# APPENDIX to Coordinated examination: radiation protection Expertise Level 3

| Nuclear Research and Consultancy Group Technische Universiteit Delft Boerhaave Nascholing/LUMC Rijksuniversiteit Groningen Radboud Universiteit/ UMC St.Radboud TU Eindhoven | NRG<br>TUD<br>LUMC<br>RUG<br>RU/UMC<br>TUE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| TU Eindhoven                                                                                                                                                                 | TUE                                        |

examination date: 14 December 2015 duration of examination: 13.30 - 16.30

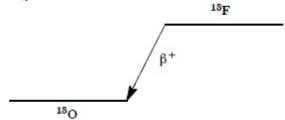
#### Instructions:

If you use data other than that provided in this appendix, please state the source!
 In the Dutch Handbook Radionuclides commas are used instead of decimal points.
 This appendix consists of 21 numbered pages. Please check this!

# **TABLE OF CONTENTS**

| Page  |                                                                                                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-4   | Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 26-27, data on <sup>18</sup> F                                                |
| 5     | Figure 1: Half-value layer of various shielding materials for narrow beam photon radiation (Bos et al., p. 266)                                                               |
| 6     | Figure 2: Build-up factors for an isotropic point source (Bos et al., p. 268)                                                                                                 |
| 7-8   | Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 74-75, data on <sup>60</sup> Co                                               |
| 9     | Annex 1.3 to the Radiation Protection Implementing Regulation (Economic Affairs): Activity values above which a sealed source meets the definition of a high-activity source. |
| 10    | ICRP 33, pg. 49, figure 18, Broad beam transmission of gamma rays from various radionuclides through concrete.                                                                |
| 11    | ICRP 33, pg. 47, figure 16 Broad beam transmission of gamma rays from various radionuclides through lead                                                                      |
| 12    | ICRP 33, pg. 56, figure 22: Scatter fraction of incident kerma rate on concrete wall                                                                                          |
| 13-14 | Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 228-9, data on <sup>210</sup> Po                                              |
| 15    | Figure 3: Efficiency calibration for the HPGe detector in the measuring conditions used (photo peak efficiency in counts per emitted photon)                                  |
| 16-17 | Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 232-233, data on <sup>232</sup> Th.                                           |
| 18-19 | Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 234-235, data on <sup>238</sup> U.                                            |
| 20-21 | Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 230-231, data on <sup>226</sup> Ra.                                           |

# Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 26-27, data on <sup>18</sup>F




#### Half-life and decay constant

$$T_{1/2} = 109,70 \text{ min} = 6,582 \times 10^3 \text{ s}$$

 $\lambda = 1,05 \times 10^{-4} \, \text{s}^{-1}$ 

### Decay scheme



#### Main emitted radiation

| Straling       | y (Bq·s)-1 | E  (keV)  |
|----------------|------------|-----------|
| β+             | 1,000      | 250   634 |
| $\gamma^{\pm}$ | 2,000      | 511       |

#### Source constants

Air kerma rate  $k = 0.135 \, \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate  $h = 0.166 \, \mu \text{Sv/h per MBq/m}^2$ 

#### Miscellaneous

Specific activity  $A_{\rm sp}=3.52\times 10^{18}\,{\rm Bq/g}$  Exemption levels  $C_{\rm v}=10^1\,{\rm Bq/g}$  en  $A_{\rm v}=10^6\,{\rm Bq}$  Skin contamination  $H_{\rm huid}=5\times 10^{-10}\,{\rm Sv/s}$  per  ${\rm Bq/cm^2}$  Wound contamination / injection  $e(50)=1.4\times 10^{-11}\,{\rm Sv/Bq}$  Transport  $A_1=1\,{\rm TBq}$   $A_2=0.6\,{\rm TBq}$ 

#### **Production and applications**

Het radionuclide <sup>18</sup>F is een cyclotronproduct. Het nuclide wordt toegepast in de nucleaire geneeskunde voor het maken van afbeeldingen met behulp van positronenemissie-tomografie (PET). N = 9

18<sub>F</sub>

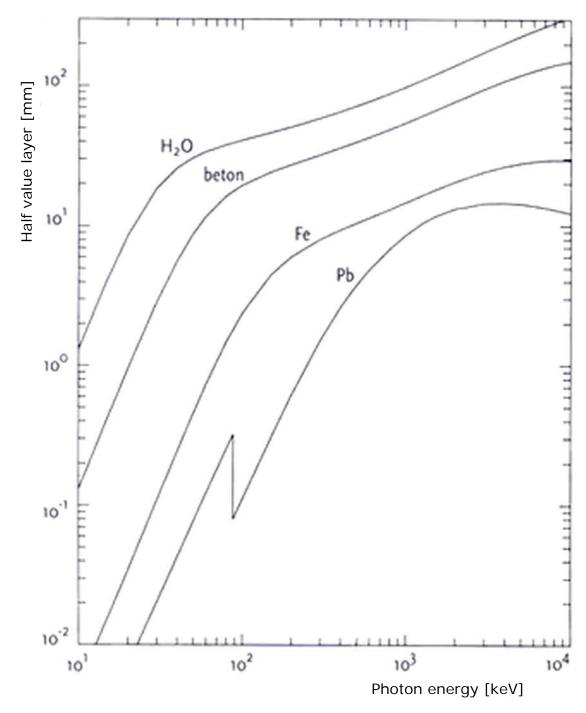
Embargo 14 December 2015

#### Metabolic model

Voor stralingshygiënische doeleinden wordt aangenomen dat fluor na opname in het bloed volledig in het bot wordt opgenomen.

