Attachments for Exam Radiation protection expert on the level of coordinating expert

Nuclear Research and consultancy Group	NRG
Delft University of Technology	TUD
University of Groningen	RUG
Radboudumc	RUMC

exam date:

December 14th 2020

exam duration: 13.30 - 16.30 hours

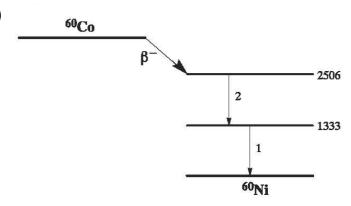
Instructions:

- □ If you use any data other than the data mentioned in this attachment, state the origin!
- □ This attachment consists of 12 consecutively numbered pages. Check this!

TABLE OF CONTENTS

Page	
3	Handboek Radionucliden, A.S. Keverling Buisman (3 rd edition 2015), pg. 74; ⁶⁰ Co data
4	Radiological Health Handbook, pg. 148
5	Handboek Radionucliden, A.S. Keverling Buisman (3 rd edition 2015), pg. 172; ¹³⁷ Cs data
6-7	Handboek Radionucliden, A.S. Keverling Buisman (3 rd edition 2015), pg. 18-19; ³ H data
8	Percentage radioactivity distribution over the organs after ¹²³ I-IBZM administration, Nicolaas P.L.G. Verhoeff e.a., European Journal of Nuclear Medicine, September 1993
9	Handboek Radionucliden, A.S. Keverling Buisman (3^{rd} edition 2015), pg. 156, 123 I data
10	Handboek Radionucliden, A.S. Keverling Buisman (3 rd edition 2015), pg. 204, ¹⁷⁷ Lu data
11	Mass attenuation coefficients of lead
12	Conversion coefficients of air kerma to ambient dose equivalent as function of the photon energy

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), ⁶⁰Co data



Half-life and decay constant

$$T_{1/2} = 5,272 \text{ j} = 1,66 \times 10^8 \text{ s}$$

 $\lambda = 4,17 \times 10^{-9} \text{ s}^{-1}$

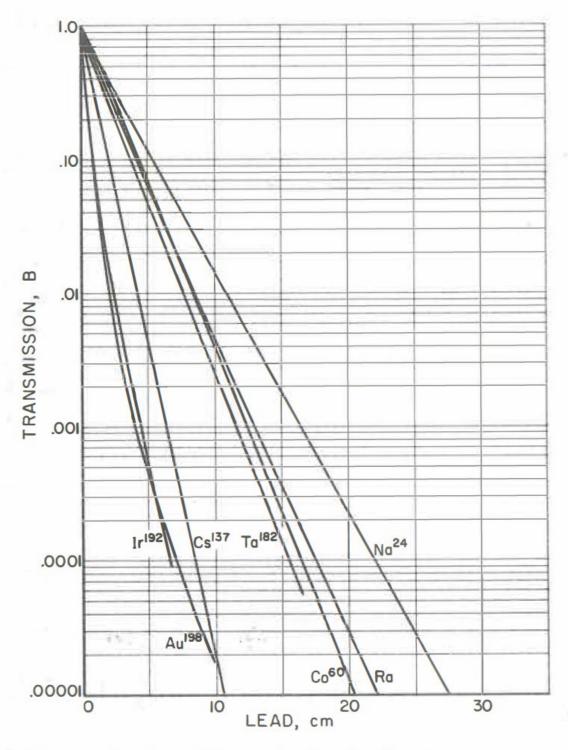
Decay scheme (simplified)

Main emitted radiation

Straling	y (Bq·s)⁻¹	E (keV)
β-	0,999	96 318
γ1	1,000	1333
V 2	0.999	1173

Source constants

Air kerma rate	\boldsymbol{k}	=	0,31	μGy/h per MBq/m ²
Ambient dose equivalent rate				uSv/h per MBa/m ²


Miscellaneous

Specific activity	A_{sp}		4,18×10 ¹³ Bq/g
Exemption levels	$C_{\mathbf{v}}$		$10^0 = 1 \mathrm{Bq/g} !!$
Skin contamination	$A_{\mathbf{v}}$		10 ⁵ Bq
Wound contamination / injection			3×10^{-10} Sv/s per Bq/cm ²
Transport	e(50)	=	1,9×10 ⁻⁸ Sv/Bq
	A_1		0,4 TBq
	A_2	=	0,4 TBq

Productie en toepassingen

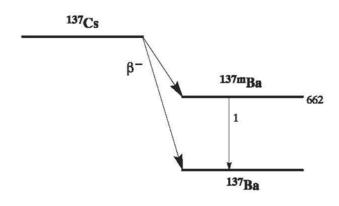
Het radionuclide ⁶⁰Co is een activeringsproduct. Het komt voor als bijproduct in reactoren ten gevolge van de activering van staal. Daarnaast wordt het op velerlei terreinen toegepast. Voorbeelden zijn: radiotherapie, gammagrafie, doorstraling, ijking, demonstratie.

