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Abstract

Injuries are a sportsman’s worst nightmare: They withhold players from playing, they weaken
teams and they force clubs to buy a bench-full of substitutes. On top of that, injuries can
cause an awful lot of pain.

Regulating match and training intensity can drastically decrease the risk of getting injured.
Furthermore, it can optimally prepare players for matchday. To enable player load regulation,
accurate measurements of player positions, velocities and especially accelerations are required.
To measure these quantities, JOHAN Sports develops a sports player motion tracking system.

The device that is used for motion tracking contains a 9-DoF MEMS Inertial Measurement
Unit (IMU) and a GPS receiver. These low-cost MEMS sensors are combined via sensor
fusion. The challenge in this filtering problem lies in the limited and low-quality sensor
measurements combined with the high-dynamic player motion consisting of rapid orientation
changes and sensed impacts in every step. Being able to overcome these challenges paves the
way for injury prevention, saving sports clubs, teams and players a lot of misery.

To estimate player motion from the measurements by the tracking device, four sensor fusion
algorithms are developed. For estimating rotational motion, the quaternion-based Unscented
Kalman filter as described by Kraft and the Madgwick filter are devised. For estimating
translational motion, a traditional linear Kalman filter and an Unscented Kalman filter are
designed. These filters are combined to solve the sensor fusion problem.

On simulated data, it is shown that the Madgwick filter outperforms Kraft’s quaternion-based
unscented Kalman filter in both estimation accuracy and computational load. In estimating
translational motion, the simulations show that the UKF and the linear Kalman filter achieve
similar estimation accuracy.

Subsequently the filters are tested on real data in different experiments. It is shown that, due
to the on-chip filtering operation of the GPS sensor, position estimates do not benefit from
sensor fusion. Furthermore, it is shown that the filters in their current state are unable to
accurately estimate player accelerations from the sensors in the JOHAN Sports tracking device.

Keywords: Motion tracking, IMU, GPS, GNSS, magnetometer, inertial navigation, sensor
fusion, Unscented Kalman filter, Madgwick filter.
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Chapter 1

Introduction

1-1 Motivation

In sports, injuries are highly undesirable. The joy of playing is decreased by the pain and
the inability to play. Team performance suffers from the absence of injured players, fans miss
out on watching their favorite player and clubs lose money on operations and wasted salary.
In case of injuries, there are no winners. Nevertheless, injuries occur very often. During the
2009-2010 season, 62.7% of the soccer players in the Dutch Eredivisie suffered from one or
more injuries [1].

Luckily, the likelihood and the severity of injuries can be reduced by properly regulating
players’ physical load [2]. To reduce injury risk and to improve performance, the company
JOHAN Sports is developing a monitoring system for outdoor field sports. Sports player motion
is measured via a wearable tracking device. By combining motion data with sports science
models, the company is able to provide sports coaches and physiotherapists with advice on
how to adapt training strategies for each individual player, reducing injury risk and optimizing
performance.

For reliable training advice and effective injury prevention, accurate motion estimates are
required in terms of acceleration, velocity and position with respect to the playing field.
The JOHAN Sports tracking device contains microelectricomechanical systems (MEMS) sensors
measuring specific forces, angular velocities, magnetic field strength and the sensor’s location
on Earth. The challenge in the thesis is to accurately estimate the player state with low-grade
sensors.

1-2 Background

Sports players are being monitored through a tracking device, see Figure 1-1a. The devices
come in a suitcase that serves as a charging station and is used to upload the measurement
data to the JOHAN servers. During training sessions and matches, the tracking device is worn
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2 Introduction

(a) The JOHAN Sports tracker and suitcase. (b) The JOHAN Sports vest.

Figure 1-1: The JOHAN Sports tracking device comes in a suitcase that serves as a charging
station. It is worn in a vest on players’ upper back, causing the least discomfort while playing.
Figures by courtesy of JOHAN Sports.

in a vest on player’s upper back, as depicted in Figure 1-1b. The tracking device contains
sensors with which player motion is to be estimated. The available sensors are a GPS receiver,
an accelerometer, a gyroscope and a magnetometer. Some properties of these sensors that
are of influence on player state estimation are briefly discussed.

GPS The GPS receiver uses sattelites orbiting the Earth to measure the tracking device’s
location on Earth. From the measured locations, an on-chip filter derives a directionless speed
estimate. Due to the filtering operation, the error on position estimates is not Zero-Mean
White Noise (ZMWN).

IMU The 3-axis accelerometer measures accelerations in the tracking device coordinate
frame. It measures both the gravitional acceleration and the player acceleration. An ac-
curate estimate of the tracking device 3D orientation is required to distinguish between the
part of the total measured acceleration that can be attributed to gravity and the part that is
caused by translational motion. []

The angular velocity of the tracking device is measured by a 3-axis gyroscope. An ideal
gyroscope would be able to take the initial orientation and determine each next orientation
by integrating the angular velocity over time. This process is called gyro dead-reckoning.
Real gyroscopes suffer from biases and noise, causing cumulative errors. []

A 3-axis magnetometer measures the flux of the magnetic fields surrounding it, in the tracking
device coordinate system. Ideally it would measure only the Earth’s magnetic field, resulting
in a vector pointing towards the magnetic North. In practice, multiple magnetic fields exist
around the sensor, disturbing the measurements. []

Applications The gyroscope, accelerometer and magnetometer combined are called a 9-
Degrees of Freedom (DoF) Inertial Measurement Unit (IMU). These sensors are commonly
used together and are often contained on the same chip. In applications like quadcopters,
submarine drones and virtual reality headsets, 9-DoF IMU’s are used to estimate the de-
vice orientation. The gyroscope is then used to measure the change in orientation, the ac-
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1-3 Problem statement 3

celerometer and magnetometer are used as a ‘gravity sensor’ and ‘Earth magnetic field sensor’,
respectively.

In the previously described applications, sensor fusion is applied to estimate the orienta-
tion, position and sometimes velocity. In the application of sports player state estimation,
determining the player acceleration is of great importance, since player acceleration and de-
celeration is found to be very indicative for the load on muscles [3].

Filtering techniques The rotational motion of tracking devices causes the system to be non-
linear. Probably the most widely applied estimation technique used for nonlinear applications
is the Extended Kalman filter (EKF) [4]. In the EKF, the nonlinear models are linearized,
enabling the use of the linear Kalman filter equations. A new extension to nonlinear Kalman
filters was developed by Van der Merwe [5] and Julier [6], known as the Unscented Kalman
filter (UKF). In the UKF, a set of cleverly chosen points around the state estimate is prop-
agated through the nonlinear models. From the transformed points, the new state estimate
is determined in similar fashion as in the traditional Kalman filter equations. The UKF has
been found to outperform the EKF in state estimation for highly nonlinear systems [7], [8].

Another technique that is commonly used in orientation estimation with IMU’s is the Madg-
wick filter [9]. This filter uses one-step gradient descent optimization to find the orientation
that best fits the gyroscope, accelerometer and magnetomter measurements.

The Unscented Kalman filter can be designed to estimate the full state at once. However,
it is also possible to split the state estimation in a rotational and a translational part. The
possible advantage is that the accelerometer can be used as a ‘gravity sensor’ in the orientation
estimation and as an ‘acceleration sensor’ in estimating the translational part of the state
vector.

The rotational state can then be either estimated with a UKF referred to as the Kraft filter,
or with a Madgwick filter. The model of translational motion can simply be linear, making it
possible to use a linear Kalman filter. By including the directionless speed estimate provided
by the GPS receiver as a measurement in the model, the translational model also becomes
nonlinear. A UKF can be used for this part of the state vector.

1-3 Problem statement

The reliablity of the training advice that JOHAN Sports provides, relies on accurate player
motion estimates in terms of position, velocity and acceleration. These estimates are to be
obtained from measurements with the JOHAN Sports tracking device.

Noise on position not ZMWN The position is measured via a GPS module. Although
the position estimates do not drift over time, they do contain offsets in the short term.
Furthermore, the noise on the position estimates is not zero-mean and not white due the
filtering action that is done on the chip, making it not straightforward to be filtered out.

Master of Science Thesis M. Roobeek



4 Introduction

Estimating velocity: noise amplification vs. cumulative errors The velocity can be esti-
mated by either taking the derivative of the position estimates, or by integrating the accel-
erations. When deriving the velocity from position estimates, sudden jumps in the position
caused by measurement noise result in problematic peaks in the estimated velocity. This is
referred to as noise amplification. On the other hand, integrating the accelerations, referred
to as dead-reckoning, is subject to cumulative errors.

Estimating orientation: In-plane accelerations contaminate gravity measurements The
orientation of a non-moving rigid 3D body is fully determined by the vectors describing the
Earth’s gravitational field and the Earth’s magnetic field, measured by the accelerometer and
magnetometer, respectively. Furthermore, it can be determined by integrating the angular
velocity (gyro dead-reckoning), provided that the previous orientation is known. However,
the object whose orientation is to be estimated tends to be moving, contaminating the gravity
measurements. And as stated before, dead-reckoning is subject to cumulative errors.

High signal-to-noise ratio in estimating accelerations In most applications, the accelerom-
eter is primarily used to determine the direction of the gravity vector, which in turn is used in
the orientation estimate. In the sports player motion tracking problem, player accelerations
are a desired estimated quantity. Note that player accelerations vary roughly between −3
and 3 m/s2, while gravity is in the order of ≈ 10 m/s2. This results in a small signal to noise
ratio, making it difficult to retrieve the desired measured signal.

1-4 Research question

The problems described in section 1-3 give rise to the following research question:

Which sensor fusion algorithm is most suitable for sports player motion estimation
from a 9-DoF IMU and GPS receiver?

The emphasis will lie on the estimation of accelerations, since these are most indicative for a
players’ physical load.

1-5 Hypothesis

It is expected that estimating the rotational and translational part of the state vector sep-
arately is beneficial to the estimation accuracy. Furthermore, it is expected that the Kraft
filter is able to estimate the orientation of a 3D rigid body in space more accurately than the
Madgwick filter. Lastly, it is expected that a UKF, by taking into account speed estimates
from the GPS receiver as a measurement, outperforms a linear Kalman filter in estimating
translational motion.
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1-6 Approach 5

1-6 Approach

The approach to investigate the best suitable sensor fusion algorithm for sports player motion
tracking is described in this section.

Five different filters are created. The full UKF estimates the full state at once. For esti-
mating rotational motion, the Kraft filter, a quaternion-based unscented Kalman filter and
the Madwgick filter are compared. For estimating translational motion, the UKF and linear
Kalman filter are compared.

The filters are combined in different configurations:

• Full UKF
• Kraft + UKF
• Madgwick + UKF
• Kraft + KF
• Madgwick + KF

Using simulated data, the filters are developed. Weak spots and difficulties of each filter are
identified. The filters that perform well in simulation are applied in real world experiments.

The real world experiments are designed in such a way that the estimation accuracy of the
full state vector is assessed.

Based on the experimental results, the best suitable filter is chosen out of the above-described
configurations.

Master of Science Thesis M. Roobeek
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Chapter 2

Methods and materials

When working with rotations in a 3 dimensional space, coordinate frame conventions are
important. The conventions around the use of the different coordinate frames in the thesis
are clarified in section 2-1. To be clear on the equipment that is used in the research, the
type of sensors that are used are clarified in Section 2-2. A short description of their working
principle is given. Throughout the thesis, a number of filters is used to estimate sports player
motion from sensor measurements. In Section 2-3, the filters that the reader is expected not
to be familiar with are explained in some depth. Section 2-4 describes the different models
used in the (unscented) Kalman filters. In Section 2-5, the method to determine the optimal
filter configuration is described.

2-1 Coordinate systems

The same motion can be described in different coordinate frames. In the application of field
sports motion tracking, it is first and foremost desired to know how players move with respect
to the playing field. However, the GPS sensor measures locations with respect to the center
of the Earth and the IMU sensor measures rotations, accelerations and the direction of the
magnetic north with respect to the tracking device.

The sensor measurements are transformed to the field coordinate frame via coordinate trans-
formations. When transforming from one coordinate frame to the other, it is important to be
aware of how each coordinate frame is defined. In this section all different coordinate frames
are defined.

Note on notation To denote the relative frames of orientations and vectors, the notation
of leading subscripts and superscripts adopted from Craig [10] is used. For example, the
rotation matrix describing the orientation of the body frame ΨB in the world frame ΨW is
denoted as WB R and a vector v described with respect to the body frame ΨB is written as Bv.
In Appendix A, commonly used attitude representations are described.
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8 Methods and materials

2-1-1 Earth coordinate frame

The Earth coordinate frame (ΨE) is an Earth-Centered Earth-Fixed (ECEF) coordinate sys-
tem, meaning that it’s center lies at the center of the Earth and that it rotates with the
Earth. The Earth frame describes the location of a point on Earth in degrees latitude (φ)
and longitude (λ). For any given location on the Earth’s surface, the latitude describes the
vertical angle between that point and the equatorial plane, where North is the positive di-
rection. The longitude describes the horizontal angle between the point and the reference
meridian crossing through Greenwich (UK), where East is the positive direction. The Earth
frame is depicted in Figure 2-1a.

(a) Latitude and longitude (b) Great circle distance. (c) Bearing.

Figure 2-1: Earth coordinate frame. For a point on the Earth’s surface, the latitude φ describes
the angle between the equator and the point. The longitude λ describes the angle between the
prime meridian and the point. The great circle distance is the length of an arc between two
points, measured over the surface of a sphere. The bearing is the angle between a line and the
meridian crossing that line.

2-1-2 World coordinate frame

The world coordinate frame ΨW is fixed on the Earth’s surface. It has its origin at the location
of the first GPS measurement in the dataset. The x-axis points towards the magnetic North,
the y-axis points towards the ‘magnetic west’, parallel to the Earth’s surface and orthogonal
to x. The z-axis points upwards. Positions in the world frame are defined in meters. The
coordinate frame is depicted in Figure 2-2.

Transforming Earth frame to world frame

The GPS sensor measures locations in degrees latitude and longitude in the Earth frame.
To transform these locations into (x, y)-positions in the world frame, the Haversine formula
[11] is used. Assume point p0 = (φ0, λ0) and point p1 = (φ1, λ1). The Haversine formula
calculates the great cirlce distance and bearing between the two points on a sphere.

The great circle distance d is the distance between the points, measured over the sphere

M. Roobeek Master of Science Thesis



2-1 Coordinate systems 9

(a) World coordinate frame, global view. (b) World coordinate frame, local view.

Figure 2-2: World coordinate frame. The x-axis points towards the magnetic North, the origin
lies in the first measured location in the dataset.

surface, as displayed in Figure 2-1b. It is calculated via Equation 2-3.

c1 = sin2(∆φ
2 ) + cos(φ0) · cos(φ1) · sin2(∆λ

2 ) (2-1)

c2 = 2 · atan2(
√
c1,
√

1− c1) (2-2)
d = r · c2, (2-3)

where r is the radius of the sphere.
The bearing θ is the angle between the line through p0 and p1 and the meridian crossing
through p0, see Figure 2-1c. It is calculated via Equation 2-4.

θ = atan2 (sin(∆λ) cos(φ1), cos(φ0) sin(φ1)− sin(φ0) cos(φ1) cos(∆λ)) (2-4)

With the distance and bearing of all points with respect to the origin, the (x, y)-position
can be determined at all measured time instances.

2-1-3 Field coordinate frame

Ultimately, the coordinate frame that matters most is the field coordinate frame. The field
coordinate frame, denoted ΨF , has its origin at the center point of the playing field. The x-
axis points towards the North-most goal. Looking in x direction, the y-axis points to the left,
running over the center line of the field. The z-axis points upwards. The coordinate frame is
depicted in Figure 2-3b. Positions on the field are measured in meters. The centerpoint and
dimensions of the field are determined from the GPS locations of the corner points.

Transforming world frame to field frame

The transformation from world frame to field frame is a fixed rotation and translation. First,
the data is rotated over the angle between the field x-axis and the magnetic North. Subse-
quently, the translation is calculated via the Earth frame. The position of the world frame
origin with respect to the field frame is determined. The data is than translated to the field
frame.

Fx = F
WRx+ p (2-5)
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10 Methods and materials

(a) Field coordinate frame, global view. (b) Field coordinate frame, local view.

Figure 2-3: The field coordinate frame. The origin lies at the center of the field. The x-axis
points towards the North-most goal, the y-axis runs to the left, over the centerline and the z-axis
points upwards.

where R is a rotation matrix over the z-axis and p is the position shift between the field origin
and the world frame origin.

