9 Nuclear Research and consultancy Group
10 Delft University of Technology
11 Boerhaave CME/LUMC
12 University of Groningen
13 Radboudumc
14 Eindhoven University of Technology

SOLUTI ONS

Examination

 Co-ordinating Radiation Protection Expert| | |
| :--- | ---: |
| Nuclear Research and consultancy Group | NRG |
| Delft University of Technology | TU Delft |
| Boerhaave CME/LUMC | BN/LUMC |
| University of Groningen | RUG |
| Radboudumc | RUMC |
| Eindhoven University of Technology | TU/e |

Examination date: 11 December 2017

Problem 1 Radium Girls

Question 1.1

Estimate the ${ }^{226}$ Ra activity still present on the hands of this alarm clock. You can assume that the dose rate is solely caused by ${ }^{226} \mathrm{Ra}$ (including its daughters).
The geometry of the measurement is such that the point source approach may be applied.

$$
\begin{aligned}
\dot{\mathrm{H}}^{*} & =\frac{\mathrm{h} \cdot \mathrm{~A}}{\mathrm{r}^{2}} . \quad \text { Result: } \quad 0.4\left[\frac{\mu \mathrm{~Sv}}{\mathrm{~h}}\right]=\frac{0.26\left[\frac{\mu \mathrm{~Sv}}{\mathrm{~h}} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{MBq}}\right] \times \mathrm{A}[\mathrm{MBq}]}{0.05^{2}\left[\mathrm{~m}^{2}\right]} \\
\mathrm{A} & =\frac{0.4 \times 0.05^{2}}{0.26}=3,8 \cdot 10^{-3} \mathrm{MBq}=4 \mathrm{kBq}
\end{aligned}
$$

Question 1.2

Assume that Casie ingested 1/104th of the total activity each working week.
Calculate the committed effective dose ingested by Casie during one working week. Assume this was the only dose she ingested.
$E(50)=A \times e(50)$
$A_{\text {total }}=603.7 \mu \mathrm{Ci}$
Weekly dose: $603.7 \cdot 10^{-6}(\mathrm{Ci}): 104$ (weeks) $\times 37 \cdot 10^{9}(\mathrm{~Bq} / \mathrm{Ci})=214.8 \cdot 10^{3} \mathrm{~Bq}$
$\mathrm{E}(50)(\mathrm{Sv})=214.8 \cdot 10^{3}(\mathrm{~Bq}) \times 2.8 \cdot 10^{-7}(\mathrm{~Sv} / \mathrm{Bq})=0.060 \mathrm{~Sv}$

Question 1.3

Suppose that $603.7 \mu \mathrm{Ci}$ of ${ }^{226} \mathrm{Ra}$ is in equilibrium with all its daughters and dissolved in a tightly-sealed container holding 70 litres of water. Calculate the absorbed dose for this container during one year. Only the energy of the alpha radiation is required for this calculation.

Annual dose: $603.7 \mu \mathrm{Ci}=22.34 \mathrm{MBq}$
The reduction in activity due to decay of ${ }^{226} \mathrm{Ra}$ ($\mathrm{T}^{1 / 2}=1600$ years) does not have to be taken into account.
The total number of disintegrations for $22.34 \mathrm{MBq}{ }^{226} \mathrm{Ra}$ in 1 year $=$ $22.34 \cdot 10^{6}($ disintegrations $/ \mathrm{s}) \times 3600(\mathrm{~s} / \mathrm{h}) \times 24(\mathrm{~h} /$ day $) \times 365.25$ (days/year) $=$ $7.05 \cdot 10^{14}$ disintegrations/year.

The total a energy per disintegration $=$
$4.784+5.490+6.003+7.687+5.297 \mathrm{MeV}=29.26 \mathrm{MeV} /$ disintegrations

4 Question 1.4

9 The total number of disintegrations for $22.34 \mathrm{MBq}{ }^{226} \mathrm{Ra}$ in 1 year remains
$7.05 \cdot 10^{14}$ disintegrations/year $\times 29.26 \mathrm{MeV} /$ disintegration $=2.06 \cdot 10^{16} \mathrm{MeV}$
$2.06 \cdot 10^{16} \mathrm{MeV} \times 1.6 \cdot 10^{-13} \mathrm{~J} / \mathrm{MeV}: 70 \mathrm{~kg}=47.2 \mathrm{~J} / \mathrm{kg}=47.2 \mathrm{~Gy}$

Apply the calculation from Question 1.3a for a situation where the container with 70 litres of water is no longer tightly sealed and two thirds of the radon that is formed immediately escapes. unchanged at $7.05 \cdot 10^{14}$ disintegrations/year.

