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Summary

Single-photon emission computed tomography (SPECT) is awell-establishednuclear imag-
ing modality for studying functional and pathological properties of the brain. Conven-
tional general purpose SPECT systems typically offer a spatial resolution of about 10 mm
with a sensitivity of 0.01-0.02%. A few dedicated brain SPECT scanners have been pro-
posed, but resolutions and sensitivities are no better than 7 mm and 0.03% respectively,
and some of these scanners are notmanufactured anymore. This limited resolution ham-
pers detection of localized brain abnormalities, while the low sensitivity requires a long
scanning time that limits fast dynamic studies. Besides a compromised resolution and
sensitivity, conventional SPECT systems require rotation of heavy detectors to obtain
sufficient angular projections, which hamper fast dynamic imaging.

To copewith several limitations of conventional SPECT, a prototype clinical systemdubbed
G-SPECT-Iwas launched byMIlabs BV (Utrecht, theNetherlands). It is based on the use of
a stationary combination of an exchangeable multiple-pinhole collimator and nine large
field-of-view detectors. For objects the size of a human head, G-SPECT-I achieved an
unprecedented reconstructed resolution down to 2.5 mm with a 0.042% peak sensitiv-
ity and a reconstructed resolution of 3.5 mm with a 0.090% peak sensitivity, when using
collimators with an inner diameter of ∼ 38 cm and a respective pinhole diameter of 3.0
and 4.5 mm.

Due to its stationary detector geometry, rotation of heavy detectors (hundreds of ki-
los) and collimators is not required for G-SPECT-I, which can be an advantage for fast
dynamic imaging. G-SPECT-I employs a geometry in which all pinholes are simultane-
ously viewing a central volume. This focusing geometry results in a central region that is
subject to complete sampling and therefore can be imaged in a fully stationary mode. To
expand the volume that is sampled sufficiently, the patient bed is translated during imag-
ing. Thus, G-SPECT-I offers the flexibility of performing fully stationary confined-region
scans while also allowing for extended volume scans in which only the bed needs to be
translated. For brain scanning with G-SPECT-I, the overhead time for a bed translation
during scanning is currently ∼ 1.7 s, meaning that for fast dynamic scans of a larger area
or the entire head, a significant fraction of the acquisition time could still be lost. To en-
able fast dynamic SPECT imaging, image acquisition protocols with a minimized number
of bed translations with G-SPECT-I were developed in this thesis.

For brain SPECT, two important applications are dopamine transporter imaging (DaTscan)
using the tracer ¹²³I-FP-CIT and brain perfusion imaging using 99𝑚Tc-labelled tracers
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vi Summary

(99𝑚Tc-HMPAO or 99𝑚Tc-ECD). The former provides a visualization of dopamine trans-
porters in the brain’s striatum for diagnosis of e.g., Parkinson’s disease. Perfusion imaging
is often applied to the entire brain for assessment of e.g. cerebrovascular diseases or de-
tection of epileptic foci. In this thesis, we developed dedicated optimal bed trajectories
for both applications based on simulation studies. Specifically, for DaTscan imaging, we
proposed a focused striatum scanning strategy to maximize the striatal count yield while
ensuring appropriate sampling for surrounding brain tissue; for full brain perfusion imag-
ing, we confined the scan region to the minimum required and investigated the effect of
reduction of the number of bed translations on perfusion image quality. Evaluation of
the proposed strategies were performed using corresponding clinical assessment crite-
ria. Results show that G-SPECT-I is able to achieve a focused DaTscan with only 4 bed
translations while a full brain perfusion scan can be achieved with only 18 bed transla-
tions. As a consequence, the corresponding overhead times for the bed movement are
only seconds or half a minute respectively, which facilitates fast dynamic brain imaging
using the G-SPECT-I technology.

Apart from optimizing image acquisition, we investigated accurate attenuation map es-
timation for brain SPECT imaging solely using emission data. In clinical SPECT, atten-
uation correction can be applied to obtain images that provide quantitative information
on the regional activity concentration. This correction generally requires an attenua-
tion map, usually derived from a registered CT scan, that gives the attenuation coeffi-
cient at each voxel in the patient. However, such a CT scan is often not available and
errors in image registration can induce inaccuracies in the attenuation corrected SPECT
images. Alternatively, the scattered photons from the SPECT emission data contain es-
sential information about the tissue attenuation coefficient. In this thesis, we proposed
to extract this information using deep learning techniques. To this end, we performed
multiple image reconstructions from different energy windows to employ the energy-
spatial information of the photons over a broad energy range (primary and scattered).
This image set is subsequently used as input to a convolutional neural network (CNN) to
generate a SPECT-aligned attenuation map as output. Using Monte Carlo simulations,
the proposed CNNmethod was validated for full brain perfusion imaging and for focused
DaTscan imaging with G-SPECT-I. Different CNN architectures were investigated for an
optimal application on the focused DaTscans. Results show that CNNs can be employed
to estimate accurate attenuation maps using SPECT data only, which could allow for at-
tenuation correction to be independent of data from other imaging modalities.

Although the proposed strategies presented in this thesis show promising results, the
studies were solely based on simulations. Future validation using patient scans is essen-
tial to bring the developed methods closer to clinical applicability.



Samenvatting

Single-photon emission computed tomography (SPECT) is een veel gebruikte nucleaire
beeldvormende methode voor het bestuderen van functionele en pathologische eigen-
schappen van de hersenen. Conventionele SPECT systemen voor algemene doeleinden
hebben doorgaans een ruimtelijke resolutie van ongeveer 10 mm met een gevoeligheid
van 0.01-0.02%. Er zijn enkele specifieke SPECT scanners voor hersenen ontwikkeld,
maar resoluties en gevoeligheden zijn niet beter dan respectievelijk 7 mm en 0.03%, en
sommige van deze scanners worden niet meer geproduceerd. Deze beperkte resolutie
belemmert de detectie van gelokaliseerde hersenafwijkingen, terwijl de lage gevoeligheid
een lange scantijd vereist, wat resulteert in een verhoogd risico op bewegingsartefacten
en grenzen aan snelle dynamische studies. Naast een matige resolutie en gevoeligheid,
vereisen conventionele SPECT systemen rotatie van zware detectoren om voldoende
hoekprojecties te verkrijgen, wat een snelle dynamische beeldvorming belemmert.

Om het hoofd te bieden aan verschillende beperkingen van conventionele SPECT, werd
een prototype klinisch systeemgenaamdG-SPECT-I gelanceerd doorMIlabs BV (Utrecht,
Nederland). Het is gebaseerd op het gebruik van een stationaire combinatie van een ver-
wisselbare collimator met meerdere pinholes en negen grote detectoren. Voor objecten
ter grootte van een menselijk hoofd behaalde G-SPECT-I een ongekende gereconstru-
eerde resolutie tot 2.5 mm met een piekgevoeligheid van 0.042% en een gereconstru-
eerde resolutie van 3.5 mm met een piekgevoeligheid van 0.090% bij gebruik van colli-
matoren met een binnendiameter van ∼ 38 cm en pinhole-diameters van respectievelijk
3.0 en 4.5 mm.

Vanwege de stationaire detectorgeometrie is rotatie van zware detectoren (honderden
kilo’s) en collimatoren niet vereist voor G-SPECT-I, wat een voordeel kan zijn voor snelle
dynamische beeldvorming. G-SPECT-I maakt gebruik van een geometrie waarin alle pin-
holes tegelijkertijd een centraal volume bekijken. Deze focusseergeometrie resulteert in
een centraal gebied met volledige bemonstering en kan daarom worden afgebeeld in een
volledig stationaire modus. Om het volume dat voldoende wordt bemonsterd uit te brei-
den, wordt het patiëntbed tijdens beeldvorming getransleerd. G-SPECT-I biedt daarmee
de flexibiliteit om volledig stationaire scans van beperkte gebieden uit te voeren, terwijl
ook uitgebreide volumescans mogelijk zijn waarbij alleen het bed hoeft te worden ge-
transleerd. Voor hersenscans met G-SPECT-I is de overheadtijd voor een bedtranslatie
tijdens het scannen momenteel ∼ 1.7 s, wat betekent dat voor snelle dynamische scans
van een groter gebied of het hele hoofd, een aanzienlijk deel van de acquisitietijd nog
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viii Samenvatting

steeds verloren zou kunnen gaan. Om snelle dynamische SPECT beeldvorming moge-
lijk te maken, werden in dit proefschrift beeldacquisitieprotocollen ontwikkeld met een
minimaal aantal bedtranslaties met G-SPECT-I.

Voor hersen SPECT zijn twee belangrijke toepassingen dopamine transporter beeldvor-
ming (DaTscan) met behulp van de tracer ¹²³I-FP-CIT en beeldvorming van de hersenper-
fusie met behulp van 99𝑚Tc-gelabelde tracers (99𝑚Tc-HMPAO of 99𝑚Tc-ECD). De eerste
geeft een visualisatie van dopamine transporters in het striatum van de hersenen voor
de diagnose van bijvoorbeeld de ziekte van Parkinson. Perfusiebeeldvorming wordt vaak
toegepast op de gehele hersenen voor beoordeling van b.v. cerebrovasculaire ziekten of
detectie van epileptische haarden. In dit proefschrift hebben we optimale bedtrajecten
speciaal ontwikkeld voor beide toepassingen op basis van simulatiestudies. Specifiek,
voor DaTscan beeldvorming, hebben we een gefocuste striatum scanstrategie voorge-
steld om de telopbrengst van het striatum te maximaliseren en tegelijkertijd de juiste
bemonstering voor omringend hersenweefsel te garanderen; voor beeldvorming van de
perfusie van de volledige hersenen hebben we het scangebied tot het minimum vereiste
beperkt en het effect van reductievan het aantal bedtranslaties op de beeldkwaliteit van
de perfusie onderzocht. Evaluatie van de voorgestelde strategieën werd uitgevoerd met
behulp van toepasselijke klinische beoordelingscriteria. De resultaten tonen aan dat G-
SPECT-I in staat is om een gerichte DaTscan te bereiken met slechts 4 bedtranslaties en
een volledige hersenperfusiescan kan worden bereikt met slechts 18 bedtranbslateis. Als
gevolg hiervan zijn de bijbehorende overheadtijden voor de bedtranslaties respectieve-
lijk slechts seconden of een halve minuut, wat snelle dynamische beeldvorming van de
hersenen mogelijk maakt met behulp van de G-SPECT-I technologie.

Afgezien vanhet optimaliseren vande beeldacquisitie, hebbenwe eennauwkeurige schat-
ting van de verzwakkingskaart voor hersen SPECT beeldvorming onderzocht, alleen op
basis van emissiegegevens. In klinische SPECT kan verzwakkingscorrectie worden toege-
past om beelden te verkrijgen die kwantitatieve informatie verschaffen over de regionale
activiteits concentratie. Deze correctie vereist in het algemeen een verzwakkingskaart,
meestal afgeleid van een geregistreerde CT scan, die de verzwakkingscoëfficiënt bij elke
voxel in de patiënt geeft. Een dergelijke CT scan is echter vaak niet beschikbaar en fou-
ten in de beeldregistratie kunnen onnauwkeurigheden veroorzaken in de voor verzwak-
king gecorrigeerde SPECT beelden. Als alternatief kunnen de verstrooide fotonen van
de SPECT tracer essentiële informatie over de weefselverzwakkingscoëfficiënt verschaf-
fen. In dit proefschrift hebben we voorgesteld om deze informatie uit de emissie data
te halen met behulp van deep learning technieken. Daartoe hebben we meerdere beeld-
reconstructies uitgevoerd met verschillende energievensters om de energieruimtelijke
informatie van de fotonen over een breed energiebereik (primair en verstrooid) te ge-
bruiken. Deze beeldsets worden vervolgens gebruikt als invoer voor een convolutioneel
neuraal netwerk (CNN) om een met SPECT uitgelijnde verzwakkingskaart als uitvoer te
genereren. Met behulp van Monte Carlo simulaties werd de voorgestelde CNN methode
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gevalideerd voor beeldvorming van de volledige hersenperfusie en voor gefocuste DaTs-
can beeldvorming met G-SPECT-I. Verschillende CNN architecturen werden onderzocht
voor een optimale toepassing op de gefocuste DaTscans. Resultaten tonen aan dat CNN’s
kunnen worden gebruikt om nauwkeurige verzwakkingskaarten te schatten met alleen
SPECT gegevens, waardoor verzwakkingscorrectie onafhankelijk kan zijn van gegevens
van andere beeldvormingsmodaliteiten.

Hoewel de voorgestelde strategieën in dit proefschrift veelbelovende resultaten laten
zien, waren de studies uitsluitend gebaseerd op simulaties. Toekomstige validatie met
behulp van patiëntenscans is essentieel omdeontwikkeldemethodendichter bij klinische
toepasbaarheid te brengen.





1
Introduction

1.1. Radionuclide imaging

1.1.1. SPECT and PET

Single-photon emission computed tomography (SPECT) is one of the major clinical ra-
dionuclide imaging techniques for studying e.g. cardiac, liver, thyroid, bone and brain
abnormalities. In SPECT, radiolabelled molecules (“tracers”) are injected into the body
and subsequently accumulate at specific tissues. SPECT systems estimate the 3D dis-
tribution of the tracer by detecting gamma photons emitted by the tracer leaving the
patient, and the resulting SPECT images that can be displayed on a screen give insights
into functional and pathological properties of the tissue.

SPECThas often been comparedwith PET, another important nuclear imaging technique.
A major difference between SPECT and PET lies in the nature of the radioactive decay of
their tracers: a SPECT tracer decays by emitting single gamma photons with a typical
energy of 75-360 keV, while decay of a PET tracer results in the emission of pairs of an-
nihilation photons with a fixed energy of 511 keV (for all positron emitters). Thus, SPECT
permits simultaneous imaging ofmultiple tracers by separating them based on their pho-
ton emission energies. This is not possible with PET as annihilation photons from dif-
ferent PET tracers are indistinguishable by energy. Furthermore, SPECT tracers often
apply long living radionuclides that allow for long-distance transportation from produc-
tion site to hospital while PET tracers are usually more short-lived requiring tracers to be
produced close to clinical facilities. Besides, different gamma photon collimation prin-
ciples are used in clinical SPECT and PET: SPECT relies on mechanical collimation to
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obtain directional information of the detected gamma photons while clinical PET is com-
monly based on electronic collimation, meaning that the direction of the two annihilation
photons detected in coincidence is assumed to be given by the line joining the two de-
tected locations. The different collimation techniques lead to a difference in resolution
and sensitivity of clinical conventional SPECT systems (about 8-10 mm and 0.01-0.02%
respectively) and PET systems (about 4 mm and 1% respectively). Additionally, the use of
different techniques result in a significant difference in costs; SPECT is generally much
more cost-efficient than PET (scanners are typically 4 times cheaper [1, 2]). Generally,
SPECT and PET are highly complementary technologies that have overlapping but unique
applications. The choice of either modality largely depends on the clinical task as well
as the availability of systems and tracers. Currently, about 75% of the clinical nuclear
imaging procedures are performed with SPECT [3]. Worldwide, about 40 million SPECT
scans are annually performed, while in the Netherlands, around 250,000 SPECT exami-
nations are conducted each year [4]. In this thesis, we focus on clinical SPECT imaging for
assessment of brain abnormities based on a newly developed prototype SPECT system.

1.1.2. SPECT application for brain imaging

Two important applications of brain SPECT are DaTscans using ¹²³I-FP-CIT (159 keV) as
a tracer and brain perfusion scans with 99𝑚Tc-labelled tracers (99𝑚Tc-HMPAO or 99𝑚Tc-
ECD at 140 keV).

DaTscans provide visualization of the dopamine transporter (DaT) density in the brain
(Fig 1.1). Dopamine is a neurotransmitter found in the brain’s striatum that regulates ac-
tivities such as movement and emotion. Therefore, a DaTscan is useful in evaluation
of patients with suspected parkinsonian syndromes (a group of diseases sharing simi-
lar symptoms of slow movement, resting tremor and trouble walking). For patients with
Parkinson’s disease (PD), dementia with Lewy body, or other parkinsonian syndromes due
to neurodegeneration, an abnormal DaTscan with a reduced DaT density is observed. An
illustration of the shape and location of the striatum as well as several clinical DaTscans
are given in figure 1.1 (a-b).

Brain perfusion scans image regional cerebral perfusion (see Fig. 1.1c-d). As cerebral
blood flow is closely linked to neuronal activity, and thus the perfusion distribution can
indirectly reflect the cerebral metabolism level in different areas of the brain. A hyper-
perfusion pattern can be related to an increased neuronal activity (e.g. in epilepsy) while
hypo-perfusion might be associated with impaired cerebral function. SPECT is the only
imaging modality that is capable of an ictal perfusion scan in routine clinical settings for
epileptic foci detection. This is accomplished by the rapid injection of the 99𝑚Tc-labelled
tracer (99𝑚Tc-HMPAO or 99𝑚Tc-ECD) at the time of seizure onset. The tracer is trapped
in the tissue compartment and does not change its relative distribution over time, which
allows a SPECT scan several hours after the injection when the patient is sedated. Be-
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Figure 1.1: Examples of DaTscans and brain perfusion scans. (a) Illustration of the shape and location of the
striatum (target structure for a DaTscan); the tracer ¹²³I-FP-CIT binds selectively to the striatum with high
affinity. (b) Examples of a DaTscan obtained from a patient with Parkinson’s disease and from a patient with
essential tremor; note that Parkinson’s disease and essential tremor have overlapping clinical symptoms and
are difficult to distinguish based on clinical examinations only. (c) Illustration of a normal brain perfusion scan
with a tracer distribution over the entire brain; (d) examples of an interictal and an ictal SPECT scan; epileptic
foci can be detected by subtracting the interictal scan from the ictal scan. Examples in (b) and (d) are adapted
from [5, 6] with permission.

sides, brain perfusion scans can aid in medical cases for assessment of cerebrovascular
diseases, differential diagnosis of dementia, evaluation of brain traumatic injury and brain
death, etc.

1.2. SPECT systems

1.2.1. Gamma detectors and collimators

SPECT systems consist of gamma detectors and collimators. The detectors are mainly
based onNaI scintillators (a crystal that converts high-energy gammaphotons into visible
light photons) and photomultiplier tubes (PMTs, which absorb light photons and generate
electric signals with amplitude ideally proportional to the number of light photons that
reach the tube). For each incoming gamma photon that hits the detector, position and
energy are estimated by the position and the intensity of the electric pulses of the array
of PMTs. The typical intrinsic spatial resolution of the detector is 3-4 mm due to the
uncertainty of light collection and the light conversion process. The energy resolution
of the detector is around 10% for photons with an energy of 140 keV that are emitted by
99𝑚Tc (the most commonly used SPECT isotope).

Between the detector and the patient, a collimator is placed. Collimators are made of
dense materials with high stopping power (e.g. lead or tungsten) to reduce penetration
of high energy photons. Only gamma photons coming from certain directions can pass
the collimator and reach the detector. This way of selective blocking provides directional
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information on the detected gamma photons. Such information is necessary for later
retrieval of the 3D tracer distribution.

Several types of collimators have been proposed, and a few of them are illustrated in fig-
ure 2. The parallel-hole collimator is one of the most important and currently the most
widely used collimator in clinical practice. The pinhole collimator is another important
collimator used in some clinical systems and is now widely applied in preclinical SPECT
for animal imaging. Converging and diverging hole collimators are used in a few clini-
cal systems. Converging hole collimators can be further categorized into fan-beam and
cone-beam collimators. In the latter cone-beam case, the holes are tilted both in the
transaxial plane and in the axial direction. The parallel-hole and pinhole collimator are
explained in detail in the following text as they are most relevant for this thesis.

A parallel-hole collimator typically has a honeycomb structure, with each cell being a
long and narrow hole (see Fig. 1.2). Ideally at each detector pixel, only the accumulated
photons coming along a common single direction perpendicular to the detector surface
are recorded. In practice, each hole has a finite width and length, and thus photons
coming from a direction slightly deviating from the perpendicular view are also detected
(see Fig. 1.2). Wider and shorter holes permit more photons to pass and thus increase
count yield (higher sensitivity), however at the cost of a degraded spatial definition (lower
collimator resolution). A conventional parallel-hole general purpose system has a system
resolution (a combined detector and collimator resolution) of about 10 mm.

Figure 1.2: Illustration of (a) parallel-hole collimator, (b) pinhole collimator, (c) converging and (d) diverging hole
collimator.

A pinhole collimator is made of a large plate or a cylinder with one or multiple holes in it
(typically having a double cone shape, see Fig. 1.2). The pinhole permits an object to be
projected onto the detector with a magnification factor if the object-pinhole distance 𝑙 is
smaller than the pinhole-detector distance 𝑧. Thus, for objects smaller than the detector
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surface area, the crystal detector can be efficiently used (see also Fig. 1.3). Due to the
magnification, the effect of detector resolution is reduced by a factor of 𝑧/𝑙, while the
collimator resolution becomes𝐷(𝑧+𝑙)/𝑧where𝐷 is the pinhole diameter. By employing
a large number of pinholes and focusing them on the same region, a high sensitivity can
be obtained within the focal region of the pinholes.

Our group initially developed various multi-pinhole SPECT systems for preclinical pur-
poses that are nowadays in use by hundreds of researchers worldwide. Excellent res-
olutions of down to 0.12 mm and 0.25 mm for ex-vivo and in-vivo mice imaging were
achieved respectively [7, 8]. For clinical SPECT, multi-pinhole collimation systems are
mostly under investigation in research studies. A detailed overview is given in a recent
paper [9]. Currently, few multi-pinhole clinical scanners are on the market (one example
is the Discovery NM530c for cardiac SPECT). Recently, a prototype multi-pinhole sys-
tem launched by MIlabs BV (the Netherlands) has demonstrated a resolution of 2.5 mm
in physical phantom studies [10].

Figure 1.3: Projections using a parallel-hole collimator and a pinhole collimator. With parallel-hole collimation,
projections are blurred with a detector intrinsic resolution 𝑅𝑖. In contrast, projections can be magnified on the
detector with pinhole collimation, which results in an equivalent detector resolution of 𝑅𝑖(𝑙/𝑧). Here 𝑙 is the
object-pinhole distance and 𝑧 is the pinhole-detector distance.

1.2.2. Sampling completeness

To retrieve the 3D tracer distribution, multiple 2D projections on the detectors acquired
from different angles are needed for sufficient sampling. The sampling conditions for
SPECT imaging can in practice be categorized into i) angular sampling in the transaxial
plane (𝑥𝑦 plane) and ii) axial sampling (𝑧 direction).
Angular sampling completeness demands that every part of the object should have pro-
jections acquired from an orbit covering at least 180 degrees at sufficiently small angular
intervals. If part of the objects fails to have these projections, ‘projection truncation’
happens which might result in artefacts in the estimated 3D tracer distribution. Angular
sampling sufficiency can be achieved by rotating the detector-collimator (gantry) around
the patient. Current clinical SPECT systems with dual-head parallel-hole configurations
(themost prevalent) aremostly rotation-based. To obtain a total of 120 views (as generally
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recommended), 60 detector positions are needed for a dual-head scanner. Meanwhile,
the overhead time associated with rotation of heavy detectors (hundreds of kilos) could
be minutes, which hampers fast dynamic capabilities. Alternatively, stationary systems
that have multiple pinhole-collimated detectors mounted in a ring have been proposed
in several research groups [10–13]. Such a ring-based system could allow acquiring pro-
jections from different directions simultaneously without any rotation of the heavy de-
tectors, while a high sensitivity can be achieved with the use of multiple detectors.

For parallel-hole systems, holes in each collimator are directed towards a common di-
rection that is parallel to the transaxial plane (see Fig. 1.3). Axial sampling sufficiency is
obtained by scanning at different stops along the axial direction in a “step-and-shoot”
mode. For multi-pinhole systems, not all projection views are parallel to the transaxial
plane (as indicated by the dashed orange lines in Fig. 1.3). In principle, sampling com-
pleteness is only achieved for the central plane (as illustrated by the solid orange line
in Fig. 1.3). Practical ways to extend the region with sufficient axial sampling are using
multiple rings of pinholes and/or scanning at different stops along a spiral trajectory or
a multi-planar trajectory [14].

1.2.3.Multi-pinhole stationary G-SPECT-I system

Nowadays, clinical SPECT ismostly performedwith dual-head parallel-hole systems. Due
to the limited resolution and sensitivity of these systems (about 8-10 mm and 0.01-0.02%
respectively), attempts to improve the performance have been made, including the de-
velopment of triple-head fan beam systems (e.g. GCA-9300A and Prism 3000XP). While
for these systems the sensitivity was increased to around 0.03%, the resolution was only
slightly improved to about 7 mm, and these systems are available from a limited number
of vendors. Besides, a few SPECT systems dedicated for cardiac or brain imaging were
built. In dedicated cardiac systems (e.g. D-SPECT and Discovery NM 530c), detectors are
arranged in such a way that a high sensitivity (0.06-0.1%) is obtained in the heart region
while resolution is not much improved (about 10 mm). Particularly, Discovery NM 530c
is a multi-pinhole stationary system that does not require detector movement. For ded-
icated brain SPECT, scanners were constructed by using either sophisticated detectors
(e.g. Mediso X-Ring/4R), or a large number of focusing collimators and detectors (e.g.
NeuroFocus and inSpira HD with a resolution of about 7 mm). However, only few clinical
validations are available with the dedicated brain systems and some are not manufac-
tured anymore.

SPECT systems with multi-pinhole collimators have demonstrated enhanced resolution
and detection sensitivity especially when imaging small objects. Simulation studies were
carried out in several groups to optimize a multi-pinhole system geometry for clinical
purposes. Lately, a multi-pinhole prototype clinical G-SPECT-I system was launched by
MIlabs BV (Utrecht, the Netherlands). A few phantom scans have been performed, which
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demonstrated a superior resolution of G-SPECT-I down to 2.5 mm and a peak sensitiv-
ity of 0.042%. The superior resolution and sensitivity of G-SPECT-I is facilitated by the
use of a stationary combination of multi-pinhole collimators and nine large field-of-view
detectors. Owing to this stationary detector geometry, rotation of heavy detectors and
collimators is not needed, which can be an advantage of G-SPECT-I for fast dynamic
imaging. Additionally, while conventional parallel-hole collimators were designed for
imaging isotopes emitting gammas with a typical energy of around 140 keV, G-SPECT-I
permits imaging isotopes withmedium- and high-energy photons due to the better pen-
etration characteristics with pinholes. A high resolution of 4.5 mm was obtained when
imaging isotopes emitting gamma photons at 511 keV energy (MIlabs G-SPECT brochure,
www.milabs.com). Hence, G-SPECT-I might be a unique platform that permits simulta-
neous imaging of multiple diagnostic and therapeutic isotopes (i.e., 𝛼 and 𝛽 emitters that
co-emit high-energy gammas e.g. ²¹³Bi with 440 keV gammas) over a broad energy range.

An illustration of the G-SPECT-I configuration is given in Fig. 1.4. The G-SPECT-I sys-
tem consists of nine gamma detectors applying NaI(TI) scintillators (themost widely used
detector for clinical SPECT). Each detector has a large size of 595 × 472 × 9.5 mm³. The
multi-pinhole collimator is interchangeable (as shown in Fig. 1.4). In this thesis, collima-
tors that have a bore diameter of around 38 cmwhich are very suitable for brain, selected
extremity or pediatric imaging were used. These collimators are termed brain collima-
tors in this thesis. Other collimators having a larger bore size have also been designed
and built for body SPECT scans with G-SPECT-I (e.g. for cardiac imaging).

With the brain collimators, the influence of intrinsic detector resolution (3.5 mm) is di-
minished by using a pinhole-detector distance (542 mm) that is larger than the object-
pinhole distance (215 mm). All pinholes are focusing on a central volume. Within this
central volume, projections over 360∘ are acquired (meaning that sufficient sampling is
ensured) and a high sensitivity is obtained. This region is thus called the complete data
volume (CDV, see Fig. 1.4). Imaging of an object covered by the CDV can thus be per-
formed in a fully stationary mode enabling sub-second time resolution. The transaxial
diameter 𝑅𝑐 and axial length 𝐿𝑐 of the CDV are 100 mm and 60 mm respectively. For a
scan of an object larger than the CDV, the bed is translated to position different parts of
the object in the CDV for sufficient sampling of the entire object. This bed translation
is facilitated by a precisely controlled 𝑥𝑦𝑧 stage. In this way, G-SPECT-I also allows for
extended volume scans in which only the bed needs to be translated.

Employing a large number of bed translations with small steps to make sure every part of
the object is at least once positioned in the CDV would warrant sufficient sampling. This
however comes at the cost of an increased overhead time needed for bed movement
(around 1.7 seconds per bed translation). For fast scans or multi-frame dynamic studies
(e.g. with half-minute time frames), a significant fraction of acquisition time could be lost,
which leads to a reduced number of detected counts and a compromised effective sen-
sitivity. For this reason, optimizing the bed translation trajectory with a limited number
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of bed movement is one of the topics of this thesis.

Figure 1.4: G-SPECT-I system; the left image shows the brain collimator, and the right image shows the body
collimator.

1.2.4. Simulation and image reconstruction

1.2.5. Physics in photon transport

A gamma photon emitted by a tracer might interact with human tissue, with the colli-
mator and with the detector before being detected. In clinical SPECT, two main photon
interactions are relevant. The first one is the photoelectric effect which takes place pri-
marily in heavy metal materials (e.g. collimator and detector). The consequence of the
photoelectric effect is photon absorption with a resulting loss in the number of gamma
photons being detected. The second relevant interaction is Compton scatter which is the
dominating interaction in soft tissue (accounting for over 95% of the total interactions
for 140 keV photons). In the case of Compton scatter, photons are deflected and lose part
of their energy. This leads to a broad energy spectrum of the detected gamma photons
even when imaging isotopes that emit gammas at a single energy. The cross section of
Compton scatter is proportional to the density of a substance.

Ideally, one would hope that the primary photons emitted from the tracer can be cap-
tured entirely and exclusively (i.e., free of scattered photons) for estimating the tracer
distribution. Differentiation of the primary photons from the scattered ones can be done
based on the photon energy. However due to energy uncertainty associated with the in-
trinsic detector energy resolution, an energy window centred at the photo-peak energy
is used to maximally include the primary photons while excluding the scattered photons
(e.g. a window width of 20% at 140 keV for 99𝑚Tc). Even so, scattered photons still make
up a non-negligible contribution of the total number of counts within the photo-peak
window (30%-40% in most clinical cases [15]). As a result, scatter artefacts arise which
are characterized by a reduced contrast in the estimated tracer distribution. Apart from
scatter artefacts, the loss of primary photons due to photon scattering and photon ab-
sorption leads to attenuation artefacts. As a typical example of attenuation artefacts, a
uniform activity distribution would show a decreased intensity in the image especially
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at the central part of the object. Besides leading to a degraded image quality, accurate
quantification of the underlying tracer distribution is prohibited when corrections for
scatter and attenuation are not applied.