2-1-4 Body coordinate frame

The body coordinate frame is denoted ΨB. The body frame is defined in such a way that if
a player stands up straight, the x-axis points forwards out of his chest, the y-axis points left
and the z-axis points upwards. The origin of the of the body frame lies at the center of the
tracking device.

Figure 2-4: The body coordinate frame ΨB is defined such that if the player stands up straight,
the x-axis (blue) points forwards, the y-axis (red) points to the left and the z-axis (yellow) points
upwards.
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2-1-5 Sensor coordinate frames

The sensors are mounted on the circuit board of the tracking device. The coordinate frames
as defined by the chip manufacturers do not coincide with the tracking device body coordinate
frame. For the GPS receiver, this obviously does not matter. For the other sensors it does.

The difference in orientation between the IMU coordinate frame (ΨI) and the body coordinate
frame is a rotation of 90 degrees over the y-axis.

Bv = B
I R

Iv =

0 0 −1
0 1 0
1 0 0

 Iv (2-6)

The coordinate frame of the magnetometer (ΨM ) is defined as a left-handed coordinate frame.
It is transformed to the (right-handed) body coordinate frame via Equation 2-7.

Bv = B
MR

Mv =

 0 0 1
−1 0 0
0 1 0

 Mv (2-7)

These fixed coordinate transformations are performed as a pre-processing step.

2-2 Sensors

The sensors that the JOHAN Sports tracking device contains are an accelerometer, a gyroscope,
a magnetometer and a Global Positioning System (GPS) receiver. The sensors and their
working principles are described in this section.

(a) Invensense MPU-6050
IMU module.

(b) NXP MAG3110
magnetometer.

(c) u-blox PAM 7Q
GPS receiver.

Figure 2-5: The sensors that are contained in the JOHAN Sports tracking device.

The 3-axis accelerometer and 3-axis gyroscope are contained on the same chip (the InvenSense
MPU-60501), displayed in Figure 2-5a. Together with the 3-axis magnetometer (NXP MAG-
31102, Figure 2-5b), this sensor is viewed as a 9-DoF IMU. The GPS receiver (u-blox PAM
7Q3) is displayed in Figure 2-5c.

1www.invensense.com/
2www.nxp.com/
3www.u-blox.com/
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12 Methods and materials

2-2-1 Inertial Measurement Unit (IMU)

The Inertial Measurement Unit chip in the tracking device houses both the accelerometer
and the gyroscope. Their working principle and calibration technique are described in this
section.

Accelerometer

The accelerometer measures accelerations in each of the three axes. In free fall, an ideal
accelerometer would measure zero acceleration in all axes. If the accelerometer is kept in a
fixed upright position on Earth, it senses the normal force counteracting gravity, resulting in
a measured acceleration in positive z-direction.

The MEMS accelerometer in the tracking device is a piezoelectrical accelerometer. It consists
of a proof mass connected to a piezoelectric element. A force on the sensor causes a displace-
ment of the proof mass, leading to deformation of the piezoelectric element, which in turn
generates a voltage. The voltage is directly proportional to the sensed force [12].

MEMS accelerometers suffer from multiple sources of errors, the most important being scale
factors, coupling factors due to axis misalignment and biases.

Gyroscope

The gyroscope uses the Coriolis effect to measure angular velocities ([◦/s]) around each of the
three axes. A proof mass is resonating in one direction. If the sensor is rotated, the Coriolis
effect will generate a force in perpendicular direction. This causes a piezoelectric element to
deform, generating a voltage. This voltage is proportional to the rotational rate [12].

The gyroscope is in strapdown configuration, meaning that it moves with the object that it
is attached to. MEMS gyroscopes suffer from the similar sources of errors as accelerometers;
scale factors, coupling factors and biases.

Calibration

When arriving from the factory, low-cost MEMS IMU’s are usually poorly calibrated. A
factory calibration has been performed, but the resulting measurements often still contain
non-negligable systematic errors [13]. To compensate for these systematic errors, calibration
is required.

To calibrate the accelerometer and gyroscope, usually a mechanical platform rotating the IMU
into different precisely controlled orientations and angular rates is used [14]. The measured
rotational velocity and measured accelerations can then be compared to the known motion
and an optimization problem can be solved to determine the biases, coupling factors and scale
factors. Since such a platform was not available, a simpler method described by is chosen.

When an IMU is lying still, the accelerometer is supposed to only measure gravity and the
gyroscope is expected to measure zero rotational velocity. For calibration, the tracking device
is held still in different orientations during different time intervals, see Figure 2-6.
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(a) Raw accelerometer data.
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(b) Raw gyroscope data.

Figure 2-6: Raw data for IMU calibration. Note that the data consists of intervals where the
tracking device is kept in a fixed orientation with transitions in between. The calibration is
performed on the first ‘still’ interval.

To quantify the error before calibration, the RMSE over the norm of the sensor measurements
is calculated. For the accelerometer, the norm should be 1g, or 9.81 m/s2. The norm of the
gyroscope measurements should be 0. The root-mean-square errors of the norm are calculated
via Equation 2-8.

RMSEacc =

√∑n
i=1 (|a| − g)2

n
, RMSEgyro =

√∑n
i=1 |ω|2
n

, (2-8)

In the first time interval, the tracker is put on a table, with the x-axis pointing upwards. Now,
by subtracting the gravity vector from the original accelerometer measurements, the expected
accelerometer measurements become zero in all axes. The expected gyroscope measurements
are zero as well, since no rotational motion is present.

The biases of both sensors are determined by taking the mean of the gravity-corrected ac-
celerometer measurements and the gyroscope measurements over the first time interval. The
other time intervals are used to quantify the accuracy improvement.

abias =
∑n
i=1 ai −Rg

n
, ωbias =

∑n
i=1 ωi
n

, (2-9)

where abias and ωbias are the accelerometer bias and gyroscope bias, respectively, R is the
rotation matrix correcting for the orientation of the tracking device, g is the gravity vector and
n the number of still samples. The biases of the accelerometer and gyroscope are presented
in Table 2-1.

Biases Accelerometer Gyroscope
Tracking device 1 −0.25 −0.05 0.06 −0.02 0.03 −0.00
Tracking device 2 −0.10 −0.11 0.11 −0.02 0.00 0.02

Table 2-1: Accelerometer and gyroscope bias for two tracking devices.

To calibrate the accelerometer and gyroscope, their respective biases are subtracted from
the raw measurements. To quantify the improvement, the RMSEs of the norm are calculated
again after calibration. The resulting RMSEs are presented in Table 2-2. The deviation of the
expected norm before and after calibration is depicted in Figure 2-7 for both the accelerometer
and the gyroscope.
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(a) Accelerometer norm error before (blue) and
after (red) calibration.
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(b) Gyroscope norm error before (blue) and after
(red) calibration.

Figure 2-7: The deviation of the expected norm for both the accelerometer and the gyroscope
measurements before (blue) and after calibration (red). Note that the improvement in accelerom-
eter accuracy is minor, while the improvement in gyroscope accuracy is large. The data that is
displayed stems from tracking device 1.

RMSE Accelerometer Gyroscope
raw calibrated improvement raw calibrated improvement

Tracking device 1 0.170 0.157 7.42% 0.040 0.003 92.45%
Tracking device 2 0.122 0.103 16.05% 0.037 0.006 83.00%

Table 2-2: The RMSEs of the raw and calibrated accelerometer and gyroscope measurements.
The numbers show that the improvement in accelerometer accuracy is in the order of 10%. The
gyroscope accuracy improves with ±90% via calibration.

As Figure 2-7 and Table 2-2 show, the accelerometer measurements and especially the gyro-
scope measurements improve by applying this simple calibration technique. To calibrate the
sensors to higher accuracy, more involved calibration techniques are required.

2-2-2 Magnetometer

The 3-axis magnetometer measures the flux Φ in µT of the Earth’s magnetic field, serving
as a 3D compass. The chip works on the Magnetic Tunnel Junction (MTJ) principle. In an
MTJ there are two ferromagnets separated by a thin insulating layer, about 1 nm thick. The
magnetization and resistance change as a function of magnetic field [15].

The magnetometer does not perfectly measure only the Earth’s magnetic field. The measure-
ments are distorted by external magnetic objects. These distortians are divided into hard-iron
distortions and soft-iron distortions. Hard-iron distortions are caused by magnetic sources
that are fixed in the body coordinate frame. They rotate with the sensor, so assuming that
their magnetic field strength remains constant, they cause a fixed offset in the measurements.
Soft-iron distortions are distortions that cause a deflection or alteration in the existing mag-
netic field, for example the presence of metals in the soil or magnetic sources in buildings.
These errors stretch or deform the magnetic field, since they alter the magnetic field strength.

To compensate for hard- and soft iron errors, the magnetometer data is calibrated before
it enters the filters. This action yields the measurements dimensionless. A more detailed
description of the magnetometer pre-processing is found in Section 2-2-2.
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Calibration

For an ideal magnetometer with no magnetic sources around, each measurement of the mag-
netometer would lie on a sphere centered around (0, 0, 0) with the Earth’s magnetic field
strength as a radius. The magnetometer in the JOHAN Sports tracking device is not ideal. In
Figure 2-8a, the raw magnetometer measurements of a soccer match are depicted. The figure
shows that the data points are not centered around the origin and that not all measurements
lie on a perfect sphere.

(a) Raw magnetometer measurements. (b) Calibrated magnetometer measurements.

Figure 2-8: Raw and calibrated magnetometer measurements. The raw magnetometer measure-
ments are not centered around (0, 0, 0) due to hard-iron errors. Due to soft-iron errors, not all
measurements lie on a sphere. By removing the offset and projecting the measurements on the
unit sphere, the hard-iron errors and soft-iron errors are removed.

To determine the hard-iron and soft-iron errors in the magnetometer and account for them,
a sphere is fitted through the complete set of measurements. Fitting a sphere through data
is done by solving the optimization problem defined in Equation 2-10. In Figure 2-8b, the fit
of the sphere through the measurements is displayed.

minimize
c, r

f(c, r,m), with (2-10)

f(c, r,m) =
n∑
i=1

(√
(mx,i − cx)2 + (my,i − cy)2 + (mz,i − cz)2 − r

)2
(2-11)

where c ∈ R3 represents the center of the sphere, r ∈ R is the radius of the sphere, correspond-
ing to the Earth’s magnetic field strength and m ∈ R3 is the magnetometer measurement.

The center c of the fitted sphere represents the hard-iron error. With this bias removed,
the magnetometer measurements are now centered around (0, 0, 0). However, soft-iron errors
still exist. These errors are created by deviations in the local magnetic field. This occurs
for example when players walk into the dressing rooms, where magnetic materials that are
present distort the measurements of the Earth’s magnetic field. To minimize the effect of
measurements inside buildings, only measurements during periods with GNSS measurements
available are used for the optimization.
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There are several approaches to account for soft-iron errors. The data points with deviant
measured magnetic field strength can be completely rejected, they can be weighed less heavily
in the filter or they can be projected onto the unit sphere. Projecting each measurement onto
the sphere results in the adjusted magnetometer measurements depicted in Figure 2-8b. Each
of these data points now represent the estimated direction of the magnetic north at time t in
tracker coordinate frame.

2-2-3 Global Positioning System (GPS)

GNSS is the collective name for all satellite-based navigation systems, of which the Ameri-
can Global Positioning System (GPS) is most commonly known. GPSs consists of multiple
satellites, emitting identifiable signals: pseudo ranges. By measuring the travel time of these
signals to the receiver, the distance between the satellite and the receiver can be calculated,
using the Doppler effect [16]. The working principle is displayed in Figure 2-9. The accuracy
of a GPS can be affected by deviations in the satellite orbit, disturbances in the atmosphere
(e.g. clouds) or signal jamming, where the signal is blocked by for example tall buildings.

Figure 2-9: Working principle of Global Positioning System. Satellites transmit a package of
information with their position and a timestamp. From the traveling time of the information, the
position of the GPS receiver is determined. In a 2D space, three satellites fully determine the
location of the receiver. In a 3D space, three satellites limit the possible location of the receiver
to two points, one of which lies close to Earth. A fourth satellite is used to correct for clock error.

The u-blox PAM 7Q module filters the measurements on-chip with a dual SAW (surface
acoustic wave) filter and outputs latitudes, longitudes, speed and time measurements at 10
Hz. The filter has two purposes. It enables users with limited knowledge on the functioning of
GPS to use the module without having to do calculations with pseudo ranges and it increases
the filters immunity to signal jamming. The downside of the filtering action is that the noise
on the position estimates becomes non-zero-mean and non-white.

The GPS receiver supports Satellite-Based Augmentation System (SBAS)s [17]. These sys-
tems increase GPS accuracy by involving external information into the calculation process.
The European version of a Satellite-Based Augmentation System (SBAS) is called European
Geostationary Navigation Overlay Service (EGNOS). The EGNOS system consists of four
geostationary satellites and a network of ground stations. EGNOS improves position esti-
mates to about 1 meter [18].
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2-3 Filters

Probably the best known state estimator is the Kalman filter [19]. For nonlinear applications,
extensions to the Kalman filter are developed. The Extended Kalman filter (EKF) [4], [20] is
such a nonlinear extension that is widely used in industry. A less common nonlinear extension
to the Kalman filter is the Unscented Kalman filter (UKF). An explanation of its working
principle is given in Section 2-3-1.
A filter that is often applied for IMU-based orientation estimation by hobbyists is the Madg-
wick filter. An algorithm that estimates only the 3D orientation of a rigid body in space is
referred to as an Attitude and Heading Reference System (AHRS). The Madgwick filter is
popular for its ease of implementation and satisfactory results. In Section 2-3-2, a description
is given.

2-3-1 Unscented Kalman filter (UKF)

The Unscented Kalman filter is a nonlinear version of the well-known Kalman filter. Like the
standard Kalman filter, the UKF uses a propagation model f that predicts the next state
estimate, defined by Equation 2-12. The observation model h transforms the state estimate
into the expected measurements via Equation 2-13.

xk+1 = f(xk, uk, wk) (2-12)
yk = h(xk, uk, vk), (2-13)

where x and u denote the state vector and external inputs and w and v represent the process-
and measurement noise, respectively.

Unscented transformation

The Unscented Kalman filter uses the unscented transformation to be able to deal with
nonlinearity in models. In the unscented transformation, a set of so-called sigma points is
calculated in such a way that they lie around the current state estimate distributed according
to the current covariance matrix. The sigma points are propagated through a nonlinear
model, resulting in transformed sigma points. From the transformed sigma points, the new
covariance matrix and new mean are calculated. The unscented transformation is depicted
in Figure 2-10. A numerical example is presented in Appendix C.

Update equations

The Unscented Kalman filter uses the unscented transformation in the prediction step and
the measurement update.
In the prediction step, assume the previous state estimate and covariance matrix to be xk−1
and Pk−1, respectively. The sigma points Xk are calculated via Equation 2-14, such that the
mean of the sigma points equals xk−1 and such that the covariance matrix of the sigma points
equals Pk−1:

Xk =
[
xk−1 − ζ

√
Pk−1, xk−1, xk−1 + ζ

√
Pk−1

]
(2-14)
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Figure 2-10: Unscented transformation. Around the mean (2, 1), sigma points (blue plus signs)
are chosen according to the covariance matrix (blue circle). Each sigma point is individually
propagated trough some nonlinear function, resulting in the transformed sigma points (red ‘x’
signs). From the transformed sigma points, the mean (red ‘o’) and covariance (red ellipse) are
calculated.

where ζ =
√

2n+ 1 + κ with n the state dimension and κ a tuning parameter.

Now, the unscented transformation takes place. The set of sigma points is propagated through
the propagation model f , using Equation 2-15, resulting in a priori sigma points X−. The
a priori state estimate x− is found by taking the mean of the a priori sigma points via
Equation 2-16, the a priori state covariance P−xk

is calculated via Equation 2-17.

X−k = f(Xk, w) (2-15)

x−k = 1
L

L∑
i=1
X−i,k (2-16)

P−xk
= (X−k − x

−
k ) · (X−k − x

−
k )T +Q (2-17)

where L is the number of simga points and Q is the covariance matrix of process noise w.
Note that in this implementation, the process noise is assumed to be additive.

By definition, the set of a priori sigma points X−k is distributed according to covariance matrix
P−xk

around its mean x−k . After all, the mean and covariance are calculated from the a priori
sigma points. The mean however, does not necessarily coincide with a sigma point in the set.
This is the case in for example Figure 2-10, where the mean (red ‘o’) lies slightly to the right
of the middle a priori sigma point (red ‘x’). Optionally, a new set of a priori sigma points
can be calculated by plugging x−k and P−xk

in Equation 2-14, reassuring that the mean is part
of the set of sigma points.

