
A
A Mathematical Introduction to Matrices

Matrices are objects which have special properties and there are a number of
rules which must be adhered to in order to manipulate them in a consistent
(and correct) manner. A matrix can most readily be defined as an n×m array
of numbers which is comprised of n rows and m columns. For example, a two-
by-one matrix (two rows and one column) has the general form(

a

b

)

whereas a three-by-two matrix (three rows and two columns) has the general
form ⎛

⎝ a b

c d

e f

⎞
⎠ .

In these examples a, b, . . . , f may be real or complex numbers. To refer to
individual elements of the matrix we use the notation ai,j to denote the element
in the ith row and the jth column. Using this notation the three-by-two example
could be written in the general form⎛

⎝ a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

⎞
⎠ .

Matrices for which n = m (so that the number of rows equal the number of
columns) are referred to as square matrices. If m = 1 then the matrix is simply
a column vector (as in the first example above). If n = 1 (the matrix has only
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one row) then we refer to it as a row vector. A scalar is simply a matrix in which
both n and m are equal to one (that is, a one-by-one matrix). Throughout this
text we will adopt the universal convection that both vectors and matrices are
denoted by a bold font1. In general we shall use upper-case letters to denote
matrices and lower-case for vectors.

Example A.1 We show the rows and columns of a general three-by-three ma-
trix.

– First row ⎛
⎜⎝ a b c

d e f

g h i

⎞
⎟⎠

– Second row ⎛
⎜⎝

a b c

d e f

g h i

⎞
⎟⎠

– Third row ⎛
⎜⎝

a b c

d e f

g h i

⎞
⎟⎠

– First column ⎛
⎝ a b c

d e f

g h i

⎞
⎠

– Second column ⎛
⎝ a b c

d e f

g h i

⎞
⎠

– Third column ⎛
⎝ a b c

d e f

g h i

⎞
⎠

1 Of course, other notations do exist. For example, many textbooks employ the
notation of a single underbar for vectors x and a double underbar for matrices A.
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Of all the operations which can be performed on matrices one of the simplest
is that of transposition (or taking the transpose of a matrix); this operation is
usually denoted by a subscript T or a prime ′. If A is n-by-m then B = AT is
m-by-n, where the elements of B are defined by

bj,i = ai,j i = 1, · · · , n; j = 1, · · · , m;

the transpose is thus obtained by interchanging the rows and columns of matrix
A to give the matrix B = AT . If the matrix A is square then the operation
of taking the transpose is equivalent to a reflection in the leading diagonal
(which runs from the top left corner to the bottom right). Matrices for which
AT = A are referred to as symmetric and those for which AT = −A are anti-
symmetric2. In the case of three-by-three matrices the general symmetric and
anti-symmetric three-by-three matrices can be written as

Asymm =

⎛
⎝ a b c

b d e

c e f

⎞
⎠ and Aanti =

⎛
⎝ 0 b c

−b 0 e

−c −e 0

⎞
⎠ .

where a, b, . . . , f ∈ C. We remark that if the complex conjugate transpose of a
matrix (with elements a∗

j,i) is equal to the matrix then it is called Hermitian
and if it is equal to minus its complex conjugate transpose then it is referred
to as skew Hermitian.

We pause here to state that A = B implies that ai,j = bi,j for all the
elements of the matrices, whereas A = B only requires that ai,j = bi,j for one
pair (i, j).

Example A.2 Determine the transposes of the following matrices:

(
1 4 7

−4 −3 4

)
,

(
4 2 3

)
,

⎛
⎝ 1 2 3

2 0 2
3 2 3

⎞
⎠ .

The solutions are⎛
⎝ 1 −4

4 −3
7 4

⎞
⎠ ,

⎛
⎝ 4

2
3

⎞
⎠ ,

⎛
⎝ 1 2 3

2 0 2
3 2 3

⎞
⎠ .

Notice elements on the leading diagonal, that is elements of the form ai,i, re-
main unchanged by transposition. In the final example the transpose is equal to
the original matrix and therefore the matrix is symmetric.
2 Note that the diagonal elements of anti-symmetric matrices must be equal to zero.

This can be seen by setting i = j in the relation ai,j = −aj,i, which is only true if
ai,i = 0).
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The usual arithmetic operations of addition, subtraction and multiplication
also apply to matrices. However, there are now several additional rules (or
constraints) under which these operations can be performed on two (or more)
matrices. These are outlined below.

Addition and subtraction: two matrices can only be added together if they are
the same size (that is, they have the same number of rows and the same
number of columns). In this case the operation of addition is performed
element by element. For example, if A,B are both n-by-m matrices then
C = A + B is defined as the matrix with elements ci,j = ai,j + bi,j . A
similar rule holds for subtraction.

Scalar multiplication: matrices of any size can be multiplied by scalars. The
multiplication is performed element by element so that C = λA where
ci,j = λai,j .

Matrix multiplication: in order to multiply two matrices A and B together the
number of columns of A must equal the number of rows of B. To perform
the multiplication we “multiply” the first row of A by the first column of
B, multiplying the first element of each together and then the second ones,
etc, and finally adding up all the results. This gives the element in the top
left hand corner. We then proceed to multiply the first row by the second
column in the same manner (and put the result in the first row, second
column). Mathematically this can be written as

ci,j =
m∑

k=1

ai,kbk,j i = 1, · · · , n; j = 1, · · · , p,

where A is n-by-m and B is m-by-p. Then the answer C is n-by-p.

This rule for matrix multiplication highlights one of their important proper-
ties, namely that the order of multiplication is important. In this example,
with A an n-by-m matrix and B an m-by-p matrix, the operation “A times
B” is defined. However, the operation “B times A” (that is, pre-multiplying
matrix A by matrix B) is not defined unless p = n. Even if p = n, in gen-
eral AB = BA. This is equivalent to saying that, unlike scalar multiplication,
matrix multiplication is not commutative.

Example A.3 We demonstrate these concepts by an example involving two
two-by-two matrices, namely

A =
(

a b

c d

)
and B =

(
α β

γ δ

)
.



A. A Mathematical Introduction to Matrices 327

The sum C = A + B is determined as follows. Firstly the element c1,1 is
obtained by adding the corresponding elements in A and B, so that

(
a b

c d

)
+
(

α β

γ δ

)
=

(
a + α

)
.

Now for the c1,2 entry (the top right element):(
a b

c d

)
+

(
α β

γ δ

)
=

(
a + α b + β

)
.

Similarly for c2,1 (the bottom left element)

(
a b

c d

)
+

(
α β

γ δ

)
=

(
a + α b + β

c + γ

)

and finally for c2,2 (the bottom right element) we have(
a b

c d

)
+

(
α β

γ δ

)
=

(
a + α b + β

c + γ d + δ

)
.

Example A.4 An example of multiplication of two two-by-two matrices will
serve to highlight the differences between addition and multiplication of matri-
ces. Consider the matrices

A =
(

a b

c d

)
and B =

(
α β

γ δ

)
.

By our earlier rule the product C = AB is defined and is determined as follows.
We start with the top left entry, namely c1,1 (formed by multiplying the first
row of A by the first column of B)(

a b

c d

)(
α β

γ δ

)
=

(
a × α + b × γ

)
;

now the top right entry, namely c1,2 (which is formed by multiplying the first
row of A by the second column of B)

(
a b

c d

)(
α β

γ δ

)
=

(
a × α + b × γ a × β + b × δ

)
;
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next the bottom left entry, namely c2,1 (which is formed by multiplying the
second row of A by the first column of B)

(
a b

c d

)(
α β

γ δ

)
=

(
a × α + b × γ a × β + b × δ

c × α + d × γ

)
;

and finally the bottom right entry, namely c2,2 (which is formed by multiplying
the second row of A by the second column of B)

(
a b

c d

)(
α β

γ δ

)
=

(
a × α + b × γ a × β + b × δ

c × α + d × γ c × β + d × δ

)
.

In general, to calculate the ci,j entry we multiply the ith row of the first matrix
A by the jth column of the second matrix B term by term.

Example A.5 Calculate the product AB of the matrices

A =
(

1 −1
0 3

)
and B =

( −2 1
4 −2

)
.

Using the method given in the previous example

AB =
(

1 −1
0 3

)( −2 1
4 −2

)

=
(

1 × (−2) + (−1) × 4 1 × 1 + (−1) × (−2)
0 × (−2) + 3 × (4) 0 × 1 + 3 × (−2)

)

=
( −6 3

12 −6

)
.

(It is worth practising these calculations; try calculating the product BA your-
self by hand.).

We now turn our attention to matrix multiplication in which the matrices are
not necessarily square.

Example A.6 Consider the matrices

A =
(

3 0 −1
−4 2 2

)
, B =

⎛
⎝ −1 7

3 5
−2 0

⎞
⎠ and C =

(
2 0

−1 −3

)
.
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Calculate the quantities: AB, BA, A+BT , AC, AT C, 3C+2(AB)T , (AB)C
and finally A (BC), where possible (and if not, state the reason why the calcu-
lations cannot be performed).

We shall start (for the first couple of examples) by providing full solutions
and thereafter just give answers with a minimum of intermediate steps. So,

AB =
(

3 0 −1
−4 2 2

)⎛
⎝ −1 7

3 5
−2 0

⎞
⎠

=
(

3 × (−1) + 0 × 3 + (−1) × (−2) 3 × 7 + 0 × 5 + (−1) × (0)
(−4) × (−1) + 2 × 3 + 2 × (−2) (−4) × 7 + 2 × 5 + 2 × (0)

)

=
( −1 21

6 −18

)
.

Similarly

BA =

⎛
⎝ −1 7

3 5
−2 0

⎞
⎠(

3 0 −1
−4 2 2

)

=

⎛
⎝ −1 × 3 + 7 × (−4) −1 × 0 + 7 × 2 −1 × (−1) + 7 × 2

3 × 3 + 5 × (−4) 3 × 0 + 5 × 2 3 × (−1) + 5 × 2
−2 × 3 + 0 × (−4) −2 × 0 + 0 × 2 −2 × (−1) + 0 × 2

⎞
⎠

=

⎛
⎝ −31 14 15

−11 10 7
−6 0 2

⎞
⎠

A + BT =
(

3 0 −1
−4 2 2

)
+
( −1 3 −2

7 5 0

)

=
(

2 3 −3
3 7 2

)
.

It is not possible to pre-multiply matrix A by C since A is two-by-three and C is
two-by-two, so the inner dimensions do not agree (that is, the second dimension
of the first matrix and the first dimension of the second matrix are different).
For the next example AT C we observe that AT is three-by-two so that the inner
dimensions agree and hence the calculation is possible. We obtain

AT C =

⎛
⎝ 3 −4

0 2
−1 2

⎞
⎠(

2 0
−1 −3

)
=

⎛
⎝ 10 12

−2 −6
−4 −6

⎞
⎠ .
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The next example requires scalar multiplication and the use of the first of the
results in this example; we have

3C + 2 (AB)T = 3
(

2 0
−1 −3

)
+ 2

( −1 6
21 −18

)
,

=
(

6 0
−3 −9

)
+
( −2 12

42 −36

)
,

=
(

4 12
39 −45

)
.

The final two calculations serve to demonstrate that matrix multiplication is
associative, that is for three matrices A,B and C, A(BC) = (AB)C. (Notice
that this does not constitute a formal proof.)

(AB)C =
( −1 21

6 18

)(
2 0

−1 −3

)
=
( −23 −63

26 54

)
.

And now the final example

A (BC) =
(

3 0 −1
−4 2 2

)⎧⎨
⎩
⎛
⎝ −1 7

3 5
−2 0

⎞
⎠(

2 0
−1 −3

)⎫⎬
⎭

=
(

3 0 −1
−4 2 2

)⎛
⎝ −9 −21

1 −15
−4 0

⎞
⎠ =

( −23 −63
26 54

)
.

In this example we see that the result of the multiplication BA is a three-
by-three matrix, further emphasising the fact that AB is not necessarily equal
to BA. In some cases it may not even be possible to perform this second mul-
tiplication. This example serves to demonstrate that matrix multiplication is
associative (that is A(BC) ≡ (AB)C), but it is not, in general, commutative.
It is also a simple matter to show that matrix multiplication is distributive, that
is A(B + C) = AB + AC for any three matrices A,B and C for which the
matrix multiplications are permitted.

A.1 Special Matrices

There are two special matrices that we will make use of often within the text and
we introduce them here. The first is the zero matrix, which we will denote by 0.
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This is simply a matrix whose elements are all equal to zero3. Not surprisingly,
the zero matrix has no effect when it is added to another matrix (of the same
size). So A + 0 = A = 0 + A. We will make use of this matrix to initialise
matrices in preparation to assigning answers to a matrix.

The second important matrix we will have call to use often with the text is
the identity (or unit) matrix, denoted by I. The identity matrix I is a n-by-n
matrix whose elements consist of 1s (ones) along the main diagonal and are
zero everywhere else. For example, the three-by-three identity matrix is given
by

I =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ .

Multiplying a square n-by-n matrix A by I has no effect:

AI = A = IA.

A.2 Inverses of Matrices

The inverse of a matrix, written as A−1, is defined as the matrix which when
pre- and post-multiplied by the matrix A produces the identity matrix I:

A−1A = AA−1 = I.

Only square matrices can have an inverse but it is only a subset of all square
matrices for which the inverse exists. The existence of the inverse of a matrix
(that is, whether the matrix is invertible or not) is intimately linked with the
determinant of the matrix. We introduce this, and many other properties of
matrices, in Chapter 6.

The utility of the inverse of a matrix is best seen when solving systems of
equations. An example will serve by way of illustration.

Example A.7 Consider the system of simultaneous equations:

x1 + x2 = 3, (A.1a)

x1 + 2x2 = 5. (A.1b)

3 Of course, we could include the dimensions of the matrix by writing 0nm to denote
that it is an n-by-m matrix. We will adopt the convention in the text that when
we refer to the zero matrix we are taking a matrix of the appropriate size required
for the operation.
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These equations can be solved using conventional means. To do this we first
subtract (A.1a) from (A.1b) to give

x1 + 2x2 − (x1 + x2) = 5 − 3

or

x2 = 2,

and now substituting back into either equation (let us use (A.1a)) we have

x1 + 2 = 3

which gives

x1 = 1.

We can just as easily write the system (A.1) as a matrix equation(
1 1
1 2

)(
x1

x2

)
=
(

3
5

)

or as

Ax = b.

Try multiplying out the matrix equation to check you get (A.1a) and (A.1b).
Elementary linear algebra shows that the solution is given by A−1b, which can
be written in MATLAB as inv(A)*b or A\b. The operator \ determines the
effect of multiplying by the inverse of the first argument on the second, without
ever constructing the inverse. The code for this example would be:

>> A = [1 1; 1 2]; % Initialise the matrix A

>> b = [3; 5]; % Initialise the vector b

>> x = inv(A)*b % Determine the solution vector x

Before we proceed we note in the previous three lines of MATLAB code every-
thing after the percent sign % is taken by MATLAB to be a comment. Com-
ments are a useful way of making your MATLAB code readable by both you
and others.

We can check the answer from our matrix computation by typing A*x, which
should be equal to b.
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Example A.8 Determine the vector x which satisfies the equation Ax = b
where

A =

⎛
⎜⎜⎝

1 2 3 4
4 3 2 1
1 0 −1 0

−1 1 −1 1

⎞
⎟⎟⎠ and b =

⎛
⎜⎜⎝

5
10
15
20

⎞
⎟⎟⎠ .

We enter the matrix A and vector b directly using

>> A = [1 2 3 4; ...

4 3 2 1; ...

1 0 -1 0; ...

-1 1 -1 1];

>> b = [5; 10; 15; 20];

(Note we have used the three dots ... (or ellipsis) to indicate to MATLAB that
the input line continues. It is good practise to have a space before the dots at
the end of the line.) These results can then be used to form x:

>> inv(A)*b

ans =

3.2500

4.5000

-11.7500

7.0000

This solution was obtained by considering the equation Ax = b and pre-
multiplying each side by the inverse of the matrix A (we have deliberately chosen
A so that its inverse exists). This gives A−1Ax = A−1b but we recall from the
definition of the inverse that A−1A = I and that Ix = x. Hence we have the
solution x = A−1b.



B
Glossary of Useful Terms

This appendix is provided purely as a guide. MATLAB has a very informative
help feature help command which is supplemented with several other features
lookfor maths. You can also access the help files on the web helpdesk.

This appendix is broken down into:

– arithmetic and logical operators
– symbols
– plotting commands
– general MATLAB commands

B.1 Arithmetic and Logical Operators

+, - Used to add or subtract variables of the same size together, whether they
are matrices, vectors or scalars.�

�

�

�

A = [1 2; 3 4];

B = ones(2);

A + B

A - B

5 + 0.5

7 - 4
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It is also worth noting that these operations will add (or subtract) scalar
quantities from matrices. For instance:

�

�

�
A = ones(3);

B = A + 2;

C = 3 - A;

This produces a three-by-three matrix full of threes in B and a three-by-
three matrix full of twos in C. MATLAB will complain if these operations
are not viable.

*, / Used to multiply or divide variables as long as the operation is mathe-
matically viable:�

�

�

�

4 * 3.2

4 / 2.3

A = [1 2; 3 4];

B = ones(2);

A * B

A / B

The last two operations give AB and AB−1. Notice that the multiplica-
tion operation is only viable if the inner dimensions agree: the number of
columns of the first matrix must equal the number of rows of the second.

It can also multiply (or divide) matrices by scalars:

�

�

�
A = ones(3);

B = A/3;

C = A*4;

These commands give B as a three-by-three matrix full of 1/3’s and C as a
three-by-three matrix full of fours.

.* This binary operator allows one to perform multiplication calculations el-
ement by element on arrays of the same size. If we consider the vectors
x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). Then the calculation x‘.*’y
gives (x1y1, x2y2, x3y3, x4y4). Notice that both x and y were row vectors
of length 4 and so is the answer. Let us consider the example:
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�

�

�
A = [4 3; 2 1];

B = [1 2; 3 4];

C = A.*B;

This does the calculation element-wise and gives the result:

C =
(

4 × 1 3 × 2
2 × 3 1 × 4

)
=
(

4 6
6 4

)
.

This command can also be used on values which are scalars, so for instance
A = ones(2); B = A.*2; gives B as a matrix full of twos.

The most common use of this operator is again in the construction of
functions.

�

�

�
x = 1:5;

f = x.*sin(x);

g = (3*x+4).*(x+2);

This gives us x = [1 2 3 4 5] and then: f = x sin x evaluated at those
points, i.e. [sin(1) 2*sin(2) 3*sin(3) 4*sin(4) 5*sin(5)]; and g =
(3x+ 4)(x+ 2) at the points. Notice it is not necessary to use the operator
.* when calculating 3*x since 3 is a scalar.

