ATTACHMENT for Exam Radiation protection expert on the level of coordinating expert

Nuclear Research and consultancy Group	NRG
Delft University of Technology	TUD
University of Groningen	RUG
Radboudumc	RUMC

exam date:

December 13th 2021

exam duration: 13.30 - 16.30 hours

Instructions:

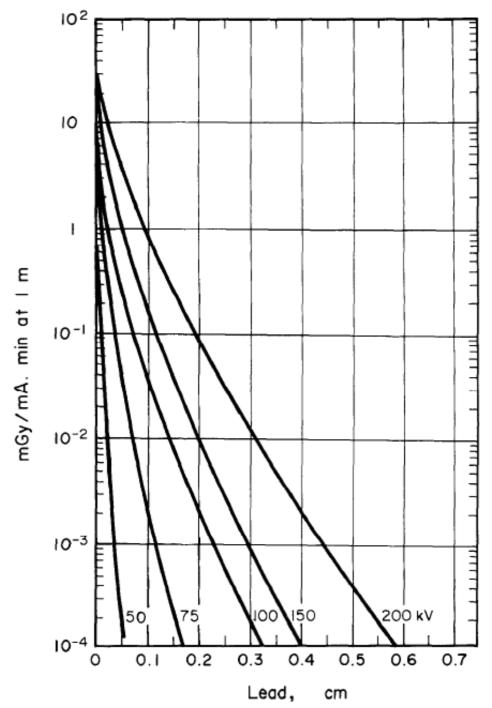
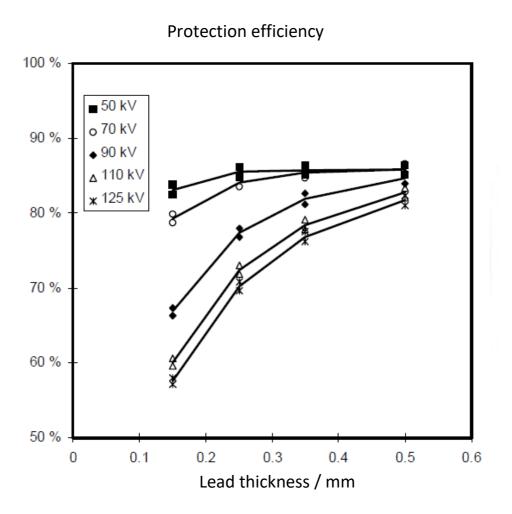

- □ If you use any data other than the data mentioned in this attachment, state the origin!
- □ This attachment consists of 8 consecutively numbered pages. Check this!

TABLE OF CONTENTS

Page

- Output of an X-ray tube and transmission of a wide X-ray beam through lead
- 4 The protection efficiency of lead aprons
- 5-6 Handboek Radionucliden, A.S. Keverling Buisman (3^{rd} edition 2015), pg. 160-161, $^{125}\mathrm{I}$ data
- 7 Percentage absorption beta particles in matter
- 8 Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), pg. 92, ¹⁸⁵Kr data.


Output of an X-ray tube and transmission of a wide X-ray beam through lead

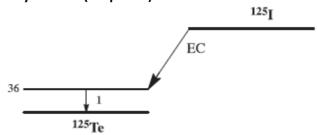
Transmission of a wide X-ray beam through lead, density 11 350 kg m $^{-3}$. Numerical values of intersections with the y-axis: 28.7 for 200 kV, 18.3 for 150 kV, 9.6 for 100 kV, 6.1 for 75 kV and 2.6 for 50 kV. From ICRP-33.

The protection efficiency of lead aprons

The protection efficiency represents the relative decrease of the effective dose when wearing a lead apron compared to not wearing a lead apron when exposed to scattering radiation. The protection efficiency depends on the thickness of the lead and the tube voltage at which the X-rays that caused the scattering radiation are generated.