The set of a priori sigma points is now used in the measurement update. The sigma points
are propagated through the measurement model via Equation 2-18, yielding the measure-
ment sigma points Yk. Via Equation 2-19, the expected measurement y is calculated. The
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measurement covariance matrix Py is obtained via Equation 2-20.

Yk = h(X−k , v) (2-18)

yk = 1
L

L∑
i=1
Yi,k (2-19)

Pyk
= (Yk − yk) · (Yk − yk)T +R (2-20)

where R represents the measurement noise covariance. Again, the noise is assumed to be
additive.
Subsequently, the cross-covariance matrix Pxy and Kalman gain K are calculated.

Pxk,yk
= (X−k − x

−
k ) · (Yk − yk)T (2-21)

Kk = Pxk,yk
P−1
yk

(2-22)

Finally, the new state estimate and state covariance matrix are obtained via Equation 2-23
and Equation 2-24.

xk = x−k +Kk(zk − yk) (2-23)
Pk = P−k−1 −KkPyk

Kk
T (2-24)

where zk is the measurement at time k.
The structure of the UKF is similar to that of the linear Kalman filter. For comparison, see
Appendix B. The additional steps concerning the unscented transformation make the UKF
able to deal with nonlinearities.

Handling quaternions in the unscented transformation

In the Unscented Kalman filter, the use of quaternions requires some extra attention. What
distinguishes quaternions from states like position or angular velocity, is their unity constraint.
The problem occurs in the calculation of sigma points in the UKF, as explained in [21] and
[22]. The UKF assumes the state space is a vector space. However, the unity constraint
deprives the quaternion of one degree of freedom. This turns the quaternion state space into
a 3D unit sphere manifold instead of a 4D vector space. A graphical interpretation of this
problem is given in Figure 2-11.
Since the unit quaternions q ∈ R4 have only three degrees of freedom, their corresponding un-
certainty should also have dimension 3, resulting in a state covariance matrix with dimension
n− 1. From a three-dimensional uncertainty vector wq, a disturbed quaternion is calculated
via:

αw = |wq|

ew = wq
|wq|

qw =
(

cos(αw
2 )

ew sin(αw
2 )

)
(2-25)

In calculating the sigma points, the quaternion part of the state vector for each sigma point is
calculated via Equation 2-25. The other part of the state vector is calculated via the standard
approach.
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(a) Incorrect quaternion sigma points.
Note that the 4th dimension is not displayed.

(b) Correct quaternion sigma points.

Figure 2-11: Quaternion sigma points. As is visible in Figure 2-11a, sigma points calculated
by simple addition do not satisfy the unity constraint. Figure 2-11b shows that sigma points
calculated via disturbance rotations as described in [21] do satisfy the unity constraint.

2-3-2 Madgwick filter

The Madgwick filter [9] is an Attitude and Heading Reference System (AHRS) algorithm.
This means that it estimats the 3D orientation of a rigid body in space. The Madgwick filter
creates two estimates of the orientation quaternion in every update step. One estimate is
calculated from the angular velocity (gyroscope) and the previous orientation estimate. The
other quaternion uses one-step gradient descent to estimate the orientation with respect to
homogeneous fields (gravity and the Earth’s magnetic field). Both orientation estimated are
fused into one by a weighted average. Due to clever simplifications in the fusion process, the
Madgwick filter has a lower computational load than the UKF.

Orientation from angular velocity

Assume the current estimated orientation quaternion to be B
W q, describing the orientation of

the world frame as viewed from the body frame. To predict the next orientation, the angular
velocity is integrated and added to the current orientation.

The angular velocity is taken directly from the gyroscope measurements and is rewritten as
a quaternion via Equation 2-26. In contrast to quaternions describing an orientation, the
angular velocity quaternion is not subject to the unity constraint. The quaternion derivative,
describing the rate at which the orientation of the world frame changes with respect to the
body frame, is calculated by Equation 2-27, where the subscript ω indicates that it is derived
from angular velocity. The estimate of the new quaternion is obtained via Equation 2-28.

Bω =
(
0 ωx ωy ωz

)T
(2-26)

B
W q̇ω,k = 1

2
B
W qk−1 ⊗ Bωk (2-27)

B
W qω,k = B

W qk−1 + B
W q̇ω,kT, (2-28)
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where ω denotes the gyroscope measurements, q denotes the attitude quaternion and T rep-
resents the sample time.

Provided that the initial orientation is known, predictions of the next orientation via the
above-described method are correct in the short term. However, due to noise on the gyro-
scope measurements, errors will accumulate. The cumulative errors will cause the orientation
estimate to drift away from the actual orientation quaternion.

Orientation from a homogeneous field

To correct for cumulative errors that occur in orientation estimates derived from the gyroscope
measurements, a second orientation estimate that is reliable over the long term is desired.
Such an orientation estimate can be derived from homogeneous vector fields. A vector field
is called homogeneous if its direction is constant over the complete workspace. The type of
workspaces in the application of player motion tracking are sports fields. There, both gravity
and the Earth’s magnetic field are assumed to be homogeneous.

Consider a homogeneous field with known direction in the world frame, denoted Wd. The
sensor measurement of that homogeneous field in the body frame is called Bs. The quaternion
B
W q that describes the rotation between the two satisfies:

Bs = B
W q

? ⊗ Wd⊗ B
W q (2-29)

To find a quaternion that satisfies this equation, the optimization in Equation 2-30 problem
is formulated. The objective function is defined by Equation 2-31.

min
B
W q∈R4

f(BW q, Wd, Bs) (2-30)

f(BW q, Wd, Bs) = B
W q

? ⊗ Wd⊗ B
W q − Bs (2-31)

The optimization problem is solved using gradient descent. In Equation 2-32, the gradient
descent algorithm is described for n iterations, yielding an attitude estimate B

W q based on
initial orientation B

W q0 and variable step size µ.

B
W qk+1 = B

W qk − µ
∇f(BW q, Wd, Bs)
||∇f(BW q, Wd, Bs)||

, for k = 0, 1, 2, . . . n (2-32)

∇f(BW q, Wd, Bs) = JT (BW q, Wd)f(BW q, Wd, Bs) (2-33)

There is no unique solution B
W q. Instead, an infinite amount of possible orientations exist that

satisfy Equation 2-29, as clarified in Figure 2-12.

It is shown that one homogeneous field does not suffice to fully determine the sensor orien-
tation. Luckily, the JOHAN tracking device is assumed to always be used on Earth, in the
presence of both gravity and the Earth’s magnetic field. First consider the accelerometer
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(a) Coordinate frames with different heading. (b) Coordinate frames with different orientation.

Figure 2-12: The 3D orientation of a rigid body cannot be fully determined from measuring one
homogeneous field. While all three coordinate frames in Figure 2-12a have a different orientation,
it is clear to see that the resulting sensor measurements are the same. Although it may be less
obvious, the same holds true for the coordinate frames in Figure 2-12b. By taking into account a
second homogeneous vector field, different from the first one, the orientation is fully determined.

acting as a ‘gravity sensor’. The vector indicating the direction of gravity is normalized and
becomes W g. The accelerometer measurement is also normalized and denoted Ba.

B
W q =

(
qw qx qy qz

)T
(2-34)

W g =
(
0 0 0 1

)T
(2-35)

Ba =
(
0 ax ay az

)T
(2-36)

The quaternion describing the rotation between W g and Ba is found by minimizing the ob-
jective function in Equation 2-37. The Jacobian, required in solving the problem via gradient
descent, is calculated via Equation 2-38.

fg(BW q, Ba) = B
W q

? ⊗ W g ⊗ B
W q − Ba (2-37)

=

 2(qxqz − qwqy)− ax
2(qwqx + qyqz)− ay

2(1
2 − qx

2 − qy2)− az

 ,
Jg(BW q) =

−2qy 2qz −2qw 2qx
2qx 2qw 2qz 2qy
0 −4qx −4qy 0

 (2-38)

The same approach is applied to the magnetometer measurements Bm of the Earth’s mag-
netic field W b. Assume that the Earth’s magnetic field only has a vertical and a horizontal
component and that the x-axis of the world frame ΨW coincides with the magnetic north.
This implies that by = 0. Both the vector describing the magnetic field and the magnetometer
measurement are normalized.

W b =
(
0 bx 0 bz

)T
(2-39)

Bm =
(
0 mx my mz

)T
(2-40)
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The objective function is given in Equation 2-41, the Jacobian in Equation 2-42.

fb(BW q, W b, Bm) = B
W q

? ⊗ W b⊗ B
W q − Bm (2-41)

=

2bx(1
2 − qy

2 − qz2)− 2bz(qwqy + qxqz)−mx

2bx(qxqy − qwqz) + 2bz(qwqx + qyqz)−my

2bx(qwqy + qxqz) + 2bz(1
2 − qx

2 − qy2)−mz

 ,
Jb(BW q, W b) =

 2bzqy 2bzqz −4bxqy − 2bzqw −4bxqz + 2bzqx
−2bxqz + 2bzqx 2bxqy + 2bzqw 2bxqx + 2bzqz −2bxqw + 2bzqy

2bxqy 2bxqz − 2bzqx 2bxqw − 2bzqy 2bxqx


(2-42)

The optimization problem that is formulated from this set of equations does have a unique
solution. The optimization problem is formulated as:

min
B
W q∈R4

f(BW q, Ba, W b, Bm) (2-43)

fg,b(BW q, Ba, W b, Bm) =
(

fg(BW q, Ba)
fb(BW q, W b, Bm)

)
, (2-44)

Jg,b(BW q, W b) =
(

Jg(BW q)
Jb(BW q, W b)

)
(2-45)

Usually, solving the optimization problem would require a number of iterations. However,
provided that the orientation estimation converges faster than the rate at which the orien-
tation itself changes, one iteration per update step suffices. The one step gradient descent
algorithm calculates the homogeneous field-based orientation estimation via Equation 2-46,
with the gradient ∇f defined by Equation 2-47.

B
W q∇,k = B

W qk−1 − µk
∇f
||∇f ||

(2-46)

∇f = JTg,b(BW qk−1,
W b)fg,b(BW qk−1,

Ba, W b, Bm) (2-47)

The value of stepsize µk is chosen in such a way that the orientation estimate always converges
faster than the physical orientation rate. It is calculated as Equation 2-48:

µk = α||BW q̇ω,k||T, where α > 1 (2-48)

where α is a tuning parameter, ||BW q̇ω,tk|| is the physical rate of change as measured by the
gyroscope and T is the sample period.

Fusion process

The fusion process of the gyro-based orientation estimate B
W qω,k and the homogeneous field-

based orientation estimate B
W q∇,k simply comes down to a weighted mean:

B
W qt = γk

B
W q∇,k + (1− γk) B

W qω,k, 0 ≤ γk ≤ 1 (2-49)
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Now, γk is chosen in such a way that the weighted divergence rate of BW qω due to integral
drift equals the weighted convergence rate of BW q∇. The convergence rate of BW q∇ is µk

T and
the divergence rate of BW qω is represented by β. Via Equation 2-50 and Equation 2-51, the
optimal value for γk is calculated.

(1− γk)β = γk
µk
T

(2-50)

γk = β

µk/T + β
(2-51)

In Equation 2-48, α > 1 ensures that the orientation estimation converges faster than the
rate of change of the physical orientation. However, it does not prescribe how much faster.
In other words, α has no upper bound. By choosing a very large α, µk also becomes very
large. Equation 2-46 then simplifies to:

B
W q∇,k ≈ −µk

∇f
||∇f ||

(2-52)

A very large µk yields β negligable in Equation 2-51. The formula for γk can now be rewritten
as Equation 2-53, from which it can also be deduced that γk ≈ 0.

γk ≈
βT

µk
(2-53)

Now, by substituting in Equations 2-28, 2-52, 2-53 into Equation 2-49, Equation 2-54 is
obtained.

B
W qt = βT

µk

(
−µk

∇f
||∇f ||

)
+ (1− 0)

(
B
W qk−1 + B

W q̇ω,kT
)

(2-54)

This in turn, can be simplified to Equation 2-55, where B
W q̇k is defined by Equation 2-56.

B
W qt = B

W qk−1 + B
W q̇kT (2-55)

B
W q̇k = B

W q̇ω,k − β
∇f
||∇f ||

(2-56)

The final equations are computationally very efficient, directly using the sensor measurements.
On top of that, the only tuning parameter that remains is β.

2-4 Models

The sports player motion is defined as the player’s position, velocity, acceleration and orien-
tation. Different filter configurations can be applied to estimate these quantities from 9-DoF
IMU’s and GPS. The most common approach is to try and estimate the full state at once.
This can be done using an Unscented Kalman filter, referred to as the full state UKF. How-
ever, in sports player motion, rotations and translations are independent of each other. It
is therefore possible, and maybe advantageous, to estimate rotations and translations sepa-
rately. The accelerometer is then used as a ‘gravity sensor’ in the orientation estimation. The
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2-4 Models 25

orientation is then used to turn the accelerometer into an ‘acceleration’ sensor in estimating
the translational motion. For estimating translational motion, a linear Kalman filter is com-
pared to a UKF. For estimating rotational motion, a quaternion-based Unscented Kalman
filter and a Madgwick filter are investigated.

In this section, first the models for translational motion is described. Next, the model for
rotational motion is described. Finally, these models are merged together to a full state
model.

2-4-1 Linear Kalman filter

Translational motion is linear. It is therefore possible to use a linear Kalman filter [] to
estimate these motions.

The state vector of the translational motion is defined as x =
(
p v a

)T
, with p, v, a ∈ R3.

The propagation model predicts the next state, based on the current state and inputs. The
model is simple; the acceleration is modeled to be constant, the velocity and position are
obtained by integrating the acceleration. A block diagram is presented in Figure 2-13.

∫ ∫a v p

Figure 2-13: Translational model assuming constant acceleration

For the linear Kalman, the propagation model xk+1 = Fxk+vk is described in Equation 2-57.

xk+1 =

I3 I3T 0
0 I3 I3T
0 0 I3

xk + vk (2-57)

The observation model is used to transform the state (x) into a form (y) that is comparable
to sensor measurements (z). To observe translational motion, several sensors are available.

The GPS sensor provides measurements of the positions in R2, denoted px,GPS and py,GPS .
The vertical position is not measured accurately by GPS and thus not outputted. A barometer
is also not present in the tracking device, so no measurement of pz is available. However, the
nature of sports player movements limits the vertical position between 0 meters (lying on the
ground) and ±2.5 meters (really high jump). To deal with the absence of accurate height
estimations, pz measurements are simulated to be a constant value with high uncertainty.
According to [23], the P-50 value for male shoulder height is 1.46 meters, meaning that
50% of the measured population has a shoulder heigth below this value. The value for the
pz-measurements is set to be 1.5 meters.

The accelerometer provides acceleration measurements in R3. The accelerations are measured
in the body frame and contaminated with the measurement of gravitational acceleration. For
now, assume that a correct orientation quaternion is available. In subsection 2-3-2, it is shown
that world frame accelerations can be transformed into the body frame via Equation 2-37.
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The transformation of body frame accelerometer measurements into world frame acceleration
estimates is given by:

Wa = B
W q ⊗ Ba⊗ B

W q
? +

(
0 0 g

)T
(2-58)

By performing the transformation in Equation 2-58 outside the filter, the observation model
can remain linear.
The observation model for the linear Kalman filter, yk = Hxk +wk is given in Equation 2-59.

yk =
(
I3 0 0
0 0 I3

)
xk + wk (2-59)

In the filter, yk is compared to zk, where

zk =
(
pGPS

T 1.5 Wa
T
)T

(2-60)

2-4-2 Translational UKF

The translational UKF is an extension to the above-described linear Kalman filter in the
observation model. The reason for this extension is the fact that the GPS receiver outputs
directionless speed estimates. When this information is incorporated in the filter, the obser-
vation model becomes nonlinear.
The propagation model xk+1 = f(xk, wk) for the translational UKF is equal to the propagation
model for the linear Kalman filter (Equation 2-57). It is rewritten into Equation 2-61.

xk+1 =


pk+1 = pk + vk · dt + wp,k
vk+1 = vk + ak · dt + wv,k
ak+1 = ak + wa,k

(2-61)

where wk ∈ R9 represents the process noise.
As stated before, the GPS sensor also outputs directionless speed estimates vGPS . These speed
estimates are calculated as the length of the horizontal velocity vector, via Equation 2-62.
When incorporating the speed estimates in the observation model, it becomes nonlinear.

v =
√
vx2 + vy2 (2-62)

The observation model yk = h(xk, vk), with yk ∈ R7, is described by Equation 2-63.

yk =


ypos,k = pk + vp,k

yvel,k =
√
vx,k2 + vy,k2 + vv,k

yacc,k = ak + va,k

(2-63)

In the measurement vector zk, the speed estimate provided by the GPS is added.

zk =
(
pGPS

T 1.5 vGPS
Wa

T
)T

(2-64)

It is expected that taking into account the speed estimate will improve the acceleration
estimates.
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2-4-3 Rotational UKF

Previously, models for translational motion are described. In these observation models, it
was assumed that correct orientation estimates were available. The model for the filter with
which the orientation estimates are to be obtained is described here.
In modeling translational motion, the accelerations are modeled to be constant. Similarly, in
modeling rotational motion, the angular rate is modeled to be constant. A block diagram is
provided in Figure 2-14.