./ This binary operator allows one to perform division calculations element
by element on arrays of the same size. If we consider the vectors x =
(x1, x2, x3, x4) and y = (y1, y2, y3, y4), then the calculation x‘./’y gives
(x1/y1, x2/y2, x3/y3, x4/y4). Notice that both x and y were row vectors of
length 4 and so is the answer. Let us consider the example:

�

�

�
A = [4 3; 2 1];

B = [1 2; 3 4];

C = A./B;

This does the calculation element-wise and gives the result:

C =
(

4/1 3/2
2/3 1/4

)
=
(

4 3
2

2
3

1
4

)
.

This command can also be used on values which are scalars, so for instance
A = ones(2); B = A./2; gives B as a matrix full of halves.

The most common use of this operator is in the construction of functions.
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�

�

�
x = 1:5;

f = x./sin(x);

g = (3*x+4)./(x+2);

This gives us x = [1 2 3 4 5] and then: f = x/ sin x evaluated at
those points, i.e. [1/sin(1) 2/sin(2) 3/sin(3) 4/sin(4) 5/sin(5)];
and g = (3x + 4)/(x + 2) at the points.

We can use this command where either of its arguments are scalars (in fact,
it is necessary for this example).�
�

�
�

x = [1 2 3 4 5];

y = 2./x

This gives [2/1 2/2 2/3 2/4 2/5]. This construction is useful when
working out functions of the form f(x) = 2/x.

.ˆ This binary operator allows one to perform exponentiation (raising to a
power) calculations element by element on arrays of the same size. If we
consider the vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4), then the
calculation x‘.ˆ’y gives (xy1

1 , xy2
2 , xy3

3 , xy4
4 ). Notice that both x and y were

row vectors of length 4 and so is the answer. Let us consider the example:

�

�

�
A = [4 3; 2 1];

B = [1 2; 3 4];

C = A.ˆB;

This does the calculation element-wise and gives the result:

C =
(

41 32

23 14

)
=
(

4 9
8 1

)
.

This command can also be used on values which are scalars, so for instance
A = ones(2); B = A.ˆ2; gives B as a matrix full of ones (that is one
squared).

The most common use of this operator is in the construction of functions.

�

�

�
x = 1:5;

f = x.ˆ(x+1);

g = (3*x+4).ˆx;
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This gives us x = [1 2 3 4 5] and then: f = xx+1 evaluated at those
points, i.e. [1ˆ2 2ˆ3 3ˆ4 4ˆ5 5ˆ6]; and g = (3x + 4)x at the points.

As with the operator ‘./’ we can use this command when either of its
arguments are scalars. For instance:
�

�
�

x = 1:5;

y = 2.ˆx;

z = x.ˆ2;

This gives y=[2ˆ1 2ˆ2 2ˆ3 2ˆ4 2ˆ5] and z=[1ˆ2 2ˆ2 3ˆ2 4ˆ2 5ˆ2].

\ This works out the effect of pre-multiplying by the inverse of the first ar-
gument on the second argument. So if we want to solve the set of linear
equations represented in the matrix equation Ax = b, we need to construct
x = A−1b.

�

�

�
A = [1 2; 3 4];

b = [2; 3];

x = A\b;

This solves the set of equations:

x1 + 2x2 = 2

3x1 + 4x2 = 3.

by defining

A =
(

1 2
3 4

)
and b =

(
2
3

)
,

with x = (x1, x2)T .

== Checks equality, rather than sets equal. This is usually exploited within
logical statements with scalars:�

�

�

�

if i==7

disp(’ i is seven ’)

else

disp(’ i is not seven ’)

end

This can be used in other forms: x = 1:12; mod(x,3)==0. This gives the
output:
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0 0 1 0 0 1 0 0 1 0 0 1

that is it is true provided the corresponding element of x is divisible by 3.

∼= Checks not equal to. Again this is mainly used in logical statements with
scalars:�

�

�

�

if i˜=7

disp(’ i is not seven ’)

else

disp(’ i is equal to seven ’)

end

This can be used inline x = 1:12; mod(x,3)∼=0. This gives the output:

1 1 0 1 1 0 1 1 0 1 1 0

that is it is true provided the corresponding element of x is not divisible
by 3. Note: great care is needed with this command since the simple order
change to y=∼x means set y equal to not(x).

>, >= Checks greater than and greater than or equal to. Mainly used with
scalars within logical statements:

�

�

�

�

if i>7

disp(’ i is greater than seven ’)

end

if i>=7

disp(’ i is greater than or equal to seven ’)

end

Can be used for an array x = 1:12; x>7 which gives

0 0 0 0 0 0 0 1 1 1 1 1

whereas x = 1:12; x>=7 gives
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0 0 0 0 0 0 1 1 1 1 1 1

that is the second one is true for x = 7.

<, <= Checks less than and less than or equal to. Mainly used with scalars
within logical statements:

�

�

�

�

if i<7

disp(’ i is less than seven ’)

end

if i<=7

disp(’ i is less than or equal to seven ’)

end

Can be used for an array x = 1:12; x<7 gives

1 1 1 1 1 1 0 0 0 0 0 0

whereas x = 1:12; x<=7

1 1 1 1 1 1 1 0 0 0 0 0

that is the second one is true for x = 7.

all This returns a value of true if all of the arguments are true: all(x.ˆ2>0)
would be true (provided all the values of x are real); x = 1:12; all(x>0)

would give true since all the elements of x are positive.

and Boolean operator for and can also use &. This is true only if both its
arguments are true.


�

�
�

if and(x>7,x<9)

disp(’ x is between 7 and 9’)

end

This can also be written as x>7 & x<9 and can be applied to arrays, so
that x = 1:12; and(x>7,x<9) gives:
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0 0 0 0 0 0 0 1 0 0 0 0

any This returns a value of true if any of the arguments are true: any(x<0)
would be true if any of the values in the vector x are strictly negative; x =

1:12; any(x>10) would be true since some elements of x are greater than
10.

find Provides a list of integers when the condition is true, for instance x =

1:10; [i]=find(x.ˆ2>26); gives the locations i=[6 7 8 9 10].

not Negates logical variables, can also use ∼. This can be used to turn true
into false and vice versa, so that


�

�
�

if not(x>=7)

disp(’ x is not greater than or equal to 7’)

end

This could also be written as ∼(x>=7). This can be applied to arrays, so
that x = 1:12; not(x>=7) gives:

1 1 1 1 1 1 0 0 0 0 0 0

or Boolean operator for or can also use |. This is true provided one of its
arguments is true.


�

�
�

if or(x<7,x>9)

disp(’ x is less than 7 or greater than 9’)

end

This can also be written as x<7 | x>9 and can be applied to arrays, so
that x = 1:12; or(x<7,x>9) gives:

1 1 1 1 1 1 0 0 0 1 1 1

xor Exclusive or. This gives true if one of the values is true and false if they
are both false or both true.



B.2 Symbols 343



�

�

�
x = [0 0 1 1];

y = [0 1 0 1];

xor(x,y)

gives [0 1 1 0].

We note that this can also be done for or and and.

B.2 Symbols

... Used to link lines together (but cannot be used within a string):
�

�
�

x = 1:10;

f = x.ˆ2+sqrt(x.ˆ2+1) ...

+ cos(x)./x;

This gives the function f = x2 +
√

x2 + 1 + cos x/x at the values from x

equals 1 to 10.

% Means the rest of the line is a comment. It also has special meaning at the
start of a code. It can be very useful for eliminating the execution of certain
lines of a code.

�

�

�

�

% This code calculates the value

% of x times sin(x)

f = x.*sin(x);

% and the value of cos(xˆ2)

g = cos(x.ˆ2); % where x can be a vector.

If this code was saved as mycode.m then typing help mycode would pro-
duce:

This code calculates the value

of x times sin(x)
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; Used at the end of a phrase to suppress output. It can occur at the physical
end of a line or at the end of a set of commands.

�

�

�
a = ones(2);

b = ones(2); c = ones(2);

d1 = ones(2); d2 = ones(2)

This code will set up the two-by-two matrices a, b, c, d1 and d2 full of ones.
It will only report on the initiation of d2 since this phrase is not concluded
with a semicolon.

It can also be used to end lines within matrices (enclosed within pairs of
square brackets)�
�

�
�A= [ 1 2; 3 4];

This gives the matrix

A =
(

1 2
3 4

)
.

(Note that the semicolon is used in both its incarnations here.) We note
that both uses of the semicolon correspond to the end of the phrase: it
is merely that the square brackets are unbalanced in the latter case so
MATLAB knows that it is going to read the next line of the matrix.

: Used to delimit values when setting up a vector and also to refer to entire
rows or columns of matrices. When setting a row vector there are two
syntaxes:�
�

�
�

x1 = 1:12

x2 = 1:2:13

The first of these commands sets up an array from 1 to 12 in steps of
unity (and is equivalent to 1:1:12) whereas the second array runs from
1 to 13 in steps of 2, thus it yields [1 3 5 7 9 11 13]. The syntaxes
are a:b (an array from a to a value not exceeding b in steps of unity)
and a:h:b (an array from a to a value not exceeding b in steps of h)
(see also linspace). Note that h can be negative 11:(-2):1 gives [11 9

7 5 3 1]. We note that the length of an array set up using a:h:b is not
(b−a)/h (presuming that this is an integer), but (b−a)/h+1. For example
0:0.1:1 has eleven points [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0] rather than ten. This dimension can be determined using length.
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The second use of this symbol allows reference to all viable values of a row
or column.

�

�

�

�

A = [11 12 13; 21 22 23; 31 32 33];

A(1,:) % First row of A

A(:,2) % Second column of A

A(:,:) % Whole of A.

A(:,1:2) % First and second columns of A

A(1:2:3,:) % First and third rows of A

A(1:2,1:2) % Top left two-by-two corner of A

, Can be used to delimit sets of commands where feedback is required:�
�

�
�a = 1, b = 2

and to separate elements of matrices on a particular line�
�

�
�A = [1,2,3,4;5,6,7,8];

It is also used to separate arguments of functions�
�

�
�x = linspace(0,1,200);

’ ’ Used to surround strings and for passing arguments to various functions:

	




�

�
a = ’Do robots dream of electronic sheep?’

x = 1:12;

y = x.ˆ2;

plot(x,y,’LineWidth’,2)

see the comments on plot below.

’ Gives the complex conjugate transpose of a matrix. If the n-by-m matrix
A has elements ai,j , then B = A’ is m-by-n and has elements bi,j = a∗

j,i

(where i ∈ {1, · · · , m} and j ∈ {1, · · · , n}).
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�
�

�
�

A = [1+2*i 2-i; 3 4+i];

B = A’;

This gives

B =
(

1 − 2i 3
2 + i 4 − i

)
.

.’ Gives the transpose of a matrix. If the n-by-m matrix A has elements ai,j ,
then B = A.’ is m-by-n and has elements bi,j = aj,i (where i ∈ {1, · · · , m}
and j ∈ {1, · · · , n}).�
�

�
�

A = [1+2*i 2-i; 3 4+i];

B = A.’;

This gives

B =
(

1 + 2i 3
2 − i 4 + i

)
.

It is better to use this form rather than A’ unless you are concerned with
issues of complex matrices.

(space) Can be used to separate elements of matrices, as for the comma; but
cannot be used to separate commands. Hence we can use:�
�

�
�

A = [1 2 3; 4 5 6];

B = [ 1:3 ; 3 2 1];

The reason that (space) cannot be used to delimit commands is that it
can occur naturally within a command, for instance a = 2 which is used
rather than a=2 merely to improve the readability of the code.

. decimal point – This can be used firstly as the mathematical decimal point:
3.145 or 567.3245. It is also used to punctuate file names into two parts:
an identifier (descriptive of the contents of the code, or its function) and
then the file’s type (.m, .mat, .dat or .fig). For this reason you should
only have one ‘.’ in each number or filename.

[ ] used to enclose elements of a vector or matrix:	




�

�
A = [1 2 3 5 6 7];

B = [1 2 3;

3 4 5];

ms = [’Vector array’ ’ of strings’];
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These brackets should balance.

( ) used to surround mathematical expressions and lists of arguments for
functions:

�

�

�
x= 1:12

y = 1./(x.ˆ2+1);

z = x.*sin(y);

Again these brackets should balance.

B.3 Plotting Commands

Before we start this section we need to discuss the idea of a handle. This is
essentially a variable which allows us to access properties of an object.

>> x = 1:12; y = x.ˆ2;

>> h = plot(x,y)

>> get(h)

Color = [0 0 1]

EraseMode = normal

LineStyle = -

LineWidth = [0.5]

Marker = none

MarkerSize = [6]

MarkerEdgeColor = auto

MarkerFaceColor = none

XData = [ (1 by 12) double array]

YData = [ (1 by 12) double array]

ZData = []

ButtonDownFcn =

Children = []

Clipping = on

CreateFcn =

DeleteFcn =

BusyAction = queue

HandleVisibility = on

Interruptible = on

Parent = [3.00012]
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Selected = off

SelectionHighlight = on

Tag =

Type = line

UserData = []

Visible = on

The variable h allows us to access all of these commands, which can be changed
using the command set, for instance set(h,’MarkerSize’,10).

axes Used to initiate a set of axes	




�

�
figure(1)

h = axes

figure(2)

h = axes(’position’,[0.2 0.2 0.6 0.6])

The first command yields a full window set of axes with default ranges.
The second command gives a reduced set of axes:
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1

in the centre of the window of dimension 0.4 times the window width and
height. The attributes of the handle can then be used by get and set.

axis In plots used to set the range of the plot, the argument is a row vector of
length 4 (for two-dimensional plots) or of length 6 (for three-dimensional
plots).
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�

�

�
x = 0:pi/20:pi; y = sin(x);

plot(x,y)

axis([-pi/2 pi/2 -1 1])

The initial ranges for the axes are given by [min(x) max(x) min(y)

max(y)] which gives:
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whereas typing the axis command above gives
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For three dimensions a similar structure applies with an extra pair of vari-
ables representing the minimum and maximum of the third variable.
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�

�

�

�

t = linspace(0,2*pi);

x = cos(t);

y = sin(t);

z = t;

plot3(x,y,z)

grid on

axis([-1.5 1.5 -1.5 1.5 -pi/2 2*pi])

This gives the plot:
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We have used grid on to add the dotted lines.

The command can also be used as:

�

�

�

�

axis off % Removes the axis from the current figure

axis equal % Sets the axis scaling to be equal.

axis square % Sets the axis to be square.

axis tight % Uses the max and min of the

% data for axis limits

for more variants see help axis.

bar Produces a bar chart of the data.
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�

�

�
x = [1 2 3 4 5];

y = [13 12 9 8 15];

bar(x,y)

This gives:

1 2 3 4 5
0

5

10

15

If only one argument is supplied it uses x = 1:m where m is the number of
values of y.

barh Produces a horizontal bar chart of the data.

�

�

�
x = [1 2 3 4 5];

y = [13 12 9 8 15];

barh(x,y)

This gives:

0 5 10 15

1

2

3
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5
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If only one argument is supplied it uses x = 1:m where m is the number of
values of y.

clf This clears the current figure, in fact it removes all children with visible
handles. It removes any axes from the current figure. It is useful to use this
before we start plotting.

close This is used to close figures; close all closes all figures. There are
basically three syntaxes:



�

�

�
close % Closes the current figure

close(4) % closes figure number 4

close all % closes all figures.

This can be used for other windows by using their handle: close(h) closes
the window with handle h.

figure This brings the requested figure to the fore, or creates it if it doesn’t
exist.

�

�

�

�

figure % Creates a figure

figure(3) % Ensures that Figure No. 3 is the current

% figure and is at the fore.

figure(h) % Ensures that the figure with the handle

% h is the current figure

gca Returns the handle to the current axis; this allows various properties to
be displayed (get) and modified (set).

There are many variables involved:

>> x = 1:12; y=x.ˆ2;
>> plot(x,y)
>> h = gca
>> get(h)

AmbientLightColor = [1 1 1]
Box = on
CameraPosition = [6 75 17.3205]
CameraPositionMode = auto
CameraTarget = [6 75 0]
CameraTargetMode = auto
CameraUpVector = [0 1 0]
CameraUpVectorMode = auto
CameraViewAngle = [6.60861]
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CameraViewAngleMode = auto
CLim = [0 1]
CLimMode = auto
Color = [1 1 1]
CurrentPoint = [ (2 by 3) double array]
ColorOrder = [ (7 by 3) double array]
DataAspectRatio = [6 75 1]
DataAspectRatioMode = auto
DrawMode = normal
FontAngle = normal
FontName = Helvetica
FontSize = [10]
FontUnits = points
FontWeight = normal
GridLineStyle = :
Layer = bottom
LineStyleOrder = -
LineWidth = [0.5]
NextPlot = replace
PlotBoxAspectRatio = [1 1 1]
PlotBoxAspectRatioMode = auto
Projection = orthographic
Position = [0.13 0.11 0.775 0.815]
TickLength = [0.01 0.025]
TickDir = in
TickDirMode = auto
Title = [287.001]
Units = normalized
View = [0 90]
XColor = [0 0 0]
XDir = normal
XGrid = off
XLabel = [288]
XAxisLocation = bottom
XLim = [0 12]
XLimMode = auto
XScale = linear
XTick = [ (1 by 7) double array]
XTickLabel =

0
2
4
6
8
10
12

XTickLabelMode = auto
XTickMode = auto
YColor = [0 0 0]
YDir = normal
YGrid = off
YLabel = [289]
YAxisLocation = left
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YLim = [0 150]
YLimMode = auto
YScale = linear
YTick = [0 50 100 150]
YTickLabel =

0
50
100
150

YTickLabelMode = auto
YTickMode = auto
ZColor = [0 0 0]
ZDir = normal
ZGrid = off
ZLabel = [290]
ZLim = [-1 1]
ZLimMode = auto
ZScale = linear
ZTick = [-1 0 1]
ZTickLabel =
ZTickLabelMode = auto
ZTickMode = auto

ButtonDownFcn =
Children = [285]
Clipping = on
CreateFcn =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [1]
Selected = off
SelectionHighlight = on
Tag =
Type = axes
UIContextMenu = []
UserData = []
Visible = on

gcf Returns the handle of the current figure. This allows various properties to
be displayed (get) and modified (set).	




�

�
x = 1:12; y = x.ˆ2;

plot(x,y)

h = gcf

get(h)
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returns the list printed on page 348.

get Extracts a particular attribute from a list, retrieved for example by gca

or gcf.

