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A B S T R A C T

Gentle Driving of Piles (GDP) is a new vibratory installation technology for tubular (mono)piles. It is
characterized by the simultaneous application of low-frequency axial and high-frequency torsional vibrations,
envisaged to achieve both high installation performance and reduced underwater noise emissions. The concept
of GDP has been demonstrated experimentally in a medium-scale onshore field campaign, showcasing the
potential of the method in terms of installation and post-installation performances. To further comprehend
the mechanics of the GDP method, the driving process is studied by means of a novel pile–soil model; this
framework has been recently developed and successfully applied to the problem of axial vibratory driving. In
particular, the pile is treated as a thin cylindrical shell via a Semi-analytical Finite Element (SAFE) approach
and a linear elastic layered soil half-space is considered via the Thin-Layer Method (TLM) coupled with
Perfectly Matched Layers (PMLs). The pile–soil coupling is realized through a hereditary frictional interface
and an elasto-plastic tip formulation, both characterized by standard geotechnical in-situ measurements. The
comparison of numerical results with field data is favourable for drivability purposes, showcasing the potential
of the numerical framework for the analysis of GDP. Conclusively, the mechanics of the installation process are
deciphered and the redirection of the friction force vector – induced by high-frequency torsion – is identified
as the main driving mechanism of GDP.
1. Introduction

The acceleration of the global energy transition has led to a re-
markable increase in the demand for renewable energy resources (In-
ternational Energy Agency, 2022). Among these resources, offshore
wind energy has emerged as a particularly promising option, given
its abundance and cost-effectiveness (Ramírez et al., 2021). To accom-
modate the international set targets, the technological developments
in the area need to expedite, engendering a multitude of engineering
challenges (Bilgili and Alphan, 2022). The installation of foundations
for offshore wind turbines (OWTs) constitutes one of the most crucial,
challenging and costly operations during the construction of an offshore
wind farm (Guo et al., 2022).

At present, monopiles comprise the vast majority of offshore wind
foundations and the foremost monopile installation method is impact
hammering (Merchant, 2019; Musial et al., 2022). Notwithstanding
the robustness and efficacy of this technique, alarming environmental
concerns have been raised in view of the high levels of underwater
noise pollution during installation (Tsouvalas, 2020). Specifically, the
hammer impacts on the pile head induce high levels of impulsive
noise that pose great harm to marine life (Ainslie et al., 2020). It is
vital to realize the ambitious goals of the offshore wind sector in a
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socially and environmentally responsible manner, thereby the devel-
opment of sustainable methods for monopile installation is of utmost
significance (Williams et al., 2022).

A major candidate among the environmentally friendly alternatives
for monopile installation is the vibratory driving technology. In this
method, the pile penetration is achieved through the application of
axial vibrations at the pile head, resulting from the counter-rotation of
eccentric masses. Vibratory pile driving has been employed in onshore
projects for almost a century and is associated with quiet(er)/fast
installation (Barkan, 1967; Rodger and Littlejohn, 1980; Tsouvalas
and Metrikine, 2016). However, the adoption of vibratory driving in
offshore monopile installation remains limited to date. The lack of a
complete body of field observations and the knowledge gaps in the
topic hinder its wider use. Specifically, open research questions need to
be addressed, pertaining to the energy efficiency during driving (Gómez
et al., 2022), the post-installation stiffness and response to lateral
loading (Tsetas et al., 2020; Kementzetzidis et al., 2023b), as well as
the installation process itself (Mazza and Holeyman, 2019).

Vibratory pile installation modelling has drawn increasing atten-
tion, with advances ranging from engineering-oriented (Kaynia et al.,
2022; Xiao and Ge, 2022) to high-fidelity approaches (Staubach et al.,
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Fig. 1. (a) The test site of the GDP field campaign and (b) the GDP shaker at the manufacturing site.
Table 1
Technical specifications of the GDP shaker.

GDP shaker

Axial shaker Torsional shaker

Total mass [kg] 5150
Eccentric moment 𝑚𝑒 [kg m] 15 4
Rotational speed [rpm] 1400 4800
Operational power [kW] 72 188

2021; Machaček et al., 2021). Customarily, drivability predictions are
necessary to assess the capability of a driving device to install a pile up
to the target penetration depth, as well as to anticipate and prevent
occurrences of high operational risk, e.g. early pile refusal or pile
running. Focusing on engineering practice and design, a number of
commercial software packages are available for the analysis of (mostly)
impact piling and vibratory driving (e.g. ALLWAVE, GRLWEAP and
TNOWAVE). At present, the role of pile installation modelling cannot
be overemphasized as – next to the previous items – it directly affects
the vibro-acoustic and post-installation performances, pointing towards
the development of integrated approaches in the future.

With a view to enhance the classical vibratory technique, the Gentle
Driving of Piles (GDP) method has been recently proposed and demon-
strated experimentally (Tsetas et al., 2023a). GDP aims to enhance the
installation performance and reduce the underwater noise emissions
during monopile installation, through the simultaneous application of
low-frequency axial and high-frequency torsional vibrations. For that
purpose, a field tests campaign was conducted and the main experi-
mental findings showcased the potential of the GDP method in terms of
installation performance (Tsetas et al., 2023a) and response to lateral
loading (Kementzetzidis et al., 2023a). Numerical modelling work is
the following necessary step in order to further analyse and interpret
the field observations. In that manner, a first set of experimental and
numerical works that focus on GDP may be complete. However, none of
the previously stated approaches is suitable for this purpose, namely the
analysis of pile installation via GDP. To achieve the preceding goals, the
development of a numerical modelling framework for GDP constitutes
one of the foremost objectives in this research line.

In this paper, the GDP method is studied with a view to comprehend
the main driving mechanism and study further the mechanics of the
installation process. For that purpose, a numerical model for vibratory
pile driving – recently developed and validated against field data – is
employed as basis and extended further to analyse pile installation via
GDP (Tsetas et al., 2023b). In particular, the pile is described as a thin
cylindrical shell via the Semi-analytical Finite Element (SAFE) method,
2

whereas the soil medium comprises a layered soil half-space modelled
via the Thin-Layer Method (TLM) (Kausel, 1981), coupled with Per-
fectly Matched Layers (PMLs) (de Oliveira Barbosa et al., 2012). The
pile–soil coupling is realized through a hereditary frictional interface
based on Coulomb friction and an elasto-plastic tip formulation; the
numerical solution is reached through a sequential scheme that utilizes
the Harmonic Balance Method (HBM) (Krack and Gross, 2019). By
means of this development, the main novel contribution of this work
is realized, namely deciphering the mechanics of the GDP method and
the advantageous effect of torsion in vibro-driving. The comparison be-
tween numerical results and field data showcases the model validity for
drivability purposes and further study of installation aspects is pursued.
The redirection of the friction force vector emerges as the major driving
mechanism of GDP, as it enhances installation performance by greatly
reducing the soil reaction along the penetration axis. Conclusively, a
study of the soil motion elicited by GDP demonstrates that the SH
wavefield becomes dominant in terms of overall disturbance, whereas
the SV-P wavefield is greatly abated.

2. Pile installation via axial and torsional vibrations: the Gentle
Driving of Piles (GDP) method

The primary objective of the GDP technology is to enhance the
axial vibratory driving of piles by introducing high-frequency torsional
vibrations alongside low-frequency axial vibrations. The primary moti-
vation of GDP lies in the mobilization of frictional soil reaction along
the shaft in the circumferential direction, thereby reducing the vertical
shaft reaction that opposes the pile penetration. In particular, the shaft
reaction as a friction force is collinear with the vector of relative
velocity between pile and soil. The introduction of high-frequency
torsion (compared to the axial loading) will lead to high circumferential
velocity, thus allocating friction to the circumferential direction and
reducing the friction force along the vertical axis. Subsequently, this
leads to a reduction in axial driving loads as compared to axial vibro-
driving, which results in a decrease in pile radial motion (Poisson
effect) (De Nicola and Randolph, 1993; Tsetas et al., 2021). It is
noted that torsional excitation, under the assumption of axisymmet-
ric conditions, does not induce radial motion in the pile (Forsberg,
1969). Furthermore, this type of excitation elicits solely SH waves in
the surrounding medium (Kausel, 2006), which do not propagate in
the seawater (Jensen et al., 2011). In light of these considerations,
we postulate that GDP can effectively reduce the underwater noise
emissions and enhance the driving performance.

