.

4.2.4. Experiments
DAM is evaluated in terms of accuracy in both generating feasible groups of deforma-
tions and reconstructing the ground-truth repeat scans. Additional experiments aim
at exploring the structure of the latent space and the types of movements triggered by
different latent variables.

• Reconstruction accuracy. Given a planning and one of its repeat CTs in the test
set, the Inference network can be used to obtain the latent variables correspond-
ing to the deformation between both images, which are in turn used to get the
DVF and warp the planning scan. For all 22 test planning/repeat pairs, the gener-
ated repeat CTs are compared to the ground truth repeats via computing the CC
(Equation 4.8) and the DICE score (Equation 4.12). Additionally, after warping
points πi ∈ R3 on the surface of the planning prostate, their distance to corre-
sponding points π̂i ∈R3 on the surface of the repeat prostates is assessed via the
mean surface error as

e = 1

L

L∑
i=1

∥π̂i −Φ◦πi∥2 . (4.14)

To allow for a fair comparison with PCA-based methods, we can calculate the
mean and standard deviation across the same number L = 5864 of randomly
chosen points as in previous studies (Budiarto et al., 2011). Finally, the effect of
the latent space dimensionality is evaluated by comparing all accuracy metrics
for different models trained with a varying number of latent variables.

• Generative performance. To finally be applied in clinical settings, the generated
movements must match those from the recorded CT scans. Based on a previous
study quantifying anatomical changes in prostate patients (Antolak et al., 1998),
the volume changes and center of mass shifts between planning and repeat scans
are compared to their corresponding ’ground-truth’ distributions obtained using
real and artificial repeat CTs. To be able to compare to the reference values (Anto-
lak et al., 1998), center of mass shifts are reduced to a single value by computing
the average of absolute differences across coordinates.

• Latent space analysis. By individually varying the values of each latent variable
while keeping the other fixed, we can numerically and visually assess the volume
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changes and center of mass shifts triggered by each variable. Finally, to under-
stand the structure of the latent space, the latent variables from all pairs in the
dataset are obtained and classified according to the magnitude of their induced
center of mass shifts and volume changes. Ideally, similar latent variables should
correspond to similar deformations. which can be verified by plotting a 2D rep-
resentation of the N latent variables using t-SNE (Maaten and Hinton, 2008) to-
gether with their associated label to determine the presence of clusters.

4.3. Results
This section assesses DAM’s performance in generating realistic CTs with anatomical
changes that match those of the real recorded repeat CTs. First, the reconstruction
accuracy of real CTs is assessed, followed by an analysis of the latent space, and the
types of deformations captured by the latent variables.

4.3.1. Reconstruction accuracy
Given a planning-repeat pair of CT scans and structures in the test set, a repeat scan can
be reconstructed via the same framework as used during training: sampling latent vari-
ables with the Inference network that are used by the Generator to generate a DVF. To
verify the similarity between DAM’s reconstructions and the real repeat CTs, three met-
rics assessing CT and structure overlap are computed: the CC, DICE score, and surface
error e. All three metrics in Figure 4.3 are computed for different models trained with a
varying number of latent variables, from 1 to 32. The values shown for 0 latent variables
correspond to using the planning CTs as a prediction, which is equivalent to disregard-
ing any model. First, the cross correlation between the real and reconstructed repeat
CT is shown in the left plot of Figure 4.3, indicating that the model significantly im-
proves when adding the first few variables, whereas no substantial is observed beyond
10 variables. As seen in DICE scores for the prostate and rectum from the middle plot in
Figure 4.3, DAM can model prostate deformations with high accuracy even with a sin-
gle latent variable, while representing rectum movements generally requires a slightly
larger latent space with ≈ 8 variables. The relative simplicity in capturing prostate
movements is further confirmed from the right plot in Figure 4.3, showing that most
surface error (Equation 4.14) reduction results from adding the first latent variable. On
average, DAM matches — and even outperforms in the low-dimensional regime — the
accuracy of countour-based PCA models (Budiarto et al., 2011). The larger spread in
error values is likely caused by the fact that, unlike for the values reported in the PCA
study, all surface points are not equidistant but randomly sampled over the surface,
increasing the distance between correspondent points in under-sampled areas.

4.3.2. Generative performance
Besides generating realistic CT scans, DAM should produce patient-specific movements
whose distribution approximately matches those observed in the clinics, as reported in
previous work (Antolak et al., 1998). For the 2 test patients, Figure 4.4 displays the dis-
tribution of the anatomical variations seen in the 11 recorded repeat CTs (blue), com-
pared to the deformations seen in 100 randomly sampled CTs (orange). Except for the
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Figure 4.3: Reconstruction accuracy metrics. All figures show the mean (solid line) and standard deviation
across all test planning-repeat pairs of the different metrics for a different number of latent variables, where
0 latent variables refers to using no model (always using the planning CT as a prediction). The left plot shows
the cross-correlation between the real and reconstructed repeat CTs. In the middle plot, the DICE score is
shown, measuring overlap between the warped planning structures and the organs delineated in the repeat
CTs. Finally, the right figure shows the error between surface points in the prostate, compared to reference
PCA values directly taken from (Budiarto et al., 2011).

(a) Volume changes. (b) Center of mass shifts.

Figure 4.4: Test set histograms of anatomical variations. For the two independent test patients, histograms
of prostate (a) volume changes and (b) center of mass shifts are plotted. Blue histograms correspond to
changes between the planning CT and the 11 available repeat CTs, additionally showing their corresponding
fitted normal and log-normal distributions in the same colors. Orange histograms are calculated using 100
randomly sampled CTs, obtained from 100 different latent variable combinations.

large center of mass movements seen for the second patient Figure 4.4b, the ranges of
values for both volume changes in Figure 4.4a, and center of mass shifts in Figure 4.4b
are approximately equal. Similarly, Figure 4.5 shows the center of mass shift and vol-
ume changes distributions for all training patients with more than 5 repeat CTs. To
compress all the information into one plot, the mean and standard deviation are plot-
ted instead of the full histogram. The good overlap between distributions demonstrates
that DAM captures the correct frequency and range of movements. As for the test pa-
tients, the biggest differences between both distributions occur for the last patient in
Figure 4.5b with large center of mass shifts, which is aggravated by the fact that this
patient has three big outliers of >7 mm shift. Finally, Figure 4.6 displays generated and
real anatomies for one of the patients, showing high quality images and contours with
similar features and shapes.
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(a) Volume changes. (b) Center of mass shifts.

Figure 4.5: Training set distribution of anatomical variations. For all the patients in the training set with
5 or more repeat CTs, the mean (solid line) and standard deviation of prostate (a) volume changes and (b)
center of mass shifts are plotted. Black lines are computed using the available planning-repeat pairs of CT.
The red curves are calculated using 100 randomly sampled CTs, obtained from 100 different latent variable
combinations.

Figure 4.6: Real vs. sampled anatomies. Three recorded repeat CTs (top row), and three anatomies gen-
erated by the model (bottom row) are shown for one of the planning CTs, including prostate (red), seminal
vesicles (green), bladder (blue) and rectum (pink) contours. The images correspond to a perpendicular slice
in the cranial-caudal axis, showing the top of the prostate.
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4.3.3. Latent space analysis
To investigate the deformations captured by the latent variables, we can compute the
center of mass shifts and volume changes triggered by each variable independently,
while keeping the rest fixed. Figure 4.7 displays such changes for 4 randomly picked
variables from the model with 8 latent variables, whose value was modified between
-1.5 and 1.5 times the standard deviation of the prior distribution. The results show
magnitudes and correlations between changes as can be expected: smaller prostate
volume changes, and large bladder and rectum variations shifting the center of mass
of the prostate and seminal vesicles. To further demonstrate DAM’s learned correlated
groups of movements, Figure 4.8 shows a grid of structures corresponding to simulta-
neously varying two latent variables. Individual changes in the horizontal and vertical
axis mainly control the bladder and rectum volumes, respectively. Correlated defor-
mations arise: the increase of bladder volume above the seminal vesicles, together with
the decrease of rectum filling below the prostate, cause a prostate and vesicles shift and
rotation.

The structure of the latent space can be analyzed by determining if similar defor-
mations (shifts and volume changes) or anatomical features (organ volume) result in
similar latent variables. Figure 4.10 shows a two-dimensional t-SNE representation of
the latent variables, where only samples with the smallest and largest movements or
volumes are included, i.e., samples whose with center of mass shifts or volumes that fall
above the 90% percentile or below the 10% percentile. Most of the latent space infor-
mation seems to concern center of mass shifts and bladder/rectum volume changes,
since their 2D representations can be clearly separated. Ideally, similar latent variables
that are clustered together will correspond to different anatomical deformations, and
will not carry information about anatomical features of the patient such as absolute or-
gan volume. Instead, the Encoder is in charge to mapping deformations to anatomical
traits observed in the planning CT or structures. Prostate and bladder volume seem to
have no effect in how the latent space is organized, since similar latent variables corre-
spond to very different sizes. To some extent, the effect of rectum size is also limited,
resulting from the possible correlation between rectum fillings and volume changes.

4.4. Discussion
This chapter presents a probabilistic framework to model patient-specific inter-fraction
movements based on population data. The presented DAM captures deformation pat-
terns, generating DVFs only based on the planning CT scan and delineations. Based
on the metrics obtained in Figure 4.3 for the 22 scans from two independent test pa-
tients, DAM can generate realistic CTs with anatomical variations that resemble those
recorded in the clinics using a small number of latent variables. The structure overlap
of a model with a single variable, measured as a DICE score of 0.856±0.058, agrees with
that of previous state-of-the-art pure segmentation/registration (non-generative) deep
learning studies (Elmahdy et al., 2019, 2021; Liang et al., 2021; Yuan et al., 2019). Com-
pared to linear PCA models where each eigenvector captures an independent mode
of motion, the non-linearities in DAM allow representing different groups of corre-
lated movements using different values of only one latent variable. Given that a single
latent variable practically suffices to capture prostate movements, and that both the



4

56 4. Modeling inter-fraction daily anatomical variations

(a) Volume changes.

(b) Center of mass shifts.

Figure 4.7: Effect of individual latent variables on deformations. (a) Volume changes and (b) center of
mass shifts triggered by independently varying latent variables. For a model with N = 8 latent variables, four
randomly selected variables are varied between values within -1.5 and 1.5 of their standard deviation, while
keeping the remaining seven variables fixed and equal to their mean.

CC and rectum DICE score keep increasing with larger latent spaces, we can conclude
that most of the computational effort is dedicated to modeling rectum deformations.
Prostate IMPT treatments typically solely involve lateral beams, for which the impact
of error due to rectum movement is small. In some cases, models with as little as 4-8
variables may be accurate enough, while 8-16 variables additionally ensure accurate
rectum deformations for plans requiring more precision.

For clinical application, it is critical that the model generates realistic shifts and
deformations of the volume to be irradiated/treated (in this case, the prostate). Overall,
based on the results in Figure 4.4 and Figure 4.5, the center of mass shifts and volume
changes produced by DAM show good overlap to the deformations and shifts recorded
in the clinic, matching previously reported values (Antolak et al., 1998). One reason
why DAM struggles in simulating the most extreme shifts or slides is the regularization
term of the loss, which limits large deformations. Despite this limitation, such large
anatomical variations are typically taken care of by adapting the treatment plan to the
new anatomy, whereas robust treatment planning and evaluation — the main potential
applications of DAM — are in principle oriented to incorporating average, frequent
deformations into treatment design and evaluation, and DAM is expected to be useful
for such purposes.

Comparison to other methods All the previously published approaches are either
patient-specific or population models based on PCA. Patient-specific methods (Nie
et al., 2012; Söhn et al., 2005; Thörnqvist, Hysing, Zolnay, Söhn, Hoogeman, Muren,
Bentzen, and Heijmen, 2013; Thörnqvist, Hysing, Zolnay, Söhn, Hoogeman, Muren,
and Heijmen, 2013; Q. Zhang et al., 2007) require at least a few CTs recorded during a
patient’s treatment, and therefore they are unfeasible for pre-delivery robust treatment
planning and evaluation, being restricted to post-treatment analysis. Conversely, pop-
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Figure 4.8: Latent space visualization. Grid plot of the prostate (blue), seminal vesicles (green), bladder (yel-
low) and rectum (orange) volumes. Each box corresponds to a different combination of latent variables in a
2D plane of the latent space, where the values for each variable are shown on the axes, withσ being the stan-
dard deviation and µ the mean. Changes in the horizontal axis translate into bladder enlargements, while
the vertical axis controls rectum volume. Correlated groups of movements are observed, e.g., as prostate
rotations triggered by an enlarged bladder and smaller rectum.
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(a) Training set patient.

(b) Test set patient.

Figure 4.9: Prior - posterior distribution overlap. For (a) a training patient, and (b) a test patient, the prior
Gaussian probability density function P (z |x , sx ) is compared to a normalized histogram of samples from the
posterior distribution Q(z |x , y , sx , sy ). The parameters of the prior distribution are obtained from the En-
coder, given a planning CT and structure volume. Histograms are obtained by sampling once each posterior
distribution corresponding to each of the planning-repeat pairs available for both patients.

Figure 4.10: Latent space structure. Each latent variable is reduced to 2D space t-SNE representation and
classified, from left to right, according to whether they correspond to small (blue) or large (orange): prostate
center of mass shifts, prostate, bladder and rectum volume changes, or prostate, bladder and rectum sizes.
’Small’ samples fall below the 10% percentile of all values, while ’large’ samples include all values above the
90% percentile.
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ulation models (Budiarto et al., 2011; Magallon-Baro et al., 2019; Rios et al., 2017; Szeto
et al., 2017; Tilly et al., 2017) use a set of planning-repeat CT/contour pairs from previ-
ous patients, but simulate the same type of deformations for all patients regardless of
their anatomy. In contrast, as seen in Figure 4.4 and Figure 4.5, DAM is able to retrieve
patient-specific magnitude and frequency of movements from the entire population
based on the planning CT anatomy, making the model suitable for a wider range of
applications.