>> x = 1:12; y = x.ˆ2;

>> plot(x,y)

>> h = gcf

>> a = gca

>> get(h,’Color’)

ans =

0.8000 0.8000 0.8000

>> get(a,’YTick’)

ans =

0 50 100 150

The colour variable is returned as a triple (a one-by-three vector giving the
RGB (Red-Green-Blue) value). The values associated with the axis and the
figure can be changed using the set command.

ginput Returns coordinates of mouse clicks on the current figure in terms of
axis units; very useful for obtaining initial estimates for roots (see also
zoom).	




�

�
x = 0:pi/20:4*pi;

y = sin(x);

plot(x,y)

[xp,yp]= ginput

Notice that control is passed over to the figure and the points are stored in
the arrays xp and yp (until the return key is hit). The command can also
be used as n = 10; [xp,yp] = ginput(n) to only get 10 points.

gplot Plot a graph using the vertices and the adjacency matrix. To plot the
graph
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we use the code:�

�

�

�

xy = [0 0;1 0;

1 1; 0.5 0.5];

A = [0 1 0 0;

1 0 1 1;

0 1 0 1;

0 1 1 0];

gplot(A,xy,’-*’)

axis equal

axis off

grid Add a grid to a plot (or turn it off).�

�

�

�

grid on % Turns the grid on

grid off % Turns the grid off

grid % Toggles the grid state

hist Produces a histogram of the data.

>> y = [1 2 3 43 32 54 33 2 4 53 5 63 21 1 5 2];

>> hist(y)
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gives
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We can use a second argument for hist to define the number of bins.

hold Stops overwriting of current figure.

�

�

�

�

hold on % Turns the hold on

hold off % Turns the hold off

hold % Toggles the hold state

This is useful for putting multiple lines on a plot.�

�

�

�

x = 0:pi/20:pi;

y = sin(x);

z = cos(2*x);

clf

plot(x,y)

hold on

plot(x,z)

hold off

legend Used to add a “legend” to a figure, to describe the lines.
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�

�

�

�

x = 1:10;

y = x.ˆ2;

z = sin(x);

plot(x,y,x,z)

legend(’xˆ2’,’sin x’, 0)

This gives

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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3.5
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x2

sin x

The arguments for legend consist of the labelling for the lines and a number
which is chosen from:

0 = Automatic “best” placement (least conflict with data)
1 = Upper right hand corner (default)
2 = Upper left hand corner
3 = Lower left hand corner
4 = Lower right hand corner
-1 = To the right of the plot

loglog Produces a graph of natural log against natural log of the data.



�

�

�
x = [1e-3 1e-2 1e-1 1 1e1 1e2];

y = [10e-3 10e-2 10e-1 10 10e1 10e2];

loglog(x,y)

This gives:
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see also semilogx and semilogy.

plot Used to set up figures and plotting of data. The simplest form would be
plot(x,y). This command is extremely powerful and has many variants
(typing help plot helps tremendously).

x = -1:0.1:1;

y = x.ˆ3;

plot(x,y) % Produces a simple plot of y=xˆ3

% using the default line colour

plot(x,y,’go’) % Produces a simple plot of y=xˆ3

% using green circles.

The arguments in plot either occur: in pairs in which they are pairs of
coordinates for plotting or in triples in which case they are pairs of coordi-
nates and the line style with which the data is to be plotted. You can also
define variables associated with the plot in the statement:�
�

�
�plot(x,y,’LineWidth’,2)

plots the line but with a thicker line.

plot3 This is similar to plot but gives a line in three dimensions.
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�

�

�

�

x = 0.:0.1:3.0;

y = x.ˆ2;

z = 3*x+1;

plot3(x,y,z)

grid on

This gives
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print Used to output the contents of figures to files, for Postscript use print

-dps2 output.ps. For colour Postscript use print -dpsc2 output.cps

or for JPEG format printf -djpeg90 output.jpg.

semilogx Produce a plot of y versus ln x.�
�

�
�

x = linspace(1,100,30);

semilogx(x,log(x))

gives:
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semilogy Produce a plot of ln y versus x.�
�

�
�

x = linspace(1,100,30);

semilogy(log(x),x)

gives:
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set Allows the definition of a particular attribute from a list, retrieved for
example by gca and gcf, or directly from a plot command.
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�

�
x = 1:12;

y = 1./x;

h = plot(x,y)

set(h,’LineWidth’,4)

This gives
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For a list of the attributes of an object (and their values) use get(h), where
h is defined directly using gca or gcf.

subplot Sets up sub-elements of a plot and points to which one is current. It
takes three arguments:

�
�

�
�subplot(4,2,3) % Gives an array of figures 4-by-2

and sets the current axis to be the third figure, that is the left hand figure
on the second row.

�

�

�

 
for j = 1:8

subplot(4,2,j)

text(0.5,0.5,int2str(j),’FontSize’,24)

end

This gives eight subplots (which have been labelled with their correspond-
ing numbers).
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text Used to add useful labels to figures.�

�

�

�

x = -1:0.1:1;

y = sin(x.ˆ2);

plot(x,y)

h = text(0,0.5,’sin xˆ2’)

set(h,’FontSize’,18)

This gives:
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sin x2

The syntax is text(a,b,string) where (a,b) is the coordinate in terms of
the data and string is enclosed in single quotes. Notice here that sin xˆ2
actually appears as sin x2. These commands also recognise underscore for
subscript and Greek letters in the form \omega, for instance.
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title Used to set the title of a plot or subplot. This has quite simple syntax
and attaches it to the current set of axes.	




�

�
x = 0.0:0.1:5.0;

y = 1-exp(-x);

plot(x,y)

title(’f(x) = 1-eˆ{-x}’,’FontSize’,18)

which gives:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
f(x) = 1−e−x

Notice we have used curly brackets to group the power of e for the title.

xlabel, ylabel Sets the text for the x and y axis.�

�

�

�

x = linspace(-2,2,30);

y = (x - 3).ˆ2;

plot(x,y)

hx = xlabel(’x values’)

hy = ylabel(’y = (x-3)ˆ2’)

set(hx,’FontSize’,16)

set(hy,’FontSize’,16)

which gives:
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

x values

y 
=

 (
x−

3)
2

zoom Permits zooming into figures: right click enlarge, left click to reduce. This
has the syntax:

�

�

�

�

zoom on % Turns the zoom on

zoom off % Turns the zoom off

zoom % Toggles the zoom state

B.4 General MATLAB Commands

abs Returns the absolute value of a real number or the modulus of a complex
one (actually both are the same thing).�

�

�

�

abs(-1) % Gives 1

abs(1+i) % Gives sqrt(2)

x = [1 -2 3+3i];

abs(x)

This also works for vectors and matrices so that the final example gives
[1.0000 2.0000 4.2426] (where the last value is 3

√
2).

angle Returns the argument of a complex number.
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�

�

�
angle(sqrt(-1)) % This gives pi/2

angle(2) % This gives 0

angle(-2) % This gives pi

This can be used for an array of values and returns a vector of the same
size full of the corresponding arguments.

atan2 Gives the arctangent with values between (−π, π]. (see also tan,atan).
Rather than calculating y/x and then taking the arctangent this function
takes account of which quadrant the value is in.

�

�

�
atan2(1,1) % Gives pi/4

atan2(-1,-1) % Gives -3pi/4

atan2(1,0) % Gives pi/2

Note that the y value is given first. This command can be used to determine
the argument of a complex number as atan2(imag(z),real(z)) (which
can be compared with angle(z).

besselj Gives the solution Jν(x) to Bessel’s equation x2y′′+xy′+(x2−ν2)y =
0. 

�

�

�
x = linspace(0,6);

y = besselj(0.5,x);

plot(x,y)

This gives the graph:

0 1 2 3 4 5 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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The parameter ν is set to be 1/2 here and in fact J 1
2
(x) = sinx/

√
x.

There are other Bessel functions: bessely(nu,x), besseli(nu,x) and
besselk(nu,x).

break Stop current level of execution and go back to the previous level, for
instance exit a function.�

�

�

�

function [sx] = takesqrt(x)

if x<0

disp(’ x is negative ’)

sx = NaN;

break

end

sx = sqrt(x);

This routine finds the square root of positive quantities and breaks if x is
negative.

case Elements of a switch list, plausible values which the argument can take
(see switch entry for example).

ceil Rounds up to the integer above, has the syntax ceil(x) where x can be
a matrix, vector or scalar.

>> x = [0.3 0.9; 1.01 -2.3];

>> ceil(x)

ans =

1 1

2 -2

clear Used to reset objects; clear variables removes all variables.

�

�

�

�

clear all % Clears variables, globals, fns etc

clear variables % Clear all variables

clear global % Clear global variables

clear % Same as clear variable

clear x % Clear local variable x

clear x* % Clear local variables starting with x.
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cond Gives the condition number of a matrix, that is the ratio of its largest
and smallest eigenvalues. This reflects the ease with which the matrix can
be inverted, amongst other things.�
�

�
�

A = [100 0; 0 0.1];

cond(A)

This matrix has eigenvalues of 100 and 0.1 and cond(A) returns 1000, that
is 100/0.1. In particular the Hilbert matrix is particularly badly conditioned
(ill-conditioned), see hilb.

conj Gives the conjugate of a complex number or an array of them.�
�

�
�

x = [1 1+i -2-i 4+3i];

conj(x)

corrcoef Gives the correlation coefficient between two sets of data.

>> x = [ 1 2 3 4 5 6];

>> y = [ 3 4 2 1 4 5];

>> corrcoef(x,y)

ans =

1.0000 0.3268

0.3268 1.0000

This means that x and y are totally correlated with themselves and that the
correlation coefficient between the vectors is 0.3268. That is a slight posi-
tive correlation. The correlation coefficient between two random variables
X and Y is given by

r =
cov(X, Y )√

var(X)var(Y )
,

where the variances are defined in Equation (B.2) and the covariance in
Equation (B.1).

cos, acos Cosine and arccosine. These functions need to be used with brackets
cos(x) and acos(x) (without, it produces a bizarre result, for instance cos
pi gives a one-by-two row vector with the elements cosine of the ASCII code
for “p” followed by the cosine of the ASCII code for “i”). These functions
can also be used for vectors and matrices.
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�

�

�
x = 0:pi/20:pi;

y = cos(x)

z = acos(y)

cosh Hyperbolic cosine, equal to (ex + e−x)/2.

cov Gives the covariance of two sets of data.

>> x = [ 1 2 3 4 5 6];

>> y = [ 3 4 2 1 4 5];

>> cov(x,y)

ans =

3.5000 0.9000

0.9000 2.1667

The top left and bottom right elements are the variances of x and y and
the other elements are the covariances. The covariance is defined as

σXY =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ). (B.1)

For the definition of the variance see Equation (B.2). This is normalised
using N − 1 (rather than N) since this gives the best unbiased estimate of
the covariance.

cputime Gives the current value of the CPU time. This can be used to time
how long parts of the code take:�

�

�

�

t = cputime;

A = rand(100);

B = inv(A);

t2 = cputime - t;

disp([’Took ’ num2str(t2) ’ seconds’])

dec2hex Converts a decimal number to a hexadecimal number. The output
will be a string; a=23456; dec2hex(a). See also hex2dec.

demo Demonstrates the features and capabilities of MATLAB.

det This gives the determinant of a matrix. A = ones(10); det(A).
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diag Sets one of the diagonals of a matrix. The diagonals are referred to as: 0
the leading diagonal, which runs from top left to bottom right. The super-
diagonals 1, 2, etc are above the leading diagonal and the sub-diagonals
−1, −2, etc are below the leading diagonal. Note that the nth diagonal is
|n| units longer than the leading one. If no diagonal is specified then the
leading one is used.

�

�

�
x = 1:4;

A = diag(x);

B = diag(x,2) + diag(x,-2);

The matrix A is a four-by-four matrix with the elements of x (i.e. 1, 2, 3
and 4 down the leading diagonal), whereas B is the matrix

B =

0 0 1 0 0 0

0 0 0 2 0 0

1 0 0 0 3 0

0 2 0 0 0 4

0 0 3 0 0 0

0 0 0 4 0 0

The command can also be used in reverse, for instance diag(A) gives [1 2

3 4] and diag(B,1) gives [0 0 0 0 0]: here we have extracted diagonals.

As a further example we run the code	




�

�
A = zeros(10);

for i = -9:9

A = A+diag(ones(10-abs(i),1),i)*(i);

end

which gives

>> A

A =

0 1 2 3 4 5 6 7 8 9
-1 0 1 2 3 4 5 6 7 8
-2 -1 0 1 2 3 4 5 6 7
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-3 -2 -1 0 1 2 3 4 5 6
-4 -3 -2 -1 0 1 2 3 4 5
-5 -4 -3 -2 -1 0 1 2 3 4
-6 -5 -4 -3 -2 -1 0 1 2 3
-7 -6 -5 -4 -3 -2 -1 0 1 2
-8 -7 -6 -5 -4 -3 -2 -1 0 1
-9 -8 -7 -6 -5 -4 -3 -2 -1 0

diary Records the user commands and output. This is useful to see which
commands have been used. One can specify the file in which the output is
stored:	




�

�
diary(’list.diary’)

x = 1:10;

y = x.ˆ2;

diary off

diff Gives the difference between successive elements of a vector (is one unit
shorter than the original vector): x=(1:10).ˆ2; diff(x), where d(j) =
x(j + 1) − x(j).

disp Displays its argument, which is usually a string: a=10; disp([’The

value of a is ’ int2str(a)]).

edit Invokes the MATLAB editor, which is very useful since it allows us to
see the current values of variables and provides a very user friendly envi-
ronment for developing MATLAB programs.

eig Returns all the eigenvalues and eigenvectors of a matrix.�
�

�
�

A = [1 2; -1 2];

[V, D] = eig(A)

V is a two-by-two matrix with the eigenvectors and columns and D is a
diagonal matrix containing the eigenvalues on the leading diagonal.

eigs Returns certain eigenvalues and eigenvectors of a matrix, specified by
certain criteria. [V,D] = eigs(A,3,’SM’) gives the three eigenvalues of A
with the smallest magnitude (and the corresponding eigenvectors). There
are many options for this command, see help eigs.

else If the argument for the preceding if statement is false execute these
statements.

elseif Same as else but imposing an alternative constraint.
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end This command ends all of the loop structures and for each starting argu-
ment there must be a corresponding end (used with for, if, switch and
while).

eps The distance from 1.0 to the next largest floating point number. So MAT-
LAB cannot tell the difference between 1 and 1+eps/2, for instance.

error Causes the code to stop execution; error(’Broken!’) usually used
within a conditional statement.

exist Checks to see whether an object exists:
�

�
�

if ˜exist(’a’)

disp([’The variable a ’ ...

’does not exist’])

This can be used beyond variables: see the help lines for the command.

exp Evaluate the expression ex, can be used with vectors and matrices.

expm Evaluate the expression eA, where A is a matrix. This differs from
exp(A), which evaluates ex for all the elements of A rather than eA which
is given by:

eA ≡ I +
∞∑

j=1

Aj

j!
.

eye Sets up the identity matrix: eye(n) gives In.

factor Gives the prime factors of an integer.

factorial This calculates the factorial of an integer n: factorial(n) gives
n!.

feval Evaluates a function, either user-defined or intrinsic. feval(’sin’,pi).

fix Rounds to the nearest integer (closest to zero), also works for matrices.

fliplr Flips an object left to right. This has no effect on column vectors.�
�

�
�

x = 1:6;

y = fliplr(x)

sets y to be [6 5 4 3 2 1]. This also works with matrices.

flipud Flips an object upside down. This has no effect on row vectors.
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�
�

�
�

x = transpose(1:6);

y = flipud(x)

sets y to be [6; 5; 4; 3; 2; 1]. This also works with matrices.

floor Rounds down to the integer below, also works for matrices.

fmins This uses the Nelder–Mead simplex (direct search) method to find the
minimum of a function. For instance to find the minimum of the function
f(x1, x2) = (x1 + 2x2 − 1)2/(x2

2 + 1) we use�
�

�
�

function [f]=func(x)

f = (x(1)+2*x(2)-1)ˆ2/(x(2)ˆ2+1);

and the command [x]=fmins(’func’,[0 0]).

for Defines the start of a loop which runs over a list of objects.�

�

�

 
N = 10

for j = 2:10

disp(j)

end

displays the numbers from 2 to 10.

format Used to specify how MATLAB displays variables. The options can be
retrieved using help format.

full Tells the programme to treat the matrix as full, rather than sparse.

�

�

�
A = [1 0 2; 0 -2 0; -1 0 0];

B = sparse(A);

C = full(B);

>> A

A =

1 0 2

0 -2 0

-1 0 0
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>> B

B =

(1,1) 1

(3,1) -1

(2,2) -2

(1,3) 2

and C is back to A again.

function Occurs at the start of a function definition;
function [v1,v2]=testfn(in1,in2,in3).

fzero Determines one zero of the function passed as the first argument to
fzero. This function takes many different arguments and these can be
displayed using help fzero.�
�

�
�

f = inline(’sin(3*x)’);

x = fzero(f,2);

finds a zero of the function f(x) = sin 3x near x equals two.

Zero found in the interval: [1.8869, 2.1131].

>> x

x =

2.0944

gcd Gives the greatest common divisor of two integers. This is unity if they
are coprime: used as gcd(x,y).

global This enables variables to be accessed from other places in the code
without being passed directly as an argument. There needs to be a global

statement in the context in which the variable is defined and also one where
it is used.

help Gives help on MATLAB commands and can be used to expand the ma-
terial given in this glossary.

helpbrowser Launches a web browser help facility (MATLAB 6).
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helpdesk Provides access to the web-based help facility.

hex2dec Converts a hexadecimal number to a decimal: the input needs to be
a string; a=’FF0’; hex2dec(a). See also dec2hex.

hilb(n) This sets up the n-by-n Hilbert matrix with entries (A)i,j = 1/(i+j).

i,j Initially set to be the square root of minus 1. These can be used to set up
complex numbers:�
�

�
�

a = 3 + 2*i;

b = -4 + j;

(Note that once either of these variables has been used in another context
they will not necessarily be equal to

√−1.)

if Start of a conditional block: if the statement is true then execute its con-
tents.
�

�
�

if x>1

disp(’x is greater than 1’)

end

This statement uses the logical structures described in section B.1.

imag Gives the imaginary part of a complex number; imag(1+i) gives 1.