The total a energy per disintegration $=$
$4.784+1 / 3 \times(5.490+6.003+7.687+5.297) \mathrm{MeV}=4.784+8.159=$ $12.94 \mathrm{MeV} /$ disintegration
$7.05 \cdot 10^{14}$ disintegrations/year $\times 12.94 \mathrm{MeV} /$ disintegration $=9.12 \cdot 10^{15} \mathrm{MeV}$
$9.12 \cdot 10^{15} \mathrm{MeV} \times 1.6 \cdot 10^{-13} \mathrm{~J} / \mathrm{MeV}: 70 \mathrm{~kg}=20.9 \mathrm{~J} / \mathrm{kg}=20.9 \mathrm{~Gy}$

Scoring:

Problem 1	
Question	Points
1.1	3
1.2	4
1.3	5
1.4	$\mathbf{1 5}$
Total	

Problem 2. Liquid radioactive waste analysis

Question 2.1a

Why does only ${ }^{32} \mathrm{P}$ contribute in region $\mathrm{C}-\mathrm{B}$ (the energy region between 167 and 2000 keV)?
${ }^{32} \mathrm{P}$ is the only nuclide in the waste with a maximum β energy of more than 167 keV and so contributes to the spectrum in the region between 167 and 2000 keV (region C-B).

Question 2.1b

Calculate the efficiency ($\mathrm{cpm} / \mathrm{dpm}$) of ${ }^{32} \mathrm{P}$ in region C - B .
The activity can be calculated based on the count rate in region C, however you first need to know what the detection efficiency is in this energy region. The total efficiency in region C for ${ }^{32} \mathrm{P}=0.95 \mathrm{cpm} / \mathrm{dpm}$. The activity can be calculated based on the test of the pure ${ }^{32} \mathrm{P}$ sample.

The results of the pure ${ }^{32} \mathrm{P}$ sample can be used to calculate how much of the spectrum is measured in the region above 167 keV (region $\mathrm{C}-\mathrm{B}$).

	$\mathbf{R (C - B)}$ $\mathbf{C p m}$	$\boldsymbol{\varepsilon}(\mathbf{C}-\mathbf{B})$ $\mathbf{c p m} / \mathbf{d p m}$
${ }^{32} \mathbf{P}$	$11576-3524=8052$	$8052 / 12185=0.66$

Alternatively:

the efficiency of region $C-B$ is a fraction of the efficiency of C :

$$
\begin{gathered}
\varepsilon_{C-B}=\frac{R_{C-B}}{R_{C}} \times \varepsilon_{C}=\frac{11576(c p m)-3524(c p m)}{11576(c p m)} \times 0.95\left(\frac{c p m}{d p m}\right)=\frac{8052}{11576} \times 0.95\left(\frac{c p m}{d p m}\right) \\
=0.66\left(\frac{c p m}{d p m}\right)=0.66\left(\frac{c p s}{B q}\right)
\end{gathered}
$$

Question 2.2

Calculate the activity of ${ }^{32} \mathrm{P}$ in the 10 -litre barrel.
The count rate in region $\mathrm{C}-\mathrm{B}$ of the waste sample is:
$639540(\mathrm{cpm})-272400(\mathrm{cpm})=367140 \mathrm{cpm}$.
The ${ }^{32} \mathrm{P}$ activity in the waste sample is $367140(\mathrm{cpm}) / 0.66(\mathrm{cpm} / \mathrm{dpm})=$
$5.56 \cdot 10^{5}(\mathrm{dpm})=9.26 \mathrm{kBq}{ }^{32} \mathrm{P}$ in 10 ml .
The ${ }^{32} \mathrm{P}$ activity in the 10 -litre barrel filled to 90% is $9,000[\mathrm{ml}] / 10[\mathrm{ml}] \times 9.26$
$[\mathrm{kBq}]=8.33 \cdot 10^{6} \mathrm{~Bq}=8.3 \mathrm{MBq}^{32} \mathrm{P}$.
Alternatively:
$\mathrm{R}_{\mathrm{C}-\mathrm{B}}=6119 \mathrm{cps} ; \mathrm{A}_{\text {sample }}=\mathrm{R}_{\mathrm{c}-\mathrm{B}} / \varepsilon_{\text {с-в }}=6119(\mathrm{cps}) / 0.66(\mathrm{cps} / \mathrm{Bq})=9.26 \mathrm{kBq}$.