Currently, scatter correction is commonly done using the triple energy window (TEW)
subtraction method [16]. The TEW uses two narrow windows at each side of the pho-
topeak to estimate the fraction of scattered counts in the photopeak window. These
scattered counts are then taken into account in a later step when retrieving the tracer
distribution, e.g. via a subtraction from the total number of counts in the photopeak win-
dow to obtain a scatter-corrected projection. While TEW is a simple and effectivemethod
that has been widely used for scatter correction, accurate attenuation correction is chal-
lenging for clinical SPECT. Attenuation correction generally requires an attenuation map
that provides the tissue attenuation coefficient at each voxel in the patient. Ideally, an
attenuation map is derived from a registered CT scan. However, such a CT is often not
available, and errors in image registration can induce inaccuracies in SPECT images. Be-
sides the CT based approach, manually drawing an ellipse around the head contour and
assuming uniform attenuation within the ellipse is widely used for attenuation map ap-
proximation. This ellipse method, however, could suffer from observer subjectivity and
insufficient estimation of the head contour and internal head anatomy.

1.2.6. Simulations

Simulations are done in this thesis to generate projections via a computer program in-
stead of physically acquiring them from the actual G-SPECT-I scanner. Simulations are
commonly performed for optimization of the system design and acquisition protocols, or
for the generation of projections assuming a certain system geometry. In simulations, as-
sumptions of the tracer distribution in a patient are made based on earlier clinical obser-
vations. For the given tracer distribution, the projections are then obtained by modelling
the SPECT system as well as the photon interactions within the system and patient.

Two types of simulations with different modelling approaches were conducted in this
thesis. The first type of simulation generates projections based on a voxelized ray trac-
ing (VRT) simulator [17]. This simulation is therefore termed VRT in this thesis. VRT
tracks the paths from the gamma source to the detector and calculates the attenuation
of gamma photons along these paths. In this way, attenuation is modelled but scatter
is ignored. Such scatter-free simulated projections are generally considered acceptable
for the purpose of system or image acquisition optimization, as scattered photons can
be partially corrected for with a TEWmethod on the projections. Meanwhile, because of
the simplification of ignoring scatter effects, computation time can be greatly reduced
which makes VRT an efficient simulation tool. For the research described in this thesis,
a full simulation of a subject scan can be done within 1-2 hours when the modelling of
the SPECT system is pre-calculated (which is generally the case as this modelling only
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needs to be done once per SPECT system). Additionally, VRT allows generation of noise-
less projections, which is desirable for visualization and quantification of some artefacts
that would otherwise be hidden beneath the noise. In this thesis, VRT is used to optimize
acquisition protocols by performing multiple noiseless simulations assuming different
settings, which is not feasible with physical scanning.

The second approach is Monte Carlo (MC) simulation. MC simulation is a stochastic
method that estimates a solution to the problem of interest using random numbers and
statistical sampling. For individual particles emitted from the source, at each stage of
the particle’s life, there is a probability distribution for the possible types of interaction
between particle and matter to occur, as well as for the distance it travels before a next
collision and the energy and angle after a collision. By randomly sampling the probability
distributions, the outcome at each step of the particle’s life is determined. MC simulation
is computationally expensive and generally requires a large cluster with parallel comput-
ing and then still takes a long time (several days in our applications). The advantage of MC
simulation is the capability of accurately representing the real photon transport by fully
modelling particle interactions and their cross-sections. In this thesis, MC simulation is
performed to generate ‘realistic’ SPECT projections, as G-SPECT-I is not yet certified for
patient scanning.

1.2.7. Reconstruction algorithms

The process of estimating the 3D distribution of the radioactivity from a set of 2D pro-
jections is called image reconstruction. For SPECT reconstructionwithmulti-pinhole ge-
ometries, iterative algorithms, e.g. maximum likelihood expectationmaximization (MLEM),
are often used due to their flexibility to handle complex geometries. For MLEM, an initial
estimation of the activity distribution (e.g. a uniform cylindrical distribution) is assumed.
This estimation is subsequently updated in each iteration. For an estimated activity dis-
tribution, the noiseless projection can be modelled by

𝑃 = 𝑀𝐴. (1.1)

Here 𝐴 is a vector of voxels representing the 3D activity distribution in object space, 𝑃 is
a vector representing the number of gamma photons detected in each pixel, and𝑀 is the
systemmatrix. An element𝑀𝑖𝑗 of this matrix gives the probability of a photon emitted at
voxel 𝑗 to be detected in pixel 𝑖 in 𝑃. In principle, all physical effects of photon transport
can be modelled in the system matrix. In practice, an approximation of the system ma-
trix is often made by neglecting photon scatter and absorption within the patient. This
approximation was made for all system matrices used for image reconstruction in this
thesis. In such cases, the system matrix depends only on the system, e.g. the geometry
and resolution of the collimators and detectors. This systemmatrix can be pre-calculated
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(e.g. with a VRT simulator) and only needs to be computed once per system.

In this thesis, we used an accelerated version of MLEM for image reconstruction, which
is called similarity-regulated ordered subset expectation maximization (SR-OSEM) [18].
With OSEM based approaches, a subset of the projection data is used for each update
instead of the full data as in MLEM. For standard OSEM, one needs to pre-determine
the number of subsets; a too large number of subsets results in undesirable noise levels
or even erasure of lesions in low-activity regions while a small number of subsets leads
to long reconstruction times. SR-OSEM is an improved version of OSEM that automat-
ically and locally determines the number of subsets by checking a similarity criterion of
different update factors, and thus it is a safe and efficient reconstruction algorithm.

1.3. Convolutional neural networks (CNNs)
Artificial neural networks (ANNs) have become one of the most famous machine learning
models since their first introduction in the 1940s. An artificial neural network consists
of a number of elements, called neurons, most times organized in layers. An input layer
contains the user defined variables or inputs to the network. An output layer produces
the predictions of the network. In between, there are one or more hidden layers (see
figure 1.5).

For supervised learning, ANNs allows to nonlinearly transform an input to an output
based on information learned from example input-output pairs. To establish such a
transformation, neurons in each layer are connected to those in the next layer with
weight parameters 𝑤. As in the example of figure 1.5, the network starts with an in-
put layer. The 𝑖’th neuron of this layer has a value 𝑥𝑖 (defined by users). Then, to obtain
a value for the 𝑗’th neuron in the next layer (i.e., the first hidden layer), each value in the
input layer is multiplied by a weight, and the sum of all weighted inputs ∑𝑤𝑖𝑗𝑥𝑖 is added
with a bias term 𝑏𝑗 , i.e., ∑𝑤𝑖𝑗𝑥𝑖 +𝑏𝑗 (see Fig. 1.5). The resulting value subsequently goes
through an activation function f. The output of the activation function determines the
value 𝑍𝑗 (the final output of the 𝑗’th neuron in the hidden layer). The 𝑍𝑗 further serves as
an input for neurons in the next layer. In this way, the information is propagated towards
the output layer. The activation function (generally non-linear) is involved to increase the
expression capability of the network as it allows for complex mapping.

Initially, parameters of the networks (weights and bias) are set in a randommanner. Opti-
mization of the parameters of the network is achieved via a training procedure. Training
is performed based on a dataset consisting of pairs of input data and the corresponding
ground truth (see figure 1.6). Given the input, the network is trained by minimizing the
difference between the network predictions and the assigned ground truth. This differ-
ence is defined by a loss function. Commonly used loss functions are mean square error
and cross-energy for regression tasks (continuous output values) and classification tasks
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Figure 1.5: Illustration of (a) a traditional ANN and (b) a convolution operation of a CNN architecture. Traditional
ANN consist of fully connected layers meaning that all neurons of one layer are connected to those in the next.
In CNN, the same convolutional kernel ‘scans’ across the entire input to produce a feature map.

(discrete output values) respectively. When training is completed, the weights of the net-
work can be saved. This allows the network to give a prediction for incoming new input
data.

Figure 1.6: Illustration of a neural network for image segmentation. Generally, a large number of pairs of input
(MR images) and ground truth segmentation are used for training. Parameters of the network is optimized such
that the difference between the network output and the ground truth (defined as the loss) is minimized. When
training is finished, the network can be used to predict an output image given a new brain MR image as input.

Traditional ANNs use fully connected layers that connect all neurons of one layer to
those in the next. This is extremely inefficient and makes the algorithm computation-
ally expensive especially when dealing with 2D or 3D image data. A convolutional neural
network is an ANN with advanced architecture specifically designed and well suited for
image-related tasks. CNNs are currently widely used in medical image analysis for im-
age restoration [19], tissue segmentation [20], image transformation (e.g. MR to CT) [21],
lesion detection [22], etc. In nuclide imagingwith SPECT and PET, CNNs have been inves-
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tigated for attenuationmap estimation [23], attenuation correction [24], image denoising
[25] and motion correction [26].

In a CNN, neurons in one layer do not connect to all the neurons in the next layer. Instead,
each set of neurons sees only a small region of the previous layer via a convolution op-
eration (as shown in Fig. 1.5). Besides, the exact same convolutional kernel ‘scans’ across
the entire input to produce a so-called feature map. This ‘weights-sharing’ scheme dras-
tically reduces the number of parameters needed to be learned while the spatial rela-
tionship in data is preserved. The convolution procedure is repeated by using multiple
kernels to generate several feature maps with each representing a certain characteristic
of the input.

A CNN typically consists of multiple convolutional layers, activation layers and pooling
layers. Currently, the most widely used activation function in CNN is the ReLU function,
which is defined as ReLU(𝑧) = max (0, 𝑧). The pooling layer performs a down-sampling
operation that reduces the dimensionality of the feature maps. A max pooling is com-
monly used by taking maximum values in a grid region. As only one value is produced
for each grid region in the input feature map, this operation introduces a translational
invariance to small shifts, and could reduce overfitting with the loss of some data and a
decreased model complexity.

1.4. Outline of the thesis
This thesis focuses on image acquisition and attenuation map estimation for a multi-
pinhole prototype clinical SPECT system. In Chapter 2 and Chapter 3, image acquisition
protocols were optimized to enable fast dynamic capabilities of G-SPECT-I for DaTscans
and brain perfusion imaging. Specifically, in Chapter 2, we developed a focused DaTscan
imaging strategy for a maximized effective sensitivity while ensuring appropriate sam-
pling. Angular sampling sufficiency with the multi-pinhole G-SPECT-I systemwas inves-
tigated. Multiple VRT simulations were performed for various sampling strategies with
the use of different bed trajectories. A trajectory that requires only 4 bed translations
was proposed. Such a trajectory entails seconds for bed movement, which may enable
fast dynamic DaTscans.

While Chapter 2 aimed for focused striatum imagingwith a confined axial scanning length,
Chapter 3 is dedicated to optimizing image acquisitions for full brain perfusion scans.
Based on the angular sampling condition investigated in Chapter 2, here we studied the
axial sampling sufficiency for scanning the full length of the brain. Multiple VRT simu-
lations were performed for various sampling strategies with a reduced number of bed
positions. It is demonstrated that full brain perfusion imaging can be performed with G-
SPECT-I using a total of 18 bed stops (overhead time of about half a minute), which may
bring fast whole brain SPECT into reach for G-SPECT-I.
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Chapter 4 and Chapter 5 were aimed at accurate attenuation map estimation for brain
perfusion scan and DaTscan. In Chapter 4, a CNN based approach was developed that
solely uses SPECT data for attenuation map estimation. The proposed CNN method was
validated using Monte Carlo simulated brain perfusion scans. The bed trajectory investi-
gated in Chapter 3 was used in this Chapter for brain perfusion imaging with G-SPECT-I.

The proposed CNN method in Chapter 4 was tested for DaTscans in Chapter 5. Mean-
while, the sampling strategy developed in Chapter 2 was used for the Monte Carlo simu-
lation of DaTscans in Chapter 5. Different CNN architectureswere investigated for an op-
timal application on DaTscans acquired with a focused striatum strategy. We concluded
that accurate attenuation maps can be estimated by only using SPECT data, which could
enable attenuation correction to be independent from othermodalities for full brain per-
fusion and DaTscan imaging.

Chapter 6 provides a conclusion on this thesis. Besides, the value of this thesis and its
limitations were discussed.



2
Optimized image acquisition for

dopamine transporter imagingwith
ultra-high resolution clinical pinhole

SPECT

This chapter is adapted from:
Yuan Chen, Brendan Vastenhouw, Chao Wu, Marlies C. Goorden, Freek J. Beekman. Optimized image acquisi-
tion for dopamine transporter imaging with ultra-high resolution clinical pinhole SPECT, Physics in Medicine &
Biology 63 (2018), 225002 [27].

15

https://doi.org/10.1088/1361-6560/aae76c
https://doi.org/10.1088/1361-6560/aae76c


2

16 2. Image acquisition DaTscan

S PECT can be used to image dopamine transporter (DaT) availability in the human
striatum, e.g. for diagnosis of Parkinson’s disease (PD). As traditional SPECT pro-

vides limited resolution and sensitivity, we proposed a full ring focusing multi-pinhole
SPECT system dubbed G-SPECT-I (Beekman 2015 Eur. J. Nucl. Med. Mol. Imaging
42 S209) which demonstrated a 2.5 mm reconstructed resolution in phantom scans.
G-SPECT-I achieves data completeness in the scan region of interest by translating
the patient bed with an xyz-stage and combining projections from all bed positions
into image reconstruction using a scanning focus method (SFM). This paper aims to
develop dedicated SFM parameters for performing a DaTscan with high effective sen-
sitivity and appropriate sampling. To this end, the axial scanning length was restricted
and transaxial bed trajectories with a reduced number of positions based on a convex
hull data-completeness model were tested. Quantitative accuracy was assessed using
full G-SPECT-I simulations of an Alderson phantom based on measured system matri-
ces. For each sampling strategy, the specific binding ratio (SBR) and asymmetry index
(AI) in the left and right striatum, as well as the localized SBR (L-SBR) and the localized
AI (L-AI) in eight striatal sub-regions were calculated and compared to those of the
reference scan which performs full brain oversampling using 112 bed positions. Results
show that structures essential for PD diagnosis were visually and quantitatively barely
affected even when using the lowest number of bed translations (i.e. 4). The maximum
deviation from the reference was only 1.5%, 1.5%, 5.5% and 7.0% for the SBR, AI, L-SBR
and L-AI, respectively, when 4 positions were used. Thus, it is possible to perform an
accurate DaTscan with a confined axial scan region and a limited number of focused
bed positions. This enables protocols for extremely fast dynamic SPECT scans with
less than half-minute time frames, which can be useful for motion correction.

2.1. Introduction
SPECT imaging of the dopamine transporter (DaT) density with e.g. ¹²³I-ioflupane has
been used as an imaging biomarker for e.g. Parkinson’s disease diagnosis and for differ-
entiation of dementia with Lewy Body from other dementias [28–31]. Currently, the diag-
nosis derived from a DaTscan mainly relies on visual interpretation based on the bilateral
striatal shape, the striatal symmetry, the gradient between the two striatal parts (caudate
and putamen) and the striatal DaT density [32]. However, conventional dual-head SPECT
scanners equipped with low-energy high-resolution (LEHR) parallel hole collimators -
the most frequently used collimators for SPECT DaT imaging [33, 34] - generally provide
a limited resolution of about 8-10 mm and a sensitivity of about 70-90 cps/MBq/head
[35]. This results in a compromised ability to recover the striatum and to separate puta-
men and caudate, and demands a long scanning time and/or a relatively high radioactive
dose. The development of three-head fan beam SPECT was an attempt to improve the
resolution-sensitivity tradeoff by the use of image magnification with converging colli-
mation and the use of more detectors surrounding the patient. While the sensitivity was
indeed increased to around 250 cps/MBq (e.g. GCA-9300A and Prism 3000XP [35, 36],
the resolution that was achieved was only slightly improved to about 7 mm [37–40]. Some
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dedicated brain SPECT scanners have been developed that strive to achieve a slightly bet-
ter resolution by either using sophisticated detectors (e.g. Mediso X-Ring/4R), or a large
number of focusing collimators and detectors (e.g. NeuroFocus and inSpira HD with a
resolution of about 7 mm [41–43]), yet only few clinical validations with these scanners
are available [42, 44, 45] and some are not even manufactured anymore. A SPECT system
which could achieve a much better resolution-sensitivity tradeoff would be very desir-
able for its ease of dose requirement and possibility for dynamic scans or longitudinal
studies.

Recently, SPECT systems with multi-pinhole collimators are gaining increasing interest
owing to their enhanced resolution-sensitivity tradeoff, especially when imaging small
objects. Research has been carried out in many groups to improve the performance of
brain SPECT by optimizing a multi-pinhole system geometry in simulations [12, 13, 46–
48]. However, to the best of our knowledge, these systems are still in the design phase
and few have acquired physical scans. In [34], a physical multi-pinhole SPECT system
was assembled by mounting 20-multipinhole collimators onto a dual-head conventional
SPECT scanner. The authors concluded that with their chosen multi-pinhole collima-
tor, scan time can be shortened by one-third compared to that of a LEHR collimator (20
min against 30 min) while achieving comparable image quality. However, with the big
aperture size of 7.5 mm and the small pinhole-detector distance compared to the object-
pinhole distance, the authors estimated the resolution of this multi-pinhole SPECT sys-
tem to be about 20.6 mm.

Our group recently launched a multi-pinhole clinical SPECT system with full angular
coverage using stationary detectors, that demonstrates excellent resolution-sensitivity
tradeoff (G-SPECT-I [10]). For objects the size of a human head, unprecedented reso-
lutions and sensitivities were achieved in phantom scans: 2.5 mm resolution with 415
cps/MBq sensitivity and 3.5 mm resolution with 896 cps/MBq sensitivity, using 3-mm
and 4.5-mm-diameter pinhole collimators respectively. These collimators contain a to-
tal of 54 focusing pinholes and a total of nine large field of view cameras surrounding the
patient (Figure 2.1). The geometry is designed such that all pinholes are ‘viewing’ a cen-
tral volume, in which a very high sensitivity is obtained over a 360∘ angular range. This
central volume is referred to as the complete data volume (CDV) in subsequent sections,
as photons emitted from this volume are captured by all pinholes at different angles and
sufficient angular sampling for accurate image reconstruction is attained without any
detector rotation or bed shift. For extending the volume from which complete data is
obtained, the bed is stepped through the scanner with an automated xyz-stage, allowing
different parts of the patient to be positioned in the CDV. Projections from all pinholes
and all bed positions are then used simultaneously for image reconstruction, a strategy
referred to as the scanning focus method (SFM) [49]. Preclinical applications of a similar
design have been successfully applied in U-SPECT+ [7, 49, 50] which enables dynamic
animal scans with sub-second frame dynamics or extremely low dose scans (fractions of
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1 MBq). Hence, it may be possible that the G-SPECT-I technology could bring e.g. dy-
namic scanning or very low dose (longitudinal) scanning into reach for larger subjects,
including patients.

This paper focuses on an optimal application of G-SPECT-I to DaT imaging with high
effective sensitivity. It is plausible that this could be achieved by confining the scan to the
volume of interest (VOI) in which the striatum locates, such that more gamma photons
from the VOI are captured and the effective count yield is increased compared to that
for whole brain scanning. Based on the Hammers N30R83 brain atlas [51] (average over
30 healthy MR scans) and a CT image of the Alderson brain phantom, the axial length
of the striatum is estimated to be about 35 mm. Actually, visual inspections and semi-
quantitative analyses of DaTscans often only use the three consecutive slices with the
highest striatal intensity, which in total measure approximately 10 to 12 mm axially [52–
55]. Hence, we aim to ensure an accurately reconstructed region of 35 mm in the axial
direction, which should bemore than sufficient for DaTscan analysis. However, for a scan
confined to only part of the brain it needs to be investigated whether limited sampling
and projection truncation in axial direction do induce artefacts. Apart from confining
the axial scan region, it is also desirable to optimize the bed translation trajectory on
the transaxial plane such that, (i) sufficient sampling on the transaxial plane is ensured
to circumvent the interior problem, and (ii) the effective count yield is maximized. The
latter can be achieved by placing transaxial bed positions such that they focus more on
the striatum and/or by limiting the number of bed positions to reduce the overhead time
needed for the bed movements. However, a more focused bed position placement may
not cover the entire brain especially the periphery, and scanning with a limited number
of bed positions may mean that not every part of the scan region is covered at least once
by the CDV. Both could have consequences for data completeness over the VOI and thus
have to be investigated in detail.

The aim of this paper is to develop sampling strategies for G-SPECT-I DaT imaging with
high effective sensitivity by (i) confining the scan region in the axial direction, and (ii) fo-
cusing the bedpositions transaxially in the brain and limiting the number of transaxial bed
positions, while always ensuring sufficient sampling in the transaxial plane. Quantitative
accuracy attainedwith different sampling strategies is assessed using full G-SPECT-I sys-
tem simulations of an Alderson phantom based on measured system matrices.

2.2.Methods

2.2.1. Systemdesign and collimator geometry

G-SPECT-I (Figure 1.1) is based on a stationary ring consisting of nine pinhole-collimated
gamma cameras with large-area 595 × 472 × 9.5 mm NaI crystals. The interchange-
able nonagon-shaped collimator assumed in this paper consists of a total of 54 3-mm-
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diameter pinhole apertures. Pinholes are placed in 3 rings with a relative rotation of 1/3
of an inter-pinhole distance in between rings. Pinholes each have an opening angle of 27∘,
all focusing on the CDV (Figure 1.1). The transaxial diameter 𝑅𝑐 and axial length 𝐿𝑐 of the
CDV are 100mm and 60mm respectively. A precisely controlled 3D stage is incorporated
for bed translations, enabling enlargement of the scan region. Scan region selection can
be accomplished with the system’s user interface that takes the images from three opti-
cal cameras as its input (Figure 1.1a), see description in [56, 57]. The influence of intrinsic
detector resolution (3.5mm) is diminished by using a pinhole-detector distance (542mm)
that is larger than the object-pinhole distance (215 mm), such that projections are magni-
fied onto the detector. Images from each pinhole are directly projected on the detectors.
Shielding is placed between the pinhole and the detector to prevent overlapping projec-
tions. The inner diameter of the collimator is about 400 mm, making the system suitable
for brain, selected extremity or pediatric imaging.

(a)

(b)

Figure 2.1: Illustration of G-SPECT-I scanner. (a) G-SPECT-I systemwith three optical cameras and a user inter-
face for VOI selection; (b) multi-pinhole collimator of G-SPECT-I system. All 54 pinholes distributed over three
rings are focusing on the CDV. Pinholes each have an opening angle of 27∘, resulting in a CDV with transaxial
diameter 𝑅𝑐 of 100 mm and axial length 𝐿𝑐 of 60 mm.
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2.2.2. Convex hull principle

Sufficient sampling in the transaxial plane can be ensured by providing over 180∘ angular
coverage for each point in the brain [58–60]. As G-SPECT-I employs amulti-bed-position
scan and uses the SFM which combines projections from different bed positions simul-
taneously into reconstruction, sufficient angular coverage is achieved when the brain is
contained in the convex hull surrounding the CDVs from different scan positions. This is
referred to as the convex hull principle and a demonstration of this principle is provided
in Figure 2.2. Figure 2.2(a) shows that the angular coverage 𝛼 in the point 𝑝 is determined
by the angle between the two lines tangential to the CDV. Furthermore, Figure 2.2(b)
demonstrates that in case of two CDV positions, the angular coverage 𝛼 in the point 𝑝
is the union of the coverage from the two CDVs. Figure 2.2(c) gives an example of over
180∘ angular coverage being achieved in the transaxial plane for a brain scan with four
CDV positions. The circles indicate the CDVs and the orange line denotes the convex hull
surrounding the CDVs. Any point within the convex hull obtains an angular coverage of
more than 180∘.

Figure 2.2: Illustration of convex hull principle in the transaxial plane. The red and yellow circles in (a) and (b)
indicate the CDVs. (a) The angular coverage 𝛼 in point p is determined by the angle between the two lines
tangential to the CDV. (b) In case of two CDV positions, the angular coverage 𝛼 in the point 𝑝 is the union of
the coverage from the two CDVs. (c) An example of full angular coverage being achieved in this transaxial plane
for a brain scan with 4 CDV positions. The circles indicate the CDVs and the orange line denotes the convex
hull surrounding the CDVs.

2.2.3. Sampling sequence

As G-SPECT-I enables selection of the VOI that is to be scanned (via the user interface
shown in Figure 2.1), users can select the VOI based on the head contour on the optical im-
ages when performing a DaTscan, and the sampling sequence is then designed based on
the selected VOI. Below we explain a general protocol for designing sampling sequences
that should work on a variety of subjects. We aim to cover the entire brain in the convex
hull with an extra minimal margin of 5 mm (minimal distance between the convex hull
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and the brain) for every subject in the test. This is to compensate for any mispositioning
when selecting the VOI, and to make the protocol more applicable to all types of patients.

For our sampling sequence design, 30 brain MR scans were randomly selected from the
HCP database [61] to check how one should position the bed transaxially once the head
contour is known. First, a box (the selected VOI) was drawn manually on the transaxial
plane based on the skull contour for each subject (as in Figure 2.3a) with ImageJ [62].
This box is selected to be just large enough to cover the head and this was checked by
scrolling through all transaxial slices. Secondly, four sampling sequences with a reduced
number of bed positions, from oversampling using 16 positions per plane, to 8, 6 and 4
were designed based on the selected VOI. All the transaxial sampling sequences follow
elliptical trajectories. Initially these sequenceswere chosen such that the convex hull was
just contained within the box as in Figure 2.3(b)-(e). In Figure 2.3, the dashed blue box is
the selected VOI and the orange line highlights the convex hull. Then, we checked if the
convex hull was large enough to cover the brain of all subjects with a minimal margin
of 5 mm. When this was not the case, bed positions were shifted outwards to enlarge
the convex hull as in the example of Figure 2.3(f) where the bed positions are shifted
resulting in a convex hull 10 mm outside the VOI box. We performed this procedure for
all four sampling sequences on each subject, increasing the shift in steps of 1 mm, until
the minimal margin of 5 mm was obtained for every subject. This way, we found that the
sequences need to be shifted outwards by 0 mm, 2 mm, 5 mm and 15 mm when 16, 8, 6
and 4 bed positions were used, respectively. For clinical scans with G-SPECT-I, the VOI
selection based on the optical images could be affected by scalp, hair, head support, etc.
As a result, we would expect a slightly larger VOI than the one selected on theMR images,
meaning that the minimal margin of 5 mm is a conservative estimation.

The above knowledgewas subsequently applied in transaxial sequence design for aDaTscan
with the Alderson phantom (RSD, USA). The VOI as indicated by the dashed blue box in
Figure 2.4(a)-(d) was selected based on the head contour of the phantom. The sampling
sequences were then designed based on the selected VOI, taking the required shift ac-
cording to MR scan findings into account.

For sufficient sampling along the axial direction, the transaxial bed positions are repli-
cated. The required number of axial bed stops and distance between them are investi-
gated. Firstly, as a reference, we start with a full brain scan with a large number of bed
stops to be sure that sampling is more than sufficient. This scan with full brain oversam-
pling uses 7 axial bed stops as well as 16 bed positions per transaxial plane (thus a total of
112 bed positions is used). The distance between subsequent axial bed stops is set to 21
mm, which is small compared to the axial coverage 𝐿𝑐 (60 mm) of each CDV.

To optimize the scanning length in axial direction, a reduced number of axial bed stops
down to only one stop at the central position in the striatum is subsequently tested. The
distance between consecutive axial bed stops remains 21 mm while oversampling is al-
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Figure 2.3: Illustration of VOI selection and the design of sampling sequences based on a set of MR scans. (a)
Selection of the VOI based on the skull contour on an MR scan; (b)-(e) initial design of sampling sequences
based on the selected VOI using 16, 8, 6 and 4 bed positions per transaxial plane. (f) Sampling sequence initially
designed based on the skull contour is now shifted resulting in a convex skull 10 mm outside of the VOI. The
dashed blue box is the selected VOI and the orange line indicates the corresponding convex hull. The bed
positions are highlighted by the red dots that follow an elliptical trajectory. The semi-transparent blue circles
with dashed blue edge are the CDVs at different bed positions.

ways ensured with 16 bed positions in the transaxial plane as performed in the reference
image. This is to investigate whether projection truncation in the axial direction that oc-
curs when the axial scan length is confinedwould induce artefacts. Meanwhile, transaxial
sampling with fewer (8, 6 and 4 as in Figure 2.4) bed stops is tested for each simulated
scan with a set axial scanning length.

Additionally, to determine the optimal distance between axial bed positions, we increase
the distance from 21 mm to 42 mm and to 60 mm (equal to the axial CDV length 𝐿𝑐).
All the other procedures remain the same as implemented for 21 mm axial distance (i.e.
gradually reducing the number of axial bed positions and testing with a reduced num-
ber of transaxial bed positions). All simulated scans are compared with the oversampled
reference image.
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Figure 2.4: Transaxial sampling sequences used in this paper for a DaTscan of the Alderson phantom. Panels
(a)-(d) show the sequences with 16, 8, 6 and 4 bed positions per transaxial plane as in Figure 2.3, but with a shift
of 0 mm, 2 mm, 5 mm and 15 mm respectively based on the test results of the MR scans to contain the brain in
the convex hull with a minimal margin of 5 mm.

2.2.4. Simulations

A digital phantom containing four striatum parts (left/right putamen and left/right cau-
date) was generated based on a CT image of the physical Alderson phantom. The re-
maining brain volume is the background compartment. Striatum-to-background con-
centration ratio is set to 8:1 to mimic a realistic distribution of ¹²³I-ioflupane (159 keV) in
the brain. The emission process simulator is based on 99𝑚Tc (140 keV) point source mea-
surements and geometry modeling [63]. This approach of modeling low-energy isotope
transport is also usedwhen reconstructing experimental scans and has proven to provide
good performance inmany cases [57, 64–66]. Resolution is barely degradedwhen applied
to isotopes with nearby peak energies (e.g. ¹¹¹In with photopeak of 171 - 245 keV [57] and
¹²³I with photopeak of 159 keV) compared to the scans with 99𝑚Tc. The phantom for pro-
jection has a voxel size of 0.75 mm, half the size of voxels in the reconstructed images, to
mimic a continuous activity distribution. Both the projection simulation and reconstruc-
tion model the same physical effects, e.g. collimator attenuation, detector blurring, etc.
and are derived from the same set of point source measurements. Besides, to make the
simulation more realistic, phantom attenuation is modelled in the simulated projections
using a voxelized ray tracer [67, 68]. The attenuation map is derived by segmenting the
CT image of the Alderson phantom, and assigning attenuation coefficients of 0 cm−1 to
air, 0.15 cm−1 to soft tissue and 0.31 cm−1 to bone. Similarity-regulated OSEM [18] with
8 subsets and 10 iterations is performed using SFM which combines projections from
all bed positions simultaneously into image reconstruction. As we here aim to quantify
errors induced only by sampling, no noise is simulated.