To test the hypothesis of the GDP method, an experimental pro-
gramme was designed and executed at Maasvlakte II in the Port of
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Fig. 2. Detailed design of the GDP shaker.
Rotterdam (see Fig. 1(a)). For that purpose, the first phase of this
campaign was centred on the development of a pile driving apparatus
that could generate the envisaged excitation, namely the GDP shaker
(see Fig. 1(b)). In particular, the main technical specifications of the
GDP shaker can be found in Table 1 and a detailed view of the
apparatus design is shown in Fig. 2. In these tests, the GDP method was
compared with standard driving techniques on the basis of installation
and lateral loading tests. The main experimental findings, pertaining to
the installation and post-installation performances of the GDP piles, are
summarized as follows:

– the comparison between GDP and axial vibro-driving showcased
the potential of the GDP method, as GDP enabled faster installation in
stiffer soil with comparable total energy consumption (Gómez et al.,
2022; Tsetas et al., 2023a).

– in-situ measurements in the pile vicinity presented an increase of
P-wave velocity after installation via GDP, associated with soil stiffness
increase due to densification (Tsetas et al., 2023a).

– response to lateral loading did not indicate any compromise of
the post-installation performance due to GDP; on the contrary, GDP
piles experienced lower displacements during lateral loading compared
to the piles driven by impact hammering and axial vibro-driving (Ke-
mentzetzidis et al., 2023a).

The experimental tests highlighted the potential of the GDP method
and encouraged the development of the technology. To further inter-
pret and complement the GDP experiments, numerical modelling is
required and a suitable approach for the analysis of pile installation
via GDP is not yet available.

3. A numerical model for pile installation via the GDP method

In the ensuing, a numerical model is presented for pile installation
via GDP (see Fig. 3). The GDP shaker is considered to be connected
at the pile top with a stiff connection along the pile circumference.
Accordingly, it is assumed that this connection ensures a uniform distri-
bution of the input excitation – combined vertical and torsional loading
– along the circumference. Thereby, the problem of pile installation via
GDP is assumed to be axisymmetric, considering that all the compo-
nents of our model are symmetric around the vertical axis, i.e. pile,
soil and input excitation (both axial and torsional). Subsequently, a 3-
D axisymmetric pile–soil model – developed for axial vibratory driving
and benchmarked with field data – is utilized as a basis and extended
3

Fig. 3. A pipe pile installed in a layered soil medium via vertical and torsional loading.

further (Tsetas et al., 2023b). By the introduction of the circumferential
motion component in both pile and soil, as well as the reformulation
of the soil reaction, the GDP method can be analysed.

3.1. A Semi-analytical Finite Element (SAFE) model for thin cylindrical
shells

A tubular pile is considered with wall thickness ℎp, length 𝐿p
and mid-surface radius 𝑅p. The pile material is linear elastic and
isotropic with Young’s modulus 𝐸p, Poisson’s ratio 𝜈p and mass den-
sity 𝜌p. The pile is treated as a thin cylindrical shell according to
the Love–Timoshenko theory (Love, 1888, 1944; Timoshenko and
Woinowsky-Krieger, 1959) and its numerical implementation is based
on the Semi-analytical Finite Element (SAFE) method (Tsetas et al.,
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Fig. 4. A thin cylindrical shell discretized axially into nodal rings based on the SAFE
ethod.

023b). Similar approaches have been utilized in the numerical treat-
ent of cylindrical waveguides and plates (Bandyopadhyay and Archer,
979; Taciroglu et al., 2004; Ahmad and Gabbert, 2012). In the present
odel, a Finite Element (FE) discretization is considered along the shell

ongitudinal axis 𝑧 and the circumferential dependence of the solution
s expressed analytically in terms of Fourier series, resulting into a set
f nodal rings (see Fig. 4). Accordingly, the general solution of the
isplacement/rotation vector 𝐮p at the nodal rings can be written as:

𝐮p =

⎡

⎢

⎢

⎢

⎢

⎣

𝐮
𝐯
𝐰
β𝑧

⎤

⎥

⎥

⎥

⎥

⎦

=
∞
∑

𝑛=0

[(

𝜣s
𝑛 ⊗ 𝐈𝑁𝑙

)

𝐮sp,𝑛 +
(

𝜣a
𝑛 ⊗ 𝐈𝑁𝑙

)

𝐮ap,𝑛
]

(1)

where 𝐮, 𝐯, 𝐰, β𝑧 are the vectors of the respective displacement/rotation
values at the nodal rings, 𝑛 is the circumferential mode number, ⊗ is
the Kronecker product and 𝐈𝑁𝑙

is the 𝑁𝑙 × 𝑁𝑙 identity matrix with 𝑁𝑙
being the number of nodal rings. The diagonal matrices 𝜣s

𝑛 and 𝜣a
𝑛

ensure that the response is periodic in 𝜃:

𝜣s
𝑛 = diag {cos(𝑛𝜃) − sin(𝑛𝜃) cos(𝑛𝜃) cos(𝑛𝜃)} ,

𝜣a
𝑛 = diag {sin(𝑛𝜃) cos(𝑛𝜃) sin(𝑛𝜃) sin(𝑛𝜃)} (2)

where the superscripts (⋅)s and (⋅)a denote the symmetric and anti-
symmetric azimuthal configurations with respect to 𝜃 = 0. It follows
that the vectors 𝐮sp,𝑛 and 𝐮ap,𝑛 are the associated azimuthal components
of the nodal displacement/rotation vectors. More details on the deriva-
tion of the SAFE model for thin cylindrical shells can be found in Tsetas
et al. (2023b) and Tsetas (2023).

Similarly to axial vibratory driving, the GDP model is also consid-
ered axisymmetric, i.e. 𝑛 = 0. Furthermore, both axial and circumfer-
ential vibrations are applied (from the GDP shaker) at the pile top,
thus exciting both the axial–radial and the circumferential types of
axisymmetric shell motion (Callahan and Baruh, 1999); these corre-
spond to the symmetric and anti-symmetric configurations for 𝑛 = 0,
respectively (Tsetas et al., 2023b). The axial–radial shell response is
governed by the following equations of motion:

𝐈sp,0
d2𝐮sp,0
d𝑡2

+ 𝐋s
p,0𝐮

s
p,0 = 𝐩sp,0 (3)

whereas the SAFE equations of motion that describe the purely circum-
ferential motion read:

𝐈a
d2𝐮ap,0 + 𝐋a 𝐮a = 𝐩a (4)
4

p,0 d𝑡2 p,0 p,0 p,0
where 𝐈sp,0, 𝐈ap,0 are the SAFE shell mass matrices and 𝐋s
p,0 𝐋a

p,0 are the
SAFE shell stiffness matrices; the SAFE matrices for a cylindrical shell
element are given in Appendix A. The displacement/rotation vectors at
the nodal rings 𝐮sp,0, 𝐮ap,0 may be expressed as:

𝐮sp,0 =
⎡

⎢

⎢

⎣

𝐮s0
𝐰s

0
βs𝑧,0

⎤

⎥

⎥

⎦

, 𝐮ap,0 = 𝐯a0 (5)

In similar fashion, the vectors of consistent forces/moments at the
nodal rings are denoted as 𝐩sp,0, 𝐩ap,0 and read:

𝐩sp,0 =

⎡

⎢

⎢

⎢

⎣

𝐩s𝑧0,p
𝐩s𝑟0,p
𝐦s

𝑧𝑧0,p

⎤

⎥

⎥

⎥

⎦

, 𝐩ap,0 = 𝐩a𝜃0,p (6)

It is remarked that 𝐩sp,0 and 𝐩ap,0 also encompass the non-linear pile–
soil interaction loads, with a view to the full pile driving model. As
can be seen above, both displacement/rotation and consistent force/
moment vectors have been simplified by erasing the entries that are
equal to zero due to the axisymmetric conditions.

