Appendix to the exam Radiation protection expert on the level of coordinating expert

Nuclear Research and consultancy Group	NRG
Technische Universiteit Delft	TUD
Boerhaave Nascholing/LUMC	BN/LUMC
Rijksuniversiteit Groningen	RUG
Radboudumc	RUMC
TU Eindhoven	TU/e

exam date: May 14th 2018 exam duration: 13.30 - 16.30 hours

Instruction:

- If you use other data than those provided in this appendix, please note the source!
- This appendix contains 10 numbered pages. Check this!

TABLE OF CONTENTS

Page

- 3 Decay scheme ¹⁶⁶Ho
- 4 Mass attenuation and energy absorption cross-sections in lead
- 5 Category classification of transport packaging
- 6 Handboek Radionucliden, A.S. Keverling-Buisman (3rd edition 2015), pg. 26, ¹⁸F data
- 7 Broad beam transmission factors at 511 keV in lead, concrete, iron, Madsen et al.: AAPM Task Group 108: PET and PET/CT Shielding
- 8 Scattering fraction of kerma
- 9-10 Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), pg. 164-165, data ¹³¹I

Nov-1992

67-HOLMIUM-166

Halflife = 26.80 Hours Decay Mode: beta-

Radiations	y(i) (Bq-s) ⁻¹	E(i) (MeV)	y(i)×E(i)
beta- 4	9.50×10 ⁻⁰³	1.149×10 ⁻⁰¹ *	1.09×10 ⁻⁰³
beta- 6	4.87×10^{-01}	6.509×10 ⁻⁰¹ *	3.17×10 ⁻⁰¹
beta-7	5.00×10 ⁻⁰¹	6.936×10 ⁻⁰¹ *	3.47×10 ⁻⁰¹
gamma 1	6.71×10 ⁻⁰²	8.057×10^{-02}	5.41×10 ⁻⁰³
ce-K, gamma 1	1.15×10^{-01}	2.309×10 ⁻⁰²	2.65×10 ⁻⁰³
ce-L, gamma 1	2.65×10^{-01}	7.082×10 ⁻⁰² a	1.88×10^{-02}
ce-M, gamma 1	6.44×10 ⁻⁰²	7.837×10 ⁻⁰² a	5.05×10 ⁻⁰³
ce-N+, gamma 1	1.76×10^{-02}	8.012×10 ⁻⁰² a	1.41×10 ⁻⁰³
gamma 4	1.94×10^{-04}	6.740×10 ⁻⁰¹	1.31×10 ⁻⁰⁴
gamma 5	1.31×10^{-04}	7.053×10 ⁻⁰¹	9.24×10 ⁻⁰⁵
gamma 6	1.19×10^{-04}	7.859×10^{-01}	9.35×10 ⁻⁰⁵
gamma 8	9.30×10 ⁻⁰³	1.379	1.28×10 ⁻⁰²
gamma 12	1.87×10^{-03}	1.582	2.96×10 ⁻⁰³
gamma 13	1.20×10^{-03}	1.662	1.99×10 ⁻⁰³
gamma 14	2.77×10^{-04}	1.750	4.85×10 ⁻⁰⁴
gamma 15	8.50×10 ⁻⁰⁵	1.830	1.56×10 ⁻⁰⁴
Kalpha1 X-ray	5.48×10 ⁻⁰²	4.913×10 ⁻⁰²	2.69×10 ⁻⁰³
Kalpha2 X-ray	3.09×10 ⁻⁰²	4.822×10 ⁻⁰²	1.49×10 ⁻⁰³
Kbeta X-ray	2.24×10^{-02}	5.570×10 ⁻⁰² *	1.25×10 ⁻⁰³
L X-ray	7.84×10^{-02}	6.950×10 ⁻⁰³ *	5.45×10 ⁻⁰⁴
Auger-L	2.83×10 ⁻⁰¹	5.500×10 ⁻⁰³ *	1.56×10 ⁻⁰³
Listed X, gamma,	and gamma [±] Ra	adiations	3.01×10 ⁻⁰²
Omitted X, gamma	a, and gamma ^{\pm}	Radiations**	4.03×10 ⁻⁰⁵
Listed beta, ce, and	d Auger Radiati	ons	6.94×10 ⁻⁰¹
Omitted beta, ce, a	nd Auger Radi	ations**	4.69×10 ⁻⁰⁴
Listed Radiations			7.24×10^{-01}
Omitted Radiation	S**		5.10×10 ⁻⁰⁴
* Average Energy	y (MeV).		
^a Maximum Ener	gy (MeV) for s	ubshell.	
** Each omitted tr	ansition contrib	outes < 0.100% to 3	Sumof y(i)×E(i)
Erbium-166 Daugl	hter is stable.		