Moreover, to quantify the effects of different sampling strategies on the striatal count
yield, a separate digital phantom with only the striatum was made by setting the tracer
concentration in the background compartment to 0. The total striatal count for each se-
quence with reduced sampling is divided by that obtained with the reference scan. This
way the gain of striatal count yield compared to that of the reference full brain oversam-
pling is obtained.
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2.2.5. Evaluation

As performed in clinical DaTscan assessment, visual inspection and semi-quantification
of the DaTscan images are both included. The latter is achieved by calculating the specific
binding ratio (SBR) and the asymmetry index (AI) in the left and right striatum, as well as
the Localized SBR (L-SBR) and the Localized AI (L-AI) in eight striatal sub-regions. The
definitions of the metrics are given by:

SBR =
𝐶𝑉𝑂𝐼_𝑠𝑡𝑟 − 𝐶𝑉𝑂𝐼_𝑏𝑘𝑔

𝐶𝑉𝑂𝐼_𝑏𝑘𝑔
(2.1)

AI = 2 ×
𝐶𝑅𝑉𝑂𝐼_𝑠𝑡𝑟 − 𝐶𝐿𝑉𝑂𝐼_𝑏𝑘𝑔
𝐶𝑅𝑉𝑂𝐼_𝑠𝑡𝑟 + 𝐶𝐿𝑉𝑂𝐼_𝑏𝑘𝑔

× 100% (2.2)

Here 𝐶𝑉𝑂𝐼_𝑏𝑘𝑔 denotes the mean DaT image intensity in the background VOI. 𝐶𝑉𝑂𝐼_𝑠𝑡𝑟
represents the mean DaT image intensity within the striatal region, with 𝐶𝐿𝑉𝑂𝐼_𝑠𝑡𝑟 and
𝐶𝐿𝑉𝑂𝐼_𝑠𝑡𝑟 referring to the left and right part of striatum, respectively. While SBR and AI
take values from the entire left or right striatum at one central slice as usually performed
with traditional SPECT (Figure 2.5a), L-SBR and L-AI give more detailed assessments in
eight striatal sub-regions individually (Figure 2.5b). These eight striatal VOIs, i.e. the pos-
terior, middle and anterior putamen, and the caudate, for both the left and right striatum,
are generated in PMOD v3.7 (PMOD Technologies Ltd., Switzerland) by placing small cir-
cles or ellipses over the putamen and caudate on the transaxial slices and are placed over
10.5 mm slices in the axial direction. The three parts of the putaminal VOIs have almost
equal area on each transaxial slice. As there is no cerebellum or occipital cortex in the
Alderson phantom, the background region is generated using the Southampton

Figure 2.5: VOIs for semi-quantitative analysis. (a) Striatum VOI taken from the phantom at the central slice of
the striatum; (b) example of eight striatal VOIs on one transaxial slice; (c) background VOI generated using the
Southampton method. In (a), the left and right striatum are denoted by the red and green shapes, respectively.
In (b), the striatal VOIs consist of eight sub-regions that are indicated by circles or ellipses in different colors.
Red, green, purple and blue ones denote the posterior, middle, anterior putamen and the caudate, respectively.
The background VOI in (c) is composed of two parts highlighted by the red shapes.
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method (Figure 2.5c) [69]. No filtering is applied on the phantom or the DaTscan images
for the semi-quantification analysis to reduce partial volume effects.

As an additional quantitative measure of the image quality within the entire transaxial
brain, the Maximum Undersampling Error (MaxUSE) and Average Undersampling Error
(AvgUSE) are calculated. These two metrics are defined as the maximum and average
relative difference of each reconstructed image from the oversampled reference image,
respectively. The relative difference is expressed by:

Difference(i) = Image(𝑖) − Reference(𝑖)
Reference(𝑖) (2.3)

where 𝑖 denotes the image voxel. All images are post filtered with a Gaussian filter of
4 mm full width at half maximum (FWHM) to suppress insignificant local fluctuations.
Afterwards, the relative difference is calculated based on Equation 2.3. As the relative
differences can be either positive or negative, the absolute values are used for the calcu-
lation of MaxUSE and AvgUSE. Only the voxels within the brain are taken into account.
Since the quantitative assessment of a DaTscan in a clinical setting is typically based on
regions with the size of striatal structures (from 4 cm³ to 12 cm³ [52, 54, 69]), we resized
the Difference image from a voxel size of 1.5 mm to 10.5 × 10.5 × 9 mm³. This gives cubic
VOIs of about 1 cm³, which are small enough to estimate relevant intensity deviations in
the striatal structures.

2.3. Results

2.3.1. Visual inspection

To illustrate the visual effect on DaTscan images when reducing the number of bed po-
sitions, Figure 2.6 shows the gold standard (digital phantom), the reference reconstruc-
tion (simulated full brain oversampling scan), and three representative DaTscans acquired
with a reduced number of bed positions. Five slices within an axial region of 36 mm that
are most relevant to DaTscan inspection and quantification are displayed. The center of
the striatum in axial direction is defined as 0 mm, while the slice 18 mm underneath or
above the center is defined to be at -18 or 18 mm, respectively. Figure 2.6 demonstrates
that reducing the number of bed positions from full brain oversampling to 16 positions
hardly has a visual effect on DaTscan images. When further decreasing the number of
bed positions, background homogeneity is somewhat degraded due to the presence of
stripe artifacts. However, for the striatum and its sub-structures, the shapes are always
preserved with no obvious distortions, even with the use of only 4 bed positions. A full
overview of the DaTscan images for all the tested sampling sequences using 1 or 2 axial
positions as well as their difference images from the reference scan are included in the
appendix (Figure 2.9-2.12).
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Figure 2.6: Comparison of the DaTscan image slices from the gold standard (the digital phantom), the reference
scan (simulated full brain scan with oversampling), the DaTscan acquired with 2 axial positions combined with
8 transaxial positions (distance between 2 axial positions is 42 mm), the scan with 1 axial position combined
with 8 transaxial positions, and the scan with 1 axial position combined with 4 transaxial positions. The center
of the striatum in axial direction is defined to be at 0 mm. The top row to the bottom row represent the slices
from 18 mm underneath the center of the striatum to 18 mm above it. All images have a pixel size and slice
thickness of 1.5 mm and are post-filtered with a Gaussian filter of 4 mm FWHM. The concentration ratio in
striatum and background compartment is 8:1. A full overview of the DaTscan images for all the tested sampling
sequences using 1 or 2 axial positions as well as their difference images from the reference scan are included
in the appendix.
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2.3.2. Semi-quantification

Table 2.1-2.2 show the effect on SBR quantificationwhen scanningwith a reduced number
of bed positions. For validation of the oversampled reference scan, the SBR and L-SBR
from the phantom are included for comparison and are denoted as a Gold Standard SBR
(GS-SBR) and GS-L-SBR, respectively, while those from the reference scan are termed
the Ref-SBR and Ref-L-SBR. Table 2.1 demonstrates that accurate SBR quantification can
be achieved with the reference full brain oversampling. A maximum deviation of 3.1% and
6.3% in the posterior putamen and among all eight striatal sub-regions, respectively are
found when comparing the Ref-L-SBR with the GS-L-SBR. When decreasing the number
of axial and/or transaxial bed positions from the oversampled reference scan, the effect
on SBR quantification is very limited (Table 2.2), which is demonstrated by a maximum

Table 2.1: Deviation between the reference scan and theGS in terms of SBR and L-SBR. Sub-regions are assessed
separately. Post Put. = posterior putamen, Mid. Put. = middle putamen, Ante. Put. = anterior putamen. “L”
and “R” indicate the left and right striatum, respectively. The deviation is calculated by subtracting the GS-SBR
from the Ref-SBR and normalized by dividing by the GS-SBR. The same goes for the deviation of L-SBR The
absolute value of the deviations is used.

L-SBR in eight sub-regions SBR striatum

Post. Put. Mid. Put. Ante. Put. Caudate Striatum

Deviation from GS R(%) L(%) R(%) L(%) R(%) L(%) R(%) L(%) R(%) L(%)
Reference scan (112 pos.) 2.16 3.05 0.71 6.03 2.35 6.32 5.39 0.22 6.83 3.91

Table 2.2: Deviations from the Ref-SBR and Ref-L-SBR for scans with a reduced number of bed positions. The
21 mm and 42 mm in parenthesis in the first column indicate the distance between the two axial bed positions.
Post Put. = posterior putamen, Mid. Put. = middle putamen, Ante. Put. = anterior putamen. ‘R’ and ‘L’ indicate
the right and left striatum, respectively. The deviation is calculated by subtracting the Ref-SBR and normalized
by dividing by the Ref-SBR. The same goes for the deviation of L-SBR. The absolute value of the deviations is
used.

L-SBR in eight sub-regions SBR striatum

Post. Put. Mid. Put. Ante. Put. Caudate Striatum

Deviation from reference R(%) L(%) R(%) L(%) R(%) L(%) R(%) L(%) R(%) L(%)

One axial stop 16 trans. pos 0.74 3.08 4.53 4.28 1.15 3.91 6.17 5.04 4.53 3.57
8 trans. pos 0.94 4.63 3.79 4.04 0.43 4.94 4.98 3.82 3.99 3.64
6 trans. pos 3.58 6.58 0.89 1.46 0.13 3.52 0.41 2.77 2.43 3.34
4 trans. pos 1.47 5.47 2.02 2.33 2.61 1.64 1.83 1.15 0.04 1.51

Two axial stops (21 mm) 16 trans. pos 2.32 2.35 3.32 2.03 3.19 3.17 3.64 2.88 2.94 2.94
8 trans. pos 2.01 2.95 3.48 1.27 2.42 3.29 2.88 2.58 2.52 2.78
6 trans. pos 3.30 3.32 0.64 0.74 1.89 1.88 0.30 0.19 1.07 1.70
4 trans. pos 3.48 4.05 0.16 1.85 6.63 2.57 1.74 2.08 1.82 0.57

Two axial stops (42 mm) 16 trans. pos 0.64 0.23 0.22 0.23 1.24 0.66 1.11 0.24 1.47 0.27
8 trans. pos 0.11 1.51 0.16 0.30 1.76 0.30 1.62 0.30 1.70 0.29
6 trans. pos 1.14 0.27 0.17 0.64 1.63 1.94 2.83 1.56 2.45 0.23
4 trans. pos 6.98 0.47 4.06 1.18 7.42 2.84 2.28 1.80 3.70 3.75
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deviation of 4.5% and 7.4% from the Ref-SBR and Ref-L-SBR, respectively for all scans
included in the table. Particularly, the mean deviation from the reference among all stri-
atal sub-regions reads only 0.8% and 2.3% when using 16 positions (2 axial positions and
8 transaxial positions with a between stop distance of 42 mm) and 4 positions (1 axial po-
sitions and 4 transaxial positions), respectively. The results for 2 axial bed positions with
a distance of 60 mm between stops is not included, as it leads to diminished focus on
the striatum and larger errors compared to 42 mm distance (see Figure 2.11-2.12 in the
appendix).

As another confirmation of the accurate SBR quantification for the tested sampling se-
quences, Figure 2.7 directly shows the L-SBR values. As a benchmark, the GS-L-SBR is
also shown by the dotted red line of L-SBR = 7 since the striatum-to-background con-
centration ratio is set to be 8:1.

Figure 2.7: Comparison of the L-SBR for scans with different sampling sequences. The subplot at each row
shows the results of (a) using 1 axial bed position, (b) using 2 axial bed positions with a between stops distance
of 21 mm, and (c) using 2 axial bed positions with a between stops distance of 42 mm. The GS-L-SBR is indicated
by the dotted red line (L-SBR = 7, since the striatum-to-background concentration ratio is 8), while the Ref-L-
SBR is denoted by “Ref.” in the figure.
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Table 2.3-2.4 show the effect on left-right asymmetry when scanning with reduced num-
ber of bed positions. The definitions of GS-AI, GS-L-AI, Ref-AI and Ref-L-AI which refer
to phantom and reference scan values, are the same as for SBR, but consider the left-
right asymmetry index. The GS-AI and GS-L-AI are 0% since the intensity in the left or
right striatum are all set to the same value in the phantom. Table 3 manifests that a good
left-right symmetry can be achieved with the oversampled reference scan. A maximum
Ref-L-AI of 6.3% among all the striatal sub-regions is found. For the posterior putamen,
the intensity in the left or right has an almost perfect match, resulting in an asymmetry of
only 0.05%. Similar to the SBR results, decreasing the number of axial and/or transaxial
bed positions has a limited effect on the left-right symmetry (Table 2.4). The maximum
deviation from the Ref-AI and Ref-L-AI is 2.4% and 7.0% in the striatum and among all
eight striatal sub-regions, respectively for all scans included in the table. Particularly,
the mean deviation from the reference reads only 1.4% and 3.7% respectively among all
sub-regions when using 16 positions (2 axial positions and 8 transaxial positions with a
between stop distance of 42 mm) and 4 positions (1 axial positions and 4 transaxial posi-
tions).

Table 2.3: Deviation between the reference scan and the GS in terms of AI and L-AI. The GS-L-AI and GS-AI are
0% as the intensity in the left or right striatum are all set to the same value in the phantom. The deviation from
the GS-AI is calculated directly by subtracting the GS-AI (0%) from the Ref-AI, as AI is already a normalized
index expressed in percentage. The absolute value of the deviations is given in the table. Post Put. = posterior
putamen, Mid. Put. = middle putamen, Ante. Put. = anterior putamen.

Deviation from GS L-AI in eight sub-regions AI in striatum

Post Put. (%) Mid. Put. (%) Ante. Put. (%) Caudate (%) Striatum (%)

Reference scan (112 pos.) 0.05 3.13 4.54 6.28 2.77

Table 2.4: Deviations between the scan with a reduced number of bed positions and the reference scan in terms
of AI and L-AI. This deviation is calculated by directly subtracting the Ref-AI, as AI is already a normalized index
expressed in percentage. The absolute value of the deviations is given in the table. Post Put. = posterior
putamen, Mid. Put. = middle putamen, Ante. Put. = anterior putamen.

Deviation from reference
L-AI in eight sub-regions AI in striatum

Post. Put. (%) Mid. Put. (%) Ante. Put. (%) Caudate (%) Striatum (%)

One axial stop 16 trans. pos 0.41 0.80 1.56 0.72 0.92
8 trans. pos 0.50 0.30 1.14 0.21 0.34
6 trans. pos 3.64 2.91 0.48 1.29 0.89
4 trans. pos 4.10 6.98 0.18 3.46 1.45

Two axial stops (21 mm) 16 trans. pos 0.85 0.80 0.31 0.82 0.01
8 trans. pos 0.40 0.33 0.59 1.29 0.25
6 trans. pos 1.37 1.40 0.94 0.55 0.63
4 trans. pos 3.32 6.57 1.56 3.93 2.40

Two axial stops (42 mm) 16 trans. pos 1.88 0.43 1.34 0.47 1.21
8 trans. pos 1.89 1.80 1.80 0.00 1.43
6 trans. pos 2.78 2.23 2.70 0.94 2.25
4 trans. pos 0.48 3.35 1.84 2.98 0.05
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Similar to Figure 2.7, Figure 2.8 directly shows the L-AI values for scans with different
sampling sequences. While the maximum L-AI for the reference scan is 6.3% among all
striatal sub-regions, this value degrades only slightly to 7.6% for all scans included in
the figure, confirming the good left-right symmetry even when scanning with reduced
sampling. Besides, compared to a mean L-AI of 3.4% for the reference scan, comparable
result of 3.0% and 3.8% is achieved for the scan with 16 positions (2 axial positions and 8
transaxial positionswith a between stops distance of 42mm) and the scanwith 4 positions
(1 axial positions and 4 transaxial positions), respectively.

Figure 2.8: Localized asymmetry index results when using different sampling sequences. Assessment is per-
formed in each sub-region as in Figure 2.7. Note that the scale is from 0% to 8%.
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2.3.3.MaxUSE andAvgUSE

Table 2.5 summarizes the MaxUSE and AvgUSE for evaluation of the image quality in
the entire transaxial plane when scanning with different sampling strategies. These two
values are calculated from those transaxial slices relevant for a DaTscan, along an axial
length of 36 mm (-18 mm to 18 mm). Table 2.5 shows that using a single bed position
in axial direction results in a MaxUSE of 15.0%, 15.8%, 22.1%, 40.7% in relevant transaxial
slices (-18mm to 18mm)when 16, 8, 6 and 4 transaxial bed positions are used respectively,
while the AvgUSEs are all below 5.2% for the four sampling sequences. Besides, using 2
axial bed positions can improve both the MaxUSE and AvgUSE, while a 42 mm distance
between axial stops gives the best accordance with the reference image compared to a
21 mm or 60 mm distance. For that separation, a MaxUSEs and AvgUSEs of 8.7% and 1.8%
respectively could be achieved along 36 mm axial length when using 8 transaxial bed po-
sitions. These two values are only slightly affected (12.9% and 2.0%) when the axial length
is extended to 90 mm (see the appendix). Increasing the number of transaxial bed posi-
tions from 8 to 16, the improvement of the results is limited.

Table 2.5: Comparison of the MaxUSE and AvgUSE for scans with different sampling strategies in the transaxial
slices relevant for a DaTscan, along an axial length of 36 mm (−18 mm to 18 mm).

MaxUSE along an axial length of 36 mm
Number of transaxial positions

4 6 8 16

One axial position 40.7% 22.1% 15.8% 15.0%
Two axial positions (21 mm distance) 39.6% 17.1% 12.5% 13.8%

(42 mm distance) 29.0% 11.4% 8.7% 7.6%
(60 mm distance) 30.8% 16.6% 18.6% 17.4%

AvgUSE along an axial length of 36 mm
Number of transaxial bed positions

4 6 8 16

One axial position 5.2% 3.4% 3.2% 3.6%
Two axial positions (21 mm distance) 4.6% 2.9% 2.4% 2.5%

(42 mm distance) 4.0% 2.6% 1.8% 1.2%
(60 mm distance) 5.0% 4.0% 3.5% 3.4%

2.3.4. Striatal count yield

Table 2.6 gives the quantitative measure of howmuch striatal counts can be gained com-
pared to the reference full brain sampling when using a confined axial scanning length
and different transaxial sequences. All count numbers are relative to the striatal count
yield obtained with the reference scan. This table indicates that using a limited axial
scanning length leads to a higher striatal count yield than full brain imaging. The max-
imal gain in striatal count yield is a factor 2.8 when only 1 axial bed stop is used, while
2.6, 1.9 and 1.0 times higher count yields are obtained with two axial bed positions at a
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distance of 21 mm, 42 mm and 60 mm, respectively. Meanwhile, the striatal count yield
increases when more transaxial bed positions are applied. An increase of 10% is obtained
when increasing the number of transaxial bed positions from 4 to 8. This is due to the
fact that the sampling sequence can be more focused in the brain when more transaxial
bed positions are used, while the whole brain is still contained in the convex hull (see
Figure 2.4).

Table 2.6: Comparison of the striatal count yield for scans with different sampling strategies. All count num-
bers are normalized by dividing by the striatal count yield achieved for full brain oversampling (sequence for
reference scan).

Striatal count yield gain compared
to full brain oversampling

Number of transaxial positions

4 6 8 16

One axial position 2.45 2.65 2.77 2.83
Two axial positions (21 mm distance) 2.25 2.43 2.54 2.60

(42 mm distance) 1.64 1.74 1.81 1.85
(60 mm distance) 0.88 1.04 1.01 1.02

2.4. Discussion
We investigated the effects of using different sampling strategies on visual image quality,
semi-quantitative analysis accuracy, and striatal count yield for DaT imaging. By testing
on a series of sampling sequences with a reduced number of bed stops, we found that the
use of only 4 bed positions (1 axial position combined with 4 transaxial positions) could
already achieve very accurate semi-quantification. Compared to the oversampled refer-
ence scan, the deviation is only 1.5% for both the SBR and AI in the striatum, and 5.5% and
7.0%maximally for L-SBR and L-AI among eight striatal sub-regions. Meanwhile, with the
same sequence a striatal count yield of 2.5 times that of the reference full brain imaging
could be achieved. However, due to the reduced sampling with less bed positions, the
homogeneity in the background region is degraded, which leads to an MaxUSE of 40.1%
at a few pixels. For a DaTscan, thismight not be an important issue as structures essential
for PD diagnosis are visually and quantitatively barely affected. However, for other types
of scans such as brain perfusion scans, the affected homogeneity in the brain should be
avoided.

As expected, the use of only a single axial bed position results in the highest striatal count
gain (2.8 times that of the reference scan), since all bed positions are placed central to
the striatum in the axial direction. Meanwhile, increasing the number of transaxial bed
positions can also improve the number of detected striatal counts, owing to the more
focused bed position placement in the brain (see Figure 2.4 and Table 2.6). For example,
using 8 transaxial positions leads to a 10%higher striatal count yield compared to utilizing
4 transaxial bed positions. It is worth noting that the total scan time is assumed to be
the same for all simulated scans and the time for bed movements is not included in the
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simulation since it is highly dependent on the bed in use. Thus a slight decrease of the
striatal count yield would be expected when increasing the number of transaxial bed
positions from 4 to 16 (e.g. 2 axial positions combined with 8 transaxial positions) under
equivalent total scan time if this overhead time would be taken into account. This favors
the choice of using 4 bed positions (an overhead time of about 6 s based on our rough
estimation using the current G-SPECT-I bed in design) for a multi-frame dynamic scan
or fast scan. With the use of 2 axial positions combined with 8 transaxial positions, the
overhead time is estimated to be 24 s, which is still quite small compared to common
acquisition times.

Note that here we aim to ensure an accurately reconstructed region of 35 mm in axial
direction. Hence for clinical DaTscans, doctors who are familiar with DaTscan acqui-
sition can select a VOI along an axial length of 35 mm. Determination of the striatum
position could also be improved based on a brain MR database analysis that G-SPECT-I
could provide. On the other hand, the scan region in axial direction can be extended by
using more axial bed positions, which is shown by comparing the results of using 1 or
2 axial positions in the appendix (Figure 2.9-2.12). For the use of 2 axial positions com-
bined with 8 transaxial positions, the MaxUSE and AvgUSE are below 12.9% and 2.0%
respectively along a 90 mm axial length, while very accurate semi-quantification results
are still achievable (a deviation of 1.7% and 1.4% for the SBR and AI respectively in the
striatum, and 1.8% and 1.9% maximally for the L-SBR and L-AI among eight striatal sub-
regions).Thus an extended axial region (e.g. 90 mm) could be selected to compensate for
some mispositioning uncertainty (27 mm in both directions axially). As 90 mm is already
much larger than the axial length of the reconstructable region aimed for (35 mm), more
axial bed positions are not included.

We modelled attenuation using a voxelized ray tracer in the simulated projections. At-
tenuation correction is not performed for this study as it is not trivial with multi-pinhole
systems and we aim to focus on sampling issues here. The reconstructed DaTscan im-
ages (Figure 2.6) show that attenuation results in reduced intensities in the central part
of the image, which is similar to what happens using parallel hole collimated SPECT sys-
tems. Nevertheless, the effect of different sampling sequences on G-SPECT-I DaTscan
semi-quantification turns out to be not significant even with attenuation (Figure 2.7-2.8
and Table 2.1-2.4).

2.5. Conclusion
We have designed and evaluated different sampling strategies for performing a DaTscan
based on full G-SPECT-I simulations using measured system matrices. We find that
structures essential for PD diagnosis were visually and quantitatively barely affected even
when using four bed positions (a deviation of 1.5% for both the SBR and AI in the striatum,
and 5.5% and 7.0% maximally for L-SBR and L-AI, respectively, among eight striatal sub-
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regions). With such a focused striatum scan, the effective count yield from the striatum
increased by a factor of 2.5 compared to full brain imaging and much less overhead time
is needed. This could enable acquisition with a total estimated overhead of bed-moving
of only a few seconds and protocols for extremely fast dynamic brain SPECT and mo-
tion correction. Thus, the use of a limited number of bed positions does not significantly
affect quantitative accuracy of a DaTscan while the striatal count yield is improved.
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Appendix

Figure 2.9: Comparison of simulated DaTscan images with the reference image when a single axial bed position
is used. The single axial bed position is placed at the center of the striatum. (a) The simulated DaTscan image;
(b) the Difference image calculated from the relative difference between the simulated DaTscan image in (a)
and the reference image. Each row in (a) corresponds to one simulated scan, with the transaxial bed positions
decreasing from 16, 8, 6 to 4 from the top to the bottom row, respectively. Images from left to right show the
transaxial slices from 45 mm above the center of the striatum to 45 mm underneath it. The simulated DaTscan
images in (a) have a pixel size and slice thickness of 1.5 mm and are filteredwith a Gaussian filter of 4mm FWHM.
The Difference images in (b) have a pixel size of 10.5 mm and slice thickness of 9 mm.
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Figure 2.10: Like Figure 2.9, but with two axial bed positions with a between stops distance of 21 mm.
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Figure 2.11: Like Figure 2.9, but with two axial bed positions with a between stops distance of 42 mm.
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Figure 2.12: Like Figure 2.9, but with two axial bed positions with a between stops distance of 60 mm.



3
Optimized sampling for high resolution

multi-pinhole brain SPECTwith
stationary detectors

This chapter is adapted from:
YuanChen, Marlies C. Goorden, Brendan Vastenhouw, Freek J. Beekman. Optimized sampling for high resolution
multi-pinhole brain SPECT with stationary detectors, Phys. Med. Biol. 65 (2020) 015002 [70]

39

https://doi.org/10.1088/1361-6560/ab5bc6


3

40 3. Image acquisition brain perfusion

B rain perfusion SPECT can be used in the diagnosis of various neurologic or psy-
chiatric disorders, e.g., stroke, epilepsy, dementia and posttraumatic stress dis-

order. As traditional SPECT provides limited resolution and sensitivity, we recently
proposed a high resolution focusing multi-pinhole clinical SPECT scanner dubbed G-
SPECT-I (Beekman et al 2015, Eur. J. Nucl. Med. Mol. Imaging 42 S209). G-SPECT-I
achieves data completeness in the scan region of interest (ROI) by making small trans-
lations of the patient bed while using projections from all bed positions together for
image reconstruction. A strategy to restrict the number of bed translations is desired
to minimize overhead time. Previously we presented optimized bed translation paths
for focused partial brain imaging, while here we focus on whole brain imaging which is
the common procedure in perfusion studies. Thus, a series of noise-free scans using
a reduced number of bed positions were simulated and compared to an oversampled
reference scan acquiredwith 128 bed positions. Noisy simulationswere included to val-
idate the utility of the optimized sequences in more realistic situations. Brain uptake
ratios (BURs) and left–right Asymmetry Indices (AIs) in 51 selected regions of interest
(ROIs) were calculated for assessment. Results show that images were barely affected
by decreasing the number of bed positions from 128 down to 18 (mean deviation from
the reference of only 2.2% and 1.5% for the BUR and AI, respectively) while slightly
larger deviations (2.9% and 2.7%, respectively) were obtained when using 12 positions.
For both 18- and 12-position sequences these deviations due to sampling were much
smaller than those induced by noise (mean deviation of 6.5% and 8.6%, respectively).
Given an associated total overhead for bed movement of half a minute (18 positions) or
20 s (12 positions), G-SPECT-I can be a clinical platform that brings new protocols for
fast (dynamic) whole brain SPECT and motion correction into reach.

3.1. Introduction
Brain SPECT with 99𝑚Tc, e.g. with 99𝑚Tc-HMPAO or 99𝑚Tc-ECD, has a widely demon-
strated utility in detecting regional cerebral blood flow and in indirectly measuring neu-
ronal activity. This enables the noninvasive assessment of cerebrovascular disease (e.g.
stroke) and neurological dysfunction (e.g. epilepsy, dementias) [71, 72]. In particular,
SPECT is the only imaging modality practically capable to perform an ictal scan during
epileptic seizures due to the ‘snapshot’ property of the tracers in use [73, 74]. Besides
these clinicallywell-established applications, additional indications in the psychiatric do-
main are currently under active evaluation [75–77], for example in post-traumatic stress
disorder, anxiety and depression [78, 79].

Presently general purpose single-, dual- or triple-head SPECT scanners provide a lim-
ited spatial resolution of 7–10 mm, with sensitivity in the range of 100–250 cps/MBq.
Some dedicated brain SPECT scanners, e.g. CeraSPECT, inSpira HD or NeuroFocus [41,
43, 80, 81], have been developed, but resolutions are still around 7 mm and some are not
manufactured anymore. Such a limited resolution hampers detection of small localized
perfusion abnormalities which can compromise accuracy of diagnosis and early detec-
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tion of neuropathology while a low sensitivity requires a relatively high tracer dose and
long scanning time resulting in patient discomfort as well as increased risk of motion
artefacts. These limited resolution-sensitivity tradeoffs of previous SPECT scanners are
due to the conventional collimator designs, a limited number of detectors or restricted
detector surface area, lack of image magnification, etc.

Recently, efforts have beenmade to develop brain SPECT systems based onmulti-pinhole
collimation owing to its enhanced resolution-sensitivity tradeoff especiallywhen imaging
small objects. Simulation studies have been carried out to optimize multi-pinhole sys-
tems [10, 12, 13, 46, 47], however only a few systems have been built and/or acquired phys-
ical scans [10, 34]. Our group initially developed various focused multi-pinhole SPECT
systems for preclinical purposes, e.g. U-SPECT-I, U-SPECT-II, VECTor, U-SPECT+ [50,
57, 64, 65], and lately this technology was translated in a prototype system named G-
SPECT-I for clinical applications [10]. The preclinical systems achieve sub-halfmillimeter
SPECT resolution and sub-second-frame dynamic scans for small animals [7, 50, 82] and
are now in use in labs worldwide. The G-SPECT-I system offers an unprecedented res-
olution down to 2.5 mm and a sensitivity of 415 cps/MBq in scans of human head sized
phantoms when a collimator with 3-mm-diameter pinholes is used [10]. These enhanced
resolution-sensitivity tradeoffs are facilitated by the systems’ design inwhich all pinholes
are focusing on a central volume. This central volume is termed the complete data vol-
ume (CDV). For a scan of an object larger than the CDV, the bed is translated in order
to extend the volume with ensured sufficient angular sampling. Subsequently, all pin-
hole projections from all bed positions together are used for image reconstruction of the
entire volume using the scanning focus method [49].

Recently, we showed that scans of a region which contains a limited number of transaxial
slices of the brain (up to 36 mm) can be performed by G-SPECT-I using only 4 bed trans-
lations, demanding an estimated overhead time of seconds and thus allowing for very fast
dynamic imaging [27]. The present paper aims to optimize bed translations of G-SPECT-I
for full brain scanning, which is commonly done in brain perfusion studies. To maximize
effective sensitivity, scanning speed as well as 4D SPECT frame rate, we investigated (i)
confining the axial length to the minimum required, and (ii) limiting the number of bed
translations while avoiding truncation artifacts or undersampling, all based on extensive
G-SPECT-I simulations including attenuation modeling. Resulting images were assessed
both visually and quantitatively.

3.2.Methods

3.2.1. Systemdesign

The G-SPECT-I scanner (Figure 3.1) consists of nine scintillation gamma detectors each
comprised of a 595 × 472 × 9.5 mm³ NaI(Tl) crystal based cameras, an interchangeable
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collimator, a precisely controlled xyz-stage for bed translation, three optical cameras and
an appropriate user interface for the selection of the scanning volume of interest (VOI)
based on the optical cameras [56, 83]. The collimator assumed in this paper for brain
imaging has a total of 54 pinholes [10]. All pinholes are focusing towards the collimator’s
center, offering a CDV with a transaxial diameter and axial length of 100 mm and 60 mm,
respectively. Note that for activity in the large volume of the gantry outside the CDV, the
emitted photons are still captured by a part of the pinholes (see Figure 3.1). Other details
concerning the G-SPECT-I system have been explained in [27].

Figure 3.1: Illustration of the G-SPECT-I scanner. (A) G-SPECT-I system with three optical cameras and a user
interface for VOI selection; (B) an example of how VOI selection is done with the user interface. The user
interface takes the images from three optical cameras as input. (C) The CDV in transaxial view (top image) and
along axial direction (bottom image). The CDV is the volume ‘seen’ by all pinholes; it has a transaxial diameter
𝑅𝑐 of 100mm and an axial length 𝐿𝑐 of 60mm. The entire field of view (FOV) of the scanner, at one bed position,
is much larger than the CDV; it extends over the gantry as shown in the figure.