Question 2.3

Calculate the activity of ${ }^{35} \mathrm{~S}$ in the 10 -litre barrel.
${ }^{35} \mathrm{~S}$ is measured in region C , but the spectrum of ${ }^{32} \mathrm{P}$ is also measured in this region. First we calculate the contribution of ${ }^{32} \mathrm{P}$.

The efficiency of ${ }^{32} \mathrm{P}$ in region C is 0.95 [cpm/dpm]. The activity of ${ }^{32} \mathrm{P}$ in the waste sample is 556273 dpm . The count rate in region C caused by ${ }^{32} \mathrm{P}$ is then $0.95(\mathrm{cpm} / \mathrm{dpm}) \times 556273\left(\mathrm{dpm}{ }^{32} \mathrm{P}\right)=528459 \mathrm{cpm}$.

In region C, the waste sample produces $639540 \mathrm{cpm} ; 528459 \mathrm{cpm}$ of this is produced by ${ }^{32} \mathrm{P}$ and so $639540(\mathrm{cpm})-528459(\mathrm{cpm})=111081 \mathrm{cpm}$ is produced by ${ }^{35} \mathrm{~S}$.

The efficiency of ${ }^{35} \mathrm{~S}$ in region C is 0.90 [cpm/dpm].
The ${ }^{35} \mathrm{~S}$ activity in the waste sample is $111081(\mathrm{cpm}) / 0.90(\mathrm{cpm} / \mathrm{dpm})=123 \cdot 10^{3}$ $(\mathrm{dpm})=2.0 \cdot 10^{3} \mathrm{~Bq}^{35} \mathrm{~S}$.

The ${ }^{35} \mathrm{~S}$ activity in the 10 -litre barrel (90% full) is $9,000(\mathrm{ml}) / 10(\mathrm{ml}) \times 2.0 \cdot 10^{3}$ $(\mathrm{Bq})=1.9 \cdot 10^{6}(\mathrm{~Bq})=1.9 \mathrm{MBq}^{35} \mathrm{~S}$.

Question 2.4

Calculate the fraction of the secondary dose level for discharges to water caused by the discharge of the contents of the 10-litre barrel.
The maximum emission to water is
[maximum possible discharge per year/Reing]p-32 ${ }_{\text {P }}$ [maximum possible discharge per year/ $/$ eing $\left._{\text {ing }}\right]_{\mathrm{s}}=$
$\left[A_{\text {P-32 }} \times \mathrm{CR}_{\text {P-32 }} / \operatorname{Re}_{\mathrm{P}-32}\right]+\left[\mathrm{A}_{\mathrm{s}-35} \times \mathrm{CR}_{\mathrm{s}-35} / \mathrm{Re}_{\mathrm{s}-35}\right]=$
$\left[8.3 \cdot 10^{6} \mathrm{~Bq} \times 0.1 / 4.2 \cdot 10^{8}\right]+\left[1.9 \cdot 10^{6} \times 1 / 7.1 \cdot 10^{9}\right]=0.00224$ Re per discharge.
This is 10 discharges per year $=0.0224 \operatorname{Re}$
Secondary dose level = 100 Re
The fraction of the secondary dose level $=0.0224 / 100=0.00022$.