Most previous studies (Budiarto et al., 2011; Magallon-Baro et al., 2019; Söhn et al.,
2005; Thörnqvist, Hysing, Zolnay, Söhn, Hoogeman, Muren, Bentzen, and Heijmen,
2013) model only the surface of the organs and not the intensities values in the CT.
Without CT values the dose distributions are always calculated on the same planning
CT with varying contours, which limits its applicability, especially in IMPT given the
protons’ finite range and tissue sensitivity. Conversely, PCA-based models modeling
full DVFs require 7 (Tilly et al., 2017) or up to 100 principal components (Szeto et al.,
2017) to capture 90% of the variance in the training data. A large number of compo-
nents (equivalent to DAM’s latent variables) adds more variation, increases the chance
of sampling unrealistic deformations and limits their applicability as reduced order
models. Most importantly, all previous population-based methods require a time-
consuming pre-processing step involving multiple deformable image registration steps
between scans and patients to an organ or CT template. The accuracy of such registra-
tion calculation degrades the final accuracy and generative performance of the model,
with previous studies (Szeto et al., 2017; Tilly et al., 2017) showing surface errors of
around 1.5±1.0 mm introduced in their pre-processing step alone that are comparable
the DAM’s total errors reported in the right plot of Figure 4.3. Given the lack of unifor-
mity in treatment site and evaluation metrics in previous studies – where most focus on
evaluating the variance captured by the PCA model components and the errors on the
DVFs caused by truncating the number of eigenmodes — DAM is compared to a PCA
model of the prostate (Budiarto et al., 2011) in the right plot of Figure 4.3. Even with-
out adding any pre-processing errors, DAM matches the overall performance and is to
capture prostate motion with a lower number of modeling parameters. Being trained
directly on CT images in an unsupervised manner, DAM bypasses any performance or
time losses from any pre-processing step, and can be easily applied to generate new
anatomies in few milliseconds, compared to the tens of minutes or hours needed to
obtain accurate enough registrations using conventional clinical software.

Like PCA-based models, DAM assigns realistic correlated deformations to differ-
ent values of the latent variables. Figure 4.7 and Figure 4.8 show that variables con-
trol shifts, volume changes and rotations similar to those reported in previous stud-
ies (Budiarto et al., 2011; Magallon-Baro et al., 2019). Figure 4.10 demonstrates that
the latent variables almost exclusively carry information about deformations, and not
about anatomical traits from the patients. Instead, the Encoder is in charge of inde-
pendently mapping planning anatomies to a subset of latent variables. Furthermore,
unlike all previous approaches not evaluating the generative performance of their pro-
posed models, this chapter demonstrates the DAM also generates the adequate range
and frequency of deformations for each patient.
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Limitations Like PCA-based models, DAM will struggle to generate deformations
that are not represented in the training data, for which continuously updating the
model (e.g, using cone beam CTs) can be a solution. Likewise, low resolution images
with poor contrast can also affect performance by masking small movements of struc-
tures, especially in areas with similar organ tissue densities. DAM’s implementation
in the clinic thus requires a quality assurance protocol that evaluates robustness in
predictions e.g., by training several models using different data, and evaluating result
similarity on a same test dataset.

As for many other deep learning algorithms, DAM’s generalization capabilities de-
pend on the size and variability of the data in the dataset, as well as on the quality and
resolution of the CT images. Due to the rather small size of the dataset in this prelimi-
nary study — caused by the scarcity of recorded sets of planning and repeat CTs — and
based on the initial positive results, further testing appears warranted.

DAM’s accuracy in generating reasonable patient-specific movements depends on
the extent to which movements can be predicted only from the planning CT and struc-
tures. As with other classical and deep learning registration algorithms, DAM would
struggle to register rectum structures due to the randomness in their intensity values.
Following clinical practice, the rectum voxels are masked with air. As a result, all de-
formed CTs have air-filled rectum structures, which can affect the accuracy in the dose
calculation, especially for beams delivered in the anterior-posterior direction. Possible
solutions include adding an additional generative model that generates rectum voxel
intensities based on the organ mask shape.

4.5. Summary
This chapter presents DAM, a deep learning-based daily anatomy model to simulate
patient-specific deformations that may be observed during the course of a prostate
cancer radiotherapy treatment. DAM captures groups of correlated movements via few
auxiliary latent variables, where few variables are able to model prostate deformations
and shifts with similar accuracy as state-of-the-art models based on principal compo-
nent analysis. Compared to previous population models, DAM can generate realistic
CT images and contours in less than a second without any pre-processing, with volume
changes and center of mass shifts that match in frequency and range those reported in
the clinics and in previous studies. Given its simplicity and speed to generate CTs based
on a single planning scan and delineations, DAM can be tested in treatment planning
and evaluation to design treatment plans that are robust against inter-fraction varia-
tions.
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5.1. Introduction
Biomedical data is the driving force behind most modern advances in medicine. The
use of biomedical records is associated however with a series of problems such as the
lack of reliable models capable of simulating data with clinical precision, the absence
of personalized models for diagnosis, or the lack of labeled samples since the labels
containing personal features that compromise privacy or simply are not recorded (Neal
and Kerckhoffs, 2010). Some of the initial efforts to model biomedical data include
analytical approaches: e.g., an electrocardiogram (ECG) model based on three coupled
ordinary differential equations (McSharry et al., 2003), or sinusoidal model to represent
breathing (George et al., 2005).

Recent advances in deep learning and the introduction of algorithms such as the
variational autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) and
generative adversarial networks (GANs) (Goodfellow et al., 2014) have resulted in a
wide variety of methods capable of generating and classifying biomedical signals, most
of them having been applied to ECG data. Most published works focus on classification
algorithms, using convolutional neural networks (CNN) for computer aided diagnosis
based on biomedical signals (Acharya, Fujita, Lih, et al., 2017; Acharya, Fujita, Oh, et al.,
2017; Cimr et al., 2020; Fujita and Cimr, 2019; Ö. Yildirim et al., 2018), while some works
propose autoencoder compression models using artificial neural networks (ANNs) (O.
Yildirim et al., 2018). Recent CNN (Chen et al., 2021) and long short-term memory
(LSTM) implementations O. Yildirim et al., 2019 have resulted in minimal classifica-

The contents of this chapter have been published as a journal paper in Computer Methods and Programs in
Biomedicine 209, 106312 (2021), (Pastor-Serrano, Lathouwers, and Perkó, 2021).
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tion error of arrhythmia in ECG signals. With respect to generation, most works pro-
pose generative models of realistic ECG signals combining recurrent and convolutional
architectures under an adversarial training objective (Delaney et al., 2019; Golany and
Radinsky, 2019; F. Zhu et al., 2019), with the exception of an auto-regressive model able
that produce longer signals with high variability (Wulan et al., 2020). Practically all
previously proposed methods focus either on generation or classification and result
in models that depend on large labeled datasets and supervised training; are resource
intensive and require significant amounts of computing power; are inaccurate when
the dataset is imbalanced (i.e., there are very few labels for some classes of interest),
or generate data that lacks variability and has a limited temporal dependence (S. Hong
et al., 2020; C. Xiao et al., 2018). Furthermore, most of the approaches are not capable
of compressing the data into a low-dimensional compact manifold in which specific
regions correspond to similar samples.

In this chapter, we turn our attention to mechanical breathing signals representing
the movement of chest markers during respiration. Among their many applications,
these type of biomedical signals are of great importance in radiotherapy cancer treat-
ments, where they are used to quantify the impact of respiration and to design robust
lung cancer radiotherapy treatments that withstand the detrimental effect of breathing
motion during treatment delivery. Among the most important breathing irregulari-
ties are baseline shifts, which are gradual or sudden changes in the exhale position and
trend of respiration. Baseline shifts negatively affect the outcome of radiotherapy treat-
ments (Takao et al., 2016). To date, there are no previous studies that develop breathing
generative models resulting in realistic respiratory traces. Likewise, only one classifica-
tion autoencoder framework that discriminates between apnea and regular breathing,
has been proposed for radiotherapy treatments (Abreu et al., 2020).

This chapter introduces a semi-supervised framework that simultaneously classi-
fies and generates breathing motion with high accuracy using a small subset of labeled
data, outperforming purely discriminative models. The main contributions of this re-
search are threefold. First, the suitability of probabilistic generative models for the task
of modeling breathing signals is investigated. Second, building upon these breathing
models, a modified semi-supervised algorithm is proposed to train a joint generative-
discriminative model with a partially-labeled dataset. The proposed model can be
used, e.g, to simultaneously generate and classify samples of irregular breathing such
as baseline shifts. Third, a method to pre-process and post-process breathing signals
is presented, transforming back and forth the breathing signals from their original 3D
time series form into a simplified vector form containing pairs of position-time values.
This transformation significantly reduces the dimensionality of the inputs and speeds
up training.

5.2. Semi-supervised probabilistic models
Consider x ∈RM to be a random vector over a vector space X , with unknown underly-
ing probability distribution P∗(x). Given a dataset {x (i )}ND

i=1 with ND independent and
identically distributed (i.i.d) data points, the goal is to model a probability distribu-
tion Pθ(x) that approximates the unknown true probability distribution generating the
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data using a probabilistic graphical model with parameters θ. Let this probabilistic
model be a latent variable model, which conditions the observed variable x on the un-
observed random variable z ∈RN over the latent space Z containing N latent variables
that are assumed to capture the principal factors of variation in the data. The latent
variable model represents the joint distribution of observed and unobserved variables
and factorizes as Pθ(x , z) = Pθ(x |z)P (z). The (target) marginal distribution of the ob-
served variables can be recovered as

Pθ(x) =
∫

Pθ(x , z)d z =
∫

Pθ(x |z)P (z)d z , (5.1)

where P (z) is the prior probability distribution over Z and Pθ(x |z) is a conditional
distribution that can be parametrized using neural networks. In principle, the prior
could be any function not conditioned on the observations. Point-estimates of the
parameters θ of the latent variable model can be obtained via maximum likelihood
estimation, i.e., by maximizing the (log-) marginal distribution of the observed data

θ∗ = argmax
θ

∑
x∈D

log (Pθ(x)) ≃ argmax
θ

Ex∼PD (x) log(Pθ(x)), (5.2)

where the expected value is computed over the empirical data distribution PD (x). The
empirical data distribution is different from the true underlying data generating distri-
bution P∗(x) to be approximated that cannot be accessed. PD (x) is defined as a mix-
ture of Dirac delta distributions δ(x) that assigns probability mass 1/ND to each data
point in the dataset as

PD (x) = 1

ND

ND∑
i=1

δ(x −x (i )). (5.3)

In practice, computing the integral over the space Z in Equation 5.1 is intractable.
Thus, the optimization in Equation 5.2 is simplified by maximizing a lower bound on
the marginal distribution.

5.2.1. Variational autoencoder
Using variational inference (Kingma and Welling, 2014; Rezende et al., 2014), the latent
variable model parameters can be estimated by maximizing a lower bound on Equa-
tion 5.2. The VAE algorithm requires an inference model that approximates the (also)
intractable true posterior distribution Pθ(z |x) using a family of probability distribu-
tions of the latent variables Qφ(z |x) conditioned on observed data points, parametrized
by an ANN with parameters φ shared across data points x . By including the inference
model, the lower bound optimization objective is formulated as

log (Pθ(x)) ≥ Ez∼Qφ(z |x)[log(Pθ(x |z))]−DK L(Qφ(z |x)||P (z)), (5.4)

where the second term is the Kullback - Leibler (KL) divergence, denoted DK L(·||·). Es-
sentially, the KL divergence quantifies "the difference" between distributions. Further
details about the lower bound and how to compute the KL-divergence are included in
Appendix A.
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In the VAE framework, the prior is the multivariate Gaussian P (z) =N (z ;0, I ), where
I is the identity matrix. The likelihood conditional distribution Pθ(x |z) is represented
as a multivariate Gaussian probability distribution with identity covariance Pθ(x |z) =
N (x ; fθ(z), I ), where the function fθ(z) : Z → RM is parameterized with an ANN re-
ferred to as the probabilistic decoder. With this formulation, Pθ(x) is an infinite mix-
ture of Gaussian distributions. In the same way as with the probabilistic decoder, we
can parameterize the inference model conditional distribution using a neural network
that performs a mapping gφ(x) : x ∈X → (µ(x),σ(x)) ∈R2N and outputs the meanµ(x)
and standard deviationσ(x) of the normal distribution Qφ(z |x) =N (z ;µ(x),diag σ2(x)).

The lower bound balances two terms: the first term encourages the probabilistic
decoder to produce samples that resemble the observed data, while the second term
forces the approximated posterior distribution obtained from the inference model to
be close to the prior distribution. Using the negative lower bound as optimization ob-
jective, the minimization problem becomes

θ∗,φ∗ = argmin
θ,φ

Ex∼PD (x)
[−Ez∼Qφ(z |x)[log(Pθ(x |z))]+λK LDK L(Qφ(z |x)||P (z))

]
, (5.5)

where λK L is a hyperparameter that can be used to weigh the reconstruction and reg-
ularization terms (Higgins et al., 2022). The minimization in Equation 5.5 can be per-
formed using first order stochastic methods such as stochastic gradient descent (SGD).
The reparametrization trick is usually employed to propagate the weights’ gradients
through the encoder (Kingma and Welling, 2014, 2019).

5.2.2. Adversarial autoencoder
In an alternative formulation to the lower bound, adversarial autoencoders (Makhzani
et al., 2016) approximate the KL divergence with the optimal value of an adversarial loss
forcing the aggregated posterior distribution Qφ(z) to be close to the prior distribution:

Qφ(z) =
∫

Qφ(z |x)PD (x)d x ≃ P (z). (5.6)

In the original paper, the authors explore the use of both probabilistic encoders and
deterministic encoders with gφ(x) as a deterministic mapping. The used probabilistic
encoder can in principle learn any arbitrary posterior distribution by employing ran-
dom noise η ∈H ∈Rwith distribution P (η) =N (η;0,1). Such encoders take additional
random noise values to produce samples z = gφ(x ,η), and can use different noise val-
ues η to map the same input x to a sub-domain of Z . The aggregated posterior can be
computed as

Qφ(z) =
∫ ∫

δ(z − gφ(x ,η))P (η)PD (x)dηd x , (5.7)

The adversarial loss is based on GANs. Let the encoder network perform a mapping
gφ(x ,η) : X ×H →Z , via an ANN with parameters φ. A discriminator model is intro-
duced, modeled also with an ANN with mapping function dξ(z) : Z → R that outputs
a single scalar. The value S(dξ(z)) ∈ [0,1] represents the probability that z is a sample
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from the prior distribution P (z) (true samples) rather than being a latent space map-
ping from the encoder (fake samples), where S(z) := (1+ e−z )−1 is the logistic sigmoid
function. This translates into a min-max optimization problem

min
φ

max
ξ

Ez∼P (z)[log(S(dξ(z)))]+Ex∼PD (x)Eη∼P(η) [log(1−S(dξ(gφ(x ,η))))], (5.8)

where first the discriminator is trained to correctly distinguish between real and en-
coder samples by maximizing the probability of classifying real samples from the prior
zr as real (S(dξ(zr ) = 1)) and fake samples from the encoder z f as false (S(dξ(z f ) = 0)).
Second, the encoder is trained to minimize the probability 1−S(dξ(z f )) that the dis-
criminator identifies its samples z f as fake, where dξ(z f ) = 1 means that the discrim-
inator classifies a fake sample as a true sample. Training the probabilistic decoder
Pθ(x |z), the inference model Qφ(z |x) and the discriminator dξ(z f ) can be done with
SGD in two alternating steps: a reconstruction phase forces the decoder to produce
realistic samples by using the z f variables produced by the inference model, and the
regularization phase updating the parameters of the encoder and discriminator. As
shown in Appendix B, optimizing the adversarial objective results in an approxima-
tion to the lower bound, where the regularization term Ex∼PD (x)[DK L(Qφ(z |x)||P (z))]
in Equation 5.4 is replaced by DK L(Qφ(z)||P (z)).