Inf This represents answers which are infinite, for instance 1/0.

inline Used to define functions which will be evaluated inline, see the help
function; g = inline(’tˆ2’) gives g = t2 and then it can be used in
feval as feval(g,5).

input Used for user entry of data a=input(’Enter a: ’);; can also be used
to enter strings name = input(’Enter name ’,s);.

int2str This takes an integer and returns a string: int2str(10) gives ’10’.

inv Works out the inverse of a matrix (if it exists).
�

�
�

a = [1 3; 2 -1];

b = inv(a);

a * b

This gives the two-by-two identity (which could be constructed using the
command eye(2)).
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isempty Checks whether a variable is empty.
�

�
�

if isempty(x)

disp(’x is empty’)

end

This means that the array has either zero rows or zero columns but still
exists; to check the existence of a variable use the exist command.

isreal Checks whether a variable is real.�
�

�
�

isreal(exp(0))

isreal(exp(i))

Care is needed since this command checks to see if the imaginary part of the
complex number is exactly zero and does not allow for computation errors:
for instance eiπ = −1, but the command isreal(exp(i*pi)) suggests that
the quantity is complex.

isprime Checks whether a variable is prime: isprime(24) gives false (that is
zero) whereas isprime(3571) gives true (that is one).

length Gives the length of a vector or alternatively the larger dimension of a
matrix:	




�

�
a = [1 2 3; 4 5 6];

b = 1:16

length(a)

length(b)

gives the values 3 and 16 respectively.

linspace Sets up a grid of one hundred points from the first argument to the
second. If there are three arguments use this as the number of points in
the grid.�
�

�
�

x = linspace(0,1,6);

z = linspace(1,10);

This gives x = [0 0.2 0.4 0.6 0.8 1] and z being the array running
from 1 to 10 in steps of (10 − 1)/99; since the endpoints are included the
step length is not (10 − 1)/100 as you might initially expect.
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load Reads in data, either directly into variable load data (which loads
data.mat) or load ’data.dat’ which returns a matrix data.

log Natural logarithms.�
�

�
�

x = [1 exp(1) exp(2)]

y = log(x)

This would be written mathematically as y = lnx.

log10 Logarithm to base ten.�
�

�
�

x = [1 10 10ˆ2]

y = log10(x)

This would be written mathematically as y = log10x. We note that log10x =
lnx/ ln 10.

lookfor Allows one to search help files for any command which has a string
in its specification lookfor bessel.

lower Converts the characters in a string to lower case:�
�

�
�

name = ’Bob Roberts’;

lower(name)

This gives bob roberts (the opposite command is upper).

lu This produces the LU decomposition of a matrix and can provide informa-
tion concerning pivoting.�
�

�
�

A = [1 2 3; -1 3 2; -1 0 1];

[L,U] = lu(A)

Gives

L =

1.0000 0 0

-1.0000 1.0000 0

-1.0000 0.4000 1.0000
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U =

1 2 3

0 5 5

0 0 2

To obtain the pivoting information we would have used [L,U,P] = lu(A).
In this case P is the three-by-three identity.

magic Returns a magic square:

>> magic(4)

ans =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Notice that not only do the rows, columns and diagonals add up to 34, but
so do the four numbers in each corner, the numbers in each two-by-two
block in the corner and the central two-by-two block.

max This returns the maximum of a vector: if a matrix is supplied it returns a
vector providing the maxima along the rows.�
�

�
�

x = 0:pi/4:2*pi

max(sin(x))

gives 1, and

�

�

�
A = [1 2 3; 4 5 6];

max(A)

max(transpose(A))

gives [4 5 6] (that is the maxima of the columns) and [3 6] (the max-
ima of the rows), respectively. Instead of using the transpose we can use
the syntax max(A,[],2), which determines the maximum along the sec-
ond dimension. To find the maximum of a two-dimensional array we use
max(max(A)).
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mean Calculates the mean of a set of data, 1/n
n∑

i=1
xi.

�
�

�
�mean([1 2 3 4 5 6 7])

This can also be used on matrices:

�

�

�
a = [1 2 3; 4 5 6];

mean(a,1)

mean(a,2)

the former giving the averages of the columns and the latter the averages
of the rows.

median Gives the median of a set of data, that is the one in the middle when
the data is ordered. This works in the same way as mean on matrices.

min Similar to max but giving the minimum.

mod This gives the remainder when the first argument is divided by the second.
If used in the context mod(x,1) this gives the fractional part of x. It is
similar to rem.

NaN Not-a-Number, used to return quantities which are not assigned, for in-
stance 0/0.

norm Gives the mathematical norm of a quantity, particularly useful for work-
ing out the length of vectors. For vectors we have�
�

�
�norm(v,p)

gives (
n∑

i=1

|vi|p
)1/p

.

If p equals two this is a “conventional” norm and the commands

norm(v,inf)

norm(v,-inf)

give max(abs(V)) and min(abs(V)), respectively.
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num2str Converts a number to a string with a specified number of digits;
num2str(pi,4). This can also be used without specifying the number of
digits (which uses the default corresponding to four places after the decimal
point).

ode23,ode45 , Hybrid Runge–Kutta routines to integrate functions, the former
being a combination of second- and third-order schemes and the latter
fourth and fifth.

We consider the solution of the differential equation

dy

dt
= t2 − y2

subject to the initial conditions y(0) = 1. Firstly we need to set up a
function to give y′:�
�

�
�

function [out] = func(t,y)

out = t.ˆ2-y.ˆ2;

(which we shall presume has been saved as func.m). This can now be called
using:

�

�

�
trange = [0 1];

yinit = 1;

[t,y] = ode45(’func’,trange,yinit);

This gives the solution:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
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We can set tolerances, amongst other options. Consider the system of dif-
ferential equations

dx

dt
= t − y

dy

dt
= x,

subject to the initial conditions x(0) = y(0) = 0. We introduce the vector
y = (x(t), y(t))T , and as such we modify the code func.m to be:�

�

�

�

function [out] = func(t,in)

% in(1) is x(t) and in(2) is y(t).

out = zeros(2,1);

out(1) = t-in(2);

out(2) = in(1);

This is called using the code:

trange = [0 1];

yinit = [0; 0];

options = odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4]);

ode45(’func’,trange,yinit,options);

This is for the above version of func.m for the coupled first-order systems,
which sets the relative tolerance to be 1e-4 and the absolute tolerances to
be [1e-4 1e-5]. This gives:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5



382 B. Glossary of Useful Terms

The upper line is x(t) and the lower one is y(t).

ones Sets up a matrix full of ones. ones(n,m) gives A which is an n-by-m
matrix for which ai,j = 1. ones(n) gives a square matrix (n-by-n).

otherwise If none of the cases correspond to the argument of the switch

command then these statements are executed.

path A list of places MATLAB looks for files, also serves as a command to
alter this variable. This command varies on different platforms and as such
you should look at help path.

pause Causes the programme to wait a specified time, or can be used to wait
until the user touches a key.�

�

�

�

x = linspace(0,10);

for its = 1:5

y = besselj(its/2,x);

clf

plot(x,y)

pause

end

This programme runs through the functions Jn/2(x) for n = 1, 2, 3, 4 and
5 as the user presses a key.

pi π - this is 4*atan(1) or imag(log(-1)).

poly This returns the characteristic polynomial of a matrix.	




�

�
a = [1 2 3;

-1 2 0;

-1 1 1];

poly(a)

This gives [1.0000 -4.0000 10.0000 -7.0000], which represents |A −
λI| = λ3 − 4λ2 + 10λ − 7. The eigenvalues of the matrix can then be found
using roots.

polyfit Tries to fit a polynomial of best fit, using a least squares idea. If
there are n points in x (with no repeats) and y, and the user requests a
polynomial of degree n − 1 then the fit is “exact”:
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�

�

�
x = [1 2 3];

y = [4 5 -2];

p = polyfit(x,y,2);

Note that the coefficients are returned with the one corresponding to the
largest power first. This gives the quadratic −4x2 + 13x − 5: however
polyfit(x,y,1) on the same data gives the straight line −3x+25/3 (which
is the line of best fit). It is possible to get information about the level of
the fit using the form [p,s] = polyfit(x,y,1). The object s contains
information, for instance the covariance s.R.

polyval Evaluates a polynomial specified by its coefficients at a set of data
points y=polyval(c,x).

�

�

�
x = [1 2 3];

c = [-4 13 -5];

y = polyval(c,x);

This reconstructs the data used in the example for polyfit. Notice that
the coefficients are given with the one corresponding to the largest power
first.

primes Lists the primes up to and including the argument. The syntax is
simply n=20; primes(n).

prod Similar to sum and gives the product of the elements of the vector x, so

that prod(x) returns
n∏

i=1
xi.

	




�

�
x = 1:10;

prod(x) % Gives 10!

z = [1 4 5 6 -2];

prod(z)

The factorial could also be found using factorial.

rand Generates random numbers between zero and one. This can be used to
form a matrix of random numbers as well. There are many versions of the
argument for this command, see help rand.

randn Generates normally distributed real numbers: again can be used to gen-
erate matrices randn(n,m).
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randperm Generates a random permutation of a list of objects: To rearrange
the letters of our names:�

�

�

�

s = ’otto denier’;

for its = 1:20

l = randperm(11);

s(l)

pause

end

rank This yields the rank of a set of linear equations and can be used to
see whether the system has no solutions, a unique solution or an infinite
number of solutions (yielding information about the degrees of freedom).	




�

�
A = [-1 1 1 2;

3 -1 1 1;

0 0 1 2];

rank(A)

real Gives the real part of a complex number real(z), where z can be a
scalar, vector or matrix.

realmax This is the largest floating point number representable on the com-
puter.

realmin This is the smallest floating point number representable on the com-
puter.

rem This is the remainder attained by dividing the first argument by the second
one: rem(3.32,1.1) gives 0.02.	




�

�
rem([3 4 5],2) % Gives 1 0 1

rem(5,[1 2 3]) % Gives 0 1 2

rem([3 4 5],[1 2 3])

% Gives 0 0 2

reshape This simply reshapes a matrix into a new shape. This is used most
commonly to make a vector into a matrix, but can be used to reshape

matrices.
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�

�
s = rand(100,1);

a = reshape(s,10,10);

b = [1 3 4; 2 3 4];

d = reshape(b,1,6);

This gives d = [1 2 3 4 4]; the elements of b are read column-wise.

roots This gives the roots of the polynomial which is passed to the routine.
For instance to find the roots of the cubic x3 + 4x2 + 7x + 2 we use�
�

�
�

co = [1 4 7 2];

roots(co)

Notice again that the coefficients are listed with the one corresponding to
the largest power first (similarly for polyfit and polyval).

round Rounds to the nearest integer.

save Saves values of variables to a .mat file.

sin, asin Sine and arcsine. These functions need to be used with brackets
sin(x) and asin(x) (without, it produces bizarre results, for instance sin
pi gives a one-by-two row vector with the elements sine of the ASCII code
for “p” followed by the sine of the ASCII code for “i”). These functions
can also be used for vectors and matrices.

�

�

�
x = -pi/2:pi/20:pi/2;

y = sin(x)

z = asin(y)

sinh Hyperbolic sine.

size Returns the dimensions of a matrix: [rows,cols]=size(A).

sort This returns a list of numbers sorted into ascending order, together with
a map from their original position to that in the revised list.

sparse Defines the matrix as sparse so that the computer only operates on
non-zero entries: this can dramatically reduce the time spent doing com-
putations (see full).

spline Fits cubic splines through a set of data points (x, f) and evaluates
them at a further set of points z; y=spline(x,f,z).
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sqrt This finds the square root of a matrix element by element. If necessary
the answer may be returned as a complex number.

std Calculates the standard deviation of a vector.

str2mat As the name suggests, this takes a string and returns a matrix.

sum This sums the contents of a vector, or the rows of a matrix. It can also be
called with a second argument which defines which dimension needs to be
summed.

switch This defines the start of a group of statements, the argument for which
is a variable, the likely values of which are listed in the cases.

tan,atan Tangent and arctangent. These functions need to be used with brack-
ets tan(x) and atan(x) (without, it produces bizarre results, for instance
tan pi gives a one-by-two row vector with the elements tangent of the
ASCII code for “p” followed by the tangent of the ASCII code for “i”).
These functions can also be used for vectors and matrices.

�

�

�
x = 0:pi/20:pi/4;

y = tan(x)

z = atan(y)

(see also atan2).

tour Gives a tour of the facilities of MATLAB.

transpose Returns the transpose of a matrix: can also be done using A.’.
(Note that A’ transposes and also takes the conjugate.)

type Prints out the contents of a MATLAB script.

upper Converts the characters in a string to upper case:�
�

�
�

name = ’Bob Roberts’;

upper(name)

This gives BOB ROBERTS (the opposite command is lower).

var Gives the variance of a set of data. The covariance is defined as

σX =
1

N − 1

N∑
i=1

(xi − x̄)2. (B.2)
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warning Allows codes to issue warnings when there may be problems. Is also
used to affect how the system issues warnings.

which Tells a user where a MATLAB file can be found, and which version is
going to be run.

while Defines the start of a loop which is continued while a certain condition
is fulfilled.

whos List of all variables (with details): this can be restricted using things like
whos a*.

zeros Sets up a matrix full of zeros: zeros(n,m) gives A which is an n-by-m
matrix for which ai,j = 0. zeros(n) gives 0n.



C
Solutions to Tasks

Please note that these solutions are given for guidance only and are by no means
unique. At the outset we shall give MATLAB output: however subsequently we
shall merely give the commands which can be used to solve the problems.

C.1 Solutions for Tasks from Chapter 1

Solution 1.1 The MATLAB code to solve these problems is:�

�

�

�

x = 1.3;

p = xˆ2+3*x+1

x = 30/180*pi;

y = sin(x);

x = 1;

f = atan(x);

x = sqrt(3)/2;

h = acos(x);

g = sin(h)
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The values this returns are: 6.5900, 0.5000, 0.7854 (which is π/4) and
0.5000.

Solution 1.2 To calculate the function y(x) = |x| sin x2 we use the code:�
�

�
�

x = pi/3;

y = abs(x)*sin(xˆ2);

and similarly for x = π/6. Notice care is needed with the brackets and the
syntax.

Solution 1.3 The MATLAB commands to determine these quantities are:

sin(pi/2);

cos(pi/3);

tan(60/180*pi);

x=0.5; log(x+sqrt(xˆ2+1)) (and with x=1);

x=0; x/((xˆ2+1)*sin(x))

and finally x=pi/4; x/((xˆ2+1)*sin(x)).

Notice the penultimate part of this task generates NaN: this is because MATLAB
does not know how to evaluate zero divided by zero.

Solution 1.4 This is a matter of either typing out all the values or exploiting
the fact that MATLAB can operate on vectors. We can use the code:�

�

�

�

x = [0.3 1/3 0.5 1/2 1.65 -1.34];

round(x)

ceil(x)

floor(x)

fix(x)

This example is included to help understand the rôle of various MATLAB com-
mands which can be used to return different roundings to appropriate integers.

Solution 1.5 The difference between rem and mod can be illustrated using the
y value of 4. Thus we have
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>> x=[3 4 5]

x =

3 4 5

>> rem(x,4)

ans =

3 0 1

>> mod(x,4)

ans =

3 0 1

>> rem(x,-4)

ans =

3 0 1

>> mod(x,-4)

ans =

-1 0 -3

>>

So for the second argument being positive we have that rem and mod are equiva-
lent, whereas for negative values the remainder is signed (thus it shows whether
it is positive or negative).

Solution 1.6 The MATLAB code is:
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�

�

�

�

x = 1:0.1:2;

% Part 1

y = x.ˆ3+3*x.ˆ2+1;

% Part 2

y = sin(x.ˆ2);

% Part 3

y = (sin(x)).ˆ2;

% Part 4

y = sin(2*x)+x.*cos(4*x);

% Part 5

y = x./(x.ˆ2+1);

% Part 6

y = cos(x)./(1+sin(x));

% Part 7

y = 1./x+x.ˆ3./(x.ˆ4+5*x.*sin(x));

Solution 1.7�
�

�
�

x = 3:0.01:5;

y = x./(x+1./x.ˆ2);

Solution 1.8

�

�

�
x = -2:0.1:-1;

f = 1./x;

y = f.ˆ3+f.ˆ2+3*f;

Solution 1.9 The code should read
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�

�

�

�

clear all

x = linspace(0,1,200);

g = x.ˆ3+1;

h = x+2;

z = x.ˆ2;

y = cos(x*pi);

f = y.*z./(g.*h);

f(200)

The errors were: the second line should have been first, else this cleared out the
contents of x. The default number of points for linspace is 100, so this needed
to be specified as being 200. There were dots missing from the definition of g
and the calculation of f. MATLAB distinguishes between upper and lower case
in variable names so we need to use h rather than H. The command to calculate
y needs brackets around the argument of the cosine function and an asterisk
between x and pi. As mentioned above the dots were missing from f and the
denominator of the fraction needed to be contained within brackets. Finally the
answer needs to be printed (which could have been done at the prompt).

Solution 1.10 The code should read	




�

�
x = linspace(-2,2,20);

c = [1 0 0 0 -1];

y = polyval(c,x);

plot(x,y)

The errors were: in the first line the vector as defined would contain 21 entries
(try typing length(x) after running the original code). A quartic actually has
5 coefficients, so there was a zero missing in the definition of c and finally the
x and y needed to be transposed in the plotting command.

This gives the figure
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Solution 1.11 The corrected code should be�

�

�

�

x = 0:0.1:3;

f = x.ˆ3.*cos(x+1);

% x = 2

f(21)

% x = 3

f(end)

C.2 Solutions for Tasks from Chapter 2

Solution 2.1 This is hopefully just a matter of typing the code and saving the
answer correctly.

Solution 2.2 The revised code could be:�

�

�

�

a = input(’Enter a : ’);

b = input(’Enter b : ’);

res = aˆb;

str1 = ’The answer is ’;

str2 = ’ when ’ ;

str3 = ’ is raised to the power ’;

disp([str1 num2str(res) str2 ...

num2str(a) str3 num2str(b)]);
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Solution 2.3 The function for this purpose is:�
�

�
�

function [out] = twox(x)

out = 2.ˆx;

Note the use of the dot so that it can be called with a vector (or even matrix).
Try it with x=1:8.

Solution 2.4 We can do this calculation using only one function

�

�

�
function [out1,out2] = func(x,y)

out1 = x.ˆ2 - y.ˆ2;

out2 = sin(x+y);

or using the two codes:�
�

�
�

function [out] = func1(x,y)

out = x.ˆ2 - y.ˆ2;

and �
�

�
�

function [out] = func2(x,y)

out = sin(x+y);

and then using the plot commands in the example. To extend the range to [0, 2π]
the first line would need to be changed to x=0:pi/10:2*pi;.

Solution 2.5 The code should be modified to:	




�

�
function [out1,out2,out3] = xfuncs(x)

out1 = sin(x);

out2 = cos(x);

out3 = out1.ˆ2 + out2.ˆ2;

where we have used the variables out1 and out2 to set the value of out3 (which
is actually always going to be 1).

Solution 2.6 This code takes two inputs and returns two outputs:
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�

�

�
function [outx,outy] = mapcode(inx,iny)

outx = mod(inx+iny,1);

outy = mod(inx+2*iny,1);

Solution 2.7 This requires the modification of the second line to read y =

x.ˆ3+3*x. The change in the limit requires the modification of the first line to
x = -4:1/4:6. It is perhaps a good idea to clear out the variables, which is
done using clear all.