The shell response may be decomposed in terms of normal modes,
with a view to improve the computational performance of our model:

𝐮sp,0 = 𝜱s
p,0𝐪

s
0 (7a)

𝐮ap,0 = 𝜱a
p,0𝐪

a
0 (7b)

where 𝜱s
p,0, 𝜱a

p,0 are the modal matrices for the symmetric and anti-
symmetric forms of 𝑛 = 0, respectively, and 𝐪s0, 𝐪a0 denote the associated
generalized coordinates. In particular, the modal matrices read:

𝜱s
p,0 =

⎡

⎢

⎢

⎣

𝐔s
0

𝐖s
0

𝐁s
0

⎤

⎥

⎥

⎦

, 𝜱a
p,0 = 𝐕a

0 (8)

where the modal sub-matrices 𝐔s
0, 𝐖

s
0, 𝐁

s
0 and 𝐕a

0 are defined as follows:

𝐔s
0 =

[

𝐮s0,1 𝐮s0,2 ⋯
]

(9a)

𝐖s
0 =

[

𝐰s
0,1 𝐰s

0,2 ⋯
]

(9b)

𝐁s
0 =

[

βs0,1 βs0,2 ⋯
]

(9c)

𝐕a
0 =

[

𝐯a0,1 𝐯a0,2 ⋯
]

(9d)

As can be seen in Eq. (8), the modal sub-matrices 𝐕s
0, 𝐔a

0, 𝐖a
0 and

𝐁a
0 are erased for convenience, since they are equal to zero. Therefore,

the system of ordinary differential equations that governs the shell
response is transformed to the space of generalized coordinates for the
axial–radial motion (symmetric configuration) as follows:
(

𝜱s
p,0

)T
𝐈sp,0𝜱

s
p,0

d2𝐪s0
d𝑡2

+
(

𝜱s
p,0

)T
𝐋s
p,0𝜱

s
p,0𝐪

s
0 =

(

𝜱s
p,0

)T
𝐩sp,0 (10)

and for the circumferential motion (anti-symmetric configuration) as:
(

𝜱a
p,0

)T
𝐈ap,0𝜱

a
p,0

d2𝐪a0
d𝑡2

+
(

𝜱a
p,0

)T
𝐋a
p,0𝜱

a
p,0𝐪

a
0 =

(

𝜱a
p,0

)T
𝐩ap,0 (11)

Finally, the pile displacement/rotation vector 𝐮p and the line load
vector 𝐩p, based on the premise of axisymmetric response, may be
written as:

𝐮p =

⎡
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(12)

3.2. Green’s functions of a layered soil half-space via the thin-layer method

The present study considers the soil medium as a linear elastic
layered half-space and its numerical treatment is accomplished using
the Thin-Layer Method (TLM) (Kausel and Roësset, 1981). The TLM is
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Fig. 5. A layered soil half-space modelled via the TLM+PMLs.

a semi-discrete technique based on the normal modes approach, which
has been employed to obtain the dynamic response of layered media in
a superbly efficient manner (Kausel, 1999). Briefly, a vertically inho-
mogeneous soil medium (comprised by homogeneous horizontal layers
of dissimilar material properties) is discretized into thin horizontal
layers in FE sense, i.e. the layer thickness is small compared to the
excited wavelengths. To approximate the underlying half-space, Per-
fectly Matched Layers (PMLs) are utilized in this work (see Fig. 5). The
key principle of PMLs lies in the complex-valued transformation of the
spatial coordinates by means of complex stretching functions (Nguyen
and Tassoulas, 2018; Kucukcoban et al., 2019). The coupling of PMLs
with the TLM is not discussed in this paper for brevity, yet more details
can be found in de Oliveira Barbosa et al. (2012) and Kausel and
de Oliveira Barbosa (2012).

The application of both axial and torsional vibrations by the GDP
shaker leads to excitation of all three motion components in both
pile and soil. Therefore, the elicited wave motion in the soil medium
includes both generalized Rayleigh (SV-P) and Love (SH) wave modes.
Briefly, the generalized eigenvalue problem for the SV-P waves – in the
context of the TLM – may be written as (Kausel and Roësset, 1981):
(

𝑘2𝐀 + 𝐂
)

[

ϕ𝑟
𝑘ϕ𝑧

]

=
[

𝟎
𝟎

]

(13)

and the generalized eigenvalue problem for the SH waves reads (Kausel
and Roësset, 1981):
(

𝑘2𝐀𝜃 + 𝐂𝜃
)

ϕ𝜃 = 𝟎 (14)

where 𝑘 is the radial wavenumber variable, and ϕ𝑟, ϕ𝜃 , ϕ𝑧 denote the
radial, circumferential and vertical modal displacements at the layer
interfaces, respectively. Furthermore, the TLM matrices 𝐀, 𝐂, 𝐂𝜃 are
defined as:

𝐀 =
[

𝐀𝑟 𝟎
𝐁𝑧𝑟 𝐀𝑧

]

(15)

𝐂 =
[

𝐆𝑟 − 𝜔2𝐌𝑟 𝐁𝑟𝑧
𝟎 𝐆𝑧 − 𝜔2𝐌𝑧

]

(16)

𝐂 = 𝐆 − 𝜔2𝐌 (17)
5

𝜃 𝜃 𝜃
It is noted that the TLM sub-matrices 𝐀𝑟, 𝐀𝜃 , 𝐀𝑧, 𝐆𝑟, 𝐆𝜃 , 𝐆𝑧,
𝐌𝑟, 𝐌𝜃 and 𝐌𝑧 are associated with the soil domain as modelled
by the coupled TLM+PMLs, i.e. including thin layers with complex-
valued stretched thickness (de Oliveira Barbosa et al., 2012; Kausel and
de Oliveira Barbosa, 2012); the sub-matrices 𝐁𝑧𝑟, 𝐁𝑟𝑧 remain unaffected
by the complex-valued coordinate stretching.

We proceed to compute the Green’s functions of a linear elastic lay-
ered half-space in the context of the TLM+PMLs. For that purpose, the
explicit matrix expressions of the Green’s functions in the frequency-
(radial-azimuthal)-wavenumber domain are employed (Kausel, 1981;
Kausel and Peek, 1982):

𝐮s,𝑛 =
⎡

⎢

⎢

⎣

�̂�𝑟,𝑛
�̂�𝜃,𝑛
�̂�𝑧,𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜱𝑟𝐃R𝜱T
𝑟 𝟎 𝑘𝜱𝑟𝐊−1

R 𝐃R𝜱T
𝑧

𝟎 𝜱𝜃𝐃L𝜱T
𝜃 𝟎

1
𝑘𝜱𝑧𝐃R𝐊R𝜱T

𝑟 𝟎 𝜱𝑧𝐃R𝜱T
𝑧

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̂�𝑟,𝑛
�̂�𝜃,𝑛
�̂�𝑧,𝑛

⎤

⎥

⎥

⎦

(18)

where �̂�𝑟,𝑛, �̂�𝜃,𝑛, �̂�𝑧,𝑛 are the vectors of soil displacements and �̂�𝑟,𝑛, �̂�𝜃,𝑛,
𝐩𝑧,𝑛 are the vectors of applied loads, both expressed in the frequency-
(radial-azimuthal)-wavenumber domain. The diagonal matrices 𝐊R,
𝐊L, 𝐃R, 𝐃L are defined as:

𝐊R = diag
{

𝑘R,1 𝑘R,2 ⋯
}

(19)

𝐊L = diag
{

𝑘L,1 𝑘L,2 ⋯
}

(20)

𝐃R =
(

𝑘2𝐈 −𝐊2
R
)−1 (21)

𝐃L =
(

𝑘2𝐈 −𝐊2
L
)−1 (22)

where 𝑘R,𝑚 and 𝑘L,𝑚 denote the radial wavenumbers related to the
generalized Rayleigh (SV-P) and generalized Love (SH) wave modes,
respectively. Finally, the modal matrices 𝜱𝑟, 𝜱𝜃 , 𝜱𝑧 are defined as:

𝜱𝑟 =
[

ϕ𝑟,1 ϕ𝑟,2 ⋯
]

(23a)

𝜱𝜃 =
[

ϕ𝜃,1 ϕ𝜃,2 ⋯
]

(23b)

𝜱𝑧 =
[

ϕ𝑧,1 ϕ𝑧,2 ⋯
]

(23c)

For the problem at hand, the Green’s functions are required due
to: (i) unit radial ring sources at 𝑟 = 𝑅p, (ii) unit circumferential ring
sources at 𝑟 = 𝑅p and (iii) unit vertical ring sources at 𝑟 = 𝑅p. Without
further details, the vectors of soil displacements �̃�𝑟, �̃�𝜃 , �̃�𝑧 may be
readily expressed in terms of the associated rings loads �̃�𝑟,s, �̃�𝜃,s, �̃�𝑧,s in
the frequency-space domain by virtue of the dynamic flexibility matrix
�̃�s as follows:

𝐮s =
⎡

⎢

⎢

⎣

�̃�𝑟,s
�̃�𝜃,s
�̃�𝑧,s

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�̃�𝑟𝑟 𝟎 �̃�𝑟𝑧
𝟎 �̃�𝜃𝜃 𝟎
�̃�𝑧𝑟 𝟎 �̃�𝑧𝑧

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̃�𝑟,s
�̃�𝜃,s
�̃�𝑧,s

⎤

⎥

⎥

⎦

(24)

Due to the axisymmetric conditions of the problem, the vertical-
radial and circumferential motions are uncoupled, leading to �̃�𝑟𝜃 =
�̃�𝜃𝑟 = �̃�𝑧𝜃 = �̃�𝜃𝑧 = 𝟎. It is noted that the load vectors �̃�𝑟,s, �̃�𝜃,s and
𝐩𝑧,s accommodate the pile–soil interaction loads and their formulation
as external loads is owed to the solution method to be employed in the
ensuing.