∫ω θ

Figure 2-14: Rotation model assuming constant angular velocity

The propagation model xk+1 = f(xk, wk) for the rotational UKF (Kraft UKF) is similar to
the gyroscope-based orientation estimate in the Madgwick filter. The main difference is that
in the Madgwick filter, the gyroscope measurements are directly fed into the filter as ω. In the
Kraft UKF, ω is considered a state and is assumed to be constant. The rotational propagation
model is defined in Equation 2-65.

xk+1 =
{
qk+1 = qk ⊗ qwq ,k ⊗ q∇,k
ωk+1 = ωk + wω,k

(2-65)

where qw denotes the rotation due to process noise and q∆ represents the differential rotation
by ω · dt.
The observation model yk = h(xk, vk) in the Kraft UKF consists of three elements.

y =


yrot,k = ωk + vrot,k
yacc,k = Bak + vacc,k
ymag,k = Bmk + vmag,k

(2-66)

where vrot, vacc and vmag denote the measurement noise in the gyroscope, accelerometer and
magnetometer, respectively.
The first element of the observation model concerns angular velocity: zrot = ωk + vrot. The
values for zrot are compared to the gyroscope measurements.
The remaining submodels both concern a sensor that measures a homogeneous vector field
with respect to the body frame. The accelerometer measures gravity g and the magnetometer
measures the Earth’s magnetic field b, both assumed to remain constant. The Earth’s mag-
netic field is location-dependent and is defined by the angle of declination ϑd and the angle
of inclination ϑi. The angle of declination represents the angle between the local meredian
and the magnetic North, where West is defined to be positive. The angle of inclination is the
angle at which the magnetic North vector points into the ground. In the area of Noordwijk,
the Netherlands, the angle of declination and inclination are ϑd = −2.24◦ and ϑi = 66.90◦,
respectively.

W g =

 0
0

9.81

 , W b =

 cos(ϑi)
− sin(ϑi) sin(ϑd)
− sin(ϑi) cos(ϑd)

 (2-67)
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To observe the current orientation, the homogeneous fields are rotated into body frame via
the current quaternion estimate, in similar fashion as in subsection 2-3-2. The expected body
frame measurements for the accelerometer and magnetometer are given in Equation 2-68 and
Equation 2-69, respectively. (

0
Ba

)
= q ⊗

(
0
Wa

)
⊗ q? (2-68)(

0
Bm

)
= q ⊗

(
0

Wm

)
⊗ q? (2-69)

Note that the expected world frame accelerations Wa include both translational and gravita-
tional acceleration:

Wa = Watranslational +
(
0 0 agravity

)T
(2-70)

The measurement vector zk is built up from the inertial sensors contained in the IMU, as
denoted in Equation 2-71.

zk =
(
ωgyro

T aacc
T mmag

T
)T

(2-71)

2-4-4 Full state

The full state UKF combines the quaternion-based Kraft UKF and the translational UKF.
This yields a state vector x ∈ R16 consisting of x =

(
qT ωT pT vT aT

)T
.

The propagation model for the full state UKF is described in Equation 2-72. It merges the
propagation models from the rotational and translational UKF.

xk+1 = f(xk, wk) =



qk+1 = qk ⊗ qwq ,k ⊗ q∇,k
ωk+1 = ωk + wω,k
pk+1 = pk + vk · dt + wp,k
vk+1 = vk + ak · dt + wv,k
ak+1 = ak + wa,k

(2-72)

The observation model for the full state UKF inherits elements of the Kraft UKF and the
translational UKF.

yk = h(xk, vk) =



yrot,k = ωk + vrot,k
yacc,k = Bak + vacc,k
ymag,k = Bmk + vmag,k
ypos,k = pk + vp,k

yvel,k =
√
vx,k2 + vy,k2 + vv,k

(2-73)

Note that the world-frame acceleration ‘measurement’ from the translational UKF has dis-
appeared. Instead, the accelerometer is used both as a ‘gravity sensor’ and an ‘acceleration’
sensor.
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2-4-5 Filter configurations

Except for the full state UKF, the described filters are a combination of a filter estimating
the rotational part, and a filter estimating the translational part of the state vector. Fig-
ure 2-15 schematically presents the way the filters are implemented. Each time-step, the
simulated measurements are first fed into a rotational estimation filter. This is either the
Kraft quaternion-based unscented Kalman filter, or the Madgwick filter. Then, using the
estimated orientation q, the accelerometer measurements are rotated into world-frame. The
gravity vector is subtracted and the acceleration measurements are, together with the GPS
measurements, fed into the translational filter. The translational filter is either the UKF or
the linear Kalman filter. These filters output position, velocity and acceleration estimates in
world frame.

Kraft or
Madgwick rotate zacc subtract g UKF or KF

zIMU zacc zGPS

q W zacc Wa p, v, a

Figure 2-15: The rotational filter (Kraft or Madgwick) takes sensor measurements zIMU as an
input and yields orientation estimate q. With orientation estimate q, the accelerometer measure-
ments are rotated into world frame after which the gravity vector is subtracted. The resulting
world-frame acceleration measurements and GPS measurements zGPS are fed into the translational
filters (UKF and KF) to obtain p, v and a.

2-5 Determining the most suitable filter

The end goal is to determine the filter most suitable for outdoor field sports player motion
estimation with the JOHAN tracking device. To determine the most suitable filter, the estima-
tion accuracy and computational load are reviewed. The Pareto optimality [24] is determined
for each filter and each part of the state vector. The filter that scores best on both estimation
accuracy and computational load is selected as the most suitable filter.

2-6 Summary

The most important coordinate frames used in this thesis are the world frame and the body
frame. With the word ‘orientation’, the difference in orientation between these two coordinate
frames is referred to. The Earth coordinate frame is used to transform GPS measurements
into world frame, the field frame is used in the post-processing to enable positional comparison
between players.
The sensors used in the thesis are a GPS receiver and a 9-DoF IMU (combined gyroscope,
accelerometer and magnetometer). The GPS receiver is primarily used to measure position.
The IMU is primarily used to determine the tracking device orientation. The orientation is
used to transform accelerometer measurements from the body frame into the world frame.
When subtracting the gravity vector from these rotated accelerometer measurements, world-
frame accelerations are obtained.
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The most important filters in the thesis are the Unscented Kalman filter (UKF) and Madgwick
filter. Via the unscented transformation, the UKF is capable of state estimation in nonlinear
systems. The Madgwick filter is popular for its ease of implementation and low computational
load. It estimates only the orientation, using IMU measurements.

Models are developed for estimating rotational and translational motion using the Unscented
Kalman filter (UKF). The filter can estimate the full state at once, but due to the inde-
pendence of rotational and translational motion in field sports, these can also be estimated
separately. The linearity of translational motion enables the use of the linear Kalman filter
for translational state estimation. The use of quaternions for orientation estimation cause
difficulties in the UKF. An approach to deal with these is presented.

The benefit of two-step estimation lies in the different use of the accelerometer. During
the estimation of rotational motion, little trust is put in the accelerometer measurements,
since these measurements are disturbed by translational accelerations. Subsequently in the
translational motion estimation, when a relatively accurate orientation estimate is present,
the accelerometer is more heavily relied on.

The method used for deciding upon which filter is most suitable is Pareto optimization. The
computational load and the estimation accuracy of each filter is used to create a Pareto front.
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Chapter 3

Simulation

To design a sensor fusion filter for player state estimation from IMU and GPS data, it is
desired to have a dataset containing both the sensor data and the corresponding motion
data. Such a dataset can be obtained by conducting experiments, or by simulating motion.
In the early design phase simulated data is beneficial, for all signals are then known, including
noise.

In the simulation, reference states xref and their corresponding expected sensor measurements
z are defined. The simulated sensor measurements are fed into the filters to estimate the
original states x. By comparing the estimated states with the simulated reference states,
filter performance is assessed. The process is depicted in Figure 3-1.

simulation filters
z x

xref

Figure 3-1: Setup of the simulation experiment

First some simple motions consisting of only pure rotations and pure translations are simu-
lated. These simple simulations illustrate some difficulties that arise in the motion estimation
problem at hand. Subsequently, a more complex motion is simulated by modeling the angular
velocities and accelerations as a random walk. Finally, a motion representative for a sports
player is simulated based on external measurements from a real-life experiment.

The sample frequency is chosen to be 100Hz, resembling that of the real IMU. A reference
state is obtained by designing the angular velocities ωref and accelerations aref. The re-
mainder of the reference state is determined using the propagation model in Equation 2-72.
The corresponding expected measurements are calculated using the observation model as in
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Equation 2-73.

xω,k = ωref,k (3-1)
xa,k = aref,k (3-2)

xref,k+1 = f(xref,k, 0) (3-3)
zk = h(xref,k, vk), (3-4)

where xω,k and xa,k represent the parts of the state vector corresponding to angular velocity
and accelerations, respectively. The measurement noise vk is defined to be zero mean white
noise with variances corresponding to measurement noise on the real sensors, derived in the
calibration process, Equation 3-5.

vgyro = 1 · 10−4, vacc = 1 · 10−2, vmag = 1 · 10−4, vpGP S = 1 · 10−2, vvGP S = 1 · 10−3.
(3-5)

The set of simulated measurements is fed into the different filter configurations. The resulting
state estimates xest are compared to the simulated reference states xref.

3-1 Simulating pure rotations and translations

First pure rotations without any translational motion are simulated. Subsequently, pure
translations without any rotational motion are simulated. The goal is to see how accurate
the filter configurations can estimate these simple motions.

3-1-1 Rotations

Angular jerk ζ is modeled as a piecewise constant signal. Via integration angular acceleration
α, angular velocity ω and Euler angles θ are obtained:

α =
∫
ζdt, ω =

∫
αdt, θ =

∫
ωdt (3-6)

The designed rotational motion is depicted in Figure 3-2.
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Figure 3-2: Designed rotational motion.
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Simulating reference states

The designed angular velocity is used to simulate the reference state xref via the propagation
model f defined in Equation 2-72. The initial states are zeros, except for the orientation:
q0 =

(
1 0 0 0

)T
. The angular velocity in the reference states is defined to be the

designed angular velocity ω. The remainder of the state is obtained via Equation 3-3. Note
that no process noise is added to the reference state, to obtain a smooth reference state.

Simulating sensor measurements

Since no translational motion is simulated, the GPS sensor is simulated to measure only
measurement noise v. The gyroscope is expected to measure ωref. The accelerometer and
magnetometer are expected to measure the gravity vector and magnetic field vector, rotated
by qref . To obtain these simulated sensor measurements, the reference states xref and mea-
surement noise v are fed in into the observation model defined in Equation 2-73, as is done
in Equation 3-4.

The simulated IMU measurements are depicted in Figure 3-3. The simulated GPS measure-
ments are disregarded, since only the rotation is estimated for now.
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Figure 3-3: Simulated sensor measurements corresponding to the rotational motion designed in
Figure 3-2.

Estimation accuracy

The simulated sensor data is fed into the Kraft UKF and the Madgwick filter. The quaternion
estimates and tracking errors are displayed in Figure 3-4.

Since quaternions are not that intuitive, it makes sense to convert the orientation estimates
and tracking errors back into Euler angles, as displayed in Figure 3-5. Note the spike in
the estimation error around 12 seconds. This error spike is caused by a singularity in the
conversion between quaternions and Euler angles. If one was to calculate the tracking error
from the Euler angles, the error would be heavily influenced by this singularity peak.

To obtain a more accurate performance indicator of the orientation estimators, the absolute
angular error is calculated. The absolute angular tracking error θerror ∈ R is determined from
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reference Kraft Madgwick
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(a) Quaternion estimates.
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(b) Errors in the quaternion estimates.

Figure 3-4: Quaternion estimates and corresponding tracking error of the Kraft UKF and Madg-
wick filter on simulated rotational motion.

the scalar value in of the error quaternion, as in Equation 3-7.

qerror = qref
? ⊗ qest

θerror = 2 arccos(qw,error) (3-7)

The RMSE’s of the absolute angular tracking errors are presented in Table 3-1.

RMSE θ [degrees]
Kraft 1.25

Madgwick 0.46

Table 3-1: RMSE’s in estimating simple rotations.

It is shown that the Madgwick orientation estimates are more accurate than the Kraft filter
estimates.

3-1-2 Translations

In similar fashion as the simulation of pure rotations, now pure translations are simulated.
Again, a piecewise constant jerk is assumed, see Figure 3-6a. From the jerk, the accelerations,
velocity and positions are derived.

a =
∫
jdt, v =

∫
adt, p =

∫
vdt (3-8)

The translational motion that is simulated is depicted in Figure 3-6.
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reference Kraft Madgwick
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(b) Errors in the Euler angle estimates.

Figure 3-5: Euler angle estimates and corresponding tracking errors of the Kraft filter and
Madgwick filter on simulated rotational motion.
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Figure 3-6: Simulated translational motion. From a piecewise constant jerk, the acceleration,
velocity and position in x-, y- and z direction are determined.

Simulating reference states

With the acceleration a defined, the remainder of the state vector is obtained using the
propagation model in Equation 2-72, see Equation 3-9.

xref,k+1 = f(xref,k, 0) (3-9)

Simulating sensor measurements

To simulate sensor measurements corresponding to the reference motion, again the observation
model in Equation 2-73 is used, see Equation 3-10. However, since the GPS sensor is unable
to measure the z-position, this simulated measurement is replaced by 1.5 m.

zk = h(xref,k, vk) (3-10)
zpz ,k = 1.5 (3-11)

The simulated sensor measurements are depicted in Figure 3-7.
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Figure 3-7: Simulated sensor data corresponding to translations described in Figure 3-6.

Estimation accuracy

The simulated sensor measurements are first fed into the rotational motion estimation filters,
to obtain quaternion estimates. These quaternion estimates are used to rotate the accelerom-
eter measurements into the world frame and rid them of gravitational acceleration. By doing
so, world frame acceleration quasi-measurements are obtained. These accelerations, together
with the simulated position and velocity measurements, are fed into the translational filters
UKF and KF.
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Figure 3-8: Euler angle estimates and corresponding tracking error by Kraft (blue) and Madgwick
(red) on simulated translational motion.

As is visible in Figure 3-8, the rotational filters are being fooled by the translational accel-
eration. Due to the translational acceleration, the direction of the total acceleration vector
changes. Since the rotational UKF views the accelerometer as a ‘gravity sensor’, it assumes
that the rotation is changing. An error in the orientation estimate introduced by this phe-
nomenon will harm subsequently created translational motion estimates.

The RMSE’s of the absolute angular tracking errors are presented in Table 3-2. The large
absolute angular RMSE in the Kraft filter stems mostly from the sustained error in the
ψ-angle.
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RMSE θ [degrees]
Kraft 8.00

Madgwick 6.08

Table 3-2: Angular RMSE’s in estimating simple translations.

The translational filter uses quaternion estimates to rotate accelerometer measurements into
world frame. Gravity is then substracted, yielding an ‘acceleration’ sensor. The effect of
erroneous orientation estimates on acceleration estimates is visible in Figure 3-9. The accel-
eration is partially filtered out, since it credited to a fictitious rotation. For the Kraft filter,
this effect is clearly visible in the acceleration estimate in the y-axis, for the Madgwick filter
it is visible in both the x and y-axis.

reference Kraft Madgwick
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(b) Errors in acceleration estimates

Figure 3-9: Acceleration estimates and their tracking errors. The filters used to estimate rotations
are UKF (blue) and Madgwick (red). The translational filter used is the UKF.

The difference in estimation accuracy per axis is remarkable. One would expect that the
accuracy in x-axis and y-axis would be similar. The reason for this lies in the fact that the
simulated orientation of the tracking device happens to coincide with the world frame. The
Madgwick filter views the magnetometer measurements as a horizontal component and a ver-
tical component, while the Kraft filter views it as a three-dimensonal vector. Therefore, a pure
acceleration in x-direction is sensed by the Kraft filter, while it is not sensed by the Madg-
wick filter. In y-direction, both filters interpret the changing accelerometer measurements as
a change in orientation.