5.2.3. Joint generative-discriminative models
One of the advantages of the AAE algorithm is that the standard architecture can be
slightly modified in order to additionally perform semi-supervised classification based
on few labeled data points. The most notable difference with respect to the standard
AAE architecture is the introduction of an extra discrete latent variable c ∈ {0,1}C , which
represents the class to which the input belongs over C classes. The class c is practically
implemented as a sparse one-hot vector with a 1 entry at the position corresponding
to the class. In the case of breathing, the c variable could indicate the presence of
irregularities or the patient to which breathing pertains. The encoder now outputs the
joint distribution Qφ(c , z |x) that factorizes as

Qφ(c , z |x) =Qc
φ(c |x)Q s

φ(z |x), (5.9)

where Qc
φ(c |x) is a categorical distribution that performs the mapping Smx (g c

φ(x ,η)) :

X → [0,1]C based on the input x , with g c
φ(x ,η) being a deterministic function. The

use of the Smx softmax non-linearity and one-hot vectors as a target forces sparsity in
Qc
φ(c |x). The Gumbel-softmax reparametrization trick (Jang et al., 2017; Maddison et

al., 2017) is used to back-propagate the gradients through the categorical distribution.
As in the standard AAE, the approximate posterior Q s

φ(z |x ,η) is a probabilistic mapping
based on noise η. In order to simultaneously classify and generate new samples given
a specific input, the proposed modified AAE architecture uses a single discriminator
for both the classification and style heads. In this way, the aggregated approximated
posterior is forced to match the mixture prior distribution

Qφ(z ,c) =
∫

Q s
φ(z |x)Qc

φ(c |x)PD (x)d x ≃ P (z ,c). (5.10)



5

66 5. Modeling and classifying intra-fraction breathing variations

where the prior distribution factorizes as the mixture

P (z ,c) = P (z)P (c) =N (z ;0, I )Cat(c ; [1/C ]C ),

With this setup, each label c is associated with an independent low-dimensional
space where z is distributed according to P (z). Sampling from each cluster is easy, as
opposed to the models presented in (Makhzani et al., 2016) that are specifically trained
either for clustering or conditional generation of samples, and where z is jointly dis-
tributed according to P (z) over all c classes.

Proposed semi-supervised model Let PD (xl ,cl ) be the joint empirical distribution of
labeled data xl with labels cl . The proposed semi-supervised AAE (SAAE) is trained in
3 stages: a reconstruction and regularization phase that are identical to the ones in the
standard AAE, and a supervised classification phase minimizing the cross-entropy λc ·
Exl ,cl∼PD (xl ,cl )[− logQc

φ(yl |xl )] using the available labels, where λc controls the weight
of the classification loss. The optimization problem is defined as

Regularization: max
ξ
Ez ,c∼P (z ,c)[log(S(dξ(z ,c)))]+Ex∼PD (x)Eη∼P(η) [log(1−S(dξ(gφ(x ,η))))].

(5.11)

Classification: min
φ

λc ·Exl ,cl∼PD (xl ,cl )[− logQc
φ(cl |xl )]. (5.12)

Reconstruction: max
θ,φ

Ex∼PD (x)Ez ,c∼Qφ(z ,c |x)[log(Pθ(x |z ,c))+Ex∼PD (x)Eη∼P(η) [dξ(gφ(x ,η))].

(5.13)

5.3. Model architecture and training
This chapter describes the patient data used to train the VAE and the AAE models of
patient-specific respiratory motion, as well as the pre-processing and post-processing
steps. The architecture of the proposed SAAE — a population breathing model capa-
ble of simultaneously classifying and generating specific types of breathing — is pre-
sented, together with the experiments used to evaluate its performance. The breath-
ing signals used for model training and evaluation are time series representing the po-
sition of chest markers in lung cancer patients. Figure 5.1 shows an overview of the
workflow, including the models’ architecture and the final post-processing time series
reconstruction step.

5.3.1. Patient and population data
Different breathing signals were obtained with the radiosurgery system Cyberknife®

(Accuray Inc., Sunnyvale CA, US), which tracks breathing movement using correspon-
dence of markers positioned on the patient’s chest (Coste-Manière et al., 2005). The
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Figure 5.1: Semi-supervised breathing model architecture. First, the original time series is pre-processed
via principal component analysis (PCA), to obtain the input vectors x . Population models are then obtained
using a SAAE with one-dimensional convolutional layers. The inference model generates a class label latent
variable c in addition to the continuous low-dimensional vector z . Labeled data can be leveraged during
training in order to learn the classification task in a semi-supervised manner. During generation (red dashed
square), the sampled latent variables are transformed into the input vector form. These new vectors x̂ are
then transformed into a time series with the help of an auxiliary reconstruction neural network.

data used in this work consists of long respiratory traces for 21 different patients. The
optical device tracks data with a 26 Hz frequency, for a total duration between ten and
thirty minutes. The breathing signals for 15 out of the 21 patients were obtained from
the open-access database recorded at Georgetown University Hospital (Washington
DC, United States) (Ernst, 2011), with breathing amplitudes between 0.5 and 10 mm.
The 6 remaining respiratory traces were recorded during treatments at Erasmus MC
(Rotterdam, Netherlands) and correspond to 6 patients with smaller amplitudes be-
tween 0.5 and 2 mm. The 2 datasets are referred to as the GUH and EMC datasets in
the remainder of the chapter.

Input data & pre-processing The first step consists of removing errors related to ma-
chine recalibration during signal acquisition. This results in a 3D time series, where
each dimension correspond to a physical dimension in the Cartesian coordinate sys-
tem. The 3D signals are further compressed into a 1D signal projecting them onto the
main axis of movement via principal component analysis (PCA) (using the eigenvector
with highest eigenvalue). Given the correlation between the three physical dimensions,
such projection onto the principal axis retains around 95% of the original variance. The
resulting trace is divided into different periods τ j , each of them corresponding to the
time between start of different inhales. Each period j is discretized into 4 points with
As, j denoting position and a ∆s, j representing the difference in time between consec-
utive points. Thus, a period is parametrized by the vector

τ j = (AEE, j ,∆EE, j , AMI, j , AEI, j ,∆EI, j , AME, j ), (5.14)
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(a) Times series discretization. (b) Time series reconstruction.

Figure 5.2: Input pre-processing and output reconstruction. (a) Discretization of a breathing signal into
periods and time-position points. In practice, the time series is discretized into a pair of time-position co-
ordinates that are concatenated for a number of periods covering a certain desired time. (b) Transformation
of the vector x into a time series. An additional ANN is trained to generate realistic breathing signals from
linearly interpolated time series.

where s denotes the stage within each breathing period: EE for the end of exhale (or be-
ginning of inhale), EI for the end of inhale (or beginning of exhale), and ME, MI for the 2
intermediate points between EE and EI. For simplicity, the redundant ∆ME, j and ∆MI, j

time coordinates is omitted, since they are equal to ∆EI, j /2 and ∆EE, j /2, respectively.
Figure 5.2a displays a fragment of the time series and its discretization into time-

position points. A breathing sample is obtained by concatenating consecutive periods
for the desired length of the signal. Each sample is assumed to be i.i.d. and is character-
ized by a vector x = (τ1,τ2, ...,τNT ) ∈ RNT ×6 formed by NT discretized periods. Vectors
of length NT = 25 are used to model shorter signals of 1 to 2 minutes, and NT = 100 for
longer signals of several minutes corresponding to the typical duration of radiotherapy
treatments. This compression step allows reducing the dimensionality of the breathing
time series two orders of magnitude.

The pre-processing step results in 36,430 and 4,468 breathing fragments for the
GUH and EMC datasets, respectively. Each data sample is assigned a baseline shift
label according to the slope of the signal: if the slope of a sample is above a certain
threshold value, the breathing sample is labeled as upwards baseline shift. Likewise,
if the (negative) slope is below the threshold, the data point is labeled as downwards
baseline shift. The threshold values correspond to the 7.5 upper and lower percentile
of the distributions of slopes in the GUH dataset.

Time series reconstruction The output vectors x̂ from the models have the same
structure as the discretized input vector. Therefore, they must be transformed back
into a time series by reconstructing the position values between two consecutive points
in x̂ . A first order approximation is a simple linear interpolation between the four po-
sition points in each cycle, which requires little time but lacks accuracy.

Alternatively, a realistic breathing time series can be reconstructed using an ad-
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ditional feed-forward neural network, denoted as reconstruction ANN in the remain-
der of the chapter. The input is the linearly interpolated series, and the ANN learns
a general mapping from the linear time series into realistic shapes. The input for the
reconstruction ANN is no longer a vector of dimension M = 6× NT , but a fragment
of 120 position values (see Figure 5.2b). The number 120 is a hyperparameter that is
selected from a set of different candidate lengths. The output of the ANN is the first
100 transformed values of the input series. By adding 20 extra positions, the network
achieves higher accuracy without discontinuities during concatenation of consecutive
fragments. The ANN is composed of 4 feed-forward layers and is trained with a learn-
ing rate of 10−4, decay rate of 10−6 per epoch, and batches of 256 samples.

The training data for the reconstruction ANN consists of slices with 120 elements
of position values from the recorded breathing signals, and the corresponding linear
interpolations. During training, the input and output slices are normalized to the in-
terval [0,1]. Ideally, a single general ANN would reconstruct the time series from any
patient in the population and make the process highly scalable. Such reconstruction
ANN would be trained using only a subset of the data (either data from a single pa-
tient or a subset of data from all the patients). To test this, two reconstruction ANNs
are trained using (i) data from one patient (referred to as PatBR model from on) and
(ii) a subset of data from the GUH data (referred to as PopBR model), while both mod-
els are tested using the EMC dataset. The PatBR is trained using a single patient from
the GUH dataset, while the PopBR is trained on 10% of the GUH dataset, instead of on
all available samples. This is due to the fact that, unlike with the AAE, VAE and SAAE
vector inputs, the training dataset for the reconstruction task consists of few million
fragments of the breathing time series (vectors with 120 position values) obtained from
linear interpolation of the generated vectors.

5.3.2. Patient-specific models
First, to investigate the potential and limitations of signal modeling with probabilistic
autoencoders, the standard VAE and AAE algorithms are applied for modeling breath-
ing signals from individual patients in the dataset separately. Both the AAE and VAE
frameworks use an isotropic Gaussian prior distribution P (z) =N (z ;0, I ), with an en-
coder and a decoder of 4 convolutional layers and an MLP block with 2 fully-connected
layers. Batch normalization (Ioffe and Szegedy, 2015) and dropout between layers are
empirically found to improves convergence, resulting in better generalization.

For the VAE, the value of the parameter λK L in Equation 5.5 is determined us-
ing the input dimension M and latent dimension N (which vary per model) as λK L =
0.02(N /M). The fixed value of 0.02 is empirically found to yield an optimum balance
between a Gaussian latent space that is closer to the prior and good reconstruction
performance.

Of all patient data available, 20% of the patient data is equally split into a validation
and a test set, while the remaining 80% is used during training, with a batch size of 256
samples and the Adam optimizer (Kingma and Ba, 2017) with learning rate 10−4. After
training the models, the input vector x can be reconstructed by sampling the inference
model Qφ(z |x) to obtain z , and then sampling the decoder. Artificial breathing signals
can be obtained by decoding random samples from the prior P (z).
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5.3.3. Population models of breathing irregularities
The proposed semi-supervised SAAE framework is applied to model and classify base-
line shift breathing irregularities, which are gradual downward or upward shifts of the
exhale position. As a first step, two simple experiments using simplified sinusoidal
breathing signals investigate whether it is possible to obtain good models that classify
and generate signals with upward or downward shift, or no shift at all (regular signals).
In the first experiment (S1), only the slope of the signals is varied; while the second ex-
periment (S2) includes signals with randomly sampled slopes, periods and amplitudes.

In the third experiment, the SAAE model is trained using real breathing signals,
investigating the number of labeled samples needed to obtain accurate classification,
with the GUH dataset as the training set (with 10% as validation data) and testing on the
EMC dataset. The models are trained using a batch size of 256 samples with unequal
learning rates for the Adam optimizer: 10−4 in the reconstruction and supervised clas-
sification phase and 2 ·10−4 for the discriminator. α values of around 5-10 significantly
enhance classification when the number of labels is limited, while higher values do not
improve and even hinder performance.

5.4. Model evaluation
Evaluating patient-specific models A good model can reconstruct unseen signals
and generates artificial signals that distribute according to the training data. Several
tests asses the generative performance of the patient-specific model:

• Analyzing reconstruction error. The generalization performance of the patient-
specific models is evaluated via the reconstruction error of signals from the test
set. Based on how varying the dimensionality of the latent space affects recon-
struction error of unseen test data (given a fixed decoder and encoder architec-
ture), the proposed experiments also aim at determining an optimal number of
latent variables. Additionally, the advantages of using convolutional layers are
verified by comparing models purely based on fully-connected layers to the pro-
posed one-dimensional convolutional models in terms of reconstruction perfor-
mance.

• Assessing the generative performance. To determine if the model captures the
data distribution, an external classifier is trained to distinguish between recon-
structed and artificial samples from the model. As in (Razavi et al., 2019), the
external classifier takes the reconstructed vectors as ground-truth input instead
of the original input vectors, since the compression through the latent space usu-
ally removes high-frequency noise in the original data that can be easily used by
the classifier to distinguish samples. The classifier performance is also evaluated
for different latent space sizes.

• Investigating the structure of the latent space. The presence of "empty" regions
in the latent space where no encodings z data are observed often results in low
quality and variability of training samples. Computing the distribution of the dis-
tance between neighboring z from the dataset can show the presence of empty
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regions in the latent space. Furthermore, a possible mismatch between the ag-
gregated posterior and prior distribution can be assessed by comparing the dis-
tribution of the L2 norm of the encodings of the training samples and the sam-
ples from the prior.

Evaluating breathing irregularity models The evaluation of the joint models is based
on the F1-score (van Rijsbergen, 1979). For a given class, the precision is the propor-
tion of correctly predicted samples over the total number of examples labeled as such
class, while the recall is the fraction of correctly predicted samples over the total num-
ber of true samples for the given class. For multi-label classification, the macro F1-
score (mF1) can be used, which is the average of F1-scores for the different classes.
The baseline shift breathing irregularity models are tested with regards to both their
classification and generative performance.