Question 2.5

Calculate the relative statistical inaccuracy in the calculation of the activity of ${ }^{32} \mathrm{P}$ based on 1 sigma.
We use (10.9) in Bos to calculate the sigma of region C and B based on the calibration measurement of ${ }^{32} \mathrm{P}$ (Figure 2):

1

$$
\begin{gathered}
\sigma_{R}=\frac{1}{t} \sigma_{N}=\frac{1}{t} \sqrt{N}=\sqrt{\frac{R}{t}} \\
\sigma_{R_{C}}=\sqrt{\frac{R_{C}}{t}}=\sqrt{\frac{11576(\mathrm{cpm})}{0.5(\mathrm{~m})}}=152 \mathrm{cpm} \\
\sigma_{R_{B}}=\sqrt{\frac{R_{B}}{t}}=\sqrt{\frac{3524(\mathrm{cpm})}{0.5(\mathrm{~m})}}=84 \mathrm{cpm}
\end{gathered}
$$

The sigma of the count rate of ${ }^{32} \mathrm{P}$ based on Bos (10.11) is:

$$
\sigma_{R_{32_{P}}}=\sqrt{{\sigma_{R_{C}}}^{2}+{\sigma_{R_{B}}}^{2}}=\sqrt{152^{2}(c p m)^{2}+84^{2}(c p m)^{2}}=\sqrt{30200}(\mathrm{cpm})=174 \mathrm{cpm}
$$

The sigma of the activity can be calculated using the efficiency of ${ }^{32} \mathrm{P}$:

$$
\sigma_{A_{32_{P}}}=\frac{\sigma_{R_{32_{P}}}}{\varepsilon_{32_{P}}}=\frac{174(\mathrm{cpm})}{0.66\left(\frac{c p m}{d p m}\right)}=263(\mathrm{dpm})=\frac{263(\mathrm{dpm})}{60\left(\frac{d p m}{B q}\right)}=4.4 \mathrm{~Bq}
$$

The relative inaccuracy is then:

$$
\sigma_{A_{32_{p}, \text { rel }}}=\frac{\sigma_{A_{32_{P}}}}{A_{32_{P}}}=\frac{4.4(B q)}{203(B q)}=0.0216=2.2 \%
$$

Alternatively:

$$
\begin{gathered}
\sigma_{R_{C}}=\sqrt{\frac{R_{C}}{t}}=\sqrt{\frac{193(c p s)}{30(s)}}=2.5 \mathrm{cps} \\
\sigma_{R_{B}}=\sqrt{\frac{R_{B}}{t}}=\sqrt{\frac{59(c p s)}{30(s)}}=1.4 \mathrm{cps}
\end{gathered}
$$

The sigma of the count rate of ${ }^{32} \mathrm{P}$ based on Bos (10.11) is:

$$
\sigma_{R_{32_{P}}}=\sqrt{\sigma_{R_{C}}^{2}+\sigma_{R_{B}}^{2}}=\sqrt{2.5^{2}(c p s)^{2}+1.4^{2}(c p s)^{2}}=\sqrt{8.4}(c p s)=2.9 \mathrm{cps}
$$

The sigma of the activity can be calculated using the efficiency of ${ }^{32} \mathrm{P}$:

$$
\sigma_{A_{32_{P}}}=\frac{\sigma_{R_{32_{P}}}}{\varepsilon_{32_{P}}}=\frac{2.9(c p s)}{0.66\left(\frac{c p s}{B q}\right)}=4.4 \mathrm{~Bq}
$$

Scoring:

Problem 2	
Question	Points
2.1 a	2
2.1 b	3
2.2	3
2.3	3
2.4	3
2.5	3
Total	17

Problem 3. Abou's travels

Question 3.1

Use a calculation to demonstrate that the effective dose received by Abou from a single scan in the luggage scanner is equivalent to a few $\mu \mathrm{Sv}$. You may disregard the shielding provided by the conveyor belt and the suitcase for this question.
Use the exposure at the level of the conveyor belt to calculate the effective dose.
Find the amount in appendix 1 at $150 \mathrm{kV}: \quad \mathrm{K}_{\mathrm{a}}=18.3 \mathrm{mGy}$ per mA min at 1 m

```
exposure =0.2(mA) \times 20\times10-3 s/60(s/min) = 6.7\times1\mp@subsup{0}{}{-5}\textrm{mA min}
distance }\quad=63.5\textrm{cm}=0.635\textrm{m
kerma = 18.3 (mGy per mA min ) }\times6.7\times1\mp@subsup{0}{}{-5}(\textrm{mA min})\times(
m/0.635 m)
= 3.0 x 10-3 mGy = 3.0 \muGy
```