Solution 2.8 This question can be solved by noting that this is in fact an
equation which is quadratic in x2 and as such can be solved using the formula
to have roots:

x2 =
−1 ± √

1 − 4a

2
.

In order to have real roots we require 1 − 4a � 0 so that 1/4 � a and the
quantity x2 must be positive so that

√
1 − 4a > 1, which means that a has to be

less than or equal to zero. This condition is more restrictive than the previous
one so consequently we require a � 0.

Solution 2.9 In the question the step is not specified: however we shall use
1/10 since this gives relatively smooth functions:�

�

�

�

x = -1:0.1:1;

f = x+3;

g = x.ˆ2+1;

fg = f.*g;

f_over_g = f./g;

clf

plot(x,[f; g; fg; f_over_g])

legend(’f’,’g’,’f*g’,’f/g’,0)

This gives
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We have added a legend which uses the line styles to show which lines we have
plotted. We could have used different style lines. We have used the additional
argument at the end of the legend command ,0 to tell MATLAB to put the
legend in the “best” position.

Solution 2.10 Here we shall provide details of how these codes can be improved
(or in some cases actually run).

1. In the first line we just add a semicolon on the end to suppress output. The
second line contains a terrible error, although this is fine as a mathematical
equation. In MATLAB you cannot set x+2 equal to y, we need to set y equal
to x+2. In the third line: the MATLAB variable for π has a lower case “p”
and we are missing an asterisk to denote multiplication and brackets around
the denominator of the fraction. The corrected code is:

�

�

�
x = 4;

y = x+2;

z = 1/(yˆ2*pi);

2. In the first line we are missing a single quote and a semicolon. In the
definition of the for loop we have introduced a variable n, which should be
N. We have the loop variable as i whereas it is used as j within the loop.
On the next line we have the brackets missing which should surround the
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denominator of the fraction, forcing it to be evaluated first. In the display
line the first square bracket is missing and the answer needs to be converted
to a string, which should be sum not s. On top of this we have failed to set
sum to be zero outside the loop and the command within the loop merely
gives the final value rather than calculating the cumulative sum.

The corrected code is:�

�

�

�

N = input(’Enter N ’);

sum = 0;

for j = 1:N

sum = sum + 1/j+ 1/((j+2)*(j+3));

end

disp([’The answer is ’ num2str(sum)])

3. In the first line we have used two equals signs where we should only have
one. Two equals signs ask if x is equal to the right-hand side, rather than
setting x equal to it. The rest of the errors are in the second line. In the
numerator of the fraction we are missing an asterisk and brackets to show
that we are taking the cosine of x. In the denominator we have unbalanced
brackets (an extra round bracket needs to be added at the end). We have
also used a pair of square brackets which should be round. There is an extra
asterisk after the division sign. Since we are operating on a vector all of
the operators should be preceded with a dot. The corrected code is:�
�

�
�

x = 0.0:0.1:1.0;

f = x.*cos(x)./((x.ˆ2+1).*(x+2))

4. The first line of this code gives us a nine-by-nine matrix rather than a row
vector. The third line is fine. In the for loop we have missed out all the
asterisks and the end which terminates the loop. The colons at the end of
the lines in the loops need to be changed to semicolons.

The corrected code is:
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�

�

�

�

w = ones(1,9);

w(1) = 1;

for j = 1:4

w(2*j) = 3;

w(2*j+1) = 2*j+1;

end

Solution 2.11

(a) Here the conversion factor will be worked out by remembering that there are
1760 yards in a mile, a yard is 36 inches and one inch is 2.54cm:�

�

�

�

s = ’Enter speed in mph ’;

sp_mph = input(s);

sp_yards_ph = sp_mph*1760;

sp_inch_ph = sp_yards_ph*36;

sp_cm_ph = sp_inch_ph*2.54;

sp_m_ph = sp_cm_ph/100;

sp_km_ph = sp_m_ph/1000;

disp([’Speed in km/h is ’ ...

num2str(sp_km_ph) ])

(b) This is essentially the reverse of the example above:�

�

�

�

s = ’Enter speed in m/s ’;

sp_mps = input(s);

sp_cmps = sp_mps*100;

sp_inch_ps = sp_cmps/2.54;

sp_yard_ps = sp_inch_ps/36;

sp_miles_ps = sp_yard_ps/1760;

sp_mph = sp_miles_ps *3600;

disp([’Speed in mph is ’ ...

num2str(sp_mph)])

(c) We now take the solution above and convert it to be a function, so we have
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�

�

�

�

function [output] = change(input);

sp_mph = input;

sp_yards_ph = sp_mph*1760;

sp_inch_ph = sp_yards_ph*36;

sp_cm_ph = sp_inch_ph*2.54;

sp_m_ph = sp_cm_ph/100;

sp_km_ph = sp_m_ph/1000;

output = sp_km_ph;

(d) This shows that a sprinter will run at 22 mph on average since they do 100
metres in 10 seconds, that is 10 metres per second.

Solution 2.12 This is accomplished using the code:�

�

�

�

x = linspace(-pi/2,pi/2);

f = x./(1+x.ˆ2);

g = tan(x);

fg = g./(1+g.ˆ2);

gf = f./(1+f.ˆ2);

plot(x,fg,x,gf)

Solution 2.13 This is done using the code:�

�

�

�

a = input(’Coefficient of x squared: );

b = input(’Coefficient of x:’);

c = input(’The constant:’);

y = linspace(0,pi);

x = sin(y);

q = a*x.ˆ2+b*x+c;

plot(y,q)

C.3 Solutions for Tasks from Chapter 3

Solution 3.1 The required code is:
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�

�

�

�

s = 0;

for i = 1:100

s = s+1/iˆ2;

end

disp([’Required value is ’ num2str(s)])

Notice that we have changed the command int2str to num2str: this is because
the answer is no longer an integer.

Solution 3.2 This only requires modification of the for line to for i=1:2:100,
which gives a vector which increases in twos.

Solution 3.3 The code f.m needs to be changed to

�

�

�
function [value] = f(i)

value = sin(i*pi/2)/(iˆ2+1);

and then use the same code.

Solution 3.4 This is accomplished using the code:�
�

�
�

x = 0:pi/4:pi;

f = x.ˆ2+1;

Solution 3.5 The code requires very minor modification to:�

�

�

�

v = 0.:0.25:0.75;

cosx = zeros(size(v));

N = 10; range = 0:N;

ints = 2*range;

for n = range

cosx = cosx + ...

(-1)ˆn*v.ˆints(n)/factorial(ints(n));

end

This gives very accurate answers:
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cos(v)-cosx

ans =

0 0 0 0

This means that the difference between the MATLAB and the series answers
are less than eps.

Solution 3.6 We can use code which performs the summations separately for
different values of N or note that SN+1 = SN + 1/(N + 1)2 where S1 = 1.

This leads to the simple code:	




�

�
s(1) = 1;

for n = 1:2000

s(n+1) = s(n)+1/(n+1)ˆ2;

end

This gives a value which when divided by π2 allows one to appreciate that c ∼ 6.
In fact

∞∑
i=1

1
n2 =

π2

6
.

Solution 3.7 We solve this task by using a nested loop structure�

�

�

�

for p = 1:4

sum = 0;

for j = 1:(p+1)

sum = sum + jˆp;

end

disp([’ sum for p=’ ...

int2str(p) ’ is ’ int2str(sum)])

end

Solution 3.8 The codes for this task are:
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�

�

�

�

sumln(1) = -1;

for n = 1:1000

sumln(n+1) = sumln(n)+(-1)ˆ(n+1)/(n+1);

end

sum2(1) = 1/2;

for n = 1:1000

sum2(n+1) = sum2(n)+1/((n+1)*(n+2));

end

where we have used the terms in the summations evaluated at the (N + 1)th

place.

Solution 3.9 The simplest way of doing this would be x>2&x<4, although there
are other ways ∼xor(x>=2,x=<4) for instance. The second example can be
done with xorusing xor(x>3,x<-1) or with or using x>3|x<-1 (you can use
both since the sets are disjoint).

Solution 3.10 mod(n,2)==0 tells us that the remainder when dividing by two
is zero (that is n is even). In order to ensure that this is only true for values
of n > 20 we need the statement mod(n,2)==0 & n>20.

Solution 3.11 This requires us to work out tan(73π/4) but since tan is peri-
odic this is equal to tan(π/4) (which is one). Hence the first condition is true
so x is set to 2 and as this is an integer floor(x) is equal to x and so x is set
to 10, which is not prime so x is returned as the string “False”. This changes
with the initial value of x, try for instance x = 3.

Solution 3.12 This uses�

�

�

�

start = 1/7;

next = mod(5*start,1)

while floor(next*7) ˜= floor(start*7)

next = mod(5*next,1)

end

Here we have used quite a complicated structure to deal with the rounding errors
intrinsic to MATLAB (noting that the only possible answers are n/7 where
n ∈ N).
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Solution 3.13 We have	




�

�
n = 1:50;

f = n.ˆ3-n.ˆ2+40;

ii = find(f > 1000 & mod(n,3) ˜= 0);

n(ii)

Solution 3.14 The key here is to start with the string of the first ten letters,
namely “abcdefghij”. We ask the user to enter the first value of n outside the
while loop: this avoids the need for the first flag. The required code is then:�

�

�

�

str = ’abcdefghij’;

msg = ’Enter an integer from 1 to 10: ’;

n = input(msg);

while (round(n)˜=n) | (n<1 | n>10)

warning(’ Not valid ’)

n = input(msg);

end

str(1:n)

Solution 3.15 Although this problem can be solved in one code it is preferable
to use a couple of functions. The first one checks whether a character is a letter
(lower or upper case):�

�

�

�

function [val] = isletter(charac)

lchar = lower(charac(1));

if lchar>=’a’ & lchar <=’z’

val = 1;

else

val = 0;

end

Firstly the first character is extracted and converted to lower case. Then a check
is made to see if it is a character in the lower case alphabet: if it is the variable
val is set to be true (that is 1). A similar code checks for whether a character
is a digit:
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�

�

�

�

function [val] = isdigit(charac)

lchar = charac(1);

if lchar>=’0’ & lchar <=’9’

val = 1;

else

val = 0;

end

We can now use the functions:�

�

�

�

msg = ’Please enter a letter and a digit ’;

str = input(msg,’s’);

while ˜isletter(str(1)) | ˜isdigit(str(2))

warning(’This is not valid’)

str = input(msg,’s’);

end

The argument of the while loop checks to see if either of the conditions isn’t
satisfied (and as such uses or, that is the vertical line).

Solution 3.16 This can be done with the code:�

�

�

�

x = linspace(-3,5,100);

for i = 1:length(x)

if x(i) >= -1 & x(i) <= 1

f(i) = x(i)ˆ2;

elseif x(i) > 1 & x(i) < 4

f(i) = 1;

else

f(i) = 0;

end

end

plot(x,f)

axis([-3 5 -0.5 1.5])

The final command is added purely so that the curve can be distinguished from
the axis. This gives
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Solution 3.17 Here we use the code�

�

�

�

x = -3:0.1:3;

g = cos(pi*x);

izero = find(abs(g)<=1e-15);

ii = find(abs(g)>=1e-15);

f(izero) = NaN;

f(ii) = 1./g(ii);

plot(x,f)

which gives



C.3 Solutions for Tasks from Chapter 3 407

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

and the choice of 10−15 is in a sense arbitrary, but reflects how close we come
to the singularities.

Solution 3.18 The first line contains a spelling mistake: the command should
be linspace. The second line is missing brackets around x and a semicolon.
In the definition of the for loop we should have used a colon rather than a
semicolon. In both the logical expressions on the if and the elseif lines the
second reference to the array x uses i rather than j. The first logical expression
should use an ampersand (&) rather than the word and; similarly the second
one should also have an ampersand rather than the word or. The first part of
the second expression x(j) should be checked to be greater than one or equal to
one (although this change is academic). The following line should refer to x(j)

rather than the entire vector x, and should be finished off with a semicolon.
The variable zero is used without definition. Finally we are missing an end

statement to balance with the for; a fact which would be clear if the correct
indentation was used.

The corrected code is:
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�

�

�

�

x = linspace(-4,4);

N = length(x);

for j = 1:N

if x(j) >= 0 & x(j) <= 1

f(j) = x(j);

elseif x(j) >= 1 & x(j) < 2

f(j) = 2 - x(j);

else

f(j) = 0;

end

end

C.4 Solutions for Tasks from Chapter 4

Solution 4.1 The solution to this task involves noting that the zeros of a func-
tion f(x) = g(x)h(x) will occur at the zeros of the functions g(x) and h(x),
provided neither of the functions are singular. In this case g(x) = x is zero at
x = 0 and h(x) = sinx is zero at 0, π, 2π and 3π (within the range [0, 10]).

Solution 4.2 We note that cosh x = (ex + e−x)/2 so in order for cosh x to be
zero we require that ex = −e−x or multiplying through by ex that e2x = −1, but
since ex > 0 for all x, this can never be so. Consequently cosh x is never zero.
Similarly for sinhx we find that e2x = 1 which is only true when x = 0, which
is the single isolated zero of sinhx. The zeros of the function of f(x) occur at
the zeros of coshm x and sinhn x, which are only at x = 0 (in which case it is
an n-fold zero).

Solution 4.3 We consider the discriminant of the equation, which is b2 − 4.
For two real roots we have b2 > 4, in which case |b| > 2, for one real root the
discriminant is zero, so that b = 2 and finally for complex roots the discriminant
is negative so that |b| < 2. This can be verified graphically using:
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�

�
b = input(’Value of b ’);

x = -10:0.1:10;

f = x.ˆ2+b*x+1;

plot(x,f)

Notice that we have chosen the range [−10, 10] but we could have used knowledge
of the structure of the function to make sure that both roots were on the image
(where |b| > 2).

Solution 4.4 We shall try to write the equation in the form

cos θ sin x + sin θ cos x

cos θ

in which case tan θ = β, in which case sin θ = β/
√

1 + β2 and cos θ =
1/
√

1 + β2. Now the function f(x) can be written as

f(x) =
sin(θ + x)

cos θ
,

which has zeros at sin(θ+x) = 0, hence x = nπ−θ where θ = sin−1(β/
√

1 + β2)
(which is evaluated in MATLAB using asin). If β = 0 then θ = 0 and if β = 1
then θ = π/4.

Solution 4.5 The equation f(x) = 0 can be rewritten in many forms but
we choose x = cos−1(sin x/2) so that a fixed point scheme would be xn+1 =
cos−1 ((sinxn)/2) and the corresponding code is:�
�

�
�

function g = eqn(x)

g = acos(sin(x)/2);

The roots of this function can be determined analytically using a similar method
to the previous example and are found to be nπ + θ where θ = sin−1(2/

√
5).

Solution 4.6 The roots of this equation occur at

xb =
−b ± √

b2 − 4
2

.

Firstly considering the option g(x) = −(x2 + 1)/b we have that g′ = −2x/b

which at the roots is

g′(xb) = 1 ∓
√

1 − 4
b2 .



410 C. Solutions to Tasks

Considering |b| > 2 the modulus of this function is greater than one for the
root corresponding to the negative sign and less than one for the root with the
positive sign. For the other option we find that

g′(x) =
b

2
√−(bx + 1)

.

When the roots are substituted in we find that the above situation is reversed.
Using the code

�

�

�
function g = eqn(x)

b = 3;

g = -(xˆ2+1)/b;

or with the alternative final line g = -sqrt(-(b*x+1)); we find starting with
an initial guess of −1 we get different roots depending on which fixed point
scheme we use.

Solution 4.7 We change the file func.m to be�
�

�
�

function [f] = func(x)

f = 2*x.ˆ2-x.ˆ3+sin(x);

Using the routine we produce the plot

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−10

−8

−6

−4

−2

0

2

4

Using 2 and 3 as the ends of the range we obtain

>> mbisect

Root = 2.1741 found in 14 iterations

with a tolerance of 1 × 10−4.
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Solution 4.8 The function f(x) = cos 3x has three zeros in the range 0 to π.
Using the full range, we encounter the left root π/6 (in fact we should check
whether f((b + a)/2) is smaller than the tolerance, which it is in this case. For
the other two ranges we can select the lower or upper root. We note that the
scheme still works for an odd number of roots (since the scheme eliminates
them in pairs).

Solution 4.9 This is merely a matter of setting up the routines�
�

�
�

function [f] = func(x)

f = x.*cos(x)-sin(x);�
�

�
�

function [fp] = func_prime(x)

fp = -x.*sin(x);

�
�

�
�

function [f] = func(x)

f = (x.ˆ3-x).*sin(x);

�

�

�
function [fp] = func_prime(x)

fp = (3*x.ˆ2-1).*sin(x) ...

+(x.ˆ3-x).*cos(x);

The roots of the first function are at x = 0 and x ≈ ±4.41 and many other
roots which tend to the zeros of cos x (as x increases).

The other function has zeros at x = 0 and 1, and then at nπ where n ∈ Z.

Solution 4.10 The zeros of this function occur where x − x3 = nπ. In order
to obtain initial estimates for the range we plot the function
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Now using the code False Position.m:

>> False_Position

Starting guess point 1 :0.8

Starting guess point 2 :1.2

Root = 0.9999999982 found in 12 iterations.

>> False_Position

Starting guess point 1 :1.6

Starting guess point 2 :1.8

Root = 1.690631797 found in 4 iterations.

The first root corresponds to n = 0 above. We note that the function gets very
oscillatory as x increases and may pose problems as more roots are required, in
which case the roots of the cubic x − x3 = nπ can be sought, using for instance
roots.

Solution 4.11 We use the code on page 124 which calls:	




�

�
function [f,fp,fpp] = fun2(x);

f = x.ˆ3-4*x.ˆ2+5*x+2;

fp = 3*x.ˆ2-8*x+5;

fpp = 6*x.ˆ2-8;

The roots are at 1 (twice) and 2.

Solution 4.12 The roots can be calculated using the inline code roots([1 1

1 1]) and roots([1 0 0 1 -2 -4]).
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Solution 4.13 This can be done using the code�
�

�
�

function [f]=func1(x)

f = x.*sin(x)+cos(x);

and then use the code fzero(’ff’,3) which gives the root ≈ 2.7984. There are
many others. For the other cases the roots are: sin x = 0 or sin x = ±1, so that
x = nπ/2 (n ∈ Z); in this case fzero fails and returns a root at x = 1. The
code has mistaken the fact that the function changes sign for a root.

Solution 4.14 The function J1/2(x) is actually sin x/
√

x and consequently the
roots are nπ. The code needed for fzero is�
�

�
�

function [f] = ourbess(x)

f = besselj(1/2,x);

and then fzero(’ourbess’,3).