• Assessing classification performance. The discriminative performance (i.e., the
ability to label signals having upward, downward or no baseline shift) is evalu-
ated by comparing the classification accuracy of SAAE models to other neural
network models purely optimized for classification. Specifically, convolutional
neural network and fully-connected neural network discriminators are trained
using a labeled subset of the training data. This additional convolutional clas-
sifier is similar to the encoder and inspired by state-of-the-art one-dimensional
convolutional ECG models in (Acharya, Fujita, Lih, et al., 2017; Acharya, Fujita,
Oh, et al., 2017; Fujita and Cimr, 2019). The effect of the number of labeled exam-
ples used during the supervised phase of training on the classification accuracy
of the SAAE is evaluated by comparing its mF1-score to that of pure classifier
networks.

• Evaluating generative performance. Inspired by (Ravuri and Vinyals, 2019) and
(Razavi et al., 2019), Classification Accuracy Score (CAS) is used to evaluate the
model’s generative performance (i.e., whether the model generates realistic and
varied samples). The CAS is obtained by training a discriminative model on data
generated by the model, and evaluating the mF1-score on the real data test set.

• Analyzing the reconstruction error. Additionally, the reconstruction error on GUH
and EMC test data is reported for two SAAE models using 15 and 30 latent vari-
ables.

5.5. Results
5.5.1. Patient-specific models
The results of the evaluation of the AAE and VAE patient specific models in terms of
reconstruction and generative performance are shown in Figure 5.3 for 2 randomly
selected patients. The models for the first and second random patient were trained
using 1890 and 2653 samples, respectively. Figure 5.3a displays the reconstruction er-
ror on unseen test set data for different latent space dimensionalities, for both models
based on one-dimensional convolutional architectures and models purely based on
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Figure 5.3: Patient-specific model evaluation. (a) Reconstruction error on the test set for different latent
space dimensionalities N. (b) Performance of an additional classifier trained to distinguish samples from the
dataset from artificial samples from the model. Shaded regions represent the standard deviation around the
mean (solid). (c) Distribution of the distance between neighboring encodings, for the AAE (blue) and VAE
(red). The L1 norm distance is normalized by dividing by the latent space dimensionality. (d) Distribution
of the L2 norm of the real data encodings z (yellow) and sampled encodings from the prior distribution
(purple).

fully connected layers. The error values are re-scaled to the interval [0,1] to facilitate
comparison, where 1 corresponds to the maximum error achieved at weight initial-
ization. Although the error always decreases with increasing latent dimension N , the
convolutional architectures notably increase the accuracy in the reconstruction. For
qualitative evaluation, Figure 5.4 shows reconstructions of the original inputs using a
convolutional model with a 5-dimensional latent space (N = 5).

The generative performance is shown in Figure 5.3b, depicting the accuracy of a
CNN classifier trained to distinguish reconstructed data points from artificial samples
generated by models with varying latent dimensionality. The reported average, maxi-
mum and minimum values correspond to 3 different classifiers trained on distinct ar-
tificial data. The data is generated either by sampling the prior P (z), or by taking z
encodings in the vicinity of Qφ(z |x), where the latter cover a much smaller domain of
the latent space. The auxiliary classifier performs worse when distinguishing real and
AAE samples, hinting that these better capture the distribution of the data. Note that
the binary cross entropy loss values are almost always above 1 for the P (z) classifier,
which indicates the presence of uncertainty and significant miss classification errors.

To study the structure of the latent space Figure 5.3c shows the distribution of the
distance between neighboring encodings. Since the Ln-norm distance metric always
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Figure 5.4: Breathing signal input reconstruction.(Top row) Reconstruction of breathing signals from AAE
patient-specific models and (bottom row) VAE-based models for (left) a sample from the training set, (mid-
dle) the worst performing sample from the GUH test set, and (right) and a fragment of the worst recon-
structed GUH test sample, with the highest reconstruction error. The discretized reconstructed signals are
linearly interpolated and transformed back into a time series.

increases with the number of latent dimensions N , the reported L1 norm between
nearby z is devided by the latent space dimensionality. The plotted distributions in-
dicate that the AAE encodings are more evenly distributed. This, together with the fact
that the classifier in Figure 5.3b struggles to distinguish real signals from samples in
the vicinity of Qφ(z |x) hints that the latent space is more compact in the AAE-based
models. On top of that, the AAE algorithm seems to be a more effective latent space
regularizer, whose models have a latent space that closely resembles the prior distri-
bution. This is deduced from Figure 5.3d, where the distribution of the L2 norm of the
encodings is compared to the distribution of the L2 norm of samples from the prior.
The results suggest a possible relationship between more compact and similar to the
prior AAE latent space and the lower classifier performance for AAE samples in Fig-
ure 5.3b.

5.5.2. Baseline shift population models
First, the effect of slope, period and amplitude variations on the classification accuracy
is evaluated using an artificial dataset based on sinusoidal signals. The SAAE models
achieve a mF1-score of 100% in S1 by using as little as 300 labeled examples during the
supervised classification phase. Adding period and amplitude variability to the sinu-
soidal signals in S2 results in additional difficulty, and the models need 1500 labeled
examples (around 4% of the training data points) in order to achieve null classification
error.

Based on these results, a baseline shift model is trained using real data. The per-
formance and added benefits of jointly classifying and modeling breathing signals are
evaluated by assessing the classification accuracy, generation variability and the re-
construction error. The classification performance is assessed by comparing the SAAE
models to purely discriminative models trained to only classify baseline shifts using a
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Figure 5.5: Joint semi-supervised model results.Classification, generation and reconstruction performance
of the SAAE semi-supervised models, for varying latent space dimension. The models use 4% or 12% of the
training data during the supervised classification phase, which corresponds to 1500 and 6000 data points,
respectively. The reported mean, maximum and minimum values correspond to 3 independent models with
different training-test dataset splits and weight initialization. The relative reconstruction error is expressed
as a percentage, where 100% corresponds to the maximum error corresponding to a model with randomly
initialized weights.

subset of the available labels. Specifically, a feed-forward (MLP) classifier and a con-
volutional (CNN) classifier were trained using 4% and 12% of the GUH training labeled
data. Figure 5.5 shows that the SAAE model with 5 to 15 latent variables outperforms
both architectures, achieving a mean mF1-score of 94.91% and 96.54% on the unseen
test EMC dataset when trained with 4% and 12% of the labels, respectively.

The generative performance and sample variability are evaluated with the CAS mF1-
score. A CNN classifier is trained using 36430 randomly generated samples from the
SAAE model, which allows a fair comparison with the model trained using the real GUH
data. The classifier is then evaluated on EMC data, achieving a remarkable 93.90%
mF1-score for the model with 10 latent variables trained with 12% of the labels, which is
on par with the performance of the feed-forward and CNN classifiers trained with real
data observed in Figure 5.5 (MLP and CNN in the two left plots). As with the patient-
specific models, the generative performance significantly degrades for higher latent
space dimensionality.

Finally, the reconstruction error on test set data is shown in Figure 5.5. As with
the patient-specific models, the error is expressed relative to the maximum error cor-
responding to predictions from a randomly initialized model. The models perform
similarly when using more than 10 latent variables. Higher latent space dimensionality
seems to beneficial in the complicated task of reconstructing EMC samples that follow
a different distribution, where the models achieve similar reconstruction performance
to the feed-forward patient-specific models in Figure 5.3a.
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Figure 5.6: Output signal reconstruction performance. (Left) Average absolute error achieved by the PatBR
and PopBR models in the reconstruction of breathing time series. The error is shown for the training pa-
tient(s), the worst-performing patient and the entire set of patients present in each of the GUH and EMC
datasets. (Middle) Reconstruction of the EMC signal fragment with highest error, using the PatBR model
trained with data from the patient with maximum amplitude. (Right) Worst-performing reconstruction over
all the EMC dataset using the PopBR model.

5.5.3. Time series reconstruction
Three different PatBR models are trained using the data from three patients: the pa-
tients with the largest and lowest breathing period in the dataset, and one of the pa-
tients with an average period. From these PatBR models, the former (largest period)
achieves the largest error, precisely on signals of the patient with the lowest period. For
each of the PatBR models and the PopBR model, a comparison of the average abso-
lute error (average L1-norm) on the training set, the test set and the worst performing
patient from the test set is shown in the left plot of Figure 5.6. The average absolute
error is calculated as the average L1-norm |wreal −wrec| between all position points in
the recorded and reconstructed time series vectors w . The middle and right plots in
Figure 5.6 show the worst EMC test sample reconstruction from the PatBR and PopBR
models, respectively.

The PopBR reconstruction ANN consistently outperforms the single patient PatBR
networks and opens the door to using a single model to reconstruct breathing signals
for any patient. PatBR models fail to reconstruct time series from other patients, es-
pecially when they are evaluated on patients whose period significantly differs from
that of the samples used for training, as seen in the left plot of Figure 5.6. The general-
ization error of the PopBR model is very low and it provides accurate reconstructions
for patients whose breathing signal was recorded in a different location and machine.
The error could in principle be further decreased by training a specific PatBr for each
specific patient, at the expense of slightly longer computation time.

5.6. Discussion
The standard VAE, standard AAE and SAAE architectures result in breathing models
that capture the variability of respiration through few latent variables, as opposed to
approaches that use implicit adversarial models (Golany and Radinsky, 2019; Wulan
et al., 2020). The models are easy to sample and the decoders generate realistic breath-
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ing samples. The convolutional layers result in 25% reduction of the reconstruction
error on test data. AAEs outperform standard VAE models in reconstruction, general-
ization and generative performance. Much of the AAE success seems to be related to
their more compact latent space: their aggregated posterior distributions are closer to
the prior, and their encodings are more evenly spaced, as seen in Figure 5.3c and Fig-
ure 5.3d. The problem of aggregated posterior-prior mismatch in VAEs is not new, and
the results in this work are in line with previous findings (Dai and Wipf, 2019; Rezende
and Viola, 2018; Rosca et al., 2019).

For the set of all possible models, the reconstruction performance is in theory in-
dependent of the latent dimension. Very powerful autoencoders with deep encoders
and decoders could perfectly reconstruct the input using as few as one latent dimen-
sion, but this is not observed in practice. In general, the performance can be practi-
cally improved by adding more latent variables or increasing the capacity of the model.
However, it has been observed that very powerful decoder architectures tend to ig-
nore the information encoded in z (Bowman et al., 2016; Chen et al., 2017; Zhao et
al., 2018). In concordance with Figure 5.3, adding dimensions helps, especially in low-
dimensional latent spaces. Nevertheless, there is a certain latent space dimensional-
ity beyond which adding more latent units seems to add little information. For the
VAE, this may manifest as "inactive latent variables", where some latent units remain
equal to the prior distribution during the whole training process (Burda et al., 2016;
Sønderby et al., 2016). For the specific case of breathing and given the presented en-
coder and decoder convolutional architectures, the limit seems to be around 10 latent
variables. This is supported by the fact that the test reconstruction error and classifier
performance plateau around N = 10 in Figure 5.3.

Even though SAAE models are mainly trained to reconstruct breathing signals, they
outperform pure discriminative architectures based on state-of-the-art one dimen-
sional convolutional models (Acharya, Fujita, Lih, et al., 2017; Acharya, Fujita, Oh, et
al., 2017). The fact that a single model can (better) classify and selectively sample types
of signals is a novelty with respect to previous architectures that specialize in only one
of such tasks (Wulan et al., 2020; F. Zhu et al., 2019). One interesting remark is the fact
that there seems to be a latent dimension range between 5 and 15 where SAAE models
are superior in the classification task. In general, increasing the number of latent vari-
ables means that each variable carries less information about the input. A plausible
reason behind the loss of accuracy for increasing latent space dimensions is that some
of the information encoded in c may leak into the style variables z . Models with a large
enough number of latent variables would not benefit from the joint discriminative-
generative modeling task, since they could completely encode the input using z and
simply learn the label c separately. However, this should be confirmed in future re-
search.

The generative performance of the SAAE models degrades with increasing latent
dimensionality. As in the patient-specific models, a possible reason is the "emptier"
latent space with larger distance between encodings. This directly follows from the in-
creasing volume of the multi-variate Gaussian latent space and the fixed number of
samples used to cover such volume during training. Additionally, SAAE models per-
form similarly to the patient-specific models in terms of reconstruction and general-
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ization on test samples from the same distribution, as indicated by the reconstruction
error on GUH test samples. Although the reconstruction accuracy significantly de-
creases, the SAAE models also perform reasonably well in the much more complicated
task of generalizing to test samples from the EMC dataset with different distribution,
and their reconstruction error is on par with feed-forward patient-specific models (Fig-
ure 5.3a). As in the patient-specific models, the SAAE models seem to benefit little from
adding extra latent variables for latent space dimensionalities above 10. Since the clas-
sification and generative performance attain their maximum between 5 and 10 latent
variables, we can conclude that the optimum latent space dimension lays around 10.

The presented models can be applied to a wide range of tasks involving signal gen-
eration and classification. Regarding generation, the models can be used to capture
the variability in breathing of a patient and generate artificial samples. For the specific
application of proton therapy — where a very narrow (1-3 mm) proton beam is used to
actively scan the tumor — the movement of the beam and the breathing motion are on
comparable time scales, leading to the so-called “interplay effect” degrading therapeu-
tic effectiveness. The presented generative framework presents significant advantages
in addressing this problem compared to the commonly used simple sinusoidal artifi-
cial signals that fail to capture irregular motion and the true variability of the breath-
ing. The realistic generated samples can be incorporated into treatment design in or-
der to make treatments less sensitive to breathing motion during dose delivery. Since
each generated breathing sample results in a different virtual delivered dose, repeated
sampling allows deriving the distribution of plausible treatment outcomes, which can
subsequently be used to assess treatment plan robustness before actual delivery or to
directly optimize treatment plans to be robust against breathing movements. As a re-
sult, the desired clinical outcomes can be better ensured or the likelihood that a patient
will present a certain type of breathing can be estimated - tasks that are infeasible with
currently available methods.

An important advantage of the presented methodology is the fact that it achieves
feasible compute times. Training times are massively reduced by using Graphics Pro-
cessing Units (GPUs), which are needed to train the presented convolutional architec-
tures due to the requirements of the latest version of the Tensorflow package (Abadi et
al., 2015). Most of the training was done with an NVIDIA® Tesla® K80, and the training
times vary around 10 minutes for the VAE and AAE patient-specific models, 30 minutes
for the reconstruction PopBR and PatBR models, and 20 minutes for the SAAE models.
Generating and classifying breathing samples is almost instantaneous.

Limitations One drawback of the proposed method is the uninformative prior P (c)
in the semi-supervised model, which assumes no previous knowledge about the pro-
portion between different classes. For cases when there is class imbalance, i.e., many
more samples of regular breathing compared to irregular breathing, using such un-
informative prior may result in the model miss-classifying some samples in order to
match the uniform prior. The solution to this problem is dataset-dependent approach
and involves determining the naturally occurring proportion of classes.
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5.7. Summary
In this chapter, a semi-supervised algorithm based on the AAE is presented, allowing
simultaneous classification and generation of biomedical signals within a single frame-
work. The resulting models classify signals with greater accuracy than discriminative
models specifically trained for classification using only few labeled data points; are
easy to sample, and compress the data into a reduced latent space with few indepen-
dent parameters with known probability distributions. In view of the results, 10 of such
latent variables are able to capture most of the variation in the data and achieve excel-
lent reconstruction and generation of samples. For the particular case of breathing,
the adversarial objective used in AAEs is a better regularizer of the latent space and
overcomes some of the previously studied problems of the VAE framework.