3.3. Pile–soil compatibility conditions during installation via the GDP
method

The solution method to be followed herein has been developed and
successfully applied in axial vibratory driving (Tsetas et al., 2023b).
Specifically, the solution of this pile–soil problem is considered at dis-
crete depths, at which the pile nodal rings and the soil layers interfaces
(in the contact region) coincide. It is remarked that vector quantities
corresponding to nodal rings and layer interfaces along the region of
pile–soil contact are defined by the superscripts (⋅)c. The compatibility
conditions that hold in pile installation via the GDP method are identi-
cal with the ones valid for axial vibratory driving, with the addition of
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the compatibility of circumferential tractions. Therefore, the following
compatibility conditions are considered:
(i) continuity of radial displacements at the pile–soil interface:

𝐰c = 𝐮c𝑟
|

|

|

𝑟=𝑅p
(25)

(ii) compatibility of vertical tractions applied at the pile–soil interface
and the pile tip:

𝐩c𝑧,s = −𝐩c𝑧,p, 𝑝(t)𝑧,s = −𝑝(t)𝑧,p (26)

in which the superscript (t) denotes the tip related component.
(iii) compatibility of radial tractions applied at the pile–soil interface:

𝐩c𝑟,s = −𝐩c𝑟,p (27)

(iv) compatibility of circumferential tractions applied at the pile–soil
interface:

𝐩c𝜃,s = −𝐩c𝜃,p (28)

The soil reaction to driving is comprised by – following the ax-
ial vibratory driving model used as basis (Tsetas et al., 2023b) – a
history-dependent frictional interface based on Coulomb friction and
an elasto-plastic tip reaction formulation. The frictional interface for-
mulation, due to the presence of circumferential motion, results into
both vertical and circumferential friction forces. In particular, each pile
material point slides (against the soil) along a 2-D cylindrical surface
during GDP, instead of along a vertical line as in axial vibro-driving.
Therefore, the friction force along the pile shaft is decomposed into:

𝑝(𝑖)𝑧,s =
𝑓 (𝑖)

s,ult𝑙
(𝑖)
𝜕𝑢(𝑖)rel
𝜕𝑡

√

√

√

√

√

(

𝜕𝑢(𝑖)rel
𝜕𝑡

)2

+

(

𝜕𝑣(𝑖)rel
𝜕𝑡

)2
tanh

⎛

⎜

⎜

⎜

⎝

1
𝑣tol

√

√

√

√

√

(

𝜕𝑢(𝑖)rel
𝜕𝑡

)2

+

(

𝜕𝑣(𝑖)rel
𝜕𝑡

)2⎞
⎟

⎟

⎟

⎠

(29)

𝑝(𝑖)𝜃,s =
𝑓 (𝑖)

s,ult𝑙
(𝑖)
𝜕𝑣(𝑖)rel
𝜕𝑡

√

√

√

√

√

(

𝜕𝑢(𝑖)rel
𝜕𝑡

)2

+

(

𝜕𝑣(𝑖)rel
𝜕𝑡

)2
tanh

⎛

⎜

⎜

⎜

⎝

1
𝑣tol

√

√

√

√

√

(

𝜕𝑢(𝑖)rel
𝜕𝑡

)2

+

(

𝜕𝑣(𝑖)rel
𝜕𝑡

)2⎞
⎟

⎟

⎟

⎠

(30)

where 𝑣tol is a velocity tolerance parameter, 𝑙(𝑖) is the length of influ-
ence derived from the FE projection and 𝑓 (𝑖)

s,ult defines the amplitude of
static (and kinetic) friction. It is noted that Eqs. (29) and (30) account
for friction forces resulting from both the inner and outer pile surfaces;
the distinction between the two contributions is beyond the scope of
this model. Finally, the relative velocity is decomposed into a vertical

and a circumferential component, i.e.
𝜕𝑢(𝑖)rel
𝜕𝑡

and
𝜕𝑣(𝑖)rel
𝜕𝑡

, respectively,
which are defined as follows:
𝜕𝑢(𝑖)rel
𝜕𝑡

= 𝜕𝑢(𝑖)

𝜕𝑡
−

𝜕𝑢(𝑖)𝑧,s
𝜕𝑡

|

|

|

|

|𝑟=𝑅p

(31)

𝜕𝑣(𝑖)rel
𝜕𝑡

= 𝜕𝑣(𝑖)

𝜕𝑡
−

𝜕𝑢(𝑖)𝜃,s
𝜕𝑡

|

|

|

|

|𝑟=𝑅p

(32)

The formulation of the friction interface is concluded with the
hereditary law that governs the friction reduction mechanism – com-
monly termed as ‘friction fatigue’ (White and Lehane, 2004; Sheng
et al., 2005; Moriyasu et al., 2018) – expressed as follows:

𝑓 (𝑖)
s,ult = 𝑓 (𝑖)

s,0

(

𝛽∞ + (1 − 𝛽∞)e−𝑐𝑁𝑁 (𝑖)
cycl

)

(33)

where 𝛽∞ is the ratio of the ultimately degraded friction amplitude
to the initial one (𝑓 (𝑖) ), 𝑐 is a memory parameter that controls the
6

s,0 𝑁
Fig. 6. History-dependent friction force at the 𝑖–th soil interface as a function of the
number of loading cycles 𝑁cycl, for 𝑓 (𝑖)

s,0𝑙
(𝑖) = 1 kN/m, 𝛽∞ = 0.2, 𝑐𝑁 = 0.0003.

rate of friction degradation and 𝑁 (𝑖)
cycl is the number of loading cycles

accumulated at the 𝑖–th soil interface during driving. In the case of
GDP, it is postulated that loading cycles corresponding to vertical
and circumferential friction forces contribute equally to the friction
reduction, irrespectively of the dissimilar stress state induced in the sur-
rounding soil and their frequency content; more details on these aspects
are discussed in subsequent sections. In Fig. 6, a visualization of the
friction force mechanism is given, where a 2-D bounding surface and
the enclosed volume form the space of admissible values for the vertical
(𝑝(𝑖)𝑧,s) and circumferential (𝑝(𝑖)𝜃,s) friction components. Furthermore, one
of the two horizontal axes corresponds to the number of cycles 𝑁cycl,
showcasing the reduction of the friction force norm 𝑓 (𝑖)

s,ult𝑙
(𝑖) with the

accumulation of loading cycles.
Finally, an elastic-perfectly-plastic formulation is considered for the

tip reaction as follows:

𝑝(t)𝑧,s = −𝑝(t)𝑧,p =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘t (𝑢(t)p − 𝑢pl), |𝑘t (𝑢(t)p − 𝑢pl)| < 𝑓t,ultℎp

𝑓t,ultℎpsgn

(

𝜕𝑢(t)p
𝜕𝑡

)

, |𝑘t (𝑢(t)p − 𝑢pl)| = 𝑓t,ultℎp
(34)

where 𝑢pl is the plastic tip displacement, 𝑓t,ult is the plastic tip resistance
and 𝑘t is the stiffness coefficient. The latter is extracted from the last
diagonal entry of the soil dynamic stiffness matrix �̃�s (corresponding
to the pile tip); the matrix �̃�s is obtained via inversion of the dynamic
flexibility matrix �̃�s via spectral decomposition. As can be seen, the tip
reaction is based solely on the axial response of the pile tip without any
effects due to the circumferential motion. This choice will be elaborated
further in the discussion of the numerical results and the field data.

