

TRAPPED-VORTEX CONCEPTS IN THE CONTEXT OF LEAN PREMIXED TECHNOLOGY

Boris Kruljevic, Gioele Ferrante, Alessandro Porcarelli and Ivan Langella

Flight Performance and Propulsion Group, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands

Trapped vortex combustors

Characteristics

- Recirculation zone Flow stabilization
- Reducing the size of the combustor
- May be used as an RQL concept, by injecting a rich mixture inside of the cavity
- Potential for hydrogen combustion

Trapped vortex combustor [1]

Trapped vortex in a cavity [2]

Rich-Quench-Lean (RQL)

- Rich-burn enhances stability by producing radicals
- Quick-mix transition to lean mixture. Quick mixing is important.
- Lean-burn finally, combustion at low-temperature lean conditions.
- By avoiding high temperatures, NOx emission are severely reduced

Research Goals

The high fidelity Direct numerical simulation (DNS) allows an indepth study of RQL-TVC configurations in the context of lean premixed flames, more susceptible to instabilities, in the effort to reduce emissions. Moreover, it will serve as a validation case for the development of lower order models, e.g. LES with presumed FDF-based model, more computationally affordable for design purposes

1) Improvements in the modelling

- Analysis of DNS data Validation of various models
- Development of a FGM/PSR method, based on LES
- Validate the low order method against the DNS simulation

2) Study of the RQL-TVC concepts

- Radial acceleration Effect of swirl
- Hydrogen combustion, emissions
- Impact of the combustor geometry

DNS case

A DNS computation of the RQL-TVC configuration with two cavities is performed. The obtained data can be filtered to have an insight into the subgrid scale quantities in the development of a presumed FDF model for LES.

High performance computing

- The open source software package OpenFOAM is used
- 2000 processors are employed
- It would take about 32 days to complete the simulation

Computational details

Flame tracking

Temperature field

Future work

- The FGM method will be validated according to the DNS data
- An optimized combustor will be designed by performing a range of FGM simulations

*This is not the official TU Delft logo

National

Rolls-Royce®

Contact

Faculty of Aerospace Engineering Flight Performance and Propulsion group

Acknowledgment