Given the length of the input time series, all models are trained on compressed in-
put vectors containing information about the period and amplitude of the biomedical
signal. The compressed output vectors produced by the model are transformed back
into a time series with the help of an additional reconstruction network. Reconstruc-
tion ANN models trained with the data of a single patient (PatBR) do not achieve good
generalization when evaluated on other patients, and are outperformed by a population-
based reconstruction models (PopBR) trained with a subset of the data of a population
of patients. The population model is trained only once and achieves great accuracy
when applied to new unseen data. Even though this work is based on mechanical
breathing signals, the framework shows potential applicability to simulation and di-
agnostic purposes using any other biomedical signal with a quasi-periodic structure.
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proton therapy

6.1. Introduction
In Intensity Modulated Proton Therapy (IMPT), breathing interplay effects arise from
the interaction between the scanning beam and moving organs during treatment deliv-
ery. This is detrimental, as during the few minutes in which each fraction is delivered,
the continuous movement of the target due to breathing degrades the final dose dis-
tribution (Bert and Durante, 2011; Bert et al., 2008; Lambert et al., 2005). Given the
adoption of IMPT in treating moving tumors, there is a growing need for computa-
tional methods that allow sound statistical evaluation of interplay effects, where the
error introduced by modeling approximations (e.g., using few breathing realizations of
sinusoidal breathing) is known and justified.

Several techniques aimed at minimizing the detrimental effect of breathing dur-
ing delivery include beam gating, rescanning, beam tracking, breath-hold and com-
pression. During beam gating the patient breathes freely and the dose delivery is con-
strained to a specific part of the breathing cycle (e.g., end of exhale) (Bert et al., 2009;
Ohara et al., 1989). Beam tracking consists of adjusting the treatment delivery system
to real-time predicted target movement (Bert et al., 2009; Y. Zhang et al., 2014). In res-
canning or repainting the target is irradiated several times during the same fraction,
which helps smooth the final dose distribution (Phillips et al., 1992; Seco et al., 2009).
Finally, breath-hold and compression methods aim at immobilizing the target during
delivery (Boda-Heggemann et al., 2016; Péguret et al., 2016).

From a treatment planning perspective, different approaches are used to account
for target motion by including information about different breathing phases (e.g., ex-
hale, inhale, mid-ventilation) into the optimization. Internal Target Volume (ITV) plan-
ning aims at irradiating an ITV volume in the reference phase, which is defined as the

The contents of this chapter have been published as a journal paper in Physics in Medicine & Biology 66 (23),
235003 (2021), (Pastor-Serrano, Habraken, et al., 2021).
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union of all Clinical Target Volume (CTV) contours of the different breathing phases
(Shih et al., 2004). With the help of surrogate models that generate artificial motion,
ITVs can be extended to probabilistic ITVs that capture breathing variability (Krieger
et al., 2020). 4DCT planning is based on optimizing the dose distribution using min-
imax robust optimization (Pflugfelder et al., 2008), including multiple Computerized
Tomography (CTs) from different breathing phases so that the dose prescriptions are
met in all the included breathing phases (Bernatowicz et al., 2017; Engelsman et al.,
2006; Heath et al., 2009). Some 4DCT approaches also account for beam tracking (Eley
et al., 2014) and temporal structure (Engwall, Fredriksson, and Glimelius, 2018) during
optimization.

Previous work shows that fractionation effectively limits interplay dose degradation
in Intensity Modulated Radiation Therapy (IMRT) delivery techniques with moving
parts such as multi-leaf collimators (MLCs) (Bortfeld et al., 2002; Jiang et al., 2003), but
may be insufficient to tackle negative biological effects in treatments with many seg-
ments of few monitor units (MUs) (Seco et al., 2007). Several studies further investigate
the effects of regular breathing motion and collimator speed on the outcome of MLC
treatments (L. Court et al., 2010; L. E. Court et al., 2008), showing that non-negligible
interplay effects increase with target magnitude, plan complexity and breathing period.

While the problem of interplay is common for all dynamically delivered treatments,
its nature differs between IMPT and IMRT: proton pencil beams are narrower than
photon beams, deliver the dose more locally, and their irradiation times are usually
an order of magnitude smaller. Several studies quantify the negative effect of interplay
in IMPT and evaluate the effectiveness of different mitigation techniques such as re-
painting in lung and liver patients (Engwall, Glimelius, and Hynning, 2018; Li et al.,
2014; Seco et al., 2009; Y. Zhang et al., 2016), breath-hold (Emert et al., 2021; Yu et
al., 2017) or a comparison between different mitigation techniques used in liver treat-
ments (Y. Zhang et al., 2018), showing that neither rescanning nor gating alone can
mitigate interplay effects. Regarding the effect of motion parameters, large breathing
amplitudes are known to produce significant local under- and overdosing (Jakobi et al.,
2018; Kardar et al., 2014; Kraus et al., 2011).

Evaluating interplay is usually time consuming and requires many dose distribu-
tions corresponding to different realizations of breathing during treatment delivery.
While alternative, more realistic and computationally demanding approaches use sim-
ulated 4DCT scans with dynamic dose delivery (Boye et al., 2013) or motion surrogates
(den Boer et al., 2021), most of the interplay evaluation studies are based on a sin-
gle 4DCT scan and many breathing signals to simulate different breathing scenarios.
Obtaining enough of such signals involves either taking fragments from the recorded
respiratory signal — which is often short and does not offer much variability — or using
a sinusoidal approximation, oversimplifying breathing and failing to capture typical ir-
regularities such as baseline shifts and amplitude changes. Furthermore it is not known
how realistic and irregular these signals need to be, how small breathing variations af-
fect the final dose, and how many different breathing samples are needed to accurately
capture the statistical variation of interplay. Except for one published paper hinting
the possible systematic error in IMRT interplay evaluation caused by the use of a lim-
ited number of motion samples in both planning and evaluation (Evans et al., 2005),
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no previous study has investigated the statistical significance of evaluating interplay
effects using few samples and simplified breathing models disregarding any breathing
cycle hysteresis.

Building on previous IMRT studies (Kissick et al., 2005; Seco et al., 2007), this work
investigates the interplay dependence on breathing uncertainties for proton treatments
with many pencil beams — where the order of magnitude of beam delivery times is a
factor 100 lower that the period of breathing motion — and specifically the relation-
ship between dose and breathing parameters such as period and amplitude changes.
The proposed method for evaluation of interplay is based on a 4DCT scan representing
the different anatomies of the patient in a breathing cycle, and breathing signals that
capture how these alternate during the course of a treatment fraction. Extending on
previous work (L. Court et al., 2010; L. E. Court et al., 2008), such breathing signals have
both constant and variable breathing periods. This chapter covers the following topics
related to the simulation and evaluation of breathing interplay effects:

• A method to statistically assess interplay effects in lung IMPT is presented and
applied to evaluate robustness, comparing 4DCT and ITV planning approaches
and the impact of fractionation for 8 stage III lung cancer patients.

• The proposed approach is used to evaluate error introduced in the interplay eval-
uation caused by (i) using simplistic sinusoidal breathing approximations, (ii)
using a limited set of scenarios, or (iii) disregarding breathing hysteresis.

(i) Two methods to generate patient-specific breathing signals which differ
in accuracy and computational complexity are compared, referred to as
breathing models. Specifically, given the popularity of sinusoidal models,
this chapter addresses the dosimetric impact of evaluating motion using
simple sinusoidal breathing patterns, which are the most commonly used
approach when lacking a sufficiently long recorded breathing signal with
enough variation.

(ii) Interplay statistical analyses lacking statistical power (i.e., only consider a
limited number of breathing scenarios) can result in errors. The proposed
interplay evaluation tool is used to determine whether evaluating interplay
with a small number of such breathing scenarios — as observed in most of
the previous studies — leads to significant errors.

(iii) The dosimetric impact of disregarding hysteresis in the breathing cycle is
investigated by considering symmetrical inhale and exhale during evalua-
tion.

• The dependence of IMPT interplay dose distributions on breathing parameters
such as amplitude, period or starting phase is investigated. More specifically,
evaluating how the dose and Dose Volume Histogram (DVH) values vary with
small changes in the breathing signal, this chapter aims at determining which
parameters (e.g.,breathing amplitude, period) have the biggest effect on dose.
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6.2. Interplay effect simulation
This section describes the patient data, the proposed methodology to simulate breath-
ing interplay effects, and the design choices in treatment planning and delivery simu-
lation.

6.2.1. Patient data and treatment plans
Different breathing signals are obtained with the stereotactic body radiation surgery
(SBRT) system Cyberknife® (Accuray Inc., Sunnyvale CA, US), which tracks targets that
move with respiration using a correlation model that relates the internal target posi-
tion with external markers taped to the chest of the patient (Coste-Manière et al., 2005;
Hoogeman et al., 2009). The long respiratory traces represent tumor movement dur-
ing treatment for 8 different lung cancer patients. Each signal is matched to a 4DCT
scan from a stage III lung cancer patient (having been treated with IMRT and recor-
ded with a Siemens Sensation Open® CT scanner using phase binning) and subse-
quently rescaled to the maximum 4DCT amplitude. The 4DCT scans are discretized
into 8 phases in the breathing cycle: 0%, 25%, 50%, 75%, 100% inhale, and 75%, 50%
and 25% exhale. The structures of interest are clinically delineated in all scans, with
the exception of the ITV, which is obtained by combining in the mid-ventilation 50%
exhale reference phase the CTV volumes from all the breathing phases.

Table 6.1 describes the motion and tumor sizes of the patients in the dataset. Two
treatment plans are obtained per patient: ITV plans targeting the ITV in the reference
phase, and 4DCT robust plans targeting CTV contours from three phases: the reference
50% exhale phase, and the two extreme 0% and 100% phases. Both ITV and 4DCT
robust IMPT plans use a 5 mm setup robustness setting, a 5% range robustness setting,
and a 2 mm extra margin around the target(s), based on current clinical practice at
Holland PTC (Delft, Netherlands). The treatment is divided into 33 fractions of 2 Gray
(Gy), with plans made using Erasmus-iCycle, an in-house Treatment Planning System
(TPS) which uses automated multi-criteria prioritized optimization and a pencil beam
dose algorithm to calculate the dose delivered per spot (Breedveld et al., 2012; Water
et al., 2013), including range shifters and filtering of low-weight beams. No breathing
uncertainty mitigation technique is applied during planning or delivery, except for one
experiment where volumetric repainting is applied per gantry angle.

6.2.2. Interplay dose calculation
The proposed model calculates an interplay dose distribution based on the treatment
plan, the machine parameters, a 4DCT scan and a breathing signal that can be either
a fragment of the real recorded signal or an artificial signal from one of the breathing
models discussed below. The number of spots — regions irradiated by a single mono-
energetic pencil beam — and the order in which they are delivered can be obtained
from the treatment plan. Spots are ordered in descending order according to pencil
beam energies, on a per gantry angle basis. The machine parameters determine a spot-
timeline, which is a list ordering the spots in time using information such as the elapsed
time between two consecutive spots or the time needed to change layers and beams.
The irradiation time for each spot is directly obtained from the optimized plans with
beam data corresponding to standard Varian ProBeam® settings, resulting in a fixed
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Figure 6.1: Interplay calculation workflow. The input breathing signal, treatment plan and machine param-
eters are used to distribute the spots over the breathing phases included in the 4DCT scan and determine in
which phase each spot is delivered. Breathing phase dose distributions are first obtained by accumulating
the dose delivered by all the spots in the same phase, and are subsequently transformed to the reference
phase. The final interplay dose distribution is the result of adding the transformed doses.
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Table 6.1: Dataset description and treatment delivery times. The reported values include the breathing am-
plitude along the lateral, anterior-posterior (A-P) and cranial-caudal (C-C) axes, and the combined volume
of the CTV including lymph nodes. Treatment delivery time per gantry angle for both the 4DCT and ITV
plans are also reported.

Patient
Breathing

amplitude (mm)
Target

size (cm3)
Delivery time (s)

Beam 1 Beam 2 Beam 3
Lateral A-P C-C CTV & nodes 4DCT ITV 4DCT ITV 4DCT ITV

1 3.2 1.8 4.1 39.1 46.8 46.1 58.2 57.9 28.3 29.1
2 2.1 2.4 5.9 130.9 38.4 33.0 67.9 60.2 39.4 34.8
3 1.5 3.6 9.4 211.5 33.6 29.7 66.2 61.3 35.6 28.5
4 1 0.7 8.7 489.7 68.0 62.2 101.0 96.0 76.5 56.8
5 0.8 0.4 2.4 400.6 34.0 31.9 98.3 76.5 50.4 42.3
6 0.8 2.4 1.7 286.7 53.3 52.6 87.9 65.5 49.7 42.8
7 1.2 1.9 5.4 404.5 61.5 61.7 76.0 76.5 40.2 39.6
8 1.2 0.3 2.3 162.1 40.6 38.5 90.5 69.9 65.5 44.2

current and variable local dose rates between 10 and 54 Gy/s. Beam data measure-
ments are based on integral dose depth (IDD) curves, lateral spot profiles and absolute
dosimetry (MU calibration) under reference conditions in a water phantom. For the
machine parameters, 10 ms off-beam time are added after delivery of each spot, as well
as an average of 0.7 seconds to change energy layer. Range shifter fixed insertion times
equal 16 seconds, while the variable time needed to change the gantry angle depends
on a linearly increasing, bounded angular acceleration.

Figure 6.1 illustrates the process of simulating an interplay dose distribution. After
a breathing signal is generated and a treatment starting phase is sampled, the signal is
binned into between full inhale and exhale, according to the maximum 4DCT ampli-
tude (5 bins delimited by 4 red horizontal boundary lines in Figure 6.1). The breathing
signal indicates the phase in which each spot is delivered, with all the points of the sig-
nal that fall between consequent binning boundaries being considered to be the part
of the same being phase. For fractions where the patient presents shallow breathing
with low amplitude, the dose will be deposited in only a subset of phases. For base-
line shifts, the dose delivery will gradually shift from inhale (75%In, 100%, 75%Ex) to
exhale phases (25%Ex, 0%, 25%In) as the treatment proceeds. The number of phases
used during interplay evaluation may differ from the number of phases used to op-
timize the 4DCT plan. In this study, 4DCT plans are made using 3 phases, whereas
all the 8 available phases are used for the evaluation. After binning, each point of the
signal corresponds to phase of the 4DCT, resulting in the CT-timeline containing the
different phases ordered in time. Pairing the CT- and spot-timelines results in each
spot being assigned to a certain phase. Dose distributions per phase are obtained by
adding the doses from individual spots in the same phase, which are later transformed
(via a non-rigid thin-plate spline registration deformation field) to the reference phase
before being added to form the final dose distribution.
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6.2.3. Breathing models
Breathing signals are used to represent respiratory motion during a treatment frac-
tion, and each of them ultimately results in a different dose distribution. The statistical
evaluation of interplay effects requires statistics of the dosimetric quantities of interest
using many different dose distributions, requiring a large set of respiratory traces. Ex-
cept for this study using breathing signals that were deliberately recorded during a long
time, the available signals from regular patients are usually short and do not contain
enough variability, thus requiring commonly used artificial sinusoidal approximations
that potentially introduce errors. Two different types of data-driven breathing mod-
els that capture uncertainty and variability in respiratory motion are compared. The
first model is based on simple sinusoidal waves (denoted as ’sin’ in the remainder of
the chapter), while the second model is based on the Adversarial Autoencoder (AAE)
algorithm described in Chapter 5.