4. A time–frequency solution method based on the adjusted har-
monic balance method

In the ensuing, a hybrid time–frequency method is pursued, based
on the Alternating Frequency–Time (AFT) Harmonic Balance Method
(HBM) (Krack and Gross, 2019; Cameron and Griffin, 1989). This
method has been widely adopted in the study of mechanical sys-
tems under harmonic/periodic excitation, e.g. non-linear energy har-
vesters (Zhou et al., 2016), buckling analysis of composite plates
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(Juhász and Szekrényes, 2015) and reduced-order modelling of bladed
discs in turbomachinery (Quaegebeur et al., 2022). The proposed ap-
proach employs the HBM as the basis for a sequential scheme in which
the pile–soil response is postulated to be virtually periodic ‘‘microscopi-
cally’’, i.e. for a small time interval around a certain state of the system.
Subsequently, assemblage of these solutions via linear interpolation
of the response Fourier coefficients in time leads to a quasi-periodic
response due to slow amplitude modulation of the involved harmonic
components. The preceding approach was validated numerically and
was successfully applied to vibratory pile installation (Tsetas et al.,
2023b, 2022).

During pile installation via the GDP method, a low-frequency (𝛺a)
axial and a high-frequency (𝛺t) torsional excitation are applied simulta-
neously at the pile top. Most likely the torsional driving frequency will
not be an integer multiple of the axial one, due to the impracticality
of imposing a truly integer ratio 𝛺t∕𝛺a or even by choice, e.g. to
avoid potential interaction that may lead to shaker damage. Hence, the
premise of periodic pile–soil response (for a single state) with the axial
driving frequency as the fundamental one is invalidated. Therefore, a
modification of the classical HBM is required to render our framework
applicable in the case of GDP method.

An efficient alternative for quasi-periodic problems has been pro-
posed by Guskov and Thouverez (2012), based on a mono-harmonic
approximation of multiple fundamental frequencies leading to the so-
called adjusted HBM (AHBM). The latter method is identical to the
classical HBM, albeit based on a new fundamental frequency 𝛺0 that
s the greatest common divisor of 𝛺t and 𝛺a:

0 =
𝛺t
𝜅t

=
𝛺a
𝜅a

(35)

here 𝜅a, 𝜅t are appropriate integers to approximate the original fre-
uency ratio 𝜂𝛺 = 𝛺t∕𝛺a up to the desired precision and the approxi-
ate frequencies 𝛺t , 𝛺a are obtained as follows:

𝜂𝛺 =
𝛺t
𝛺a

≈ 𝜂𝛺 =
𝛺t

𝛺a
=

𝜅t
𝜅a

(36)

where the rational number 𝜂𝛺 is the new approximate frequency ra-
tio. Accordingly, a generic response quantity 𝑓 (𝑡) may be assumed to
possess the following form in the context of the AHBM:

𝑓 (𝑡) =
∑

𝑗∈𝑆0

(

𝑐𝑗 cos(𝑗𝛺0𝑡) + 𝑠𝑗 sin(𝑗𝛺0𝑡)
)

(37)

where the set 𝑆0 is defined as follows:

𝑆0 =
{

𝑖1𝜅a + 𝑖2𝜅t
|

|

|

𝑖1 ∈
[

−ℎa, ℎa
]

, 𝑖2 ∈
[

−ℎt , ℎt
]

}

(38)

here 𝑖1, 𝑖2 can obtain integer values from the designated intervals
nd ℎa, ℎt are positive integers that denote the truncation limits of the
uper-harmonics to be included.

The targeted harmonics in the AHBM encompass the two distinct
ets of super-harmonic components associated with the two fundamen-
al frequencies, as well as the harmonics that may emerge from the
nteraction of the previous two sets. It is noted that certain values of

may be generated by more than one pair of (𝑖1, 𝑖2), so only one
erm is retained in these scant cases, and the number of terms can be
urther reduced by virtue of the symmetries of the Fourier series. For
he present problem, approximation of 𝜂𝛺 up to the second decimal
lace is considered.

Accordingly, the assumed solutions for the case of the GDP method
ossess a new base frequency, i.e. 𝛺0 as defined above. Without further
elay, the pile generalized coordinates are defined as follows:

s
0,𝑚 =

⎧

⎪

⎪

⎨

⎪

⎪

𝑐s0,0𝑡 +
∑

𝑗∈𝑆0

(

𝑐s0,𝑗 cos(𝑗𝛺0𝑡) + 𝑠s0,𝑗 sin(𝑗𝛺0𝑡)
)

, 𝑚 = 0

𝑐s𝑚,0 +
∑

𝑗∈𝑆

(

𝑐s𝑚,𝑗 cos(𝑗𝛺0𝑡) + 𝑠s𝑚,𝑗 sin(𝑗𝛺0𝑡)
)

, 𝑚 > 0
(39)
7

⎩

0 a
𝑞a0,𝑚 = 𝑐a𝑚,0 +
∑

𝑗∈𝑆0

(

𝑐a𝑚,𝑗 cos(𝑗𝛺0𝑡) + 𝑠a𝑚,𝑗 sin(𝑗𝛺0𝑡)
)

, 𝑚 ≥ 0 (40)

where 𝐜s𝑚 =
[

𝑐s𝑚,0 𝑐s𝑚,1 ⋯
]T

and 𝐬s𝑚 =
[

𝑠s𝑚,1 𝑠s𝑚,2 ⋯
]T

denote

the vectors of Fourier coefficients associated with the 𝑚–th axial–
radial mode; similarly, the Fourier coefficients of the 𝑚–th torsional
mode are arranged in the vectors 𝐜a𝑚 =

[

𝑐a𝑚,0 𝑐a𝑚,1 ⋯
]T

and 𝐬a𝑚 =
[

𝑠a𝑚,1 𝑠a𝑚,2 ⋯
]T

. Furthermore, the vertical and circumferential fric-

tion forces along the pile–soil interface may be expressed as:

𝐩cs,𝑧 = 𝜳 𝑧

(

α𝑧0 +
∑

𝑗∈𝑆0

(

α𝑧𝑗 cos(𝑗𝛺0𝑡) + β𝑧𝑗 sin(𝑗𝛺0𝑡)
)

)

(41)

𝐩cs,𝜃 = 𝜳 𝜃

(

α𝜃0 +
∑

𝑗∈𝑆0

(

α𝜃𝑗 cos(𝑗𝛺0𝑡) + β𝜃𝑗 sin(𝑗𝛺0𝑡)
)

)

(42)

in which α𝑧𝑗 =
[

𝛼𝑧𝑗,0 𝛼𝑧𝑗,1 ⋯
]T, β𝑧𝑗 =

[

𝛽𝑧𝑗,1 𝛽𝑧𝑗,2 ⋯
]T are

the vectors of Fourier coefficients related to the 𝑗–th cosine and sine
terms, respectively, and 𝜳 𝑧 is the matrix encapsulating the basis vec-
tors for the vertical friction forces. Correspondingly, the vectors of
Fourier coefficients for the circumferential friction forces are denoted
as α𝜃𝑗 =

[

𝛼𝜃𝑗,0 𝛼𝜃𝑗,1 ⋯
]T, β𝜃𝑗 =

[

𝛽𝜃𝑗,1 𝛽𝜃𝑗,2 ⋯
]T and 𝜳 𝜃 is the

matrix containing the basis vectors for spatial approximation of the
circumferential friction forces. Finally, the axial tip reaction is also
assumed to be periodic:

𝑝(t)s,𝑧 = 𝛼t,0 +
∑

𝑗∈𝑆0

(

𝛼t,𝑗 cos(𝑗𝛺0𝑡) + 𝛽t,𝑗 sin(𝑗𝛺0𝑡)
)

(43)

where αt =
[

𝛼t,0 𝛼t,1 ⋯
]T and βt =

[

𝛽t,1 𝛽t,2 ⋯
]T denote the

ectors encapsulating the Fourier coefficients of the tip reaction.
By substituting the assumed solutions into the dynamic equilibria of

ile and soil and the compatibility conditions, the following residuals
re obtained:

c,𝑧 = 𝜳T
𝑧

(

𝐩c𝑧,s + 𝐩c𝑧,p
)

(44a)

c,𝜃 = 𝜳T
𝜃

(

𝐩c𝜃,s + 𝐩c𝜃,p
)