Gezien de korte fysische halveringstijd van  $^{18}$ F (110 minuten) is de biologische halveringstijd van geen belang.

### Ingestion and lung clearance classes


| Ingestie          |           |          |
|-------------------|-----------|----------|
| Alle verbindingen | $f_1 = 1$ |          |
| Inhalatie         |           |          |
| Afhankelijk       | $f_1 = 1$ | Klasse S |
| van               | $f_1 = 1$ | Klasse M |
| bindingskation    | $f_1 = 1$ | Klasse F |

# Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

|             | Ingestie              | Inhalatie             | Inhalatie             | Inhalatie             |       |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-------|
|             | $f_1 = 1$             | F                     | M                     | S                     |       |
| e(50)(w)    | 4,9×10 <sup>-11</sup> | 5,4×10 <sup>-11</sup> | 8,9×10 <sup>-11</sup> | 9,3×10 <sup>-11</sup> | Sv/Bq |
| $A_{Re}(w)$ | $2,0\times10^{10}$    | $1,9 \times 10^{10}$  | $1,1\times10^{10}$    | $1,1\times10^{10}$    | Bq    |
| e(50)(b)    | 4,9×10 <sup>-11</sup> | 3,0×10 <sup>-11</sup> | 5,7×10 <sup>-11</sup> | 6,0×10 <sup>-11</sup> | Sv/Bq |
| $A_{Re}(b)$ | $2,0\times10^{10}$    | $3,3\times10^{10}$    | $1,8 \times 10^{10}$  | $1,7 \times 10^{10}$  | Bq    |

# Data for total body counting (after single intake)

| Time (d) | Total boo            | ly activity (        | Bq per Bq ir         | ntake)               |
|----------|----------------------|----------------------|----------------------|----------------------|
| 0,25     | 1,0×10 <sup>-1</sup> | 7,7×10 <sup>-2</sup> | $7,7 \times 10^{-2}$ | 7,7×10 <sup>-2</sup> |
| 1        | 1.1×10 <sup>-4</sup> | 6.8×10 <sup>-5</sup> | 6.8×10 <sup>-5</sup> | 6.8×10 <sup>-5</sup> |



**Figure 1**: Half-value layer of various shielding materials for narrow beam photon radiation

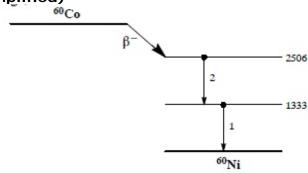
PLEASE NOTE: Dutch notation of numbers: comma is decimal point

| Material  | Photon ene | ergy |      |      | μd   |      |      |      |
|-----------|------------|------|------|------|------|------|------|------|
| -         | [MeV]      |      | 2    | 4    | 7    | 10   | 15   | 20   |
| Water     | 0,255      | 3,09 | 7,14 | 23,0 | 72,9 | 166  | 456  | 982  |
|           | 0,5        | 2,52 | 5,14 | 14,3 | 38,8 | 77,6 | 178  | 334  |
|           | 1,0        | 2,13 | 3,71 | 7,68 | 16,2 | 27,1 | 50,4 | 82,2 |
|           | 2,0        | 1,83 | 2,77 | 4,88 | 8,46 | 12,4 | 19,5 | 27,7 |
|           | 3,0        | 1,69 | 2,42 | 3,91 | 6,23 | 8,63 | 12,8 | 17,0 |
| Aluminium | 0,5        | 2,37 | 4,24 | 9,47 | 21,5 | 38,9 | 80,8 | 141  |
|           | 1,0        | 2,02 | 3,31 | 6,57 | 13,1 | 21,2 | 37,9 | 58,5 |
|           | 2,0        | 1,75 | 2,61 | 4,62 | 8,05 | 11,9 | 18,7 | 26,3 |
|           | 3,0        | 1,64 | 2,32 | 3,78 | 6,14 | 8,65 | 13,0 | 17,7 |
| Iron      | 0,5        | 1,98 | 3,09 | 5,98 | 11,7 | 19,2 | 35,4 | 55,6 |
|           | 1,0        | 1,87 | 2,89 | 5,39 | 10,2 | 16,2 | 28,3 | 42,7 |
|           | 2,0        | 1,76 | 2,43 | 4,13 | 7,25 | 10,9 | 17,6 | 25,1 |
|           | 3,0        | 1,55 | 2,15 | 3,51 | 5,85 | 8,51 | 13,5 | 19,1 |
| Lead      | 0,5        | 1,24 | 1,42 | 1,69 | 2,00 | 2,27 | 2,65 | 2,73 |
|           | 1,0        | 1,37 | 1,69 | 2,26 | 3,02 | 3,74 | 4,81 | 5,86 |
|           | 2,0        | 1,39 | 1,76 | 2,51 | 3,66 | 4,84 | 6,87 | 9,00 |
|           | 3,0        | 1,34 | 1,68 | 2,43 | 3,75 | 5,30 | 8,44 | 12,3 |

Figure 2: Build-up factors for an isotropic point source (Bos et al., p. 268)

PLEASE NOTE: Dutch notation of numbers: comma(,) is decimal point (.)

# Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 74-75, data on <sup>60</sup>Co




### Half-life and decay constant

$$T_{1/2} = 5,272 \text{ j} = 1,66 \times 10^8 \text{ s}$$

 $\lambda = 4,17 \times 10^{-9} \text{ s}^{-1}$ 

## Decay scheme (simplified)



#### Main emitted radiation

| Straling | y (Bq·s)-1 | E  (keV) |
|----------|------------|----------|
| β-       | 0,999      | 96 318   |
| 71       | 1,000      | 1333     |
| 72       | 0,999      | 1173     |

#### **Source constants**

Air kerma rate  $k = 0.31 \, \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate  $h = 0.36 \, \mu \text{Sv/h per MBq/m}^2$ 

#### Miscellaneous

Specific activity  $A_{\rm sp} = 4.18 \times 10^{13} \, {\rm Bq/g}$  Exemption levels  $C_{\rm v} = 10^0 = 1 \, {\rm Bq/g} \, !!$   $A_{\rm v} = 10^5 \, {\rm Bq}$  Skin contamination  $H_{\rm huid} = 3 \times 10^{-10} \, {\rm Sv/s \ per \ Bq/cm^2}$   $e(50) = 1.9 \times 10^{-8} \, {\rm Sv/Bq}$   $Transport \qquad A_1 = 0.4 \, {\rm TBq}$   $A_2 = 0.4 \, {\rm TBq}$ 

#### Production and applications

Het radionuclide <sup>60</sup>Co is een activeringsproduct. Het komt voor als bijproduct in reactoren ten gevolge van de activering van staal. Daarnaast wordt het op velerlei terreinen toegepast. Voorbeelden zijn: radiotherapie, gammagrafie, doorstraling, ijking, demonstratie.

N = 33

<sup>60</sup>Co

### Metabolic model

Voor stralingshygiënische doeleinden wordt aangenomen dat kobalt zich vanuit het bloed als volgt verdeelt: 50% directe uitscheiding, 5% naar lever en 45% naar de rest van het lichaam, met een biologische halveringstijd van 0,5 dag.

De biologische halveringstijden voor de organen zijn:

| Fractie | $T_{1/2}$ |
|---------|-----------|
| 0,6     | 6 d       |
| 0,2     | 60 d      |
| 0.2     | 800 d     |

#### Ingestion and lung clearance

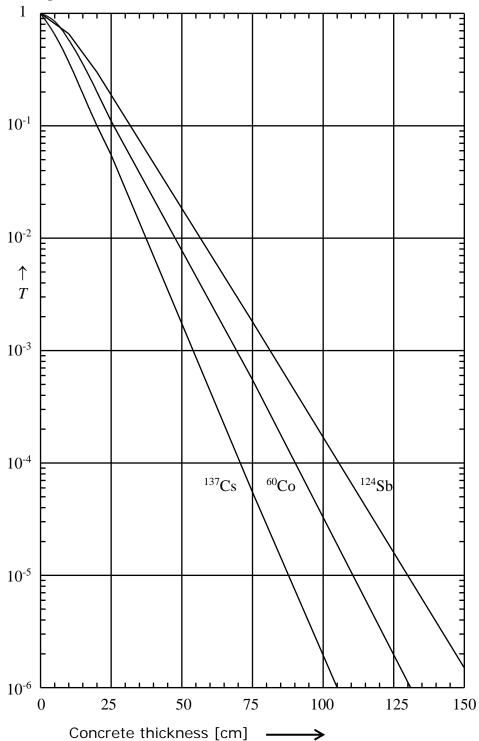
| Ingestie                              |              |          |
|---------------------------------------|--------------|----------|
| Oxide, hydroxide en anorganisch       | $f_1 = 0.05$ |          |
| Overige verbindingen                  | $f_1 = 0,1$  |          |
| Inhalatie                             |              |          |
| Oxide, hydroxide, halogenide, nitraat | $f_1 = 0.05$ | Klasse S |
| Overige                               | $f_1 = 0,1$  | Klasse M |

# Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

|             | Ingestie             | Ingestie             | Inhalatie            | Inhalatie            |       |
|-------------|----------------------|----------------------|----------------------|----------------------|-------|
|             | $f_1 = 0.05$         | $f_1 = 0,1$          | M                    | S                    |       |
| e(50)(w)    | 2,5×10 <sup>-9</sup> | 3,4×10 <sup>-9</sup> | 7,1×10 <sup>-9</sup> | 1,7×10 <sup>-8</sup> | Sv/Bq |
| $A_{Re}(w)$ | 4,0×10 <sup>8</sup>  | 2,9×10 <sup>8</sup>  | 1,4×10 <sup>8</sup>  | 5,9×10 <sup>7</sup>  | Bq    |
| e(50)(b)    | 2,5×10 <sup>-9</sup> | 3,4×10 <sup>-9</sup> | 9,6×10 <sup>-9</sup> | $2,9 \times 10^{-8}$ | Sv/Bq |
| $A_{Re}(b)$ | 4,0×10 <sup>8</sup>  | 2,9×10 <sup>8</sup>  | 1,0×10 <sup>8</sup>  | $3,4 \times 10^{7}$  | Bq    |