The RMSE’s of the different filter configurations on position, velocity and acceleration is
presented in Table 3-3.

The RMSE’s in Table 3-3 show that despite the larger absolute orientation error, the con-
figurations with the Kraft filter estimate accelerations more accurate than those with the
Madgwick filter. This is explained by the fact that the Madgwick filter is fooled by the
translational motion in x-direction.
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(a) No acceleration. (b) Acceleration in x-direction. (c) Acceleration in y-direction.

Figure 3-10: The direction of the vector measured by the accelerometer and the magnetometer
when subject to translational accelerations. When an acceleration in x-direction is applied, the
Madgwick filter assumes a rotation over the y-axis. The Kraft filter is able to distinguish the
translational motion. When an acceleration is applied in the y-direction, both filters are fooled.

Position [m] Velocity [m/s] Acceleration [m/s2]
x y z x y z x y z

Kraft UKF 0.053 0.067 1.361 0.350 0.501 0.153 0.235 0.419 0.085
KF 0.038 0.045 1.372 0.271 0.428 0.331 0.240 0.419 0.081

Madgwick UKF 0.054 0.067 1.364 0.583 0.603 0.166 0.410 0.395 0.088
KF 0.039 0.044 1.374 0.322 0.411 0.332 0.412 0.395 0.085

Table 3-3: The RMSE’s on translational motion estimates in simple simulated translations.

3-2 Simulating a random walk

The simulated pure rotations and pure translations have displayed some weaknesses in the
filters. However, in real player motion pure translations and pure rotations are very unlikely
to occur. In real player motion, translational acceleration is almost always accompanied
by rotational motion. To simulate combined rotations and translations, a random walk is
simulated in both the angular velocity and accelerations.

3-2-1 Simulating reference states and measurements

The propagation model f and observation model h as described in subsection 2-4-4 are used
to simulate combined rotations and translations. An initial state x0 is chosen to be zeros,
except for the orientation quaternion. Furthermore, process noise and measurement noise are
modeled as white noise. The variance of the process noise w is defined as in Equation 3-12,
the variance of the measurement noise v is given in Equation 3-13.

wq = 1 · 10−16, wω = 1 · 10−3, wp = 1 · 10−6, wv = 1 · 10−4, wa = 1 · 10−2 (3-12)

vgyro = 3 · 10−3, vacc = 1 · 10−4, vmag = 1 · 10−4, vpGPS = 1 · 10−1, vvGPS = 1 · 10−2

(3-13)
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The reference states are now obtained via Equation 3-14, the measurements are simulated via
Equation 3-15.

xref,k = f(xref,k−1, wk) (3-14)
yk = h(xk, vk) (3-15)

In each step, the process noise vector is added to the state vector. Due to the relatively large
process noise in the angular velocities and accelerations, these states are affected most by the
random walk. The resulting simulated measurements are presented in Figure 3-11.
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Figure 3-11: Simulated sensor measurements corresponding to random walk generated random
motion.

The simulated measurements are fed into the different filter configurations. The resulting
state estimates are compared to the reference state to assess the filter estimation accuracy.

3-2-2 Results

On the random walk simulated data, the filters for estimating rotational motion and the filters
for estimating translational motion are tested.

Rotational motion First, the accuracy of the orientation estimate is investigated. Figure 3-
12 shows quaternion estimates and the tracking error for both the Kraft filter and Madgwick
filter. The Kraft filter slightly outperforms the Madgwick filter. The angular RMSE is defined
as the RMSE of the absolute angular deviation as described in Equation 3-7, The angular
RMSE is 17.8 degrees for the Kraft filter and 25.0 degrees for the Madgwick filter. These
values are very large, indicating that something is wrong.
In the simulation that is depicted in Figure 3-12, the Kraft filter seems to outperform the
Madgwick filter. To check whether this is the case in general, a set of 50 repetitions of the
random walk simulation is created. Taking the mean angular RMSE over all repetitions yields
angular RMSE’s of 47.2 and 47.6 degrees for the Kraft filter and Madgwick filter, respectively.
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Figure 3-12: Angular error for both the Kraft filter and the Madgwick filter. Note that for both
filters, the angular error reaches above 30 degrees.

Translational motion Now the translational UKF and linear Kalman filter are compared.
The reference orientation quaternions are used to perfectly rotate the accelerometer measure-
ments into world frame. The resulting RMSE’s on the translational part of the state vector
are presented in Table 3-4. On all states the RMSE’s are small. The estimation accuracy of

Position [m] Velocity [m/s] Acceleration [m/s2]
x y z x y z x y z

UKF 0.157 0.211 0.026 0.102 0.117 0.015 0.076 0.029 0.008
KF 0.211 0.213 0.034 0.135 0.131 0.016 0.042 0.042 0.009

Table 3-4: RMSE’s of translational motion estimates in random walk simulations, with correct
world-frame acceleration measurements available.

the UKF and KF is similar. This performance was expected, since measurements for px, py
and ax, ay and az are available.

In real life, the true orientation is not available. The orientation estimate is provided either
by the Kraft filter, or by the Madgwick filter and, as Figure 3-12 displays, these orientation
estimates contain quite large errors. The effect of a poor orientation estimate on the estimates
of translational motion is investigated next.

As Figure 3-13 shows, the position estimates suffer from orientation estimation errors. The
filters prove unable to accurately estimate the z-position.

Over to the velocity estimates. The estimates of each filter configuration are presented in
Figure 3-14. The filters are unable to accurately track the velocities. When the reference
velocity stabilizes, around t = 25 seconds, the error decreases. However, the filter performance
is not satisfactory.

In Figure 3-15, the acceleration estimates are displayed. The filter configurations that use
Madgwick as an orientation estimator filter out almost all acceleration in x- and y-direction.
The Kraft-based filter configurations estimate the x-acceleration remarkable more accurate.
This indicates that the orientation error in the Kraft estimation probably does not affect the
direction of the x-axis.

Figures 3-13, 3-14 and 3-15 show that the estimation accuracy deteriorates severely by errors
in orientation estimates. The RMSE’s over the complete set of 50 random walk simulations
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Figure 3-13: Position estimates and tracking errors of the simulated random walk. Note the
error on the z-position. Since no measurements of vertical position are available, a dummy
measurement of 1.5 m is assumed. In this simulation, the reference z grows to −12, causing
problems in the filters.

confirm this. The RMSE’s over the translational part of the state vector are presented in
Table 3-5.

Position [m] Velocity [m/s] Acceleration [m/s2]
x y z x y z x y z

Kraft UKF 0.191 0.216 30.765 5.746 7.157 2.796 1.621 2.787 0.811
KF 0.162 0.274 30.781 1.787 10.530 2.864 1.620 2.787 0.811

Madgwick UKF 0.192 0.215 30.786 6.598 6.248 3.823 3.233 2.680 1.238
KF 0.268 0.277 30.806 3.765 10.669 3.151 3.234 2.680 1.237

Table 3-5: RMSE’s of translational motion estimates in random walk simulations. When com-
paring the RMSE’s to those in Table 3-4, the degradation of accuracy due to inaccuracy in
orientation estimates is striking. Especially the errors in the z-direction are large. This is caused
by the absence of z-position measurements.

3-2-3 Remarks

A major limitation in the random walk simulations is the fact that the motion simulated with
random walks is often far from representative for player motion.

The small estimation errors in Table 3-4 show that the absence of pz measurements can be
corrected for by accurate orientation estimates.

Simulated accelerations are in −18 < asim < 16 m/s2, while real player accelerations should
vary roughly between −4 < aplayer < 4 m/s2. These simulated high accelerations are main-
tained for a longer period of time, while in reality high accelerations only last for a short
time.
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Figure 3-14: Velocity estimate and corresponding tracking error on simulated random walk.
Both the UKF and linear Kalman filter are unable to accurately track velocities.

The high accelerations are simulated to be measured by the accelerometer. The accelerometer
measurements are fed into the rotational filter. Both the Madgwick filter and Kraft filter are
implemented to view the accelerometer measurements as a ‘gravity’ sensor. For real data,
this is viable, since translational accelerations tend to remain smaller than gravity. However,
with the high accelerations in the simulation, this assumption is violated. This leads to poor
orientation estimates in the simulation. As is shown, errors in the orientation estimate have
major consequences for the estimation accuracy of translational motion.

Due to the high accelerations, the simulated velocities reach unrealistic values as well: −200 <
vsim < 200 m/s. These high velocities in turn lead to large traveled distances. Now for x and
y, it is no problem if positions become large. For the z-position however, this is a problem,
since it violates the assumption that the z-position lies around 1.5 m. Because the simulated
z-position is allowed to grow boundless, the estimation error in this state can become very
large, negatively influencing estimation accuracy in position, velocity and acceleration.

Regarding rotational motion, the simulated angular velocity reaches a maximum value of 280
degrees per second. In reality, player rotational rates may also reach such values, but only
for a very short period of time. In the simulation these high angular rates are maintained for
a stretch of multiple seconds.

Summarized, the simulated motion is not representative for real sports player motion. Since
the filters are tailored to tracking real player motion, they are unable to accurately estimate
the non-representative motions in this simulation. To properly investigate filter performance,
motions need to be simulated that better represent sports player motion. In Section section 3-
3 an attempt is made to do so.
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Figure 3-15: Acceleration estimates and corresponding tracking error on simulated random walk.
Taking into account that the world-frame acceleration measurements are fed into the filters, it
can be concluded that the estimation errors are huge.

3-3 Simulating VICON-measured motion

The random walk simulations described in Section 3-2 are of limited use, since the simulated
motions are not directly representative for sports player motion. To simulate a motion that is
representative for sports player motion, data from the VICON experiment is used. Details of the
VICON experiment are found in Section 4-2, for now it suffices to know that the measurements
exist of 200 Hz positions and Euler angles. These external measurements are used to simulate
the corresponding tracking device measurements.

3-3-1 Method

The angular velocity is obtained by approximating the derivative of the Euler angles. This
is done calculating the differences between adjacent measurements and dividing the result by
the sample time, as in Equation 3-16.

ω′ref,i = [θVICON,i+1 − θVICON,i]
T

(3-16)

When approximating the discrete derivative via this approach, peaks arise due to noise am-
plification. To deal with this problem, the Savitsky-Golay filter is applied [25]. The Savitsky-
Golay filter regards the datapoints within windowsize ws. Through these points, an n-th
order polynomial is fit. Then, the window is shifted one place and the process repeats itself.
The filter is applied via the MATLAB-command ωref = sgolayfilt(ω′ref, n, ws).

The same approach is applied to the position measurements to obtain reference velocities. It
is then applied once more to obtain reference accelerations. The VICON system measures at
200 Hz. The sample frequency is reduced to 100 Hz using the decimate()-function.
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From the obtained angular velocities and accelerations, the reference states and corresponding
measurements are simulated via Equations 3-1 to 3-4.

Using this approach, 27 datasets with a total of 13084 datapoints of reference states xref and
measurements z are obtained. The datasets are divided into different categories defined by
the pace at which the subject travels. Some simulations are derived from measurements of
a walking or jogging motion, while others correspond to a running or sprinting motion. The
different motion types are presented in Table 3-6.

Pace [km/h] Category
0 < v ≤ 7 Walking
7 < v ≤ 14 Jogging
14 < v ≤ 20 Running

20 < v Sprinting

Table 3-6: The different categories of simulated motion are defined by the pace at which the
subject travels.

In analyzing the resulting motion estimates, this differentiation in motion type is retained.
It is investigated what the estimation accuracy is of each filter configuration on sports player
representative motion data.

3-3-2 Results

Via the method described in Section 3-3-1, motions are simulated that should be representa-
tive for sports player motion. The simulated measurements are again fed into the different
filter configurations to assess estimation accuracy. In these simulations, the computational
load is assessed as well.

Estimation accuracy

From the random walk simulations in Section 3-2, it has become clear that erroneous orien-
tation estimates and z-positions deviating too far from 1.5 meters are factors that greatly
reduce estimation accuracy. In this section, first the estimation accuracy of rotational motion
is investigated, followed by the estimation accuracy of translational motion.

Rotational motion The absolute angular error is calculated for each simulated motion and
filter configuration. The angular errors of both a simulated walking motion and a simulated
sprinting motion are depicted in Figure 3-16.

The resulting RMSE’s are presented in Table 3-7. The Madgwick filter shows superior per-
formance over the Kraft filter in accuracy of estimating the orientation. For both filters, it
is shown that the estimation error grows when the pace in the simulated motion increases.
The error on the Kraft estimates even grows to 101.2◦ in the sprinting simulations. Since
the Kraft filter performs best on simulated walking motions, one could suspect that the filter
is tuned to perform better on slower motions. This is however not the case. For the tuning
method, the reader is directed to Section D-2.
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Figure 3-16: Angular error for both a walking and a sprinting motion. The errors at walking
pace are way lower than those at sprinting pace.

RMSE|θ| [◦] Walking Jogging Running Sprinting
Kraft 6.67 29.69 25.65 101.21

Madgwick 7.49 7.14 9.02 10.29

Table 3-7: The RMSE’s on the rotational motion estimates in the VICON-based simulations.

Keeping in mind the influence of orientation errors that was found in Section 3-2, it is ex-
pected that angular errors like these are problematic for the accuracy in translational motion
estimates. To check whether this is the case, the translational state estimates are investigated.

Translational motion The position estimates for a simulated sprinting motion are depicted
in Figure 3-17. The estimation errors are all within acceptable range. As expected, the
reference z-position remains close to 1.5 meters. As a consequence, the error on the z-position
remains small. The rhytmic motion of a sprinting sports player is reflected in the sine-shaped
z-position, in the reference state as well as in the estimates.

The accuracy of velocity estimates depends on orientation estimates, as Figure 3-18 shows.
A clear difference between accuracy of Kraft-based and Madgwick-based velocity estimates is
visible, expecially in y-direction.

In Figure 3-19, a few remarkable features can be noted. First of all, the range in which the
accelerations live. It was assumed that player acceleration ranges roughly from −4 to 4 m/s2.
This simulation suggests that, at least the tracking device, moves more violently. It is im-
portant to keep in mind that the reference acceleration is obtained via discrete differentiation
and that its accuracy is therefore questionnable. The errors in x and y direction are larger
than those in z-direction.

The acceleration estimates vary roughly between −10 and 10 m/s2. It goes without say-
ing that a post-processing operation is required to obtain values that are representative for
player acceleration (as opposed to tracking device accelerations). Such an operation could be
applying a simple Butterworth filter.

The RMSE’s corresponding to the translational part of the state vector are presented per
motion type in Table 3-9. The position estimates outputted by each filter configuration are
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Figure 3-17: Position estimates and corresponding tracking errors on simulated sprinting motion.
The UKF outperforms the linear Kalman filter in estimation accuracy.

equally accurate. In the velocity estimates, the UKF shows slightly more accurate estimation
than the linear KF. In the acceleration estimates, the filter configurations with the Kraft
filter as orientation estimator are outperformed by the configurations with the Madgwick
filter. This makes sense, given the difference in orientation estimation accuracy. Although
better than the Kraft-based acceleration estimates, the estimation errors in the Madgwick-
based accelerations are still quite large: Assuming that player acceleration values lies within
−4 ≤ v ≤ 4 m/s2, the RMSE on x-acceleration in sprints is ±25% of the complete range.

Computational load

The computational load of each filter configuration is determined by measuring the time
it takes to calculate the state estimates of 1 second of simulated data, equivalent to 100
measurements. The computational load per filter configuration is determined over 50 sets of
simulation data and presented in Table 3-8.

Computational load
µ (σ)

Kraft UKF 0.340 (0.010)
KF 0.306 (0.012)

Madgwick UKF 0.053 (0.001)
KF 0.027 (0.001)

Table 3-8: Computational load per filter configuration. The computational load is expressed as
the computation time per second of simulated data. The data shows that the Madgwick filter
has a much lower computational load than the Kraft filter. The linear Kalman filter is slightly
faster than the linear UKF.
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Figure 3-18: Velocity estimates and corresponding tracking errors on simulated sprinting motion.
The UKF outperforms the linear Kalman filter in estimation accuracy.

Whether the measurements fed into the filters is simulated or real-world data does not influ-
ence computational load. The computational load presented in Table 3-8 is thus representative
for all simulations and experiments.