3.2.2. Simulation set up

A digital Zubal phantom [84] was used for simulating normal brain perfusion images (Fig-
ure 3.2). The activity map was generated by segmenting the Zubal phantom into grey
matter, white matter and cerebral spinal fluid (CSF) and assigning activity concentrations
to these regions with a ratio of 4:1:0, respectively, as in [85–87]. We forced the phantom



3.2. Methods

3

43

to be perfectly symmetric by mirroring the phantom left hemisphere to the right. This
was to avoid any bias induced by the intrinsic left–right asymmetry of the Zubal phantom
during image analysis. This phantomwas subsequently interpolated (trilinearly) in PMOD
v4.0 (PMOD Technologies Ltd, Switzerland) from its original size of 1.1 × 1.1 × 1.4 mm³ to
0.75 × 0.75× 0.75 mm³ voxel size, half the voxel size of the reconstructed image (1.5 × 1.5
× 1.5 mm³), to mimic a continuous activity distribution reconstructed on a discrete grid.
System matrices for forward projection of the activity distribution and reconstruction
were both generated using a set of 99𝑚Tc (140 keV) point source measurements and ge-
ometrical modeling [63]. To obtain realistic simulated projections, effects of attenuation
were included using a voxelized ray tracer [17, 68]. Attenuation map were obtained by
assigning regions in the Zubal phantom to bone, soft tissue and air with an attenuation
coefficient of 0.31, 0.15 and 0 cm−1, respectively (Figure 3.2(C)). Although attenuation was
included in simulating projections, no attenuation correction was performed on the re-
constructed images. Similarity regulated OSEM [18] with eight subsets and ten iterations
was performed using the scanning focus method [49] to combine all projections from all
bed positions simultaneously into image reconstruction.

Figure 3.2: Phantoms used for brain perfusion simulation: (A) the Zubal phantom, (B) activity distribution in
phantom, and (C) attenuation map. Tracer concentration in grey matter, white matter and CSF is set to be 4:1:0.
Attenuation coefficients assigned to bone, soft tissue and air are 0.31, 0.15 and 0 cm−1, respectively.

3.2.3. Noise-free simulations for bed sequence optimization

Bed sequence optimization was performed using noise-free simulations to quantify er-
rors solely induced by sampling. Sequences investigated here all follow a multi-planar
trajectory, meaning that bed positions in each transaxial plane are replicated along ax-
ial direction to extend the scan length. To serve as a reference, we first simulated an
oversampled full brain scan obtained by (i) scanning the full axial length of the brain; (ii)
keeping a small separation (compared to the 60 mm length of the CDV) of 21 mm be-
tween consecutive axial positions; and (iii) using a large number of 16 bed positions in
each transaxial plane. This reference scan thus employs a total number of 128 small bed
translations (8 axial and 16 transaxial positions).

Subsequently, to optimize the bed translation path, a series of scans using a reduced
number of bed positions were simulated and compared to the reference scan. This opti-
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mization was done according to the following three steps (see also Figure 3.3).

1. Confine the axial scan length by searching the maximum allowed edge margin𝐷𝑒𝑚
that still allows for artifact-free whole brain imaging.

2. Maximize the separation 𝐷𝑠𝑝 between consecutive axial positions to facilitate a
minimum number of axial positions.

3. Further minimize the required number of transaxial positions per plane𝑁𝑡𝑟 , using
the optimal settings found in the previous steps.

Each step is explained in detail in the subsections below.

Figure 3.3: Illustration of the bed sequence optimization for (A) edge margin 𝐷𝑒𝑚, (B) axial separation 𝐷𝑠𝑝, and
(C) number of transaxial bed positions𝑁𝑡𝑟 . The brain image shown represents a maximum intensity projection
of the brain perfusion phantom in the coronal view. In (A), oversampling in the brain between the first and last
sampling planes is always ensured by using a safe 𝐷𝑠𝑝 of 21 mm and a 𝑁𝑡𝑟 of 16. In (B), bed positions are added
until at least the ‘safe’ edge found in step (A). In (C) the left figure illustrates the final axial position placement,
based on the results of the optimal 𝐷𝑒𝑚 and 𝐷𝑠𝑝. With this axial placement, sampling sequences with a 𝑁𝑡𝑟 of
16, 8, 6 and 4 are tested which are displayed at the right. The red dots highlight the transaxial bed positions,
and the blue circles indicate the outer contours of the CDVs. The dashed blue box denotes the selected VOI
on the transaxial plane. The convex hull of the CDVs, in which complete data is obtained, is represented by the
orange line.
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Axial edgemargin𝐷𝑒𝑚
To find the maximum ‘safe’ edge margin 𝐷𝑒𝑚, we gradually increased 𝐷𝑒𝑚 from 0 mm
(reference scan) to 10.5 mm, 21 mm, 31.5 mm, 42 mm, 52.5 mm (as shown in Figure 3.3A
which illustrates the two extreme cases). Oversampling in the region between the first
and last sampling plane was always ensured by using a small 𝐷𝑠𝑝 of 21 mm and 16 bed
positions in the transaxial plane, the same settings as used for the reference scan.

Axial separation between consecutive positions𝐷𝑠𝑝
The optimal axial separation was investigated by gradually increasing the value of 𝐷𝑠𝑝
from 21 mm up to 60 mm (the length of the CDV). To have a fair comparison among
scans with different 𝐷𝑠𝑝, a target slice was adopted, around which axial positions were
placed symmetrically (see Figure 3.3B). Here the value of 𝐷𝑠𝑝 was set to be 21 mm, 30
mm, 39 mm, 48 mm and 57 mm (increasing at a multiple of 2 × 1.5 mm for the symmetric
placement).The target slice was placed at the center of the thalamus, which contains rich
perfusion patterns and involves multiple important subcortical structures (e.g. caudate,
putamen). We regard this slice to be the most ‘problematic’ for all sequences since it lo-
cates exactly in between two sampling planes in all cases. Meanwhile, for all scans with
different axial separations it was ensured that the axial length was sufficiently long. In
principle, this could be accomplished by placing the first/last axial position at a common
top/bottom edge margin (e.g. all at the ‘safe edge’ found in the previous step) and adding
axial positions in between. However, this greatly limits the choice for 𝐷𝑠𝑝. Therefore, in
this study axial bed positions with a designated separation were added until at least the
‘safe’ edge margin (Figure 3.3B).

Transaxial positions𝑁𝑡𝑟
The findings in the aforementioned axial placement step were used as a starting point to
further optimize sequence design in the transaxial plane. We kept 𝐷𝑒𝑚 at the maximum
‘safe’ edge margin while making sure that 𝐷𝑠𝑝 was not larger than the ‘safe’ axial sepa-
ration (see Figure 3.3C) and we gradually decreased the number of transaxial positions.
The design of all transaxial bed sequenceswas based on the previously proposed protocol
described in [27], which assumes that a VOI is selected in the transaxial plane based on
the subject’s head contour which could be done using the G-SPECT-I user interface (Fig-
ure 3.1B). A sequence was then designed based on the selected VOI and a transaxial data-
completeness model which ensures sampling sufficiency in the convex hull surrounding
the CDVs [27]. An illustration of the designed transaxial sequences for a G-SPECT-I brain
perfusion scan based on this protocol is displayed in Figure 3.3C; from an oversampled
sequence using 16 bed positions per transaxial plane, to sequences using 8, 6 and 4 bed
positions per plane.
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3.2.4. Noisy simulations

To place the sampling-induced deviations in the context of image variations due to sta-
tistical uncertainty caused by the limited number of detected photons, we additionally
performed reconstructions with noisy projection data (for 20 Poisson noise realizations
based on the noiseless projections). This was done for the reference sequence as well as
for a selected number of sequences with reduced number of bed positions. These noisy
simulations assumed a total of 50 MBq of 99𝑚Tc in the brain [88–90] and were represen-
tative for a scan time of 30 min.

3.2.5. Evaluation

Assessment of the simulated perfusion scans was performed by visual inspection and
quantitative ROI analysis. The latter was achieved by calculating the BUR and the asym-
metry index (AI) in selected ROIs. These two metrics are given by

𝐵𝑈𝑅 =
𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
(3.1)

𝐴𝐼 =
𝐶𝑅−𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶𝐿−𝑡𝑎𝑟𝑔𝑒𝑡
𝐶𝑅−𝑡𝑎𝑟𝑔𝑒𝑡 + 𝐶𝐿−𝑡𝑎𝑟𝑔𝑒𝑡

× 200% (3.2)

Here 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 denote the mean uptake value in the target and back-
ground ROI, respectively. In this work the entire cerebellum (Figure 3.4F) directly seg-
mented from the Zubal phantom was used as the background region. The mean uptake
value𝐶𝑅−𝑡𝑎𝑟𝑔𝑒𝑡 is themeasurement from the ROI in the right hemispherewhile𝐶𝐿−𝑡𝑎𝑟𝑔𝑒𝑡
is that of the corresponding ROI in the left hemisphere.

Varied ways of target ROI definition are used for perfusion SPECT assessment across
studies. One of the common approaches entails manually delineating ROIs in the four
big lobes (i.e. frontal, temporal, parietal and occipital lobe), sub-regions of the lobes (e.g.
inferior and superior frontal lobe, lateral and medial temporal lobe, etc), and/or in sub-
cortical structures (e.g. cingulate, thalamus, etc) [91–95]. Besides, automated methods
-which could reduce labor and variability compared to manual ROI placements- are of-
ten performed by registering subject scans to a template (e.g. an averaged scan from
databases) or an atlas (e.g. Talairach atlas). However, this generally requires subject MR
scans, templates with already segmented ROIs, etc, while displacement due to misreg-
istration, possibly a few mm [96, 97], could bring bias/errors for quantification on the
simulated high resolution images. In addition, some studies implement ‘polar maps’ to
generate ROIs by simple image processing on subject SPECT scans. The polar map delin-
eates regions along the periphery of the brain in the transaxial plane coveringmost of the
grey matter, where manually drawn ROIs are often placed. The latter approach of ROI
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definition was implemented in our work. Meanwhile, we also incorporated some ROIs
from subcortical structures and in the coronal plane to make the measurement more
comprehensive as they have also been used in literature [92, 95].

A total number of 51 target ROIs was used (see Figure 3.4), among which 36 ROIs were
placed in three transaxial planes, 9 ROIs in two coronal planes and 6 subcortical ROIs
(caudate, putamen and thalamus in both hemispheres) were directly segmented from the
3D Zubal phantom. For the transaxial slices, an inferior (Figure 3.4A) and a superior (Fig-
ure 3.4C) slice were placed at the center of the thalamus and tangential to the cingulate,
respectively, as in [98, 99]. A middle slice (Figure 3.4B) was chosen to be the slice exactly
in between the two. To generate the polar map regions on the transaxial slice, an annulus
region was obtained by segmenting the brain outer boundary from the digital phantom
and extending it from the outer boundary inwards for 15 mm, as in [100, 101]. This annu-
lus was subsequently divided into 12 equal angular sectors. For ROIs in the coronal plane,
the orbital and dorsolateral part of the frontal lobe and cingulate (Figure 3.4D), as well as
the mesial and lateral part of the temporal lobe (Figure 3.4E) were considered, as in [99].
These transaxial and coronal ROIs have a size in the range of 0.4–1.0 cm³ with a mean
value of 0.8 cm³. The subcortical ROIs (as displayed in Figure 3.4A on one transaxial slice)
vary in size from 4.4–5.7 cm³. Figure 3.4F illustrates the location of the selected transaxial
and coronal planes as well as the cerebellum in the brain.

Figure 3.4: Illustration of the 51 target ROIs for quantitative analysis. Panels (A)–(C) showROIs in three transaxial
slices. Panels (D) and (E) display the ROIs in two coronal slices. Panel F indicates the location of the selected
transaxial or coronal slices in the brain. In each transaxial slice, 12 peripheral ROIs are segmented symmetrically
on the left and right hemisphere. The subcortical regions in the inferior plane are depicted in panel (A).
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For each simulated scan, its BUR and AI values in all 51 ROIs were calculated and com-
pared to those from the (noise-free) reference scan. We assessed the magnitude of the
deviations from this reference scan when scanning with various bed sequences. These
deviations are defined as:

𝐷𝑒𝑣𝐵𝑈𝑅 =
∣ 𝐵𝑈𝑅 − 𝐵𝑈𝑅𝑟𝑒𝑓 ∣

𝐵𝑈𝑅𝑟𝑒𝑓
× 100% (3.3)

𝐷𝑒𝑣𝐴𝐼 =∣ 𝐴𝐼 − 𝐴𝐼𝑟𝑒𝑓 ∣ (3.4)

Here Dev stand for the deviation from the reference scan, while 𝐵𝑈𝑅𝑟𝑒𝑓 and 𝐴𝐼𝑟𝑒𝑓 are
the BUR and AI values of the reference. The deviation of AI is calculated directly by sub-
tracting the 𝐴𝐼𝑟𝑒𝑓 , since AI is already a normalized index expressed in percentage. Note
that the BURs are always positive (Equation 3.1) and AIs here could be either positive or
negative (Equation 3.2).

For all images presented in this paper, the noise-free scans were post filtered with a 3D
Gaussian filter of 4 mm full width at half maximum (FWHM) and displayed with a slice
thickness of 1.5 mm. The noisy scans were 6 mm-FWHM Gaussian filtered and displayed
with a larger slice thickness of 6mm to suppress small local fluctuations due to noise. For
quantitative analysis of all scans, measurementswere performed on the unfiltered images
to avoid any bias from filtering. Additionally, we included some quantitative results ob-
tained from 6-mm-FWHMGaussian filtered images for a selected number of scans, since
quantification of clinical SPECT is commonly performed on filtered images.

3.3. Results

3.3.1. Noise-free simulations

Axial edgemargin𝐷𝑒𝑚
Figure 3.5(A) shows the sagittal view of simulated perfusion images with an increasing
edge margin𝐷𝑒𝑚. The red lines indicate the locations of the first/last axial bed positions
while the dotted white lines denote the upper/bottom edge of the brain. Compared to
the reference scan (with 𝐷𝑒𝑚 = 0 mm), scans with a 𝐷𝑒𝑚 up to 31.5 mm appear hardly
degraded upon visual inspection while further increasing 𝐷𝑒𝑚 to 42 mm or 52.5 mm re-
sults in some artefacts at the edges of the brain. For an additional check, a top and a
bottom transaxial slice are selected and displayed in Figure 3.5B. Image profiles on these
two transaxial slices are displayed in Figure 3.5C. Figure 3.5 confirms the sufficient cov-
erage of the brain for scans with a maximum 𝐷𝑒𝑚 of 31.5 mm as structures in the top or
bottom transaxial slices are well preserved compared to the reference scan.
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Figure 3.5: Comparison of scans with different edge margin 𝐷𝑒𝑚. (A) Simulated sagittal image slices are dis-
played. The red lines indicate the locations of the first/last axial bed positions and the dottedwhite lines denote
the upper/bottom edge of the brain. The same colormap ranging from 0 to the maximum intensity of the ref-
erence scan is used for all simulated perfusion images in this paper. (B) A top and bottom transaxial slice are
displayed. The locations of these two slices are indicated in panel (A). Image profiles through each transaxial
slice are included and shown in panel (C). These profiles are taken from a line with a width and thickness of 4.5
mm.
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Axial separation𝐷𝑠𝑝 between consecutive sampling planes
To compare the scans with different 𝐷𝑠𝑝, the target slice (which always locates exactly
in between two sampling planes) as well as image profiles are shown in Figure 3.6 A and
B, respectively for all sequences. Figure 3.6 shows that visual differences between the
simulated images acquiredwith varied values of𝐷𝑠𝑝 are small; patterns arewell preserved
with no obvious distortions even for a value of 𝐷𝑠𝑝 of 57 mm. This is further confirmed
by the coronal view comparison in Figure 3.11 in the appendix.

To quantitatively assess the effect of increasing𝐷𝑠𝑝, we calculated brain uptake ratio BUR
for the 12 polar map regions on the target slice (Figure 3.7A). Compared to the reference
image, scanning with an increased value of 𝐷𝑠𝑝 up to 57 mm achieves comparable BUR
measurements (maximal deviation of 6.0% from the reference) among all selected ROIs
on the target slice.

Besides a direct comparison of the BURs on the target slice, deviations from the reference
scan among all 51 ROIs in the entire brain are calculated and displayed in Figure 3.7B. Due
to the large number of ROIs assessed, only themaximumandmeandeviation fromall ROIs
are plotted. Figure 3.7B demonstrates that deviations from the reference for the tested
scans acquired with different𝐷𝑠𝑝 are all below 7%. For the scan with a𝐷𝑠𝑝 of 48 mm, the
BUR and AI deviate maximally 5.0% and 3.2%, respectively, while the mean deviations
read only 1.3% and 0.8%. Based on these visual and quantitative results (Figure 3.6-3.7),
a maximum axial separation 𝐷𝑠𝑝 of 48 mm is used for further transaxial sequence opti-
mization.
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Figure 3.6: Comparison of the target slice for scans with different axial separations. (A) The target slice is
displayed for different scan sequences. (B) A horizontal and a vertical image profile through the target slice
are shown. These profiles are taken from a line with a width and thickness of 4.5 mm. Note that the reference
scan is simulated using an axial separation of 21 mm and covers the entire brain using 8 axial positions (see
Figure 3.3A), while the middle image on the first row of panel A (21 mm separation) is simulated with an axial
separation of 21 mm and sufficient axial bed positions (5 in this case) are added to reach the safe edge margin
of 31.5 mm.
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Figure 3.7: Comparison of the BUR and AI measurements between the reference and scans with an increased
axial separation 𝐷𝑠𝑝. (A) Direct comparison of the BURs for the tested sequences in ROIs on the target slice;
(B) deviations from the reference of the BUR and AI among all 51 ROIs (see Figure 3.4) in the entire brain. The
maximum and average deviation are shown with a triangle and a bar, respectively.
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Transaxial sampling sequence

Figure 3.8 shows a comparison of scanswith different numbers of transaxial bed positions
𝑁𝑡𝑟 . All scans (except the oversampled reference) use the same axial bed position place-
ment (Figure 3.8A) based on the previous results (optimal 𝐷𝑒𝑚 and 𝐷𝑠𝑝) and adjusted to
the size of Zubal phantom; we keep 𝐷𝑒𝑚 to be 31.5 mm while adding axial positions such
that 𝐷𝑠𝑝 is not larger than 48 mm (42 mm here). Figure 3.8A shows two transaxial slices
which are both in between two sampling planes, while Figure 3.8B gives a comprehensive
comparison of the transaxial images from the top to the bottom of the brain. Additionally,
as other views are also important for perfusion scan assessment, we include more image
comparisons for the coronal view in the appendix (Figure 3.12). Both the transaxial and
coronal view results show that reducing the number of bed positions from the oversam-
pled reference scan to 18 (3 axial positions combined with 6 transaxial positions) hardly
has a visual effect on perfusion images. Further decreasing the number of transaxial bed
positions to 4 leads to relatively larger deviations from the reference as well as a slightly
degraded left–right symmetry.

A quantitative analysis is included in Figure 3.9 which shows a direct comparison of the
BURs for the 12 polar map ROIs on the target slice (Figure 3.9A), as well as the maximum
and average deviations in BUR and AI from the reference among all 51 ROIs (Figure 3.9B).
For all the tested transaxial sequences, these deviations are below 9.8%. When using
six transaxial positions with the proposed axial placement, the maximum deviation of
the two measurements are 5.7% and 5.4% for BUR and AI, respectively, while the mean
deviations read only 2.2% and 1.5%. Further decreasing the number of transaxial positions
to 4 leads to a maximum deviation of 8.1% and 9.8% for the BUR and AI, respectively, and
a mean deviation of 2.9% and 2.7%, respectively.
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Figure 3.8: Comparison between the reference scan and scans with different transaxial bed positions. (A) Two
transaxial slices which are both exactly in between two sampling planes; (B) transaxial slices from top to the
bottom of the brain.
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Figure 3.9: Comparison of the BUR and AI measurements between the reference and several scans each using
3 axial positions but with different numbers of transaxial bed position 𝑁𝑡𝑟. (A) Direct comparison of the BURs
for the tested sequences in ROIs on the target slice; (B) deviations from the reference of the BUR and AI among
all 51 ROIs (see Figure 3.4) in the entire brain. The maximum and mean deviation are shown with a triangle and
a bar respectively.
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3.3.2. Noisy simulations

Noisy simulations were performed for the reference sequence (Noisy-ref) as well as for
two selected sequences based on the results above, i.e. the sequence with 18 (Noisy-18:
3 × 6 positions) and 12 positions (Noisy-12: 3 × 4 positions). Examples of the simulated
noisy images are shown in Figure 3.10A.

Quantitative assessment of the BUR and AI deviations from the (noise-free) reference
scan are provided in Figure 3.10B. This figure shows that deviations due to Poisson noise
are 3–4 times larger than those induced by sampling; for example, reducing the number
of bed positions to 18 or 12 positions leads to a mean (BUR or AI) deviation from the
reference in the range of only 1.5%–2.9%when assessed on unfiltered images, while these
two mean deviations (BUR and AI) for Noisy-ref are 6.5% and 8.6%, respectively. Using
a post filter (6-mm-FWHM Gaussian) either on noise-free or noisy scans could reduce
the quantification error typically by a factor of 1.5–2. For example, the sampling induced
BUR or AI deviations (with 18 or 12 positions) decrease to mean values of 0.7%–1.9% when
images are filtered, while for the Noisy-ref scans the mean deviation decreases to 4.2%
and 2.5% for BUR and AI, respectively.

Compared to Noisy-ref, Noisy-18 achieves a slightly better performance, which could be
explained by the increased count yield (1.2 times higher for the more focused 18-position
sequence than for the reference sequence). Noisy-12 obtains a similar quantitative ac-
curacy as Noisy-ref for unfiltered images, but slightly larger deviations (0.7% and 0.6%
larger mean deviations for BUR and AI, respectively) when assessed on the filtered scans.
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Figure 3.10: Comparison of the noisy simulations for the reference sequence (Noisy-ref) as well as for sequences
with 18 (Noisy-18) and 12 positions (Noisy-12). Example of the simulated noisy scans are shown in panel A. Panel
B shows the deviations from the (noise-free) reference scan for the noiseless and noisy unfiltered scans and
for these scans applying a Gaussian filter of 6 mm FWHM. The maximum and mean deviation are shown with a
triangle and a bar respectively. For the noisy simulations, the maximum and mean deviations were calculated
from 51 ROIs and for all 20 noise realizations.
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3.4. Discussion
A big challenge in clinical brain imaging is to achieve an excellent resolution-sensitivity
tradeoff that allows for visualization of small lesions at a reasonable radiation dose, while
fast (dynamic) capabilities that can be used in motion correction are advantageous as
well. Previously we have demonstrated excellent resolution-sensitivity tradeoff of the G-
SPECT-I scanner in physical phantom scans [10]. The current work presents G-SPECT-I
acquisition using a limited number of bed translations that still allows artifact-free high
resolution whole brain scanning. We estimated the total overhead time of 18 and 12 po-
sitions to be only 30 and 20 s, respectively (based on estimations involving the current
G-SPECT-I prototype). This may enable fast dynamic studies and multi-frame scans for
motion correction.

Note that with G-SPECT-I, overhead time is introduced by the bed translations required
to scan volumes larger than the CDV, while for traditional SPECT overhead time is asso-
ciated with the need to rotate the heads. For traditional scanners with step-and-shoot
mode, 64 or 128 views are generally required for sufficient angular sampling (even for a
small scanning volume), which results in more than 20 detector stops even for a triple-
head system leading to an overhead time of 40–80 s assuming 2–4 s movement time per
view, as reported in [102, 103]. Instead, the G-SPECT-I design with stationary detectors
offers the flexibility of performing focused scans where only few bed translations are
required while also allowing for extended volume scans.

Effects of attenuation were included in the simulation to make results more realistic. No
attenuation correction was performed in the reconstruction for multiple reasons. Firstly,
we have not yet determined the attenuation correction method (e.g. transmission imag-
ing based, MR based using deep learning, solely SPECT based, etc) to be applied in future
G-SPECT-I studies. This is currently under development [104] , however further testing
and validation is necessary. Besides, there are clinicians do not use it [105], possibly be-
cause it can be prone to errors due to small shifts between SPECT and CT [106, 107] or
because of the limited accuracy of a contour based uniform attenuation. Therefore we
felt it was better to prevent mixing of the sampling issues with attenuation correction
inaccuracies due to the use of a not fully validated approach for G-SPECT-I at this stage.

In this paper, we firstly performed noise-free simulations to constrain the analysis to
sampling problems associated with different sequences, while later noisy simulations
were included to investigate the utility of the optimized sequences in realistic noisy sit-
uations. The former step demonstrated that reconstructed images were barely affected
(both visually and quantitatively) when the number of bed translations was decreased
from 128 down to 18; when further decreasing the number of translations to 12, a some-
what larger deterioration from the reference scan (maximum deviation of 9.8%, see Fig-
ure 3.9) and some visual deviations (see Figure 3.8) were observed. This maximum de-
viation with the use of a 12-position sequence decreases to 6.9% when quantifications
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were done on 6-mm-FWHM Gaussian filtered scans (Figure 3.10B). In addition, the noisy
simulations showed that in the presence of noise, the deviations due to using 18-position
or 12-position sequences are almost negligible (3–4 times smaller) compare to those in-
duced by noise. Note that in the noisy simulations bed movement overhead time was
neglected as it highly depends on the number of frames in data acquisition and the bed
in use. Thus in practical SPECT scans when overhead time is playing a role, especially in
multi-frames studies, one would expect a relatively larger benefit when using sequences
with 18 and 12 positions than what is provided in Figure 3.10.

For focused scans when only a part of the brain is of interest, the number of bed trans-
lations can be further reduced without sacrificing image quality by axially restricting the
scan length to just cover the target volume. An example of such an implementation was
demonstrated in [27] which presented brain dopamine system imaging with only 4 bed
translations. Besides, even for whole brain scans which require very high temporal res-
olutions, as in brain pharmacokinetic studies [108–111], utilizing less than 12 positions
remains possible, for example by applying an axial separation 𝐷𝑠𝑝 larger than the cur-
rently used value of 48 mm. For such fast scans, the effects of noise would be much more
prominent than what was shown in figure 10 such that the compromised accuracy due
to sampling may be negligible. This could enable imaging tracers with a very short (bi-
ological or physical) half-life, such as ¹³³Xe (biological half-life of about 40 s), for which
scanning with a confined axial length, e.g. 71 mm [112] is often already done.

Aspects which have not yet been studied here could enable even faster dynamic SPECT
imaging. We have assumed the same number of transaxial positions at each axial po-
sition; in future work one could study using fewer transaxial positions when scanning
parts of the brain with smaller dimensions, e.g. the brain’s top and bottom. Besides,
strategies that enable a continuous bed motion acquisition would be beneficial as in that
case counts would constantly be recorded during the entire scan. Such methods have
been proposed for PET imaging with bed translations only in axial direction [113–115]. For
G-SPECT imaging this requires additional investigations. Moreover, collimators that of-
fer a larger CDV are currently under design in our institute. With these developments,
one can expect that less or even no bed translations are required, which may help to
achieve extremely fast SPECT scans.

3.5. Conclusion
We have designed and evaluated different bed position sequences for total brain per-
fusion imaging with a stationary focusing multi-pinhole SPECT system. We found that
decreasing the number of bed positions from 128 representing an oversampled scan down
to a small number of 18 or 12 positions has minimal effects on image quantification com-
pared to those induced by noise, while the respective overhead times were estimated to
be only 30 and 20 s in total. This is important information for developing protocols for
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fast dynamic brain SPECT and multi-frame scans for motion correction.
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Appendix

Figure 3.11: Comparison of simulated perfusion images with the reference image when increasing the axial sep-
aration between consecutive sampling planes𝐷𝑠𝑝 images are shown in the coronal view. Each row corresponds
to one simulated scan, with the 𝐷𝑠𝑝 increasing from 21 mm to 57 mm from the 2nd row to the bottom row. Im-
ages from left to right shows the coronal slices from the anterior of the brain to the posterior. The locations of
the slices are indicated in the top left image.
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Figure 3.12: Comparison of simulated perfusion images with the reference image when using the proposed
axial position placement but reducing the number of transaxial bed positions 𝑁𝑡𝑟. Each row corresponds to
one simulated scan, with the 𝑁𝑡𝑟 decreasing from 16 to 4 positions per plane from the 2nd row to the bottom
row. Images from left to right shows the coronal slices from the anterior of the brain to the posterior. The
locations of the slices are indicated in the top left image.
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I n clinical brain SPECT, correction for photon attenuation in the patient is essen-
tial to obtain images which provide quantitative information on the regional activity

concentration per unit volume (kBq.ml−1). This correction generally requires an atten-
uation map (𝜇 map) denoting the attenuation coefficient at each voxel which is often
derived from aCT orMRI scan. However, such an additional scan is not always available
and the method may suffer from registration errors. Therefore, we propose a SPECT-
only-based strategy for 𝜇 map estimation that we apply to a stationary multi-pinhole
clinical SPECT system (G-SPECT-I) for 99𝑚Tc-HMPAO brain perfusion imaging. The
method is based on the use of a convolutional neural network (CNN) and was validated
with Monte Carlo simulated scans. Data acquired in list mode was used to employ the
energy information of both primary and scattered photons to obtain information about
the tissue attenuation as much as possible. Multiple SPECT reconstructions were per-
formed from different energy windows over a large energy range. Locally extracted
4D SPECT patches (three spatial plus one energy dimension) were used as input for
the CNNwhich was trained to predict the attenuation coefficient of the corresponding
central voxel of the patch. Results show that Attenuation Correction using the Ground
Truth 𝜇 maps (GT-AC) or using the CNN estimated 𝜇 maps (CNN-AC) achieve com-
parable accuracy. This was confirmed by a visual assessment as well as a quantitative
comparison; themean deviation from theGT-ACwhen using theCNN-AC iswithin 1.8%
for the standardized uptake values in all brain regions. Therefore, our results indicate
that a CNN-based method can be an automatic and accurate tool for SPECT attenua-
tion correction that is independent of attenuation data from other imaging modalities
or human interpretations about head contours.

4.1. Introduction
In SPECT, attenuation of photons in tissue hampers quantitative analysis of regional
tracer uptake and may lead to image artefacts. Attenuation correction (AC) is thus re-
quired to improve the diagnostic value and quantitative accuracy of reconstructed im-
ages. Besides, quantitative SPECT (i.e. SPECT that provides a precise estimate of the
activity level in kBq.ml−1) is also important for dosimetry planning [116].

Correction for photon attenuation is commonly based on a 3D map (attenuation map or
𝜇 map) that quantifies the amount of attenuation in each voxel within the patient at the
given photon energy. Today, these 𝜇 maps are often derived from an additional CT or
MRI scan. However, such an additional scan may not be available, can add radiation dose
in case of CT, and is prone to registration errors [117–119]. Besides the use of additional
CT or MRI scans, simple methods based solely on emission data that delineate the ob-
ject contour and assume a uniform attenuation within the contour are used. Currently,
manual placement of an ellipse approximating the head contour is still the most widely
implemented approach for brain studies with commercial SPECT systems [120]. Such a
method however can be highly subjective and suffer from limited accuracy due to the op-
erator dependency, coarse approximation of the skull contour and lack of internal head
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anatomy.