Figure 3 Protection efficiency front lead aprons (80% AP, 20% LAT) and all-round lead aprons (60% AP, 30% LAT and 10% PA)

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), pg. 160-161, ¹²⁵I data



Half-life and decay constant

$$T_{1/2} = 59,39 \text{ d} = 5,13 \times 10^6 \text{ s}$$

 $\lambda = 1.35 \times 10^{-7} \text{ s}^{-1}$

Decay scheme (simplified)

Main emitted radiation

Straling	y (Bq·s)•1	E (keV)	Straling	y (Bq·s) ⁻¹	E (keV)
γ_1	0,067	35	L_{α}	0,061	4
се К ү	1 0,803	4	L_{β}	0,059	4
ce L y	0,105	31	KLL	0,132	23
K_{α}	1,140	27	KLX	0,060	26
K_{β}	0,255	31	LMM	1,010	3
			LXY	0,590	4

Source constants

Air kerma rate $k = 0,034 \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate $h = 0,034 \mu \text{Sv/h per MBq/m}^2$

Miscellaneous

Specific activity $A_{\rm sp} = 6.51\times10^{14}~{\rm Bq/g}$ Exemption levels $C_{\rm v} = 10^3~{\rm Bq/g}~{\rm en}~A_{\rm v} = 10^6~{\rm Bq}$ Skin contamination $H_{\rm huid} = 4\times10^{-12}~{\rm Sv/s}~{\rm per}~{\rm Bq/cm^2}$ Wound contamination / injection $e(50) = 1.5\times10^{-8}~{\rm Sv/Bq}$ $A_1 = 20~{\rm TBq}$ $A_2 = 3~{\rm TBq}$

Productie en toepassingen

Het radionuclide ¹²⁵I is een cyclotronproduct. Het wordt toegepast in de nucleaire geneeskunde, onder meer bij brachytherapie. Het vindt tevens toepassing als gamma-referentiebron.

EMBARGO December 13th 2021

N = 72 125 \mathbf{I}

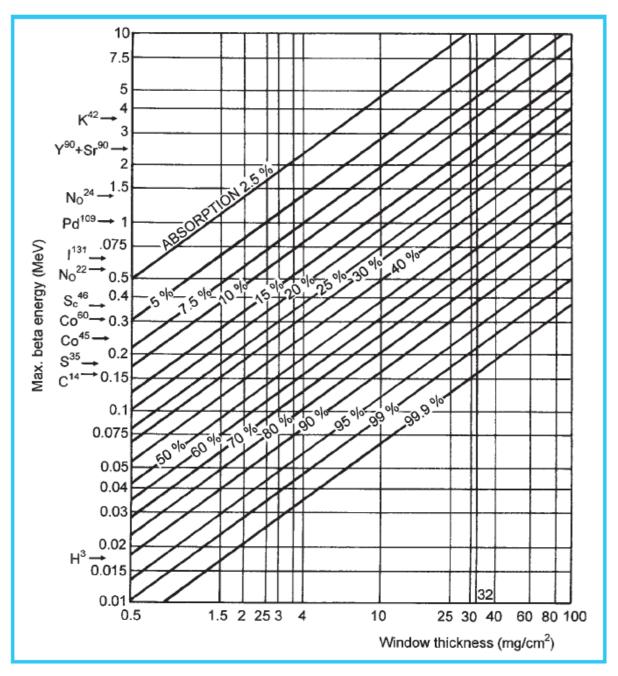
Metabolic Model

For radiation protection purposes, it is assumed that iodine distributes itself from the blood as follows: 70% direct excretion and 30% to the thyroid. Iodine in the thyroid remains there with a biological half-life of 80 days and from there it is homogeneously distributed throughout the body in the form of organic iodine. It remains in other organs/tissue with a half-life of 12 days. A tenth of the organic iodine is immediately excreted in faeces, while the rest (90%) is returned to the transfer compartment. In this way, the biological half-life in the thyroid is effectively equal to 90 days.

N.B. This model does not apply to patients; see page 14.