Pareto optimization

For comparison, the computational load is plotted against the estimation accuracy. Each
part of the state vector is viewed separately. Furthermore, a differentiation is made between
the simulated motion types. The estimation accuracy is defined as the mean RMSE over the
x, y and z-direction of that particular part of the state vector. The results are presented in
Figure 3-20 and Figure 3-21.

It is shown that the orientation estimates outputted by the Madgwick filter are more ac-
curate than those of the Kraft filter. The more accurate orientation estimate is visible in
the acceleration estimates. At walking pace, both filters estimate accelerations with similar
accuracy. When the pace in the simulated is increased however, the acceleration estimates
from Kraft-based filter configurations heavily deteriorate. Accuracy in acceleration estimates
of the Madgwick-based filter configurations does also decrease with increasing pace in the
simulated motion, but less severe.

The figures clearly show that the Kraft-based filter configurations are far from Pareto optimal.
When looking at the Madgwick-based filter configurations, performances of the UKF and KF
are not far apart.

3-3-3 Remarks

Like the random walk simulations from Section 3-2, the VICON-based simulations also have
their limitations. The Savitsky-Golay filter is used to derive velocities from positions and
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Figure 3-19: Acceleration estimates and corresponding tracking errors on simulated sprinting
motion. The superior orientation estimation accuracy of the Madgwick filter reflects in the
acceleration estimation accuracy of Madgwick-based filter configurations.

accelerations from velocities. The degree of similarity of the simulated accelerations and the
actual accelerations in the experiment is thus dependent on the chosen order and windowsize
in the Savitsky-Golay filter. It is likely that the simulated motion is smoother than the actual
motion.
The angular error of both the Madgwick filter and the Kraft filter is larger than 5 degrees,
even for te simulated motions at walking pace. This is not a good sign for the real world exper-
iments, as it can be assumed that the real sensors will suffer from more complex disturbances
than their simulated counterparts.

3-4 Summary

Simple rotational and translational motion is simulated. It is shown that translational ac-
celerations can disturb orientation estimates. When this is the case, the false orientation
estimate disqualifies the accelerometer as a reliable ‘acceleration’ sensor.
The simulation in which the angular velocities and accelerations are modeled as a random
walk stresses the importance of accurate orientation estimates. The absence of height mea-
surements can be corrected for as long as accurate orientation estimates (and thus accurate
acceleration measurements) are available. As soon as orientation estimates become inaccu-
rate, errors on estimates of the translational part of the state vector start to grow.
By simulating motions measured in a real-life experiment (that is described in Section 4-2),
representative player motions are simulated. The simulations suggest that the accelerations
of the tracking device vary roughly between −10 and 10, rather than between −4 and 4 as was
previously assumed. Furthermore, it is shown that orientation estimates get less accurate as
the pace of the simulated motion increases. Finally, the simulations show that the Madgwick
filter outperforms the Kraft filter both in estimation accuracy and in computational load.
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Figure 3-20: Pareto front of the computational load and estimation accuracy of rotational
motion. The Kraft filter and Madgwick filter are compared.

Position [m] Velocity [m/s] Acceleration [m/s2]
x y z x y z x y z

walking

Kraft UKF 0.005 0.004 0.196 0.365 0.548 0.136 0.335 0.442 0.073
KF 0.016 0.006 0.196 0.690 0.221 0.117 0.260 0.442 0.094

Madgwick UKF 0.007 0.002 0.198 0.302 0.345 0.167 0.524 0.306 0.077
KF 0.017 0.006 0.198 0.720 0.234 0.128 0.533 0.306 0.097

jogging

Kraft UKF 0.018 0.013 0.495 1.278 2.180 0.785 2.127 2.563 0.906
KF 0.065 0.069 0.500 1.863 3.198 0.623 2.048 2.563 1.002

Madgwick UKF 0.025 0.002 0.472 0.076 0.203 0.489 0.738 0.429 0.478
KF 0.055 0.009 0.472 1.607 0.334 0.479 0.659 0.429 0.615

running

Kraft UKF 0.033 0.013 0.114 0.772 2.105 0.820 2.940 3.365 1.826
KF 0.168 0.072 0.131 1.380 3.264 0.585 2.568 3.365 1.890

Madgwick UKF 0.037 0.003 0.121 0.112 0.449 0.272 2.040 0.886 0.649
KF 0.099 0.010 0.116 1.911 0.408 0.263 1.491 0.887 0.746

sprinting

Kraft UKF 0.050 0.019 0.256 3.087 3.181 2.515 5.827 7.666 4.461
KF 0.171 0.067 0.381 2.904 3.139 1.932 5.757 7.666 4.486

Madgwick UKF 0.044 0.003 0.113 0.137 0.451 0.330 2.929 0.968 0.951
KF 0.119 0.009 0.115 2.190 0.398 0.302 2.200 0.969 0.993

Table 3-9: The RMSE’s on translational motion estimates in the VICON-based simulations of each
motion type. The position estimates of all filter configurations are of similar accuracy, regardless
of the pace that is simulated. In the velocity estimates, the slightly superior performance of the
UKF over the linear Kalman filter is visible. In estimating accelerations, the filter configurations
relying on the Madgwick filter for orientation estimation clearly outperform those with the Kraft
filter.
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(a) Pareto front of position estimates.
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(b) Pareto front of velocity estimates.
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(c) Pareto front of acceleration estimates.

Kraft + UKF

Kraft + KF

Madgwcick + UKF
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walking pace
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running pace

sprinting pace

(d) Legend

Figure 3-21: Pareto fronts of computational load and estimation accuracy of the translational
parts the state vector. A differentiation is made based on the pace at which the subject in the
simulated motion moves. In the position estimates, similar estimation accuracy is shown for each
filter configuration. In estimating velocities, the Madgwick-based filter configurations show supe-
rior estimation accuracy over the Kraft-based filter configurations. The difference in estimation
accuracy is particularly evident in Figure 3-21c. The estimation accuracy of each filter config-
uration is similar at walking pace, but with increasing pace, the Kraft-based filter configuration
estimation accuracy heavily deteriorates. The computational load per filter configuration equal
for each motion type.
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Chapter 4

Experiments and results

In simulation, the filters have shown to be capable of tracking sports player motion. However,
the real world, effects occur that have not been simulated.

The measurement noise on each of the sensors was simulated as zero-mean white noise
(ZMWN). On the real sensors, the noise is not ZMWN. The noise on the GPS measure-
ments is better modeled as a piece-wise constant signal (subsection 2-2-3), the accelerometer
and gyroscope suffer from biases, scale errors and coupling errors (subsection 2-2-1) and the
magnetometer measurements contain hard-iron errors and soft-iron errors (subsection 2-2-2).
Furthermore, motions in the real world may differ from those that are simulated. To assess
filter performance on real sensor data, two different experiments are carried out.

The first experiment is the reference trajectory experiment. The subject travels along a tra-
jectory, of which the positions are determined via Google Maps. Subsequently, the deviations
of the estimated positions with respect to the real positions are determined.

The second experiment is the VICON experiment. In the experiment, the subject moves in
similar fashion as a sports player, imitating actions from a sports game. The VICONMotion
Capture system, with its infrared cameras and reflective markers, is used to measure the
performed motions in terms of position and orientation.

4-1 Reference trajectory experiment

In the reference trajectory experiment, a predefined trajectory is traveled while being tracked
with the JOHAN tracking device. The reference trajectory coordinates are obtained via Google
Maps. The measurements are fed into the different filter configurations, yielding filtered posi-
tion estimates. The raw GPS measurements and the filtered position estimates are compared
to the reference trajectory. It is investigated if the filtering operation improves the position
estimates.
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4-1-1 Obtaining reference coordinates from Google Maps

The reference trajectory is defined by straight line segments on a truck parking lot, clearly
visible on Google Maps. The locations (lat, long) of several points per line segment are selected
in Google Maps. A straight line is fit through the locations and the points in which the line
segments cross are calculated. The resulting reference trajectory is displayed in Figure 4-1.
To express the position error in meters, the trajectory is transformed from Earth frame (lat,
long) to world frame (x, y). Google Maps provides latitudes and longitudes with 6 decimal
places, corresponding to 0.11 m accuracy.

Figure 4-1: The reference trajectory in the reference trajectory experiment. Locations of points
on the reference trajectory line segments (blue x’s) are obtained via Google Maps. A straight line
is fit through the selected points. The points are determined in which the line segments cross
(black x’s), yielding the complete reference trajectory (full line). The direction of the trajectory
is in ascending order of crossing points.

4-1-2 Defining the estimation error

The error is defined as the distance between a position estimate p̂ and the closest point on
the reference track p′, as displayed in Figure 4-2a. The RMSE of all position estimates is
calculated via Equation 4-1.

RMSE =

√∑n
i=1 (p̂i − p′i)

2

n
(4-1)

Note that the position error as defined is independent of time. This time independency
is an important weakness. Assume the actual position at time instance k to be pk. The
position estimate and the closest reference point are now denoted p̂k and p′k, respectively.
The actual position does not necessarily coincide with the closest reference point (pk 6= p′k).
This results in a smaller position error estimate than the actual position error, as is illustrated
by Figure 4-2b.
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(a) Position error as defined (b) Actual position error

Figure 4-2: Reference trajectory and its estimate. The error is defined to be the distance between
the estimated position p̂ and the closest point on the reference trajectory p′ (4-2a), while the
actual position pk may be another point on the reference trajectory (4-2b).

4-1-3 Results

With two tracking devices, the reference trajectory is traveled four times, yielding 8 mea-
surements. The resulting dataset contains 122.624 position measurements in total. The raw
measurements are displayed in Figure 4-3. The figure shows that the error on the position
measurements is not ZMWN.
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Figure 4-3: Raw position measurements in the reference trajectory experiment.

The RMSE of the raw position measurements is 1.03 m. The measurements are fed into the
filter configurations to assess the filter performance. The RMSE’s per filter configuration are
displayed in Table 4-1.

filter configuration RMSE [m]
raw measurements 1.03 (0.04)
Kraft + UKF 1.21 (0.32)
Madgwick + UKF 1.23 (0.29)
Kraft + KF 1.21 (0.32)
Madgwick + KF 1.22 (0.29)

Table 4-1: Root mean square errors on the position estimates with raw and filtered measurements.
The filtering action deteriorates the position estimates.

The table shows that the position estimates after filtering are worse than the raw GPS esti-
mates. This is caused by erroneous orientation estimates disturbing the position estimates,
as Figure 4-4b shows.
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(a) Experiment 2. The position estimates
closely follow the raw GPS measurements, the
RMSE is 0.867 m.
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(b) Experiment 7. The position estimates di-
verge between subsequent GPS measurements,
due to poor orientation estimates. RMSE is 1.75
m.

Figure 4-4: Position- and orientation estimates in the reference trajectory experiment for two
different repetitions. The reference trajectory, raw GPS measurements and position estimates
are represented by the black, blue and green line, respectively. A coordinate frame is plotted to
indicate the orientation estimate. It is shown that, next to bad GPS measurements, erroneous
orientation estimates are a cause for large RMSE’s.

4-1-4 Remarks

The GPS measurements as outputted by the tracking device are shown to measure positions
with 1.03 meter accuracy. That is, assuming that the reference trajectory perfectly describes
the traveled trajectory.

Furthermore, the experiment shows that no matter which filter configuration is applied, the
filtering operations bring no improvement to position estimates. Due to the on-chip filtering
operation in the GPS receiver, hardly any noise appears to be present on the measurements.
It is thus not possible to estimate a smooth line through the cloud of measurements, as would
be the case with ZMWN. Whether or not the filtering operation improves or deteriorates the
position estimates with respect to the raw measurements is solely dependent on the direction
in which the filter estimates deviate from the measurements: towards the reference trajectory
or not.

4-2 VICON experiment

The VICON experiment is executed with the aim of assessing the accuracy of the orientation
estimate. In typical sports player motion, the orientation rapidly changes. To test the filter
estimation accuracy during representative motion, the VICON system is used. The VICON
Motion Capture system uses infrared cameras to estimate the position of retroflective markers.
Motion capture systems are well-known for their application in the filming of animation movies
(Figure 4-5), but are also used in technical applications like validation and control in computer
vision and robotics [26]. Infrared cameras are set up to cover a workspace. A collection of
markers is defined to be an object. As long as the object is in the line of view of at least two
VICON cameras, the position of the object can be determined up to a sub-millimeter accuracy
[27]. From the positions of each marker, the orientation of the object is determined.
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Figure 4-5: Motion Capture systems are well-known for their use in creating animation movies.

4-2-1 Experiment set-up

For the experiment, two JOHAN tracking devices and a set of reflective markers are attached
to a rigid plate (Figure 4-6). The plate is mounted on the subject’s upper back and the set of
markers is defined as an object in the VICON system. Cameras are set up to cover the workspace
and the system is calibrated. The subject then performs typical field sports moves, while being
tracked by the JOHAN system as well as the VICON system. The JOHAN measurements are fed
into the different filter configurations. The resulting orientation estimates are compared to
those provided by the VICON system.

(a) VICON camera and JOHAN device. (b) Rigid plate with reflective markers.

Figure 4-6: The VICON system uses infrared cameras (4-6a) to capture motion of objects defined
by reflective markers (4-6b) in terms of position and orientation.

Representative moves that are performed during the experiment are for example jogging,
running, sprinting, jumping, turning and running sideways. The moves are performed within
the workspace so that they are captured by the VICON system. The experiment is measured
with two tracking devices for reasons of redundancy and consistancy. If one tracker turns
out to have failed, the other device serves as a backup. Furthermore, by measuring with two
tracking devices the number of trials per experiment is doubled.

The VICON Motion Capture system outputs measurements at 200 Hz, containing a time-stamp
t, position p, orientation ϑ in Euler angles and a flag indicating whether or not the object is
in view, as denoted in Equation 4-2.

zVICON =
(
t pT ϑT flag

)T
(4-2)
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where the time-stamp t is the UNIX time in milliseconds as provided by the computer running
the VICON software.

Based on the VICON measurements, a set of reference states is created as is done in Section
3-3.

4-2-2 Synchronize timing

To enable comparison between the JOHAN orientation estimates and the orientations measured
by the VICON Motion Capture system, the timing of all measurements has to be synchronized.
Both the time-difference between both JOHAN tracking device measurements and the difference
between the JOHAN and VICON measurements need to be determined.

JOHAN to JOHAN The first step of synchronizing the timing of both JOHAN tracking devices
is done using the GPS time stamp. However, since the GPS measures at 10 Hz, this syn-
chronization lacks accuracy. To find a more accurate time-difference between both JOHAN
tracking devices, the measurements are compared. Since both tracking devices are attached
to the same rigid plate, it is expected that they measure similar motion. The time-difference
is determined by calculating the cross-correlation between measurements of both tracking
devices. The cross-correlation of functions f and g is defined as Equation 4-3.

(f ? g)[n] ,
∞∑

m=−∞
f∗[m]g[m+ n] (4-3)

where f∗ is the complex conjugate of f and n denotes the lag. The value of n for which the
cross-correlation is largest represents the number of samples that one tracking device lags the
other.

The signals that are used to calculate the cross-covariation are the acceleration measurements
in z-direction, since these are expected to coincide most. In Figure 4-7, the z-accelerations
of the two tracking devices and the cross-correlation between both signals are depicted. The
lag is determined to be 4 samples, corresponding to 0.04 seconds.
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(a) Acceleration measurements in z-
direction from both tracking devices.
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(b) Cross-correlation between measure-
ments from both tracking devices.

Figure 4-7: Calculating the time-difference between two JOHAN tracking devices. The cross-
correlation of acceleration measurements in z-direction from both trackers is calculated. The
value for τ with the highest cross-correlation represents the time-difference between the two
tracking devices.
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JOHAN to VICON To determine the time-difference between the JOHAN tracking devices and
the VICON system, the time-stamps are compared. The VICON time-stamp is the UNIX-time
in milliseconds as provided by the computer running the VICON software. This time-stamp is
compared to the JOHAN GPS-time to synchronize the timing.
For each experiment, the start-time t0 is defined as the VICON time-stamp corresponding
to the first measurement where the object is in view. The end-time is defined as the last
VICON measurement with the object in view. To synchronize the VICON measurements with
the JOHAN data, the time between two GPS time-stamps is interpolated. The interpolated
time-stamp closest to t0,VICON is chosen as the starting index.
To overcome the difference in sample frequency, the VICON measurements are decimated using
the decimate()-function over the samples where the object is in view.

4-2-3 Align coordinate frames

JOHAN to JOHAN Although the coordinate frames of both tracking devices do not coincide, it
is assumed that they do measure the same. This simplification seems justified, since the center
of rotation in human motion typically lies around body’s center of gravity, approximately in
the low back area of the spinal column [28], and both tracking devices are worn on the upper
back.