In clinical SPECT, photon-interactions in biological tissues are dominated by Compton
scatter while photoelectric absorption is almost negligible. For example, for photons
at 140 keV traveling through brain, only 1% (a linear coefficient of 0.0015 cm−1) of the
total attenuation (0.1461 cm−1) is due to photoelectric effects. Therefore, one might ex-
pect that the detected scattered photons contain essential information about attenuation
maps. Conventionally, the use of SPECT images reconstructed from scattered photons or
projections in scatter windows for 𝜇 map generation has been investigated in the 90s for
brain [121] and body (cardiac and liver) SPECT [122–124], yet inmost cases solely a contour
was estimated from a single scatter window while a uniform attenuation coefficient was
assigned to the volume within the contour. This approach is seldom applied clinically,
possibly due to the increased complexity in light of the limited improvement of accu-
racy compared to the ellipse method. With the advance of SPECT instruments, list mode
acquisition –in which case the estimated interaction position as well as the energy are
recorded simultaneously for every detected event- is gaining popularity. In the work of
[125], the authors studied the information content in SPECT list mode data and proposed
a MLEM approach using scattered photons from the observed list mode data to jointly
reconstruct the attenuation and activity map. This, however, remains a theoretical study
due to the complexity of the approach. Similarly, jointly reconstructing the attenuation
and activity map using both the photopeak and scattered projections was also proposed
in a newly published work for PET scans without time of flight information [126].

Recently, deep learning with convolutional neural networks (CNNs) has been widely in-
vestigated in medical image restoration and analysis, e.g. for tissue segmentation, image
de-noising, and image transformation (e.g. MRI to CT) [19, 21, 23, 127–130]. These net-
works can capture relevant information inherent in data and establish highly nonlinear
mapping from input to output. This enables the extraction of energy-spatial informa-
tion from the scatter- and primary-window reconstructed SPECT images for 𝜇 map es-
timation. Successful implementations of this deep learning based strategy have been
demonstrated in [23] for 99𝑚Tc-tetrofosmin SPECT scans, and in [22, 131] for 18F-FDG
brain PET scans. Specifically in [23], the authors performed image reconstructions from
two energy windows (primary and one scatter window) of 99𝑚Tc-tetrofosmin myocardial
SPECT; a generative adversarial network was used to transform 4D SPECT image patches
(3D SPECT over two energy windows) to 3D attenuation map patches. Results were vali-
dated on clinicalmyocardial scans acquired from aGE dual-head parallel-hole SPECT/CT
850 system.

The aim of the present work is to develop and validate a CNN approach for estimating 𝜇
maps of 99𝑚Tc-HMPAO brain perfusion scanning with a full ring stationary SPECT system
(G-SPECT-I, [10]). The full emission data including both primary and scattered photons
over a broad energy range was utilized via multiple image reconstructions at different
energy windows. A patch-based CNN approach was implemented in the present work.
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Such an approach is often applied in medical image restoration and analysis [19, 127, 132,
133] due to the reduced number of parameters and increased amount of training data
that is required compared to the full-image to full-image approaches e.g. U-Net [134].
In the present study, a large number of 4D (i.e. XYZE dimensions) SPECT patches (sub-
volumes of 21 × 21 × 21 voxels × 5 energies) were used as input for the CNN to estimate
the attenuation coefficient of the corresponding central voxel of the patch. Our proposed
method was tested onMonte Carlo (MC) simulated 99𝑚Tc-HMPAO SPECT scans based on
the G-SPECT-I geometry.

4.2.Methods

4.2.1. G-SPECT-I system

The G-SPECT-I is a multi-pinhole system with stationary detectors that demonstrates
excellent resolution down to 2.5 mm (resolved rod size for Derenzo hot rod phantom)
and a central sensitivity of 415 cps/MBq when using a dedicated brain collimator with
3-mm-diameter pinholes [10]. This system (see Fig. 4.1) consists of nine large-area NaI
detectors, an interchangeable collimator and a precisely controlled xyz-stage used for
bed translation. The collimator assumed in this paper was developed for high sensitiv-
ity brain and pediatric imaging and has a total of 54 pinholes with a pinhole diameter of
4.5 mm. The G-SPECT-I has a focused geometry design, similar to that of its preclinical
predecessors, i.e. various versions of U-SPECT/CT and VECTor/CT scanners that are
now in use by many labs worldwide [7, 39, 57, 64]. Such focused geometries entail that
all pinholes simultaneously ‘view’ a central volume in which a very high sensitivity and
complete data (without bed movement) is obtained. This central volume is termed the
complete data volume (CDV). This CDV has a transaxial diameter and axial length of 100
mm and 60 mm respectively (see Fig. 4.1). For a scan of an object larger than the CDV,
the bed is translated to extend the volume in which sufficient sampling is obtained for
optimal image reconstruction. In the present paper, for a whole brain perfusion scan,
18 bed translations with overlapping CDVs are used for sufficient sampling of the entire
scan volume based on findings in [70]. All pinhole projections from all bed positions to-
gether are used simultaneously for image reconstruction using the so called scanning
focus method [49]. Other details concerning G-SPECT-I are described in [27].

4.2.2. SPECT data simulations

The CNN estimation of the 𝜇 maps is based entirely on MC simulated SPECT list-mode
data for the G-SPECT-I geometry using head phantoms. As the presence of noise in
the MC simulated realistic brain images may hamper visualization of AC effects when
evaluating the 𝜇maps, we additionally performed a voxelized ray tracing (VRT) simulation
[17, 68] to generate noise-free images, such that the accuracy of AC and thus the quality
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Figure 4.1: Illustration of the G-SPECT-I scanner. The G-SPECT-I system has three optical cameras and a user
interface for volume of interest (VOI) selection. Based on the selected VOI, G-SPECT-I software automati-
cally adjusts parameters for optimal imaging of the VOI. The CDV is the volume “seen” by all pinholes; it has a
transaxial diameter 𝑅𝑐 of 100 mm and an axial length 𝐿𝑐 of 60 mm.

of the 𝜇maps could be studied on noisy as well as on noiseless images. These simulations
are described in detail below (see also Fig. 4.2).

4.2.3. Digital phantoms for simulation

The publicly available Brainweb database with digital phantoms generated based on nor-
mal subjects [135] were used to simulate 99𝑚Tc-HMPAO brain perfusion scans. This type
of scan was chosen given the wide application of perfusion SPECT in the diagnosis of
cerebrovascular (e.g. stroke), neurological (e.g. epilepsy) and psychiatric disorders (e.g.
post-traumatic stress disorder) [71, 72, 79]. A total of six phantoms (the first six phantoms
when ordered by subject number) were used in this work, with five used for training and
one for testing in a leave-one-out cross validation manner.

For each phantom, the activity map was generated by assigning tracer concentrations to
greymatter, whitematter and background regions (e.g. skin, skeletalmuscle) with amean
ratio of 80:20:5 [85–87] to mimic a realistic blood flow. This ratio was introduced with a
randomvariation (normally distributed) with a standard deviation of 10% for each number
to make the activity distribution variable among phantoms. Besides, a total activity of 50
MBq in average was set in the head (resembling an injected dose of 25 mCi as in [88–90].
This numberwas inducedwith a standard deviation of 10% (normally distributed) for each
phantom. Simulations assumed a scan time of 30 min.

The attenuation map was obtained by segmenting the phantom into different regions.
For MC simulations, the maps with each region assigned with a material (e.g. water)
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Figure 4.2: Illustration of SPECT data simulation. (a) MC simulations of the head phantoms; for each phantom,
an activity and attenuation map were generated and were used for MC simulation. Background counts due to
cosmic radiation were added to theMC simulated projection data. Five SPECT reconstructions were performed
from different energy windows. (b) VRT simulations to generate noise-free images on which the effects of
attenuation correction with different 𝜇 maps were studied. In the figure, “bkg” stands for background, “WM”
is the white matter and “GM” is the grey matter.

were used (see Fig. 4.2a), while for VRT simulations, the maps with each region assigned
with an attenuation coefficient were used (subject to the different requirements of both
simulators). A total of eight different regions were segmented, i.e. skull, skin, blood,
muscle, brain, water, fat and air, with a corresponding coefficient of 0.248, 0.155, 0.149,
0.147, 0.146, 0.142, 0.128 and 0 cm−1 respectively. These values were calculated based
on the chemical component of each tissue and the mass attenuation coefficient given in
NIST (National Institute of Standards Technology [136]) for photons at 140 keV. The map
with given attenuation coefficient is also the ground truth (GT) 𝜇 map that was used in
the cross-validation step for training and for evaluation of the network predicted 𝜇maps.
All phantoms for simulations were down-sampled with trilinear interpolation to have a
voxel size of 1 × 1 × 1 mm³ from its original voxel size of 0.5 × 0.5 × 0.5 mm³.

NoisyMC simulations

The software used forMC simulationswas theGeant4 Application for Tomographic Emis-
sion (GATE) [137], with Geant4 v10 and GATE v8.0 installed on a CentOS 6.6 cluster. The
long scanning time (30min) simulationwas divided intomultiple simulationswith shorter
time intervals (randomly seeded) that were executed in parallel on a computer cluster.

The system geometry in GATE was designed to closely represent the actual G-SPECT-I
design, namely, the computer-aided design (CAD) drawing of the G-SPECT-I collimator
was put into GATE. Additionally, nine NaI-scintillators were created natively by defining
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a 497× 410× 9.5 mm³ box and replicating it with a ring repeater with a collimator center
to detector distance of 757 mm (same as in the G-SPECT-I prototype). The full emission
spectrum of 99𝑚Tc was used in the simulations. Physics processes modelled were pho-
toelectric effect, Compton and Rayleigh scattering for gamma photons; bremsstrahlung
and multiple scattering for electrons. Within the scintillators, the interaction time, to-
tal deposited energy, and energy-weighted average interaction location for each gamma
photon were recorded. The uncertainty of the scintillation process and light collection
is not fully modelled in the MC simulations, but rather accounted for by taking random
samples from aGaussian distribution in both the spatial and energy domain for each pho-
ton recorded on the detector. This is to accelerate the simulation process. The full width
at half max (FWHM) of the Gaussians were set according to findings in [138]: for photons
at 140 keV, the respective spatial and energy blurring were 3.5 mm and 10% FWHM (based
on measurements of detectors at our institute); for photons at other energies these two
values were calculated based on models from literature [138].

Background counts due to cosmic radiation were emulated to make the simulation more
realistic. This was done by acquiring a long void scan (10 h scan without radioactivity)
with the G-SPECT-I prototype, followed by count scaling (by dividing the count numbers
by 360 to emulate a 100 sec scan at one bed position) and Poisson statistics generation.
This process was performed for all 18 bed positions to emulate a total acquisition time
of 30 min. Finally, the background counts at each bed position were added to the corre-
sponding projections obtained with the MC simulation.

Noise-free VRT simulations

The VRT simulator takes the system geometry (i.e. the precise pinhole and detector posi-
tions and detector orientations) as input and models the collimator and detector crystal
penetration but ignores scattering [17, 68]. For these noise-free VRT scan simulations,
the same scanner geometry and the same acquisition parameters (e.g. the same 18 bed
positions) as in the MC simulation were assumed. Cosmic radiation counts were not
added in the VRT simulations. Effects of patient attenuation were included in the VRT
simulated projection data.

4.2.4. Image reconstruction

For the MC simulated projection data, five SPECT reconstructions were performed (see
Fig. 4.2a); one used the photons detected in the photopeak window combined with a
triple energy window (TEW) scatter correction (28 keV width centered at 140 keV for the
photopeak window and 5.6 keV width at each side for scatter correction) and four addi-
tional reconstructions were done from different scatter windows (28 keV width centered
at 120, 100, 80 and 60 keV respectively). For the VRT simulated projection data, only pri-
mary photons were simulated and could thus be reconstructed, resulting in noise- and
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scatter-free SPECT scans (see Fig. 4.2b).

All image reconstructions were performed on a 1.5 mm grid, larger than the voxel size
of the digital phantoms, to mimic a continuous activity distribution reconstructed on a
discrete grid. The system matrix for reconstruction was calculated using the VRT sim-
ulator for photons at 140 keV and excludes effects of object scatter. This system matrix
was used in image reconstruction for all energy windows. No attenuation correction was
performed during reconstruction. Similarity regulated OSEM [18] with 8 subsets and 10
iterations was implemented for image reconstruction.

4.2.5. Attenuationmap (𝜇map) estimation
SPECT image preprocessing

Before being used as input to the CNN to estimate 𝜇 maps, the reconstructed MC simu-
lated SPECT imageswere preprocessed (see also Fig. 4.3). Firstly, the reconstructed noisy
MC simulated SPECT images (from all energy windows) were masked to remove artefacts
outside the head (Fig. 4.3a). Themask used was a cylinder with a relatively large diameter
of 240 mm to safely preserve the brain/head structures. Secondly, intensity normaliza-
tion was performed to compensate for variance of reconstructed image intensity among
phantoms (Fig. 4.3a). Here for each phantom, the maximum intensity from the photo-
peak reconstructed image was firstly calculated. To reduce the effects of noise and/or
any strong edge artefacts (which might appear at the edge slices of the reconstructed
volume), this maximum value was obtained from slightly filtered SPECT scans (with a
6-mm-FWHM Gaussian) and from the central 36-mm-thick slices of the reconstructed
volume (the reconstructable length even with one bed position in the axial direction of
G-SPECT-I, see Fig. 4.1). Subsequently, all five reconstructions from different energy
windows were normalized by division by this maximum value such that the images from
different phantoms that are used as input to CNN have a similar dynamic range.

The MC SPECT images were down-sampled (tri-linearly) to a voxel size of 3 × 3 × 3 mm³
from an original voxel size of 1.5× 1.5× 1.5 mm³ before being fed into the neural network.
This is to speed up the training process with a relatively larger image voxel size.

CNN regression

The neural network takes 4D (XYZ and energy) patches centered at each voxel as input
and was trained to predict the attenuation coefficient of the corresponding central voxel
in object space (Fig. 4.3b). The patch size used was 21 × 21 × 21 voxels × 5 energies. The
voxel size of the patch images is 3× 3× 3 mm³. We used a typical CNN architecture that
consists of multiple stages of convolution, batch normalization, ReLU activation and max
pooling, followed by a fully connected layer with a sigmoid for voxel regression (see Fig.
4.3b). The network that takes in total five energy windows as input is termed CNN5E. In
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Figure 4.3: Illustration of attenuation map estimation. (a) SPECT image preprocessing; (b) architecture of the
CNN; 𝑛 is the number of energy windows. Three networks were tested. The network that takes five, three or
one energy window as input is termed CNN5E, CNN3E and CNN1E respectively. “Conv” and “BN” are short for
convolution and batch normalization respectively. The number of the filters is 32, 64, 128, 256 and 512 as shown
in the figure. (c) Leave-one-out cross validation with six phantoms; for testing on each phantom, the other five
phantoms are used for training.

addition, we included two networks using less energywindows to investigate the effect of
energy range of scattered photons on 𝜇map estimation. These two networks are termed
CNN3E and CNN1E respectively, with three energy windows (one photopeak window and
the two high-energy scatter windows, see Fig. 4.2a) and only the photopeak window
involved respectively. Convolution was performed with a kernel size of 3 × 3 × 3. The
number of the filters is 32, 64, 128, 256 and 512 as indicated in the figure. Pooling was
done with a grid of 2 × 2 × 2.

Leave-one-out cross validation was performed using five phantoms in training and one
for testing (see Fig. 4.3c). Each network was trained with a balanced set containing 5k
samples (4D patches) randomly selected from each of the three main tissue classes (0 ≤ 𝜇
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< 0.07/cm for air voxels, 0.07 ≤ 𝜇 <0.20/cm for water-like voxels and 0.20 ≤ 𝜇 < 0.25/cm
for bone voxels; thus 15k samples in total). Meanwhile, for each epoch during training, a
new selection of 15k sampleswasmade in order to feed the networkwith asmany samples
as possible, similar as in [139]. The network used in this study was trained to minimize
themean square error between the predicted attenuation coefficient μ and the GT 𝜇map
(see description in section 4.2.3 for definition).

The proposed network was implemented using TensorFlow. The Adam optimizer [140]
with default settings (learning rate = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999) was used to train the net-
work. A mini-batch of 15 4D patches was used. No validation set was used to determine
the optimal epoch due to the limited number of phantoms in this study. The model was
trained for 200 epochs for convergence.

4.2.6. Attenuation correctionwith estimatedmaps

As the aim is to use the 𝜇maps to realize quantitative SPECT, attenuation correction was
implemented using the estimated maps. Correction was done using an adapted first-
order Chang’s method (Chang 1978). In Chang’s method with traditional parallel-hole
collimation, the transmission along every projection line from a given voxel is calculated,
and the transmission fraction (TF) for that voxel is defined as the average transmission
value among all projection lines (Eq. 4.1).

𝑇𝐹 = 1
𝑀

𝑀

∑
𝑚=1

exp( − ∫
𝐿𝑚
𝜇(𝑙)𝑑𝑙) (4.1)

Here𝑀 is the number of projections involved in data acquisition for a certain voxel, 𝐿𝑚
is the 𝑚th projection path of gamma photons and 𝜇 is the attenuation coefficient along
the projection line 𝐿𝑚.

Figure 4.4: Illustration of the adapted first-order Chang’s method used in this study. With G-SPECT-I, for a
given voxel at a given bed position, only photons that travel toward some distinct directions will be captured
by one of the pinholes, as shown in the figure.
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Due to the (multi-pinhole multi-bed-position) characteristic of G-SPECT-I, for a given
voxel at a given bed position, only photons that travel toward some distinct directions
will be captured by one of the pinholes (see Fig. 4.4). Thus, here we implemented an
adapted multi-pinhole Chang’s method. This was done by first checking –at every bed
position– if a voxel is seen by a pinhole. If yes, the transmission along this projection line
(from that voxel center to the pinhole center) is counted, and weighted by the pinhole’s
sensitivity for that voxel (see Eq. 4.2-4.4). The parameters used in the adapted multi-
pinhole Chang’s method (Eq. 4.2-4.4) are summarized in table 4.1.

𝑇𝐹 = 1
∑𝑁𝑛=1 ∑

𝑃
𝑝=1 𝑆𝑛,𝑝

𝑁

∑
𝑛=1

𝑃

∑
𝑝=1

(𝑆𝑛,𝑝exp( − ∫
𝐿𝑛,𝑝

𝜇(𝑙)𝑑𝑙)) (4.2)

𝑆𝑛,𝑝 =
𝑑𝑒2

16𝑟𝑛,𝑝2
cos𝜃𝑛,𝑝 (4.3)

𝑑𝑒 = √𝑑2 +
2
𝜇0
𝑑 tan(𝛼2 ) +

2
𝑢02

𝑑 tan2(𝛼2 ) (4.4)

Table 4.1: Parameters used in the adapted multi-pinhole Chang’s method.

Symbol Description

𝑁 Number of bed positions in data acquisition
𝑃 Number of pinholes “seeing” the voxel
𝑆𝑛,𝑝 Sensitivity of the given voxel corresponding to pinhole 𝑝 at bed position 𝑛 [141]
𝜇 Attenuation coefficient along the line 𝐿𝑛,𝑝 from voxel to pinhole 𝑝 center at bed position 𝑛
𝑟𝑛,𝑝 Voxel-to-pinhole distance, given pinhole 𝑝 and bed position 𝑛
𝜃𝑛,𝑝 Angle between the line of voxel to pinhole center and the line of collimator center to pinhole

center, given pinhole 𝑝 and bed position 𝑛 (see Fig. 4.4)
𝑑𝑒 Equivalent pinhole diameter
𝑑 Actual pinhole diameter (4.5 mm here)
𝜇0 Attenuation coefficient (24.3 cm-¹, measured experimentally) for pinholes made of hard lead

(antimonial lead, containing a mixture of 𝑃𝑏 and 𝑆𝑛)
𝛼 Pinhole opening angle (27 ∘ here)

4.2.7. Evaluation

Visual inspection

The network estimated 𝜇 maps were compared to the ground truth 𝜇 maps. Besides,
attenuation corrected SPECT images using the three CNN estimated 𝜇 maps (CNN5E-
AC, CNN3E-AC and CNN1E-AC) were compared to the ground-truth-AC (GT-AC) images
which use the ground truth 𝜇 maps for correction.
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Quantitative analysis

4.2.7.2.1 Standard uptake value (SUV) As often used in absolute quantification for PET
and SPECT, the standardized uptake values SUVs were calculated in a number of regions
of interest (ROIs). The SUV (in units of g/ml) is the mean concentration in a region 𝐶𝑅𝑂𝐼
(Bq/ml) normalized by the injected dose per patient weight (Bq/g), as shown in Eq. 4.5. In
this work a clinically injected dose of 25 mCi and a body weight of 70 kg were assumed for
brain perfusion scans for all phantoms. To define the ROIs, a template phantom based on
the “Colin 27 Average Brain” [142] provided by the Brainweb database was registered to
subject phantoms. ROIs were generated by warping the automated anatomical labeling
(AAL v3) template [143] to subject space using the same transformation. A total of 166
regions were defined in the AAL template. These localized regions have a size in the
0.07-41.15 ml range with a median value of 3.75 ml (mean of 6.40 ml) respectively (across
all phantoms).

The capability to achieve quantitative SPECT was assessed by comparing the SUVs cal-
culated from the attenuation corrected SPECT images to those of the digital phantom
image. This direct comparison of the SUVs was performed in eight big structures as in
[21, 144], including four big lobes (temporal, occipital, parietal and frontal lobe), three sub-
cortical structures (thalamus, putamen and caudate nucleus) and the cerebellum. Here
in our work these eight structures were further separated into 16 ROIs by hemispheres
(e.g. thalamus in the left hemisphere and in the right).

𝑆𝑈𝑉(𝑔/𝑚𝑙) = 𝐶𝑅𝑂𝐼
𝐷𝑜𝑠𝑒/𝑊𝑒𝑖𝑔ℎ𝑡 (4.5)

4.2.7.2.2 Difference from GT-AC Differences in units of SUV (𝐷𝐼𝐹𝐹) when using the
CNN estimated 𝜇 maps for attenuation correction compared to that of the GT 𝜇 maps
were evaluated (see Eq. 4.6). The distribution of the differences were presented in Bland-
Altman plots as in [144]. Differences (in percentage) from the GT-AC images, which is
termed deviations (𝐷𝐸𝑉) here, were calculated as in Eq. 4.7. Statistical significance of
the deviations was assessed using paired t tests (𝑝 < 0.05 is considered as statistically
significant) as in [22, 144].

𝐷𝐼𝐹𝐹(𝑆𝑈𝑉) = 𝑆𝑈𝑉 − 𝑆𝑈𝑉𝐺𝑇−𝐴𝐶 (4.6)

𝐷𝐸𝑉𝑆𝑈𝑉(%) = ∣
𝑆𝑈𝑉 − 𝑆𝑈𝑉𝐺𝑇−𝐴𝐶

𝑆𝑈𝑉𝐺𝑇−𝐴𝐶
∣ × 100% (4.7)

For all SPECT images shown in this paper, a 3D Gaussian post filter with 6 mm FWHM
was applied. For quantitative analysis, measurements were performed on the unfiltered
SPECT images to avoid any bias from filtering.
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4.3. Results

4.3.1. Visual inspection

Figure 4.5 shows a comparison of the CNN estimated and the ground truth 𝜇 maps. Five
slices obtained fromone of the phantoms (indicated by the solid black lines) are displayed.
A full comparison of results for all six phantoms is included in the appendix (Fig. 4.9).
Figure 4.5 shows that compared to the ground truth, 𝜇 maps can be well estimated with
CNN5E andCNN3E inwhich cases scatterwindows (besides the photopeakwindow)were
involved as input to the CNN; in these cases, the shape and size of the heads are well
retrieved. The improvement by including two additional low-energy scatter windows
from CNN3E to CNN5E is small.

CNN1E has inferior performance compared to CNN5E and CNN3E; the head size can be
inaccurately predicted with CNN1E as in the example shown in Fig. 4.5 where the pre-
dicted 𝜇 maps appear incorrectly large. Besides, an insufficient estimation of the air and
bone structures was observed for CNN1E as demonstrated in figure A1 (phantom number
5). Thismight be due to the fact that input to CNN1E includes only the photopeakwindow
which represents solely the activity distribution. Information to correctly determine the
air and bone voxels where there is barely any tracer accumulation is thus insufficient.

Figure 4.6 shows a comparison of the SPECT images as well as the image profiles when
using the ground truth or CNN 𝜇 maps for attenuation correction. SPECT images pre-
sented in this figure are the noiseless scans from VRT simulations to better visualize the
effects of attenuation correction. Results of corrections performed on the realistic MC
simulated scans are included in the appendix (Fig. 4.11). Figure 4.6 shows that the image
and image profile differences from the ground-truth-AC are small for CNN5E-AC and
CNN3E-AC images, while CNN1E-AC images deviate more from the ground-truth-AC.
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Figure 4.5: Comparison of the ground truth and CNN estimated 𝜇 maps. Five slices (equally distributed with
25.5 mm separation) obtained from one of the phantoms are displayed. Locations of the slices are indicated by
the solid lines. The predicted 𝜇 maps of CNN1E appear incorrectly large.
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Figure 4.6: Comparison of the attenuation corrected SPECT images using different 𝜇 maps. (a) Attenuation
corrected SPECT images; image profiles through each slice are included and shown in panel (b). These profiles
are taken from a line with a width and thickness of 4.5 mm. A zoomed view of some parts of the profiles are
displayed in panel (c).
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4.3.2. Quantitative analysis

SUV

The absolute quantification results when using the ground-truth-AC and CNN-AC are
shown in figure 4.7. The SUVs in the 16 merged ROIs (8 structures × 2 hemispheres)
are plotted. Figure 4.7 shows that attenuation correction is essential to achieve accu-
rate quantification; without correction, an underestimation of about 70% for the SUVs
is observed. Compared to the digital phantom, the ground-truth-AC, CNN5E-AC and
CNN3E-AC images suffer from slight underestimation of the SUVs, which could be due
to the partial volume effects given the finite system resolution (∼ 3.5 mm) or the imper-
fect attenuation correction method.

Figure 4.7: Comparison of the SUV values when using various AC methods in 16 regions (8 structures× 2 hemi-
spheres). The mean and standard deviation from all 6 phantoms are displayed for each region.

Difference fromGT-AC

In the Bland-Altman plot (Fig. 4.8), the distribution of the SUV differences is assessed. Fig.
4.8a plots the distribution for measurements taken from the merged 16× 6 regions while
those from the localized 166 × 6 regions over the entire brain are given in Fig. 4.8b. In
Fig. 4.8, differences from the ground-truth-AC are small (close to the zero line) for both
the CNN5E-AC and CNN3E-AC. Among these two methods, CNN3E-AC shows a slightly
more diverging distribution and thus a larger difference. A deviation from the ground-
truth-AC of 10% is highlighted by the semi-transparent grey region. For CNN5E-AC, all
measurements are within 10% deviation across all regions.

Themean value of the deviations formeasurements among all ROIs is summarized in table
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Figure 4.8: Bland-Altman plots when using different CNN-AC methods. Measurements taken from the merged
16 × 6 regions are plotted in (a) while those from the localized 166 × 6 regions are given in (b).

4.2 for different CNN-AC methods. For CNN5E-AC and CNN3E-AC, the mean deviations
across 16 × 6 regions are within 1.60% and are statistically insignificant (𝑝 > 0.05), while
for assessments across 166 × 6 localized regions, the mean deviations are within 1.82%
(𝑝 < 0.05).

Table 4.2: SUV deviation (mean ± standard deviation) from the ground-truth-AC across 16 merged ROIs and
166 small localized ROIs for all six phantoms. 𝑃 < 0.05 is defined as the significance level.

16 × 6 regions CNN5E-AC CNN3E-AC CNN1E-AC No-AC

𝐷𝐸𝑉𝑆𝑈𝑉(%) 1.60 ±1.53 1.59 ±1.68 7.35 ±8.91 67.50 ±5.30
𝑃 0.368 0.616 0.002 <0.001

166 × 6 regions CNN5E-AC CNN3E-AC CNN1E-AC No-AC

𝐷𝐸𝑉𝐴𝐼(%) 1.63 ±1.66 1.82 ±1.90 7.53 ±8.80 69.25 ±4.40
𝑃 <0.001 0.016 <0.001 <0.001

4.3.3. Counts from each energywindow

Table 4.3 provides the number of counts detected in each energy window. An example
of the energy spectrum from one phantom is shown in figure 4.2a. Table 4.3 shows that
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i) the detected counts from tracer emission decreases for energy windows going from E1
to E5, and ii) contribution of cosmic radiation to the total increases (from 5% to 15%) for
energy window going from E1 to E5.

Table 4.3: Comparison of the count number from different energy windows (keV). The mean counts across
all phantoms are given. ‘M’ stands for the unit million. The first row gives the mean counts detected from
tracer emission based on Monte Carlo simulations. The second row gives the background counts from cosmic
radiation based on a long void scan (10 hours scan without radioactivity) with the G-SPECT-I prototype. Note
that these two types of counts were added in projections for image reconstruction.

Mean counts Photopeak E1 (126-154) E2 (106-134) E3 (86-114) E4 (66-94) E4 (46-74)

From tracer 7.50 M 4.20 M 3.59 M 3.29 M 2.19 M
From cosmic 0.45 M 0.44 M 0.45 M 0.54 M 0.35 M
Cosmic/tracer 6.0% 10.5% 12.5% 16.4% 16.0%

4.4. Discussion
The current work shows the feasibility of estimating attenuation maps by using SPECT
data only without additional (radiation) scans or the need to draw head contours. This
could facilitate SPECT imaging with minimal ionizing radiation or user interactions, en-
abling quantitative brain perfusion SPECT to be independent from data from other scan-
ners, thereby avoiding registration issues between modalities as well.

Figures 4.5-4.7 and figure 4.9 show that despite of the inadequate 𝜇 map estimation of
CNN1E, a reasonable quantification accuracy could still be obtained with this method.
This might explain the broad use of an ellipsoidal region for attenuation correction in
clinical routine given its benefit of simplicity and decent effectiveness (i.e. the improved
accuracy compared to that of not performing a correction at all). While various contour-
based methods have been proposed to attain a uniform 𝜇 map, devising one here that is
suitable for our work is beyond the scope of this paper. Alternatively, a ground-truth-
uniform (GT-uniform) 𝜇 map, which can be regarded as the best achievable 𝜇 map us-
ing the contour-based method, was generated by replacing all tissues in the GT 𝜇 map
with the attenuation coefficient of brain tissue (𝜇 = 0.146/cm). This part of the results
is included in the appendix (figure 4.10 and table 4.4). GT-uniform-AC suffers from un-
derestimation of the SUVs compared to the GT-AC since all bone voxels are replaced
by brain. The Bland-Altman plot of GT-uniform-AC shows a more diverging distribution
of the SUV differences compared to those of the CNN5E-AC and CNN3E-AC. The mean
deviation from GT-AC is within 3.78%, which is also larger than CNN5E-AC (1.63%) and
CNN3E-AC (1.82%). Note that the GT-uniform 𝜇 map is the ideal 𝜇 map one could get
using the contour-based method. In reality, obtaining such a contour generally requires
image processing steps, which involve a set of parameters (e.g. smoothing and thresh-
old) that are sensitive to tracer distribution and noise in image. On the other hand, with
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the proposed CNN method, an optimal mapping with a large number of parameters is
generated automatically. Here our results show that, even though the tracer distribution
and the amount of activity were variable for each phantom, CNN could still accurately
estimate the attenuation map when trained on a small set with five phantoms.