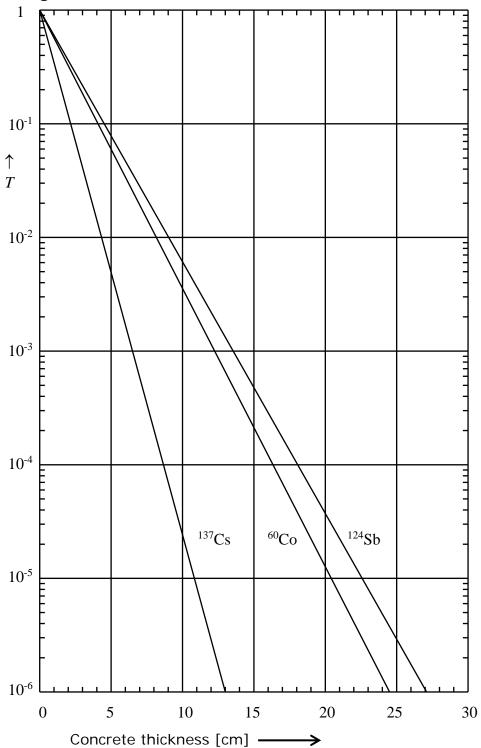
### Data for total body counting

| Time (d) | Total body           | activity (Bo         | q per Bq int         | ake)                 |
|----------|----------------------|----------------------|----------------------|----------------------|
| 0,25     | 9,9×10 <sup>-1</sup> | 9,9×10 <sup>-1</sup> | 7,4×10 <sup>-1</sup> | 7,4×10 <sup>-1</sup> |
| 1        | 7,1×10 <sup>-1</sup> | 7,1×10 <sup>-1</sup> | 4,9×10 <sup>-1</sup> | $4,9 \times 10^{-1}$ |
| 2        | 3,4×10 <sup>-1</sup> | 3,5×10 <sup>-1</sup> | 2,6×10 <sup>-1</sup> | 2,5×10 <sup>-1</sup> |
| 3        | $1,5 \times 10^{-1}$ | 1,6×10 <sup>-1</sup> | 1,5×10 <sup>-1</sup> | 1,4×10 <sup>-1</sup> |
| 5        | 3,7×10 <sup>-2</sup> | 5,6×10 <sup>-2</sup> | 9,1×10 <sup>-2</sup> | 8,0×10 <sup>-2</sup> |
| 7        | 2,0×10 <sup>-2</sup> | 3,7×10 <sup>-2</sup> | 7,8×10 <sup>-2</sup> | $6,9 \times 10^{-2}$ |


Annex 1.3 to the Radiation Protection Implementing Regulation (Economic Affairs): Activity values above which a sealed source meets the definition of a high-activity source.

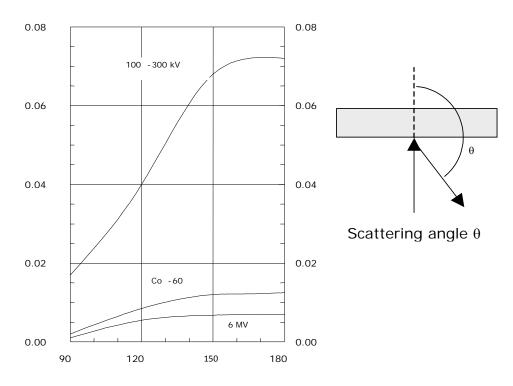
| Element (atomic number) | Radionuclide | Activity level (Bq)  |
|-------------------------|--------------|----------------------|
| Iron (26)               | Fe-55        | 4 x 10 <sup>11</sup> |
| Cobalt (27)             | Co-60        | 4 x 10 <sup>9</sup>  |
| Selenium (34)           | Se-75        | 3 x 10 <sup>10</sup> |
| Krypton (36)            | Kr-85        | 1 x 10 <sup>11</sup> |
| Strontium (38)          | Sr-90 a      | 3 x 10 <sup>9</sup>  |
| Palladium (46)          | Pd-103 a     | 4 x 10 <sup>11</sup> |
| Iodine (53)             | I-125        | 2 x 10 <sup>11</sup> |
| Caesium (55)            | Cs-137 a     | 2 x 10 <sup>10</sup> |
| Promethium (61)         | Pm-147       | 4 x 10 <sup>11</sup> |
| Gadolinium (64)         | Gd-153       | 1 x 10 <sup>11</sup> |
| Thulium (69)            | Tm-170       | 3 x 10 <sup>10</sup> |
| Iridium (77)            | Ir-192       | 1 x 10 <sup>10</sup> |
| Thallium (81)           | TI-204       | 1 x 10 <sup>11</sup> |
| Radium (88)             | Ra-226 b     | 2 x 10 <sup>9</sup>  |
| Plutonium (94)          | Pu-238 a     | 1 x 10 <sup>11</sup> |
| Americium (95)          | Am-241 b     | 1 x 10 <sup>11</sup> |
| Californium (98)        | Cf-252       | 5 x 10 <sup>8</sup>  |

a In the activity level the contribution of daughter nuclides with a half-life of less than ten days is included.


b including neutron sources with beryllium

# Broad beam transmission of gamma rays from various radionuclides through concrete




Broad beam transmission T of gamma rays from radionuclides through concrete  $\rho$  =2350  $kg\cdot m^{\text{-}3}$ 

# Broad beam transmission of gamma rays from various radionuclides through lead



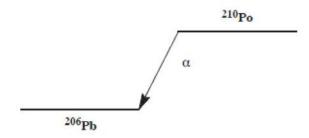
Broad beam transmission T of gamma rays from radionuclides through lead  $\rho$  =11350 kg·m $^{\text{-}3}$ 