(44b)

t = 𝑝(t)𝑧,s + 𝑝(t)𝑧,p (44c)

𝑞,s =
(

𝜱s
p,0

)T
(

𝐈sp,0𝜱
s
p,0

d2𝐪s0
d𝑡2

+ 𝐋s
p,0𝜱

s
p,0𝐪

s
0 − 𝐩sp,0

)

(44d)

𝐫𝑞,a =
(

𝜱a
p,0

)T
(

𝐈ap,0𝜱
a
p,0

d2𝐪a0
d𝑡2

+ 𝐋a
p,0𝜱

a
p,0𝐪

a
0 − 𝐩ap,0

)

(44e)

which can be arranged in the following residual vector:

𝐫 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐫c,𝑧
𝐫c,𝜃
𝑟t
𝐫𝑞,s
𝐫𝑞,a

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(45)

Based on the AHBM, the Fourier coefficients of the residual vector
𝐫 are obtained via a Fourier–Galerkin projection and are required to
vanish:

𝐑F = 1
𝑇0 ∫

𝑇0

0
𝐫𝐡 d𝑡 (46)

where 𝐑F is the Fourier coefficients matrix of the residuals, 𝑇0 is the
period corresponding to the base frequency of the AHBM (𝛺0) and the
row vector 𝐡 encapsulates the test functions (i.e. Fourier harmonics)
ℎ𝑖(𝑡) defined as:

𝑖(𝑡) =
1
2

[

(

1 + (−1)𝑖
)

cos
(

𝑖𝛺0𝑡
2

)

+
(

1 + (−1)𝑖+1
)

sin
( 𝑖 + 1

2
𝛺0𝑡

)

]

(47)

Based on the previous, the AHBM is used as basis in our sequential
cheme, enabling to capture harmonic components associated with both
xial and torsional driving frequencies.
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Fig. 7. Profiles of (a) cone tip resistance (𝑞𝑐 ), (b) relative density (𝐷r ), and (c) shear wave velocity (𝑐S) obtained from the SCPTu’s.
Table 2
Properties of the piles driven in the GDP field campaign.
𝜌p [kg/m3] 𝐸p [Pa] 𝜈p [–] 𝐿𝑝 [m] 𝑅𝑝 [m] ℎ𝑝 [m]

7850 210 ⋅ 109 0.3 10 0.373 0.0159

5. Numerical results and comparison with field data

The preceding conclude the numerical developments of this paper,
by presenting a computational framework applicable for the analysis
of pile driving via axial vibratory and GDP techniques; further details
about their derivation and validation can be found in Tsetas (2023).
In the ensuing, the characterization of the GDP model parameters
is presented on the basis of in-situ tests from the GDP field cam-
paign (Tsetas et al., 2023a). Numerical results are compared against
field data showcasing the model potential and further investigation into
the GDP method uncovers the mechanisms that lead to its remarkable
installation performance. Finally, the soil response during pile driving
by GDP is studied, with a view to investigate the characteristics of the
induced wave motion.

5.1. Model predictions and installation measurements

The installation process is studied for an embedment interval from
3 m to 8 m, with the aid of field data from two piles driven via the
GDP method (i.e. GDP1 and GDP2). The dynamic input excitation –
both axial and circumferential – is inferred from strain measurements
at the pile top, which were monitored by means of fibre Bragg grating
(FBG) sensors. Furthermore, the properties of the GDP piles driven in
the field campaign can be found in Table 2 and the installation settings
for both tests are given in Table 3. As regards the characterization
of the soil medium, Seismic Cone Penetration Tests with pore water
pressure measurements (SCPTu’s) were performed and the depth of
the water table was found at 4.5 m (see Fig. 7). It is noted that
material dissipation is introduced in the form of frequency-independent
hysteretic damping for both pile and soil with ratios 𝜉p = 0.001 and
𝜉s = 0.025 (identical for P- and S-waves), respectively.

The present modelling framework is aimed to be applicable for
the analysis of both axial vibratory and GDP methods. The motivation
8

Table 3
Driving frequencies for the GDP installation tests.

GDP1 GDP2

Axial driving frequency 𝑓a [Hz] 16.3 16.5
Torsional driving frequency 𝑓t [Hz] 62.6 63.0

to retain the formulation of the two models as common as possible
lies in the similarity of the installation process (in terms of physics)
between the two methods; to put it simply a physically sound model
for GDP should be capable to capture axial vibratory driving as well.
With a view to proposing a unified modelling framework, the frictional
interface and tip reaction formulations of the axial vibratory model
are employed and adjusted to a minimal degree to accommodate the
additional requirements for the GDP method.

As regards the frictional interface, the generic dependence of fric-
tion force on relative velocity directly encompasses the case of GDP;
however, the question about the parameter calibration for the memory
mechanism may be raised. We proceed to retain the expression 𝑓 (𝑖)

s,0 =
0.012𝑞𝑐 (𝑧𝑖) and the value 𝛽∞ = 0.2, as used for the vibro-driven pile
in the GDP campaign (Tsetas et al., 2023a). Subsequently, for the
degradation rate parameter 𝑐𝑁 an admissible range of values (i.e. 𝑐𝑁 =
0.0003 − 0.0005) is considered, as proposed in Tsetas et al. (2023b).
Furthermore, the tip reaction brings about the complication of the
additional circumferential component and its coupling with the axial
one. Due to the lack of a dataset that may facilitate the distinction of
such effects, the following choices are made: (i) the torsional reaction
at the tip is discarded and (ii) the effect of torsion is accounted by
modifying the axial tip reaction. Effectively, this approach retains the
parameter 𝑘t as defined in the axial vibratory model (Tsetas et al.,
2023b), whereas the value of the plastic tip resistance 𝑓t,ult is modified.
These considerations allow to circumvent the introduction of additional
parameters, which would be inescapable if axial-torsional reaction
coupling and/or torsional reaction were to be considered.

In Fig. 8, the GDP model predictions are compared with the pile
penetration (𝑢R) records from the GDP field campaign. To achieve a
first proper validation of the drivability model, the calibrated param-
eters for GDP1 and GDP2 were aimed to be identical. This validation
process was successful and resulted in: (i) adoption of 𝑐 = 0.0003 for
𝑁
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Fig. 8. Comparison of pile penetration (𝑢R) between numerical model predictions and
experimental data for the piles GDP1 and GDP2.

the shaft reaction and (ii) setting 𝑓t,ult = 0.15𝑞𝑐 for the tip reaction.
The value of the degradation parameter falls in the range proposed
for the axial vibro-driving model (Tsetas et al., 2023b), whereas the
modification of tip reaction is considered as a result of the axial-
torsional coupling at the pile tip. The latter modification is an efficient
manner to address a presumably more complicated mechanism, which
is yet to be fully comprehended and can be better identified by means of
additional experiments. As can be seen in Fig. 8, these two calibration
options lead to great agreement between the numerical predictions and
the penetration records for both GDP1 and GDP2. Naturally, further
refinement of the calibration process is of utmost importance for future
development; yet the degree of agreement with field data achieved
through a single calibration and for two different piles is more than
promising.

5.2. Redirection of the friction force vector: the major driving mechanism
of GDP

The previous showcased the predictive potential of the present
numerical model. However, the mechanics of the process are yet to
be deciphered, with a view to comprehend the driving mechanism
of GDP. As postulated in Section 2, the introduction of torsion will
mobilize friction in the circumferential direction, thus the vertical soil
reaction along the shaft will be reduced. This hypothesis is confirmed
by the friction forces developed at the pile shaft, based on the nu-
merical results of the present model. Specifically, the vertical and
circumferential (line) friction forces at elevation of 𝑧 = 3 m below
the ground surface are displayed in Fig. 9; the chosen time window
corresponds to penetration depth of 5.5 m. As can be seen, both friction
force components have a common pattern, irrespectively of the pile
location (GDP1 or GDP2). It is noted that the friction forces at different
elevations and for different penetration depth possess the same pattern
observed in Fig. 9, thereby such results are not presented to avoid
content repetition. As can be seen, the friction force is predominantly
expended in the circumferential direction resisting the torsional motion
and is accompanied by a substantially lower friction force along the
vertical direction. It is concluded that the redirection of the friction
force vector emerges as the primary driving mechanism of GDP, by
virtue of major reduction of the soil reaction along the penetration axis.