Radiological Health Handbook pg. 148, transmission data of several gamma sources through lead

Transmission through lead of gamma rays from radium [14]; cobalt 60, cesium 137, gold 198 [7]; iridium 192 [15]; tantalum 182 and sodium 24 [29].

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), ¹³⁷Cs data

137Cs


Z = 55

Half-life and decay constant

$$T_{1/2} = 30,25 \text{ j} = 9,55 \times 10^8 \text{ s}$$

 $\lambda = 7.26 \times 10^{-10} \text{ s}^{-1}$

Decay scheme (simplified)

Main emitted radiation

From 137mBa (t1/2 = 2.55 min; y = 0.946

Straling	y (Bq·s) ⁻¹	E (keV)	Straling	y (Bq·s)-1	E (keV)
β-	0,946	173 512	γ1	0,898	662
β-	0,054	425 1173	ce K γ_1	0,083	624

Source constants (of daughter ^{137m}Ba in equilibrium with ¹³⁷Cs)

Air kerma rate $k = 0,077 \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate $h = 0,093 \mu \text{Sv/h per MBq/m}^2$

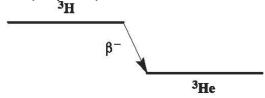
Miscellaneous

Specific activity $A_{\rm sp}=3,19\times 10^{12}~{\rm Bq/g}$ Exemption levels $C_{\rm v}=10^1~{\rm Bq/g}~{\rm en}~A_{\rm v}=10^4~{\rm Bq}$ Skin contamination $H_{\rm huid}=5\times 10^{-10}~{\rm Sv/s}~{\rm per}~{\rm Bq/cm^2}$ Wound contamination / injection (incl. $^{137\rm mBa}$) $e(50)=1,4\times 10^{-8}~{\rm Sv/Bq}~{\rm (incl.}~^{137\rm mBa})$ $A_1=2~{\rm TBq}$ $A_2=0,6~{\rm TBq}$

Productie en toepassingen

Het radionuclide ¹³⁷Cs is een belangrijk splijtingsproduct. Het wordt onder meer gebruikt als gamma-referentiebron en als bron bij brachytherapie.

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), ³H data



Half-life and decay constant

$$T_{1/2} = 12,35 \text{ j} = 3,90 \times 10^8 \text{ s}$$

 $\lambda = 1.78 \times 10^{-9} \text{ s}^{-1}$

Decay scheme (simplified)

Main emitted radiation

Straling
$$y (Bq \cdot s)^{-1}$$
 $E (keV)$
 β^{-} 1,000 5,7 | 18,6

Miscellaneous

Specific activity $A_{\rm sp}=3.57\times 10^{14}~{\rm Bq/g}$ Exemption levels $C_{\rm v}=10^6~{\rm Bq/g}~{\rm en}~A_{\rm v}=10^9~{\rm Bq}$ Skin contamination $H_{\rm huid}<10^{-14}~{\rm Sv/s}~{\rm per}~{\rm Bq/cm^2}$ Wound contamination / injection Transport $e(50)=1.8\times 10^{-11}~{\rm Sv/Bq}~{\rm (organisch)}$ $A_1=40~{\rm TBq}$ $A_2=40~{\rm TBq}$

Productie en toepassingen

Tritium wordt geproduceerd door bestraling van lithium met neutronen: ⁶Li(n,α)³H. Tritium ontstaat ook op natuurlijke wijze. Het wordt gevormd in de buitenste lagen van de atmosfeer, door interactie van kosmische straling met stikstof, voornamelijk via de reactie ¹⁴N(n,³H)¹²C. Zodoende komt tritium voor in de biosfeer: de tritium-concentratie in zeewater ten gevolge van het natuurlijke tritium bedraagt 0,1–1 Bq/l. De tritiuminventaris van de gehele aarde wordt geschat op 1–2 EBq. Door proeven met thermonucleaire explosies in de atmosfeer is hieraan inmiddels ongeveer 200 EBq toegevoegd. Elk persoon bevat hierdoor 100 Bq tritium.

Van de vele toepassingen van tritium zijn de volgende het belangrijkst:

- tritium-houdende trefplaat voor neutronengenerator via D,T-reactie;
- als lichtbron (o.a. EXIT-bord en horloge): β-light;
- als grondstof voor thermonucleaire reactie (waterstofbom)
- als merker van biologische verbindingen, o.a. voor geneesmiddelenonderzoek
- als merker bij geologische onderzoekingen, o.a. bij olie-exploratie
- als bron in een electroncapture-detector.