Find the amount in appendix 2 at $100 \mathrm{kV}: \quad \mathrm{E}(\mathrm{AP}) / \mathrm{K}_{\mathrm{a}}=1.3 \mathrm{~Sv} / \mathrm{Gy}$

$$
\mu \mathrm{Sv} / \mathrm{scan} . \quad \mathrm{E}(\mathrm{AP})=3.0(\mu \mathrm{~Gy}) \times 1.3(\mathrm{~Sv} / \mathrm{Gy})=3.9
$$

Question 3.2

Calculate the average ambient dose equivalent rate (in $\mu \mathrm{Sv} / \mathrm{h}$) at 10 cm above the top of the luggage scanner (A, Figure 1). You may disregard the shielding provided by the conveyor belt, the suitcase and the wall of the scanner for this question.

Find the amount in appendix 2 at $100 \mathrm{kV}: \quad \mathrm{H}^{*}(10) / \mathrm{K}_{\mathrm{a}}=1.65 \mathrm{~Sv} / \mathrm{Gy}$

$$
\begin{aligned}
& \rightarrow \quad \mathrm{H}^{*}(10)=3.0(\mu \mathrm{~Gy}) \times 1.65(\mathrm{~Sv} \mathrm{~Gy})=5.0 \mu \mathrm{~Sv} / \mathrm{scan} \text { at } 63.5 \mathrm{~cm} \\
& \text { height } \\
& \text { number of scans per hour } \quad=10(\text { per } \mathrm{min}) \times 60(\mathrm{~min} / \mathrm{h})=600 \text { per hour } \\
& \text { distance }=63.5(\mathrm{~cm})+47(\mathrm{~cm})+10(\mathrm{~cm})=120.5 \mathrm{~cm} \\
& \rightarrow \begin{aligned}
& \rightarrow \mathrm{H}^{*}(10)=600(\text { per hour }) \times 5.0(\mu \mathrm{~Sv}) \times(63.5 \mathrm{~cm} / 120.5 \mathrm{~cm})^{2} \\
&=8.3 \times 10^{2} \mu \mathrm{~Sv} / \mathrm{h}
\end{aligned}
\end{aligned}
$$

Question 3.3

Lead shielding is placed on the top of the scanner (B, Figure 1). Calculate the minimum required lead thickness to meet the legal requirement for radiation leakage for inherently safe devices. Round the result off to the nearest 0.5 mm .
limit $=1 \mu \mathrm{~Sv} / \mathrm{h}$
required transmission $=1(\mu \mathrm{~Sv} / \mathrm{h}) / 8.3 \times 10^{2}(\mu \mathrm{~Sv} / \mathrm{h})=0.0012$
Find in Figure 1 for 150 kV and $0.0012 \times 18.3(\mathrm{mGy})=0.022 \mathrm{mGy}$
$\rightarrow \quad 0.17 \mathrm{~cm}=1.7 \mathrm{~mm}$ lead
$\rightarrow \quad$ rounds off to 2.0 mm lead.

Question 3.4a

Problem 3	
Question	Points
3.1	4
3.2	3
3.3	4
3.4 a	5
3.4 b	1
Total	$\mathbf{1 7}$

Linear interpolation in Table 1 at 90°
$m)^{2}$ this.

Question 3.4b

 exposure of customs officials.
Assessment suggestions:

Calculate the maximum possible effective annual dose of the customs official caused by scattered radiation. You can assume that the area of the scattering surface is the same as the surface area of a suitcase with the maximum allowable dimensions, measured at point C (Figure 1), and with a scattering

Primary kerma $K_{a, \text { primary }} \quad=3.0 \mu G y$ per scan
Number of scans per year $=600($ per hour $) \times 2000(\mathrm{~h} / \mathrm{yr})=1.2 \times 10^{6}$ per
Scattering surface area $\quad=55(\mathrm{~cm}) \times 35(\mathrm{~cm})=1925 \mathrm{~cm}^{2}$
$\rightarrow \quad$ scattering coefficient $\quad=(0.05 \%+0.14 \%) / 2=0.095 \%$ $=0.00095$ per $400 \mathrm{~cm}^{2}$ at 1 m