Mass attenuation and energy absorption cross-sections in lead

 $(density = 11.34 \text{ g/cm}^3)$

Energie	μ/ ρ	μ _{en} /ρ
(MeV)	(cm²/g)	(cm²/g)
0.005	767	747
0.010	136.6	130.7
0.05	7.71	6.54
0.10	5.78	2.28
0.5	0.1614	0.0951
1.5	0.0518	0.0271
2	0.0455	0.0240

Category classification of transport packaging

Pg 55,56 and 59 of `Vervoer van radioactieve stoffen over de weg in Nederland en België'

Category I-WHITE

All packages of which the radiation level complies to the requirement that the dose rate is:

- no more than 5 µSv per hour at the surface and additional
- the transport index is equal to 0, thus the dose rate at 1 meter distance from the surface is not greater than 0,5 μ Sv per hour

Category II-YELLOW

All packages of which the radiation level complies to the requirement that the dose rate is:

- greater than 5 μSv per hour and no more than 500 μSv per hour at the surface and/or
- the transport index is greater than 0 and no more than 1, thus the dose rate at 1 meter distance from the surface is greater than 0,5 μ Sv per hour, and no more than 10 μ Sv per hour.

Category III-YELLOW

All packages of which the radiation level complies to the requirement that the dose rate is:

- greater than 500 μSv per hour and no more than 2 mSv per hour at the surface and/or
- the transport index is greater than 1 and no more than 10, thus the dose rate at 1 meter distance from the surface is greater than 10 μ Sv per hour, and no more than 100 μ Sv per hour.

Radiation conditions					
Transport indexMaximum radiation level at any		Category			
	point on the surface				
0	No more than 5 μ Sv per hour	I-WHITE			
Greater than 0 but no	More than 5 μSv per hour, but no	II-YELLOW			
more than 1	more than 500 <i>µSv per hour</i>				
Greater than 1 but no	More than 500 μSv per hour, but	III-YELLOW			
more than 10	no more than 2mSv <i>per hour</i>				

Handboek Radionucliden, A.S. Keverling-Buisman (3rd edition 2015), pg. 26, ¹⁸F data

Het radionuclide 18 F is een cyclotronproduct. Het nuclide wordt toegepast in de nucleaire geneeskunde voor het maken van afbeeldingen met behulp van positronenemissie-tomografie (PET).

26

EMBARGO MAY 14th 2018

Broad beam transmission factors at 511 keV in lead, concrete, iron, Madsen et al.: AAPM Task Group 108: PET and PET/CT Shielding

Madsen et al.: AAPM Task Group 108: PET and PET/CT Shielding

	Transmission Factors		
Thickness ^a , ^b	Lead	Concrete ^c	Iron
0	1.0000	1.0000	1.0000
1	0.8912	0.9583	0.7484
2	0.7873	0.9088	0.5325
3	0.6905	0.8519	0.3614
4	0.6021	0.7889	0.2353
5	0.5227	0.7218	0.1479
6	0.4522	0.6528	0.0905
7	0.3903	0.5842	0.0542
8	0.3362	0.5180	0.0319
9	0.2892	0.4558	0.0186
10	0.2485	0.3987	0.0107
12	0.1831	0.3008	0.0035
14	0.1347	0.2243	0.0011
16	0.0990	0.1662	0.0004
18	0.0728	0.1227	0.0001
20	0.0535	0.0904	
25	0.0247	0.0419	
30	0.0114	0.0194	
40	0.0024	0.0042	
50	0.0005	0.0009	

TABLE IV. Broadbeam transmission factors at 511 keV in lead, concrete, iron.

^aThickness in mm for lead.

^bThickness in cm for concrete and iron.

^cConcrete density=2.35 g/cm³.

The Monte Carlo transmission data have been fitted to the model proposed by Archer *et al.* (Ref. 10): $\mathbf{B} = \{(1+(\beta/\alpha))e^{\alpha\gamma x} - (\beta/\alpha)\}^{(1/\gamma)}$. This can be inverted to obtain x (material thickness) as a function of transmission (B): $x = (1/\alpha\gamma)\ln\{[B^{-\gamma}+(\beta/\alpha)]/[1+(\beta/\alpha)]\}$.