Another visualization of the friction force vector during the studied
time interval is presented in Fig. 10. Specifically, the trajectory of
the friction force vector is shown for the cases discussed in Fig. 9.
Two loci may be distinguished, namely two horizontal lines, and the
majority of the friction force points are seen to clusters around them. In
9

particular, these two lines (loci) correspond to the cases of zero vertical
friction and the extrema of circumferential friction force. This is an
additional testament to the mechanism of friction redirection, as the
friction force approaches the extrema in the circumferential direction
and the extrema of vertical friction are scarcely present. It is noted that
a fixed time step of 𝛥𝑡 = 0.0001 s has been used for the evaluation of
the friction force vectors in the previous plots.

In Figs. 9 and 10, it appears that the friction norm does not alter,
as it would be expected due to friction fatigue. The time window of the
preceding plots has a duration of 0.2 s, facilitating the observation of
the friction forces at a time scale governed by the driving frequency.
However, the friction force reduction according to the proposed mem-
ory mechanism evolves at a much slower time scale, thus the respective
effects require more than 100 cycles to be apparent. For that purpose,
the evolution of the friction force norm during installation is shown in
Figs. 11(a) and 11(b) for GDP1 and GDP2, respectively. It is remarked
that the dotted horizontal plateaus correspond to time intervals where
the pile has not reached the respective soil depth and therefore the
friction force is not present yet (i.e. no pile–soil contact).

Following the preceding investigations, the ratio of circumferential
to total friction force is an interesting metric to obtain further insight
into the mechanics of GDP. In Fig. 12, the aforementioned ratio is
mapped along the soil depth (in contact with the pile) and during the
installation time windows described above. It can be observed that
the friction ratio appears to slightly decrease overall with penetration
depth; the region with the lowest friction ratio is consistently found
to be close to the pile tip. This outcome is rational (based on the CPT
profile), as the soil reaction closer to the tip is the least degraded due to
the small number of accumulated loading cycles (i.e. friction fatigue).

Another interesting aspect of GDP is the power redistribution that
follows from the introduction of torsion. Specifically, the quantity of
interest is the dissipated power along the pile–soil interface and at the
pile tip. It is apparent that in the case of axial vibratory driving, power
is dissipated solely due to the friction along the vertical axis and the
tip reaction. In Fig. 13, a comparison in terms of dissipated power is
presented due to: (i) the vertical friction forces, (ii) the circumferential
friction forces and (iii) the vertical tip reaction. Evidently, the prepon-
derance of dissipated power corresponds to circumferential friction,
whereas vertical friction forces and tip reaction have approximately
similar contribution (yet marginal overall). The latter finding implies
that in GDP – upon successfully diverting shaft reaction in the circum-
ferential direction – the vertical shaft and tip reactions are comparable,
thus differentiating from the classical vibro-driving, where the verti-
cal shaft reaction (also total shaft reaction) is the major component.
Conclusively, the friction redirection mechanism irrefutably benefits
the installation process in terms of performance, yet it implies that the
driving-induced soil motion is dissimilar from axial vibratory driving.
Section 5.3 is focused on this aspect, namely the investigation of the
soil response characteristics in the case of GDP.

5.3. Characteristics of the induced ground motion due to pile installation
via GDP

From the preceding findings, it is deduced that the friction redi-
rection mechanism may imply a dissimilar disturbance in the soil
medium compared to standard vibratory driving. To further investigate
this aspect, the soil response during the installation of pile GDP1 is
studied. For that purpose, in Fig. 14 the peak particle velocities (PPVs)
throughout the soil domain are shown for both SV-P and SH wavefields,
in the form of contour fields in the 𝑟 − 𝑧 plane and at 𝑢R = 5.5 m. It
is noted that the displayed patterns do not resemble the wavefield at
any instant, as they are not snapshots of the response; these graphs
present a collection of the PPVs for all soil material points attained
during the studied time window (sufficient for stationary response).
As can be seen, the first major observation consists in the significantly
lower PPVs associated with the SV-P wavefield compared to the SH
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Fig. 9. Friction force components (𝑝(𝑖)𝑧,s, 𝑝
(𝑖)
𝜃,s) at 𝑧𝑖 = 3.0 m and 𝑢R = 5.5 m.

Fig. 10. Friction force trajectories at 𝑧𝑖 = 3.0 m and 𝑢R = 5.5 m; the colour of the markers is based on the ratio of circumferential to total friction force, i.e. ranging from −1
(blue) to 1 (red).

Fig. 11. Friction force norm (𝑓 (𝑖)
s,ult𝑙

(𝑖)) of the soil interfaces 𝑧𝑖 = 3.0 m, 𝑧𝑖 = 4.0 m, 𝑧𝑖 = 5.0 m and 𝑧𝑖 = 6.0 m during the installation process.
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Fig. 12. Ratio of circumferential to total friction force |

|

|

𝑝(𝑖)𝜃,s
|

|

|

∕
√

(𝑝(𝑖)𝑧,s)2 + (𝑝(𝑖)𝜃,s)2 at 𝑢R = 5.5 m.
Fig. 13. Comparison of power dissipated by (i) circumferential shaft reaction, (ii) vertical shaft reaction and (iii) tip reaction at 𝑢R = 5.5 m.
wavefield. This observation is consistent with the main hypothesis of
GDP and the previous results, as the high-frequency torsion mobilizes
the preponderance of friction forces in the circumferential direction
and thus elicits SH waves. As a result the intensity of the SV-P motion
may drop substantially compared to axial vibratory driving. The sig-
nificance of the previous finding cannot be overemphasized; potential
abatement of the SV-P wavefield and thus of Rayleigh waves is directly
related to greatly reducing the environmental disturbance of onshore
pile driving activities. As regards the offshore environment, pile driv-
ing elicits interface waves emanating from the SV-P wavefield at the
seabed surface (Tsouvalas and Metrikine, 2016), namely the Scholte
waves (Jensen et al., 2011; Aki and Richards, 2002). Therefore, the
potential abatement of the SV-P wavefield can positively affect the
associated underwater noise emissions during pile installation via GDP.
These findings are in line with the envisaged goals of GDP, namely
the reduction of the induced disturbance in the surrounding medium –
accompanied by enhancement of installation performance – compared
to axial vibratory driving.

To further complement the preceding discussion, we conclude the
study of the driving-induced soil motion with particle trajectories at the
ground surface. In Fig. 15, the trajectories of soil particles for multiple
receiver radii are depicted for pile GDP1. In the case of axial vibratory
driving, the surface motion is predominantly vertical for small receiver
radii, whereas with increasing distance from the source the trajectories
transition from vertically-polarized orbits to retrograde elliptical orbits
11
(typical of Rayleigh waves) (Masoumi et al., 2007, 2009). These orbit
patterns are also observed for GDP, with the discrepancy that the
frequency content is much richer – due to the associated vertical
friction forces (see Fig. 9) – as testified by the respective orbits in
Fig. 15(a). Naturally, these components decay quickly with radius and
at larger receiver distances the characteristic trajectories of Rayleigh
waves – related to lower frequencies – are dominant. This remark is
also corroborated by Figs. 15(b) and 15(c) where both 𝑢(0)𝑟,s and 𝑢(0)𝑧,s (SV-
P) components appear to surpass the magnitude of the circumferential
(SH) component 𝑢(0)𝜃,s at large receiver radius. Conclusively, the soil mo-
tion results showcase that the energy introduced into the soil medium is
expressed primarily in SH wave motion and the elicited SV-P wavefield
possesses appreciably lower amplitude, yet in large distances the SV-P
motion dominates in the form of Rayleigh waves.

The preceding findings cannot be generalized a priori for any sce-
nario of GDP. In particular, the main prerequisite that leads to high-
intensity SH motion in the pile vicinity is the redirection of the friction
force. As shown in Fig. 12, the circumferential friction is one order
of magnitude higher (or even more) than the vertical component for
the majority of pile installation. Therefore, the mechanism of friction
redirection is not solely associated with advantageous installation per-
formance, but also with an induced localized medium disturbance,
particularly for the case of SH motion characterized by high frequency
(and thus small wavelengths). It is remarked that due to the coupling
of the friction components (Eqs. (29) and (30)), both SV-P and SH
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Fig. 14. Comparison of PPVs associated with (a) the SV-P wavefield and (b) the SH wavefield, for GDP1 and at 𝑢R = 5.5 m.
Fig. 15. Trajectories of soil particle motion at various receiver radii on the ground surface and for 𝑢R = 5.5 m.
wavefields are characterized by rich frequency content; this is also
testified by the vertical friction forces in Fig. 9 eliciting the SV-P
wavefield, as well as the SV-P particle trajectories in Fig. 15. The
axial-torsional excitation and the frictional coupling effectively result
into redistribution of the energy throughout the frequency spectrum
at the interaction harmonics (see Eq. (38)). Naturally, an extensive
parametric study of combined numerical and experimental character
is deemed necessary to identify the admissible parameter space for
the amplitudes and frequencies of the axial-torsional excitation, with
a view to successful application of GDP.