# Scatter fraction of incident kerma rate At 1 meter in percent per 100 cm² irradiated concrete surface



Scattering angle  $\theta$  degrees

# Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 228-9, data on <sup>210</sup>Po




#### Half-life and decay constant

$$T_{1/2} = 138,38 \text{ d} = 1,20 \times 10^7 \text{ s}$$

 $\lambda = 5.80 \times 10^{-8} \, \text{s}^{-1}$ 

### Decay scheme (simplified)



#### Main emitted radiation

| Straling | y (Bq·s)-1 | E (keV) |
|----------|------------|---------|
| α        | 1,000      | 5297    |
| a recoil | 1,000      | 103     |

#### Miscellaneous

Specific activity
Exemption levels
Skin contamination
Wound contamination / injection
Transport

 $A_{\rm sp} = 1,66 \times 10^{14} \, {\rm Bq/g}$   $C_{\rm v} = 10^2 \, {\rm Bq/g} \, {\rm en} \, A_{\rm v} = 10^4 \, {\rm Bq}$   $H_{\rm huid} < 10^{-14} \, {\rm Sv/s} \, {\rm per} \, {\rm Bq/cm}^2$   $e(50) = 2,4 \times 10^{-6} \, {\rm Sv/Bq}$   $A_1 = 40 \, {\rm TBq}$  $A_2 = 0,02 \, {\rm TBq}$ 

#### **Production and applications**

Het radionuclide <sup>210</sup>Po is een natuurproduct. Het komt voor in de uraniumvervalreeks. De vluchtigheid van polonium maakt dat het nuclide vrijkomt bij processen waarbij stoffen met (sporen) uranium verhit worden.

Grotere hoeveelheden <sup>210</sup>Po kunnen worden geproduceerd door bestraling van bismuth met neutronen. In 2006 is bekend geworden dat dit nuclide onder spionnen als effectieve gifstof toepassing vindt. Een inname van enkele microgrammen is al dodelijk (hoge specifieke activiteit, hoge radiotoxiciteit, opname in essentiële organen).

N = 126

<sup>210</sup>Po

#### Metabolic model

For health physics purposes it is assumed that polonium is distributed from the blood as follows: 30% to the liver, 10% to the kidney, 5% to the milt, 10% to red bone marrow en the rest to the remaining organs/tissues. The biological half-life is set at 50 days.

### Ingestion and lung clearance

| Ingestie                   |              |          |
|----------------------------|--------------|----------|
| Alle verbindingen          | $f_1 = 0,1$  |          |
| Inhalatie                  |              |          |
| Als natuurlijke (rest)stof | $f_1 = 0.01$ | Klasse S |
| Hydroxide, oxide, nitraat  | $f_1 = 0,1$  | Klasse M |
| Overige verbindingen       | $f_1 = 0,1$  | Klasse F |

# Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

|                        | Ingestie             | Inhalatie            | Inhalatie            | Inhalatie            |       |
|------------------------|----------------------|----------------------|----------------------|----------------------|-------|
|                        | $f_1 = 0,1$          | F                    | M                    | S                    |       |
| e(50)(w)               | 2,4×10 <sup>-7</sup> | 7,1×10 <sup>-7</sup> | 2,2×10 <sup>-6</sup> | 3,2×10 <sup>-6</sup> | Sv/Bq |
| $A_{Re}(w)$            | 4,2×10 <sup>6</sup>  | 1,4×10 <sup>6</sup>  | 4,5×10 <sup>5</sup>  | 3,1×10 <sup>5</sup>  | Bq    |
| $e(50)(b)$ $A_{Re}(b)$ | 2,4×10 <sup>-7</sup> | 6,0×10 <sup>-7</sup> | 3,0×10 <sup>-6</sup> | 4,3×10 <sup>-6</sup> | Sv/Bq |
|                        | 4,2×10 <sup>6</sup>  | 1,7×10 <sup>6</sup>  | 3,3×10 <sup>5</sup>  | 2,3×10 <sup>5</sup>  | Bq    |

# Data for urine analysis (after single intake)

| Time (d) | Urine concentration (Bq/day per Bq intake) |                      |                      |                      |  |  |
|----------|--------------------------------------------|----------------------|----------------------|----------------------|--|--|
| 1        | 1,9×10 <sup>-4</sup>                       | 7,8×10 <sup>-4</sup> | 1,5×10 <sup>-4</sup> | 8,3×10 <sup>-6</sup> |  |  |
| 2        | 4,3×10 <sup>-4</sup>                       | 1,3×10 <sup>-3</sup> | $2,9 \times 10^{-4}$ | 1,9×10 <sup>-5</sup> |  |  |
| 3        | 4,4×10 <sup>-4</sup>                       | 1,3×10 <sup>-3</sup> | 3,0×10 <sup>-4</sup> | 2,0×10 <sup>-5</sup> |  |  |
| 5        | 4,3×10 <sup>-4</sup>                       | 1,3×10-3             | $2,9 \times 10^{-4}$ | 1,9×10-5             |  |  |
| 7        | 4.1×10°4                                   | 1 2 10-3             | 2010-4               | 1 0 10-5             |  |  |