1. Sinusoidal model. In the sinusoidal model the respiratory time series is gener-
ated by using a sinusoidal function sin2n as x(t ) = A0+A ·sin2n(πt/T +ψ), where
x(t ) is the time dependent position of the tumor, A0 is the position at the be-
ginning of inhale (in centimeters), T is the breathing period (time between two
consecutive inhales, in seconds), and A is the amplitude (distance from inhale
to exhale, in centimeters). The parameter ψ represents offset in phase, and ef-
fectively symbolizes the moment when the treatment starts within the first cycle.
This chapter considers the simplest sinusoidals sin2n with n = 1 (Lujan et al.,
2003), with constant amplitude and period. Each signal has a different period
and amplitude sampled from Gaussian distributions fitted to both the periods
N (µT ,σT ) and amplitudes N (µA ,σA) present in the recorded breathing signal.
The parameter A0 is often fixed and calculated by the average across breathing
cycles in previous studies (George et al., 2005; Lujan et al., 2003). In this study
A0 is considered an independent parameter in order to provide the model with
extra variability, and its distribution is also considered to be normal fitted to the
breathing data N (µA0 ,σA0 ).

2. AAE model. The AAE breathing models are based on artificial neural networks.
First, an encoder computes a few latent parameters (a low dimensional embed-
ding) that uniquely characterize each high-dimensional breathing signal. The
number of low-dimensional latent variables is optimally configured. A decoder
reconstructs the original breathing signal using the latent variables from the en-
coder. A training process using a large set of samples ensures that the decoder
accurately reconstructs breathing signals and that each of the latent parameters
is approximately distributed according to the Gaussian distribution N (0,1). As
previously shown in Chapter 5, using as few as 5 parameters, the AAE breathing
models can generate patient-specific realistic breathing signals with high accu-
racy and variability in period and amplitude, as opposed to the sinusoidal model
always yielding regular sinusoidal samples.

Once the models are obtained, artificial breathing signals are generated by sam-
pling model parameters from their distributions, with each parameter combination
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resulting in a unique signal. A sinusoidal signal is thereby obtained by sampling a pe-
riod, amplitude and inhale position from N (µT ,σT ), N (µA ,σA) and N (µA0 ,σA0 ). For
the AAE breathing models, different signals are obtained by sampling the 5 latent pa-
rameters from a Gaussian distribution N (0,1). For both models, the starting phase ψ
— the starting point of delivery within the first breathing cycle — is sampled from a
uniform distribution U (0,2π).

6.3. Statistical evaluation of interplay
Testing robustness against interplay effects involves a statistical evaluation using a set
of Nb different dose distributions and DVHs corresponding to Nb different breathing
samples. A DVH(D) is a function obtained for a given structure of interest that indicates
the fraction of volume V that receives a dose greater than or equal to D . The quantity
V f = DVH( f Dp ) indicates the fraction of the target volume that receives at least a cer-
tain percentage f of the prescribed dose Dp . Alternatively, the value D f = DVH−1( f V )
represents the lowest dose received by at least a fraction f of the volume. Typical values
for these quantities are used to assess the adequacy of treatment plans, e.g., the D98 or
dose that 98% of the volume receives. Additionally, the homogeneity index (H I ) is de-
termines target dose homogeneity, defined as H I = (D2 −D98)/Dp , where D98 and D2

are the dose received by the 98% and 2% of the volume. H I s quantify how uniformly
the majority of the target volume is irradiated, with lower values indicating smaller
differences between the dose delivered to different parts of the target. The V107/95 indi-
cates the fraction of the target volume that receives a dose outside the usually clinically
accepted interval (0.95Dp ,1.07Dp ), and it is calculated as V107/95 =V107 + (1−V95).

The proposed interplay evaluation is based on comparing the distributions of D2,
D98, H I and V107/95, referred to as quantities of interest (Λ) in the remainder of this
chapter. Such distributions are approximated using a collection of ni percentiles Λi

obtained from the Nb available computed Λ values, which are compiled into a per-
centile vector δΛ = {Λi }ni

i=1. Subsequently, the similarity between the results of different
statistical analyses is assessed by comparing distributions of each quantity of interest
Λ via the percentile vectors δΛ. If different statistical evaluations yield similar distribu-
tions, the analysis of interplay and conclusions drawn regarding the quality of the plan
will approximately be the same.

Overview After obtaining a treatment plan that satisfies the planning constraints and
objectives, the interplay simulation proceeds as follows:

1. Nb different breathing signals are obtained either by randomly sampling the pa-
rameters of the breathing models, or by cropping Nb random fragments from
the original recorded signal, where the width of the slicing window is equal to
the treatment length.

2. Using the Nb signals, treatment plan information and machine parameters, Nb

interplay dose distributions are calculated. Each dose distribution results in a
DVH from which the H I , V107/95, D2 and D98 are calculated. For each patient,
the final robustness evaluation is based on first calculating 1000 interplay dose
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distributions using fragments of the recorded signal, and subsequently analyzing
the difference in δΛ between 4DCT and ITV plans.

3. Distributions are numerically compared using the relative distribution error (RDE).
For a quantity of interest and its corresponding vector δΛ, the RDE quantifies the
difference between two distributions as

RDE(δNb
Λ,1,δNb

Λ,2) = 1

ni

ni∑
i=1

∣∣Λi ,1 −Λi ,2
∣∣

Λr e f
×100. (6.1)

where ni = 3 (median, 2 and 98 percentiles), and the reference value for the quan-
tity of interest Λr e f is used to compute the relative error and is obtained from a
single interplay dose distribution corresponding to a sinusoidal with average pe-
riod, amplitude and initial inhale position.

4. A series of experiments evaluate how using a limited number of samples, using
artificial signals or ignoring breathing hysteresis compromises evaluation accu-
racy:

i) Distributions over the quantities of interest are computed for a different
number of breathing samples Nb = {20,50,100,500,1000} of the recorded
signal. Two independent statistical analyses for each number of breathing
samples Nb using a different subset of Nb interplay dose distributions, re-

sult in two different vectors δNb
Λ,1 and δNb

Λ,2 that are compared via the RDE.

ii) The effect of using artificial breathing signals from the sin or AAE models is
determined by computing the RDE between their corresponding δ1000

Λ,si n or

δ1000
Λ,A AE and the reference δ1000

Λ,r eal from the real recorded signals, where all
the statistics are calculated using 1000 samples.

iii) Finally, the dosimetric impact of disregarding motion hysteresis is assessed
via the RDE between the results of two different interplay evaluations with
1000 samples: one including 8 breathing phases, and the other only 5 phases
identical during inhale and exhale.

6.4. Results
6.4.1. Robustness of 4DCT and ITV plans against interplay
Reliable statistical analyses allow direct assessment of the robustness of treatment plans,
as well as comparison between different planning approaches. To illustrate this, Fig-
ure 6.2 shows the distribution of D98, H I and V107/95 corresponding to each plan and
patient combination, for both single fractions and a fully fractionated treatment. As
seen in the top row, the 4DCT plans result in higher D98 values regardless of fraction-
ation, tumor size and breathing amplitude, while ITV plans systematically fail to meet
the clinical constraints. Likewise, the H I and V107/95 (middle and bottom rows) are
consistently lower in 4DCT treatments, indicating that the delivered dose distribution
is more homogeneous and the target receives a dose within the clinically acceptable
limits in most of the scenarios.
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Figure 6.2: Interplay evaluation results. The distribution of 1000 different D98, H I and V107/95 CTV values is
shown for every patient and plan, and for (left) individual fractions and (right) fully fractionated treatments,
using the real recorded signal. The pink line in the top row denotes the clinical near-minimum CTV dose
constraint. For each box, the centered line represents the median, while the boundaries correspond to the
upper and lower quartiles (25th and 75th percentiles), and the individual points outside the whiskers are
outliers. Higher H I and V107/95 correspond to more heterogeneous dose distributions with hot and cold
spots.

6.4.2. Influence of sample size, breathing models and hysteresis.
A relevant question is how many different interplay dose distributions are necessary
in order to perform a statistical analysis that yields reliable results. For this reason,
independent statistical analyses are performed using different sub-sample sizes se-
lected according to published results (Engwall, Glimelius, and Hynning, 2018; Engwall,
Fredriksson, and Glimelius, 2018; Jakobi et al., 2018; Seco et al., 2009). Figure 6.3a
shows a reduction in RDE as more breathing samples are used to calculate the statistics,
confirming that the distributions gradually converge. The RDE illustrates how much
the results from two statistical analysis could vary for a given sample size simply due to
chance, being higher for single fraction analyses using <100 samples.

Figure 6.3b shows a comparison of the error introduced by using artificial signals
from the sin and AAE models instead of the recorded signals from the patient, showing
that for single fractions AAE model slightly outperforms the sin model, but the differ-
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(a) Impact of using different sample sizes to calculate interplay statistics during evaluation.

(b) Dosimetric effect of using breathing signals from a model instead
of the real recorded signals.

(c) Impact of ignoring breathing hysteresis during
the evaluation.

Figure 6.3: Effect of the evaluation parameters on the interplay statistics. The reported RDE represents the
difference between two different distributions of a quantity of interest, in this case the D98, D2 and H I , and
can be used to determine whether two independent interplay evaluations yield the same results. Each box
includes all RDE values across patients and planning approaches, showing the dosimetric impact of varying
one of the following evaluation parameters, while keeping the rest fixed: (a) the number of samples used to
compute the statistics, (b) the breathing signal model, and (c) the absence of respiratory motion hysteresis,
with identical inhale and exhale. Each variation results in an independent distribution, which is compared to
either (a) a duplicate distribution obtained using the same settings, or (b,c) a reference distribution obtained
from a statistical analysis using 1000 samples from the recorded signal and considering breathing hysteresis.
Each box contains the median in the center and the upper and lower quartiles (25th and 75th percentiles) as
box boundaries, with outliers represented as individual points outside the whiskers.
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ences between models are minimal in fully fractionated treatments. Figure 6.3c shows
the effect of disregarding breathing hysteresis. Although using a model of respiratory
motion results in non-negligible errors in single fraction doses, its dosimetric impact
is much lower than using few samples in the evaluation.

6.4.3. Interplay dose dependence on breathing parameters.
In order to investigate the relationship between small changes in the breathing param-
eters and interplay doses, Figure 6.4 shows the dose and D98 for different amplitudes,
periods and starting phases of a sinusoidal breathing signal. Each of the parameters is
varied independently, one at a time, leaving the rest fixed. Amplitude changes have a
lower and less fluctuating effect on the dose compared to changes in period or starting
phase. The latter affect the time structure of treatment delivery, and as a result, small
variations can effectively shift the breathing phases in which subsequent spots are de-
livered, with a great local impact on voxel doses. On the other hand, changes in ampli-
tude are responsible for shifting only few spots to neighboring phases, hence inducing
smaller changes in the delivered dose. Repainting contributes to better target coverage
and reducing the magnitude of interplay effects, as indicated by the lower spread of
voxel doses around the target 2 Gy fraction dose, and the higher D98 values. For frac-
tions delivered without repainting, period changes can result in up to 50% variations
over the target dose and 4 Gy differences in D98, as seen in the top row of Figure 6.4.

6.5. Discussion
The results indicate that 4DCT plans outperform ITV plans in terms of dose coverage
and homogeneity, regardless tumor size and breathing amplitude. Using a fully frac-
tionated robust 4DCT treatment planning approach with the exhale, inhale and mid-
ventilation phases may be sufficient to compensate the detrimental effect of breath-
ing motion, as indicated by the high D98 values and lower H I and V107/95 shown in
Figure 6.2. Contrariwise, robust ITV plans seem to fail to meet the required dose con-
straints in IMPT lung cancer treatments, and may require the use of additional margins
or motion mitigation techniques, or increased robustness settings. Finally, as seen in
the left plots of Figure 6.2 by the lower D98 and higher H I and V107/95 in single fraction
doses, interplay effects seem to be aggravated by larger amplitudes and tumor sizes (P3
and P4).

Accuracy of the interplay evaluation Among all possible simplifications (i.e., using
few breathing samples or ignoring hysteresis), the error of using artificial signals seems
to be the lowest, where the AAE breathing model clearly outperforms the sin model at
a considerably higher computational cost and more patient-specific data. Based on
the results, a simple sinusoidal model may be sufficiently accurate in fully fractionated
treatments as long as the parameter distribution is patient specific. Disregarding hys-
teresis, however, introduces errors that can be as high as 2.5% of the D98 of the deliv-
ered dose in some cases, even when considering the smoothing effect of fractionation
(Figure 6.3c).

Using a few realizations (<100) of interplay dose distributions in order to evaluate
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Figure 6.4: Effect of breathing parameters on the final dose distribution. (Left) Fraction dose in a random
CTV voxel and dependence on the parameters of a sinusoidal breathing signal, for a different number of
repaintings and 3 patients (from top to bottom, patient 4, patient 5 and patient 6). Blue lines correspond
to dose distributions without repainting, whereas read and black lines indicate 3 and 5 repaints. Repainting
smooths out interplay effects in the local fraction doses and reduces the fluctuations around the 2 Gy target
dose. As a result Similar results are obtained for other randomly selected voxels. (Right) D98 dependence on
small breathing variations. Repainted dose distributions fluctuate less and result in better target coverage,
as indicated by the higher D98 values.

interplay effects lacks statistical power. The presented results from lung cancer pa-
tients show that at least 500 different interplay dose distributions are needed to achieve
the same level of error as the one introduced by other simplifications such as using
sinusoidal breathing or no hysteresis, also for fractionated delivery. Only when >500
samples are used the differences are generally below 1% of the reference dose and 5%
of the H I values, which can be limiting with computationally expensive interplay dose
calculation models. Most of the previous studies are short on samples: ranging from
300 different simulated treatments (Seco et al., 2009) to as few as 10 samples (Engwall,
Glimelius, and Hynning, 2018), 20 samples (Engwall, Fredriksson, and Glimelius, 2018)
or 64 samples (Jakobi et al., 2018). Other published works do not explicitly reference
this number but use few realizations with different starting phases (Kardar et al., 2014;
Li et al., 2014), or are based on 30 dose distributions weighted by their probability of
occurrence (Kraus et al., 2011).