Ingestion and lung clearance classes

Ingestie		
Alle verbindingen	$f_1 = 1$	
Inhalatie		
Damp (I ₂)	$f_1 = 1$	Klasse SR-1
Damp (CH ₃ I)	$f_1 = 1$	Klasse SR-1 70% depositie
Overige verbindingen	$f_1 = 1$	Klasse F


Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

	Ingestie	Inhalatie	Inhalatie	Inhalatie	
	$f_1 = 1$	F	I_2	CH_3I	
e(50)(w)	1,5×10 ⁻⁸	7,3×10 ⁻⁹	1,4×10 ⁻⁸	1,1×10 ⁻⁸	Sv/Bq
$A_{\text{Re}}(\mathbf{w})$	$6,7 \times 10^{7}$	$1,4 \times 10^{8}$	$7,1\times10^{7}$	$9,1\times10^{7}$	$\mathbf{B}\mathbf{q}$
e(50)(b)	$1,5 \times 10^{-8}$	5,3×10 ⁻⁹	$1,4\times10^{-8}$	1,1×10 ⁻⁸	Sv/Bq
$A_{Re}(b)$	$6,7 \times 10^{7}$	$1,9 \times 10^{8}$	$7,1\times10^{7}$	$9,1\times10^{7}$	$\mathbf{B}\mathbf{q}$

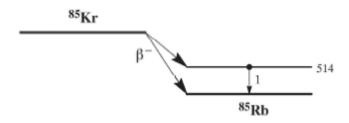
Data for thyroid count (after single intake)

Time (d)	Activity in Thyroid (Bq per Bq intake)				
		$f_1 = 1$	F	I_2	CH_3I
	0,25	6,1×10 ⁻²	5,3×10 ⁻²	1,1×10 ⁻¹	1,1×10 ⁻¹
	1	$2,6\times10^{-1}$	$1,3\times10^{-1}$	$2,4\times10^{-1}$	$1,9 \times 10^{-1}$
	2	$2,9 \times 10^{-1}$	$1,4\times10^{-1}$	$2,6\times10^{-1}$	$2,0\times10^{-1}$
	3	$2,8\times10^{-1}$	$1,4\times10^{-1}$	2,6×10 ⁻¹	$2,0\times10^{-1}$
	5	$2,7\times10^{-1}$	1,3×10 ⁻¹	2,5×10 ⁻¹	1,9×10 ⁻¹
	7	2.6×10^{-1}	$1,3\times10^{-1}$	2,4×10 ⁻¹	1.8×10^{-1}

Percentage absorption beta particles in matter

This figure is meant to show the effect of the thickness of a mica window (window thickness) on detection. This figure can be used for the measured layer thickness to determine the absorption of beta radiation in matter (mg/cm²).

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), pg. 92, ⁸⁵Kr data



Half-life and decay constant

$$T_{1/2} = 10,70 \text{ j} = 3,38 \times 10^8 \text{ s}$$

$$\lambda = 2.05 \times 10^{-9} \text{ s}^{-1}$$

Decay scheme (simplified)

Main emitted radiation

Straling	y (Bq·s) ⁻¹	E (keV)
β-	0,996	251 687
21	0,0043	514

Source constants

Air kerma rate $k = 3.0 \times 10^{-4} \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate $h = 3.7 \times 10^{-4} \mu \text{Sy/h per MBq/m}^2$

Miscellaneous

Specific activity $A_{\rm sp} = 1{,}45{\times}10^{13}\,{\rm Bq/g}$ $C_{\rm v} = 10^5\,{\rm Bq/g}$ $A_{\rm v} = 10^4\,{\rm Bq}$ $A_{\rm v} = 10^{10}\,{\rm Bq}\,({\rm gebruiks artikelen\ zoals}$ ${\rm lampen\ en\ starters})$ Skin contamination $H_{\rm huid} = 5{\times}10^{-10}\,{\rm Sv/s\ per\ Bq/cm^2}$ Injection: not applicable ${\rm Niet\ van\ toepassing}$ ${\rm Transport}$ $A_1 = 10\,{\rm TBq}$ $A_2 = 10\,{\rm TBq}$