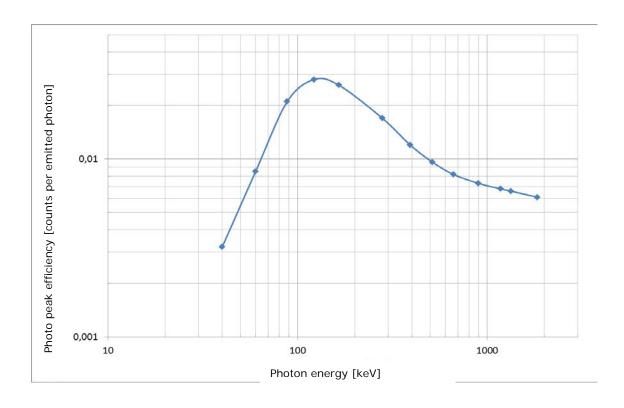
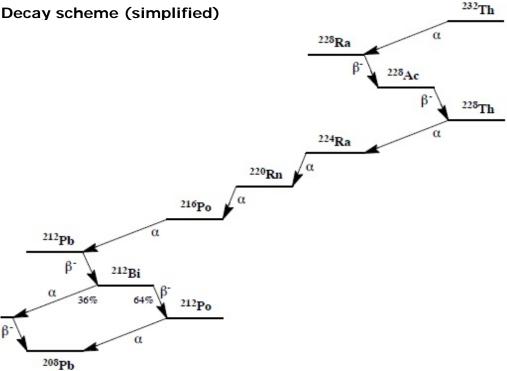



Figure 3: Efficiency calibration for the HPGe detector in the measuring conditions used (photo peak efficiency in counts per emitted photon)

PLEASE NOTE: comma indicates decimal point!


# Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 232-233, data on <sup>232</sup>Th



### Half-life and decay constant

$$T_{1/2} = 1,405 \times 10^{10} \text{ j} = 4,43 \times 10^{17} \text{ s}$$

$$\lambda = 1,56 \times 10^{-18} \text{ s}^{-1}$$



# Source constants (including daughter nuclides)

Air kerma rate  $k = 0.41 \, \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate  $h = 0.36 \,\mu \text{Sv/h per MBq/m}^2$ 

### Miscellaneous

Specific activity  $A_{sp} = 4,06 \times 10^3 \text{ Bq/g}$ **Exemption levels** 

 $C_{\rm v} = 10^1 \, {\rm Bq/g} \, {\rm en} \, A_{\rm v} = 10^4 \, {\rm Bq}$ In equilibrium with all daughters  $C_v = 10^0 = 1 \, \mathrm{Bq/g} \, \mathrm{en} \, A_v = 10^3 \, \mathrm{Bq}$ 

Skin contamination  $H_{\text{huid}} = 1,5 \times 10^{-9} \text{ Sv/s per Bq/cm}^2$ 

Wound contamination / injection  $e(50) = 2,6 \times 10^{-3} \text{ Sv/Bq (incl. dochters)}$ 

Transport  $A_1$  = onbeperkt = onbeperkt  $A_2$ 

N = 142

<sup>232</sup>Th

#### **Production and applications**

Het radionuclide <sup>232</sup>Th is een natuurproduct. Het komt voor in ertsen. Het wordt gerekend tot de splijtstoffen, omdat het door neutronenvangst in het splijtbare U-233 wordt omgezet. Vanwege zijn grote lichtopbrengst bij verhitting, gekoppeld aan een hoog smeltpunt, vindt thorium toepassing als gaskousje.

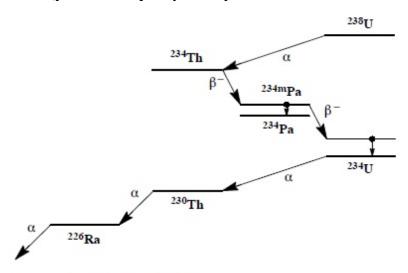
### Half value life and most important emitted radiation

| Radionuclide            | $T_{1/2}$              | $E_{\alpha}$ (keV) | $E_{eta, gem}$ (keV) | $E_{\beta, max}$ (keV) | $E_{\gamma}$ (keV) |
|-------------------------|------------------------|--------------------|----------------------|------------------------|--------------------|
| <sup>232</sup> Th       | 1,4×10 <sup>10</sup> j | 4010; 3            | 952                  |                        |                    |
| 228Ra                   | 5,75 j                 |                    | 10                   | 39                     |                    |
| 228Ac                   | 6,13 h                 |                    | 386                  | 1168                   | 338                |
|                         |                        |                    | 611                  | 1741                   | 911                |
|                         |                        |                    | 748                  | 2079                   | 969                |
| <sup>228</sup> Th       | 1,91 j                 | 5423; 5            | 340                  |                        | 84                 |
| 224Ra                   | 3,64 d                 | 5686               |                      |                        | 241                |
| 220Rn                   | 55,6 s                 | 6288               |                      |                        |                    |
| <sup>216</sup> Po       | 0,15 s                 | 6779               |                      |                        |                    |
| <sup>212</sup> Pb       | 10,64 h                |                    | 94                   | 334                    | 239                |
|                         |                        |                    | 173                  | 573                    |                    |
| <sup>212</sup> Bi       | 60,6 min               | 6051               | 832                  | 2246                   | 727                |
| <sup>212</sup> Po (64%) | 304 ns                 | 8785               |                      |                        |                    |
| <sup>208</sup> Tl (36%) | 3,07 min               |                    | 439                  | 1284                   | 2615               |
| ,                       | 1                      |                    | 532                  | 1517                   | 583                |
|                         |                        |                    | 647                  | 1794                   |                    |

Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b) for natural thorium in equilibrium with all daughters

|             | Ingestie                 | Inhalatie            |       |
|-------------|--------------------------|----------------------|-------|
|             | $f_1 = 2 \times 10^{-4}$ | S                    |       |
| e(50)(w)    | 9,0×10 <sup>-7</sup>     | 6,0×10 <sup>-5</sup> | Sv/Bq |
| $A_{Re}(w)$ | 1,1×10 <sup>6</sup>      | 1,7×10 <sup>4</sup>  | Bq    |
| e(50)(b)    | 9,0×10 <sup>-7</sup>     | 8,2×10 <sup>-5</sup> | Sv/Bq |
| $A_{Re}(b)$ | 1,1×10 <sup>6</sup>      | 1,2×10 <sup>4</sup>  | Bq    |

# Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 234-235, data on <sup>238</sup>U




### Half-life and decay constant

$$T_{1/2} = 4,468 \times 10^9 \text{ j} = 1,41 \times 10^{17} \text{ s}$$

$$\lambda = 4.92 \times 10^{-18} \text{ s}^{-1}$$

### Decay scheme (simplified)



### Source constants (including daughter nuclides)

Air kerma rate  $k = 0.28 \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate  $h = 0.26 \mu \text{Sy/h per MBq/m}^2$ 

#### Miscellaneous

Specific activity  $A_{\rm sp}=1,24\times 10^4\,{\rm Bq/g}$  Exemption levels  $C_{\rm v}=10^1\,{\rm Bq/g}$  en  $A_{\rm v}=10^4\,{\rm Bq}$  In equilibrium with all daughters  $C_{\rm v}=10^0=1\,{\rm Bq/g}$  en  $A_{\rm v}=10^3\,{\rm Bq}$  Skin contamination  $H_{\rm huid}=7\times 10^{-10}\,{\rm Sv/s}$  per  ${\rm Bq/cm^2}$ 

Wound contamination / injection  $e(50) = 4.1 \times 10^{-6} \text{ Sv/Bq (incl. dochters)}$ 

Transport  $A_1 = \text{onbeperkt}$  $A_2 = \text{onbeperkt}$ 

#### Production and applications

Het radionuclide <sup>238</sup>U is een natuurproduct. Van alle uraniumisotopen is <sup>238</sup>U de meest voorkomende: 99,3%. De overige natuurlijke U-isotopen zijn <sup>235</sup>U (0,72 massaprocent) en <sup>234</sup>U (0,0055 massaprocent).

238<sub>U</sub>

N = 146

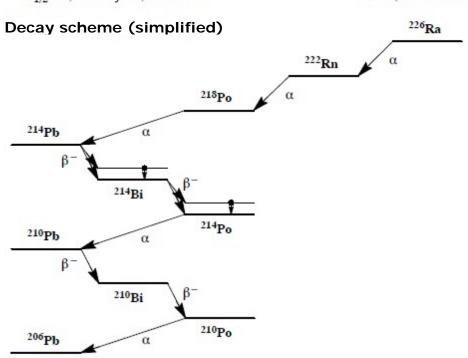
### Half value life and most important emitted radiation

| Radionuclide      | $T_{1/2}$            | $E_{\alpha}$ (keV) | $E_{\beta,gem}$ (keV) | $E_{\beta, max}$ (keV) | $E_{\gamma}$ (keV) |
|-------------------|----------------------|--------------------|-----------------------|------------------------|--------------------|
| 238U              | 4,47×109 j           | 4198               |                       |                        |                    |
| <sup>234</sup> Th | 24,10 d              |                    | 51<br>25              | 186<br>96              | 93                 |
| 234mPa            | 1,17 min             |                    | 825                   | 2281                   | 1001; 767          |
| 234U              | $2,45\times10^{5}$ j | 4773; 4            | 721                   |                        |                    |
| <sup>230</sup> Th | $7,7\times10^4$ j    | 4688; 4            | 621                   |                        |                    |
| <sup>226</sup> Ra | 1600 j               | 4784               |                       |                        |                    |

More: See <sup>226</sup>Ra

# Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

|                     | Ingestie<br>U-nat    | Ingestie<br>238U+    | Inhalatie<br>U-nat   | Inhalatie<br><sup>238</sup> U+ |                 |
|---------------------|----------------------|----------------------|----------------------|--------------------------------|-----------------|
| e(50)(w)            | 1,6×10 <sup>-6</sup> | 4,0×10 <sup>-7</sup> | 4,2×10 <sup>-5</sup> | 2,6×10 <sup>-5</sup>           | Sv/Bq           |
| A <sub>Re</sub> (w) | 6,3×10 <sup>5</sup>  | 2,5×10 <sup>6</sup>  | 2,4×10 <sup>4</sup>  | 3,8×10 <sup>4</sup>            | Bq              |
| e(50)(b)            | 1,6×10 <sup>-6</sup> | 4,0×10 <sup>-7</sup> | 5,7×10 <sup>-5</sup> | 3,7×10 <sup>-5</sup>           | Sv/Bq           |
| $A_{Re}(b)$         | 6,3×10 <sup>5</sup>  | 2,5×10 <sup>6</sup>  | 1,8×10 <sup>4</sup>  | 2,7×10 <sup>4</sup>            | Bq              |
| - U-nat             |                      | anium with al        |                      | n radiologica                  | al equilibrium, |