Three neural networks (CNN5E, CNN3E and CNN1E) were tested in this work, where we
found that compared to the use of only the photopeak window (CNN1E), the involvement
of scatter windows as done in CNN3E and CNN5E improves the performance. The use
of five energy windows (CNN5E) instead of three (CNN3E) only has a limited effect on
results. This might be due to i) the intrinsic weak correlation between the multi-order
scattered photons and the attenuation coefficients and ii) the relatively low scatter sig-
nal compared to the level of noise in the additional two low-energy scatter windows of
CNN5E (see table 4.3). The results also indicate that investigating the utilization of pho-
tons from high-energy scatter windows close to the photopeak might be beneficial. In
this paper, energy windows used all have an equal width of 28 keV and are already slightly
overlapping (see figure 4.2a), thus adding additional high-energy scatter windows may
not lead to improvements. Given better energy resolution, the incorporation of more
energy windows may be possible by narrowing the width of each window. This could
provide the network with photons with more precise energy-spatial information. How-
ever, the exact effect on CNN estimation of 𝜇 maps requires additional studies.

In this paper, evaluation of attenuation correction with the CNN estimated 𝜇 maps was
performed on the noise-free VRT simulated scans (for better visualization of the AC ef-
fects when using different 𝜇 maps). Results of correction performed on the realistic MC
simulated scans are included in the appendix (figure 4.11). These results show that vi-
sually the differences of using GT-AC, GT-uniform-AC, CNN5E-AC and CNN3E-AC are
small on the MC simulated scans. Besides, comparing the realistic MC simulated SPECT
images to the noiseless VRT scans (figure 4.6a), one could see that the effects on image
quality due to, e.g. noise and imperfect scatter correction as in the former scans can
be larger than effects caused by using different CNN-AC methods (e.g. CNN5E-AC and
CNN3E-AC). This is not surprising as noise generally plays a critical role in SPECT. While
we aim to estimate the attenuation map using deep learning for automatic and accurate
attenuation correction, future development that could achieve SPECT denoising can be
beneficial, and using deep learning techniques for this task is also being actively investi-
gated [145–147].

As a feasibility study based on Monte Carlo simulated data, limitations of this work in-
clude a validation using experimental scans which is required to bring the method closer
to clinical applicability. For implementation on experimental data, we expect that the
network may be trained on physical scans with CT ground truth attenuation maps ac-
quired from only a few patients, as it was shown that the proposed CNN needed only a
limited number of training samples. Besides, the effect of subtle differences of attenua-
tion correction when using a CNN instead of a CT 𝜇 map needs to be evaluated on real



4

82 4. CNN attenuation map brain perfusion scan

patient data by human readers with a specific clinical task to ultimately prove the merit
of the proposed CNN approach. Additionally, we used discretized maps consisting of a
limited number of tissue classes (eight classes) as the ground truth attenuation map. For
brain scans with relatively simple attenuation maps, this approximation could be accept-
able. For other applications especially those involving fine structures, e.g. myocardium
imaging, more complex attenuation maps with more tissue classes or with continuous
attenuation coefficients would be preferable. Furthermore, the proposed method was
tested on a G-SPECT-I geometry as it is an ultra-high resolution system we are develop-
ing at our institute. Given the validity of the proposed approach on G-SPECT-I, it would
be worthy to try it for other standalone SPECT devices as well. Moreover, the proposed
methodology was validated only for brain perfusions scans with 99𝑚Tc-HMPAO in the
present work. We expect that the approach may be applicable to other types of scans
when the CNN is trained on that specific scan, yet the accuracy and effectivity have to
be validated.

4.5. Conclusion
We have implemented and validated a neural network approach to generate attenua-
tion maps solely from SPECT emission data for 99𝑚Tc-HMPAO brain perfusion scans.
This could enable quantitative SPECT imaging with minimal ionizing radiation and make
SPECT independent of data from other imaging modalities, while the fully automated
approach could reduce the subjectivity due to intra- or inter-observer variability.

Appendix
Comparison of the ground truth GT and CNN estimated 𝜇 maps for all six phantoms
are given in figure 4.9. Five slices with an equal separation of 25.5 mm are displayed
for each phantom. Figure 4.10 and table 4.4 provide the quantitative analysis results of
GT-uniform-AC. The results from CNN5E-AC are shown together here as a comparison.
Figure 4.11 displays the MC simulated realistic SPECT scans after attenuation correction
with different 𝜇 maps. Quantitative analysis on these MC simulated scans of the devia-
tions from the GT-AC for various CNN-AC methods are not included. These deviations
are the same as those given in table 4.2 where assessments are performed on the noise-
less VRT scans as the deviations depend only on the transmission fraction of the 𝜇 maps
(see Eq. 4.2).
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Figure 4.9: Comparison of the ground truth GT and the CNN estimated 𝜇 maps for all six phantoms. Five slices
from the top to the bottom of the head (equally distributed with 25.5 mm separation) are displayed.

Table 4.4: SUV deviation (mean ±standard deviation) from the ground-truth-AC for ground-truth-uniform-AC
when assessed on the VRT simulated SPECT images. The results from CNN5E-AC are also given here as a
comparison. 𝑃< 0.05 is defined as the significance level.

16 × 6 regions 166 × 6 regions

CNN5E-AC Ground-truth-uniform-AC CNN5E-AC Ground-truth-uniform-AC

𝐷𝐸𝑉𝑆𝑈𝑉(%) 1.60±1.53 3.72±1.58 1.63±1.66 3.78±1.65
𝑃(%) 0.368 <0.001 <0.001 <0.001
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Figure 4.10: Bland-Altman plots for SUVs calculated from the noiseless VRT simulated SPECT images when
using ground-truth-uniform-AC. The results from CNN5E-AC are also plotted as a comparison. The difference
for ground-truth-uniform-AC are negative since all bone voxels are replaced by the attenuation coefficient of
brain tissue.
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Figure 4.11: Comparison of the attenuation corrected images when using different 𝜇 maps for Monte Carlo
simulated realistic SPECT scans. Five slices equally distributed with 25.5 mm separation are displayed (as in
Fig. 4.5-4.6). Locations of the three slices shown at the left panel are indicated by the solid lines and those at
the right panel are highlighted by the dashed lines.
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S PECT imaging with ¹²³I-ioflupane (DaTscan) can be used for diagnosis of neurode-
generative disorders like Parkinson’s disease. Attenuation correction (AC) may im-

prove quantitative analysis of DaTscans. Ideally, AC would be performed based on at-
tenuation maps (𝜇-maps) derived from perfectly registered CT scans. Such 𝜇-maps,
however, are most times not available and possible errors in image registration can
induce quantitative inaccuracies in AC corrected SPECT images. Earlier, we showed
that a convolutional neural network (CNN) based approach allows to estimate SPECT-
aligned 𝜇-maps for full brain perfusion imaging using only emission data. Here we
verify if a similar CNN method could be applied to axially focused DaTscans, which is
challenging as only a low activity level is present outside the central region of the brain.
Thework is tested on a high-resolutionmulti-pinhole prototype clinical SPECT system
in a Monte Carlo simulation study. Three CNNs that estimate 𝜇-maps in a voxel-wise,
patch-wise and image-wise manner were investigated. The impact of AC on DaTscans
using the ground truth 𝜇-maps (GT-AC), CNN estimated 𝜇-maps (CNN-AC) was eval-
uated and compared with the case when no AC was done (No-AC). Results show that
the effect of using GT-AC versus CNN-AC or No-AC on striatal shape and symmetry is
minimal. Specific binding ratios (SBRs) from localized regions shows a deviation from
GT-AC ≤2.0% for all three CNN-ACs while No-AC systematically underestimates SBRs
by 10.9%. Strong correlation was observed between GT-AC based SBRs and SBRs from
CNN-ACs (𝑅2 ≥0.98) and No-AC (𝑅2 = 0.99). Absolute quantification of standardized
uptake value (SUV) shows a deviation from GT-AC ≤2.4% for all three CNN-ACs and of
71.7% for No-AC. To conclude, all three CNNs show comparable performance in accu-
rate 𝜇-map estimation and DaTscan quantification. Thus, CNN estimated 𝜇-map could
be a promising substitute for a CT-based 𝜇-map.

5.1. Introduction
SPECT with ¹²³I-ioflupane (DaTscan) can be used for visualization of the dopamine trans-
porter (DaT) distribution in the brain. This enables assessment of parkinsonian syn-
dromes, particularly for differentiation of Parkinson’s disease from essential tremor and
for differentiation of dementia with Lewy Body from Alzheimer disease [28, 30]. Cur-
rent clinical assessment of DaTscans relies mainly on a visual inspection of the extent
of DaT reduction in the striatum, the striatal shape and its symmetry [32, 148]. Relative
quantification by calculating the regional striatal uptake ratios could reduce inter- and
intra-observer variability and may enable longitudinal studies to monitor disease pro-
gression [149] 2017) and therapeutic effects (Parkinson Study Group 2002). For accurate
relative quantification, correction for photon attenuation in the patient head is recom-
mended by guidelines [148, 150]. Ideally, attenuation correction (AC) would be performed
based on an attenuation map (𝜇-map) derived from a perfectly registered CT scan. This
𝜇-map provides the tissue attenuation coefficient at each voxel in the patient. However,
such a CT scan is often not available, may lead to increased radiation dose. Moreover,
possible errors in image registration can induce quantitative inaccuracies in SPECT im-
ages [118, 151, 152]. Besides the CT based approach, manually drawing an ellipse around
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the head contour and assuming uniform attenuation within the ellipse is widely used for
attenuation map approximation in brain SPECT studies [44, 153]. This ellipse method,
however, suffers from observer subjectivity and insufficient estimation of the head con-
tour and internal head anatomy.

Apart from the use of an additional CT scan or a simple ellipse, automatic approaches
based only on SPECT data have been investigated, which can be mainly classified into
two categories. The first category contains sophisticated methods using SPECT photo-
peak projections to estimate the attenuation map and activity map either simultaneously
bymeans of joint reconstruction [154–156] or independently by applying data consistency
conditions [157–160]. This approach however has limited utility in clinical routine due to
cross-talk artefacts, instability and the computational complexity. The second category
consists of contour-based methods that assume uniform attenuation within the contour.
Such a contour can be obtained by automatic edge-detection in projection space or on
non-corrected SPECT images [121, 123, 124, 161]. Automatic contour detection techniques
are not commonly applied clinically, possibly due to the increased complexity given the
minimal improvement of accuracy compared to the manual drawn ellipse approach. In-
terestingly, the value of SPECT images reconstructed from a scatter window has been
emphasized in these contour detection studies for edge determination [121–124]. This
is justifiable as Compton scatter is the dominant photon-tissue interaction for clinical
SPECT, and the probability of Compton scatter is proportional to the tissue density (with
a maximal probability at skull and almost zero outside the body). Thus, the tissue density
information embedded in scattered data could be helpful to highlight the tissue bound-
aries.

Lately, deep learning with neural networks has been applied to estimate 𝜇-maps us-
ing SPECT-data-only for clinical [23] and simulated [162] 99𝑚Tc-tetrofosmin myocardial
scans and PET-data-only for clinical 18F-FDG brain PET scans [22, 131]. Our group has
recently also demonstrated a convolutional neural network (CNN) approach to estimate
𝜇-maps for 99𝑚Tc-HMPAO full brain perfusion scans [104] based on a Monte Carlo study
assuming a multi-pinhole clinical SPECT geometry (G-SPECT-I [10] ). In this study, both
the primary and scattered photons from SPECT emission data were used via multiple
image reconstructions from different energy windows to obtain as much attenuation in-
formation as possible. Using these multi-energy SPECT images, a patch-voxel CNN with
an encoder architecture was implemented to transform a 4D SPECT patch (3D SPECT
plus one energy dimension) to a single attenuation coefficient for the central voxel of the
patch. Such a patch-voxel approach was used due to its advantage of requiring a reduced
number of parameters and providing an increased amount of training data compared to
the full-image to full-image approaches e.g. U-Net [134]. Accurate attenuation maps
were obtained with the proposed CNN approach for the 99𝑚Tc-HMPAO full brain perfu-
sion scans.

For a DaTscan, direct implementation of the previously investigated CNNmethodmay be
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challenging. Firstly, a DaTscan has a more localized activity distribution due to the high
affinity of the tracer (¹²³I-ioflupane) to the dopamine transporters in the small striatum
while the rest of the brain expresses only non-specific binding leading to a low back-
ground activity level. Secondly, a DaTscan has an overall low tracer uptake in the brain
(with a standard injection dose of 185 MBq) compared to that of a brain perfusion scan
(standard injection dose of 925 MBq), resulting in a limited number of primary and scat-
ter events being captured and potentially utilized. Lastly, the clinical assessment of a
DaTscan often uses only a few transaxial slices around the striatum (e.g. 20 mm thick
slices [149]) rather than the full axial length of the brain. Previously, we demonstrated
with a simulation study that for DaTscans, focused striatum imaging with a confined ax-
ial length can maximize the count yield without sacrificing image quality [27]. Such a fo-
cused imaging strategywas evaluated for themulti-pinhole prototype clinical G-SPECT-I
scanner andmay enableG-SPECT-I to become a newclinical platform for high-resolution
and low dose DaTscan imaging. Hence, in case only a few SPECT slices are scanned, 𝜇-
maps that could be beneficial for DaTscan attenuation correction may not be fully esti-
mated.

The aim of this paper is to develop and validate a deep-learning based approach for 𝜇-
map estimation using only emission data for DaTscan imaging. To this end, SPECT data
were acquired with a protocol aimed at imaging a few slices centered at the striatum
based on the G-SPECT-I geometry. Besides the patch-voxel CNN that was implemented
in our previous work, we also tested two other networks that have been used in relevant
recent studies which estimate 𝜇-maps with a patch-patch or image-image basedmethod
[22, 23, 130]. The proposed strategy was evaluated using Monte Carlo simulations based
on the G-SPECT-I geometry. Quantitative accuracy of the CNN approach was assessed
on the network estimated 𝜇-maps and on attenuation corrected SPECT images.

5.2.Methods

5.2.1. G-SPECT-I system

The G-SPECT-I [10] consists of nine large-area NaI stationary detectors, a multi-pinhole
collimator and a precisely controlled 𝑥𝑦𝑧-stage used for bed translation (see Fig. 5.1).
All pinholes are simultaneously ‘viewing’ a central volume from which complete data is
obtained without any bed movement. This central volume is thus referred to as the com-
plete data volume (CDV, see see Fig. 5.1). For a scan of an object larger than the CDV, the
bed is translated to extend the scanning region with sufficient sampling. In this work, a
total number of 8 bed translations (2 axial translations combinedwith 4 transaxial transla-
tions) was used based on findings in [27] for an optimal focused striatum scan tomaximize
the count yield. This bed translation trajectory ensures an axial scanning length of about
57 mmwhich is long enough to cover the entire striatum (35 mm). All pinhole projections
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from all bed positions together were used simultaneously for image reconstruction us-
ing the so-called scanning focus method [49]. Other details concerning G-SPECT-I are
described in [27].

Figure 5.1: Illustration of the G-SPECT-I scanner (the left image) when a small-bore collimator dedicated for
brain imagingwasmounted, and the focused striatum imaging strategy (the right image). The CDV is the volume
“seen” by all pinholes; it has a transaxial diameter of 100 mm and an axial length of 60 mm. The patient bed can
be shifted in 𝑥𝑦𝑧 directions to position different parts of the patient head into the CDV and thus extend the
scanning region with sufficient sampling. With the focused striatum imaging strategy, the scanning region is
confined in axial direction to maximize the count yield from the striatum. The data truncation region is ‘seen’
by only part of the pinholes and thus sampling is not complete.

5.2.2. Simulated SPECT scans

To mimic realistic SPECT scans, full system Monte Carlo (MC) simulations were per-
formed. TheseMC simulated scanswere used as input to the CNN for 𝜇-maps estimation.
Attenuation correction accuracies based on these 𝜇-maps were evaluated subsequently;
this evaluation was done on MC simulated realistic images but was also performed on
noise-free simulated SPECT images. The latter noise-free images were involved to bet-
ter visualize and quantify attenuation correctionwith different 𝜇-maps. These noise-free
scans were obtained with a voxelized ray tracer simulator (VRT) and assumed the same
system geometry and the same acquisition parameter as the MC simulations but elim-
inated noise and scatter. Both simulation methods are summarized in Fig. 5.2 and are
described in more detail below.

Digital phantoms

The publicly available Brainweb dataset containing 20 phantoms generated from normal
subject scans was used. For each phantom, an activity distribution map and an attenua-
tion map were generated (see Fig. 5.2). The activity map was obtained by assigning ¹²³I-
ioflupane (159 keV) to the striatum and the background (which is the rest of the brain and
the skin) with a mean concentration ratio of 8:1 [54, 163, 164]. This ratio was set slightly
differently for each phantom with a standard deviation 𝜎 of 10% (normally distributed)
for both the striatum and background uptake. A total activity of 7.4 MBq in average was
put in the phantom (resembling an injected dose of 185 MBq and a brain uptake of 4% at
the time of imaging [165]). Similarly, we assumed a variation of the total activity for each
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Figure 5.2: Illustration of SPECT data simulation. (a) MC simulations for realistic DaTscans; for each phantom,
an activity and attenuation map were generated and were used for MC simulation. Background counts due
to cosmic radiation were emulated and added to the MC simulated projection data to make the simulation
more realistic. Five SPECT reconstructions were performed from different energy windows. (b) Noise-free
simulated images on which the effects of attenuation correction with different 𝜇-maps were studied. The MC
simulation uses the attenuation map with each region assigned with a material (skull or brain), while for noise-
free simulations, the maps with each region assigned with an attenuation coefficient were used (subject to the
different requirements of both simulators).

phantom by sampling from a normal distribution (𝜎 = 10%).

The attenuation map was obtained by tissue segmentation. Regions of skull, skin, blood,
muscle, brain, water, fat and air structureswere segmented. These regionswere assigned
with a respective attenuation coefficient of 0.232, 0.148, 0.143, 0.141, 0.140, 0.135, 0.123 and
0 cm−1. Thismapwith designated coefficientswas considered to be the ground truth (GT)
𝜇-map that was later used for training of the neural networks. Phantoms were randomly
rotated (-20∘ to 20∘) and translated (-10 to 10 mm) to make the dataset more variable. All
phantoms were down-sampled using trilinear interpolation to a voxel size of 1.0 × 1.0 ×
1.0 mm³ from their original voxel size of 0.5 × 0.5 × 0.5 mm³.

MC simulated realistic projections

MC simulations of the 20 phantoms were performed with Geant4 Application for Tomo-
graphic Emission (GATE) [137] with geometry based on G-SPECT-I. The MC simulation
assumes a total scan time of 30 min. Besides, cosmic background counts were added to
the MC projections to make the simulation more realistic. More details of the MC simu-
lation in GATE and the cosmic background counts emulation with the G-SPECT-I system
were described in [104].
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Noise-free simulated projections

For all 20 phantoms, noise-free forward projections were generated with the VRT sim-
ulator. This simulator takes the system geometry (i.e. the precise pinhole and detector
positions and detector orientations) as input and models the collimator and patient at-
tenuation but ignores scatter [17, 68], as shown in figure 5.2. No noise or cosmic radiation
counts were modelled in the VRT simulated projections.

Image reconstruction

A system matrix calculated based on the VRT simulator was used for image reconstruc-
tion of the MC simulated projections and the noise-free simulated projections (see figure
5.2). No patient attenuation correction was performed during reconstruction. All image
reconstructions were performed on a 1.5 mm grid, larger than the voxel size of the dig-
ital phantoms, to mimic a continuous activity distribution reconstructed on a discrete
grid. Similarity regulated OSEM [18] with 8 subsets and 10 iterations was implemented
for image reconstruction.

As demonstrated in our previous study [104], accurate estimation of the 𝜇-maps can be
obtained when photopeak as well as scatter window reconstructed images were used
as input to CNN. Therefore, five SPECT reconstructions were conducted from different
energy windows to obtain tissue attenuation information as much as possible (see Fig.
5.2). One reconstruction used the photons detected in the photopeak window combined
with a triple energy window scatter correction (32 keV width centered at 159 keV for
the photopeak window and 6.4 keV width at each side for scatter correction) and four
additional reconstructions were done from different windows (32 keV width centered at
139, 119, 99 and 79 keV respectively). For the VRT simulated projection data, only primary
photonswere simulated and could thus be reconstructed, resulting in noise- and scatter-
free SPECT scans (see Fig. 5.2).

5.2.3. Attenuationmap estimation

Image preprocessing

Before being used as input to the neural networks, the MC simulated SPECT images were
pre-processed. This includes a step of cylindrical masking (diameter 240 mm) to remove
artefacts outside the head and a step of intensity-normalization to ensure a similar dy-
namic range for scans from different phantoms, as in [104]. Besides, the input SPECT
images were down-sampled (tri-linearly) to a voxel size of 3× 3× 3mm³ from an original
voxel size of 1.5 × 1.5 × 1.5 mm³ before being fed into the neural network to speed up the
training process with a relative larger image voxel size.
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CNNarchitectures

The patch-voxel CNN that estimates 𝜇-maps voxel-wise with an encoder architecture
as implemented in our previous work was used [104]. Additionally, two networks with an
encoder-decoder architecture that estimate 𝜇-maps in a patch-wise or image-wiseman-
ner were tested. Such an encoder-decoder architecture has the advantage of preserving
neighborhood information in the output space. For the three networks, 2D patches in
the spatial domain (𝑥𝑦 plane) were used as input. This is to avoid inter-slice interference
particularly for slices close to the edge of the scanning region where neighboring slices
might suffer from data truncation artefacts (note that there are only a limited number
of slices in the scanning region due to the focused striatum imaging strategy). Each 2D
patch underwent multiple stages of 2D convolutions and pooling (see Fig. 5.3). These
three networks are explained in detail below.

1. Patch-voxel CNN: this network takes SPECT image patches centered at each voxel
as input to predict the corresponding attenuation coefficient of the central voxel
from each patch as output (see Fig. 5.3). The input image patch has a dimension
of 21 × 21 voxels taken from the 2D transaxial slices × 5 energies, while the output
has a dimension of 1 voxel.

2. Patch-patch CNN: this network takes SPECT image patches as input to predict the
corresponding attenuation map patches at the same location in image space (see
Fig. 5.3). The input SPECT patch dimensions were set to have an even dimension
due to the down-sampling up-sampling operations with U-Net architecture. Thus,
a dimension of 20× 20 voxels× 5 energies was used as input with an output size of
20 × 20 voxels. In the testing phase, the entire 2D image slice was used in the net-
work for prediction. Thus, the attenuation coefficient of each voxel was the mean
value among predictions from all patches covering that voxel (20 × 20 patches).

3. Image-image CNN: this network has a U-Net architecture as in the patch-patch
CNN,while here each slice (72× 80 voxels× 5 energies) was used as input to predict
the attenuation map for the corresponding slice (72 × 80 voxels).

Model training

Training was done on five randomly selected phantoms while testing was performed on
the remaining 15 phantoms. All CNNs were trained with 15k samples randomly selected
with replacement in each epoch. For the patch-voxel and patch-patch CNN, a balanced
selection of the patches was ensured for the three main tissue classes (air, soft tissue
and bone). Data augmentation was performed with random rotation (-20∘ to 20∘) and
translation (-10 to 10 mm). The networks were trained to minimize the mean square
error between the predicted and the GT 𝜇-map. The Adam optimizer [140] with default
settings and a batch size of 15 was used in the training. No validation set was used to
determine the optimal epoch. The network was trained for 200 epochs for convergence.
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Figure 5.3: Network architecture of the patch-voxel, patch-patch and image-image CNN (Conv: 3 × 3 convo-
lution; Pool: 2 × 2 max pooling; FC: fully connected; Upconv: 2 × 2 up-sampling). Every convolutional layer
was followed with a layer of batch normalization and a layer of ReLU activation. Each fully connected layer was
followed by a sigmoid activation. The number of filters is indicated in the figure below the layers.

This work was implemented using TensorFlow.

5.2.4. Correction using the𝜇-maps
Attenuation correction with the 𝜇-maps was done using an adapted multi-pinhole first-
order Chang’s method [104]. This method first checks –at every bed position– if a voxel
is seen by a pinhole. If yes, the transmission along the corresponding projection line
(from that voxel center to the pinhole center) is counted and weighted by the pinhole’s
sensitivity for that voxel. The transmission fraction for the corresponding voxel is then
the average transmission value among all projection lines that are counted.

5.2.5. Evaluation

Attenuationmaps

The accuracy of the CNN estimated 𝜇-map was evaluated by calculating the root mean
square error (RMSE) defined in equation 5.1 and the normalizedmean absolute difference
(NMAE) given by equation 5.2 as in [23]. In the equations, 𝑛 is number of voxels involved
in the calculation for each scan. Only voxels in the head (i.e., soft tissue or bone) are
taken into account. The symbols 𝜇𝐺𝑇𝑚𝑎𝑥 and 𝜇𝐺𝑇𝑚𝑖𝑛 are the respective maximum (𝜇 = 0.232
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for bone) and minimum intensities (𝜇 = 0) of the ground truth 𝜇-map.

𝑅𝑀𝑆𝐸-𝜇 = √1𝑛

𝑛

∑
𝑗=1
(𝜇𝐶𝑁𝑁𝑗 − 𝜇𝐺𝑇𝑗 )

2
(5.1)

𝑁𝑀𝐴𝐸-𝜇 = 1
𝑛 × (𝜇𝐺𝑇𝑚𝑎𝑥 − 𝜇𝐺𝑇𝑚𝑖𝑛)

𝑛

∑
𝑗=1
|𝜇𝐶𝑁𝑁𝑗 − 𝜇𝐺𝑇𝑗 | (5.2)

Attenuation corrected SPECT images

5.2.5.2.1 Visual inspection SPECT images that are corrected using the CNN estimated
𝜇-maps (CNN-AC) were compared to the ground-truth-AC (GT-AC) image that uses the
GT 𝜇-maps for correction. All SPECT images shown in this paper for visual comparisons
were smoothed using a 3D Gaussian post filter with 6 mm FWHM.

5.2.5.2.2 Relative quantification Relative quantification is done by calculating the re-
gional striatal uptake ratios in localized regions of interest (ROIs). The specific binding
ratio (SBR) and the asymmetry index (AI) were calculated as defined by

𝑆𝐵𝑅 =
𝐶𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶𝑏𝑘𝑔

𝐶𝑏𝑘𝑔
(5.3)

𝐴𝐼 = 2 × 𝑆𝐵𝑅𝑅 − 𝑆𝐵𝑅𝐿𝑆𝐵𝑅𝑅 + 𝑆𝐵𝑅𝐿
× 100% (5.4)

Here 𝐶𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐶𝑏𝑘𝑔 are the mean DaT image intensity in the target ROI and the ref-
erence ROI respectively, while 𝑆𝐵𝑅𝑅 and 𝑆𝐵𝑅𝐿 refers to the SBR of a target ROI in the
right and left hemisphere respectively. Eight localized sub-regions of the striatum were
defined as the target ROI (see Fig. 5.4). These localized ROIs in the striatum were drawn
with a diameter of 10.5 mm in the transaxial plane and were placed over 9 mm slices in
the axial direction (thus each has a volume of 1 ml). The reference region was obtained
using the Southampton method [69] (see Fig. 5.4).

The deviation for the SBRs and AIs calculated from the CNN-AC images were compared
to those of GT-AC as in equation 5.5-5.6. In the equations,𝐷𝐸𝑉𝑆𝐵𝑅 and𝐷𝐸𝑉𝐴𝐼 denote the
SBR and AI deviations from the GT-AC image. The deviation of AI is calculated directly by
subtracting the 𝐴𝐼𝐺𝑇−𝐴𝐶 since AI is already a normalized index expressed in percentage.

𝐷𝐸𝑉𝑆𝐵𝑅(%) =
|𝑆𝐵𝑅𝐶𝑁𝑁−𝐴𝐶 − 𝑆𝐵𝑅𝐺𝑇−𝐴𝐶|

𝑆𝐵𝑅𝐺𝑇−𝐴𝐶
× 100% (5.5)
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Figure 5.4: Illustration of the eight localizied regions and the reference ROI for quantitative analysis. Regions
of caudate, anterior putamen, middle putamen and posterior putamen in the left and right hemisphere are
depicted. Each region has a diameter of 10.5 mm and an axial length of 9 mm (thus a volume of about 1 ml).
Caud: caudate; Ante Put: anterior putamen; Mid Put: middle putamen; Post Put: posterior putamen. The
reference ROI was generated using the Southamoton method.

𝐷𝐸𝑉𝐴𝐼(%) = |𝐴𝐼𝐶𝑁𝑁−𝐴𝐶 − 𝐴𝐼𝐺𝑇−𝐴𝐶| (5.6)

Besides evaluating the deviations, correlations between SBRs derived from images with
different AC methods and those of the GT-AC were investigated. This is done by linear
regression and comparison of the coefficient of determination (𝑅2) as in [166]. 𝑃 values
were computed using paired 𝑡 tests to measure the statistical significance ( 𝑝 < 0.05 were
considered statistically significant).

5.2.5.2.3 Absolute quantification Compared to relative quantification, absolute quan-
tification assesses regional tracer concentrations rather than uptake ratio between re-
gions. Absolute quantification is currently rarely implemented for DaTscans. Applica-
tions on PET and SPECT studies [167, 168] show potential value of such an assessment,
thus we include it in the present work. Here, the standardized uptake values (SUVs) as
often used for absolute quantitative analysis were calculated as shown in equation 5.7.
The SUV (in units of g/ml) is the mean concentration (kBq/ml) from a ROI normalized by
the injected dose per patient weight (kBq/g). The deviation for the SUVs calculated from
the CNN-AC images were compared to those of GT-AC according to equation 5.8.

𝑆𝑈𝑉 =
𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝐷𝑜𝑠𝑒/𝑤𝑒𝑖𝑔ℎ𝑡 (5.7)

𝐷𝐸𝑉𝑆𝑈𝑉(%) =
|𝑆𝑈𝑉𝐶𝑁𝑁−𝐴𝐶 − 𝑆𝑈𝑉𝐺𝑇−𝐴𝐶|

𝑆𝑈𝑉𝐺𝑇−𝐴𝐶
× 100% (5.8)

For both relative quantification and absolute quantitative analysis, measurements were
performed on the unfiltered SPECT images to avoid any bias from filtering.
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5.3. Results

5.3.1. Attenuationmaps

Figure 5.5 gives a comparison of the CNN estimated and the GT 𝜇-maps. Slices within
an axial length of 48 mm that are essential for DaTscan inspection and quantification are
displayed. The center of the striatum in axial direction is defined to be at 0mm. Figure 5.5
shows that 𝜇-maps can be accurately estimated with all the networks. Among the three
CNNs, the patch-voxel CNNgives slightlymore ‘noisy’𝜇-maps. This (i.e., the ‘noise’ on the
𝜇-map) is circumvented in the patch-patch and image-image CNNs where neighborhood
information is preserved in the output space with an encoder-decoder framework.

Figure 5.5: Comparison of the 𝜇-maps obtained using different CNNs. Slices within an axial length of 48 mm
that are essential for a DaTscan are shown.

Table 5.1 provides the NMAE and the RMSE results for the different CNN estimated 𝜇-
maps. Voxels for slices within the 48 mm axial range were used for the calculation. This
table shows that NMAE and RMSE of the 𝜇-map are small and comparable for the three
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networks.