Scattering fraction of kerma

At 1 meter distance from irradiated concrete surface in percent per 100 cm² irradiated concrete surface

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), pg. 164-165, data ¹³¹I

Half-life and decay constant

 $T_{1/2} = 8,021 \text{ d} = 6,93 \times 10^5 \text{ s}$

```
\lambda = 1,00 \times 10^{-6} \text{ s}^{-1}
```

Decay scheme (simplified)

131_I

Main emitted radiation

Straling	y (Bq·s) ⁻¹	E (keV)
β ⁻	0,894	192 606
Y1	0,026	80
ce Ky	0,036	46
Y2	0,061	284
Y3	0,812	365

Source constants

Air kerma rate	k	=	0,052	µGy/h per MBq/m ²
Ambient dose equivalent rate	h	=	0,066	μ Sv/h per MBq/m ²

Miscellaneous

Specific activity	$A_{\rm sp} = 4,60 \times 10^{15} {\rm Bq/g}$
Exemption levels	$C_{\rm v}$ = 10 ² Bq/g en $A_{\rm v}$ = 10 ⁶ Bq
Skin contamination	$H_{\text{huid}} = 4 \times 10^{-10} \text{ Sv/s per Bq/cm}^2$
Wound contamination / injection	$e(50) = 2,2 \times 10^{-8} \text{Sv/Bq}$
Transport	$A_1 = 3$ TBq
	$A_2 = 0,7 \text{TBq}$

Productie en toepassingen

Het radionuclide ¹³¹I is een belangrijk splijtingsproduct. Het wordt veelvuldig toegepast in de diagnostische en therapeutische nucleaire geneeskunde.

164

N = 78

Metabolic Model

For radiation protection purposes, it is assumed that iodine distributes itself from the blood as follows: 70% direct excretion and 30% to the thyroid. Iodine in the thyroid remains there with a biological half-life of 80 days and from there it is homogeneously distributed throughout the body in the form of organic iodine. It remains in other organs/tissue with a half-life of 12 days. A tenth of the organic iodine is immediately excreted in faeces, while the rest (90%) is returned to the transfer compartment. In this way, the biological half-life in the thyroid is effectively equal to 90 days.

N.B. This model does not apply to patients; see page 14.

Ingestion and lung clearance classes

Ingestie		
Alle verbindingen	$f_1 = 1$	
Inhalatie		
Damp (I ₂)	$f_1 = 1$	Klasse SR-1
Damp (CH ₃ I)	$f_1 = 1$	Klasse SR-1 70% depositie
Overige verbindingen	$f_1 = 1$	Klasse F

Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

	Ingestie	Inhalatie	Inhalatie	Inhalatie	
	$f_1 = 1$	F	I2	CH ₃ I	
e(50)(w)	2,2×10 ⁻⁸	1,1×10 ⁻⁸	2,0×10 ⁻⁸	1,5×10 ⁻⁸	Sv/Bq
$A_{\rm Re}(w)$	4,5×10 ⁷	9,1×10 ⁷	5,0×10 ⁷	6,7×10 ⁷	Bq
e(50)(b)	2,2×10 ⁻⁸	7,6×10 ⁻⁹	2,0×10 ⁻⁸	1,5×10 ⁻⁸	Sv/Bq
$A_{\rm Re}(b)$	4,5×10 ⁷	1,3×10 ⁸	5,0×10 ⁷	6,7×10 ⁷	Bq

Data for thyroid count (after single intake)

Time (d)	Activity in Thyroid	(Bq per Bq intake)
----------	---------------------	--------------------

	$f_1 = 1$	F	I_2	CH ₃ I
0,25	6,0×10 ⁻²	5,2×10 ⁻²	$1,1 \times 10^{-1}$	1,0×10 ⁻¹
1	2,4×10 ⁻¹	$1,2\times10^{-1}$	2,3×10 ⁻¹	$1,8 \times 10^{-1}$
2	$2,5 \times 10^{-1}$	$1,2\times10^{-1}$	$2,2\times10^{-1}$	1,7×10 ⁻¹
3	2,3×10 ⁻¹	1,1×10 ⁻¹	$2,0\times10^{-1}$	1,6×10 ⁻¹
5	1,9×10 ⁻¹	9,0×10 ⁻²	1,7×10 ⁻¹	1,3×10 ⁻¹
7	1,6×10 ⁻¹	7,5×10 ⁻²	1,4×10 ⁻¹	1,1×10 ⁻¹

165