N=2 3H

Metabolic Model

For radiation protection purposes, it is assumed that following inhalation and ingestion, all tritium is taken up in the body fully and instantaneously. Furthermore tritium is also taken up via intact skin. The biological half-life for all organs and tissues is set at:

EMBARGO December 14th 2020

Water T(1/2)		0	rganic (T1/2)
97%	10 d	50%	10 d
3%	40 d	50%	40 d

Ingestion and lung clearance classes

Ingestie

Alle verbindingen $f_1 = 1$

Inhalatie

Waterdamp SR-2 Organisch SR-2

For watervapour (waterdamp) an extra intake of 0.6 Bq/h per Bq/m^3 applies as a result of uptake via the skin

Dose conversion coefficient and radiotoxicity equivalent for workers (w) and members of the public (b)

Ingestie en inhalatie		Ingestie en inhalatie		
	Water(damp)	Organisch		
e(50)	1,8×10 ⁻¹¹	4,1×10 ⁻¹¹ Sv/Bq		
A_{Re}	5,6×10 ¹⁰	$2,4\times10^{10}$ Bq		

Data for urine analysis

After single	intake	
Time (d)	Activity in urine	urine excretion rate
	(Bq/l per Bq intake)	(Bq/d per Bq intake)
1	2,3×10 ⁻²	1,3×10 ⁻²
2	2,1×10 ⁻²	1,3×10 ⁻² 2,3×10 ⁻²
3	2,0×10 ⁻²	2,2×10 ⁻²
5	1,7×10 ⁻²	2,0×10 ⁻²
7	1,5×10 ⁻²	$1,8\times10^{-2}$

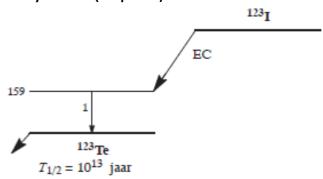
Percentage radioactivity distribution over the organs after ¹²³I-IBZM administration

Percentage radioactivity distribution in different organs, measured in three time periods after administration of 123 I-IBZM. Data are mean \pm standard deviation. The data has been corrected for the 123 I decay.

	Period 1 15–95 min	Period 2 180–270 min	Period 3 330–360 min
Total body	100 ^a	86.7 ± 6.2^{a}	75.9 ^a
Brain	4.0 ± 0.7	2.0 ± 0.5	0.6
Kidneys	3.6 ± 0.7	2.9 ± 1.0	3.2
Bladder	1.6 ± 0.8	2.9 ± 1.8	10.0
Liver	14.6 ± 3.3	7.7 ± 0.8	5.8
Lungs	13.0 ± 4.2	5.9 ± 0.9	4.1
Spleen	2.7 ± 0.8	1.6 ± 1.0	1.1
Bowel	8.6 ± 3.4	14.0 ± 3.3	10.0
Gall-bladder	1.9 ± 1.0	3.9 ± 2.5	2.5
Heart	4.9 ± 1.5	2.4 ± 0.5	2.1
Thyroid	0.6 ± 0.6	0.5 ± 0.2	0.5
Parotid	0.2 ± 0.0	0.2 ± 0.1	0.1
Submandibular	0.4 ± 0.2	0.2 ± 0.1	0.2
Testes	0.2 ± 0.2	0.6 ± 0.1	0.3
Blood	5.5 ± 1.2	5.9 ± 0.6	5.1
Urine	0	13.3 ± 6.2	24.1

From: Dosimetry of iodine-123 iodobenzamide in healthy volunteers, Nicolaas P.L.G. Verhoeff e.a., European Journal of Nuclear Medicine, September 1993.

Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), ¹²³I data


123_I z = 53

Half-life and decay constant

$$T_{1/2} = 13,22 \text{ h} = 4,76 \times 10^4 \text{ s}$$

$$\lambda = 1,46 \times 10^{-5} \text{ s}^{-1}$$

Decay scheme (simplified)

Main emitted radiation

Straling	y (Bq·s)·1	E (keV)	Straling	y (Bq·s)-1	E (keV)
γ1	0,828	159	KLL	0,082	23
ce K γ_1	0,135	127	LMM	0,606	3
K_{α}	0,704	27	LMX	0,311	4
K_{β}	0,158	31			

Source constants

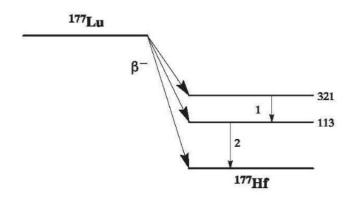
Air kerma rate $k = 0.038 \mu \text{Gy/h per MBq/m}^2$ Ambient dose equivalent rate $h = 0.046 \mu \text{Sv/h per MBq/m}^2$