Table 5.1: Mean and standard deviations of NMAE and RMSE for the 𝜇-maps obtained with various CNN meth-
ods. The errors were calculated from the slices within an axial length of 48 mm that are essential for DaTscan.

NMAE-𝜇 (%) NMAE-𝜇 (× 10−2𝑐𝑚−1)
Patch-voxel CNN 𝜇-map 4.53 ± 0.82 2.25 ± 0.40
Patch-patch CNN 𝜇-map 4.16 ± 0.85 2.01 ± 0.40
Image-image CNN 𝜇-map 4.07 ± 0.65 2.01 ± 0.31

5.3.2. Attenuation corrected SPECT images

Visual inspection

Figure 5.6 provides a visual comparison of the attenuation corrected SPECT images. To
avoid the dominating effect of noise, SPECT images presented in the figure are the noise-
free simulated scans which allows to focus on attenuation effects. Results of corrections
performed on the realistic MC simulated scans are included in the appendix (Fig. 5.10).

Figure 5.6 shows that the striatum structure looks similar for all AC methods including
No-AC. Compared to the GT-AC, the No-AC gives an increased activity distribution at
the periphery and outside of the brain.
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Figure 5.6: Comparison of the attenuation corrected SPECT images.

Relative quantification

Figure 5.7 gives Bland-Altman plots of the SBR differences from the GT-AC image across
120 regions (eight sub-regions for all 15 test subjects). The deviations in percentage for
the SBRs and AIs are summarized in the figure. Figure 5.8 gives the scatter plot of the
SBRs for correlation analysis.

Figure 5.7 shows the small differences between the three CNN-ACs and GT-AC for the
SBRs (differences are close to the zero line). Among the three CNN methods, the patch-
voxel CNN-AC shows a slightly more diverging distribution and thus a larger difference
of the SBRs from GT-AC. The deviation from the GT-AC is ≤ 2.0% for all three CNN-ACs.
No-AC underestimates SBRs by 10.9% systematically, as shown by the strong linear cor-
relation (𝑅2 = 0.99, 𝑝 < 0.001) between the GT-AC based SBRs and the values obtained
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with No-AC in figure 5.8. The impact of different CNN-AC methods or No-AC on asym-
metry index is small (within 3.2%).

Figure 5.7: Bland-Altman plots when using different AC methods. Measurements taken from all 15 × 8 regions
are plotted.

Figure 5.8: Correlation between GT-AC and CNN-ACs, as well as between GT-AC and No-AC for the SBRs;
strong correlation (𝑅2 > 0.98, 𝑝 < 0.001) are observed.
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Absolute quantification

The capability to obtain accurate regional uptake values with different AC methods is
shown in figure 5.9. The SUVs calculated from the phantoms are included as a reference.
Figure 5.9 shows that compared to the digital phantom, the ground-truth-AC suffers from
slight inaccurate estimation of the SUVs. This might be due to the partial volume effects
or the imperfect attenuation correction method. Besides, the three CNN-AC methods
achieve comparable SUV accuracies as the GT-AC. The deviation from the GT-AC was
summarized in table 5.2, which shows amean deviations of within 2.4% for all three CNN-
ACs.

Figure 5.9: Comparison of the SUV measurements when using different AC methods in the eight sub-regions
of the striatum. The mean and standard deviation across 15 test subjects are displayed for each region. Caud:
caudate; Ante Put: anterior putamen; Mid Put: middle putamen; Post Put: posterior putamen.

Table 5.2: Deviation (mean± standard deviation) of the SUVs from the GT-AC across 120 regions (8 sub-regions
for all 15 subjects). The term ‘PV’, ‘PP’ and ‘II’ denotes patch-voxel, patch-patch and image-image respectively.

𝐷𝐸𝑉𝑆𝑈𝑉(%)
Caudate Ante. Put. Mid. Put. Post. Put.

Mean
L R L R L R L R

PV CNN-AC 1.6 ± 1.5 1.4 ± 1.4 2.6 ± 2.9 1.9 ± 1.9 2.7 ± 3.0 2.0 ± 2.2 2.6 ± 2.8 2.0 ± 2.5 2.1 ± 1.3
PP CNN-AC 1.8 ± 1.5 2.3 ± 1.2 2.1 ± 1.2 2.8 ± 1.6 2.1 ± 1.2 2.9 ± 1.9 2.0 ± 1.2 3.1 ± 2.1 2.4 ± 1.5
II CNN-AC 1.7 ± 2.0 1.3 ± 1.3 2.2 ± 2.8 1.3 ± 2.0 2.2 ± 2.7 1.4 ± 2.3 2.0 ± 1.3 1.5 ± 2.5 1.7 ± 2.3
No-AC 72.1 ± 0.7 72.0 ± 0.6 71.7 ± 0.9 71.3 ± 0.7 71.9± 0.9 71.3 ± 0.7 71.9 ± 0.6 71.3 ± 0.7 71.7 ± 0.8

5.3.3. Computation

The training took about 1.8 h, 1.9 h and 1.2 h for the patch-voxel, patch-patch and image-
image CNN respectively, when running on a single NVIDIA 2080 Ti graphics processing
unit with 11 GB of memory. Testing was done in 28.4 s and 60.0 s and 1.3 s for the respec-
tive network to generate the attenuation map for each patient scan.
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5.4. Discussion
In the present work, we demonstrated the feasibility of CNN based approaches for 𝜇-map
estimation using only SPECT data from axially focused DaTscans. The approaches were
tested on a focusing multi-pinhole system in a Monte Carlo simulation study.

Our visual results show that AC does not affect the shape and symmetry of the stria-
tum much. The main visual effect of AC is that the activity distribution at the periphery
and outside of the brain can be well estimated, which may otherwise be incorrectly en-
hanced (as the No-AC images show). For relative quantification of the SBRs, deviations
from the GT-AC were within 2.0% for CNN-AC. No-AC systematically underestimates
SBRs by 10.9%. A highly linear correlation was observed between the GT-AC obtained
SBRs and the values obtained with CNN-AC (𝑅2 ≥ 0.98, 𝑝 < 0.001) and No-AC (𝑅2 = 0.99,
𝑝 < 0.001). Absolute quantification in terms of the SUV has a deviation from GT-AC of
within 2.4% for CNN-AC and of 71.7% for No-AC.

Currently, the clinical value of AC for DaTscans is debated [54, 166]. Based on our re-
sults, the impact of AC is likely insignificant for diagnostic purposes when assessment is
based on visual inspection of the striatum. This is aligned with previous findings [54, 169].
Likewise, omitting AC may not be an issue for relative quantification when DaTscans at
a single clinical site are processed using the same protocols (e.g., all without AC), given
the strong correlation between the GT-AC obtained SBRs and those of No-AC. However,
in case that AC is a step in a standardized protocol or a precise measurement of the
SBR is helpful (e.g., for multicenter studies where AC is already performed), AC can be
performed. This is certainly true when absolute quantification is preferred. Absolute
quantification (for which AC is required) is presently rarely applied on DaTscans. A re-
cent study suggests that it can be helpful for differentiation of normal and pathological
DaTscans [170]. In these cases, using the CNN estimated 𝜇-map allows to obtain accu-
rate results, without suffering frompossible image registration errors and eliminating the
need of manually drawing an ellipse. Apart from DaTscans, in other applications where
a low activity level is present in the majority of the head, e.g., for tumor therapy imaging
with 131I-labeled 81C6 [171], a CNN may also be applied to estimate 𝜇-maps for precise
quantification of the tracer uptake.

In the present work, three CNN frameworks that estimate 𝜇-map in a voxel-wise, patch-
wise and image-wise way were tested for the task of interest. We found that incorpo-
rating neighboring information in the output space as with the patch-patch and image-
image CNN could reduce noise of the 𝜇-maps, which (i.e., the noise) appears with the
patch-voxel CNN that estimates 𝜇-maps voxel-wise. Among the three frameworks, the
image-image architecture attained a slightly better performance in terms of NMAE and
RMSE of the 𝜇-maps and𝐷𝐸𝑉𝑆𝑈𝑉 and additionally has the advantage of fast computation
in training and testing. The image-image CNN treats the image transformation problem
(frommulti-energy SPECT images to attenuationmap) from a global view. In contrast, the
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patch-voxel and patch-patch CNN take local regions and thus focus more on details. For
DaTscans, the 𝜇-maps essential for interpretation and quantification are ‘oval-shaped’
with rather simple structures. This might favor the use of a method as image-image
CNN that ensures a global consistency. Nevertheless, the differences of quantification
accuracy was small with the use of different CNN frameworks.

Our work shows that the CNNs can accurately estimate 𝜇-maps even when only a few
scans are used for training. This couldmake themethod easily applicable in clinical prac-
tice, as a large number of training data are generally not readily available. However, a
limitation of the present work lies in a lack of validation using patient scans. For a clinical
implementation of the proposed method, we expect that the network may be trained on
patient scans with CT attenuation maps acquired from a few subjects.

We used the noise-free VRT simulated scans to evaluate the effects of attenuation cor-
rection using different 𝜇-maps (these 𝜇-map themselves were all estimated based on the
Monte Carlo data). Results of correction performed on the realistic MC simulated images
are shown in the appendix (figure 5.10). For these realistically simulated scans in fig-
ure 5.10, noise has a large effect on image quality. Differences of using various CNN-AC
methods are small and hardly noticeable.

5.5. Conclusion
Wehave demonstrated the feasibility of a CNN based approach to generate 𝜇-maps using
only SPECT data from ¹²³I-ioflupane DaTscans with a focused striatum scan strategy. Our
results based on a Monte Carlo simulation study show that the impact of GT-AC versus
CNN-AC or No-AC on striatal shape and symmetry is minimal. A strong correlation is
observed between the GT-AC based SBRs and the values obtained with CNN-AC and No-
AC. While SBRs and SUVs are underestimated by No-AC, they can be precisely quantified
with CNN-AC. Thus, CNN estimated 𝜇-map could be a promising substitute for CT 𝜇-
map, while further validation with patient scans in clinical cohorts is needed.
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Appendix
Figure 5.10 displays the MC simulated realistic SPECT scans after attenuation correction
with different 𝜇-map. Quantitative analysis of the SUV deviations from the GT-AC for
various CNN-AC methods are not performed on these MC simulated scans. These devi-
ations read the same as those given in figure 5.7 where assessments were done on the
noiseless VRT scans as the deviations depend only on the 𝜇-map with the multi-pinhole
Chang’s attenuation correction method.

Figure 5.10: Comparison of the attenuation corrected images when using different 𝜇-map for Monte Carlo
simulated realistic SPECT scans. Slices within an axial length of 48 mm that are essential for DaTscan are
displayed. Images were applied with a Gaussian filter of 6 mm FWHM.





6
Conclusion

Conventional dual-head SPECT with parallel-hole collimators suffers from limited spa-
tial and temporal resolution, and limited sensitivity. Our group initially developed various
multi-pinhole SPECT systems for preclinical purposes that are nowadays in use by hun-
dreds of researchers worldwide. These systems are based on a full ring with stationary
detectors applying multi-pinhole collimation. Lately this technology was translated in a
prototype system named G-SPECT-I for clinical purposes. G-SPECT-I has demonstrated
unprecedented resolutions in physical phantom scans when using a small-bore collima-
tor dedicated to brain scanning. This thesis focuses on image acquisition optimization
and attenuation map estimation for fast dynamic scanning and quantitatively accurate
brain imaging. Meanwhile, we focus on DaTscan and brain perfusion imaging in this the-
sis as they are the two important brain SPECT applications.

The focusingmulti-pinholeG-SPECT-I system scans an extended volumeby gently trans-
lating the patient bed through the collimator to obtain sufficient sampling of the entire
volume. A large number of bed translations could better warrant sampling sufficiency
however at the cost of an increased overhead time needed for bed movement, which
hampers fast dynamic studies. In Chapter 2, we developed a sampling strategy that em-
ploys a minimal number of bed translations for G-SPECT-I DaTscan imaging. Specifically,
the scan region was confined in axial direction for partial brain imaging, while transaxi-
ally, we focused the bed positions in the brain and limited the number of transaxial bed
positions while always ensuring sufficient sampling. Optimization of image acquisition
with the use of different bed trajectories was performed with a simulation study. We
found that structures essential for DaTscan assessment were barely affected even when
using a very low number of bed translations (i.e., 4). We conclude that the proposed ac-
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quisition plan could enable protocols for extremely fast dynamic SPECT DaTscans with
less than half-minute time frames, which can be useful for efficient head motion correc-
tion.

While Chapter 2 presented optimized bed translation trajectories for focused partial brain
imaging, Chapter 3 concentrated on whole brain imaging which is the common proce-
dure for brain perfusion imaging. To this end, a series of scans using a reduced number of
bed positions were simulated and compared to an oversampled reference scan acquired
with a large number of bed translation (128 translations). We showed that the full brain
perfusion images were barely affected by decreasing the number of bed positions from
128 down to 18. This bed trajectory entails a total overhead for bed movement of only
half a minute, which may open up possibilities for fast dynamic whole brain SPECT and
efficient motion correction.

Chapter 4 and 5 attempt to estimate attenuationmaps which could be used for SPECT at-
tenuation correction. In Chapter 4, we proposed a strategy to estimate attenuationmaps
using only SPECT data based on a convolutional neural network (CNN). We validated the
proposed approach using Monte Carlo simulated brain perfusion scans with G-SPECT-I.
Multiple image reconstructions were performed from different energy windows. Locally
extracted 4D SPECT patches (three spatial plus one energy dimension) were used as input
to the CNNwhichwas trained to predict the attenuation coefficient of the corresponding
central voxel of the patch. We showed that attenuationmaps can be accurately estimated
with the patch-voxel CNN method.

The promising results in Chapter 4 motivated us to apply a similar CNN approach for
attenuation map estimation on the more challenging case of axially focused DaTscans
in which only a low activity level is present outside the central region of the brain. The
corresponding work was described in Chapter 5. In this Chapter, Monte Carlo simulation
of DaTscans was performed using a protocol aimed at imaging a few slices centered at
the striatum as proposed in Chapter 2. Apart from the patch-voxel CNN as implemented
in Chapter 4, we also applied a patch-patch and image-image CNN that have been used
in relevant recent studies to estimate attenuation maps. We concluded that all three
CNNs can accurately estimate the attenuation maps for DaTscans , even though data was
acquired with the focused striatum scanning strategy.

In this thesis, we optimized image acquisition and enabled accurate attenuation map es-
timation for amulti-pinhole SPECT system. Thismay, for the first time, allow for dynamic
organ-specific clinical SPECT imaging at high spatial and temporal resolution. Addition-
ally, the proposed sampling strategies, which were tested on G-SPECT-I brain scans, can
be implemented for other future G-SPECT-I applications (e.g., pediatric imaging) or for
other systems with a similar full ring multi-pinhole geometry (e.g., various preclinical
systems of U-SPECT-II, VECTor, etc.). Similarly, the presented CNN based attenuation
map estimation methods can essentially be applied on all other SPECT systems that have
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list mode acquisition (the exact accuracy has yet to be assessed). A limitation of this the-
sis is a lack of evaluation using experimental scans. Also, further validation in clinical
cohorts would be necessary to ultimately prove the benefit of the proposed method.





References

[1] Dicardiology, https://www.dicardiology.com/article/spect-scanner-vs-pet-which-best/,
(2021), [last access: 24 March 2021].

[2] Stirrup, J. E. and Underwood, S. R., Pet should not replace routine spect mps for the assessment
of patients with known or suspected cad, Journal of Nuclear Cardiology 24, 1960 (2017).

[3] Gambhir, S. S., Berman, D. S., Ziffer, J., et al., A novel high-sensitivity rapid-acquisition single-
photon cardiac imaging camera, Journal of Nuclear Medicine 50, 635 (2009).

[4] Medical isotopes, global importance and opportunities for the netherlands, .

[5] Cuocolo, A., Pappatà, S., Zampella, E., and Assante, R., Advances in spect methodology, Inter-
national review of neurobiology 141, 77 (2018).

[6] Kumar, A. and Chugani, H. T., The role of radionuclide imaging in epilepsy, part 1: sporadic
temporal and extratemporal lobe epilepsy, Journal of Nuclear Medicine 54, 1775 (2013).

[7] Ivashchenko, O., van der Have, F., Villena, J. L., et al., Quarter-millimeter-resolution molecular
mouse imaging with u-spect+,Molecular imaging 14, 7290 (2015).

[8] Nguyen, M. P., Ramakers, R. M., Kamphuis, C., et al., Exirad-3d: Fast automated three-
dimensional autoradiography, Nuclear Medicine and Biology 86, 59 (2020).

[9] Ozsahin, I., Chen, L., Könik, A., et al., The clinical utilities of multi-pinhole single photon emis-
sion computed tomography, Quantitative Imaging in Medicine and Surgery 10, 2006 (2020).

[10] Beekman, F. J., Van der Have, F., Goorden, M. C., et al., G-spect-i: a full ring high sensitivity
and ultra-fast clinical molecular imaging system with <3 mm resolution [abstract], Eur J Nucl
Med Mol Imaging (Suppl 1) 42, S209 (2015).

[11] Klein, W., Barrett, H. H., Pang, I., et al., Fastspect: electrical and mechanical design of a high-
resolution dynamic spect imager, in 1995 IEEENuclear Science Symposium andMedical Imaging
Conference Record, Vol. 2 (IEEE, 1995) pp. 931–933.

[12] Van Audenhaege, K., Van Holen, R., Deprez, K., et al., Design of a static full-ring multi-pinhole
collimator for brain spect, in 2011 IEEE Nuclear Science Symposium Conference Record (IEEE,
2011) pp. 4393–4397.

[13] Van Audenhaege, K., Vandenberghe, S., Deprez, K., Vandeghinste, B., and VanHolen, R.,Design
and simulation of a full-ring multi-lofthole collimator for brain spect, Physics in Medicine &
Biology 58, 6317 (2013).

[14] Vaissier, P. E., Goorden,M. C., Vastenhouw, B., et al., Fast spiral spectwith stationary 𝛾-cameras
and focusing pinholes, Journal of Nuclear Medicine 53, 1292 (2012).

[15] Hutton, B. F., Buvat, I., and Beekman, F. J., Review and current status of spect scatter correction,
Physics in Medicine & Biology 56, R85 (2011).

[16] Ogawa, K., Harata, Y., Ichihara, T., Kubo, A., and Hashimoto, S., A practical method for position-

111

https://www.dicardiology.com/article/spect-scanner-vs-pet-which-best/


112 References

dependent compton-scatter correction in single photon emission ct, IEEE transactions onmed-
ical imaging 10, 408 (1991).

[17] Goorden, M. C., van Roosmalen, J., van der Have, F., and Beekman, F. J., Optimizing modelling
in iterative image reconstruction for preclinical pinhole pet, Physics in Medicine & Biology 61,
3712 (2016).

[18] Vaissier, P., Beekman, F., and Goorden, M., Similarity-regulation of os-em for accelerated spect
reconstruction, Physics in Medicine & Biology 61, 4300 (2016).

[19] Beekman, F., Restoration of computer-tomographic images with neural networks,
(WO/1993/006560, 1993).

[20] Zhang, W., Li, R., Deng, H., et al., Deep convolutional neural networks for multi-modality isoin-
tense infant brain image segmentation, NeuroImage 108, 214 (2015).

[21] Gong, K., Yang, J., Kim, K., et al., Attenuation correction for brain pet imaging using deep neural
network based on dixon and zte mr images, Physics in Medicine & Biology 63, 125011 (2018).

[22] Liu, F., Jang, H., Kijowski, R., et al., A deep learning approach for 18 f-fdg pet attenuation cor-
rection, EJNMMI physics 5, 1 (2018).

[23] Shi, L., Onofrey, J. A., Liu, H., Liu, Y.-H., and Liu, C., Deep learning-based attenuation map gen-
eration for myocardial perfusion spect, European Journal of Nuclear Medicine and Molecular
Imaging , 1 (2020).

[24] Yang, J., Shi, L., Wang, R., et al., Direct attenuation correction using deep learning for cardiac
spect: A feasibility study, Journal of Nuclear Medicine (2021).

[25] Gong, K., Guan, J., Liu, C.-C., and Qi, J., Pet image denoising using a deep neural network
through fine tuning, IEEE Transactions on Radiation and PlasmaMedical Sciences 3, 153 (2018).

[26] Li, T., Zhang, M., Qi, W., Asma, E., and Qi, J.,Motion correction of respiratory-gated pet images
using deep learning based image registration framework, Physics in Medicine & Biology 65,
155003 (2020).

[27] Chen, Y., Vastenhouw, B., Wu, C., Goorden, M. C., and Beekman, F. J., Optimized image ac-
quisition for dopamine transporter imaging with ultra-high resolution clinical pinhole spect,
Physics in Medicine & Biology 63, 225002 (2018).

[28] Catafau, A. M. and Tolosa, E., Impact of dopamine transporter spect using 123i-ioflupane on di-
agnosis and management of patients with clinically uncertain parkinsonian syndromes,Move-
ment disorders: official journal of the Movement Disorder Society 19, 1175 (2004).

[29] O’Brien, J. T., Colloby, S., Fenwick, J., et al., Dopamine transporter loss visualized with fp-cit
spect in the differential diagnosis of dementia with lewy bodies, Archives of neurology 61, 919
(2004).

[30] Hauser, R. A. and Grosset, D. G., [123i] fp-cit (datscan) spect brain imaging in patients with
suspected parkinsonian syndromes, Journal of Neuroimaging 22, 225 (2012).

[31] Bajaj, N., Hauser, R. A., and Grachev, I. D., Clinical utility of dopamine transporter single photon
emission ct (dat-spect) with (123i) ioflupane in diagnosis of parkinsonian syndromes, Journal of
Neurology, Neurosurgery & Psychiatry 84, 1288 (2013).

[32] Park, E., A new era of clinical dopamine transporter imaging using 123i-fp-cit, Journal of nu-
clear medicine technology 40, 222 (2012).

[33] Marzullo, P. and Mariani, G., From Basic Cardiac Imaging to Image Fusion: Core Competencies

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO1993006560


References 113

Versus Technological Progress (Springer Science & Business Media, 2013).

[34] Lee, T.-C., Ellin, J. R., Huang, Q., et al., Multipinhole collimator with 20 apertures for a brain
spect application,Medical physics 41, 112501 (2014).

[35] Kouris, K., Clarke, G. A., Jarritt, P. H., Townsend, C. E., and Thomas, S. N., Physical performance
evaluation of the toshiba gca-9300a triple-headed system, Journal of Nuclear Medicine 34, 1778
(1993).

[36] Kawamura, Y., Ashizaki, M., Saida, S., and Sugimoto, H., Usefulness of rate of increase in spect
counts in one-day method of n-isopropyl-4-iodoamphetamine [123 i] spect studies at rest and
after acetazolamide challenge using a method for estimating time-dependent distribution at
rest, Annals of nuclear medicine 22, 457 (2008).

[37] Deyn, P. P., A textbook of: SPECT in neurology and psychiatry (John Libbey Eurotext, 1997) p.
p128.

[38] Bombardieri, E., Buscombe, J., Lucignani, G., and Schober, O., Advances in nuclear oncology:
diagnosis and therapy (CRC Press, 2007) p. p472.

[39] Goorden, M., Rentmeester, M., and Beekman, F., Theoretical analysis of full-ring multi-pinhole
brain spect, Physics in Medicine & Biology 54, 6593 (2009).

[40] Van Audenhaege, K., Van Holen, R., Vanhove, C., and Vandenberghe, S., Collimator design for
a multipinhole brain spect insert for mri,Medical physics 42, 6679 (2015).

[41] Stoddart, H. and Stoddart, H., New multidimensional reconstructions for the 12-detector,
scanned focal point, single-photon tomograph, Physics in Medicine & Biology 37, 579 (1992).

[42] van de Giessen, E. and Booij, J., The spect tracer [123 i] adam binds selectively to serotonin
transporters: a double-blind, placebo-controlled study in healthy young men, European journal
of nuclear medicine and molecular imaging 37, 1507 (2010).

[43] Sensakovic, W. F., Hough, M. C., and Kimbley, E. A., Acr testing of a dedicated head spect unit,
Journal of applied clinical medical physics 15, 1 (2014).

[44] Tavares, A., Batis, J., Barret, O., et al., In vivo evaluation of [(123) i] mni-420: a novel single
photon emission computed tomography radiotracer for imaging of adenosine 2a receptors in
brain. Nuclear medicine and biology 40, 403 (2013).

[45] Dierckx, R. A., Otte, A., De Vries, E. F., Van Waarde, A., and Luiten, P. G., PET and SPECT of
Neurobiological Systems (Springer, 2014) p. p238.

[46] Mukherjee, J. M., Dey, J., and King, M. A., Image reconstruction methods for i-123 datscan imag-
ing using a multi-pinhole and fan collimator dual-headed spect system, in 2014 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE, 2014) pp. 1–3.

[47] King, M. A., Mukherjee, J. M., Könik, A., et al., Design of a multi-pinhole collimator for i-123
datscan imaging on dual-headed spect systems in combinationwith a fan-beam collimator, IEEE
transactions on nuclear science 63, 90 (2016).

[48] Chen, L., Tsui, B. M., and Mok, G. S., Design and evaluation of two multi-pinhole collimators for
brain spect, Annals of nuclear medicine 31, 636 (2017).

[49] Vastenhouw, B. and Beekman, F., Submillimeter total-body murine imaging with u-spect-i,
Journal of Nuclear Medicine 48, 487 (2007).

[50] Ivashchenko, O., van der Have, F., Goorden, M. C., Ramakers, R. M., and Beekman, F. J., Ultra-
high-sensitivity submillimeter mouse spect, Journal of Nuclear Medicine 56, 470 (2015).



114 References

[51] Hammers, A., Allom, R., Koepp, M. J., et al., Three-dimensional maximum probability atlas of
the human brain, with particular reference to the temporal lobe, Human brain mapping 19, 224
(2003).

[52] Koch, W., Radau, P. E., Hamann, C., and Tatsch, K., Clinical testing of an optimized software so-
lution for an automated, observer-independent evaluation of dopamine transporter spect stud-
ies, Journal of Nuclear Medicine 46, 1109 (2005).

[53] Acton, P. D., Newberg, A., Plössl, K., andMozley, P. D.,Comparison of region-of-interest analysis
and human observers in the diagnosis of parkinson’s disease using [99mtc] trodat-1 and spect,
Physics in Medicine & Biology 51, 575 (2006).

[54] Lange, C., Seese, A., Schwarzenböck, S., et al., Ct-based attenuation correction in i-123-
ioflupane spect, PloS one 9, e108328 (2014).

[55] Augimeri, A., Cherubini, A., Cascini, G. L., et al., Cada—computer-aided datscan analysis, EJN-
MMI physics 3, 1 (2016).

[56] Branderhorst, W., Vastenhouw, B., Van Der Have, F., et al., Targeted multi-pinhole spect, Eu-
ropean journal of nuclear medicine and molecular imaging 38, 552 (2011).

[57] Van Der Have, F., Vastenhouw, B., Ramakers, R. M., et al., U-spect-ii: an ultra-high-resolution
device for molecular small-animal imaging, Journal of Nuclear Medicine 50, 599 (2009).

[58] Noo, F., Defrise, M., Clackdoyle, R., and Kudo, H., Image reconstruction from fan-beam projec-
tions on less than a short scan, Physics in medicine & biology 47, 2525 (2002).

[59] Noo, F., Defrise, M., Pack, J. D., and Clackdoyle, R., Image reconstruction from truncated data
in single-photon emission computed tomography with uniform attenuation, Inverse Problems
23, 645 (2007).

[60] Chan, C., Dey, J., Grobshtein, Y., et al., The impact of systemmatrix dimension on small fov spect
reconstruction with truncated projections,Medical physics 43, 213 (2016).

[61] Hodge, M. R., Horton, W., Brown, T., et al., Connectomedb—sharing human brain connectivity
data, Neuroimage 124, 1102 (2016).

[62] Schneider, C. A., Rasband, W. S., and Eliceiri, K. W., Nih image to imagej: 25 years of image
analysis, Nature methods 9, 671 (2012).

[63] van der Have, F., Vastenhouw, B., Rentmeester, M., and Beekman, F. J., System calibration and
statistical image reconstruction for ultra-high resolution stationary pinhole spect, IEEE trans-
actions on medical imaging 27, 960 (2008).

[64] Beekman, F. J., van der Have, F., Vastenhouw, B., et al., U-spect-i: a novel system for
submillimeter-resolution tomography with radiolabeled molecules in mice, Journal of Nuclear
Medicine 46, 1194 (2005).

[65] Goorden, M. C., van der Have, F., Kreuger, R., et al., Vector: a preclinical imaging system for
simultaneous submillimeter spect and pet, Journal of Nuclear Medicine 54, 306 (2013).

[66] van der Have, F., Ivashchenko, O., Goorden, M. C., Ramakers, R. M., and Beekman, F. J., High-
resolution clustered pinhole 131iodine spect imaging in mice, Nuclear medicine and biology 43,
506 (2016).

[67] Siddon, R. L., Fast calculation of the exact radiological path for a three-dimensional ct array,
Medical physics 12, 252 (1985).

[68] Wang, B., van Roosmalen, J., Piët, L., et al., Voxelized ray-tracing simulation dedicated to multi-



References 115

pinhole molecular breast tomosynthesis, Biomedical Physics & Engineering Express 3, 045021
(2017).

[69] Tossici-Bolt, L., Hoffmann, S. M., Kemp, P. M., Mehta, R. L., and Fleming, J. S.,Quantification of
[123 i] fp-cit spect brain images: an accurate technique for measurement of the specific binding
ratio, European journal of nuclear medicine and molecular imaging 33, 1491 (2006).

[70] Chen, Y., Goorden, M. C., Vastenhouw, B., and Beekman, F. J., Optimized sampling for high
resolution multi-pinhole brain spect with stationary detectors, Physics in Medicine & Biology
65, 015002 (2020).

[71] Catafau, A. M., Brain spect in clinical practice. part i: perfusion, Journal of Nuclear Medicine
42, 259 (2001).

[72] Juni, J. E., Waxman, A. D., Devous, M. D., et al., Procedure guideline for brain perfusion spect
using 99mtc radiopharmaceuticals 3.0, Journal of nuclear medicine technology 37, 191 (2009).

[73] Knowlton, R. C., The role of fdg-pet, ictal spect, and meg in the epilepsy surgery evaluation,
Epilepsy & Behavior 8, 91 (2006).

[74] Kim, S. and Mountz, J. M., Spect imaging of epilepsy: an overview and comparison with f-18 fdg
pet, International journal of molecular imaging 2011 (2011).

[75] Camargo, E. E., Brain spect in neurology and psychiatry, Journal of Nuclear Medicine 42, 611
(2001).

[76] Amen, D. G., Trujillo, M., Newberg, A., et al., Brain spect imaging in complex psychiatric cases:
an evidence-based, underutilized tool, The open neuroimaging journal 5, 40 (2011).

[77] Santra, A. and Kumar, R., Brain perfusion single photon emission computed tomography in ma-
jor psychiatric disorders: From basics to clinical practice, Indian journal of nuclear medicine:
IJNM: the official journal of the Society of Nuclear Medicine, India 29, 210 (2014).

[78] Amen, D. G., Prunella, J. R., Fallon, J. H., Amen, B., and Hanks, C., A comparative analysis of
completed suicide using high resolution brain spect imaging, The Journal of neuropsychiatry
and clinical neurosciences 21, 430 (2009).

