APPENDIX for the Examination Co-ordinating Radiation Protection Expert

Nuclear Research and Consultancy Group

Delft University of Technology

Boerhaave CME/LUMC

University of Groningen

Radboudumc

Eindhoven University of Technology

NRG

TU Delft

BN/LUMC

RNG

RUG

RUMC

TU/e

Examination date: 12 December 2016 Duration of examination: 13:30 - 16:30

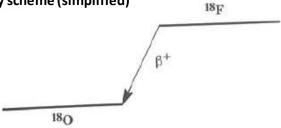
Instructions:

- □ If you use any data other than the data provided in this appendix, please state the source!
- □ This appendix consists of 14 numbered pages. Please check whether it is complete!

TABLE OF CONTENTS

Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition, 2007), pp. 26-27, ¹⁸ F data
Figure 2: Half-value layer of different shielding materials for narrow-beam photon radiation
Table 1: Broadbeam transmission factors at 511 keV (AAPM Task Group 108)
Table 2: Build-up factors for an isotropic point source
Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition, 2007), pp. 42-43, 40 K data
Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition, 2007), pp. 164-165, 131 data
Table 3: Tissue weighting factors (derived from ICRP-60)
Figure 3: Kerma rate free in air of X-radiation through lead
Figure 4: Scattering fraction of kerma free in air

Handboek Radionucliden, [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition 2007), pp. 26-27, ¹⁸F data.



Half-life and decay constant

$$T_{1/2} = 109,70 \text{ min} = 6,582 \times 10^3 \text{ s}$$

 $\lambda = 1,05 \times 10^{-4} \text{ s}^{-1}$

Decay scheme (simplified)

Main emitted radiation

Straling	y (Bq·s)*I	E (keV)
β+	1,000	250 634
ν±	2,000	511

Source constants

Air kerma rate Ambient dose equivalent rate $k = 0.135 \mu \text{Gy/h per MBq/m}^2$ $h = 0.166 \mu \text{Sv/h per MBq/m}^2$

Miscellaneous

Specific activity
Exemption levels
Skin contamination
Wound contamination / injection
Transport

 $A_{\text{sp}} = 3,52 \times 10^{18} \text{ Bq/g}$ $C_{\text{v}} = 10^{1} \text{ Bq/g} \text{ en } A_{\text{v}} = 10^{6} \text{ Bq}$ $H_{\text{huid}} = 5 \times 10^{-10} \text{ Sv/s per Bq/cm}^{2}$ $e(50) = 1,4 \times 10^{-11} \text{ Sv/Bq}$ $A_{1} = 1 \text{ TBq}$ $A_{2} = 0,6 \text{ TBq}$

Production and applications

Het radionuclide ¹⁸F is een cyclotronproduct. Het nuclide wordt toegepast in de nucleaire geneeskunde voor het maken van afbeeldingen met behulp van positronenemissie-tomografie (PET).

26

Embargo 12 December 2016

N = 9

 ^{18}F

Metabolic model

Voor stralingshygiënische doeleinden wordt aangenomen dat fluor na opname in het bloed volledig in het bot wordt opgenomen.

Gezien de korte fysische halveringstijd van ¹⁸F (110 minuten) is de biologische halveringstijd van geen belang.

Ingestion and lung clearance classes

Ingestie		
Alle verbindingen	$f_1 = 1$	
Inhalatie	825 125	701 0
Afhankelijk	$f_1 = 1$	Klasse S
van	$f_1 = 1$	Klasse M
bindingskation	$f_1 = 1$	Klasse F

Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

	Ingestic $f_1 = 1$	Inhalatie F	Inhalatie M	Inhalatie S	
e(50)(w)	4,9×10 ⁻¹¹	$5,4\times10^{-11}$	$8,9 \times 10^{-11}$	9,3×10 ⁻¹¹	Sv/Bq
A _{Re} (w)	2,0×10 ¹⁰	$1,9\times10^{10}$	$1,1 \times 10^{10}$	1,1×10 ¹⁰	Bq
e(50)(b)	$4,9 \times 10^{-11}$	3,0×10 ⁻¹¹	5,7×10 ⁻¹¹	6,0×10 ⁻¹¹	Sv/Bq
A_{Re} (b)	$2,0 \times 10^{10}$	3,3×10 ¹⁰	1,8×10 ¹⁰	1,7×10 ¹⁰	Bq

Data for total body counting (after single intake)

Time (d)	Total body activity	(Bq per Bq intake	e)	
Tijd (d	Lichaamsa	ctiviteit (Bq pe	r Bq inname)	
0,2	5 1,0×10 ⁻¹	7,7×10 ⁻²	7,7×10 ⁻²	7,7×10 ⁻² 6.8×10 ⁻⁵
1	1,1×10 ⁻⁴	6,8×10 ⁻⁵	$6,8 \times 10^{-5}$	0'8×10.

Figure 2: Half-value layer of different shielding materials for narrow-beam photon radiation

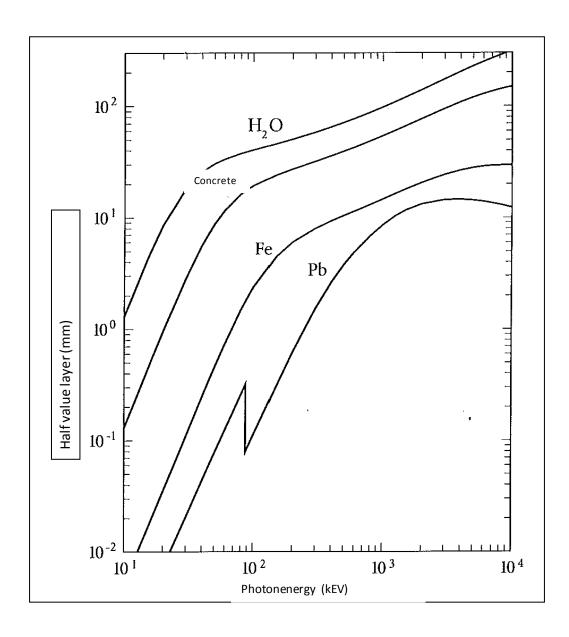


Table 1: Broadbeam transmission factors at 511 keV (AAPM Task Group 108)

Thickness ^a , ^b	Transmis	sion Factors	
Thickness	Lead	Concrete ^c	Iron
0	1.0000	1.0000	1.0000
1	0.8912	0.9583	0.7484
2	0.7873	0.9088	0.5325
3	0.6905	0.8519	0.3614
4	0.6021	0.7889	0.2353
5	0.5227	0.7218	0.1479
6	0.4522	0.6528	0.0905
7	0.3903	0.5842	0.0542
8	0.3362	0.5180	0.0319
9	0.2892	0.4558	0.0186
10	0.2485	0.3987	0.0107
12	0.1831	0.3008	0.0035
14	0.1347	0.2243	0.0011
16	0.0990	0.1662	0.0004
18	0.0728	0.1227	0.0001
20	0.0535	0.0904	
25	0.0247	0.0419	
30	0.0114	0.0194	
40	0.0024	0.0042	
50	0.0005	0.0009	

Broadbeam transmission factors at $511\ keV$ in lead, concrete, iron.

aThickness in mm for lead.

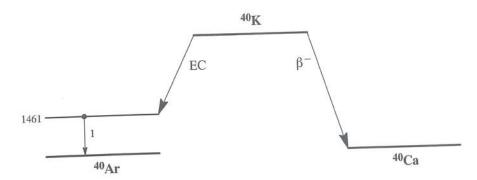
bThickness in cm for concrete and iron.