-  $^{238}\mathrm{U+}$   $\,$  Uranium-238 with short lived daughters ( $^{234}\mathrm{Th}$  and  $^{234}\mathrm{Pa})$  plus  $^{235}\mathrm{U}$  and  $^{234}\mathrm{U}$ 

# Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 230-231, data on <sup>226</sup>Ra

226Ra (+ dochters) Z = 88

### Half-life and decay constant

 $T_{1/2} = 1,60 \times 10^3 \text{ j} = 5,05 \times 10^{10} \text{ s}$   $\lambda = 1,37 \times 10^{-11} \text{ s}^{-1}$ 



#### Source constants (including daughter nuclides)

Air kerma rate  $k = 0.28 \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate  $h = 0.26 \mu \text{Sv/h per MBq/m}^2$ 

### Miscellaneous (including daughter nuclides)

Specific activity (only  $^{226}$ Ra)  $A_{\rm sp}=3.7\times 10^{10}$  Bq/g (1 g Ra  $\equiv$  1 Ci !) Exemption levels  $C_{\rm v}=10^0=1$  Bq/g en  $A_{\rm v}=10^4$  Bq Skin contamination  $H_{\rm huid}=6\times 10^{-10}$  Sv/s per Bq/cm² Wound contamination / injection  $\epsilon(50)=4.3\times 10^{-6}$  Sv/Bq  $A_1=0.2$  TBq en  $A_2=0.003$  TBq

#### **Production and applications**

Het radionuclide <sup>226</sup>Ra is een natuurproduct. Het komt voor in de uraniumvervalreeks. Er is een reeks van toepassingen geweest, toen het nuclide de enige radioactieve stof was

<sup>226</sup>Ra

N = 138

met een aanzienlijke activiteit. Toepassingen waren: radiotherapie, lichtgevende verf, bliksemafleiders, medische kwakzalverij. Vanwege de hoge radiotoxiciteit is het langzamerhand verdrongen door minder toxische radionucliden.

### Half value life and most important emitted radiation

| Radionuclide        | $T_{1/2}$ | $E_{\alpha}$ (keV) | $E_{\beta,gem}$<br>(keV) | $E_{\beta, max}$<br>(keV) | $E_{\gamma}$ (keV) |
|---------------------|-----------|--------------------|--------------------------|---------------------------|--------------------|
| <sup>226</sup> Ra   | 1600 j    | 4784               |                          |                           |                    |
| <sup>222</sup> Rn   | 3,82 d    | 5490               |                          |                           |                    |
| 218Po               | 3,05 min  | 6003               |                          |                           |                    |
| <sup>214</sup> Pb   | 26,8 min  |                    | 207                      | 672                       | 352                |
|                     |           |                    | 227                      | 729                       | 295                |
| <sup>214</sup> Bi   | 19,9 min  |                    | 525                      | 1505                      | 609                |
|                     |           |                    | 539                      | 1540                      | 1120               |
|                     |           |                    | 1269                     | 3270                      | 1765               |
| <sup>214</sup> Po   | 0,164 ms  | 7687               |                          |                           |                    |
| <sup>210</sup> Pb * | 22,3 j    |                    | 4                        | 16                        | 46                 |
|                     | 5.07      |                    | 16                       | 63                        |                    |
| <sup>210</sup> Bi   | 5.01 d    |                    | 389                      | 1161                      |                    |
| <sup>210</sup> Po * | 138,4 d   | 5297               |                          |                           |                    |

Deze radionucliden zijn tevens apart opgenomen (zie aldaar).

#### Ingestion and lung clearance classes

Ingestie

Alle verbindingen  $f_1 = 0,2$ Inhalatie
Als natuurlijke (rest)stof  $f_1 = 0,01$  Klasse S
Overige verbindingen  $f_1 = 0,2$  Klasse M

# Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

|                     | Ingestie             | Inhalatie            | Inhalatie            | Inhalatie            |       |
|---------------------|----------------------|----------------------|----------------------|----------------------|-------|
|                     | $f_1 = 0,2$          | M*                   | S*                   | S**                  |       |
| e(50)(w)            | 2,8×10 <sup>-7</sup> | 2,2×10 <sup>-6</sup> | 7,9×10 <sup>-6</sup> | 4,0×10 <sup>-5</sup> | Sv/Bq |
| $A_{Re}(w)$         | $3,6 \times 10^{6}$  | 4,5×10 <sup>5</sup>  | $1,3\times10^{5}$    | $2,5\times10^{4}$    | Bq    |
| e(50)(b)            | 2,8×10 <sup>-7</sup> | 3,5×10 <sup>-6</sup> | 9,5×10 <sup>-6</sup> | 5,0×10 <sup>-5</sup> | Sv/Bq |
| A <sub>Re</sub> (b) | $3,6\times10^{6}$    | $2,9 \times 10^{5}$  | $1,1\times10^{5}$    | $2,0\times10^{4}$    | Bq    |

 <sup>\*</sup> aangenomen dat dochter <sup>222</sup>Rn grotendeels ontsnapt uit het ingeademde deeltje

<sup>\*\*</sup> aangenomen dat het <sup>222</sup>Rn niet ontsnapt uit het ingeademde deeltje en met alle dochters in radiologisch evenwicht