Solution 4.15 The function we want to find the zeros of is f(x) = x sin x −
x2 cos x − 1 which has derivative f ′(x) = sin x + x cos x − 2x cos x + x2 sin x =
(1 + x2) sinx − x cos x. The correct definitions for f(x) and f ′(x) are:�
�

�
�

function [out] = f(in)

out = in.*sin(in)-in.ˆ2.*cos(in)-1;

f.m

�
�

�
�

function [out] = fp(in)

out = (1+in.ˆ2).*sin(in)-in.*cos(in);

fp.m

and the code to use these would be�

�

�

 
x = 0;

for j = 1:10

x = x -f(x)/fp(x);

end

(notice that the second term in this expression was the wrong way up in the
question). This code could be written far more eloquently.
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C.5 Solutions for Tasks from Chapter 5

Solution 5.1 This code inputs four values which represent the points (x1, y1)
and (x2, y2). These are then made into vectors x and y, where the former con-
tains the x coordinates and the latter the y coordinates. The command polyfit

fits a straight line through the points and returns y = mx + c, where the gra-
dient m is the first element of p and the intercept c is the second. Then the
final command displays the result. If the user enters both values of y, the same
equation is just returned as m = 0 and c equals that value. On the other hand
if two values of x are the same then MATLAB tries to give the line an infinite
gradient, since it should be of the form x = d.

Solution 5.2 We write the quadratic as y = a + b(x − x0) + c(x − x0)(x − x1)
where we choose x0 as the x coordinate of one of the points. For convenience
we shall take the origin as the first point so that x0 = 0 and we see that
a = 0. Using the point (2,−1) as the next point we note that the quadratic is
y = bx + cx(x − 2) and −1 = 2b. Finally the condition that the curve goes
through the final point yields the equation 5 = −5/2 + 15c so that c = 1/2.
Hence the quadratic is

y = −1
2
x +

1
2
x(x − 2)

=
x(x − 3)

2
.

Solution 5.3 We use the code:�

�

�

�

x = 0:10;

co = [1 3 2];

y = x.ˆ2+3*x+2;

for i = 1:3

xv = i-0.5;

p = polyfit(x(i:(i+1)),y(i:(i+1)),1);

err(i) = polyval(p,xv)-polyval(co,xv);

end

This gives the same error in each case, namely 1/4 (which we would expect from
understanding the error associated with this method of interpolation (consider
the second derivative)).

Solution 5.4 This quadratic will be of the form cx(π − x) (since it is zero at
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0 and π). The value of c can be determined from the condition that the curve
goes through the final point which gives

y =
4x

π2 (π − x).

Solution 5.5 Since the cubic is zero at the points 0 and π we know that it is of
the form x(π−x)(a(x−π/2)+b). The values of a and b can be determined from
the other points: (π/2, 1) gives b = 4/π2; finally (−π/2,−1) gives a = 16/(3π2).
Hence the cubic is

y = x(π − x)
(

16
3π3 (x − π/2) +

4
π2

)

= x(π − x)
(

16x

3π3 x +
4

3π2

)
.

Solution 5.6 For this we shall use the MATLAB command spline so that�

�

�

�

x = -pi:(pi/2):pi;

y = [0 -1 0 1 0];

z = -pi:(pi/20):pi;

f = spline(x,y,z);

plot(z,f,x,y,’o’,’MarkerSize’,14)

This gives:

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5



416 C. Solutions to Tasks

Solution 5.7 Here we shall use the method of least squares. As such we shall
produce details of the formulation. We calculate the sum of the squares of the
errors:

e =
n∑

i=1

(a sin xi + b cos xi − fi)2

and partially differentiating with respect to a and b we have

∂e

∂a
=

n∑
i=1

sin xi(a sin xi + b cos xi − fi)

∂e

∂b
=

n∑
i=1

cos xi(a sin xi + b cos xi − fi).

These equations can be rewritten in matrix form as:⎛
⎜⎜⎝

n∑
i=1

sin2 xi

n∑
i=1

sin xi cos xi

n∑
i=1

cos xi sin xi

n∑
i=1

cos2 xi

⎞
⎟⎟⎠
(

a

b

)
=

⎛
⎜⎜⎝

n∑
i=1

fi sin xi

n∑
i=1

fi cos xi

⎞
⎟⎟⎠ .

This can be solved using the code:�

�

�

�

x = 0:0.1:1.0;

f = [3.16 3.01 2.73 2.47 2.13 1.82 ...

1.52 1.21 0.76 0.43 0.03];

A = [sum(sin(x).ˆ2) sum(cos(x).*sin(x)); ...

sum(cos(x).*sin(x)) sum(cos(x).ˆ2)];

r = [sum(f.*sin(x)); sum(f.*cos(x))];

sol = A\r;

This gives

sol =

-1.9941

3.1892

The original data was actually generated with −2 and 3.2, and then noise was
added.

Solution 5.8 This can be done by hand but in fact MATLAB will actually
return the required coefficients.
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�

�

�

�

x = -pi:(pi/2):pi;

y = [0 -1 0 1 0];

z = -pi:(pi/10):pi;

pp = spline(x,y);

f = spline(x,y,z);

plot(z,f,x,y,’o’,’MarkerSize’,14)

true = sin(z);

err = sum((true-f).ˆ2);

This gives
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and

>> pp.coefs

ans =

-0.0860 0.8106 -1.6977 0

-0.0860 0.4053 0.2122 -1.0000

-0.0860 0.0000 0.8488 0

-0.0860 -0.4053 0.2122 1.0000

which are the four cubic equations (given with the coefficients of x3 first). The
total sum of the errors was 0.1944.
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Solution 5.9 The corrected code is:�

�

�

�

x = 2:11;

f = polyval([1 0 0 -1],x) + sin(x);

% x = 4.5

r = 3:4;

c = polyfit(x(r),f(r),1);

yy = polyval(c,4.5)

% x = 15 (extrapolation)

r = length(x)-1:length(x);

c = polyfit(x(r),f(r),1);

yy = polyval(c,15);

C.6 Solutions for Tasks from Chapter 6

Solution 6.1 These calculations can be repeated using the code�

�

�

�

A = [3 0 -1; -4 2 2];

B = [-1 7; 3 5; -2 0];

C = [2 0; -1 -3];

A*B

B*A

A+transpose(B)

A*C

A*transpose(C)

3*C+2*transpose(A*B)

(A*B)*C

A*(B*C)

Solution 6.2 Notice that here we set up the matrix A before changing the ele-
ments and this is unnecessary but good practice. Also it is not necessary to set
up r and this can be defined inline. The definition of r allows for more versatile
code.
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�

�
r = 1:4;

A = zeros(4);

A(1,r) = r;

A(r,4) = flipud(r’);

Note that the final command could also be replaced by A(flipud(r),1)=r’;;
you should try to understand this command.

Solution 6.3 Here we rely on the fact that MATLAB knows that a matrix with
a super- or sub-diagonal of length 9 is a ten-by-ten matrix.�
�

�
�a = diag(ones(1,9),1)+diag(-ones(1,9),-1);

Solution 6.4 This is just a matter of typing the commands: however you
should be able to decide which ones are viable before doing this.

Solution 6.5 The code to solve these problems is given by:�

�

�

�

A = [ 1 2; 3 4];

B = [3 4; -1 2];

A*B

C = [3 5; 6 -2];

D = [-1 0; 2 1];

2*C-4*D

E = [1 3 5];

F = [2 -1; -1 0; 7 -2];

E*F

This gives the answers

ans =

1 8

5 20

ans =
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10 10

4 -8

ans =

34 -11

Solution 6.6 Consider a general matrix

A =
(

a b

c d

)

multiplied by the matrix

X =
(

α β

β α

)
.

Now

XA =
(

αa + βc αb + βd

βa + αc βb + αd

)

and

AX =
(

αa + bβ aβ + bα

cα + dβ cβ + dα

)
.

Now comparing XA and AX we find that it is necessary for a = d and b = c

(provided β = 0). Hence the only matrices which commute with matrices of the
form X are those of the same form.�

�

�

�

stl = ’Top left element of matrix ’;

sbl = ’Bottom left element of matrix ’;

for j = 1:2

a(j) = input([stl num2str(j) ’: ’]);

b(j) = input([sbl num2str(j) ’: ’]);

end

A = [a(1) b(1); b(1) a(1)];

B = [a(2) b(2); b(2) a(2)];

disp(A*B)

disp(B*A)

Notice that the answer is also of the form X.
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Solution 6.7 The (i, j)th element of B is ai,j + aj,i and the (j, i)th element is
aj,i + ai,j (which are equal so B is symmetric). Similarly the (i, j)th element
of C is ai,j − aj,i, whereas the (j, i)th element is minus this, namely aj,i − ai,j

so that C is anti-symmetric.

Solution 6.8 These matrices can be constructed in MATLAB�

�

�

�

theta = 0;

A0 = [cos(theta) sin(theta); -sin(theta) cos(theta)];

theta = pi/2;

A1 = [cos(theta) sin(theta); -sin(theta) cos(theta)];

theta = pi;

A2 = [cos(theta) sin(theta); -sin(theta) cos(theta)];

or mathematically and we find

A|θ=0 =
(

1 0
0 1

)
,

A|θ=π/2 =
(

0 1
−1 0

)
,

and finally

A|θ=π =
( −1 0

0 −1

)
.

Working through the cases one at a time

θ = 0 This gives us the identity matrix, so multiplying leaves all points un-
changed.

θ = π/2 Here if we start with x = (x, y)T Ax is (y, −x)T . This moves the point
round the origin by (unsurprisingly) π/2.

θ = π Now the action is to return (−x,−y)T , which is a reflection in the origin
(or in fact a rotation of π).

In general the action of multiplying by this matrix is to rotate by θ radians.
We can work out the inverse of this matrix by noting that its determinant

is unity and switching the terms on the leading diagonal and then multiplying
the off diagonal terms by minus one. However, we could also exploit the fact
that in order to invert the operation of rotating by an angle θ we merely rotate
by θ in the other sense (or more specifically by −θ). The inverse is given by

A−1 =
(

cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

)
=
(

cos θ − sin θ

sin θ cos θ

)
.
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This is easily verified by performing the multiplication of the matrices(
cos θ − sin θ

sin θ cos θ

)(
cos θ sin θ

− sin θ cos θ

)

=
(

cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

)

=
(

1 0
0 1

)
= I.

Solution 6.9 This is solved using the code:

�

�

�
A = [3 4; -1 2];

b = [2 ; 0];

x = A\b;

which gives x = 2/5 and y = 1/5.

Solution 6.10 This is solved using the code:	




�

�
A = [1 1 2; 1 -1 -3; ...

-2 -5 1];

b = [1; 0 ; 4];

x = A\b

This gives x = 4/5, y = −1 and z = 3/5.

Solution 6.11 We are able to add A and B since they are of the same size,
namely they both have three rows and two columns.⎛

⎝ 1 −1
0 2
3 2

⎞
⎠+

⎛
⎝ 2 −1

−1 0
3 2

⎞
⎠ =

⎛
⎝ 3 −2

−1 2
6 4

⎞
⎠ .

The matrices A and C can be multiplied together since the number of columns
of A (two) matches the number of rows of C.⎛
⎝ 1 −1

0 2
3 2

⎞
⎠( −1 0

2 1

)
=

⎛
⎝ 1 × (−1) + (−1) × 2 1 × 0 + (−1) × 1

0 × (−1) + 2 × 2 0 × 0 + 2 × 1
3 × (−1) + 2 × 2 3 × 0 + 2 × 1

⎞
⎠

=

⎛
⎝ −3 −1

4 2
1 2

⎞
⎠ .
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The multiplication of C times B is not possible since the number of columns of
C (two) is not equal to the number of rows of B (three).

First we calculate A−B (which is possible since both matrices are the same
size). This gives another matrix of the same size (again with three rows and
two columns), which can now multiply C since this has two rows. The answer
is ⎛

⎝ 1 0
3 2
0 0

⎞
⎠

The final calculation should give the same answer. The MATLAB code for
these calculations is:

>> a = [1 -1; 0 2; 3 2];

>> b = [2 -1; -1 0; 3 2];

>> c = [-1 0; 2 1];

>> a+b

ans =

3 -2

-1 2

6 4

>> a*c

ans =

-3 -1

4 2

1 2

>> (a-b)*c

ans =

1 0

3 2

0 0

>> a*c-b*c

ans =
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1 0

3 2

0 0

Solution 6.12 These calculations can both be performed and the solutions are(
3
10

)
and

(
16 −2 9 −3
0 2 −5 −1

)

which can be checked using MATLAB

>> [1 -1 2; 3 0 1]*[3; 2; 1]

ans =

3

10

>> [5 -2;-1 2]*[4 0 1 -1; 2 1 -2 -1]

ans =

16 -2 9 -3

0 2 -5 -1

Solution 6.13 The results of both calculations merely returns the matrix un-
changed. This is the effect of multiplying by the identity.

Solution 6.14 Firstly, we reflect in the leading diagonal to give AT so that

AT =

⎛
⎝ 3 0

2 −1
−1 −2

⎞
⎠

The results of the multiplications are

(
14 0
0 5

)
and

⎛
⎝ 9 6 −3

6 5 0
−3 0 5

⎞
⎠ ,

which can also be done using MATLAB code:
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>> A = [3 2 -1; 0 -1 -2];

>> A*transpose(A)

ans =

14 0

0 5

>> transpose(A)*A

ans =

9 6 -3

6 5 0

-3 0 5

Solution 6.15 We assume that a general row vector is of the form

(x1, x2, · · · , xN )

and consequently its transpose is the column vector

xT =

⎛
⎜⎜⎜⎝

x1

x2
...

xN

⎞
⎟⎟⎟⎠

Hence

xxT =
(

x1 x2 · · · xN

)
⎛
⎜⎜⎜⎝

x1

x2
...

xN

⎞
⎟⎟⎟⎠ = x2

1 + x2
2 + · · · + x2

N .

This is a scalar which is positive since it is merely the sum of squares.

Solution 6.16 The matrix equation can be expanded to give

x + 4y = 1

−2x + 3y = −2
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and the three simultaneous equations can be written as the single matrix equa-
tion ⎛

⎝ 1 1 1
1 −2 −1

−1 3 −1

⎞
⎠
⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ 0

2
−1

⎞
⎠ .

Solution 6.17 We simply present the code which can be used to determine the
character of the systems (this exploits the code solns.m given on page 188)�

�

�

�

a = [3 2; 3 -2]; b=[7; 7];

solns(a,b)

a = ones(6);

for r = 2:6

a(r,r) = -1;

end

b = ones(6,1);

solns(a,b)

This returns the comments:

There are 2 equations

with 2 variables

There is a unique solution

and for the second case

There are 6 equations

with 6 variables

There is a unique solution

Solution 6.18 This can be accomplished using�

�

�

�

A = [1 0 0 -1; ...

-1 2 -1 0; ...

0 -1 2 -1;

0 0 0 1];

r = [0 1;0 0; 0 0; 1 0];

sols = A\r;

This gives

sols =
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1.0000 1.0000

1.0000 0.6667

1.0000 0.3333

1.0000 0

where we have solved both systems at once to give (1, 1, 1, 1) and (1, 2
3 , 1

3 , 0).

Solution 6.19 We use the code�

�

�

�

s = pi:pi/3:(2*pi);

ns = length(s);

for j = 1:ns

ss = s(j);

A = [0 1 ss; ...

ss 0 1; ...

1 ss 0];

z(j) = det(A);

end

c = polyfit(s,z,3)

which gives c = (1, 0, 0, 1) so that the determinant of the matrix is s3 + 1.

Solution 6.20 We note that

B2 =
(

0 1
−1 0

)(
0 1

−1 0

)
= −I.

As such we find that B3 = BB2 = −BI = −B and that B4 = B2B2 =
(−I)(−I) = I. Hence we have the code�

�

�

�

n = input(’What power :’);

b = [0 1; -1 0];

switch mod(n,4)

case 0

bn = eye(2);

case 1

bn = b;

case 2

bn = -eye(2);

case 3

bn = -b;

end
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Solution 6.21 The eigenvalues can be determined using the code�

�

�

�

a = [1 0 0 -1; ...

0 1 0 0; ...

0 0 1 0; ...

-1 0 0 1];

eig(a)

which gives 1 (twice), 0 and 2.

Solution 6.22 We start with n = 1 which is merely the definition, that is
A = PDP−1. And we assume that our conjecture is true for n, that is An =
PDnP−1. Now premultiply by A

AAn = A(PDnP−1)

An+1 = PDP−1(PDnP−1)

= PD(P−1P)DnP−1

= PDDnP−1

= PDn+1P−1.

This is merely the statement of our initial conjecture for n + 1. Thus we have
shown by induction that An = PDnP−1.

Solution 6.23 This gives

>> co = charpoly(a);

>> roots(co)

ans =

2.0000

1.0000 + 0.0000i

1.0000 - 0.0000i

0.0000

This confirms the results above.

Solution 6.24 The eigenvalues of this equation are (3 ± √
5)/2. Consequently

using the general form on page 216, we have
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x(t) =
1√
5

{
1
2

(
(3 +

√
5)e(3−√

5)t/2 − (3 −
√

5)e(3+
√

5)t/2
)
I

+
(
e(3−√

5)t/2 − e(3+
√

5)t/2
)
A
}( 1

−1

)
.

C.7 Solutions for Tasks from Chapter 7

Solution 7.1 Please try it yourself first but this is the answer (or one of them):�

�

�

�

for i = 1:12

switch mod(i,3)

case 0

f(i) = 1;

case 1

f(i) = 2;

case 2

f(i) = 3;

end

end

There are many alternatives, for instance f = mod(1:12,3)+1;.

Solution 7.2 For the one third case, we can work through the code with N = 9,
so that

rodd=1:2:N gives [1 3 5 7 9]

reven=2:2:(N-1) gives [2 4 6 8]

weights(rodd=2) gives [2 0 2 0 2 0 2 0 2]

weights(1)=1 gives [1 0 2 0 2 0 2 0 2]

weights(N)=1 gives [1 0 2 0 2 0 2 0 1]

weights(reven)=4 gives = [1 4 2 4 2 4 2 4 1]
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and for the three eighths rule with N = 10 we have

m=(N-1)/3 gives 3

rdiff=3*(1:(m-1))+1 gives [3*(1:2)+1] that is [4 7]

weights=3*ones(1,N) gives [3 3 3 3 3 3 3 3 3 3]

weights(1) gives [1 3 3 3 3 3 3 3 3 3]

weights(N) gives [1 3 3 3 3 3 3 3 3 1]

weights(rdiff)=2 gives [1 3 3 2 3 3 2 3 3 1]

Solution 7.3 This is done using the code:�
�

�
�

function [val] = fn(x)

val = log(x+sqrt(x.ˆ2+1));

Solution 7.4 We shall use forty points (which should be more than enough)
and note that the exact answer is

3∫
x=1

x2 − 3x + 2 dx =
[
x3

3
− 3x2

2
+ 2x

]3

1
=

2
3
.