 $^{{}^{\}varsigma}\text{Concrete density} = 2.35~\text{g}~/~\text{cm}^3~.$

Table 2: Build-up factors for an isotropic point source

materiaal	Fotonenenergie E (MeV)				μd			
		1	2	4	7	10	15	20
water	0,255	3,09	7,14	23,0	72,9	166	456	982
	0,5	2,52	5,14	14,3	38,8	77,6	178	334
	1,0	2,13	3,71	7,68	16,2	27,1	50,4	82,2
	2,0	1,83	2,77	4,88	8,46	12,4	19,5	27,7
	3,0	1,69	2,42	3,91	6,23	8,63	12,8	17,0
aluminium	0,5	2,37	4,24	9,47	21,5	38,9	80,8	141
	1,0	2,02	3,31	6,57	13,1	21,2	37,9	58,5
	2,0	1,75	2,61	4,62	8,05	11,9	18,7	26,3
	3,0	1,64	2,32	3,78	6,14	8,65	13,0	17,7
ijzer	0,5	1,98	3,09	5,98	11,7	19,2	35,4	55,6
	1,0	1,87	2,89	5,39	10,2	16,2	28,3	42,7
	2,0	1,76	2,43	4,13	7,25	10,9	17,6	25,1
	3,0	1,55	2,15	3,51	5,85	8,51	13,5	19,1
lood	0,5	1,24	1,42	1,69	2,00	2,27	2,65	2,73
	1,0	1,37	1,69	2,26	3,02	3,74	4,81	5,86
	2,0	1,39	1,76	2,51	3,66	4,84	6,87	9,00
	3,0	1,34	1,68	2,43	3,75	5,30	8,44	12,3

Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition, 2007), pp. 42-43, ⁴⁰K data



Half-life and decay constant

$$T_{1/2} = 1,277 \times 10^9 \text{ j} = 4,03 \times 10^{16} \text{ s}$$

 $\lambda = 1,72 \times 10^{-17} \text{ s}^{-1}$

Decay scheme (simplified)

,Main emitted radiation

Straling	y (Bq·s) ⁻¹	E (keV)
β-	0,893	585 1312
γ1	0,107	1461
KII.	0.065	3

Source constants

Air kerma rate $k=0.018~\mu{\rm Gy/h~per~MBq/m^2}$ Ambient dose equivalent rate $h=0.021~\mu{\rm Sv/h~per~MBq/m^2}$

Miscellaneous

Specific activity $A_{\rm sp} = 2,59\times10^5~{\rm Bq/g}$ Exemption levels $C_{\rm v} = 10^2~{\rm Bq/g}~{\rm en}~A_{\rm v} = 10^6~{\rm Bq}$ Skin contamination $H_{\rm huid} = 5\times10^{-10}~{\rm Sv/s}~{\rm per}~{\rm Bq/cm^2}$ Wound contamination / injection $e(50) = 5,1\times10^{-9}~{\rm Sv/Bq}$ $A_1 = 0,9~{\rm TBq}$ $A_2 = 0,9~{\rm TBq}$

Production and applications

Kalium-40 is een primordiaal radionuclide, dat wil zeggen het is sinds de nucleogenese (het moment van ontstaan van de zwaardere nucliden) nog niet vervallen. Het komt voor

42

N = 21

 ^{40}K

Embargo 12 December 2016

in het menselijk lichaam, via ingestie. De ⁴⁰K-activiteit in de referentiemens bedraagt 4000 Bq. Natuurlijk kalium heeft een ⁴⁰K-gehalte van 0,0118% (at), hetgeen leidt tot een specifieke activiteit van kalium van 30 Bq/g. Het nuclide wordt veel gebruikt als ijkbron, aangezien de activiteit door weging kan worden gevonden.

Metabolic model

Voor stralingshygiënische doeleinden wordt aangenomen dat kalium zich vanuit het bloed homogeen over alle organen/weefsels verdeelt.