The combined smoothing benefits of repainting and fractionation in lung cancer
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treatments has been previously investigated (Engwall, Glimelius, and Hynning, 2018;
Li et al., 2014; Seco et al., 2009) and is further exemplified in Figure 6.4. We can there-
fore assume that the worst-case scenario in the interplay dose degradation occurs for
single fraction dose distributions with no motion mitigation, which explains the fact
that the errors in the statistical evaluation diminish as fractionation increases. As a
result, the relative errors between distributions may be minimal if repainting or other
mitigation technique are applied, requiring fewer samples to obtain reliable results and
thus compensating for the longer calculation times needed to simulate repainting.

This chapter focuses on IMPT lung cancer patients, that represent a worst-case sce-
nario for breathing motion. Other treatment modalities such as SBRT or hypofraction-
ated IMPT treatments deliver the dose more intensely using less fractions. The con-
siderably higher dose per fraction could exacerbate interplay effects (and in particular
may cause bigger inhomogeneities in the dose), especially in terms of biological dose.
For such cases, evaluating the dose degradation due to motion using only few samples
could lead to even larger inaccuracies.

Dose dependence on breathing parameters The results in Figure 6.4 demonstrate
the beneficial effect of repainting in both smoothing out great local dose variations and
improving target coverage, as seen in the reduced fluctuations around the 2 Gy target
dose that translate into higher D98 values. However, rescanning alone does not fully
mitigate interplay effects, in concordance with previous results (Y. Zhang et al., 2018),
resulting in local doses that may vary up to 10% of the target dose and D98 values that
are always below the constraint. Delivery without repainting results in dose fluctua-
tions amounting up to 50% of the target fraction dose. This effect may be caused by the
fact that small period and starting phase changes can simultaneously shift a significant
number of subsequent spots, the effect being more dramatic for the parts of the tumor
that receive dose only from few individual pencil beams, or spots delivered later within
a fraction. The results are consistent with previous findings for IMRT dynamic delivery
(Kissick et al., 2005) that demonstrate the detrimental effect of intra-fraction random
changes of the breathing parameters. We can further hypothesize that these results are
independent of the 4DCT resolution: adding more 4DCT phases during evaluation re-
sults in some spots shifting to consequent phases with similar anatomy, and thus the
effect may not as dramatic as with period or phase changes, where small variations
may cause the delivery of a later spot to shift from full inhale to exhale.

The degrading effects of time changes can also impact currently applied clinical
protocols. Most of the treatment centers establish their criteria for interplay mitiga-
tion in terms of breathing amplitude (e.g., no mitigation is considered if the breath-
ing amplitude for a given patient is lower than 5 mm). The results show that not only
does period influence the fluctuating behavior but it also highly affects the degree of
degradation of the dose. Thus, more research is needed to determine whether making
planning or clinical decisions purely based on amplitude criteria suffices, and whether
strategies that weigh both period and amplitude changes offer additional benefits.

Limitations The most limiting design choice is the use of a single 4DCT, under the as-
sumption that it captures the variations in patient anatomy from full inhale (maximum
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amplitude) to full exhale and breathing hysteresis, as well as the mismatch between
4DCT and the signal motion surrogate. While this assumption to speeds up and simpli-
fies the interplay dose distribution calculation, some irregularities may not be captured
in the 4DCT, for which a bio-mechanical model could be used to simulate hiccups or
coughs as in (Boye et al., 2013). Similarly, the temporal resolution of the 4DCT is signif-
icantly lower than that of the spot delivery. Although using a coarser resolution is not
expected to be as significant as disregarding hysteresis, the most detailed interplay sim-
ulations should be based on variable time dependent 4DCT data with finer temporal
resolution. Finally, the accuracy and calculation times of the presented interplay dose
calculation method ultimately depend on that of the dose engine and the registration
algorithm. Traditional (usually slow) image registration methods have been been re-
cently outperformed by data-driven approaches (Balakrishnan et al., 2018, 2019; Dalca,
Balakrishnan, et al., 2019; Dalca, Yu, et al., 2019). Similarly, recent deep learning based
dose engines (Chapter 2 & 3, Pastor-Serrano and Perkó, 2022b; C. Wu et al., 2021) have
been shown to overcome the speed limitations of Monte Carlo methods, while offering
better performance than the pencil beam algorithms commonly used in the clinics.

6.6. Summary
This chapter presents a practical method to simulate dose delivery under motion inter-
play effects and assess treatment robustness based on hundreds of (sampled) breath-
ing signals. The proposed statistical evaluation shows that ITV plans systematically
fall behind their computationally more expensive 4DCT robust counterpart, regard-
less of tumor size and breathing amplitude. After analyzing the error introduced by
simplifications such as neglecting motion hysteresis or using few interplay scenarios
and sinusoidal breathing signals, we can conclude that the statistical analysis of fully
fractionated treatments requires at least 500 different dose distributions correspond-
ing to 500 different samples of regular sinusoidal breathing (based on patient-specific
parameter distributions) with hysteresis to yield acceptable precision. This chapter
further demonstrates that small breathing period variations have a highly non-linear
effect on local dose deposition and can cause local doses to fluctuate up to 50% of the
target fraction dose.





7
Conclusion

This thesis presents methods to simulate typical anatomical uncertainties (e.g., breath-
ing motion or relative organ movements) that occur during the delivery of a photon and
proton radiation therapy treatment, and to subsequently quickly calculate the dose de-
livered under such uncertainty. The main motivation is to enable robustness evalua-
tion of treatment plans against intra-fraction and inter-fraction anatomical changes in
clinically feasible times by (i) quantifying and simulating the errors for a given patient,
and (ii) quickly estimating the dose delivered in such scenarios.

7.1. Outcomes of this dissertation
The main contribution of this thesis is in the fields of fast dose prediction algorithms
and probabilistic models to generate anatomical uncertainties, which are missing pieces
towards clinical, fast robust treatment planning, robustness evaluation and online adap-
tation. The most important findings can be summarized as follows:

• As a solution to slow physics-based dose calculation algorithms, a deep learn-
ing Dose Transformer Algorithm (DoTA) was developed, predicting proton pencil
beam doses in few milliseconds with accuracy close to Monte Carlo (MC) based
dose calculation. As demonstrated by the fast prediction times and high gamma
pass rates, DoTA outperforms existing approaches and represents a new state-of-
the-art from which current clinical practice could benefit in numerous aspects.
The small number of potential geometries currently used to clinically evaluate
treatment plan robustness — which is primarily limited by the speed of the dose
calculation algorithm — can be extended with many additional samples, captur-
ing a more diverse and realistic set of uncertainties (e.g., inter-fraction and intra-
fraction geometrical variations). Moreover, DoTA’s millisecond speed further al-
lows calculating probabilistic metrics to be used during probabilistic optimiza-
tion. DoTA’s capability to quickly and accurately estimate fraction dose distri-
butions based on pre-treatment daily computed tomography (CT) images could
transform dosimetric quality assurance protocols, enabling a fast, independent
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dose calculation based on the machine parameters stored in the delivery sys-
tem, and allowing to directly compare the planned and estimated doses, which
is a necessary prerequisite for online adaptation of plans (Albertini et al., 2020;
Jagt et al., 2017, 2018). Most crucially, by pre-computing the input volumes and
updating their CT values in real time, the millisecond speed for individual pen-
cil beam dose calculation makes DoTA well-suited for real-time dose prediction
during radiation delivery, which could in the future enable real-time adaptation
if coupled to fast imaging and re-optimization algorithms.

• The original DoTA model was extended to predict dose distribution from broad
photon beams, extending the its speed benefits to photon treatments. Condi-
tioned only on the beam shape projection and the input CT scan, the new im-
proved DoTA (iDoTA) also outperforms other deep learning dose calculation ap-
proaches, representing a state of the art in photon dose prediction, especially
when calculating full dose distributions from volumetric modulated arc ther-
apy (VMAT) treatments. Like its proton DoTA counterpart, iDoTA is a versa-
tile algorithm that can drastically reduce computing times in any application
involving repeated calculation of dose distributions, e.g., checking plan robust-
ness by quickly predicting the dose in each of the many possible error scenarios
or anatomical variations of the patient (Tilly et al., 2017). However, the most
straightforward application of iDoTA is reducing computation times in VMAT
plan dose calculation, offering 10x faster predictions than clinical software, po-
tentially massively speeding up planning and evaluation in VMAT treatments
consisting of many control points, such as pediatric total body irradiation treat-
ments.

• To enable margin personalization and robust optimization and evaluation pro-
tocols that take into account inter-fraction anatomical changes, a method to
quantify inter-fraction deformations is required. For this, a daily anatomy model
(DAM) was introduced, being able to simulate the organ movements and shifts
seen in prostate patients. The model generates patient-specific deformations by
selectively querying and sampling deformation fields based on the ones seen for
patients with similar anatomies within a population. DAM’s main application
in robust treatment planning and robustness evaluation involves generating pa-
tient anatomies on which corresponding dose distributions will be calculated.
With prediction times of few milliseconds per generated anatomy, DAM offers
huge speed-up possibilities for plan evaluation when coupled to fast dose cal-
culation algorithms such as DoTA or iDoTA. Furthermore, few (3-5) representa-
tive scenarios corresponding to points around mean of the posterior distribution
can be sampled to be used for scenario-based anatomically robust optimization
of proton treatment plans, or for patient-specific target margin individualization
or optimization in photon plans, which may translate into a dosimetric advan-
tage. In principle, the same generic modeling framework could be applied to any
treatment site (e.g., pancreatic tumors), provided that a dataset with planning
and repeated imaging is available, e.g., CT or magnetic resonance (MR). Other
applications involve formulating anatomical robustness recipes (van der Voort
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et al., 2016) that jointly cover range, setup and anatomical uncertainties.

• Focusing on intra-fraction breathing variations, a semi-supervised probabilistic
framework was applied to model breathing signals. When coupled to the pre-
sented pre-processing and post-processing steps, the novel semi-supervised ad-
versarial autoencoder algorithm can accurately generate realistic, artificial breath-
ing signals. Besides applications to simulate breathing during the delivery of ra-
diation therapy treatments, the SAAE framework can in principle be applied for
computer aided diagnosis of breathing abnormalities, as well as for dataset aug-
mentation when the available data for a patient is scarce. An example is clas-
sifying breathing irregularities and generating additional samples that present
the identified irregularity. One of the advantages of training the proposed frame-
work in a semi-supervised way is the possibility to build such models requir-
ing only a small subset of labeled data. The proposed model can in principle
be applied to any other kind of biomedical data that shows a repetitive or pe-
riodic structure, like electrocardiogram (ECG) signals composed of well-defined
intervals randomly varying in amplitude and length. The added advantage of the
proposed generative approach with respect to other models in the literature that
do not explicitly model the data distribution (Delaney et al., 2019; F. Zhu et al.,
2019) is the possibility to map the data samples to specific regions or classes in
the latent space, enabling classification and generation of class-specific data by
sampling latent variables from the desired regions.

• To demonstrate the application of the breathing signal models in proton therapy
treatments, an interplay effect quantification tool was introduced, calculating
the dose dynamically delivered in moving lung tumors. The method can be used
to evaluate robustness of treatment plans against intra-fraction breathing move-
ments by sampling many different breathing signals (much more realistic than
currently used sinusoidal approximations) and estimating the dose delivered for
each scenario. The interplay calculation tool was applied to compare robust-
ness of 4DCT and internal target volume (ITV) based treatment plans, showing
the clear superiority of 4DCT robust treatment planning. Even though only 8
patients were used for such comparison, the results show that ITV plans consis-
tently fail to meet the prescribed clinical objectives, indicating that the current
ITV planning methodology may under-perform and need further scrutiny.

7.2. Recommendations
The presented models allow fast anatomy change modeling and corresponding dose
calculation, thus solving a challenge in robust planning, robustness evaluation and
possibly online adaptation. Future research should focus on extending the capabili-
ties of the dose calculation algorithms, while further validating the intra-fraction and
inter-fraction models to enable their implementation in the clinic.

To be a truly generic dose calculation tool such as physics-based algorithms that
can be applied in any clinic with minimal effort, a single DoTA model should be able
to process machine and beam characteristics, such as the angle or shape of the beam,
which could be added as additional input tokens in the sequence, as it is done with
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the beam energy. DoTA’s spectrum of applications can be extended to predicting ad-
ditional quantities, e.g., particle flux, estimating radiobiological weighted dose — typ-
ically significantly slower to simulate with MC methods than pure physical dose cal-
culation — and potentially even speeding up DNA damage MC simulation tools (Fad-
degon et al., 2020; Perl et al., 2012). A clinically highly relevant follow-up study is to
include geometries with metallic implants in the training dataset and ensuring predic-
tion accuracy in such challenging geometries too. DoTA also offers great potential to
speed up dose calculation times in heavy ion treatments with particles such as carbon
and helium. Such heavy ions share similar, mostly forward scatter physics, with MC
dose calculations that often take much longer to simulate given the larger amount of
secondary particles generated as the beam travels through the patient.

Similar to DoTA, future work to increase iDoTA’s generalization capabilities could
focus on including 2D aperture shapes, machine or beam characteristics via tokens
into the sequence, removing the dependence on the current 3D input beam intensity
shape, and thus potentially reducing computation times. For MR image-guided treat-
ments, the magnetic field strength could even be added as an additional token in the
sequence, similar to the energy token in previous transformer-based proton dose pre-
diction models. Compared to previous works (Tsekas et al., 2021; F. Xiao et al., 2022),
such deep learning model would be the first to predict high accuracy dose distributions
in few milliseconds given an input image and the magnetic field strength.

Several modifications can also improve and extend DAM capabilities. Focusing on
performance, using multiple resolution levels (Kohl et al., 2019; Krebs et al., 2019; Søn-
derby et al., 2016) could increase the quality of the modeled deformations, by cap-
turing different types of the deformations per level, e.g., the coarser resolution level
modeling global deformations, with finer levels focusing on more specific, local move-
ments. Further extensions include adding temporal dependence for treatments where
patients’ anatomies change following a clear pattern during, e.g., simulating anatomies
changing gradually during the fraction due to periodical breathing or over the differ-
ent fractions of the treatment as a result of progressive changes such as tumor shrink-
age. Compared to 4DCT images, such time-dependent model would offer continuous
anatomy changes through a breathing cycle, which could be coupled to interplay ef-
fect simulation tools in Chapter 6 and the breathing signal models in Chapter 5 to ob-
tain treatment plans that mitigate the detrimental effect of movement during delivery.
Furthermore, to solve the problem of working with masked rectum structures, a sim-
ilar probabilistic generative model based on a variational autoencoder could fill the
deformed contours with realistic gray values, enabling DAM’s application to photon
workflows using beams traversing the rectum.