Scattered radiation $\quad \mathrm{K}_{\mathrm{a}, \text { scatter }} \quad=3.0 \mu \mathrm{~Gy} \times 1.2 \times 10^{6}\left(\mathrm{yr}^{-1}\right) \times 0.00095 \times$ $\left(1925 \mathrm{~cm}^{2} / 400 \mathrm{~cm}^{2}\right) \times(1 \mathrm{~m} / 1.5$

$$
=7.3 \times 10^{3} \mu \mathrm{~Gy} / \mathrm{yr}=7.3 \mathrm{mGy} / \mathrm{yr}
$$

$\rightarrow \quad \mathrm{E}(\mathrm{AP}) \quad=7.3(\mathrm{mGy} / \mathrm{yr}) \times 1.3(\mathrm{~Sv} / \mathrm{Gy})=9.5 \mathrm{mSv} / \mathrm{yr}$.
Note: it is permitted to deviate from the linear interpolation if you can justify

Name at least one practically feasible measure that could reduce the radiation

- fit flexible lead strips in the opening of the luggage scanner
- fit a transparent lead glass screen; a thickness of 1 to 2 mm lead equivalents should be sufficient (see Question 3.3)
- \quad half a point will be deducted if only personal protective equipment is given as an answer, because this is not a practically feasible solution and it is not in keeping with the occupational hygiene strategy.

Problem 4. Production of 18 F

Question 4.1

Calculate the activity of the ${ }^{18} \mathrm{~F}$ that is produced if the water target enriched with ${ }^{18} \mathrm{O}$ is irradiated for two hours (= 120 minutes).

```
At}=\dot{P}\times(1-\mp@subsup{e}{}{-\lambdat})\mathrm{ and }\dot{P}=f\cdot\frac{m\cdot\mp@subsup{N}{A}{}}{M}\cdot\sigma\cdot\varphi\mathrm{ and m = }\cdot|\cdot
```

$\dot{P}=f \times\left(\mathrm{m} \cdot \mathrm{N}_{\mathrm{A}} / \mathrm{M}\right) \times \sigma \times(\mathrm{I} / \mathrm{q})=0.97 \times\left(1.11\left(\mathrm{~g} / \mathrm{cm}^{3}\right) \cdot 4.0(\mathrm{ml}) \times 6.022 \cdot 10^{23}\right.$
$\left.\left(\mathrm{mol}^{-1}\right) / 20(\mathrm{~g} / \mathrm{mol})\right) \times 0.011 \cdot 10^{-24}\left(\mathrm{~cm}^{2}\right) \times\left(120 \cdot 10^{-6}\left(\mathrm{C} \cdot \mathrm{s}^{-1} \cdot \mathrm{~cm}^{-2}\right) / 1.60 \cdot 10^{-19}\right.$
(C))
$\dot{\mathrm{P}}=0.97 \times 1.34 \cdot 10^{23} \times 1.1 \cdot 10^{-26} \times 7.49 \cdot 10^{14} \mathrm{~s}^{-1}=1.07 \cdot 10^{12} \mathrm{~s}^{-1}$
$A_{t}=\dot{\mathrm{P}} \times\left(1-\mathrm{e}^{-\lambda \mathrm{t}}\right)=\dot{\mathrm{P}} \times\left(1-\mathrm{e}^{-\ln (2) \times \mathrm{t} / \mathrm{T}_{1 / 2}}\right)=\dot{\mathrm{P}} \times\left(1-\mathrm{e}^{-\ln (2) \times 120(\text { minutes }) / 109.7 \text { (minutes) })}\right.$
$A_{t}=1.07 \cdot 10^{12}\left(\mathrm{~s}^{-1}\right) \times 0.5315=5.68 \cdot 10^{11} \mathrm{~Bq}=0.57 \mathrm{TBq}$