The code is�

�

�

�

N = 40;

x = linspace(1,3,N);

f = x.ˆ2-3*x+2;

h = x(2)-x(1);

integral = (sum(f)-f(1)/2-f(N)/2)*h;

This gives the value 0.6675, which is within 8.7 × 10−4 of the exact answer.
Notice that by using either of Simpson’s rules we could have retrieved the exact
answer, since the original curve is a quadratic.

Solution 7.5 We use N = 11 and modify Simpson’s 1/3 rule code on page
233, so that we have
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�

�

�

�

x = linspace(0,1,11);

h = x(2)-x(1);

N = length(x);

rodd = 1:2:N;

reven = 2:2:(N-1);

weights(rodd) = 2; weights(1) = 1;

weights(N) = 1; weights(reven) = 4;

f = x.ˆ3-x+1;

integral = h/3*sum(weights.*f);

disp([integral])

This gives an answer of 0.75. The exact answer is
1∫

0

x3 − x + 1 dx =
[
x4

4
− x2

2
+ x

]1

0
=

3
4
.

So the scheme does exceedingly well and the error is of the order 10−16. This
is unsurprising since the error is proportional to the fourth derivative, which is
identically zero for a cubic.

Solution 7.6 In this task we produce a minor modification of the previous
solution: the first line needs to read x=linspace(0,pi,N); and the line defining
f(x) needs modifying to f=sin(x). This now allows us to try different values
of N , which we do with a loop structure:�

�

�

�

Ns = 5:2:19;

for N = Ns

clear rodd reven weights f x

x = linspace(0,pi,N);

h = x(2)-x(1);

rodd = 1:2:N;

reven = 2:2:(N-1);

weights(rodd) = 2;

weights(1) = 1; weights(N) = 1;

weights(reven) = 4;

f = sin(x);

integral(N) = h/3*sum(weights.*f);

end

plot(Ns,abs(integral-2))

This gives
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where we have plotted the errors versus the number of points. We have used the
exact answer which is

π∫
0

sin xdx = [− cos x]π0 = 2.

As we can see the errors tend to zero very rapidly. Of course sin x is a very
smooth function over this interval and if we had a more oscillatory function
more points would be needed.

Solution 7.7 We shall use the trapezium rule for simplicity. We also note that
the value of this integral over the truncated domain is:

a∫
0

1√
x2 + 1

dx = sinh−1(a).

We note that sinh−1(a) = ln(a +
√

a2 + 1) so in fact the value of the integral
diverges, but very slowly.

We use the code:
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�

�

�

�

X = input(’Truncate at:’);

N = ceil(X)*3;

x = linspace(0,X,N);

h = x(2)-x(1);

f = 1./sqrt(x.ˆ2+1);

int = (sum(f)-f(1)/2-f(N)/2)*h

The second line ensures that the step sizes will be smaller than 1/3. This gives:

>> diverge

Truncate at:10

int =

2.9981

>> diverge

Truncate at:100

int =

5.2983

>> diverge

Truncate at:1000

int =

7.6009

which as we see increases as the truncation point increases. (The corresponding
values of arcsinh are 2.9982, 5.2983 and 7.6009; so that the integration does a
good job).

Solution 7.8 We can use the code:
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�

�

�

�

theta = 0:pi/20:(pi/2-pi/20);

N = 20;

for it = 1:length(theta);

theta1 = theta(it);

clear grid f

grid = linspace(theta1,pi-theta1,N);

f = sqrt(1+cos(grid).ˆ2);

h = grid(2)-grid(1);

arclen(it) = (sum(f)-f(1)/2-f(N)/2)*h;

end

plot(theta/pi*180,arclen)

xlabel(’\theta degrees’)

ylabel(’Arc length’)

which gives
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Solution 7.9 Firstly we give details of the analytical solution:

10∫
0

cos x

x1/2 dx =

ε∫
0

cos x

x1/2 dx +

10∫
ε

cos x

x1/2 dx

For the first of these integrals we approximate cos x by 1 − x2/2 (that is the
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first two terms in its Taylor series).

ε∫
0

1
x1/2 − x3/2

2
dx =

[
2x1/2 − x5/2

5

]
=
[
2ε1/2 − ε5/2

5

]
.

We can now use the code�

�

�

�

clear all

epsil = input(’Epsilon :’);

int1 = 2*epsilˆ(0.5)-epsilˆ(2.5)/5;

N = 100;

x = linspace(epsil,10,N);

h = x(2)-x(1);

f = cos(x)./sqrt(x);

int2 = (sum(f)-f(1)/2-f(N)/2)*h;

int = int1+int2;

The first integral gives a significant contribution.

Solution 7.10 The quadratic through the three points is

y(x) = a0 + (x − x0)∆a1 + (x − x0)(x − x1)a2

where the constants are

a0 = f0

a1 =
f1 − f0

x1 − x0

a2 =
(f2 − f0)(x1 − x0) − (f1 − f0)(x2 − x0)

(x1 − x0)(x2 − x0)(x2 − x1)

Now integrating

x2∫
x=x0

y(x) dx

x2∫
x=x0

a0 + (x − x0)a1 + (x − x0)(x − x1)a2 dx

Solution 7.11 Here we need to use the code�
�

�
�

function [f] = fxlnx(x)

f = x.*log(x);



436 C. Solutions to Tasks

and then use the code quad(’fxlnx’,1,2). This gives 0.63629536463993 (us-
ing format long). The exact value can be calculated using integration by parts

2∫
x=1

q ln q dq =
[
1
2
q2 ln q

]2

x=1
−

2∫
x=1

q

2
dq

= 2 ln 2 −
[
q2

4

]2

x=1

= 2 ln 2 − 3
4
.

The value of this expression agrees very well with that above.

C.8 Solutions for Tasks from Chapter 8

Solution 8.1 Let us firstly find the exact solution. Start by dividing the equa-
tion through by y and then integrate with respect to t which gives∫

1
y

dy

dt
dt = −

∫ √
t dt,

hence we have

ln y = −2
3
t3/2 + C.

This can be rearranged to give

y = Ae− 2
3 t

3
2

and the particular solution can be found by setting y(0) = 1, which gives A = 1.

In order to obtain the numerical solution the code should be modified to�

�

�

�

dt = 0.05;

t = 0.0:dt:1.0;

y = zeros(size(t));

y(1) = 1;

for ii=1:(length(t)-1)

y(ii+1) = y(ii) + dt * (-y(ii)*sqrt(t(ii)));

end

exact = exp(-2/3*(t).ˆ(3/2));

plot(t,y,t,exact,’--’)
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This produces
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Notice that although this solution is “reasonable” it can be improved by reducing
the value of dt.

Solution 8.2 Let us start by considering the exact solutions to both differential
equations. Again start by dividing through by y and integrating with respect to
t, which gives ∫

1
y

dy

dt
dt =

∫
±t dt,

hence

ln y = ± t2

2
+ C =⇒ y = Ae±t2/2.

In each calculation the value of the constant is unity, hence we have the solu-
tions

y = et2/2 and y = e−t2/2.

The scheme for the solution of the equations is written as

yn+1 − yn

∆t
= ±tnyn,
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which can be rearranged to give

yn+1 = yn + ±∆t tnyn = yn

(
1 + ±n∆t2

)
,

where we have used the fact that tn = n∆t.
Let us consider the first case. Start with n = 0

y1 = 1

and now n = 1, etc.

y2 = 1
(

1 +
1
16

)
=

17
16

,

y3 =
17
16

(
1 +

2
16

)
=

153
128

,

y4 =
153
144

(
1 +

3
16

)
=

2907
2028

≈ 1.419 .

The exact answer is e1/2 ≈ 1.648, hence the absolute error is |1.419 − e1/2| ≈
0.229 and the relative error is |1.419−e1/2|/e1/2 ≈ 0.139 (or this can be written
as 13.9%).

Now we can repeat the calculation for the other case

y1 = 1

and now n = 1, etc.

y2 = 1
(

1 − 1
16

)
=

15
16

y3 =
15
16

(
1 − 2

16

)
=

105
128

y4 =
105
128

(
1 − 3

16

)
=

1365
2048

.

Here the absolute error is ≈ 0.21378 whereas the relative error is 0.352 (or
around 35%). Despite the absolute errors being comparable the relative errors
are different (due to the magnitude of the answers involved).

It is up to the individual as to which error is best to use and this generally
comes with experience.

Solution 8.3 The code for this task is
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�

�

�

�

dt = pi/10;

t = 0.0:dt:10.0*pi;

y = zeros(size(t));

y(1) = 0;

for ii=1:(length(t)-1)

y(ii+1) = y(ii) + dt * (sin(t(ii))+sin(y(ii)));

end

This produces the result
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You can now change the step length, simply by changing the dt= line (it might
be a good idea to add a clear all statement at the top of the code as well).

Solution 8.4 First let us construct the exact solution to the equation. We need
to multiply through by an integrating factor, namely et/3, which gives

et/3 dy

dt
+

1
3
et/3y = −1

2
tet/3

d
dt

(
yet/3

)
= −1

2
tet/3

and now integrating with respect to t we find that

yet/3 = A −
∫

1
2
tet/3 dt.
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Now integrating the right hand side by parts gives

yet/3 = A −
{[

3
2
tet/3

]
−
∫

3
2
et/3 dt

}
,

yet/3 = A −
{

3
2
tet/3 − 9

2
et/3

}
.

Hence we have the solution

y = Ae−t/3 −
{

3
2
t − 9

2

}
.

Now applying the boundary condition gives A = −9/2. The solution is

y =
9
2

(
1 − e−t/3

)
− 3t

2
.

Now consider the discretised form of the equation, which is

yn+1 − yn

∆t
= − tn+1

2
− yn+1

3
,

which can be rearranged to give

yn+1 =
1

1 + ∆t
3

(
yn − ∆t

tn+1

2

)
.

Now with ∆t = 1/3 and n = 0 this gives

y1 =
1

1 + 1
9

(
0 − 1

3
1

3 × 2

)
=

9
10

(
− 1

18

)
= − 1

20
,

and now with n = 1

y2 =
9
10

(
− 1

20
− 1

3
2

3 × 2

)
= − 29

200
,

and finally for n = 2 which gives y3 = y(1)

y3 =
9
10

(
− 29

200
− 1

3
3

3 × 2

)
= − 561

2000
.

The code to produce this and the other required solutions is
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�

�

�

�

clear all

dt = 1/3;

t = 0.0:dt:1;

y = zeros(size(t));

y(1) = 0;

for ii = 1:(length(t)-1)

y(ii+1) = 1/(1+dt/3)*(y(ii)-dt*t(ii+1)/2);

end

ts = t; ys = y;

dt = 1/1000;

t = 0.0:dt:1;

y = zeros(size(t));

y(1) = 0;

for ii = 1:(length(t)-1)

y(ii+1) = 1/(1+dt/3)*(y(ii)-dt*t(ii+1)/2);

end

exact = 9/2*(1-exp(-t/3))-3/2*t;

plot(ts,ys,’*’,t,exact,t,y)

This gives the picture
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where the solution above is shown using stars.

Solution 8.5 The codes now become
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�
�

�
�

function [value] = odes(t,y)

value = tˆ2-yˆ2;

and 

�

�

�
y0 = 0;

tspan = [0 2];

[t,y] = ode45(’odes’,tspan,y0);

These give
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Solution 8.6 The solution to this equation can be obtained by multiplying by
the integrating factor et and then integrating by parts. After application of the
initial condition we find that

y(t) = t2 − 2t + 2 − e−t.

The numerical solution can be determined using:
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�

�

�

�

N = 20;

t = linspace(0,2,N);

dt = t(2)-t(1);

y(1) = 1;

for j = 1:(N-1)

y(j+1) = y(j)+dt*(-y(j)+t(j)ˆ2);

end

ex = t.ˆ2-2*t+2-exp(-t);

This gives:
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which is a reasonable match (the exact solution is shown with the asterisks).

Solution 8.7 1. The solution of this problem is:

y(x) = 2 sinx − x cos x + x(−2 sin 1 + cos 1 − 1) + 1.
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�

�

�

�

% Set up system

x = 0.0:0.1:1.0;

N = length(x);

h = x(2)-x(1);

a = 1/hˆ2*ones(size(x));

b = -2/hˆ2*ones(size(x));

c = 1/hˆ2*ones(size(x));

r = x.*cos(x);

a(1) = 0; b(1) = 1; r(1) = 1;

c(N) = 0; b(N) = 1; r(N) = 0;

% Forward sweep

for j = 2:N

b(j) = b(j)-c(j)*a(j-1)/b(j-1);

r(j) = r(j)-c(j)*r(j-1)/b(j-1);

end

% Final equation

y(N) = r(N)/b(N);

for j = (N-1):-1:1

y(j) = r(j)/b(j)-a(j)*y(j+1)/b(j);

end

which gives
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2. The analytic solution here is:

y(x) = 2 sinx − x cos x − x − 2 sin 1 + cos 1 + 1.�

�

�

�

% Set up system

x = 0.0:0.1:1.0;

N = length(x);

h = x(2)-x(1);

a = 1/hˆ2*ones(size(x));

b = -2/hˆ2*ones(size(x));

c = 1/hˆ2*ones(size(x));

r = x.*cos(x);

a(1) = -1; b(1) = 1; r(1) = 0;

c(N) = 0; b(N) = 1; r(N) = 0;

% Forward sweep

for j = 2:N

b(j) = b(j)-c(j)*a(j-1)/b(j-1);

r(j) = r(j)-c(j)*r(j-1)/b(j-1);

end

% Final equation

y(N) = r(N)/b(N);

for j = (N-1):-1:1

y(j) = r(j)/b(j)-a(j)*y(j+1)/b(j);

end

which gives
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3. The solution here is
y(x) =

e−2x − 1
e−2 − 1

.�

�

�

�

% Set up system

x = 0.0:0.1:1.0;

N = length(x);

h = x(2)-x(1);

a = (1/hˆ2+2/(2*h))*ones(size(x));

b = -2/hˆ2*ones(size(x));

c = (1/hˆ2-2/(2*h))*ones(size(x));

r = 0;

a(1) = 0; b(1) = 1; r(1) = 0;

c(N) = 0; b(N) = 1; r(N) = 1;

% Forward sweep

for j = 2:N

b(j) = b(j)-c(j)*a(j-1)/b(j-1);

r(j) = r(j)-c(j)*r(j-1)/b(j-1);

end

% Final equation

y(N) = r(N)/b(N);

for j = (N-1):-1:1

y(j) = r(j)/b(j)-a(j)*y(j+1)/b(j);

end
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which yields
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Solution 8.8 The exact solution here is

y(t) =
1
3

(
t − 1√

3
sin

√
3t

)
.

By discretising the equation we have

yn+1 = 2yn − yn−1 + ∆t2 (−3yn + tn) .

The initial conditions can be realised by setting y1 = 0 and y2 = 0 as a result
of the fact that y′(0) ≈ (y2 − y1)/∆t = 0.�

�

�

�

N = 20;

t = linspace(0,1,N);

dt = t(2)-t(1);

y(1) = 0;

y(2) = 0;

for j = 2:N-1

y(j+1) = 2*y(j)-y(j-1) ...

+dtˆ2*(3*y(j)+t(j));

end

ex = (t-sin(sqrt(3)*t)/sqrt(3))/3;
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This gives
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The numerical solution does reasonably initially: however as t increases the
solution diverges.

Solution 8.9 This equation can be solved in a similar manner to the previous
task:�

�

�

�

N = 20;

t = linspace(0,2,N);

dt = t(2)-t(1);

y(1) = 1;

y(2) = 1;

for j = 2:N-1

y(j+1) = 2*y(j)-y(j-1) ...

+dtˆ2*(t(j)*y(j)+sin(t(j)));

end

This gives:
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(the solution is expressible in terms of Airy functions, but this does not repre-
sent a great advantage to us).

This second problem can be solved by setting up the discretised system

yn+1 − 2yn + yn−1

∆t2
+ tnyn = sin tn

with the conditions that y1 = 0 (y(0) = 0) yN = 0 (y(2) = 0).�

�

�

�

N = 20;

t = linspace(0,2,N);

dt = t(2)-t(1);

A = zeros(N);

A = diag(-2/dtˆ2*ones(N,1)+t’,0) ...

+diag(1/dtˆ2*ones(N-1,1),-1) ...

+diag(1/dtˆ2*ones(N-1,1),1);

r = transpose(sin(t));

A(1,:) = 0;

A(1,1) = 1; r(1) = 0;

A(N,:) = 0;

A(N,N) = 1; r(N) = 0;

sol = A\r;

This gives:
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Solution 8.10 This equation can be integrated directly by dividing through by
y(t2 + 1). This gives

y′

y
= − 2t

1 + t2

so that
y(t) =

1
1 + t2

.

The equation can be solved numerically using�

�

�

�

N = 50;

t = linspace(0,5,N);

dt = t(2)-t(1);

y(1) = 1;

for j = 1:(N-1)

y(j+1) = y(j)-dt*2*t(j)*y(j)/(1+t(j)ˆ2);

end

ex = 1./(1+t.ˆ2);

This yields
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Solution 8.11 This system can be written as

y′ =

⎛
⎝ 0 1 0

0 0 1
2 1 −2

⎞
⎠y,

where y = (y, y′, y′′). Using MATLAB we find that
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�

�

�

�

>> A = [0 1 0; 0 0 1; 2 1 -2];

>> [V,D] = eig(A)

V =

-0.5774 -0.2182 0.5774

0.5774 0.4364 0.5774

-0.5774 -0.8729 0.5774

D =

-1.0000 0 0

0 -2.0000 0

0 0 1.0000

And hence we know that
eAt = VeDtV−1.

For convenience we shall use the non-normalised form of V so that

Ṽ =

⎛
⎝ −1 1 1

1 −2 1
−1 4 1

⎞
⎠ and Ṽ−1 =

⎛
⎝ −1 1

2
1
2

− 1
3 0 1

3
1
3

1
2

1
6

⎞
⎠

Hence

eAt =

⎛
⎝ −1 1 1

1 −2 1
−1 4 1

⎞
⎠
⎛
⎝ e−t 0 0

0 e−2t 0
0 0 et

⎞
⎠
⎛
⎝ −1 1

2
1
2

− 1
3 0 1

3
1
3

1
2

1
6

⎞
⎠

=

⎛
⎝ −1 1 1

1 −2 1
−1 4 1

⎞
⎠
⎛
⎝ −e−t 1

2e−t 1
2e−t

− 1
3e−2t 0 1

3e−2t

1
3et 1

2et 1
6et

⎞
⎠

=

⎛
⎝ e−t − 1

3e−2t + 1
3et − 1

2e−t + 1
2et − 1

2e−t + 1
3e−2t + 1

6et

−e−t + 2
3e−2t + 1

3et 1
2e−t + 1

2et 1
2e−t − 2

3e−2t + 1
6et

e−t − 4
3e−2t + 1

3et − 1
2e−t + 1

2et − 1
2e−t + 4

3e−2t + 1
6et

⎞
⎠ .