De biologische halveringstijd voor deze organen/weefsels wordt gesteld op 30 dagen.

Ingestion and lung clearance classes

Ingestie

Alle verbindingen

 $f_1 = 1$

Inhalatie

Alle verbindingen

 $f_1 = 1$

Klasse F

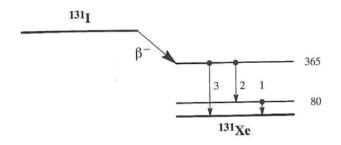
Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

	Ingestie	Inhalatie	
	$f_1 = 1$	F	
e(50)(w)	$6,2\times10^{-9}$	$3,0\times10^{-9}$	Sv/Bq
$A_{Re}(w)$	$1,6\times10^{8}$	$3,3\times10^{8}$	Bq
e(50)(b)	$6,2\times10^{-9}$	$2,1\times10^{-9}$	Sv/Bq
	1.6×10^{8}	$4,8\times10^{8}$	Bq

Data for total body counting (after single intake)

Time (d)	Total body activity (Bq p	per Bq intake)
0,25	9,9×10 ⁻¹	$7,4\times10^{-1}$
1	9.8×10^{-1}	$6,0\times10^{-1}$
2	$9,6\times10^{-1}$	$5,1\times10^{-1}$
3	9,3×10 ⁻¹	$4,7\times10^{-1}$
5	8,9×10 ⁻¹	$4,4\times10^{-1}$
7	8.5×10^{-1}	4.2×10^{-1}

Handboek Radionucliden [Radionuclides Handbook], A.S. Keverling Buisman (2nd edition, 2007), pp. 164-165, ¹³¹I data



Halveringstijd en vervalconstante

$$T_{1/2}$$
 = 8,021 d = 6,93×10⁵ s

 $\lambda = 1,00 \times 10^{-6} \text{ s}^{-1}$

Vervalschema (vereenvoudigd)

Belangrijkste uitgezonden straling

y (Bq·s)⁻¹	E (keV)
0,894	192 606
0,026	80
0,036	46
0,061	284
0,812	365
	0,894 0,026 0,036 0,061

Bronconstanten

Kermatempo in lucht	$k = 0.052 \mu \text{Gy/h per MBq/m}^2$
Omgevingsdosisequivalenttempo	$h = 0.066 \mu \text{Sv/h per MBq/m}^2$

Diversen

Specifieke activiteit	$A_{\rm sp} = 4,60 \times 10^{15} {\rm Bq/g}$
Vrijstellingsgrenzen	$C_{\rm v}$ = 10 ² Bq/g en $A_{\rm v}$ = 10 ⁶ Bq
Huidbesmetting	$H_{\text{huid}} = 4 \times 10^{-10} \text{ Sv/s per Bq/cm}^2$
Wondbesmetting; Injectie	$e(50) = 2.2 \times 10^{-8} \text{ Sv/Bq}$
Vervoer	$A_1 = 3$ TBq
	$A_2 = 0.7 \text{ TBq}$

Productie en toepassingen

Het radionuclide 131 I is een belangrijk splijtingsproduct. Het wordt veelvuldig toegepast in de diagnostische en therapeutische nucleaire geneeskunde.

Embargo 12 December 2016

N = 78

Metabolic model

lodine in the blood: 70% direct excretion, 30% to the thyroid. Thyroidal iodine has a half-life of 80 days from the thyroid it spreads to other organs. Half-life in the other organs is 12 days. 1/10 of the organic iodine is excreted immediately with the faeces, the other 90% returns to the transfer compartment. So eventually the biological half-life in the thyroid is 90 days.