Question 4.2

Calculate the minimum irradiation time(in number of whole half-lives) required to reach at least 95% saturation activity (maximum activity).

```
1- e- ln(2)\cdott/109.7}=0.9
e}\mp@subsup{e}{}{-\operatorname{ln}(2)\cdott/109.7}=0.0
- In(2)}\cdot\textrm{t}/109.7=\operatorname{ln}(0.05
t = 109.7. ln(0.05)/(- In(2)) = 474 min
```

the number of half-lives is $474 / 109.7=4.32->$ at least 5 half-lives
alternatively:

```
1- e
e-\operatorname{ln}(2)\cdot(t/T 1/2 )}=0.0
- In(2)\cdott/\mp@subsup{T}{1/2}{}=\operatorname{ln}(0.05)
t}=-\operatorname{ln}(0.05)/\operatorname{ln}(2)\times\mp@subsup{T}{1/2}{}=4.32 T1/2 -> at least 5 half-live
```


Question 4.3

Calculate the length of the ${ }^{18} \mathrm{~F}$ bolus and argue why the bolus in the described situation cannot be considered a point source.

Data: the source volume is 4.0 ml , the inside diameter of the pipe is 1.0 mm .
The length (L) of the bolus is: $\mathrm{L}=$ volume $/ \pi \cdot \mathrm{r}^{2}=4.0 / \pi \cdot(0.050)^{2}=509 \mathrm{~cm}=$ 5.1 m

The source cannot be considered a point source because the distance to the source is much smaller (a factor of 20) than five times the largest dimension of the source.

Question 4.4

Calculate the ambient dose equivalent rate that the operator reads on the monitor (assume the amount of ${ }^{18} \mathrm{~F}$ activity calculated in Question 4.1).

The formula for the irradiation rate of a shielded line source is described by:
$\dot{H}^{*}(10)=(h \cdot A \cdot \theta / r \cdot I)(1 / \theta \cdot \mu d)^{1 / 2} \cdot B \cdot e^{-\mu d}$
Find $\mu_{\text {concrete }}$ in Appendix 2: $(\mu / \rho)_{\text {concrete }}(E=0.5 \mathrm{MeV})=0.0892\left(\mathrm{~cm}^{2} / \mathrm{g}\right)$, $\mu_{\text {concrete }}$ $=(\mu / \rho)_{\text {concrete }} \times \rho_{\text {concrete }}=0.0892\left(\mathrm{~cm}^{2} / \mathrm{g}\right) \times 2.35\left(\mathrm{~g} / \mathrm{cm}^{3}\right)=0.210 \mathrm{~cm}^{-1}, \mu_{\text {concrete }} \cdot \mathrm{d}$ $=0.21\left(\mathrm{~cm}^{-1}\right) \cdot 25.0(\mathrm{~cm})=5.24=5.2$

Calculate the exposure build-up factor using Appendix 3:
$B(E=0.5 \mathrm{MeV}$ and $\mu \mathrm{d}=5.0)=12.2$
$B(E=0.5 \mathrm{MeV}$ and $\mu \mathrm{d}=6.0)=15.9$
using interpolation, it follows that $B(E=0.5 \mathrm{MeV}$ and $\mu \mathrm{d}=5.2)=13.1$
Calculate the angle (θ):
$\tan (\theta)$ is $5.1 / 1.25=4.08 \rightarrow \theta=76.2^{\circ}$. Converted to radians, this is 1.33 rad
Calculate the ambient dose equivalent rate:
$\dot{H}^{*}(10)=(h \cdot A \cdot \theta / r \cdot l)(1 / \theta \cdot \mu d)^{1 / 2} \cdot B \cdot e^{-\mu d}=$
$\left(0.166\left(\mu \mathrm{~Sv} \cdot \mathrm{~m}^{2} \cdot \mathrm{~h}^{-1} \cdot \mathrm{MBq}^{-1}\right) \cdot 568000(\mathrm{MBq}) \cdot 1.33 / 1.25(\mathrm{~m}) \cdot 5.1(\mathrm{~m})\right) \cdot(1 /$
$1.33 \cdot 5.2)^{1 / 2} \cdot 13.1 \cdot e^{-5,2}=543 \mu \mathrm{~Sv} / \mathrm{h}=0.54 \mathrm{mSv} / \mathrm{h}$.
Using 0.5 TBq, the answer is then: $0.472 \mathrm{mSv} / \mathrm{h}=0.47 \mathrm{mSv} / \mathrm{h}$.

1 Scoring:
2

Problem 4	
Question	Points
4.1	3
4.2	3
4.3	3
4.4	7
Total	$\mathbf{1 5}$

3