The solution is obtained by multiplying (0, 0, 1)T (the initial conditions) by this
matrix

eAt

⎛
⎝ 0

0
1

⎞
⎠ =

⎛
⎝ − 1

2e−t + 1
3e−2t + 1

6et

1
2e−t − 2

3e−2t + 1
6et

− 1
2e−t + 4

3e−2t + 1
6et

⎞
⎠ .
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Finally we have the answer

y(t) = −1
2
e−t +

1
3
e−2t +

1
6
et.

Solution 8.12 This is solved using the finite difference code:�

�

�

�

N = 20;

x = linspace(0,pi,N);

h = x(2)-x(1);

% Only the internal points

A = diag(-2/hˆ2*ones(N-2,1) ...

+sin(x(2:(N-1)))’,0) ...

+diag(1/hˆ2*ones(N-3,1),1) ...

+diag(1/hˆ2*ones(N-3,1),-1);

[V,D] = eigs(A,3,’SM’);

for j = 1:3

ti = [’\lambda = ’ num2str(D(j,j))];

subplot(1,3,j)

plot(x,[0; V(:,j); 0])

title(ti,’FontSize’,14)

end

This creates
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C.9 Solutions for Tasks from Chapter 9

Solution 9.1 This can be achieved using�

�

�

�

x = [3 2 4 5 6 -1 5 6 7 8 2];

y = [2 -6 3 2 0 1 4 5 6 7 8];

mean(x)

mean(y)

median(x)

median(y)

var(x)

var(y)

A = cov(x,y);

A(1,2)

A = corrcoef(x,y);

A(1,2)

This gives
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ans =

4.2727

ans =

2.9091

ans =

5

ans =

3

ans =

6.8182

ans =

15.0909

ans =

4.2273

ans =

0.4167

respectively.
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Solution 9.2 We note that if Y = aX + b then ȳ = ax̄ + b which can be seen
by substitution into the formula for the mean. Similarly substituting this into
the expression for the correlation shows that

σXY =
a√
a2

=
a

|a| = sign(a).

Solution 9.3 These two can be calculated using�

�

�

�

xb=mean(x);

vx=sum((x-xb).ˆ2)/length(x);

std_x=sqrt(vx);

skew=sum(((x-xb)/std_x).ˆ3)/length(x);

kurt=sum(((x-xb)/std_x).ˆ4)/length(x)-3;

Solution 9.4 In order to solve this problem we shall use a basic loop structure�

�

�

�

global mu

mu = 0.4;

x(1) = 0.25;

for i = 1:9

x(i+1) = map(x(i));

end

The value this code returns is 4.3420e-05 (notice if you get MATLAB to write
out x it will appear that this entry is zero, depending on the current format).

Solution 9.5 One value which works is µ = −2. Then use�

�

�

�

mu = -2;

co = [-muˆ3 2*muˆ3 -muˆ2*(1+mu) (muˆ2-1) 0];

[r] = roots(co);

x1 = r(3);

x2 = map(x1);

x3 = map(x2);

disp([x1 x2 x3])

Note that x2 is also a period 2 point and its image is x1. These values are
actually given by

1
2

µ2 + µ ±
√

µ4 − 2µ3 − 3µ2

µ2
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The real values of these roots occur for µ < −1 and µ > 3.

Solution 9.6 The code for this map is

�

�

�
function [xn,yn] = map3(xo,yo)

xn = mod(xo+2*yo,1);

yn = mod(3*xo-2*yo,1);

Solution 9.7 The solution of the Hénon map for cos α = 0.24 gives
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* multiplication, 4, 6, 8, 15, 176
+ addition, 8
- subtraction, 8
/ division, 8
:, 171
>> prompt, 2
%, 332

Airy functions, 270, 273, 449
ans, 3, 170
ASCII, 55

Bessel functions, 132, 237, 238, 257, 270
Boundary-value problems, 274, 276, 278

Comments, 41, 332
Constants
– eps, 7, 10, 53, 296, 372, 402
– pi,π, 7, 73, 382, 393
– realmax, 384
– realmin, 384
Curves of best fit, 152, 382, 383

Data Loading/Saving, 134–139
Dot Arithmetic, 14, 15, 19, 54, 59, 98,

130, 178, 180, 181, 220
– division, 14, 81, 178, 337
– exponentiation, 14, 30–32, 36, 38, 43,

50, 77, 178, 338, 346, 395
– multiplication, 14, 118, 178, 336, 398

Errors, 51–63
– absolute, 52–54, 237, 266, 267, 438

– numerical, 51–54
– relative, 52, 266, 267, 438
– user, 54–63
Explicit Methods, 248, 251, 253, 254,

256
Extrapolation, 117, 133, 147, 167, 418

feval, 50, 51, 104, 107, 375
Filenames, 28, 30, 135–137, 159, 346
format
– rat, 4, 7, 12, 13, 25, 75, 197
Formatting, 12–13
Functions
– Mathematical
– – acos - arccosine, 8, 368
– – asin - arcsine, 8, 385
– – atan - arctangent, see atan2
– – atan2, 366, 386
– – cos, 8, 181, 368
– – cosh, 369
– – exp - exponential, 9, 181, 372
– – log - natural logarithm, 9, 360, 377
– – log - logarithm base 10, 9
– – ˆ - exponentiation, 9
– – sinh, 181, 385
– – sin, 8, 10, 181, 363, 385
– – tan, 8, 386
– MATLAB
– – \, 332
– – abs, 9
– – all, 93, 341
– – and, 83, 86, 341, 343, 407
– – angle, 365, 366
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– – any, 93, 99, 342
– – atan2, 366, 386
– – axes, 348
– – axis, 32, 38, 51, 157, 315, 322,

348–350, 356, 405
– – bar, 297, 350
– – barh, 351
– – besselj, 132, 238, 366, 382, 413
– – break, 92, 94, 127, 140, 145, 164,

214, 234, 322, 367
– – case, 112, 115, 116, 367
– – cd, 29
– – ceil, 9, 25, 91, 367, 390, 433
– – clear, 22
– – clf, 39, 46, 107, 260, 262, 269, 315,

352, 357, 382, 396
– – close, 352
– – cond, 368
– – conj, 368
– – contour, 32, 39, 40
– – contourf, 39
– – corrcoef, 295, 368, 454
– – cov, 295, 369, 454
– – cputime, 201, 369
– – dec2hex, 369, 375
– – demo, 41, 369
– – det, 214, 369, 427
– – diag, 179, 182–185, 203, 217, 280,

286, 370, 419, 453
– – diary, 371
– – diff, 371
– – dir, 30
– – disp, 28, 41
– – double, 234, 258, 259
– – dsolve, 258
– – edit, 27, 28, 59, 64, 371
– – eig, 371, 428
– – eigs, 208, 210, 211, 286, 371, 453
– – else, 87, 88, 93, 99, 101, 114, 115,

119–122, 125, 127, 140, 159, 292,
339, 340, 371, 405, 408

– – elseif, 87, 88, 95, 101, 115, 140,
371, 405, 408

– – end, 60
– – end of an array, 24
– – error, 94, 97, 372
– – exist, 96, 372, 376
– – expm, 215, 372
– – eye, 86, 179, 182, 195, 198, 203, 214,

372, 375, 428
– – factor, 9, 11, 65, 87, 95, 271, 272,

372
– – factorial, 66, 77, 372, 383, 401

– – fclose, 137, 138
– – feval, 49–51, 103, 104, 106, 107,

111, 372, 375
– – figure, 39, 59, 156, 257, 287, 348,

352
– – find, 100, 143, 342
– – fix, 9, 25, 372, 390
– – fliplr, 217, 372
– – flipud, 217, 372, 419
– – floor, 9, 25, 91, 96, 99, 373, 390,

403
– – fmins, 161, 162, 164, 373
– – fminsearch, 161
– – fopen, 137, 138
– – for, 63–65, 70, 75, 82, 97, 297, 372,

373, 397, 398, 401, 407
– – format, 4, 7, 12, 13, 25, 75, 197, 373,

436
– – fprintf, 137, 138
– – full, 204, 373, 385
– – function, 30–34
– – fzero, 128, 130, 132, 374, 413
– – gac, 44
– – gca, 301, 352, 355, 361, 362
– – gcd, 374
– – gcf, 44, 159, 354, 361, 362
– – get, 44, 348, 352, 354, 355, 362
– – ginput, 105, 106, 130, 355
– – global, 111, 112, 156, 159, 165, 275,

319, 320, 367, 374, 456
– – gplot, 355
– – grid, 37, 51, 104–107, 109, 147, 148,

356, 360
– – help, 2
– – helpbrowser, 1, 374
– – helpdesk, 1, 335, 375
– – hex2dec, 369, 375
– – hilb, 185, 368, 375
– – hist, 298, 318, 356
– – hold, 39, 46, 147, 148, 159, 260, 315,

357
– – i, 375
– – if, 83, 87, 90
– – imag, 366, 375, 382
– – Inf, 239, 375
– – inline, 374, 375
– – input, 28, 30, 31, 41, 58, 69, 72, 95,

119, 375
– – int, 230, 233, 235
– – int2str, 56, 57, 64, 65, 69–71, 74,

87, 119, 189, 362, 371, 375, 401, 402
– – inv, 154, 201, 209, 210, 332, 333,

369, 375
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– – invhilb, 185
– – isempty, 93, 140, 145, 376
– – isprime, 49, 99, 376
– – isreal, 93, 376
– – j, 375
– – legend, 46, 47, 269, 357, 396
– – length, 14, 22, 36
– – linspace, 14, 22
– – load, 29, 135–137, 139, 146, 147,

154, 377
– – log10, 9, 377
– – loglog, 39, 358
– – lookfor, 185, 186, 335, 377
– – lower, 89, 90, 377, 404
– – lu, 200, 377, 378
– – magic, 185, 378
– – max, 34, 51, 156, 159, 241, 305, 349,

378, 379
– – mean, 292, 296, 298, 299, 318, 379,

454, 456
– – median, 292, 379, 454
– – meshgrid, 32, 39, 41
– – min, 51, 106, 156, 159, 349, 379
– – mod, 9, 25, 58, 80, 99, 234, 379, 390,

391
– – NaN, 93, 94, 111, 379, 390
– – nchoosek, 67
– – norm, 127, 163–165, 379
– – not, 83, 342
– – num2str, 28, 41, 43, 56–58, 65, 71,

97, 112, 116, 119–122, 127, 156, 159,
185, 241, 296, 380, 395, 398, 399,
401, 420, 453

– – ode23, 265, 288, 380
– – ode45, 265–267, 288, 380, 381, 442
– – ones, 176, 182
– – or, 83, 85, 86, 322, 342, 343, 403,

405, 407
– – otherwise, 89, 90, 112, 115, 116, 382
– – path, 29, 382
– – pause, 159, 286, 382, 384
– – plot, 21, 36–38, 354
– – plot3, 350, 359
– – poly, 22, 43, 206, 214, 382
– – polyfit, 75, 148, 149
– – polyval, 20, 21, 48
– – precedence, 87
– – primes, 383
– – print, 159, 360
– – prod, 12, 67, 68, 81, 383
– – pwd, 30
– – quad, 237, 238, 245, 436

– – rand, 175, 201, 295, 299, 305, 315,
317, 369, 383, 385

– – randn, 298, 299, 383
– – randperm, 300, 384
– – rank, 187, 189, 384
– – real, 305, 366, 384
– – realmax, 7, 384
– – realmin, 7, 384
– – rem, 9, 11, 25, 85, 87, 307, 384, 391
– – reshape, 384
– – roots, 21, 22, 123, 126, 128, 132,

206, 214, 320, 382, 385, 412, 428, 456
– – round, 9, 25, 95, 385, 390, 404
– – rref, 195, 197, 198
– – rrefmovie, 195
– – save, 135, 136, 385
– – semilogx, 39, 359, 360
– – semilogy, 39, 359, 361
– – set, 301, 348, 352, 354, 355, 361–364
– – sign, 9, 95, 181
– – size, 13, 22, 36
– – sort, 292, 385
– – sparse, 203, 210, 373, 385
– – spline, 150, 152, 166, 385, 415, 417
– – sqrt, 12, 343
– – std, 293, 318, 386
– – str2mat, 386
– – subplot, 362, 453
– – sum, 34, 35, 80, 81, 154, 229, 233,

236, 292, 293, 300, 386, 430, 431,
433, 456

– – surf, 39, 40
– – switch, 88–90, 112, 116, 367, 372,

382, 386, 428, 429
– – syms, 230, 233, 235, 258
– – text, 38, 202, 241, 260, 362, 363
– – title, 38, 156, 159, 364, 453
– – tour, 1, 386
– – transpose, 175, 180, 373, 378, 386,

418, 425
– – type, 5, 30, 42, 386
– – upper, 89, 377, 386
– – var, 293, 299, 386, 454
– – warning, 94–96, 387, 404, 405
– – what, 30
– – which, 5, 30, 387
– – while, 90–92, 96, 99, 111, 119–122,

317, 372, 387, 403–405
– – who, 22, 31, 135
– – whos, 22, 31, 134, 135, 137, 387
– – xlabel, 38, 51, 202, 260, 262, 364
– – xor, 83, 342, 343, 403
– – ylabel, 38, 51, 364
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– – zeros, 77
– – zoom, 105, 107, 109, 322, 355, 365

Geometric Progressions, 68, 79

Help commands
– helpbrowser, 1, 374
– helpdesk, 1, 335, 375
– help, 1, 6, 13, 24, 25, 27, 29, 30, 41,

42, 47, 48, 87, 99, 127, 135, 138, 175,
217, 237, 266, 335, 343, 350, 359, 371,
373, 374, 382, 383

– lookfor, 185, 186, 335, 377

Implicit Methods, 251, 254, 288
Interpolation, 117, 133, 147–158, 160,

414
– cubic, 149
– Lagrange polynomials, 142
– linear, 149, 167
– polynomials, 140, 148
– splines, 150–152, 167, 385

Lagrange polynomials, 141, 142, 147
LATEX, 38
Linear Independence, 187
Logical Operators, 335–343
– Boolean algebra
– – and, 341
– – not, 83, 342
– – or, 83, 85, 86, 322, 342, 343, 403,

405, 407
– – xor, 83, 342, 343, 403
– comparative, 83
– ==, 60, 83, 85–87, 90, 92, 94, 95, 99,

111, 119–122, 159, 189, 233, 292, 296,
339, 403

– <,<=, 84, 88, 101, 341, 404–406, 408
– >,>=, 84, 86, 88, 99, 101, 145, 340,

342, 403–406, 408
– <,<=, 341
– =, 340

Matrices
– eye, 86, 179, 182, 195, 198, 203, 214,

372, 375, 428
– ones, 176, 182, 183, 219, 236, 243,

260, 262, 280, 286, 315, 335–338, 344,
369, 382, 399, 419, 426, 430, 444, 445,
447, 453

– zeros, 77, 156, 173, 175, 182, 241,
250, 256, 257, 265, 269, 271, 272, 274,
279, 280, 283, 284, 287, 310, 331, 387,
419, 437, 439, 441

– addition, 174, 326–327
– anti-symmetric, 220, 325, 421
– associativity, 330
– characteristic polynomials, 212–215,

223, 382
– commutativity, 219, 326, 330, 420
– determinants, 190–191, 198, 205, 206,

222, 331, 369, 421, 427
– diagonals, 182–185, 191, 199, 207–209,

215, 218, 221, 259, 295, 325, 331, 370,
371, 378, 421, 424

– distributivity, 330
– eigenvalues, 204–208, 210–212,

214–216, 223, 286, 290, 368, 371, 382,
428

– eigenvectors, 204–209, 215, 223, 371
– exponentials, 214–216
– full and sparse, 203, 204, 210, 215,

259, 263, 373, 385
– Hermitian, 325
– identity, see eye
– inverses, 331–333
– Inversion, 339
– LU decomposition, 200, 377
– multiplication, 326–328
– penta-diagonal, 263
– rank, 187–189, 198, 384
– scalar multiplication, 206, 326
– size, see size
– Skew Hermitian, 325
– square, 18, 182, 190, 208, 212, 220,

323, 325, 331, 382
– symmetric, 210, 220, 325, 421
– transpose, 180, 221, 325
– tri-diagonal, 259
– 0, see zeros

Nested if statements, 88
Nested loops, 75, 82, 98, 234, 402
Newton forward differences, 141, 142,

227, 230, 235, 251, 270
Numbers
– exponent Mantissa form, 7
Numerical Integration, 225–245
– Simpson’s 1

3 rule, 232, 234, 242, 243,
430

– Simpson’s 3
8 rule, 236, 237, 242, 430

– Trapezium Rule, 228, 229, 234, 243,
244, 300, 432

Object orientated programming, 4, 43,
152

ODEs, 247
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– Crank–Nicolson, 247, 251, 253, 255,
303, 306

– Euler, 247, 253, 256, 283, 284, 286,
288, 303

– Runge–Kutta, 263, 266, 267, 270, 272,
274, 288, 380

Operations
– binary, 3, 9, 178, 180, 336–338
– unary, 3, 180

Plotting, 21, 36–49
Polynomials, 20, 41, 43
– roots, 21
Precedence, 5, 6
– brackets, 4–6, 86
– division, 5
– exponentiation, 54
– multiplication, 5
Products, 81, 383

Root finding, 103
– bisection, 113, 123, 131
– fixed point iteration, 109, 131, 409,

410
– initial estimates, 105, 109, 130, 355,

411
– Newton-Raphson, 117–125
– Newton–Raphson, 131, 132, 163, 247,

274, 313
– secant, 117–125

Scalars, 2–12
Simultaneous equations, 74, 220, 221,

331
Sums of series, 73
Symbols

– ..., 29, 58, 69, 74, 77, 96, 112, 116,
119–122, 145, 159, 188, 211, 237, 256,
269, 271, 272, 275, 280, 286, 333, 343,
372, 395, 399, 402, 422, 426–428, 448,
453

– %, 20, 41, 332, 343
– apostrophe, see transpose
– colon, 13, 17, 19, 59, 98, 171, 172, 344
– comma, 345
– decimal point, 138, 346, 380
– quotes, 28, 42, 49, 65, 90, 136, 137,

345, 363
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