Ingestion and lung clearance classes

Ingestie		
Alle verbindingen	$f_1 = 1$	
Inhalatie		
Damp (I ₂)	$f_1 = 1$	Klasse SR-1
Damp (CH ₃ I)	$f_1 = 1$	Klasse SR-1 70% depositie
Overige verbindingen	$f_1 = 1$	Klasse F

Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

		* * 4	T - 1 - 1 - 4 -	Inhalatie	
	Ingestie	Inhalatie	Inhalatie	imalatie	
	$f_1 = 1$	\mathbf{F}	I_2	CH_3I	
e(50)(w)	$2,2\times10^{-8}$	$1,1\times10^{-8}$	$2,0\times10^{-8}$	$1,5\times10^{-8}$	Sv/Bq
$A_{\rm Re}({ m w})$	$4,5 \times 10^7$	$9,1\times10^{7}$	$5,0\times10^{7}$	$6,7 \times 10^7$	Bq
e(50)(b)	$2,2\times10^{-8}$	$7,6\times10^{-9}$	$2,0\times10^{-8}$	$1,5 \times 10^{-8}$	Sv/Bq
$A_{Re}(b)$	$4,5 \times 10^7$	$1,3\times10^{8}$	$5,0\times10^{7}$	$6,7 \times 10^7$	$\mathbf{B}\mathbf{q}$

Data for thyroid count (after single intake)

me (d)	Activity in thy	roid (Bq per Bq	intake)	
	$f_1 = 1$	F	I_2	CH_3I
0,25	$6,0\times10^{-2}$	$5,2\times10^{-2}$	$1,1\times10^{-1}$	$1,0\times10^{-1}$
1	$2,4\times10^{-1}$	$1,2\times10^{-1}$	$2,3\times10^{-1}$	$1,8\times10^{-1}$
2	$2,5\times10^{-1}$	$1,2\times10^{-1}$	$2,2\times10^{-1}$	$1,7 \times 10^{-1}$
3	$2,3\times10^{-1}$	$1,1\times10^{-1}$	$2,0\times10^{-1}$	$1,6\times10^{-1}$
5	$1,9 \times 10^{-1}$	$9,0\times10^{-2}$	$1,7 \times 10^{-1}$	$1,3\times10^{-1}$
7	$1,6\times10^{-1}$	$7,5\times10^{-2}$	$1,4\times10^{-1}$	$1,1\times10^{-1}$

Table 3: Tissue weighting factors (derived from ICRP-60)

Tissue or Organ	Tissue weighting factor (W _T)
Gonads	0.20
Red bone marrow	0.12
Large intestine	0.12
Lungs	0.12
Stomach	0.12
Breast tissue	0.05
Bladder	0.05
Liver	0.05
Oesophagus	0.05
Thyroid gland	0.05
Skin	0.01
Bone surface	0.01
Other organs	0.05

 10^{2} 10 1 10⁻¹ K_l 10⁻² 10⁻³ 200 kV 75 100 150 50 10-4 0,1 0,2 0,3 0,4 0,5 0,6 lead thickness (cm) →

Figure 3: Kerma rate free in air of X-radiation through lead

Yield of a broad beam of X-rays through lead, expressed in kerma K_1 free in air: in mGy·m $^{-1}$ ·mIn $^{-1}$ as a function of high voltage in kV.

 $Constant\,high\,voltage; tungsten\,target; 2\,mm\,A1\,pre-filtering$

Intersection with the Yaxis, so kerma without shielding (mGy·m²·mA⁻¹·min⁻¹):

50 kV 2.6 75 kV 6.1 100 kV 9.6 150 kV 18.3 200 kV 28.7

0.24 % incident absorbed dose (kerma) rate scattered to $50\ \mathrm{cm}\ \mathrm{per}\ \mathrm{IOO}\ \mathrm{cm}^2$ irradiated area 45° 0.20 Lead Beam 0.16 Concrete 0.12 80.0 Water 0.04 0.1 10 100 Potential,

Figure 4: Scattering fraction of kerma in air

Variation with potential of the absorbed dose (kerma) rate measured in air due to X-rays scattered at 90° from various materials (ICRP 33, Figure 21)