[79] Amen, D. G., Change Your Brain, Change Your Life (Revised and Expanded): The Breakthrough
Program for Conquering Anxiety, Depression, Obsessiveness, Lack of Focus, Anger, and Memory
Problems (Harmony, 2015).

[80] Fakhri, G. E., Ouyang, J., Zimmerman, R. E., Fischman, A. J., and Kijewski, M. F., Performance of
a novel collimator for high-sensitivity brain spect,Medical physics 33, 209 (2006).

[81] Stam, M., Verwer, E., Booij, J., et al., Performance evaluation of a novel brain-dedicated spect
system, EJNMMI physics 5, 1 (2018).

[82] Befera, N. T., Badea, C. T., and Johnson, G. A., Comparison of 4d-microspect and microct for
murine cardiac function,Molecular imaging and biology 16, 235 (2014).

[83] Beekman, F., Gamma radiation imaging apparatus, (US Patents US9168014B2, 2013).

[84] Zubal, I. G., Harrell, C. R., Smith, E. O., et al., Computerized three-dimensional segmented hu-
man anatomy,Medical physics 21, 299 (1994).

[85] Glick, S. J. and Soares, E. J., Noise characteristics of mlem spect reconstruction with a mis-
matched projector-backprojector pair, in 1997 IEEE Nuclear Science Symposium Conference
Record, Vol. 2 (IEEE, 1997) pp. 1518–1522.

[86] Stodilka, R. Z., Kemp, B. J., Prato, F. S., et al., Scatter and attenuation correction for brain spect

https://patents.google.com/patent/US9168014B2/en


116 References

using attenuation distributions inferred from a head atlas, Journal of NuclearMedicine 41, 1569
(2000).

[87] Pato, L. R., Vandenberghe, S., Zedda, T., and Van Holen, R., Parallel-hole collimator concept for
stationary spect imaging, Physics in Medicine & Biology 60, 8791 (2015).

[88] Van Laere, K., Koole, M., Kauppinen, T., et al., Nonuniform transmission in brain spect using
201tl, 153gd, and 99mtc static line sources: anthropomorphic dosimetry studies and influence
on brain quantification, Journal of Nuclear Medicine 41, 2051 (2000).

[89] Nobili, F., Koulibaly, M., Vitali, P., et al., Brain perfusion follow-up in alzheimer’s patients during
treatment with acetylcholinesterase inhibitors, Journal of Nuclear Medicine 43, 983 (2002).

[90] Bowen, J. D., Huang, Q., Gullberg, G. T., and Seo, Y., Phantom measurements and simulations
of cardiac and brain studies using a multipinhole collimator with 20 apertures, in 2011 IEEE
Nuclear Science Symposium Conference Record (IEEE, 2011) pp. 3417–3421.

[91] Charpentier, P., Lavenu, I., Defebvre, L., et al., Alzheimer’s disease and frontotemporal demen-
tia are differentiated by discriminant analysis applied to 99mtc hmpao spect data, Journal of
Neurology, Neurosurgery & Psychiatry 69, 661 (2000).

[92] Tsolaki, M., Sakka, V., Gerasimou, G., et al., Correlation of rcbf (spect), csf tau, and congnitive
function in patients with dementia of the alzheimer’s type, other types of dementia, and congrol
subjects, American Journal of Alzheimer’s Disease & Other Dementias® 16, 21 (2001).

[93] Staffen, W., Schönauer, U., Zauner, H., et al., Brain perfusion spect in patients with mild cogni-
tive impairment and alzheimer’s disease: comparison of a semiquantitative and a visual evalu-
ation, Journal of neural transmission 113, 195 (2006).

[94] McNeill, R., Sare, G., Manoharan, M., et al., Accuracy of single-photon emission computed to-
mography in differentiating frontotemporal dementia from alzheimer’s disease, Journal of Neu-
rology, Neurosurgery & Psychiatry 78, 350 (2007).

[95] Colloby, S. J., Taylor, J. P., Firbank, M. J., et al., Covariance 99mtc-exametazime spect patterns
in alzheimer’s disease and dementia with lewy bodies: utility in differential diagnosis, Journal
of geriatric psychiatry and neurology 23, 54 (2010).

[96] Grova, C., Biraben, A., Scarabin, J.-M., et al., A methodology to validate mri/spect registration
methods using realistic simulated spect data, in International Conference on Medical Image
Computing and Computer-Assisted Intervention (Springer, 2001) pp. 275–282.

[97] Radau, P. E., Slomka, P. J., Julin, P., Svensson, L., andWahlund, L.-O., Evaluation of linear regis-
tration algorithms for brain spect and the errors due to hypoperfusion lesions,Medical Physics
28, 1660 (2001).

[98] Cutolo, M., Nobili, F., Sulli, A., et al., Evidence of cerebral hypoperfusion in scleroderma patients,
Rheumatology 39, 1366 (2000).

[99] Chiu, N.-T., Chang, Y.-C., Lee, B.-F., Huang, C.-C., and Wang, S.-T., Differences in 99m tc-
hmpao brain spet perfusion imaging between tourette’s syndrome and chronic tic disorder in
children, European journal of nuclear medicine 28, 183 (2001).

[100] Mountz, J. M., Bradley, L. A., Modell, J. G., et al., Fibromyalgia in women, Arthritis & Rheuma-
tism: Official Journal of the American College of Rheumatology 38, 926 (1995).

[101] Deutsch, G., Mountz, J. M., Katholi, C. R., Liu, H.-G., and Harrell, L. E., Regional stability of
cerebral blood flow measured by repeated technetium-99m-hmpao spect: implications for the



References 117

study of state-dependent change, Journal of Nuclear Medicine 38, 6 (1997).

[102] Cao, Z., Maunoury, C., Chen, C. C., andHolder, L. E.,Comparison of continuous step-and-shoot
versus step-and-shoot acquisition spect, Journal of Nuclear Medicine 37, 2037 (1996).

[103] Mohseni, M., Faghihi, R., Haghighatafshar, M., and Entezarmahdi, S. M., Effects of the attenua-
tion correction and reconstruction method parameters on conventional cardiac dynamic spect,
Medicine 97 (2018).

[104] Chen, Y., Goorden, M. C., and Beekman, F. J., Automatic attenuationmap estimation from spect
data only for brain perfusion scans using convolutional neural networks, Physics in Medicine
& Biology 66, 065006 (2021).

[105] Modzelewski, R., Janvresse, E., de la Rue, T., and Vera, P., Comparison of heterogeneity quan-
tification algorithms for brain spect perfusion images, EJNMMI research 2, 1 (2012).

[106] Larsson, A., Johansson, L., Sundström, T., and ÅHLSTRÖM, K. R., A method for attenuation
and scatter correction of brain spect based on computed tomography images, Nuclear medicine
communications 24, 411 (2003).

[107] Bateman, T. M. and Cullom, S. J., Attenuation correction single-photon emission computed to-
mography myocardial perfusion imaging, in Seminars in nuclear medicine, Vol. 35 (Elsevier,
2005) pp. 37–51.

[108] Nakano, S., Kinoshita, K., Jinnouchi, S., Hoshi, H., and Watanabe, K., Dynamic spect with
iodine-123 imp in meningiomas, J Nucl Med 29, 1632 (1988).

[109] Ogasawara, K., Ogawa, A., Ezura, M., et al., Dynamic and static 99mtc-ecd spect imaging of
subacute cerebral infarction: comparison with 133xe spect, Journal of Nuclear Medicine 42,
543 (2001).

[110] Komatani, A., Sugai, Y., and Hosoya, T., Development of “super rapid dynamic spect,” and anal-
ysis of retention process of 99m tc-ecd in ischemie lesions: Comparative study with 133 xe spect,
Annals of nuclear medicine 18, 489 (2004).

[111] Gullberg, G. T., Reutter, B. W., Sitek, A., Maltz, J. S., and Budinger, T. F., Dynamic single photon
emission computed tomography—basic principles and cardiac applications, Physics inMedicine
& Biology 55, R111 (2010).

[112] Knutsson, L., Börjesson, S., Larsson, E.-M., et al., Absolute quantification of cerebral blood flow
in normal volunteers: Correlation between xe-133 spect and dynamic susceptibility contrast
mri, Journal of Magnetic Resonance Imaging: An Official Journal of the International Society
for Magnetic Resonance in Medicine 26, 913 (2007).

[113] Dahlbom, M., Reed, J., and Young, J., Implementation of true continuous bed motion in 2-d and
3-d whole-body pet scanning, IEEE Transactions on Nuclear Science 48, 1465 (2001).

[114] Brasse, D., Newport, D., Carney, J., et al., Continuous bed motion acquisition on a whole body
combined pet/ct system, in 2002 IEEE nuclear science symposium conference record, Vol. 2
(IEEE, 2002) pp. 951–955.

[115] Newport, D. F., Casey, M. E., Luk, W. K., and Reed, J. H., Continuous tomography bed motion
data processing apparatus and method, (2005), uS Patent 6,915,004.

[116] Bailey, D. L. and Willowson, K. P., An evidence-based review of quantitative spect imaging and
potential clinical applications, Journal of nuclear medicine 54, 83 (2013).

[117] King, M. A., Glick, S. J., Pretorius, P. H., et al., Attenuation, scatter, and spatial resolution com-



118 References

pensation in spect, in Emission tomography: The fundamentals of PET and SPECT (Academic,
2004) pp. 473–498.

[118] Goetze, S., Brown, T. L., Lavely, W. C., Zhang, Z., and Bengel, F. M., Attenuation correction in
myocardial perfusion spect/ct: effects of misregistration and value of reregistration, Journal of
Nuclear Medicine 48, 1090 (2007).

[119] Berker, Y. and Li, Y., Attenuation correction in emission tomography using the emission data—a
review,Medical physics 43, 807 (2016).

[120] Zaidi, H. and Hasegawa, B., Determination of the attenuation map in emission tomography,
Journal of Nuclear Medicine 44, 291 (2003).

[121] Macey, D., Denardo, G. L., and DeNardo, S., Comparison of three boundary detection methods
for spect using compton scattered photons, Journal of nuclear medicine 29, 203 (1988).

[122] Wallis, J. W., Miller, T. R., and Koppel, P., Attenuation correction in cardiac spect without a
transmission measurement, Journal of Nuclear Medicine 36, 506 (1995).

[123] Pan, T.-S., King, M. A., De Vries, D. J., and Ljungberg, M., Segmentation of the body and lungs
from compton scatter and photopeak window data in spect: a monte-carlo investigation, IEEE
transactions on medical imaging 15, 13 (1996).

[124] Younes, R. B., Mas, J., and Bidet, R., A fully automated contour detection algorithm the pre-
liminary step for scatter and attenuation compensation in spect, European journal of nuclear
medicine 14, 586 (1988).

[125] Jha, A. K., Clarkson, E., Kupinski, M. A., and Barrett, H. H., Joint reconstruction of activity and
attenuation map using lm spect emission data, in Medical imaging 2013: physics of medical
imaging, Vol. 8668 (International Society for Optics and Photonics, 2013) p. 86681W.

[126] Brusaferri, L., Bousse, A., Emond, E. C., et al., Joint activity and attenuation reconstruction
from multiple energy window data with photopeak scatter re-estimation in non-tof 3-d pet,
IEEE Transactions on Radiation and Plasma Medical Sciences 4, 410 (2020).

[127] Leynes, A. P., Yang, J., Wiesinger, F., et al., Zero-echo-time and dixon deep pseudo-ct (zedd
ct): direct generation of pseudo-ct images for pelvic pet/mri attenuation correction using deep
convolutional neural networks with multiparametric mri, Journal of Nuclear Medicine 59, 852
(2018).

[128] Mok, G. S., Zhang, Q., Cun, X., et al., Initial investigation of using a generative adversarial
network for denoising in dual gating myocardial perfusion spect, in 2018 IEEE Nuclear Science
Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (IEEE, 2018) pp. 1–3.

[129] Wang, G., Li, W., Ourselin, S., and Vercauteren, T., Automatic brain tumor segmentation based
on cascaded convolutional neural networks with uncertainty estimation, Frontiers in compu-
tational neuroscience 13, 56 (2019).

[130] Shiri, I., Arabi, H., Geramifar, P., et al., Deep-jasc: joint attenuation and scatter correction in
whole-body 18 f-fdg pet using a deep residual network, European journal of nuclear medicine
and molecular imaging 47, 2533 (2020).

[131] Reimold, M., Nikolaou, K., Christian La Fougère, M., and Gatidis, S., 18 independent brain f-fdg
pet attenuation correction using a deep learning approach with generative adversarial net-
works, Hellenic journal of nuclear medicine 22, 179 (2019).

[132] Liu, M., Cheng, D., Wang, K., and Wang, Y.,Multi-modality cascaded convolutional neural net-



References 119

works for alzheimer’s disease diagnosis, Neuroinformatics 16, 295 (2018).
[133] Guo, Z., Li, X., Huang, H., Guo, N., and Li, Q.,Medical image segmentation based onmulti-modal

convolutional neural network: Study on image fusion schemes, in 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018) (IEEE, 2018) pp. 903–907.

[134] Ronneberger, O., Fischer, P., and Brox, T.,U-net: Convolutional networks for biomedical image
segmentation, in International Conference on Medical image computing and computer-assisted
intervention (Springer, 2015) pp. 234–241.

[135] Aubert-Broche, B., Griffin, M., Pike, G. B., Evans, A. C., and Collins, D. L., Twenty new digi-
tal brain phantoms for creation of validation image data bases, IEEE transactions on medical
imaging 25, 1410 (2006).

[136] NIST, National institute of standards technology, (2020), [last access: Sep 2020].

[137] Jan, S., Santin, G., Strul, D., et al., Gate: a simulation toolkit for pet and spect, Physics in
Medicine & Biology 49, 4543 (2004).

[138] Nguyen, M. P., Goorden, M. C., Kamphuis, C., and Beekman, F. J., Evaluation of pinhole colli-
mator materials for micron-resolution ex vivo spect, Physics in Medicine & Biology 64, 105017
(2019).

[139] Moeskops, P., Viergever, M. A., Mendrik, A. M., et al., Automatic segmentation of mr brain
images with a convolutional neural network, IEEE transactions on medical imaging 35, 1252
(2016).

[140] Kingma, D. P. and Ba, J., Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980 (2014).

[141] Paix, D., Pinhole imaging of gamma rays, Physics in Medicine & Biology 12, 489 (1967).

[142] Collins, D. L., Zijdenbos, A. P., Kollokian, V., et al., Design and construction of a realistic digital
brain phantom, IEEE transactions on medical imaging 17, 463 (1998).

[143] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al., Automated anatomical labeling
of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject
brain, Neuroimage 15, 273 (2002).

[144] Yang, J., Park, D., Gullberg, G. T., and Seo, Y., Joint correction of attenuation and scatter in
image space using deep convolutional neural networks for dedicated brain 18f-fdg pet, Physics
in medicine & biology 64, 075019 (2019).

[145] Ramon, A. J., Yang, Y., Pretorius, P. H., et al., Initial investigation of low-dose spect-mpi via deep
learning, in 2018 IEEE nuclear science symposium and medical imaging conference proceedings
(NSS/MIC) (IEEE, 2018) pp. 1–3.

[146] Zhang, Q., Sun, J., andMok, G. S., Lowdose spect image denoising using a generative adversarial
network, arXiv preprint arXiv:1907.11944 (2019).

[147] Reymann, M. P., Würfl, T., Ritt, P., et al., U-net for spect image denoising, in 2019 IEEE Nuclear
Science Symposium and Medical Imaging Conference (NSS/MIC) (IEEE) pp. 1–2.

[148] Djang, D. S., Janssen, M. J., Bohnen, N., et al., Snm practice guideline for dopamine transporter
imaging with 123i-ioflupane spect 1.0, Journal of Nuclear Medicine 53, 154 (2012).

[149] Winogrodzka, A., Bergmans, P., Booij, J., et al., [123 i] fp-cit spect is a useful method to moni-
tor the rate of dopaminergic degeneration in early-stage parkinson’s disease, Journal of neural
transmission 108, 1011 (2001).

https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html/


120 References

[150] Darcourt, J., Booij, J., Tatsch, K., et al., Eanm procedure guidelines for brain neurotransmission
spect using 123 i-labelled dopamine transporter ligands, version 2, European journal of nuclear
medicine and molecular imaging 37, 443 (2010).

[151] Rajeevan, N., Zubal, I. G., Ramsby, S. Q., et al., Significance of nonuniformattenuation correction
in quantitative brain spect imaging, Journal of Nuclear Medicine 39, 1719 (1998).

[152] Crespo, C., Gallego, J., Cot, A., et al., Quantification of dopaminergic neurotransmission spect
studies with 123 i-labelled radioligands. a comparison between different imaging systems and
data acquisition protocols using monte carlo simulation, European journal of nuclear medicine
and molecular imaging 35, 1334 (2008).

[153] Rahmim, A., Huang, P., Shenkov, N., et al., Improved prediction of outcome in parkinson’s dis-
ease using radiomics analysis of longitudinal dat spect images, NeuroImage: Clinical 16, 539
(2017).

[154] Censor, Y., Gustafson, D. E., Lent, A., and Tuy, H., A new approach to the emission computerized
tomography problem: simultaneous calculation of attenuation and activity coefficients, IEEE
Transactions on Nuclear Science 26, 2775 (1979).

[155] Nuyts, J., Dupont, P., Stroobants, S., et al., Simultaneous maximum a posteriori reconstruc-
tion of attenuation and activity distributions from emission sinograms, IEEE transactions on
medical imaging 18, 393 (1999).

[156] Krol, A., Bowsher, J. E., Manglos, S. H., et al., An em algorithm for estimating spect emission
and transmission parameters from emission data only, IEEE transactions on medical imaging
20, 218 (2001).

[157] Welch, A., Campbell, C., Clackdoyle, R., et al., Accurate attenuation correction in pet with-
out accurate transmission measurements, in 1997 IEEE Nuclear Science Symposium Conference
Record, Vol. 2 (IEEE, 1997) pp. 1697–1701.

[158] Bronnikov, A. V., Reconstruction of attenuationmap using discrete consistency conditions, IEEE
transactions on medical imaging 19, 451 (2000).

[159] Gourion, D., Noll, D., Gantet, P., Celler, A., and Esquerré, J.-P., Attenuation correction using
spect emission data only, IEEE transactions on nuclear science 49, 2172 (2002).

[160] Yan, Y. and Zeng, G. L., Attenuation map estimation with spect emission data only, Interna-
tional journal of imaging systems and technology 19, 271 (2009).

[161] Hebert, T. J., Gopal, S., and Murphy, P., A fully automated optimization algorithm for deter-
mining the 3-d patient contour from photo-peak projection data in spect, IEEE transactions on
medical imaging 14, 122 (1995).

[162] Yu, Z., Rahman, M. A., Schindler, T., Laforest, R., and Jha, A. K., A physics and learning-based
transmission-less attenuation compensationmethod for spect, inMedical Imaging 2021: Physics
of Medical Imaging, Vol. 11595 (International Society for Optics and Photonics, 2021) p. 1159512.

[163] Morton, R. J., Guy, M. J., Marshall, C. A., Clarke, E. A., and Hinton, P. J., Variation of datscan
quantification between different gamma camera types, Nuclear medicine communications 26,
1131 (2005).

[164] Notghi, A., O’Brien, J., Clarke, E. A., and Thomson, W. H., Acquiring diagnostic datscan images
in claustrophobic or difficult patients using a 180° configuration, Nuclear medicine communi-
cations 31, 217 (2010).



References 121

[165] Volterrani, D., Erba, P. A., Ignasi, C., William, S. H., and Mariani, G.,Nuclear medicine textbook,
(2019).

[166] Lapa, C., Spehl, T. S., Brumberg, J., et al., Influence of ct-based attenuation correction on
dopamine transporter spect with [123i] fp-cit, American journal of nuclear medicine and
molecular imaging 5, 278 (2015).

[167] Beauregard, J.-M., Hofman, M. S., Pereira, J. M., Eu, P., and Hicks, R. J.,Quantitative 177lu spect
(qspect) imaging using a commercially available spect/ct system, Cancer Imaging 11, 56 (2011).

[168] El Naqa, I., The role of quantitative pet in predicting cancer treatment outcomes, Clinical and
translational imaging 2, 305 (2014).

[169] Akahoshi, M., Abe, K., Uchiyama, Y., et al., Attenuation and scatter correction in i-123 fp-cit
spect do not affect the clinical diagnosis of dopaminergic system neurodegeneration, Medicine
96 (2017).

[170] Jreige, M., Allenbach, G., Meyer, M., et al., I-123-ioflupane quantification in lewy body dementia
and parkinson disease: Efficient role of xspect-derived absolute and relative suv, Journal of
Nuclear Medicine 61, 1530 (2020).

[171] Cokgor, I., Akabani, G., Kuan, C.-T., et al., Phase i trial results of iodine-131–labeled antitenascin
monoclonal antibody 81c6 treatment of patients with newly diagnosed malignant gliomas, Jour-
nal of clinical oncology 18, 3862 (2000).





Acknowledgements

I would like to take this chance to express my sincere gratitude to many people who have
given me support and made this thesis possible.

First of all, I would like to thank my supervisors Prof. Freek Beekman and Dr. Marlies
Goorden for guiding me through this research. Being a PhD student is not easy, and
being a supervisor can be even harder.

Freek, thank you for offering me the opportunity to work as a PhD candidate in the group
which lead me to the field of SPECT imaging. This thesis would not be possible without
your help throughout all these years. I see a great scientist in you who is passionate and
strives to invent more possibilities for revolutionary molecular imaging. You are critical
about research and responsible for the products and customers. Whenever my work
was questioned by you, I knew that your comments would always make my work better,
although the revision process can be painful. I feel lucky that as a junior researcher with
limited experience on SPECT imaging, I could get comments and advice from an expert
like you who has worked in this field for more than 30 years. Also, for the first 3 years of
my PhD that I spent many days in the company as an external student, you gave me a lot
of support. The many trips, in Utrecht, Rotterdam and Den Haag, with colleagues in the
company are beautiful memories. There are also many other things I bear gratitude, e.g.
your advice on career development and support for my postdoc application.

Marlies, thank you for your supervision and availability. You are a great female scientist
that I admire: smart, diligent, kind and responsible. I received somuchhelp fromyouwith
paper revision and research design. For every submission, you helped me with writing
and revising very patiently. This PhD work could not be finished without you. Now when
I am writing, I always think of what your comments would be if I write it in this way. I
am very lucky to have had your supervision and the opportunities to learn from you for
doing research.

Beien and Minh, you are the best peer PhD colleagues I could have expected. You both
are knowledgeable, friendly, and were always there when I need help. I could always
easily turn to you for advice without worrying that you would be bothered. The stand-
up chat in the office are such nice memories. We used to talk about study, work, trips,
holidays, driving exams, etc. Tome, you two aremy very close friends besides colleagues.
Walking through the PhD journey was tough, and you twomademy journey a memorable
experience. Wewent to two conferences together; one in Atlanta and one inManchester.

123



124 Acknowledgements

Beien always brought ideas where to eat; Minh and I only needed to follow. And Minh
would take care of Uber for the most cost-efficient transportation. How much I would
miss these trips and the everyday coffee break, lunch break with you. I sincerely wish all
the best with your future career.

Rob and Jan, you two are such nice group members. Although my research topic did not
have a large overlap with your expertise, you were always willing to help. You were also
there for the conference trip in Manchester. It was a lovely trip that I am already missing.
Besides, Rob, thanks for your timely help with translation of the Dutch summary and
many other things.

Trudy, thanks for all the help with administrations, booking flights, arranging hospitality,
etc. You always respond quickly and have things arranged efficiently. You are a great
asset to this group.

I also received lots of help from colleagues in MIlabs during the first three years of my
PhD.

Brendan, you were a great helper as my supervisor in the company. Before my PhD
project, you had been working on the G-SPECT. You are very busy, and still you make
time to kindly and patiently help me with my PhD project for G-SPECT image acquisition
and reconstruction. Thank you for all the help. I enjoyed working with you.

Chao, thank you for helping me when I was stuck at work. You are very smart. Even
though I knew this at the beginning of my PhD when I heard that you were from the top
1 university in China, I was more and more convinced of this in the following years while
working with you. You always gave me valuable insights for any questions. And I am still
impressed by your detailed scientific explanation when we were asked about the lunar
calendar.

Ruud, many thanks for helping me with experiments, radio sources, and organizing Chi-
nese hotpot dinner. You are always there, as a friend, if I need advice. You brought me a
lot of laughter as well. I have nice memories talking and working with you.

I would like to thankmany colleagues that I have worked or had lunch with in Delft. Many
thanks to colleagues from the biomedical imaging group at Delft: Pieter, Sasha, Jarno,
Monika, and the new colleagues Arif and Valerio. Many thanks to colleagues I had coffee
or lunch with in the RID building: Giácomo, Maarten, Stefan, Tianshui and Hongde.

Many thanks to colleagues from MIlabs who have helped me. Hiddo, Arian, Michiel and
Stephan were my office mates for the first office I stayed at the company. I was new to
things in the company at the beginning, and you were so nice and friendly to me. David,
Chris, Wouter, Yutaro, Jose, Henk Tjebbe, Rene, Harald and Peggy have also given me
support. Many thanks.

Many thanks tomy friends in Eindhoven, the city I lived in for six years. Lin, Yang, Xi, Lina,



Acknowledgements 125

Xiong, Xuan, Zizheng and QiaoQi, thank you for the countless dinners we had together,
and the many many poker games we played till mid-night. Especially, Lin and Yang have
cooked so many times for our gathering, almost weekly. Jiong, thanks for accepting me
working on the retina project in Eindhoven, and also for being my very good friend later.
Tao and Yue, thank you for the dinners andmany oyster picking outings we had together.
These were warm and nice memories in Eindhoven. This city was my second hometown
because you were there.

I also would like to thank many outstanding girls I met in Utrecht UMC: Yujie, Xiaoshan,
Yuxi, Bochao. Yujie, thanks for the many presents you sent to me and visiting me in Delft.
Xiaoshan and Yuxi, thank you for the gatheringswe had together. Bochao, you are a lovely
girl, and I believe you will be a great scientist.

Many thanks to friends in Delft for the dinners and barbecues we had together. Xinmin
and Qian, thank you for the many helping hands I received from you. The shrimps you
bought really made my fish tank a lively aquarium. Bei and Dan, I had lovely memories
about the dinners and barbecues we had together.

Also, thanks Marius, Marleen and Wiro who helped me with my master project at BIGR
group and led me to the field of medical imaging. Thanks Xiao Xuan Zi and Hua (Ma) for
being my friends all these years since my master study.

Lastly, thanks to my loving parents and two elder brothers for the many years of caring
for me. And thanks to my husband for the many years of friendship and accompanying.





CurriculumVitæ

Yuan Chen
18-April-1990 Born in Hunan, China.

May 2016 — Present Delft University of Technology, The Netherlands
Ph.D. candidate
Thesis: Image acquisition and attenuation map estimation for
multi-pinhole clinical SPECT

Nov. 2014 — Sep. 2015 Eindhoven University of Technology, The Netherlands
Research Assistant
Project 1: Automatic localization of prostate cancer with multi-
parametric ultrasound imaging
Project 2: Automatic vessel segmentation on retina images

Sep. 2012 — Aug. 2014 Delft University of Technology, Netherlands
M.Sc. in Applied Physics
Thesis: Automatic detection of enlarged perivascular spaces on
brain MRI

Sep. 2011 — Jun. 2012 Ulm University, Ulm, Germany
Exchange student in Communication Engineering

Sep. 2009 — Feb. 2010 Sun yat-sen University, Guangdong, China
Exchange student in Applied Physics

Sep. 2008 — Jul. 2012 Shandong University, Shandong, China
B.Eng. in Optical Information Science and Technology

127





List of Publications

Peer-Reviewed Journal Article
Yuan Chen, Marlies C. Goorden, Freek J. Beekman. Convolutional neural network based at-
tenuation correction for SPECT DaTscans with focused striatum imaging, Physics inMedicine
and Biology under revision.

Yuan Chen, Marlies C. Goorden, Freek J. Beekman. Automatic attenuation map estimation
from SPECT data only for brain perfusion scans using convolutional neural networks, Physics
in Medicine and Biology 66 (2022), 065006.

Yuan Chen, Brendan Vastenhouw, Marlies C. Goorden, Freek J. Beekman. Optimized sam-
pling for high resolution multi-pinhole brain SPECT with stationary detectors, Physics in
Medicine and Biology 65 (2020), 015002.

Yuan Chen, Brendan Vastenhouw, Chao Wu, Marlies C. Goorden, Freek J. Beekman. Opti-
mized image acquisition for dopamine transporter imaging with ultra-high resolution clinical

pinhole SPECT, Physics in Medicine and Biology 63 (2018), 225002.

Conference Abstract
Yuan Chen, Marlies C. Goorden, Freek J. Beekman. Automatic attenuation map estimation
from SPECT data only for DaTscan using a convolutional neural network, IEEE Nuclear Sci-
ence Symposium and Medical Imaging Conference 2020, Boston, USA.

Yuan Chen, Marlies C. Goorden, Freek J. Beekman. Attenuation map estimation from SPECT
data only using a convolutional neural network, IEEE Nuclear Science Symposium and Med-
ical Imaging Conference 2019, Manchester, UK.
Recipient of Best Paper Award.

Yuan Chen, Brendan Vastenhouw, Marlies C. Goorden, Freek J. Beekman. Optimized image
acquisition for high resolution full brain perfusion SPECT, IEEE Nuclear Science Symposium
and Medical Imaging Conference 2019, Manchester, UK.

Yuan Chen, Brendan Vastenhouw, Chao Wu, Marlies C. Goorden, Freek J. Beekman. Opti-
mized image acquisition for dopamine transporter imaging with ultra-high resolution clinical
multi-pinhole SPECT, World Molecular Imaging Conference 2018, Seattle, USA.

Yuan Chen, Brendan Vastenhouw, Chao Wu, Marlies C. Goorden, Freek J. Beekman. Opti-
mized image acquisition for dopamine transporter imaging with ultra-high resolution clinical

129

https://doi.org/10.1088/1361-6560/abe557
https://doi.org/10.1088/1361-6560/abe557
https://doi.org/10.1088/1361-6560/ab5bc6
https://doi.org/10.1088/1361-6560/ab5bc6
https://doi.org/10.1088/1361-6560/aae76c


130 List of Publications

multi-pinhole SPECT, IEEE Nuclear Science Symposium and Medical Imaging Conference
2017, Atlanta, USA.



=0
=0
=0

Im
age

Acquisition
and

Attenuation
M
ap

Estim
ation

for
M
ulti-pinhole

C
linicalSPEC

T
Yuan

C
hen

Invitation
to the thesis defence of

Yuan Chen

Image Acquisition and
Attenuation Map Estimation
for Multi-pinhole Clinical

SPECT

July 13 2021 15:00

Senate Hall,
TU Delft Aula

Mekelweg 5, 2628 CC Delft


	Summary
	Samenvatting
	Introduction
	Optimized image acquisition for dopamine transporter imaging with ultra-high resolution clinical pinhole SPECT
	Optimized sampling for high resolution multi-pinhole brain SPECT with stationary detectors
	Automatic attenuation map estimation from SPECT data only for brain perfusion scans using convolutional neural networks
	Convolutional neural network based attenuation correction for SPECT DaTscans with focused striatum imaging
	Conclusion
	References
	Acknowledgements
	Curriculum Vitæ
	List of Publications