For fast robustness evaluation or robust optimization of treatment plans against
inter-fraction motion, DAM must be coupled to a fast dose calculation such as DoTA.
Alternatively, polynomial chaos expansion (PCE) methods can be used to establish a
dependence between latent variables in DAM and dose values, enabling quick pre-
diction of the dose for each latent value combination. Such PCE methods have been
previously successfully applied to model the dependence between range and position-
ing errors and the corresponding dose (Perkó et al., 2016). PCE methods can simulate
thousands of dose distributions for many different error scenarios in seconds, but they
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are built using few tens to few hundred ground-truth scenarios calculated with the ref-
erence dose calculation algorithm. As a result, DoTA may be better suited for time-
sensitive applications requiring few representative error scenarios such as robust opti-
mization, while PCE may be more advantageous in robustness evaluation protocols ne-
cessitating detailed statistics. Extending the PCE methodology to include intra-fraction
movements could further result in robustness recipes producing treatment plans that
are jointly robust against most position, range and organ motion errors. Most impor-
tantly, to finally implement DAM in the clinic, a thorough quality assurance protocol
that evaluates prediction robustness (different from treatment plan robustness) is re-
quired e.g., by training several models using different datasets from different institu-
tions and machines, and evaluating result similarity on a common external test dataset.

One of the main bottlenecks preventing the presented interplay calculation tool to
be applied in the clinics, is the speed of the image registration. For testing plan ro-
bustness against inter-fraction anatomical uncertainties together with positioning and
range errors, the dose needs to be recalculated and deformed in each scenario, imply-
ing long computation times of tens of minutes due to the required image registration
steps between the reference phase and each of the breathing phases. Recently, deep
learning models have achieved state-of-the-art accuracy and prediction times in regis-
tration tasks too. Thus, substituting the original pencil beam dose and cubic spline reg-
istration algorithms in the presented interplay calculation tool by deep learning mod-
els such as DoTA or Voxelmorph (Balakrishnan et al., 2018, 2019; Dalca, Balakrishnan,
et al., 2019; Dalca, Yu, et al., 2019) can reduce the simulation of a dynamically delivered
dose from the current ≈ 8 minutes to several seconds, providing the needed speed to
evaluate interplay robustness in clinical times.

Offering fast dose calculation and anatomical change modeling, the presented mod-
els are some of the missing pieces needed for clinical automated adaptation of treat-
ment plans. Within the online adaptation workflow, DoTA and iDoTA can be used to
quickly calculate the dose delivered in the new anatomy using the original plan and
subsequently re-optimize plans or restore doses, while the interplay calculation tool
can be used to quickly evaluate robustness. To be finally applied in the clinic, these
models should be coupled to automatic segmentation and registration models and
fast optimization solvers, while being continuously monitored and retrained using the
available clinical data.
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A
Lower bound derivation

Even though there are different ways to obtain the ELBO, the most common derivation
is based on Jensen’s inequality. For a concave function such as the natural logarithm
the Jensen inequality states that

log
(
E[a]

)≥ E [log(a)].

A.1. Lower bound of breathing models
Starting from the marginal likelihood of the probabilistic model, the expression of the
lower bound can be obtained as

log (Pθ(x)) = log
∫

Pθ(x , z)d z (A.1)

= log
∫

Pθ(x , z)
Qφ(z |x)

Qφ(z |x)
d z (A.2)

= log Ez∼Qφ(z |x)

[ Pθ(x , z)

Qφ(z |x)

]
(A.3)

≥ Ez∼Qφ(z |x)

[
log

( Pθ(x , z)

Qφ(z |x)

)]
(A.4)

= Ez∼Qφ(z |x)

[
log

(Pθ(x |z) P (z))

Qφ(z |x)

)]
(A.5)

= Ez∼Qφ(z |x)[log Pθ(x |z)]−DK L(Qφ(z |x)||P (z)), (A.6)

where the KL-divergence DK L is defined as

DK L(P (x)||Q(x)) =
∫

log
( P (x)

Q(x)

)
P (x) d x = Ex∼P (x) log

( P (x)

Q(x)

)
. (A.7)
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120 A. Lower bound derivation

The output of the probabilistic decoder is the likelihood conditional distribution
Pθ(x |z). This distribution is represented as a multivariate Gaussian probability dis-
tribution with identity covariance matrix Pθ(x |z) = N (x ; fθ(z), I ), where the function
fθ(z) : Z →RM is parametrized with an ANN and represents the mean. The log-likelihood
is formulated as

log(Pθ(x |z)) = log

(
1√

(2π)M |I |
exp

(
− 1

2
(x − fθ(z))T I−1(x − fθ(z))

))
∝ 1

2
∥x − fθ(z)∥2

2,

(A.8)
This result has the same form as the squared error (SE), which is computed for the

model output x̂ approximating the true output x as

SE = ∥x − x̂∥2
2. (A.9)

Thus, minimizing the log-likelihood with respect to the parameters θ (which is
done by approximating the expectation Ez∼Qφ(z |x) log(Pθ(x |z)) by taking Monte Carlo
samples for z ∼ Qφ(z |x)) yields the same result as minimizing the SE. On the other
hand, when p and q are both Gaussian distributions, the KL-divergence can be com-
puted in closed form. In our case the prior is P (z) = N (z ;0, I ) and the encoder dis-
tribution is Qφ(z |x) = N (z ;µ(x),diagσ(x)2). For an N-dimensional latent space, the
KL-divergence can be analytically computed as:

DK L(Qφ(z |x)||P (z)) = 1

2

(
−

N∑
i

(logσ(x)2
i +1)+

N∑
i
σ(x)2

i +
N∑
i
µ(x)2

i

)
. (A.10)

Note that the contribution of the KL-divergence to the lower bound scales linearly
with the latent dimensionality, so an increase in the lower bound caused by an increase
of the latent space dimensionality could in theory be compensated by increasing the
variance of the approximated posterior Qφ(z |x) (lower KL-divergence per latent di-
mension).

A.2. Lower bound of organ models
Starting from the marginal likelihood of the probabilistic model in Equation 4.6, the
lower bound is obtained as

log (Pθ(y |x , sx )) = log
∫

Pθ(y |z , x , sx )P (z |x , sx )d z (A.11)

= log Ez∼Qφ(z |x ,sx ,y ,sy )

[Pθ(y |z , x , sx )P (z |x , sx )

Qφ(z |x , sx , y , sy )

]
(A.12)

≥ Ez∼Qφ(z |x ,sx ,y ,sy )

[
log

(Pθ(y |z , x , sx )P (z |x , sx )

Qφ(z |x , sx , y , sy )

)]
(A.13)

= Ez∼Qφ(z |x ,sx ,y ,sy )[log Pθ(y |z , x , sx )]−DK L(Qφ(z |x , sx , y , sy )||P (z |x , sx )).

(A.14)



B
Adversarial variational objective

AAEs do not optimize the exact variational lower bound, but an approximation. This
section describes the approximated variational objective in AAEs. Let x be the data un-
derlying data generating distribution PD (x) that we want to approximate, z be the cor-
responding latent variables with prior distribution P (z) =N (z ;0, I ), and η be random
noise with distribution p(η) = N (η;0,1). In (Makhzani et al., 2016), the authors pro-
pose to regularize the latent space by introducing a discriminator model, modeled also
with an ANN with mapping function dξ(z) : Z → R that outputs a single scalar logit.
The discriminator is assumed to be capable of approximating any function. Given the
encoder mapping gφ(z |x ,η) : X ×H → Z , and the approximated posterior distribu-
tion Qφ(z |x) = ∫

δ(z − gφ(x ,η))P (η)dη, the adversarial regularization objective maxi-
mization can be formulated as

max
ξ

Ez∼P (z)[log(S(dξ(z)))]+Ex∼PD (x)Ez∼Qφ(z |x)[log(1−S(dξ(z)))] (B.1)

= max
ξ

∫
p(z) log(S(dξ(z)))d z +

∫ ∫
PD (x)Qφ(z |x) log(1−S(dξ(z)))d zd x (B.2)

= max
ξ

∫ [
P (z) log(S(dξ(z)))+

∫
PD (x)Qφ(z |x) log(1−S(dξ(z)))d x

]
d z . (B.3)

In the last step, we applied Fubini’s theorem to change the order in the integration.
As in (Goodfellow et al., 2014) and (Mescheder et al., 2017), it can be shown that the
discriminator achieves its optimum value at

d∗
ξ (z) = log(P (z))− log

(∫
Qφ(z |x)PD (x)d x

)
= log(P (z))− log(Qφ(z)). (B.4)

This follows from the fact that for any (a,b) ∈R2 \[0,0], a function that has the form
f (h) = a logh +b log(1−h) attains it maximum in [0,1] at h = a/(a +b). Thus, the opti-
mum value of Equation B.3 is
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122 B. Adversarial variational objective

S(d∗
ξ (z)) = P (z)

P (z)+∫
Qφ(z |x)PD (x)d x

, (B.5)

which is equivalent to Equation B.4. The lower bound in Equation 5.5 can be reformu-
lated based on the definition of the KL divergence in Equation A.7 as

Ex∼PD (x)[log(Pθ(x))] ≥ Ex∼PD (x)Ez∼Qφ(z |x)[log(Pθ(x |z))]− (B.6)

Ex∼PD (x)[DK L(Qφ(z |x)||P (z))] (B.7)

= Ex∼PD (x)Ez∼Qφ(z |x)[log(Pθ(x |z))]+
Ex∼PD (x)Ez∼Qφ(z |x)[log(P (z))− log(Qφ(z |x))]. (B.8)

As described in (Makhzani et al., 2016), the AAE algorithm replaces the last term
in Equation B.8 (regularization term, equivalent to the KL term) with "an adversarial
procedure that encourages Qφ(z)) to match to the whole distribution of P (z)". Math-
ematically, this translates into replacing the KL term with Ex∼PD (x)Ez∼Qφ(z |x)[d∗

ξ
(z)], ef-

fectively approximating the variational bound as

Ex∼PD (x) log (Pθ(x)) ≥ Ex∼PD (x)Ez∼Qφ(z |x)[log(Pθ(x |z))]+Ex∼PD (x)Ez∼Qφ(z |x)[d
∗
ξ (z)] (B.9)

= Ex∼PD (x)Ez∼Qφ(z |x)[log(Pθ(x |z))]−DK L(Qφ(z)||P (z)), (B.10)

where, compared to the bound in Equation B.6, the term Ex∼PD (x)[DK L(Qφ(z |x)||P (z))]
is approximated with DK L(Qφ(z)||P (z)). As a result, the AAE translates into a modified
variational objective that does not preserve the original formulation.



Nomenclature

Math
symbols

Description

x Model input variables.
y Model output variables.
ŷ Ground-truth outputs in dataset.
z Continuous latent variables.
c Discrete latent variables.

M
Input dimensionality, typically a 3D voxel grid of M =
H ×W ×L of height H , width W and depth L.

N Latent space dimensionality.
D Token dimensionality (for transformers).
θ Model parameters.
φ Parameters of the variational inference network.
ξ Parameters of a discriminator neural network.
h Token sequence, input of a transformer neural network.

r
Positional embedding, input to a transformer neural
network.

W Matrix of weights of a linear transformation.
q Queries in a self attention operation.
k Keys in a self attention operation.
v Values in a self attention operation.
A Attention matrix with dynamic weights.

κ
Additional model input variable with beam shape in-
formation.

sx Organ structure masks from image x .
ŝx Ground-truth organ structure masks from image x .
p 3D Cartesian coordinates of a given point.
Φ Diffeomorphic deformation vector field.
u Stationary velocity field characterizingΦ.
λi Hyper-parameter multiplying the i th loss term.

P (x)
Probability distribution function of a random variable
x.

Q(x)
Posterior probability distribution function of a random
variable x

P∗(x)
Underlying unknown ground truth probability distri-
bution function (to be approximated).

PD (x) Empirical distribution of data points x in dataset.
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124 Nomenclature

fθ, gφ,dξ
Functions computed by neural network with parame-
ters θ,φ,ξ, respectively.

DK L(P |Q)
Kullback-Leibler divergence between probability distri-
butions P (x) and Q(x).

N (x;µ,σ)
Gaussian probability distribution of variable x with
mean µ and standard deviation σ.

Cat(x;ζ)
Categorical distribution of variable x with vector of
probabilities for each class ζ.

τ
Vector of time and position stamps of a breathing sig-
nal.

T Breathing period of a breathing signal.
A Breathing amplitude of a breathing signal.
δn
Λ nth - percentile of a quantity of interestΛ.

∥a∥1
L1 norm of vector a, calculated as the sum of the abso-
lute value of its elements.

∥a∥2
L2 norm of vector a, calculated as the square root of the
sum of the squares of its elements.

Metrics Description Units
γ(p) Gamma value for a voxel centered at point p . -

Γ(dt a ,dd )
Gamma analysis with distance-to-agreement dt a and
dose difference dd criteria.

-

ρ Average absolute error, relative to the maximum value. %
Dp Prescribed dose. Gy
Dv Minimum dose received by v% of the volume. Gy

V f
Fraction of the volume receiving at least a percentage f
of the prescribed dose.

%

H I Homogeneity index, calculated as (D2 −D98)/Dp . -

V107/95

Fraction of the volume receiving a dose between the
95% and 107% of the prescribed dose, calculated as
V107 + (1−V95).

%

RDEΛ1,Λ2

Error between two quantities of interestΛ1 andΛ2, rel-
ative to a reference value (e.g., the prescribed dose).

%

MSE
Mean squared error between predictions y and ground-
truth values ŷ .

(Same as y)2

RMSE
Root mean squared error between predictions y and
ground-truth values ŷ .

Same as y

CC
Cross correlation between between predictions y and
ground-truth values ŷ .

-

Radiotherapy
abbreviations

Description

RT Radiation therapy.



Nomenclature 125

CT Computed tomography.
MR Magnetic resonance.
DVH Dose volume histogram.
HU Hounsfield unit.
PBA Pencil beam algorithm.
MC Monte Carlo.
DVF Deformation vector field.
IMRT Intensity modulated radiation therapy.
IMPT Intensity modulated proton therapy.
VMAT Volumetric modulated arc therapy.
4DCT Four-dimensional computed tomography.
ITV Internal target volume.
GTV Gross tumor volume.
CTV Clinical target volume.
PTV Planning target volume.

Deep learning
abbreviations

Description

ANN Artificial neural network.
GAN Generative adversarial network.
VAE Variational autoencoder.
AAE Adversarial autoencoder.
SA Self-attention.
MSA Multi-head self attention.
ReLU Rectified linear unit activation.
MLP Multi layer perceptron.
SGD Stochastic gradient descent.

Other Description
PCA Principal component analysis.
GPU Graphics processing unit.
MeV Mega electron-volt (beam energy unit).
H&N Head and neck.
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