Miscellaneous

Specific activity $A_{\rm sp}=7,13\times10^{16}~{\rm Bq/g}$ Exemption levels $C_{\rm v}=10^2~{\rm Bq/g}~{\rm en}~A_{\rm v}=10^7~{\rm Bq}$ Skin contamination $H_{\rm huid}=1\times10^{-10}~{\rm Sv/s}~{\rm per}~{\rm Bq/cm^2}$ Wound contamination / injection $\varepsilon(50)=2,1\times10^{-10}~{\rm Sv/Bq}$ $A_1=6~{\rm TBq}$ $A_2=3~{\rm TBq}$

Productie en toepassingen

Het radionuclide ¹²³I is een cyclotronproduct: protonen op xenon. Het wordt toegepast in de nucleaire geneeskunde voor diagnostische doeleinden. Handboek Radionucliden, A.S. Keverling Buisman (3rd edition 2015), ¹⁷⁷Lu data


Z = 71

Half-life and decay constant

$$T_{1/2} = 6,71 \text{ d} = 5,80 \times 10^5 \text{ s}$$

 $\lambda = 1,20 \times 10^{-6} \text{ s}^{-1}$

Decay scheme (simplified)

Main emitted radiation

Straling	$\lim y (Bq \cdot s)^{-1}$		E (keV)	
β-	0,122	47	176	
β-	0,091	111		
β-	0,786	149	497	
γ1	0,110	208		
72	0,064	113		
K_{α}	0,047	55		

Source constants

Air kerma rate Ambient dose equivalent rate $k = 0.0043 \mu \text{Gy/h per MBq/m}^2$ $h = 0.0063 \mu \text{Sv/h per MBq/m}^2$

Miscellaneous

Specific activity **Exemption levels** Skin contamination

Wound contamination / injection

Transport

 $A_{\rm sp} = 4.07 \times 10^{15} \, \text{Bq/g}$ $C_{\rm v} = 10^3 \, \text{Bq/g} \text{ en } A_{\rm v} = 10^7 \, \text{Bq}$ $H_{\rm huid} = 4 \times 10^{-10} \, \text{Sv/s per Bq/cm}^2$ $e(50) = 5.0 \times 10^{-10} \text{ Sv/Bq}$

= 30 TBq A_1 = 0.7 TBq A_2

Mass attenuation coefficients of lead

Lead

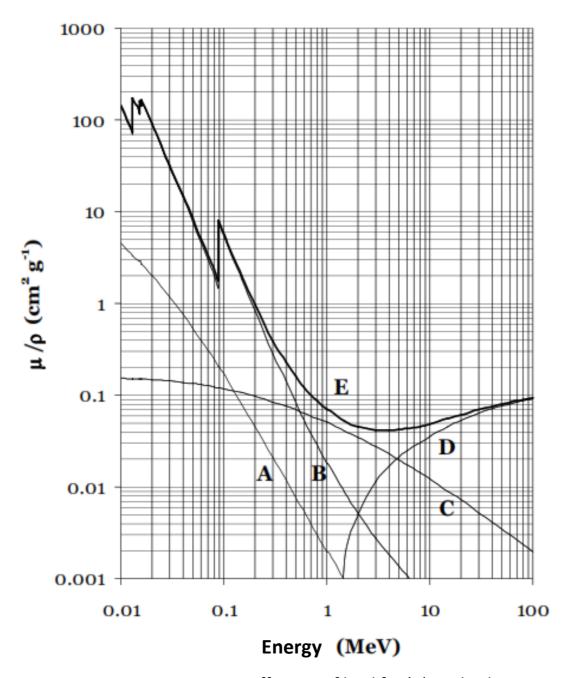
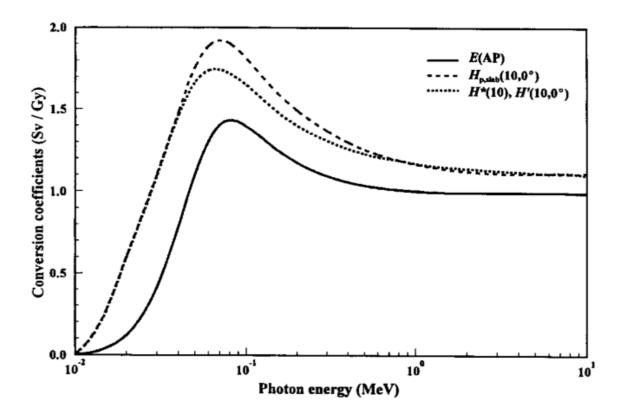



Figure 6.14 Mass attenuation coefficients of lead for (A) Rayleigh scattering, (B) photo electric effect, (C) Compton effect, (D) pair production and (E) the total mass attenuation coefficient μ/ρ

Conversion coefficients of air kerma to ambient dose equivalent as function of the photon energy

Conversion coefficients of air kerma K_a to ambient dose equivalent $H^*(10)$, effective dose E(AP) in a phantom of an adult in the anterior-posterior geometry, and personal dose equivalent $H_{p,slab}(10)$ in an ICRU-slab.