JOHAN to VICON The position and orientation are provided with respect to a manually de-
fined reference coordinate frame (ΨV ) that is chosen to be in plane with the earth’s surface.
The coordinate frame in which VICON denotes the object’s orientation and position is defined
by the user. The magic wand, a tool with known dimensions that the system uses for calibra-
tion, is positioned on the floor to define the VICON coordinate frame. The JOHAN world frame
is defined based on the direction of the magnetic north. In order to be able to compare VICON
measurements with JOHAN measurements, both coordinate systems have to be aligned. Since
the x- and y-axes of both ΨW and ΨV lie in plane with the Earth’s surface, the difference in
orientation is expected to only concern a rotation over the z-axis, as is depicted in Figure 4-8.

Figure 4-8: The VICON coordinate frame (ΨV ) needs to be aligned with the world frame (ΨW )
to enable comparison.

To align the coordinate frames, the positions measured by VICON are compared to the positions
measured by JOHAN for several experiments. In the experiments where the subject is walking,
jogging, running and sprinting, the path traveled is along an almost straight line, see Figure 4-
9a. A line is fit through both the VICON measurements and the JOHAN measurements, to find
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the misalignment between the two coordinate frames, see Figure 4-9b. Per experiment, the
angle between the fitted lines is determined. The mean difference angle is found to be 30.04
degrees.
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(a) Position measurements in
VICON frame (blue) and JOHAN
world frame (red).
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(c) Corrected VICON position
measurements.

Figure 4-9: Aligning the ΨV and ΨW . A straight line is fitted througth positions measured
in several experiments. The angle between the positions measured by VICON and the positions
measured by JOHAN represents the coordinate frame misalignment and is found to be 30 degrees.

The difference in position of the origin of both coordinate frames is determined next. As
is visible in Figure 4-9, sequences of GPS measurements per experiment do not coincide,
although the subject did travel the same path, through a ‘corridor’ of cameras. The paths
measured by the GPS lie up to 10 m apart. The reason that this difference is so large lies in
the fact that the experiment was performed right next to a tall building.

The next step is to find the displacement between the VICON coordinate frame and the JOHAN
world frame. This is done by comparing the positions at t0 for each experiment. The difference
in initial (x, y)-position is determined for each experiment. The mean displacement at t0
is assumed to be the displacement between both coordinate frames. The corrected VICON
position measurements are displayed in Figure 4-9c.

4-2-4 Results

The JOHAN measurements corresponding to the time-sequences measured by the VICON Motion
Capture system are fed into the different filter configurations. The estimation accuracy for
each different filter configuration is investigated.

In Figure 4-10, the angular errors of the Kraft filter and Madgwick filter are depicted. The
errors are very large, up to 70 degrees. Given the aligning process of the coordinate frames,
it is questionnable how accurate the reference orientation actually is. Assuming that the
orientation errors are correct, poor translational motion estimates can be expected.

The angular RMSE’s are given in Table 4-2. The Madgwick filter outperforms the Kraft filter,
however, the estimation errors for both filters are unacceptably large.

The position estimates are presented in Figure 4-11. As was expected from the aligning process
described in Section 4-2-3, the errors on the position estiamtes are large. This expectation is
confirmed, the position errors grow to 4 meters.
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(a) Angular error.

Figure 4-10: Angular estimation error on a sprinting experiment. The angular estimation errors
of both the Kraft and Madgwick filter are large.

RMSE θ [degrees]
Kraft 51.44

Madgwick 39.04

Table 4-2: Angular RMSE’s in VICON experiment.

The velocity estimates are presented in Figure 4-12. As the figure shows, velocity estimates
go crazy. The estimation accuracy could be improved by initializing the filter with the initial
reference state x0,ref. Furthermore, if the experiment would have lasted longer, it may be
possible that the velocity estimates would still converge to the actual state. This does not
seem likely however, given the frantically growing errors in the first 4 seconds.

The acceleration estimates are given in Figure 4-13. A glance at Figure 4-13b learns that
the estimation errors are very large. The errors are as large as the range in which the state
is expected to be. The poor acceleration estimates are explained by the poor orientation
estimates. The

Position [m] Velocity [m/s] Acceleration [m/s2]
x y z x y z x y z

Kraft UKF 2.819 4.479 0.989 6.097 5.010 3.528 6.204 8.371 12.422
KF 2.672 4.456 1.154 8.635 4.661 4.139 6.234 8.608 12.674

Madgwick UKF 2.875 4.511 1.306 5.299 4.048 3.532 3.927 4.374 6.735
KF 2.691 4.493 1.566 9.024 4.084 4.231 4.479 4.386 6.847

Table 4-3: RMSE’s of translational motion estimates in the VICON experiment.

4-2-5 Remarks

The estimation errors in the VICON experiment are huge. The root cause for the large errors
can lie in different areas.

The approach to obtaining reference states has its limitations. The reference velocities and
accelerations were obtained from position data. This process introduces uncertainties in the
reference state. Furthermore, the process of aligning the JOHAN world coordinate frame and
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(b) Errors in the position estimate.

Figure 4-11: Position estimates and corresponding tracking errors on a sprinting motion experi-
ment. As expected from the coordinate frmae aligning process, the position errors are large. This
is largely caused by the fact that the experiment was performed next to a tall building.

VICON coordinate frame is quite crude, possibly too crude. It is therefore unsure how accurate
the reference state is.

Other possible sources of errors are the sensors in the tracking device. The calibration process
of the gyroscope and acceleromter is very simplistic. The biases on the accelerometer after
calibration are still in the order of 0.1 m/s2. Furthermore, the experiment was performed close
to a building for reasons of power supply. This leads to disturbances in the GPS measurements
larger than usual, as well as disturbances in the magnetometer measurements due to magnetic
fields.

Another possible source of error lies in the experiment duration. The time-sequence in which
the subject is in view of the camera’s is short (±5 seconds), leading to short experiments.
The initialization period therefore takes up a relatively large portion of the experiment.

4-3 Summary

The reference trajectory experiment has shown that the filtering operations do not improve
position estimates. This was expected, since the measurement noise on GPS measurements
is not zero-mean and not white due to the on-chip filtering operation.

In the VICON experiment, estimation errors are large. It is however hard to determine where
the source of these errors lies. The process in which the reference motion, with which the
estimates are compared, is obtained has its limitations. This makes the accuracy of the
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(a) Velocity estimate.
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(b) Errors in the velocity estimate.

Figure 4-12: Velocity estimates and corresponding tracking errors on a sprinting motion experi-
ment. The velocity estimates are poor. Note that the initial x-velocity lies far from the reference
x-velocity. Better initialization could improve the estimation accuracy.

reference states uncertain. Another important possible source of errors is the location of the
experiment: right next to a tall building. The presence of the building is likely to disturb the
GPS measurements, as well as the magnetometer measurements.

Due to the large uncertainty on the source of errors, no conclusions regarding estimation
accuracy are drawn based on the VICON experiment.
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(a) Acceleration estimate.

1 2 3 4

-20

-10

0

10

1 2 3 4

-20

0

20

1 2 3 4

-40

-20

0

20

(b) Errors in the acceleration estimate.

Figure 4-13: Acceleration estimates and corresponding tracking errors on a sprinting motion
experiment. The estimation errors are large. The poor orientation estimates play a large role in
this.
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Chapter 5

Conclusions and recommendations

To be able to accurately track sports player motion, different sensor fusion algorithms are
compared in this thesis. The Kraft filter and Madgwick filter, combined with either an
unscented Kalman filter or a linear Kalman filter are put to the test in both simulations
and real-world experiments. Which filter is able to most accurately estimate player motion,
accelerations in particular? Which filter has the lowest computational load? Which filter is
most suitable to be applied by JOHAN Sports?

In this chapter, the main conclusions from the research are summarized and recommendations
for further research are posed.

5-1 Conclusions

To answer the research question, the results of the simulations and real-world experiments
are interpretated. The main conclusions of the research are stated below.

• It is concluded that the Madgwick filter, combined with the linear Kalman filter are
most suitable for motion tracking in field sports with the current version of the JOHAN
Sports tracking device. This conclusion is drawn after interpreting the results of the
simulation in which VICON-measured motion is simulated.

– The Madgwick filter estimates orientation to higher accuracy than the Kraft filter.

– Estimation accuracy of the unscented Kalman filter and the linear Kalman filter
in estimating translational motion is similar.

– The Madgwick filter has a lower computational load than the Kraft filter.

– The linear Kalman filter has a lower computational load than the unscented Kalman
filter.
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• Errors in the orientation estimates are the main factor for deterioration of translational
motion estimates. The simulation in Section 3-2 has shown that the lack of pz mea-
surements is not necessarily a problem. With accurate orientation estimates, accurate
world-frame acceleration measurements can be obtained, with which the absence of pz
measurements is corrected for.

• Based on the JOHAN tracking device measurements, the filters that are developed in this
thesis are unable to accurately estimate sports player motion.

5-2 Recommendations for further research

From the research performed for this thesis, a number of recommendations for further research
follow. The recommendations are categorized per topic: modeling, simulation, experiments
and hardware.

5-2-1 Modeling

• Estimate gyroscope- and accelerometer biases instead of angular velocities and accel-
erations. Biases are expected to remain constant over a measurement. This should
simplify estimation.

• Research the improvements of feeding estimated accelerations back into the rotational
filters. The Kraft filter and Madgwick filter use the accelerometer as a ‘gravity’ sen-
sor in estimating the orientation. The accelerometer measurements however, contain
measurements of translational accelerations as well. The accelerometer measurements
can be rid of these translational accelerations by rotating the world-frame acceleration
estimates into body-frame and subtracting them from the accelerometer measurements.
For this thesis, this has been shortly investigated, but the topic is left to rest after a
lack of quick results.

5-2-2 Simulation

The simulations that are performed for this thesis each have their limitations. The simple pure
rotations and translations, but also the more complex random-walk simulations do not yield
motions that are representative for player motion. Furthermore, the sensor measurements are
simulated to only be contaminated with Zero-Mean White Noise. To simulate more realistic
measurements, other types of errors could be added.

• Simulate motion as a bounded random walk [29]. By defining bounds in which each state
has to remain, a motion can be simulated that is more representative for actual player
motion.

• Simulate biases, scaling errors and coupling errors on the accelerometer and gyroscope
measurements. Currently, the accelerometer and gyroscope measurements are simulated
to be contaminated with measurement noise only, while in reality they suffer from biases,
scale factors and coupling errors. By simulating these as well, a more realistic simulation
is obtained.
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• Simulate piecewise constant offsets for GPS position measurements. Due to the on-chip
filtering operation of the GPS receiver, the measurement errors are not ZMWN.

• In the simulations in which motions measured with VICON are imitated, the subject only
travels in x-direction. Manipulate the simulations in such a way that the direction in
which the subject travels is normally distributed over all directions. The estimation
errors on positions, velocities and accelerations in x- and y-direction should then be
more similar than they are in this thesis.

5-2-3 Experiments

With respect to estimating motion with the real sensor data, it is recommended to further
investigate the following:

• Apply a more involved calibration technique. In this thesis, a very simple calibration
technique is applied. Results are expected to improve with more accurate calibration.

• Perform experiments with higher grade sensors. Especially the GPS receiver in the
tracking device is problematic. The on-chip filtering operation causes much information
to be lost.

• Perform the pendulum experiment with tracking devices that contain a magnetometer.
For the research, the pendulum experiment was designed and performed. In this ex-
periment, the tracking device is attached to the bob of a pendulum. The pendulum is
then swung back and forth, while taking measurements with the JOHAN tracking device.
The experiment was performed with outdated hardware, lacking a magnetometer. The
measurements are therefore not suitable for the filters described in this thesis.

5-2-4 Hardware

• Perform research with a higher grade GPS receiver. The on-chip filtering operation of
the GPS receiver disables the use of tightly coupled filtering algorithms. It is expected
that by using a GPS receiver that outputs raw measurements, estimation accuracy can
be improved.

• In the IMU, a so-called Digital Motion Processor (DMP) is available. This filter runs
at 200 Hz on the internal CPU [30], allowing for more accurate orientation estimates.
The Digital Motion Processor can also handle magnetometer measurements. Use the
on-chip DMP to estimate the orientation.

• Investigate the possibility of real-time filtering. Currently, the raw data is stored on the
tracking device. The raw data is processed by the filters post-mission, on computers.
Ideally, the filters would run on the CPU of the tracking device. Challenges that have
to be overcome in order to enable running the filters on the tracking device are:

– Calibration of the magnetometer.
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– Initialization procedure. The world-frame is defined by the first GPS measurement
(origin) and the magnetometer measurement at that time instant (magnetic North,
x-direction). For running the filter on-chip, a more robust method should be
devised.
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Appendix A

Attitude representations

The attitude of a 3D rigid body in space can be represented in different ways. A few commonly
used representations will be addressed in this section.

A-1 Euler angles

A well-known orientation representation is called Euler angles. It expresses a rotation in three
angles, often referred to as pitch, roll and yaw, denoted by φ, θ and ψ. These angles represent
three consecutive rotations about the axes of the coordinate frame, for example z-x-z′: First
rotate φ radians about the z-axis, then rotate θ radians about the x-axis and finally rotate ψ
radians about the new z-axis. The problem of this parametrization is that it has singularities
at pitch values of θ = π

2 + kπ, with k ∈ Z. To overcome these singularities, other attitude
representations have been developed. [31]

A-2 Direction Cosine Matrix

As is described in [32], the Direction Cosine Matrix (DCM) is a square matrix, whose columns
are the orthogonal unit vectors of one frame expressed in the other frame.

A
BR =

(
A
Bu1

A
Bu2

A
Bu3

)
(A-1)

where ABui is the unit vector along B frame axis i projected on coordinate frame A axis. From
orthogonality it follows that A

BR
T = A

BR
−1. A vector v expressed in frame A equals the

product of ABR with the same vector expressed in frame B (and vice versa with A
BR

T ).
Av = A

BR
Bv, Bv = A

BR
T Av = B

AR
Av (A-2)

Using the chain rule, multiple rotations can be expressed in one direction cosine matrix by:
A
CR = A

BR
B
CR (A-3)
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A-3 Quaternion

Another commonly used attitude representation is the quaternion [31]. This representation
is particularly popular because of its lack of singularities. A quaternion can be represented
as a vector q ∈ H:

q =


qw
qx
qy
qz

 =
(
qw
q1:3

)
(A-4)

The adjoint (q̄), norm (||q||) and inverse (q−1) of quaternion q are given by:

q̄ =
(

qw
−q1:3

)
(A-5)

||q|| =
√
q2
w + q2

x + q2
y + q2

z (A-6)

q−1 = q̂

||q||
. (A-7)

Quaternions are multiplied in a special, non-commutative way. Let q and p be quaternions,
they are multiplied as:

q · p =
(

qwp0 − qT1:3p1:3
qwp1:3 + p0q1:3 − q1:3 × p1:3

)
(A-8)

=
(
qw −qT1:3
q1:3 qwI3 − C(q1:3

)(
p0
p1:3

)
= Q(q) · p (A-9)

=
(
p0 −pT1:3
p1:3 p0I3 + C(p1:3

)(
qw
q1:3

)
= Q̄(p) · q (A-10)

where Q(q) is the quaternion matrix function of q, Q̄(p) is the conjugate quaternion matrix
function of p and C is defined as the skew-symmetric cross product matrix function C : R3 →
R3×3 (similar to (e×) in Equation A-11): 0 −x3 x2

x3 0 −x1
−x2 x1 0

 , (A-11)

Written in full, the quaternion matrix Q(q) looks like Equation A-12.
qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

 (A-12)

A quaternion can be written as a Direction Cosine Matrix as Equation A-13.

Rq(q) =

q2
w + q2

x − q2
y − q2

z 2qxqy + 2qwqz 2qxqz − 2qwqy
2qxqy − 2qwqz q2

w − q2
x + q2

y − q2
z 2qyqz + 2qwqx

2qxqz + 2qwqy 2qyqz − 2qwqx q2
w − q2

x − q2
y + q2

z

 (A-13)
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Appendix B

Kalman filter

The reader is expected to be familiar with the traditional Kalman filter []. For a quick
refresher, a short summary is given here.

Assume the initial state estimate to be x0 and the initial covariance estimate Px0 . Further-
more, assume a propagation model as given in Equation B-1 and an observation model as
Equation B-2.

xk = Fxk−1 +Buk + wk (B-1)
yk = Hxk + vk, (B-2)

with:

F state transition matrix
B control input model
H observation model
w process noise
v measurement noise

In the prediction step, the a priori state estimate is obtained by applying the propagation
model. The a priori covariance is calculated via Equation B-4.

x−k = Fxk−1 +Buk (B-3)
P−k = FPk−1F

T +Q, (B-4)

where Q is the covariance matrix of the process noise.