6. Conclusions

In this paper, a numerical model for the analysis of pile installation
via GDP was presented and utilized to decipher the mechanics of this
novel driving technique. Specifically, the GDP model builds on a re-
cently developed numerical framework for axial vibratory driving, with
main extensions the increase of the degrees-of-freedom (DoFs) (due
to the addition of circumferential motion) and the application of the
AHBM (due to the relation of the driving frequencies). As regards the
soil reaction, the SCPT-based formulation from vibratory driving was
employed as an initial basis. Upon modification of the tip reaction, the
12
adopted set of parameters led to GDP model predictions that compared
favourably with field data from the GDP campaign. Therefore, a unified
modelling framework that is suitable to analyse pile installation via
axial vibratory and GDP methods has been realized. Conclusively, the
main observations and findings pertaining to the study of the pile
installation process via GDP are summarized as follows:

– a unified modelling framework was presented and benchmarked
with field data for the analysis of axial vibro-driving and GDP.

– the friction force at the pile–soil interface was predominantly ex-
pended in the circumferential direction. The redirection of the friction
force vector emerges as the main driving mechanism in GDP, that leads
to enhanced installation performance.

– as a consequence of the previous point, the majority of the power
dissipation through the soil reaction corresponds to the circumferential
friction. This finding also implies a dissimilar soil response compared
to standard vibro-driving.

– the soil motion during pile installation via GDP elicits both SH
and SV-P waves, with the former wavefield being dominant. This result
encourages further experiments to investigate the potential abatement
of the SV-P wavefield in GDP.

– SV-P motion appears to surpass the respective SH component at
the ground surface and with increasing distance, owing to the faster
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decay of the high-frequency waves induced by torsion. Therefore, the
Rayleigh waves may still comprise the main environmental disturbance
in large distances from the source, albeit significantly abated.
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ppendix A. Vibrations of cylindrical shells via the SAFE method

The SAFE mass and stiffness matrices 𝐈s,𝑙p,0 and 𝐋s,𝑙
p,0 for the axial–

radial motion (i.e. 𝑛 = 0 and symmetric configuration) of a cylindrical
shell segment 𝑙 with length 𝑑𝑙 read as in Eqs. (A.1) and (A.2) (see Box I),
where 𝐷p =

𝐸pℎp
1−𝜈2p

.

Similarly, for the torsional motion (i.e. 𝑛 = 0 and anti-symmetric
configuration) the SAFE mass and stiffness matrices 𝐈a,𝑙p,0 and 𝐋a,𝑙

p,0 are
defined as:

𝐈a,𝑙p,0 = 2𝜋𝑅pℎp𝜌p
⎡

⎢

⎢

⎣

𝑑𝑙
3

𝑑𝑙
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3

⎤

⎥
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⎦

(A.3)

𝐋a,𝑙
p,0 = 2𝜋𝑅p𝐷p
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(A.4)

We proceed to showcase the incorporation of hysteretic damping in
he pile equations of motion. It is known that hysteretic damping can
e formulated in the frequency domain and cannot be transposed in the
ime domain (Géradin and Rixen, 2014). However, in our problem the
eriodic response of the system is computed in certain states; by virtue
f this periodicity the transformation from time to frequency domain
and vice versa) is trivial. Consider the equilibrium equations of the
ile generalized coordinates for the axial–radial motion (Eq. (10)) upon
ransformation to the frequency domain, including hysteretic damping:

𝜔2𝐈 𝐪s +
(

1 + 2i𝜉 sgn(𝜔)
)

𝜴2𝐪s =
(

𝜱s
)T

𝐩s (A.5)
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𝑁𝑚 0 p 0 p,0 p,0
where the orthogonality relationships have been normalized as follows:
(

𝜱s
p,0

)T
𝐈sp,0𝜱

s
p,0 = 𝐈𝑁𝑚

,
(

𝜱s
p,0

)T
𝐋s
p,0𝜱

s
p,0 = 𝜴2 (A.6)

where 𝐈𝑁𝑚
is the 𝑁𝑚 × 𝑁𝑚 identity matrix, 𝜴 = diag

{

𝜔s
0,1 𝜔s

0,2 ⋯
}

is a diagonal matrix with 𝜔s
0,m denoting the natural frequency of the

𝑚–th axial–radial shell mode in vacuo. In Eq. (A.5), the hysteretic
damping has been introduced in the form of complex Young’s modulus,
i.e. 𝐸∗

p = 𝐸p(1 + 2i𝜉psgn(𝜔)), thus being a multiplier of the term arising
from the SAFE stiffness matrix.

The generalized coordinates 𝐪s0 (Eq. (39)) can be expressed com-
pactly as:

𝐪s0 = 𝐡0 + 𝐂s
𝑐𝐡𝑐 + 𝐂s

𝑠𝐡𝑠 (A.7)

where the coefficient matrices 𝐂s
𝑐 , 𝐂s

𝑠 and the Fourier vectors 𝐡0, 𝐡𝑐 , 𝐡𝑠
are defined as follows:

𝐂s
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(A.8)

𝐂s
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(A.9)

𝐡0 =
[

𝑐s1,0 𝑐s2,0 ⋯
]T

(A.10)

𝐡𝑐 =
[

cos(𝑗1𝛺0𝑡) cos(𝑗2𝛺0𝑡) ⋯
]T (A.11)

𝐡𝑠 =
[

sin(𝑗1𝛺0𝑡) sin(𝑗2𝛺0𝑡) ⋯
]T (A.12)

where the Fourier coefficients 𝑐s0,𝑗 and 𝑠s0,𝑗 associated with the 𝑚–th
axial–radial mode have been defined in Eq. (39) and 𝑗1, 𝑗2 are members
of the set 𝑆0.

By virtue of the periodic generalized coordinates (Eq. (A.7)), the
transformation of Eq. (A.5) to the time domain can be readily obtained
as follows:

−𝛺2
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𝑠𝐡𝑠
)

=
(

𝜱s
p,0

)T
𝐩sp,0 (A.13)

where 𝐉 = diag
{

𝑗1 𝑗2 ⋯
}

.
As can be seen, Eq. (A.13) can be directly substituted in Eq. (44d)

to account for hysteretic damping. The exact same procedure can be
employed for the axisymmetric torsional motion associated with 𝐪a0. It
s noted that the preceding treatment includes only the flexible body
odes (𝑚 > 0), as energy dissipation due to material hysteresis does
ot take place during rigid body motion (𝑚 = 0), i.e. the structure

translates/rotates as a rigid body without deformation.

Appendix B. Thin-layer matrices for linear elastic isotropic media

For the case of linear Lagrange polynomials used as interpolation
functions, the TLM matrices read:

𝐀𝑙 =
(

1 + 2i𝜉ssgn(𝜔)
) ℎ𝑙

6
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(B.1)
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The matrices 𝐀𝑙, 𝐁𝑙, 𝐆𝑙 and 𝐌𝑙 characterize each thin layer 𝑙 (Kausel
and Roësset, 1981). By overlapping all the thin layer matrices in the
usual FE sense, grouping the DoFs instead of the layer interfaces and
rearranging rows and columns, the matrices 𝐀𝑟, 𝐀𝜃 , 𝐀𝑧, 𝐁𝑧𝑟, 𝐁𝑟𝑧, 𝐆𝑟, 𝐆𝜃 ,
𝐆𝑧, 𝐌𝑟, 𝐌𝜃 and 𝐌𝑧 can be formed, which lead to Eqs. (13) and (14).
Finally, hysteretic damping is introduced in the form of complex Lamé
parameters, i.e. 𝜆∗s = 𝜆s(1 + 2i𝜉ssgn(𝜔)) and 𝐺∗

s = 𝐺s(1 + 2i𝜉ssgn(𝜔)). The
overall process to obtain the Green’s functions is identical, irrespective
of the presence of hysteretic damping.
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