Subsequently, the measurement update is performed. The innovation is calculated by sub-
tracting the expected measurements from the actual measurements in Equation B-5. From
the innovation, the innovation covariance Sk is calculated via Equation B-6. The Kalman
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gain is calculated by Equation B-7. Using the Kalman gain, the a posteriori state estimate
and covariance are calculated via Equation B-8 and Equation B-9.

yk = zk −Hx−k (B-5)
Sk = HP−k H

T +R (B-6)
K = P−k H

TS−1 (B-7)
xk = x−k +Kyk (B-8)

Pk = (I −KH)P−k (B-9)

with:

yk innovation vector
zk measurement vector
Sk innovation covariance
R measurement noise covariance
K Kalman gain
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Appendix C

Numerical example of the unscented
transformation

To explain the working principle of the unscented transformation, assume the fictitious model
in Equation C-1. One step of the unscented transformation is performed based on this model
with initial state x0 =

(
2 1 1

)T
and initial covariance matrix P = 1/4 I3. The transfor-

mation is depicted in Figure C-1.

f(x) =

 x2
1

x1 + x2
x3 + 1

2

 (C-1)

First, sigma points X are chosen around the initial state estimate, distributed in accordance
with Px:

X =
[
x−
√
Px, x, x+

√
Px
]

(C-2)

=


1.5

1
1

 ,
 2

0.5
1

 ,
 2

1
0.5

 ,
2

1
1

 ,
2.5

1
1

 ,
 2

1.5
1

 ,
 2

1
1.5


 (C-3)

Each individual sigma point is then propagated through the prediction model:

Y = f(X ) =


2.25

2.5
1.5

 ,
 4

2.5
1.5

 ,
4

3
1

 ,
 4

3
1.5

 ,
6.25

3.5
1.5

 ,
 4

3.5
1.5

 ,
4

3
2


 (C-4)

The transformed state estimate is calculated by taking the mean of all transformed sigma
points:

y = 1
7

7∑
i=1
Y =

4.07
3

1.5

 (C-5)
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72 Numerical example of the unscented transformation

(a) Sigma points (b) Transformed state estimate

Figure C-1: The working principle of the unscented transformation. Assume an initial state x
(blue ’o’) and covariance P (blue ellipsoid). Based on the covariance, sigma points (blue plus
signs) are chosen (Figure C-1a). Each individual sigma point is propagated through f( ) (red plus
signs). From the transformed sigma points, the new state (red ’o’) and covariance (red ellipsoid)
are determined (Figure C-1b).

M. Roobeek Master of Science Thesis



Appendix D

Tuning

Each of the filters is tuned using an evolutionary tuning technique described in Section D-1.
The resulting tuning parameters are presented Sections D-2 to D-5.

D-1 Method

To optimize estimation accuracy, tuning is required. The filters are tuned on the simulated
measurements and reference states derived from the VICON experiments (Section 3-3). To
prevent favoring one type of motion over the other, three experiments of each motion type
(walking, running, etc.) are used as reference data. To reduce complexity, the Kraft filter,
Madgwick filter, UKF and KF are tuned independently. For tuning the translational filters
(UKF and KF), the reference quaternions are used to rotate the accelerometer measurements
into world frame, imitating a perfect orientation estimation.

For tuning of filters, an evolutionary approach is chosen. For each tuning parameter, an initial
value is chosen and stored in the vector p0. Mutations of the initial values p∗ are added to
the set of tuning parameters resulting in a set of children Ω, like Equation D-1.

Ω = [p0, p
∗
1, . . . , p

∗
n] (D-1)

p∗i = p0 · (1 + η · Ξi), for i = 1, 2, . . . n. (D-2)

The mutations arise according to Equation D-2, where η < 1 is a tuning parameter and Ξi is
a vector of random numbers between [−1, 1].

One by one, the filter is run, using a different child as tuning parameters. The most successful
child, the vector of tuning parameters that yields the smallest RMSE, is used for reproduc-
tion. It becomes the new p0. The process is repeated until the RMSE stops decreasing, or
the maximum number of iterations is reached. The resulting tuning parameters are a local
optimum.
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D-2 Tuning the Kraft filter

The tuning matrices for the Kraft filter are P0,base, Qbase and Rbase. Their initial values are
chosen based on measured variances in the sensors. Then the tuning algorithm is run. The
RMSE that is minimized in this case is the angular RMSE as defined by Equation 3-7.

After 6 iterations, the optimal angular RMSE does not decrease anymore. The decrease in
angular RMSE is depicted in Figure D-1. The resulting parameters for P0, Q and R are
provided in Equations D-3 to D-5.

1 2 3 4 5 6

30

40

50

60

Figure D-1: Decrease in angular RMSE of the orientation estimation by the Kraft filter over
subsequent iterations of the tuning algorithm.

Note that the mean angular RMSE with optimal tuning matrices is still as large as 30 degrees.
The Kraft filter is now tuned for optimal performance on the VICON-based simulated motion.
For use on real data, the filter needs retuning.

P0 =



0.0012 0 0 0 0 0
0 0.0004 0 0 0 0
0 0 0.0007 0 0 0
0 0 0 0.0071 0 0
0 0 0 0 0.0051 0
0 0 0 0 0 0.0647


(D-3)

Q =



0.0005 0 0 0 0 0
0 0.0020 0 0 0 0
0 0 0.0081 0 0 0
0 0 0 0.0283 0 0
0 0 0 0 0.0414 0
0 0 0 0 0 0.7786


(D-4)
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R =



0.0310 0 0 0 0 0 0 0 0
0 0.0340 0 0 0 0 0 0 0
0 0 0.2651 0 0 0 0 0 0
0 0 0 0.8798 0 0 0 0 0
0 0 0 0 1.7391 0 0 0 0
0 0 0 0 0 4.0131 0 0 0
0 0 0 0 0 0 0.0018 0 0
0 0 0 0 0 0 0 0.0045 0
0 0 0 0 0 0 0 0 0.0001


(D-5)

D-3 Tuning the Madgwick filter

The Madgwick filter is tuned in similar fashion as the Kraft filter. However, for the Madgwick
filter only one tuning parameter has to be optimized. After 3 iterations, the tuning algorithm
finds the locally optimal value of β = 0.4357. The decrease in RMSE per iteration is depicted
in Figure D-2.

1 2 3 4 5 6

8

8.2

8.4

8.6

Figure D-2: Decrease in angular RMSE of the orientation estimation by the Madgwick filter over
subsequent iterations of the tuning algorithm.

D-4 Tuning the Unscented Kalman filter

For the tuning of the UKF, the same evolutionary algorithm approach is used. Like in the
Kraft filter, matrices P0, Q and R contain the tuning parameters.

1 2 3 4 5 6 7 8

0.5

0.55

0.6

0.65

0.7

Figure D-3: Decrease in the mean RMSE in the translational states estimated by the UKF over
subsequent iterations of the tuning algorithm.
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The tuning parameters found by the tuning algorithm are presented in Equations D-6 to D-8.

P0 =



0.0447 0 0 0 0 0 0 0 0
0 0.1628 0 0 0 0 0 0 0
0 0 0.0033 0 0 0 0 0 0
0 0 0 0.0176 0 0 0 0 0
0 0 0 0 0.0049 0 0 0 0
0 0 0 0 0 0.0067 0 0 0
0 0 0 0 0 0 0.0008 0 0
0 0 0 0 0 0 0 0.0003 0
0 0 0 0 0 0 0 0 0.0042


(D-6)

Q =



0.0188 0 0 0 0 0 0 0 0
0 0.0190 0 0 0 0 0 0 0
0 0 0.0200 0 0 0 0 0 0
0 0 0 0.0010 0 0 0 0 0
0 0 0 0 0.0006 0 0 0 0
0 0 0 0 0 0.0014 0 0 0
0 0 0 0 0 0 0.0000 0 0
0 0 0 0 0 0 0 0.0002 0
0 0 0 0 0 0 0 0 0.0007


(D-7)

R =



0.0714 0 0 0 0 0 0
0 0.0197 0 0 0 0 0
0 0 1.1809 0 0 0 0
0 0 0 0.0566 0 0 0
0 0 0 0 0.0004 0 0
0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0.0002


(D-8)

D-5 Tuning the linear Kalman filter

The linear Kalman filter is tuned in similar fashion as the Kraft filter and the UKF. The
RMSE’s per iteration are depicted in Figure D-4. The resulting tuning parameters are pro-
vided in Equations D-9 to D-11.

P0 =



0.1133 0 0 0 0 0 0 0 0
0 0.0886 0 0 0 0 0 0 0
0 0 0.0065 0 0 0 0 0 0
0 0 0 0.0100 0 0 0 0 0
0 0 0 0 0.0127 0 0 0 0
0 0 0 0 0 0.0023 0 0 0
0 0 0 0 0 0 0.0019 0 0
0 0 0 0 0 0 0 0.0002 0
0 0 0 0 0 0 0 0 0.0005


(D-9)
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1 2 3 4 5 6 7 8

0.35

0.4

0.45

0.5

0.55

Figure D-4: Decrease in the mean RMSE in the translational states estimated by the linear
Kalman filter over subsequent iterations of the tuning algorithm.

Q =



0.0025 0 0 0 0 0 0 0 0
0 0.0136 0 0 0 0 0 0 0
0 0 0.0035 0 0 0 0 0 0
0 0 0 0.0018 0 0 0 0 0
0 0 0 0 0.0005 0 0 0 0
0 0 0 0 0 0.0031 0 0 0
0 0 0 0 0 0 0.0003 0 0
0 0 0 0 0 0 0 0.0002 0
0 0 0 0 0 0 0 0 0.0010


(D-10)

R =



0.1454 0 0 0 0 0
0 0.0981 0 0 0 0
0 0 1.6261 0 0 0
0 0 0 0.0003 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0004


(D-11)
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Appendix E

Recognizing active playing blocks

During measurements, the JOHAN Sports tracking device stores all raw data on a memory card.
The filtering operation is performed afterwards, called post-mission processing. This enables
perfroming a data pre-processing action on the complete dataset before filtering.

Only use data corresponding to playing blocks For generating a training advice for sports
coaches it is desired to only take into account data of the time periods where players actually
play. The motion of a player heading to the dressing room during the break or sitting on
the bench after a substitution are not of interest. Selecting the active playing blocks is
currently done manually by the user. With knowledge of the start- and endtime of a match
and knowledge on substitutes, it is easy to select active playing blocks. However, it is time-
consuming and not user friendly. Therefore it is desired to automatically recognize active
playing blocks.

Drop erroneous GNSS measurements Another reason why it is desired to pre-process
measurement data is the following. Measurements of the JOHAN tracking device are often
performed in the proximity of buildings, for example large steel or concrete soccer stadiums.
These buildings can cause temporary or complete loss of GNSS reception. When GNSS
reception is lost, the chip outputs erroneous data. It is desired to drop erroneous datapoints,
since they contaminate the filter output. Erroneous GNSS measurements can sometimes
be easily recognized. Speed measurements can rise to values unattainable for human and
positions can drift away far from the playing field. However, when the measured speed and
position lie within normal bounds, it is hard to tell if a GNSS measurement is correct or
erroneous.

It happens to be the case that erroneous GNSS points are often measured during the break
or when a player is on the bench. Hence, being able to correctly recognize active vs. inactive
playing blocks can kill two birds with one stone.
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80 Recognizing active playing blocks

PlayerLoadTM A measure that indicates the intensity of a match or training session is called
the PlayerLoad [33]. The PlayerLoad is calculated from 100Hz accelerometer measurements
and is defined by Equation E-1.

PlayerLoadTM =

√
∆a2

x + ∆a2
y + ∆a2

z

∆t (E-1)

It is expected that PlayerLoad is high only when a player is actively playing. If this is the
case, it is should be possible to distinguish between active and inactive playing blocks by
filtering the PlayerLoad.

E-1 Active play

When a player is actively playing, he is expected to have a high PlayerLoad. An example of
the PlayerLoad during a real hockey match is depicted in Figure E-1. The red signal indicates
where the PlayerLoad reaches above a threshold t1.

Figure E-1: PlayerLoad during a hockey match. The red signal indicates the time instances
where the PlayerLoad is above threshold t1.

A player on the field is not necessarily moving all the time. For example during set plays like
free kicks or corners, players stop moving for an instance. The PlayerLoad may then drop
under the threshold.

E-2 Playing blocks

For the data analysis, it is desired to take into account the complete period of time a player
is on the field. Matches with a lot of set plays are expected to be less intense than matches
with little set plays, influencing the total match intensity.

With knowledge on the start- and entime of each half and knowledge on substitutes, a user
can define the playing blocks manually. The manually defined playing blocks corresponding
to the depicted PlayerLoad are depicted in Figure E-2.
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E-3 Rolling mean filter 81

Figure E-2: User-defined playing blocks. The purple line indicates the PlayerLoad, the blue blocks
correspond to the active playing blocks. Note that in field hockey the number of substitutions is
unlimited.

E-3 Rolling mean filter

A simple threshold as proposed in section E-1 will not suffice to recognize playing blocks.
However, following from the assumption that PlayerLoad is generally high inside playing
blocks and low outside, it is expected that it is also possible to recognize playing blocks from
the PlayerLoad data. The filter design is described here.

First, a binary signal indicating active play is derived from the PlayerLoad. The binary signal
returns a 1 for a PlayerLoad above threshold t1. Next, a rolling mean filter with windowsize
ws is applied to the active play signal. The window mean is placed at the middle position of
the window. Finally, a new binary signal is defined to be 1 where the rolling mean is above
threshold t2 and 0 where it is below that threshold. This signal indicates playing blocks.

> t1 Rolling mean > t2
PlayerLoad active play playing blocks

Figure E-3: Recognizing playing blocks from PlayerLoad.

E-4 Tuning

The three tuning parameters in the filter are thresholds t1 and t2 and the window size ws. The
above-described filter was tuned on one single dataset, corresponding to a field hockey match.
It is possible that for soccer or for other field hockey matches, different tuning parameters
are required. The approach to tuning these parameters is described below.

A large number of datasets exist for both soccer and field hockey matches. In each of these
datasets, the active playing blocks are manually defined. Each datapoint is labeled either
as active (1) or as inactive (0). The datasets are split into sets corresponding to soccer and
sets corresponding to field hockey. Then for each sport, the sets are split into a training
set (with 70% of all matches) and a test set (30% of all matches). With different values for
tuning parameters t1, t2 and ws, the playing blocks are computed for the training set. The
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classification error is defined as

e = 1
n

n∑
i=1
|yuser,i − yfilter,i| (E-2)

With the tuning parameters yielding the smallest classification error, the matches belonging
to the test set are classified. The classification error of the test set is the reported classification
error.

The algorithm will be implemented such that it presents suggested playing blocks to users.
Users will still be able to edit the playing blocks to their liking. In this way, more user-labeled
data will accumulate over time. The tuning parameters can then be fine-tuned periodically
to increase classification accuracy.
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Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

AHRS Attitude and Heading Reference System

DCM Direction Cosine Matrix

DoF Degrees of Freedom

DCSC Delft Center for Systems and Control

ECEF Earth-Centered Earth-Fixed

EGNOS European Geostationary Navigation Overlay Service

EKF Extended Kalman filter

ESA European Space Agency

GNSS Global Navigation Satellite System

GPS Global Positioning System

IMU Inertial Measurement Unit

MEMS Microelectromechanical system

MTJ Magnetic Tunnel Junction

SBAS Satellite-Based Augmentation System

UKF Unscented Kalman filter

ZMWN Zero-Mean White Noise
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List of Symbols

J Jacobian matrix
L Number of sigma points
P State covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
R Rotation matrix
T Sample time
Φ Magnetic flux
α Tuning parameter
κ Tuning parameter
λ Longitude
X Set of sigma points around x
Y Set of sigma points around y
µ Step size in gradient descent
∇f Gradient of f
ω Angular velocity
ωbias Gyroscope bias
φ Latitude
θ Bearing
a Acceleration
abias Accelerometer bias
b Earth’s magnetic field
f Propagation model
g Gravity
h Observation model
k Time-step
m Magnetometer measurement
p Position
q Quaternion
q? Conjugate quaternion
u External input vector
v Measurement noise vector
v Velocity
w Process noise vector
x State vector
y Expected observation vector
ΨB Body frame
ΨE Earth frame
ΨF Field frame
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ΨW World frame
d Great circle distance
r Radius of a sphere
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